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A product development project was set up at the Finnish company SKS Control Oy in 

order to renew an older product portfolio consisting of a number of different devices 

used in electrically implemented motion control systems. These products include, for 

example, a range of programmable CPU units, display devices, HMIs, and I/O 

devices. This work focuses on the process of developing one of the new products, 

which is an EtherCAT-based fieldbus module. The purpose of this product is to 

replace a number of older products by integrating their functionality into one 

extensive modular-structured device. Along with this, the new module is intended to 

provide various new features that were hard or impossible to implement with the 

older products. 

The part of the product development work which is presented here consists of three 

main parts. The first one presents some of the most relevant theoretical background 

behind the field-bus module along with a list of wanted features and properties. 

Together with the theory, this part discusses a way of satisfying these design 

constraints while using a module structure similar to the other products in the 

portfolio. 

Second, the work covers the hardware design of the module by dividing it into 

smaller functional blocks and discussing them separately. Here the focus lies on the 

electronic design rather than the mechanical. 

Finally, the work includes a section about the software work included in the product 

development. This part mainly focuses on the hardware description language VHDL 

and, to a smaller extent, on additional software, such as C, used in the product or 

together with it. 
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Suomalaisessa yrityksessä SKS Control Oy:ssa aloitettiin tuotekehitysprojekti jonka 

tarkoitus oli uusia eräs vanha tuoteportfolio. Portfolio sisältää tuotteita jotka käytetään 

sähköiseen liikkeenohjauksen yhteydessä ja portfoliossa löytyy esimerkiksi erilaisia 

CPU-moduuleja, näyttöjä, HMI:ta ja I/O laitteita ym. Tämä kirjoitelma keskittyy 

yhteen uuteen tulevaan moduuliin, joka on EtherCAT pohjanen kenttäväylämoduuli. 

Tämän uuden tuotteen tarkoitus on korvata muutama vanha tuote ja samalla tuoda 

uusia ominaisuuksia jotka olisi ollut vaikeita tai mahdottomia toteuttaa vanhoilla 

tuotteilla. 

Sitä osaa tuotekehitysprojektia joka esitetään tässä työssä sisältää kolmea eri osaa. 

Ensimmäinen osa käsittelee olennaisimmat alueet tuotteen teoreettisesta taustasta ja 

samalla esittelee tuotteen halutut spesifikaatiot ja ominaisuudet. Tämän yhteydessä 

esitetään myös erilaiset keinot toteuttaa nämä halutut ominaisuudet. 

Työn toinen osa käsittelee tuotteen rautapuolen suunnittelua jakamalla kaikki 

toiminnalliset osat pienempiin osakokonaisuuksiin ja käsittelemällä niitä erikseen. 

Tässä osassa keskitytään enemmän elektroniikan suunnitteluun kun mekaaniseen. 

Lopuksi työ käsittelee tuotteeseen liittyvää ohjelmointiosuutta joka pääosin käsittelee 

rautapuolen ohjelmointia VHDL kielellä ja pienemmissä määrissä muita tuotteeseen 

liittyviä ohjelmointikieliä kuten C. 
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Symbols and abbreviations 

ABS Absolute 

AoE ADS over EtherCAT 

ASIC Application specific integrated circuit 

A/D  Analog to digital 

BGA Ball-grid array 

CMOS Complementary metal oxide semiconductor 

CoE CANopen over EtherCAT 

CPLD Complex programmable logic device 

CPU Central processing unit 

DC Direct current / Distributed clocks 

DCM Digital clock manager 

DPRAM Dual port random access memory 

DSP Digital signal processing 

D/A Digital to analog 

EEPROM Electronically erasable programmable read-only memory 

EMC Electromagnetic compatibility 

ENI EtherCAT network information 

EoE Ethernet over EtherCAT 

EOF End of frame (EtherCAT frame) 

ESC EtherCAT slave controller 

ESI EtherCAT slave information 

ESM EtherCAT state machine 

EtherCAT Ethernet for control and automation technology 

ETG EtherCAT technology group 

FCS Frame check sequence 

FET Field-effect transistor 

FLASH Non-volatile computer storage memory 

FMMU Fieldbus memory management unit 

FPGA Field programmable gate array 

FR4 Grade designation assigned to PCBs’ core material 

GPIO General purpose Input / Output 

  C Inter-integrated circuit two-wire interface 

IC Integrated circuit 
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ID Identification 

INC Increment 

IEC International electro-technical commission 

IEEE Institute of electrical and electronics engineers 

IP Internet protocol 

IP Intellectual property 

ISO International organization for standardization 

I/O Input / Output 

JTAG Joint test action group 

LCD Liquid crystal display 

LED Light emitting diode 

LUT Lookup table 

LVDS Low voltage differential signaling 

MAC Media access control 

MMU Memory management unit 

MUX Multiplexer 

NIC Network interface controller 

PAL Programmable array logic 

PC Personal computer 

PCB Printed circuit board 

PDI Process data interface 

PDO Process data object 

PE Protection earth 

PHY Physical layer 

PLD Programmable logic device 

PLL Phase-locked loop 

PTC Positive temperature coefficient 

QFN Quad-flat no-leads 

RJ45 A common connector type used for Ethernet 

RTOS Real-time operating system 

R/W Read / Write 

SEMI Semiconductor equipment and materials international 

SFR Special function register 

SM Sync manager 

SMD Surface-mount device 
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SMPS Switched-mode power supply 

SoC System on chip 

SoE Servo profile over EtherCAT 

SOF Start of frame (EtherCAT frame) 

SPI Serial peripheral interface bus 

SRAM Static random access memory 

SSI Synchronous serial interface 

TTL Transistor-transistor logic 

TVS Transient voltage suppression 

UDP User datagram protocol 

VHDL VHSIC hardware description language 

VHSIC Very high speed integrated circuit 

VLAN Virtual local area network 

VoE Vendor specific profile over EtherCAT 

WD Watchdog 

XML Extensible markup language 

 



1 Introduction and objectives 

As the demand for faster performing and more complex automation systems arises, the 

need for new innovations and solutions is brought into light and has to be answered by 

the automation technology companies. One such cost-effective solution that provides 

the customer with an efficient and flexible system is the real-time EtherCAT® fieldbus 

system. By using the same underlying commodity technology in the EtherCAT® system 

as with standard Ethernet, which is mainly driven by the office sector, the overall 

system cost reduces significantly. The office Ethernet technology does not only bring 

cost-reduction, but also gives rise to another one of the main advantages with 

EtherCAT®, namely that it makes allowance for internet access (e.g. webserver) within 

the same system. The internet access can quite possibly reduce the number of interfaces 

in the automation system as nowadays system access over the internet is widely 

implemented. However, comparing EtherCAT® with the office Ethernet shows clearly 

that EtherCAT® is better suited for automation systems than the standard office 

Ethernet technology. One reason for this is the lack of real-time operation with the 

office Ethernet. Another reason is the small utilization of the Ethernet packages and 

slower speed due to the fact that the packages have to be received, copied and 

interpreted before forwarding. This is not the case with EtherCAT® as will be seen later 

in the thesis. 

EtherCAT® differs from standard Ethernet in many ways by the most prominent one 

being the determinacy i.e. real-time characteristics. The EtherCAT® real-time 

capability, using time-stamps based on a distributed clock system, allows for faster 

system response and easier synchronization of modules in larger systems, which is a 

much desired feature due to the fact that some grade of synchronization is involved in a 

large number of automation systems. The EtherCAT® fieldbus competes with other 

similar real-time solutions on the market, with the most visible ones being the Siemens 

Profinet® industrial Ethernet and Powerlink® systems, all with their own pros and 

cons. 

The root of a simple automation system using the EtherCAT® fieldbus technology 

consists of one master controller and one or more EtherCAT® slave(s). The master can 

but does not have to be a normal PC, with suitable software and hardware, and is 

usually connected via standard Ethernet cables to the slaves, without the need of any 

hubs or switches in between. The EtherCAT® master controller is nothing more than a 

software program that usually uses the same network controllers and hardware as the 

slaves in the Ethernet physical layer. The master creates and sends out the EtherCAT® 

frames or packages to be forwarded by the slaves. The slave’s role is to forward the 

EtherCAT® frames on the fly, while simultaneously extract and insert data into the 

frames which has been specifically addressed for each slave. The master also controls 

and executes the application specific automation program by using the slaves as the 

electrical interfaces to the other devices in the system. The program’s complexity can 

for example range from a simple I/O reading task to a much more complex motion 

control task involving sophisticated synchronous motion of several axes. 

A product development project was set up at the Finnish company SKS Control Oy, 

with the main objective being to develop a competitive EtherCAT®-based fieldbus 

module as a part of a product portfolio modernizing project. The new products to be 

developed in the modernizing process are meant to replace an old much wider product 

portfolio by integrating more functionality into fever products and make use of the other 
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benefits that EtherCAT® gives rise to compared to the old system. The two most central 

products of the portfolio are an EtherCAT® master CPU module and an EtherCAT® 

slave I/O module, of which the latter one is the subject of this thesis. Although the 

project covers the whole product development process from idea to the complete sales-

ready product, the scope of this thesis doesn’t cover all parts in the process as will be 

explained later. 

My personal part of this product development project involving this particular 

EtherCAT® slave module is quite comprehensive. It involves all the hardware 

prototyping and design, all the software design and the major part of the documentation. 

However, areas such as sales & marketing, some of the ideation around the product 

features and the final production management are outside my field of work. 

The objective of this thesis is to provide the reader with comprehensive information 

about the work that has been done and knowledge that can be used for similar future 

development, such as new spin-off products or updated versions of the original one. The 

thesis simultaneously stands as a technical documentation, leaving out some of the 

deeper knowledge behind the implementations due to the fact that they are trade secrets. 

This product documentation stands alongside with other documentation such as the 

user’s manual and technical datasheets etc. 

 Product overview 1.1

As shortly stated before, the product that is being discussed in this thesis is an 

EtherCAT slave fieldbus module. The module is operated by a master device connected 

to it using standard Ethernet NICs that are compatible with the EtherCAT protocol. The 

specifications for the EtherCAT protocol allow one master to be connected to one or 

more slaves of different or the same type. Because the protocol is standardized and all 

vendors have to develop their products according to it, the master and the slave modules 

don’t have to be from the same vendor or product family to work together. The protocol 

also supports different network topologies, such as a line-, tree-, star- and ring-topology 

or an arbitrary combination of them all. These different possibilities give the system 

architect more freedom while simultaneously adding more qualities to the system, such 

as the possibility for redundancy. Communication is not only restricted from master to 

the slaves and vice versa but also allows for a fast slave to slave communication. 

The electronics of the slave module itself is encapsulated inside a plastic box consisting 

of one motherboard, with electrical connectors, upon which a number of PCBs with 

different functionality can be stacked, to fulfill the required specifications of the system. 

This allow making one more basic and cheaper version of the product for simpler 

projects, containing only the motherboard without add-ons, but with some basic 

functionality integrated, such as digital I/O. On the contrary, if a more complex system 

is needed, there is a possibility to use a number of different add-on PCBs, with different 

functions and electrical connections, by stacking them onto the motherboard. The add-

on PCBs, which are referred to as option modules thorough the thesis, provide the 

module with more complex functions such as A/D-, D/A-converters, ABS- and INC-

encoder interfaces, additional I/O with special properties etc. A more thorough 

description of the possibilities this modularity gives rise to is given later on. 
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 Product development goals and comparison to similar 1.2

products 

The main goal of the product development is to manage the many needs of today’s 

automation systems with one extensive modifiable fieldbus module. Therefore pressure 

is set to plan and design the module for maximum flexibility and adaptability. This 

adaptability will not only reduce the costs in some applications, but will also allow the 

module to be modified to meet the customers’ specific needs in special cases. These 

special cases can be situations when no off-the-shelf module is available to satisfy some 

desired arbitrary function(s) and the alternative solution would be somehow 

cumbersome. One example of this could be a simple thing as measuring the frequency 

or pulse width to a high precision of a digital input channel. Another example could be 

applying a digital filter of variable length to digital inputs. These are examples of things 

not easily implemented by using simple off-the-shelf modules, but can be implemented 

into the module with a small effort using the hardware description language VHDL 

together with a programmable FPGA, as will be seen later. 

Another goal is to keep the module and the building-blocks it consists of rather simple 

in construct and reduce the component amount as much as possible. This will help to 

manage the production costs and increase the reliability, while still providing a flexible 

and easy solution. Implementing an FGPA chip in the design which is programmed 

using the hardware description language VHDL will help to reduce the component 

count significantly. This is due to the fact that most of the complex hardware functions 

can be implemented inside one FPGA chip, simply by programming it.  

A third goal related to the electrical design is to keep the motherboard as open as 

possible for future improvements. Specifically to keep the add-on PCB-board 

connectivity as flexible as possible to allow for more and easy improvement of the 

module properties by using future add-on boards of different kinds and complexity. The 

FPGA comes in handy here once again because new add-on boards can be taken into 

use by simply modifying the VHDL software and leaving the electrical connections the 

same as before. 

Conventional EtherCAT systems sold by larger vendors, such as Beckhoff and Wago, 

all build their systems using one EtherCAT coupler, which is connected to a master, 

together with off-the-shelf EtherCAT slave modules stacked onto the coupler. This 

gives a similar modular construction as the one described in the chapter before and the 

system is built similarly by stacking the needed slave modules together. This method 

lacks the ability to arbitrarily modify each module for specific special needs, which is 

one downside with off-the-shelf modules. 

The last but not least advantage with developing a module of one own is the in-depth 

knowledge and understanding of the product it provides. This will naturally give aid to 

the technical support and therefore also give more value to the customers. 
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 The scope of the thesis 1.3

The scope of this thesis is mainly restricted to the hardware and software development 

of the EtherCAT-based fieldbus module, together with some basic theory of operation. 

Nevertheless, a short introduction is given regarding its use and role as a part of a bigger 

automation system including some discussion about communication and interfaces to 

other devices. The hardware part of the thesis focuses more on the electronic than the 

mechanical product design and gives the reader in-depth knowledge about the electronic 

building-blocks used and how they work together. In the same manner, the software part 

of the thesis discusses the software blocks which builds up a functioning product with 

the desired features and are programmed into the FPGA. It is assumed that the reader is 

familiar with the hardware description language VHDL. The thesis software part also 

slightly touches the subject of XML coding and its use in an EtherCAT system. 

The thesis does not go in-depth discussing the product development process as a whole 

but rather focuses on the decisions already made and discusses them more closely. 

Although the product all together is built up using a varying number of PCB-boards 

connected to the motherboard, only the development of the motherboard itself is 

discussed closer. Also nothing is said about production and production related testing 

and verifying. 

 Thesis organization 1.4

The thesis is organized into five main parts, starting off with an introduction and 

overview of the work that has been accomplished. Along with this is a short description 

of the product and the system it is used with. 

The second part discusses the architecture or build-up of the product along with some 

theory behind the features and technologies used. This chapter also includes a short 

discussion about the communication interfaces of the product and the role of the product 

as a part of a bigger automation system. 

The third part is the hardware part of the thesis, which begins with an overview and 

layout of the product and then proceeds to discuss a short examination of the 

mechanical design and a more comprehensive one about the electronic schematic 

design, extended with sections considering the PCB design and component selection. 

Finally, testing and evaluation is discussed in the last subsection. 

The fourth part examines the software design involved in the product development. 

First, there is a more in-depth discussion regarding the hardware description language 

VHDL. Second, there is a shorter discussion about the XML markup language used 

when interfacing the product to a master device. Last in this section is a discussion 

about testing and validating the software. 

The fifth and last part of the thesis concerns testing and confirmation of function for the 

complete product and finally sums up everything analyzed and discussed throughout the 

thesis, together with some cogitation of future improvements. 
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2 Theory of the EtherCAT protocol and module 

operation 

This chapter starts with a presentation of the EtherCAT protocol and the theory behind 

its functional principle along with the standard and organization behind it. After this, the 

fieldbus module is presented in greater detail and the function of the module as a part of 

an automation system together with its interfaces, is discussed. The last part will discuss 

the FPGA used in the product design along with the possibilities it allows for and why it 

is important for the module. 

 EtherCAT protocol 2.1

The idea of EtherCAT got its beginning in the millennium shift at the German-based 

company named Beckhoff and was presented to the world for the first time at the 

Hannover fair in 2003. The first EtherCAT fieldbuses were introduced in the same year, 

consisting of I/O terminals, encoder readers and drives [p. 18-21, 1]. These fieldbuses 

were at the time already used in pilot projects, in which conventional fieldbuses could 

not be used. One example of this is the Schuler AG press controllers, in which 

EtherCAT was used for communication between peripheral devices and a PC-based 

control system [p.22-25, 2]. 

2.1.1 The EtherCAT standard and ETG (EtherCAT technology group) 

EtherCAT is an open source protocol and is an IEC, ISO and SEMI standard. To begin 

with, EtherCAT is part of IEC standards such as the IEC 61158, IEC 61784 and IEC 

61800. The IEC 61158 and IEC 61784 are international fieldbus standards and one part 

of the IEC 61800 includes drive profile standards in which also the EtherCAT drive 

profile is included. Secondly, EtherCAT is also a part of ISO 15745, which deals with 

device descriptions. Finally, The SEMI organization has added the EtherCAT SEMI 

E54.20 to their standards. [p.7, 3] 

EtherCAT is maintained and managed by the EtherCAT technology group, which today 

consists of about 2000 member companies worldwide. One of the fundamental ideas of 

the EtherCAT technology group is to encourage the members to influence the future 

enhancements of the open standard by attending technical working classes and other 

meetings. This gives each member company direct possibility to influence the 

development of EtherCAT and indirect possibility to represent one’s interest to the 

national standardization companies, such as IEC and ISO, via ETG. [4] 

2.1.2 Operating principle and frame processing 

The data packets i.e. the Ethernet frames used by EtherCAT exert the same IEEE 802.3 

standard as the frames used in the well familiar home or office Ethernet. First off, this 

allows for the use of standard network controllers and hardware on the master side. 

Second, EtherCAT has its own reserved EtherType, which allows for other protocols 

such as IP to be used parallel with the EtherCAT frames on the same bus. Alternatively 

EtherCAT frames can be encapsulated in UDP/IP frames or in VLAN frames. The real-

time properties are not compromised even when using other protocols in parallel with 

the EtherCAT protocol in the same bus. On the next page, in picture 1, is an overview 
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of an Ethernet frame containing EtherCAT data raw and inside a UDP/IP internet frame. 

The first blue part from the left is the package header, which for a basic EtherCAT 

frame contains the destination, source and EtherType. The second (Yellow or red/green) 

part contains the EtherCAT data which can be further split into an EtherCAT header 

and one or more EtherCAT datagrams. The EtherCAT header contains the protocol type 

and info about the length of the EtherCAT datagrams. After the header, there are one or 

more datagrams which contain the raw data bits (EtherCAT configuration data and 

read/write process data) which are being transceived. The last part of the frame is the 

FCS or frame check sequence that is used for error detection. 

 

Picture 1: Build-up of an Ethernet frame containing EtherCAT data. 

No processor power is needed to process the frames as they are processed on the fly in 

hardware by the ESCs. Processing on the fly means that data are read and written as the 

bits are passing by the ESC and directly forwarded to the next closed port. This method 

gives the system a very low forwarding delay because the frames are not first stored, 

evaluated and then passed on, as is the case with the office Ethernet. [p.I-4 – I-5, 5] 

2.1.3 The Physical layer, PHY 

The EtherCAT physical layer consists of the components and connectors that make up 

the interface that transmit the EtherCAT frames from one device to another. The 

EtherCAT protocol supports two types of physical layers. The first one is the Ethernet 

interface mentioned earlier that uses a standard EtherCAT compatible MAC which have 

to support a 100Mbit/s full duplex link, according to the requirements for EtherCAT. 

The typical connectors used with the Ethernet approach are the same as in the normal 

office sector Ethernet, namely RJ45 connectors. The cable length with this method can 
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be up to 100m for copper cables and up to 2km for optical fiber. The second physical 

layer type is the E-bus, which is a LVDS bus intended to be used as a backplane 

module-to-module bus but can occasionally be used for communication up to 10m 

distances. The E-bus is designed to reduce components and costs while achieving the 

same 100Mbit/s speed as with the Ethernet link. More technical information regarding 

the E-bus is given in reference [p. I-34 – I-37, 5]. The physical layer can be changed at 

any time anywhere in the system and the Ethernet protocol approach allows for hot-

plug-and-play compatibility. The only requirement for the transport medium is that is 

has to be full-duplex, leaving out solutions using half-duplex communication, such as 

radio transmissions. [p. 3, 6] 

2.1.4 FMMU and SyncManagers 

The data utilization with the EtherCAT protocol is usually very high and can come up to 

over 97% when an Ethernet frame is fully utilized. The high utilization grades come 

from the fact that several slaves in the system can be addressed in both send and receive 

direction within one EtherCAT frame by using logical addressing. This can be 

compared to a system the other way around where each slave has its own addressed 

Ethernet packet [p. 8-9, 3]. The logical addressing is made possible by the EtherCAT 

FMMU function. The addressing works by mapping each slave’s data bits or bytes to a 

respective memory area within the FMMU’s logical address space that spans 4GBytes 

in total. The FMMU function can be compared to a CPU’s MMU and its function is to 

convert a logical memory address to a physical one via an internal table, within each 

slave. Accordingly, each slave uses one or more hardware configured FMMU’s located 

in their respective ESCs to fulfill this function. The system can be regarded as a large 

distributed memory which can be written and read without restriction. The maximum 

data size of an Ethernet frame is 1500 byte, as can be seen in picture 1, which means 

that the whole memory area of the 4GByte address space is fragmented over several 

frames. [p. 2-3, 6] 

To ensure that the data transfer between a master and a slave’s local application is 

consistent and secure, a so called SyncManager or better described as a memory 

manager, is used. The SyncManagers are configured by the master and initialize a 

buffer for exchanging the data between master and slave. This buffer function results in 

that no polling of the memory is needed, to know when the other side (master or slave) 

has finished accessing the memory. The SyncManagers can be configured in two ways, 

the first one is a buffered mode and the second one is a mailbox mode. The buffered 

mode is typically used for cyclic process data and allows both the producer and 

consumer to access the buffer simultaneously. The buffer works as a 3-buffer with one 

reserved buffer for the consumer and one for the producer while the third one keeps the 

latest consistently written data by the producer. This function ensures that there is 

always the latest data available for the consumer. In contrast, the mailbox mode 

alternates the access to the buffer in a way that the consumer or producer has to finish 

its access first before the other side has access to the buffer. This works like a 

handshake mechanism to ensure that all data reaches the consumer from the provider 

and no data is lost. The mailbox mode is usually used for application layer protocols 

such as EoE, SoE and CoE, to name a few examples. [p. I-40 – I-44, 5] 

  



8 

 

 

2.1.5 Distributed clocks 

One of the bigger advantages of EtherCAT compared to conventional Ethernet is the 

possibility to use the so called distributed clock (DC) feature which makes it possible 

for all EtherCAT devices to share the same EtherCAT system time. This does not only 

allow all the devices to be synchronized to each other, but also allow the local 

applications to be synchronized with each other as well. The clock synchronization 

works by defining one (usually the first ESC with DC compatibility) slave for holding 

the system reference time and then synchronizing all the other clocks (including the 

master’s) to it. All the differences between the local clocks and the reference clock, such 

as drifting, offset and propagation delays can be accurately calculated, measured and 

compensated for with sophisticated compensation methods. For more information about 

how the system clock compensation is calculated the reader are encouraged to consult 

reference [I-45 – I-65, 5]. The ESCs can be configured to generate sync- and latch-

signals synchronized to the EtherCAT system time for synchronous output signals and 

precise time-stamping for input signals.  

While enabling synchronized clocks in the system, the time jitter between devices can 

achieve values of well below 1uS which can come in handy, for example in applications 

where several servo axes carry out synchronous coordination of movements. Naturally, 

this well-defined time reference is well-suited for motion control, where velocities are 

often calculated from sequentially measured positions. The distributed clocks can also 

be used to provide for accurate information about various local data acquisition and 

usually give better reaction times in the system. [p. 12-13, 3] 

2.1.6 EtherCAT master and slave implementation 

A master controller in an EtherCAT system does not need any special hardware to work 

and can thereby be fully implemented in software using standard on-board Ethernet 

MACs (in PC) or an additional passive NIC card as the physical interface to the slaves. 

The master functionality does not put much stress on the processor and can be 

implemented by using open-source projects or alternatively bought as commercial 

software. The master stack can be implemented on many RTOSs, not only including the 

well familiar Windows, Linux and OS-9 but also smaller ones such as CodeSYS RTOS. 

The burden on the host processor is eased due to the fact that the Ethernet frame is 

already sorted and all the mapping (the slave FMMU functionality) happens in the 

slaves i.e. the slaves insert their data at respective places in the passing frame. The 

master software stack is also applicable for embedded systems consisting of a broad 

range of microcontrollers or CPUs running different operating systems or no operating 

system at all. Even though embedded systems often have a limited amount of memory 

and possibly no hard disk, a freely sizeable and scalable version of the master stack can 

be implemented serving the need at hand. A freely scalable and sizeable master in this 

case means a master for which some of the features and/or protocols can be omitted if 

necessary, in order to reduce the size and therefore better work together with the 

memory and CPU used in the specific system. [7] 

The EtherCAT protocol can support up to 65535 nodes or slaves in one network. Each 

slave has its own ESC, as described before, implemented either in a single ASIC chip or 

coded into an FPGA. An EEPROM is used together with the ASIC but not always with 

the FPGA (can be emulated with FPGAs), which holds the configuration and general 

information about the slave in question. At the system initialization, the master reads 
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this information from each slave and can gather information such as product ID, vendor, 

general PDI-configuration and distributed clocks settings etc. The PDI is the 

communication interface between the ESC and the local application. There are a 

number of different types of PDIs ranging from more simple I/O-wires to more complex 

8/16-bit microcontroller interfaces and 32-bit parallel busses, to name a few. The more 

complex PDIs naturally need a microcontroller or CPU on the application side, while 

the simplest ones can be implemented without any. The PDI gives the application 

access to the ESC DPRAM (0-64kB), which is the internal ESC memory used for 

exchanging data with the master. The DPRAM is handled by the SyncManagers and 

further on mapped onto the Ethernet frames by the FMMU, as explained before. Some 

of the DPRAM is reserved for configuration and status data, but up to 60kB of RAM for 

each slave can be used by the local application for process data exchange with the 

master or other slaves. The memory size available is naturally dependent on the type of 

ESC used or its configuration, when talking about FPGAs. [p. 20-21, 3] 

Furthermore, to coordinate the master and slave applications at start up and under 

operation, a so called EtherCAT state machine (ESM) is implemented in the ESCs. The 

function of the ESM is to initialize a controlled startup of the slave and to inform the 

master about possible problems or errors within the application. The master is the one 

that requests state changes of the slave and the slave answers accordingly by changing 

its state or jumping to a defined state in situations when an error or other unsuspected 

situation has occurred. In the different states of the slave, different types of 

communication and amounts of data exchange between the application and the master is 

allowed. For example, in a safe state, the slave is not allowed to change its outputs but 

is however allowed to read the inputs. This is an example how to avoid dangerous 

situations when some error or other problem has occurred. [I-66 – I-70, 5] 

In summary, the simplest slave possible, which is a digital I/O, can be implemented by 

using only one EtherCAT ASIC or FPGA, one EEPROM and one Ethernet PHY 

together with their connectors and components. On one hand, this gives a very cost 

effective solution for simple devices and on the other hand even the simplest slaves 

share the same underlying technology as for more complex and costlier ones. 

 Module architecture and design 2.2

Now that the features of EtherCAT and the techniques behind EtherCAT slaves and 

masters have been covered, it is time to look closer at the slave that is being discussed 

in this thesis. As stated before, the slave module consists of one simple skeleton 

motherboard with the required minimum amount of components for a fully working 

slave. Additionally to this, there are a number of connectors on the motherboard used 

for interfacing other devices. First off, there are four option module connectors for add-

on PCBs, as described before. Second, there is one connector for a base PCB containing 

the power input and the physical connectors for the always present digital I/O. Third, 

there is one additional connector for a PCB front panel containing an LCD display 

together with some buttons and LEDs. Finally, one connector is reserved for diagnostic, 

programming and testing purposes. The minimum component requirements consist of a 

programmable FPGA and two EEPROMs together with a power supply and other 

auxiliary components and connectors. The FPGA itself contains the ESC, which is 

configured to use the microcontroller PDI interface. The EEPROMs are needed for the 

ESI information and for holding the FPGA configuration file. No microcontroller is 

actually used as the interface is operated using a VHDL programmed module inside the 
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FPGA. All this, except for the base PCB, is contained inside a plastic box, giving the 

module non-changing physical dimensions independent of the number of option boards 

connected and is therefore also independent of the overall complexity of the module. 

Below, in picture 2, an overall principal layout of the module’s motherboard and its 

surroundings is presented. In the picture, the area inside the dotted line is the master 

side of the system, showing the EtherCAT master software alternatives and some 

elemental parts and configurations that go with them. The master part is shown here 

only for reference and will be discussed more in-depth in chapter 4.2.2 which concerns 

XMLs. Earlier in this chapter the non-dotted area were discussed, which consists of the 

FPGA in the middle together with all its connectors and possible add-on devices 

connected to the option module slots. The physical presence and layout of the module is 

presented later in chapter 3.1. 
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Picture 2: Module connections and functional part layout. 
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 Module as a part of a larger automation system 2.3

As known from before, the EtherCAT slave module discussed in this thesis is usually a 

smaller part of a bigger automation system, possibly consisting of several EtherCAT 

slaves, servo- / motor-drives, motors, servos and hydraulics etc. The EtherCAT fieldbus 

system is suitable for a wide range of applications where the strengths such as easy 

implementation, flexibility, speed and cost-effectiveness come into play. Some typical 

applications in which EtherCAT fieldbus systems are used and well suited for often 

relate to some sort of machine controls e.g. metal forming, packaging, robotics and 

other complex motion control, assembly systems, printing machines and theater scenery 

control. 

The EtherCAT slave module, which this thesis focuses on, handles the electrical 

connections and acts as the interface between the master and all possible devices to be 

connected to the EtherCAT fieldbus. These devices can range from simple relays and 

contactors directly connected to the digital I/O, to more complex analog input / output 

modules or encoder inputs. The analog inputs are often used to connect different types 

of sensors that use voltage or current outputs. The analog outputs however can be used 

in a motor control loop as the analog speed reference output to a servo drive. Different 

types of encoders are often used as position feedback from electrical motors in closed 

loop motor control systems. These examples do not include all the types of devices that 

can be connected or used, but rather the most typical ones seen in practical applications. 

A more comprehensive description of the module interfaces and connectable devices is 

given later in chapter 2.4. 

A practical example of an automation system will be given next, including the slave 

module as an essential part providing for the major part of the functions and interfaces 

between the devices. The system is shown on the next page in picture 3 and is a hoist 

operated by an electrical motor which is controlled by a speed reference signal 

originating from the EtherCAT slave and connected to a frequency inverter. The motor 

control loop and the application interface of the hoist system itself is operated by 

software inside for example a PC, using suitable EtherCAT master software for 

communication over the fieldbus. The system uses one master and one slave that handle 

all the communication between all the devices. Two encoders, one incremental and one 

absolute are used for the position feedback to the EtherCAT master. The incremental 

encoder, used in the motor control loop for position feedback, is directly connected to 

the motor, while the absolute encoder is connected to the wire drum after the gearbox 

and brake. This gives the system a fail-safe mechanism in case of a gearbox breakdown, 

which cannot be seen by the control system using only the incremental encoder. A 

magnetic brake is connected to the shaft after the gearbox and is operated with the 

slave’s digital I/O. The brake status i.e. is the brake open or close and possible failures 

can also be read with the digital inputs. The digital I/O is also connected to the inverter 

for enabling and disabling the drive at need. Further on, An A/D-converter inside the 

slave is connected to a load cell on the wire mechanism used for measuring the load and 

forwarding the value to the PC using the EtherCAT fieldbus. 
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Picture 3: Example system including the slave module 

 Interfaces to other systems and devices 2.4

Devices such as absolute or incremental encoders, A/D-D/A-converters and additional 

I/O are in first hand connected to the EtherCAT slave via the four option module 

connectors situated on the motherboard. The connectors provide for power and data 

communication between the option modules and the motherboard. Also, the option 

modules themselves provide for the same (data and possibly power) to the devices 

connected them. The digital I/O is connected to the base PCB and is routed to the 

motherboard via the motherboard’s bottom connector. The connectors’ physical 

placement on the product is shown in picture 5 in chapter 3.1.1. 

2.4.1 Encoders 

One of the device types that can be connected to the module via an option module is 

position encoders. The module will at first only accept rotary incremental and SSI-

absolute encoders leaving out the option for Sin/Cos encoders which can be added in 

the future if needed. The INC- and SSI-ABS-encoders usually have a six- versus four-

wire digital TTL interfaces which can be easily connected to the FPGA by using 

auxiliary driver and receiver buffers. The position is read, internally stored and sent via 

EtherCAT to the EtherCAT master of the system. These types of encoders are widely 

used in different industrial automation systems where the angular position or motion of 

an axle or shaft is needed. 

In contrast to traditional EtherCAT encoder interfaces, the FPGA can be used to 

calculate additional information such as speed, acceleration etc. from the incremental 

encoders. This is done inside the FPGA by using logic to calculate the time difference 
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between the pulses and forwarding this information over EtherCAT to the master or 

using it internally. When this additional information is pre-processed in the FPGA, it 

does not only ease the burden on the master CPU but also provides very accurate speed 

and acceleration values usually not achievable with conventional methods. Another 

advantage that comes with the FPGA is the possibility to oversample and multiply the 

pulse count of the incremental encoders using interpolation between pulses. This can for 

example come in handy in cases where an expensive high resolution incremental 

encoder is needed but instead a cheaper one can be used together with the pulse 

multiplication inside the FPGA. 

2.4.2 D/A and A/D converters 

Modules converting analog signals (current or voltage) to digital and vice versa can also 

be interfaced to the FPGA via the module slots. The A/D-type of converter is often used 

in industrial automation together with different kinds of sensors providing voltage or 

current outputs. These sensors can be for example load cells, such as in the example in 

chapter 2.3 or temperature sensors or pressure sensors, to name a few. In practice, any 

type of sensor providing voltage or current output could be connected. Furthermore, the 

A/D option module could be multiplexed providing a number of analog inputs on the 

same physical module. The FPGA together with its internal RAM-memory could be 

used if needed to oversample the analog inputs in the means of taking more than one 

sample during one EtherCAT update cycle and sending them in bulk whenever asked 

for by the EtherCAT master.  

The other type of module, the D/A-converter is in most cases used as a ±10V speed 

reference output module to inverters not accepting digital speed references. These 

inverters are usually cheaper and therefore preferred in some cases, compared to the 

ones that have a digital reference which could be sent over a fieldbus, such as 

EtherCAT. This type of module is also included in the example in chapter 2.3 

2.4.3 Digital I/O 

The digital I/Os of the slave module are situated on the bottom PCB and are connected 

to the FPGA through intelligent buffer ICs. The buffers are intelligent in the manner of 

automatic overload-, current limit-, short circuit-, over temperature- and over voltage 

protection. These buffers also have a diagnostic feedback output providing information 

to the user about different conditions such as overload, open-load, over temperature and 

short circuit. The I/Os are 24V high which is the typical voltage used in industrial 

automation. 

The FPGA can also add some additional features to the digital I/O. The logic can for 

example be programmed to calculate input pulse widths or frequencies, which are of 

greater precision compared to the situation where the master CPU does the same 

operation. Naturally, this pre-processing of data also relieves stress from the master 

CPU. In addition to this feature, another example could be programmable digital filters 

which could be programmed into the FPGA and used with the digital inputs for 

damping glitches. 

2.4.4 Additional and future modules 

The option module types are not restricted to the modules described in the last three 

chapters and in practice any module with a digital interface to the FPGA can be added. 
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However, the module types described before are the only ones that are developed before 

the product is released on the market. Depending on future needs, modules such as 

serial-to-EtherCAT converters, CPU & memory modules, Safety I/O s and converters 

for interfacing other industrial protocols with EtherCAT, can be developed. 

 FPGA 2.5

An FPGA is a digital IC that is fitted somewhere between PLDs and ASICs in terms of 

complexity and configurability. An FPGA contains configurable programmable logic 

blocks which are freely customizable by the design engineer, just as with PLDs but can 

contain a lot more logical gates. The FPGAs are still not as optimized in size and 

performance as an ASIC performing the same function. However, one of the drawbacks 

using an ASIC compared to an FPGA is the loss of flexibility and upgradability because 

the design is frozen in silicon once it is done. Some other drawbacks are the high price 

and the time consuming process of developing ASICs. 

The flexibility of FPGAs is further enhanced by some vendors by introducing other 

systems or functions inside the same IC, such as processors, microcontrollers, RAM, 

DSP-units and multipliers etc. This gives the FPGA IC additional functionality in the 

same manner as a SoC IC. Some of these functions can also be added as vendor 

supplied or third party software IP-cores, such as the EtherCAT core used in this 

project. The FPGAs arrived in the market in the mid-1980 and were at the time a new 

and more complex product originating from the widely used CPLDs and PAL ICs. [p. 

1-4, 8] 

2.5.1 Overview of architecture and applications 

FPGAs from different vendors usually have different underlying architecture but can all 

be programmed in at least the two most common used hardware programming 

languages, VHDL and Verilog. The architecture of FPGAs is not described in detail in 

this work but a short idea of how FPGAs work will be given next. All vendors use 

slightly different naming of their FPGA building blocks and internal functions, but the 

underlying idea is the same for them all. 

In short, the buildings blocks of an FPGA consist of some sort(s) of LUTs, MUXs, 

SRAM and registers together with signal and clock connectors. These blocks are 

programmable to perform different functions and can be stacked or chained together to 

form bigger systems performing more complex functions. One FPGA can contain 

millions of these building blocks together with other logic, special functions or 

hardware described before. For more detailed information the reader is referred to the 

book in reference [p. 1-4, 8]. 

FPGAs are very widely used in different fields of application due to their wide 

suitability and broad complexity and cost range. The FPGAs are well suited in 

application fields requiring advanced parallel computations, a large number of I/Os and 

re-programmability etc. A few examples of application fields are DSP, ASIC 

prototyping, computer vision, medical imaging, cryptography, telephony centrals, 

industrial fieldbuses etc. 
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2.5.2 FPGA programming 

The internal functions of the FPGAs are mainly written using programming languages 

such as VHDL, Verilog or System C. In this project however, VHDL was chosen as the 

programming language. As goes for the code itself, it can of course be produced with 

any text editor program available but each FPGA vendor offer their own design 

environment that is preferred to be used together with their FPGA. The design 

environment is needed at least when synthetizing the code and creating a configuration 

file for the target FPGA. Additional to this, each vendor usually offers different kinds of 

chargeable or free-of-charge software for design-aid such as IO-planning-, power 

optimization-, simulator- and IP-core generator software etc. to ease the design process. 

The vendors' own tools generate the configuration file from the hardware description 

written in VHDL, Verilog or System C and usually there is little or no need for the 

designer to interfere with this process. After the configuration file is written the user can 

download it to the physical device using a JTAG, a microcontroller or some memory 

device containing the file, such as an SPI FLASH. 

2.5.3 FPGA usage in the project fieldbus module 

An FPGA suites this project very well because the module has a lot of complex 

functions that cannot be implemented with a PLD or microcontroller. A microcontroller 

cannot be used because the project involves a lot of fast switching I/O together with 

several simultaneous internal processes. Thus, the fastest microcontrollers would not be 

able to execute the instructions fast enough to satisfy the timing constraints in the 

processes. Due to the loss of upgradability and production volume size, an ASIC is not 

suitable for this project either. 

The EtherCAT functionality is bought from a third party vendor (Beckhoff) as an 

encrypted IP-core that has to be inserted in the project inside the FPGA development 

tools. The IP-core is seen by the developer as a configurable black-box with visible I/O 

pins for interfacing. The design engineer can then add additional logic or other 

functions needed in the system design around this black-box. 

Picture 4 on the next side shows the internal module blocks of the FPGA. In the center 

of the picture is the so called top module which is sort of a linking module, linking 

together the physical FPGA pins with the internal function blocks. It also links the 

internal modules together via signals and buses inside the FPGA. On the left side are 

four boxes labeled as logic for the optional modules. These functional blocks contain all 

the logic needed for all possible optional modules that can be connected. The system 

first reads the EEPROM of the option module connected using the module identifier 

block and then associates the correct logic with the option module and chooses the 

correct internal I/O going to the top module. In the top of the picture is the front panel 

driver which contains the logic needed for the front panel LCD, buttons and LEDs. The 

data is sent out to the front panel in serial mode to a daughter FPGA situated on the 

front panel PCB. In the right upper corner of the picture is the module that handles the 

32 digital I/Os connected to the base PCB and handles some possible auxiliary functions 

such as the distributed clocks and watchdog, if used. Beneath this block is the Beckhoff 

EtherCAT IP-core with its internal registers and DPRAM. The DPRAM is connected to 

the other parts of the system via the 16-bit read/write µC interface, which controls the 

data flow to and from the EtherCAT DPRAM. The GPIOs of the EtherCAT module are 

as the name says general purpose not usually suitable as application I/O but can be used 
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with indicator LEDs and general buttons and switches. The last module of the picture is 

the digital clock manager module which together with a PLL generates the 100MHz 

internal clock from the 25MHz physical oscillator. The practical implementation inside 

the VHDL blocks in the picture will be dealt with in chapter 4.1. 
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3 Electronic and mechanical hardware design 

This chapter starts with an overview of the mechanical design of the product, discussing 

both the design limitations and possibilities. After this, the electronic design is 

discussed and towards the end of the chapter there are two subsections discussing 

component selection and prototype testing and evaluation of the product. The 

component selection section discusses why the particular components were chosen and 

the prototype testing section discusses the different test phases and the observations 

made throughout the testing process. However, this chapter focuses mainly on the 

electronic design of the product, including both functional theory and PCB design, 

along with some discussion regarding the design related decisions that have been made 

in order to reduce costs, increase reliability and decrease noise etc. This section of the 

thesis focuses on the first near production-ready product as most of the electronic 

functions have been tested on breadboards and design-kits before this motherboard PCB 

was designed. The product is said to be near production-ready because naturally always 

some design errors and other surprises occur when designing a new complex PCB and 

testing it for the first time. 

 Mechanical design 3.1

The overall mechanical layout of the product including the PCBs, connectors and the 

plastic enclosure etc. is strictly limited to the same format as the other products in the 

product portfolio. Some small adjustments and modifications can be done, although the 

overall physical appearance has to be kept the same in order to fit all the parts together 

in the same manner inside the same enclosure as with the other products in the portfolio. 

As a result, the uniformity, both mechanical and visual, between the products is kept 

and the same plastic mold used for the enclosures can therefore be used for all the 

products in the family. 

All the products in the portfolio also share the same type of bottom connector which is 

attached to the motherboard PCB and connects it with the bottom PCB. The bottom 

PCB is further on attached by screws to a metallic base plate, which for example can be 

fastened inside an electric cabinet. The bottom PCB of this product provides the 

motherboard with power and the physical connectors for the main part of the digital I/O. 

In Appendix A, the construction discussed is shown for illustrative purposes. Shown in 

the picture is the complete product, but not necessary exactly the final production 

version, inside the enclosure together with the bottom PCB and a preliminary front 

panel. The metallic base plate is not shown in the picture. 

3.1.1 Module and motherboard PCB mechanical layout 

As discussed in the previous section and shown in Appendix A, the motherboard PCB is 

fitted inside a plastic enclosure and therefore has to be of a specific size and shape. As a 

result, the enclosure sets the limits for all type of physical connectors to and from the 

motherboard and naturally also has an influence on the component placement to some 

extent.  

In accordance to the enclosure layout, the four option module connectors have to be 

placed on both edges and on both sides of the PCB in order to practically get the 

physical connectors of the option modules outside the enclosure on both sides. The 
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picture in Appendix A. shows the option module placement on the enclosure and picture 

5 below shows the connector placement on the motherboard PCB. Regarding the front 

panel, a small cut-out has to be done on the motherboard in order for an LCD display to 

fit. A connector with a flexible ribbon cable is used for the power and communication 

interface to the front panel. The EtherCAT RJ45-connectors are placed on the upper 

part of the PCB, accessible through holes in the front panel, to ease the EtherCAT 

wiring and to improve the visibility of the connectors’ indicator lights. The PCB itself is 

held in place inside the enclosure by sockets, which go through the PCB’s four 

mounting holes in the corners. The bottom connector is placed in the middle, on the 

lower edge of the PCB. The complete layout with some explanations can be seen in 

picture 5. 

Digital I/O components identical
on both sides of PCB 

Programming and
diagnostic connector

Option board connector
Identical on both sides
of PCB 

EtherCAT ports, EtherCAT Phy and
additional components.
Identical on both sides of PCB FPGA, memory and

additional components

Option board connector
Identical on both sides
of PCB 

Power supply, SMPS and
linear regulators

Bottom PCB connector

 

Picture 5. The complete layout of the motherboard PCB with some functional areas 

shown. 

This picture will be further on referred to and explained in the section discussing the 

PCB layout and component placement. 
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 Electronic design 3.2

The electronic design is next up now that the mechanical properties of the product have 

been discussed and examined. The electronic realization of the product is not nearly as 

limited with predefined restrictions as the mechanical. However, the mechanical limits 

also mirror themselves to the electronic design, at least to some extent. Some of these 

electrical predefined things are worth mentioning. First off, the overall physical 

measurements of the product naturally set limits to the component placement, number 

of components and to the overall size of the PCB. However, these limits are not difficult 

to overcome as the PCB is relatively large and almost all the logical functions are fitted 

inside one chip, which is the FPGA. Second, the input voltage to the product, which at 

the same time is the digital I/O voltage, is 24V with some tolerance. All the other 

needed voltages have to be derived from this voltage. Last, regarding the design in 

general, the product also has to comply with the international EMC and other standards 

concerning electronic products and therefore it has to be designed and tested 

accordingly. 

In the next subsections the electronic design and component placement of the 

motherboard is divided into smaller functional blocks, which are discussed separately 

more in-depth. 

3.2.1 Power supply 

As mentioned before, the motherboard itself is fed via the bottom PCB by a 24V power 

supply and from this voltage all the other necessary voltages have to be created. The 

motherboard needs a total of five different voltages in order to work. First is the 24V 

which is used by the bottom digital I/O and is also routed to the option board 

connectors. The second voltage is 5V, which is used by a small part of the ICs and all 

the linear voltage regulators in the design and further on fed to the option module 

connectors and front panel connector. The third one is 3.3V, which is used for the 

FPGA I/O banks, the EEPROM, the flash memory, the EtherCAT macs and also fed to 

the same connectors as the 5V. The fourth and fifth ones are 2.5V and 1.2V and are 

only used as the internal core and auxiliary voltages for the FPGA. 

The power supply of the motherboard providing these voltages was designed to consist 

of one SMPS, which converts 24V to 5V, together with three linear regulators for each 

remaining voltage. This solution gives a very high efficiency ratio on the largest voltage 

drop together with a low-cost and low-noise solution on the lower voltages (3.3V, 2.5V 

and 1.2V). The two lowest can be made by two very small linear regulators because of 

the low current consumption. However, the 3.3V regulator has to be of a type capable of 

currents over one ampere because this voltage is used by most of the internal FPGA I/O, 

option board ICs, front panel, LEDs etc. This naturally results in more effort regarding 

the thermal design for the 3.3V than for the 2.5V and 1.2V. The thermal design 

considerations for these linear regulators as well as for the SMPS will be dealt with in 

the PCB section later on. 

Next up will be a more in-depth discussion about the SMPS as it is the most complex 

part of the power supply. Beginning with the controller of the SMPS, an Allegro A4403 

valley current mode control buck converter was chosen [9]. This part was chosen 

mainly because of the high switching frequency (smaller and cheaper passive 

components), high current output (up to 3A), wide input voltage range (9V to 46V) and 

minimum number of external components required. The controller schematic with 
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component selections was directly taken from one of the example schematics in the 

datasheet [p. 14, 9] for a 5V supply running at 1 MHz. The controller itself contains the 

switching FET, leaving the auxiliary components needed down to a schottky diode, an 

inductor and some filter and control capacitors and resistors. Faulty conditions such as 

overheating, over current, over voltage and under voltage etc. are directly detected by 

internal logic inside the controller and don’t need any external arrangements. The 

complete schematic for the SMPS and linear regulators are shown in picture 6 below. 

 

Picture 6. Schematics of the power supply 

As seen in the picture, all the linear regulators are connected to the 5V supply and only 

accompanied by a few input and output capacitors working as filters, which is enough 

for proper operation. The upper left part of the picture shows the protection components 

of the 24V input to the module, which consists of a diode, a PTC, a Zener, a TVS and 

two filter capacitors. 

3.2.2 Bottom I/O and serial ports 

The digital bottom I/O are the module’s 32 24V I/Os with their physical screw terminals 

located on the bottom PCB and their respective electronic implementations on the 

motherboard, electrically connected via the bottom PCB connector. These I/Os are bi-

directional, as will be explained later and consume the major part of the 48-pin bottom 

PCB connector. The I/Os are implemented using an ISP752R IC [10], which is a smart 

power high-side switch. This is basically an N-channel power FET with a CMOS 

compatible input and a diagnostic feedback, that are both connected to the FPGA via 

series resistors, for protection in case of failure. Further on, the ISP752R-switch also 

includes a lot of protective functions inside the chip, such as ESD protection, 

overvoltage detection, current limiting and thermal shutdown etc. The reader is 

encouraged to consult the datasheet for more information on these. 

In order to get the same physical I/O pin to work in a bi-directional manner, as an input 

and an output, the diagnostic feedback feature of the ISP752R is used. The diagnostic 
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pin is an open-collector type and can therefore be read by an FPGA I/O pin using a 

suitable pull-up resistor. By using this configuration, the diagnostic pin will go low 

when a voltage is applied to the buffer output but no input is detected on the buffer 

input pin. This feature normally resembles a fault condition, indicating a short circuit to 

the supply voltage (24V), but is now used as the digital inputs in the module. According 

to the datasheet, the normal short-circuit-to-supply detection voltage is around 2.8V, 

which is a little low for an input-high signal when using 24V logic. This detection 

voltage is the voltage for which the diagnostic pin goes low, when a voltage is applied 

to the output at the same time as the input pin is low. To overcome this problem and 

raise the detection voltage a schottky diode parallel with a suitable zener was put in 

series with the output pin. By using this configuration the zener is raising the input 

detection voltage by the zener-voltage and the diode is providing a low voltage-drop 

path when the buffer is used as an output. A zener with a breakdown voltage of 9.1V 

was chosen in order to get the input threshold to be about 12V which is half of the 24V 

supply voltage. However, one important thing to keep in mind is the sensitivity of the 

input. As can be seen in the     vs.    graph in the datasheet [p. 14, 10], the maximum 

thinkable output pull-down resistance would be about 300KOhm under extreme 

conditions. This value only needs about 10µA of reverse current to raise the output over 

the 2.8V threshold mentioned above. This current value is far too low to be used in 

practice because already a very small inductive or capacitive coupled noise current or 

even the diode reverse current alone would trigger the input. To overcome this problem, 

a load resistor with a suitable value is put parallel with the output pin to raise the input 

current to about 1mA @ 12V before the triggering happens. 

When the digital inputs are implemented in this way, the normal diagnostic features 

when using the buffer as an output are not disrupted i.e. the diagnostic pin can be 

normally used to detect different fault conditions as described in the datasheet. The 

schematics of a single type of this digital I/O implementation are shown below in 

picture 7. 

 

Picture 7. Implementation of one of the 32 digital I/O:s. The ST-pin (Status) is the 

diagnostic open collector output of the driver. 

The motherboard is further on equipped with two RS-422 serial ports implemented by 

two high speed serial buffers connected to the FPGA. Both serial ports are fed through 

the bottom PCB connector to the base PCB. One of the ports is meant to be used for 

compatibility, namely to implement the old serial data protocol which was used with the 

older products in the ACN product portfolio. This feature is still optional and will only 
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be implemented if necessary. The other serial port is routed to a pinstripe and is primary 

left for future use. 

3.2.3 Diagnostic, test and programming 

Programming, reading diagnostics and testing the module in the production phase is 

done at some extent via a connector of the same type as the option module connectors. 

This connector is equipped with all the necessary signals for this purpose. The 

placement of the connector on the PCB can be seen in the lower left corner of picture 5.  

For programming purposes the connector is equipped with the JTAG pins from the 

FPGA and two reset button signals. One button is used for resetting the FPGA and the 

other one used to reset only the EtherCAT functionality. The FPGA configuration 

memory is programmed via the JTAG bus indirectly through the FPGA and therefore no 

connection to the memory is needed on the connector. The FPGA will be factory 

programmed via this connector before shipping, while future firmware updates could 

possibly be loaded via EtherCAT. 

For diagnostic and testing purposes the connector was further on populated with 

different signals. First, all the five different voltages used in the module are connected 

to their own respective pins for easier measuring while performing the initial tests of a 

new product. Second, two pins are populated with the SOF and EOF of the EtherCAT 

frame, used for diagnostic purposes. Last, some of the connector pins are connected 

directly to the FPGA I/O pins and are therefore firmware configurable. A small 

additional PCB, which is designed to be connected to the connector as a breakout card 

for the connector was manufactured, but it will not be discussed further in this thesis.  

3.2.4 Option module connectors 

As can be seen in picture 5, the four option module connectors are located at the exact 

same position on both sides of the PCB and on both edges. Therefore the connectors 

themselves have to be SMD components. The connectors are only accompanied with a 

few capacitors for each of the voltages connected to them. The connectors are fitted 

with 12 of the FPGA I/O pins each, used for data communication along with two FPGA 

pins each for the option board EEPROMs (more information about the EEPROMs in the 

software section) and a few pins each for the voltages 24V, 5V and 3.3V and ground. 

The maximum speed for the data transfer can be estimated to be about 2 MHz, which is 

low enough to avoid the need of any impedance matching resistors, as will be 

mathematically proven in the PCB design section. For the EEPROM signals, already a 

few kHz is enough. 

3.2.5 Front panel connector 

The place of the front panel connector is also shown in picture 5 and the connector itself 

is nothing more than an SMD-type ribbon cable connector, connecting the front panel 

with a flexible ribbon cable to the motherboard PCB. The connector is fitted with the 

5V and 3.3V voltages and a small number of FPGA I/O pins for the data transfer. 

Because of the relatively low frequencies used (also estimated max. 2 MHz) by the data 

signals, no kind of signal termination are used in either end. If pull-ups or pull-downs 

are needed, these can be programmed inside the FPGA or put onto the front panel PCB. 

The data format is somewhat discussed in the software design section, but the front 

panel electrical and PCB implementation themselves are beyond the scope of this thesis. 
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3.2.6 EtherCAT ports 

The RJ45 connectors of the two Ethernet ports along with the required components and 

Ethernet PHYs are situated on both sides, on the upper part of the PCB, as can be seen 

in picture 5. The two RJ45 connectors chosen for the motherboard are of SMD-type 

with integrated magnetics, which allows them to be placed on the same horizontal 

position on both sides of the PCB and reduces the overall component count. This 

connector type is capable of 10/100Mbit speeds (100Mbit is the requirement for the 

EtherCAT protocol) and only needs to be accompanied with a few pull-up resistors and 

a few filter capacitors. The connectors are also equipped with two LEDs, which in this 

product implementation are connected to the FPGA I/O and can therefore be freely 

programmed. [11] 

Further on, the Ethernet MACs are connected to the RJ45 connectors directly using only 

the pull-up resistors and capacitors described above. The MACs themselves are 

connected directly to the FPGA I/O pins and most of the MACs configuration at startup 

(some of the I/O pins either at zero or supply voltage at startup) is mainly done by the 

Beckhoff EtherCAT IP-core and does not need any external components. The only 

things that need to be set by external resistors are the addresses of the respective MACs. 

As for the power supply, the MACs themselves usually need good filtering of the 

supply voltages and this was satisfied using a number of capacitors and serial inductors 

near the power supplies’ pins. A reference connection schematic for the connections 

between the MACs and FPGA are shown in reference [III-79, 5]. 

To ensure proper grounding of the RJ45 connectors and the Ethernet connections 

overall, the design recommendation in reference [I-30, 5], was followed. In addition to 

this, a cable terminal connector was placed on the top side of the motherboard, meant to 

be used in cases when an Ethernet cable with a shield is used. The grounding 

arrangements are shown below in picture 8 and discussed on the next page. 

Picture 8. Ethernet grounding 



24 

 

 

In the picture, it is seen that both shields and both virtual grounds are connected to the 

protective earth of the system via a parallel connected resistor and capacitor. This is 

done in order to ground high-frequency noise coming through the Ethernet cable shield 

and at the same time discharge static voltage buildup through the resistor. The reason 

why the shield is not directly connected to the PE-ground is to avoid ground loops in 

larger installations where different PE-grounds might be at different potentials. The 

protective earth on the motherboard PCB is isolated from the system ground in order to 

avoid inducing noise into the system. The high-frequency ground path is therefore made 

via the cable terminal to the PE ground of the installation, which usually is the 

backplane of an electric cabinet or a similar low impedance ground plane. It is 

important to keep this ground path as short as possible to avoid big ground loops of the 

shield, which are prone to inductive coupling. By using this grounding procedure in 

larger systems, the shields of the Ethernet cabling will be grounded for noise at each 

module in the system. The virtual grounds in the picture are the ground points of the 

transformer connections of the Ethernet connectors. These transformers and the virtual 

ground connections are physically completely situated inside the RJ45 connectors with 

only one pin leading to the outside world for grounding. 

3.2.7 FPGA and memory 

As could be seen in picture 5 earlier, the FPGA is placed centrally on the motherboard. 

This is not only done in order to get a short distance and easy routing to any 

surrounding ICs and connectors but also done in order to ease the surrounding 

capacitors’ and resistors’ placement around the FPGA, because especially the capacitors 

are critical to get closer to the FPGA power pins in order for them to work properly. 

The capacitors’ physical sizes are decreased at the same time as the capacitors values 

are decreased. This is done in order to get the smallest value capacitors very near their 

respective power supply pins they are connected to. The placement for the smallest ones 

is usually on the flip side of the motherboard PCB, directly under the power supply pins 

which are connected via vias. The 25MHz oscillator is also placed very near the FPGA 

clock input pins to ensure proper signal integrity. The same oscillator output clock 

signal is also routed to the two Ethernet MACs, in order for the whole system to share 

the same clock. The FPGA configuration flash-memory uses the highest frequency of 

any signal going outside the FPGA (75 MHz) and so is impedance matched for signal 

integrity using a series resistor. In contrast, the EtherCAT EEPROM is directly 

connected because of the much lower speed (Max. 400 kHz).  

The FPGA itself can be programmed in a number of ways depending on factors such as 

the FPGA configuration memory type used, JTAG connection, startup configuration 

device (memory or JTAG) and possible FPGA chaining etc. The configuration mode in 

this module is set in hardware on PCB level by fixing each configuration pins to its 

required potential, which is either supply voltage or ground. The configuration used in 

this design allows for a high speed (75MHz) cheap serial flash memory to be used as 

the FPGA configuration memory and allows it to be programmed indirectly by the 

FPGA via the JTAG port. The FPGA uses three different supply voltages, for which the 

3.3V is used as the I/O supply voltage, the 2.5V and 1.2V as the internal core and 

auxiliary voltages. All the power pins of each voltage are spread throughout the pin grid 

of the FPGA BGA package, which means that the capacitors for each voltage can be 

easily placed evenly around the FPGA perimeter (the bigger capacitors) and on the flip 

side of the PCB behind the FPGA (the smaller capacitors). For more information 

regarding the FPGA, consult the datasheet found in [12]. 
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The two memories used in the module are both of serial type (SPI for the FPGA 

configuration memory and   C for the EtherCAT EEPROM memory) and are both 

compatible directly with the FPGA 3.3V logic. The minimum sizes of the memories are 

dependent on the FPGA logic size and the EtherCAT minimum memory requirements 

(the ESI is stored in the EtherCAT EEPROM). Neither one of the memories is locked 

by the FPGA, which means that a larger memory than needed can be used if for some 

reason a non-volatile storage device using the free memory sectors, is needed. 

 PCB design 3.3

The design process of the motherboard PCB was started after the complete electrical 

schematic, discussed in the previous section, was completed and the physical 

measurements of the PCB were defined as discussed in section 3.1. The PCB design 

process in this project can roughly be divided into five different stages, which are 

numbered below for a clearer overview. 

1. Define the physical measurements of the PCB board, the stack-up and set the 

 placement of all screw holes. 

2. Place, fit and group all the components on the board. 

3. Route all the signals and define the ground and supply layers. 

4. Design and draw the top and bottom silk-screen layers of the PCB. 

5. Go through steps 1-4 again and look for errors before manufacturing the first PCB 

 prototype. 

In the following subsections, all of these steps except step 2, which was discussed in the 

previous section, will be examined further and explanations will be given to the 

solutions that were made. In the last subsection a few words about manufacturing the 

PCB will be given along with some discussion about the factors that influence the PCB 

price. The motherboard was designed using the Cadsoft Eagle PCB design software [13] 

and the first version was manufactured by the Finnish PCB manufacturer Elprintta Oy 

[14]. 

3.3.1 PCB board stack-up and properties 

The outline i.e. the physical measurements of the PCB were already shown in the 

previous section in picture 5 and therefore this section will deal with the properties of 

the board. The PCB chosen for this project is a board with six layers with vias going 

from the top layer to the bottom, as can be seen below in picture 9. The fact that the vias 

are always going through the whole board, when used, is a PCB manufacture process 

limitation. The copper thickness of all layers are the standard 35µm and the prepreg and 

core layer thicknesses were chosen from a list given by the manufacturer and they were 

designed to add up to a total thickness of about 1.8mm. The PCB board maximum 

thickness is set by the plastic enclosure’s measurements. The board had to be made as 

thick as possible in order for the Ethernet RJ45 connectors’ plastic feet to fit inside the 

same hole from both sides of the PCB. 
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Picture 9. The motherboard PCB stack-up 

In order to get most of the pins from the FPGA 320-pin BGA package routed easily 

throughout the board, the PCB layer count is set to six. The routing is also affected by 

the manufacturer’s recommendation of a minimum drill size of 0.2mm, which was the 

smallest possible for this kind of design without having to use micro vias, which would 

have made the board much more expensive. Another recommendation is that the 

minimum trace width and isolation clearance is equal or larger than 0.15mm. 

To add some stability when pressing the multilayer PCB together, the inner signal 

layers were ground-filled in order to get their thickness to be uniform. A further 

advantage of the ground filling is that it adds more ground layers to the PCB, which are 

quite uniform because the inner signal layers were only routed with relatively few 

signals. All the ground layers are further on tightly connected together with vias which 

are distributed evenly throughout the board. This strengthens the thermal coupling and 

equalizes possible potential differences. As can be seen in picture 9, two layers were 

completely reserved for the supply voltage 3.3V and ground. The voltage 3.3V was 

chosen as the supply layer voltage because most of the ICs used are either 3.3V devices 

or have 3.3V tolerant I/Os. The 2.5V and 1.2V supply voltages were also routed in the 

same 3.3V layer. The layers, especially the ground layer, significantly increase the heat 

transfer from the linear regulators and the SMPS. As a result, little design effort is 

needed in order to ensure proper cooling of the devices and no add-on heat sinks will be 

necessary.  

As could already be seen in picture 5; the SMPS together with the linear regulators are 

placed in the right lower corner of the PCB. This is done because it is the shortest 

distance to the PCB bottom connector’s supply voltage and ground pins. The ground 

layers under the power supply components are also isolated from the rest of the 

system’s ground and only a small strip just above the bottom connector’s ground pin 

connects the two ground areas together. This is done in order for the noise originating 



27 

 

 

from the switching to go straight to the module ground without interfering with other 

parts on the PCB. 

Last in the design chain to be implemented was the silk screen of the PCB. All the 

component names and markings about orientation were added to this layer and were put 

out on the board in a manner for them to be visible also when the board is completely 

populated with components. 

As a PCB design reference for multilayer boards, reference [p. 109-166, 15] was 

referred to frequently throughout the design process. As for the stack-up, the reference 

stack-up for a six-layer board, figure 6-34a in [p. 149, 15], with four signal layers was 

used. In the reference, it is stated that the signals of adjacent layers should be routed 

perpendicular to each other. Although, this was found to be very difficult to implement 

and therefore it was ignored and instead the ground fill of the inner signal layers was 

used to isolate possible capacitive coupling between the signals of adjacent layers. 

3.3.2 Routing 

The process of routing the PCB was started out by first routing the most critical signals, 

in terms of length or width. The most critical signals with respect to length would be all 

the clock signals, high-speed data transfer to the PHYs and the FPGA memory data 

signal. These were routed in the straightest possible way in the top layer, because of the 

thin isolation (0,18mm prepreg) to the ground layer beneath; while attention was paid 

that the ground plane was continuous beneath the signals. In the same manner, 

considering the widths of the traces, the most critical signals are not only the power 

supply ones, which carry the largest currents, but also all the ground signals which are 

not directly connected to the ground plane via vias.  

After this, the I/O signals originating from the FPGA BGA package pins were routed 

outside the package perimeter using all the four signal layers, as these are the most 

difficult signals to route. All of the non-special-function FPGA I/O pins can be routed 

arbitrarily to their respective connections because the FPGA configuration software can 

normally route any internal signal to any package pin. Therefore it is up to the designer 

to choose which pin is associated with which I/O function. The special-function signals 

in this case mean I/Os with any special functions, such as clock inputs or reference 

voltage inputs etc. If one uses these special functions, they naturally have to be routed to 

the respective pin with the feature in question. Since the FPGA was placed near the 

middle of the PCB, the signal routing is somewhat easier in all directions and the trace 

lengths can be kept moderate with all connections. The minimum trace width and 

isolation however is set by the manufacturer’s recommendation (0.15mm), which is 

enough to get the FPGA properly routed. The maximum trace widths vs. current were 

checked with a built-in tool in the Cadsoft Eagle software. The maximum current for the 

I/O signals traces was reported to be 0.64A, which is more than enough because no 

high-current devices are driven directly by the I/O pins. For the frequency response vs. 

trace length the design rule mentioned in reference [p. 142-143, 15] was used. It states 

that the critical length for which the trace can be seen as electrically short is measured 

from the propagation delay and is such that the propagation time is less than one half of 

the rise-time. Calculations with values from the motherboard PCB are explained and 

shown below in formula (1). 

    
 

    
      √              

  

  
                  (1) 
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The fastest rise-time on the I/O pins achievable for this FPGA was found in the 

datasheet to be 4.06ns while using maximum drive current together with 3.3V logic 

levels. To calculate the propagation time for the trace, the formula for     in [p. 154, 

15] was used, with an        for normal FR4 PCB material. The longest FPGA trace 

is 15.23cm, which is one of the JTAG traces. As can be seen from the result, 0.873ns is 

much smaller than half of the fastest rise-time possible with the FPGA. Therefore no 

termination resistors will be needed. Additionally, there is no need to even use the 

fastest rise-times for the I/O pins in the design, which gives even a bigger margin. 

Another important thing to keep in mind is to keep the routing of the signals without 

steep corners in the traces, because they cause sudden impedance changes, such as 

explained in [p. 150-152, 15]. Neither are too wide corners good because they make the 

PCB manufacturing process harder, as is explained on one of the PCB manufacturer’s 

homepage [16]. 

As goes for the routing in general, not only proper measures for signal integrity have to 

be taken into account, but also the PCB manufacturers’ design rules have to be obeyed 

in order for them to produce a reliable PCB board. Some of the manufacturers’ general 

PCB design rules were taken from [16] and some asked directly from the manufacturer, 

such as the minimum trace width, the minimum isolation distances and drill sizes. These 

factors depend on the manufacturers’ processes. However, the PCB of the motherboard 

were designed in a manner that would make it possible for it to be manufactured by as 

many vendors as possible, while still providing a good PCB design result satisfying all 

the requirements. 

3.3.3 Manufacturing the PCB 

Before manufacturing the PCB a number of documents including plotter files and other 

data, have to be produced and sent to the manufacturer. The Eagle Cad software 

produces these files directly from the PCB board layout editor while the user only 

chooses which design layers to include. These files include all the data of the board 

such as, plotter data for the signal layers, silk-screen data, drill-data and stencil mask 

data etc. An interesting matter of manufacturing the PCB is to investigate which 

parameters affect the manufacturing costs the most. It can be found, by asking the 

manufacturers, that the cost is mostly defined by the number of layers the PCB consists 

of, if the PCB size is kept constant. The second most influential parameter is the number 

of PCBs that are ordered at the same time. Third is the delivery time, for which the costs 

can be reduced up to about -30% by adding a few weeks to the delivery. Other factors 

that play a moderate to small role are the minimum trace widths & isolations, the 

minimum drill size, the number of holes and pad coating material. As a conclusion, 

when keeping the board size constant as in this case, the only thing that plays a 

significant role at the design phase is to keep the layer count at the minimum required 

amount as the other factors such as the PCB delivery time and delivery amount are more 

of a concern of production management. 

 Component selection 3.4

This section will discuss the component selections in the design, concerning each 

functional block and all the different types of components used on the motherboard. 

Factors such as availability, irreplaceability, life-length, cost, values and size etc. will be 

covered. Although, these factors will not be discussed in-depth for every part type, but 

rather only some relevant information will be given. The following subsections are 
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divided into active components (ICs), passive (resistors, capacitors, inductors) and 

connectors. 

3.4.1 Active components - ICs 

First up of the ICs is the FPGA, for which Xilinx was chosen instead of Altera as the 

manufacturer because of Xilinx’s big market share, which usually stands for better 

product support and more users encountering the same problems etc. Another essential 

reason why the FPGA has to be from either Xilinx or Altera is that the encrypted 

Beckhoff EtherCAT IP-core is compatible with only these two manufacturers’ FPGAs. 

As for the specific FPGA that was chosen from a broad product family, some critical 

parameters had to be met, such as the maximum speed (at least 100MHz for the 

EtherCAT core), I/O pins (a minimum of 200), logic enough for EtherCAT core + 

microcontroller and other logic. The parts that meet these specifications are either the 

1200E or the 1600E from the FPGA family given in [p. 2, 12]. The software for the 

FPGA was not ready when the part was chosen which means that the exact required 

amount of logic was not known and therefore the software development was started 

with the largest FPGA of the family (1600E, which surely has more logic than required) 

and then will be downgraded later on in the production versions. The configuration 

memory for the FPGA was chosen from the memory compatibility list in table 56 [p.79, 

12] and the EtherCAT memory was chosen to be of the same type as used in the 

EtherCAT evaluation board, to ensure that no compatibility problems will occur.  

The Ethernet controllers have to be chosen from a list, managed by Beckhoff [17], of 

EtherCAT compatible MACs in order to ensure that they work together with the 

Beckhoff IP-core and the EtherCAT protocol. The type chosen for the motherboard is 

given in reference [18] and is chosen to be of the same type as used in the CPU module 

of the same product family. 

For the bottom I/O, the intelligent proFETs used as buffers were chosen because of their 

large current driving capability for all kinds of loads (inductive, passive etc.), without 

the need for many external components, such as protection diodes or equivalent. Some 

other advantages already partly discussed before are that they can be used as inputs and 

have a comprehensive fault diagnostic system built-in inside the chip. After some 

investigation it was also found that larger manufacturers of digital I/Os use the same 

components, which usually means that they are well tested and there is a lower risk, due 

to a larger demand that the production will end in the near future. 

As goes for the two RS-422 serial ports, dual line drivers of type UA9638 and dual line 

receivers of type UA9637 were chosen. The choice was made due to that they both can 

exceed 1,25Mbit/s transfer rate (EIA-422-B standard), which is the maximum speed that 

will be needed in the product. The 1,25Mbit/s value comes from the fact that older CPU 

units in the ACN product portfolio used this speed for communication and therefore it 

will be possible to use them together with this new ACN I/O-module. All sorts of serial 

communication with a PC or other conceivable devices to connect to the ACN I/O are 

often possible and practical already at much lower speeds. 

Moving to the power supply part, the SMPS controller found in reference [9] was 

chosen because of the high frequency (smaller components), large current capability 

and minimal need of external components. The current feed capability is much higher 

than required by the motherboard alone. This current reservation was made in case for 

possible future use, for example if some upcoming option boards require larger current 

feed capabilities. As goes for the linear regulators, one criterion was that their ground 
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terminal should be connected to the component base in order for them to share the same 

copper-plane heat sink on the PCB. Another criterion only for the 3.3V regulator is that 

it has to have larger current capabilities than the smaller ones partly because of the same 

reason as with the SMPS and partly because the FPGA I/O pins use the 3.3V supply 

voltage as their logic-high level. 

3.4.2 Passive components - capacitors, resistors and inductors 

Common for all of these three component types is that most of these components were 

chosen to be SMD components of size 0805. This choice was made due to that they are 

easily soldered by hand and very cost efficient independently of value and/or voltage 

tolerance. Some exceptions were made and they will be explained in the next 

paragraphs of this section. Another general design rule was using as much as possible 

same value resistors and capacitors throughout the design whenever possible, in order to 

decrease the number of different components. 

Most of the resistors on the motherboard are used as pull-ups, pull-downs and 

protection or termination resistors. This fact eases up the resistors’ resistance tolerance 

and maximum voltage tolerance and therefore cheaper types of resistors can be used 

almost throughout the whole design. Only a few exceptions exist and they are the pull-

ups of the RJ45 connectors, the current sense resistors of the SMPS and the Ethernet 

cable grounding resistors. The first two has to have a more precise resistance tolerance 

and the last ones have to have a voltage tolerance up to 500V. 

The capacitors used in the design were chosen to be either tantalum or multilayer 

ceramic capacitors. One reason for this choice is that these types of capacitors have the 

largest frequency span for which they work properly. The ceramic capacitors where 

further on chosen to be of the types X5R or X7R for the ICs which operate at higher 

speeds and of type Y5V for the slow bottom I/O drivers. The reason why not all the 

capacitors are of type X7R is that it would significantly increase the component costs, at 

least for the larger valued capacitors used with the slow I/Os. The capacitors size used 

were all of size 0805 except for the ones situated behind the FPGA and the ones used 

together with the Ethernet grounding (500V tolerant, similar to the resistors discussed 

earlier). Behind the FPGA, the SMD size was reduced to 0402 because no larger 

components would physically fit between all the vias coming from the BGA package. It 

is not reasonable to place them outside the BGA perimeter either, because then the trace 

lengths would become too long for the smallest 1nF capacitors to work properly. 

There are only a few inductors used in the design and they are all, except one, coupled 

to the different power supply pins of the Ethernets’ macs for filtering purposes. [p. 25, 

18] shows the recommended reference design for the power supply and it was also 

directly implemented in the motherboard design. The single inductor left is the one used 

in the 5V output of the SMPS. The specifications for this inductor were that it should be 

suitable for the high switching frequency and that the saturation current would be high 

enough for it not to saturate in extreme load conditions. The inductor type specified for 

this design was an encapsulated toroid-inductor. This type is well shielded from the 

surroundings and has good current capabilities already at small physical sizes. 
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3.4.3 Connectors 

The RJ45 connectors were chosen to be of SMD-type in order to fit the two connectors 

at the same position on opposite sides of the motherboard PCB. This positioning was 

done in order to save space on the front panel PCB. The connectors for the option 

boards were also chosen to be of SMD-type for the same reason to be able to place them 

on opposite sides of the motherboard on the same position. This placement strategy 

makes it possible to connect any option board on any of the four option board 

connectors. Because the option boards won’t normally be taken away while they are 

once installed, the SMD-type of connector is good enough although it is much more 

fragile than a through-hole connector. Another SMD connector type used on the 

motherboard is a dense flat SMD ribbon-cable connector for the front panel. This 

connector was chosen just in order to save space. The only through-hole connector used 

in the design is the bottom PCB connector, which naturally has to be more robust. 

 Evaluation and testing 3.5

Testing and evaluating the functionality of the first prototype is also a many phased 

process, like the design process itself. In the following subsections the different phases 

will be gone through and the results and observations made along the process will be 

discussed. Lastly, some future testing procedures will be discussed. 

3.5.1 Test phases  

Testing the prototype was naturally started with a visual inspection of the PCB board. In 

a multilayer board it is impossible to see every signal layer and connection but an 

overall picture of the manufacturing success can be seen. No visible errors were found, 

therefore the PCB was sent to a component assembler in order to solder the components 

that could not be soldered easily by hand, such as the FPGA BGA package and the 

SMPS controller QFN package. 

The second test-phase was soldering the motherboard power supply components on the 

PCB. This phase included checking all the voltage levels and polarities, the 24V supply 

current and component heating. Two important things that were left untested in this 

phase but will be tested later on were the power supply transient response and the 

voltage fluctuations on each voltage with varying loads. This is done better later on with 

all the components assembled and the FPGA programmed with the main part of the 

functionality. Some non-fatal design errors were observed in this phase. The least 

serious problem was that some of the component packages were of a little different 

physical size than the corresponding parts in the Eagle CAD software, although this 

didn’t disturb the soldering process. Another more serious thing that was observed was 

that the 3.3V and 1.2V linear regulators did not have their ground terminal connected to 

the component body as was expected. This problem can be overcome by changing the 

regulator type to another.  

The third test-phase included soldering all the FPGA related components, such as the 

capacitors, resistors, memories and programming connectors. The intention in this phase 

was to test whether a connection can be made to the FPGA via the programming JTAG-

cable and whether the FPGA configuration memory can be written and read. The test 

results showed that all things worked as expected and no glitches or other abnormalities 

where observed after a few test cycles. 
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The intention of the fourth test-phase was to test whether the two Ethernet ports worked 

correctly when using the EtherCAT protocol. This phase included soldering the 

Ethernet PHY components as well as programming the EtherCAT IP-core inside the 

FPGA. The test results showed again that everything worked as expected except for one 

of the LEDs on the Ethernet ports which was connected in reverse. More information on 

programming and configuring the IP-core is given in the software design section. 

In the fifth, which was also the last prototype test-phase, all the drivers for the 32 

bottom I/Os were soldered along with the option board connectors, front panel 

connector and the RS422 transceivers. The option board connectors were tested with a 

simple expansion I/O option board (an I/O board with same type of I/Os as the 

motherboard bottom I/Os) and were found to be working. The data transfer through the 

front panel connector was tested with a front panel PCB and also this worked as 

expected. All the outputs of the bottom I/Os worked, but it was found that the inputs 

needed additional resistors to pull up the open-collector status pins, which are used as 

the input. Also the RS422 transceivers’ communications were tested with a serial cable 

to a PC. No problems were found with the communication. 

More testing will be conducted before the product is ready for production. The 

upcoming tests will be done by placing the product in real operating environments. This 

will put more types of stresses on the product, such as heat stress (product inside a 

closed cabinet), EMC and other disturbances stress (product close to a frequency 

inverter and conducted disturbances coming through data cables, such as encoder 

cables) and shaking stress (product placed near or on shaking machinery). At the time 

this is written, however, the product is not ready for these types of tests and therefore no 

results can be given. 
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4 Software design 

This section of the thesis will deal with the software design of the module by mainly 

focusing on the VHDL-language hardware design and to a smaller extent discuss some 

of the additional languages’ role in the design, including languages such as Assembly, 

microcontroller specific C and the XML markup language. Some of the software design 

was already initially begun in the early prototyping stage when all the functional parts 

were tested on breadboards and evaluation kits. Even though the target FPGA on the 

motherboard is different from the evaluation kit’s FPGA, main parts of the code can be 

directly imported and implemented with the motherboard’s chip. This will speed up the 

initial software development and testing. However, the remaining and largest part of the 

code was still unwritten when the first prototype PCB was ready because a large part of 

the features would have been hard to test properly without the motherboard prototype at 

hand. 

The section will start off with the VHDL-design part and begin by discussing some 

basics of VHDL software design flow. After this, the FPGA software hierarchy and 

design used in the product will be discussed as a whole and then further on be divided 

into smaller functional blocks. In the end of the first part, some words will be said about 

the design tools used together with the FPGA. Also some future features not yet done at 

the time of this writing will be discussed. The second part of this section will begin by 

discussing the soft-core microcontroller and its own internal software and later on 

discuss the XML markup language used by the EtherCAT master. The last part of this 

section will discuss software related testing and evaluation. 

 VHDL software design 4.1

The VHDL language originates from a VHSIC program set up by the United States 

government in the early 1980’s. During the program, a need for a common description 

language for ICs arose and this finally resulted in the first standardized version of the 

VHDL language, VHDL-87. VHDL borrows heavily from the early programming 

language ADA and since the beginning, many new revisions of the language have been 

standardized, with the newest one being VHDL-2008. The VHDL language does not 

only fill the need to describe the structure of a system and its connections to subsystems 

using familiar programming language forms, but also allows the designer to simulate 

the design, using the same VHDL language, before producing the final product. [p. xvii 

– xviii, 19]. 

Although conventional programming languages such as C, Basic, Pascal etc. are used 

for completely different purposes than hardware description languages some 

comparisons can be made. First off, there are some big differences between the 

conventional programming languages and VHDL, by the most prominent one being that 

VHDL is a parallel language and the others are sequential languages. This means that 

statements in VHDL are executed concurrently (in cases where the small internal 

hardware delays are ignored) versus statements in for example C, which are always 

executed in their own order sequentially. 

Because VHDL is also a language capable to be used in simulations, not all of the 

VHDL language is synthesizable in hardware. This means that the coder has to pay 

attention to use only code that can be implemented by the specific design tools (Xilinx 
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in this project) on the specific FPGA used. As a good guideline for this, reference [p. 

633-668, 19] was referred to throughout the project. 

4.1.1 The overall structure of the VHDL description 

The complete VHDL description of the FPGA, including all its different internal 

functional blocks are divided into several VHDL description files and are all 

instantiated and linked together inside a so called top module. The top module is also a 

VHDL file itself, but it doesn’t contain any higher level logical functionality or other 

signal manipulations. The module’s purpose is only to link the several VHDL files of 

the project together in the right manner (signal connections) and provide a description 

for the compiler about the connections between the internal logic and the physical I/O 

pins of the FPGA. All of the additional VHDL files containing the different logical 

functionalities are instantiated in the top module and seen here as only black-boxes with 

port maps describing the signals coming in and going out of the modules. This design 

approach was chosen because it gives a good overview of the complex design with all 

the interconnections between the different functional blocks. It also allows for all the 

VHDL functional modules to be worked on individually and to be easily instantiated 

several times, if needed. Further on, it allows the design to easily adopt new VHDL 

modules by adding VHDL files to the project, instantiating them and connecting them 

together with the other modules inside the top module, while keeping the old module 

hierarchy intact if wanted. The encrypted Beckhoff EtherCAT IP-core module is 

instantiated inside the top module in the exact same way as with all the other functional 

blocks. The next two subsections will discuss the module hierarchy of the design and 

further on shortly describe each module’s individual functionality, without going into 

specific details. 

4.1.2 The complete VHDL module hierarchy 

From top to bottom, the hierarchy of the VHDL configuration program starts out with 

the top module described in the previous section and ends in several branches 

containing VHDL description files which contain smaller blocks of logical functions. 

The hierarchy was attempted to be kept four levels deep at maximum, as a good 

compromise between a clean code structure and number of branches. Picture 10 on the 

next page shows the complete hierarchical code-structure, along with the names of the 

blocks. In the picture, the module connections are shown from top to bottom and from 

left to right. The FPGA physical I/O pin configuration is directly connected to the top 

module together with all the other modules branching downwards, as can be seen in the 

picture. The red-dotted area is a possible upcoming microcontroller module as a 

replacement for the VHDL-implemented µC-interface. This module will be discussed in 

the next section. The blue-dotted areas are future modules not yet implemented at the 

time of this writing. The first two are interfaces to the two memories on-board, which 

could be used to store non-volatile parameters and programs etc. The rest of the blue-

dotted boxes are intended for the RS422 transceivers connected to the bottom PCB. All 

the non-dotted boxes are implemented in the first production version of the product and 

they will be explained more throughout in the next subsection. 
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4. µC-Interface
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9.1 I/O drivers & diagnostics 9.2.1. Baud Generator

9.2.2. UART-RX

9.2.2. UART-TX

Picture 10. Overall view of VHDL program hierarchy 
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4.1.3 Functional descriptions of the different VHDL modules 

The next thing up is a description of the modules in picture 10. The complete VHDL 

implementation of the modules which are discussed here are not given due to company 

secretes but despite this fact some interesting and important features can be discussed. 

The most interesting module combination which can be discussed more in-depth is the 

microcontroller module together with its surrounding modules (Memory, Bootloader 

and ALU) which in turn corresponds to the modules 5.xx-6.xx in picture 10. The rest of 

the modules will be covered more briefly in the text. 

Modules 1 to 4 and 9 

The first module in picture 10 is the reset module of the whole system. This module is 

intended to handle all the reset signals and reset conditions of the system. This includes 

holding the module in reset before the digital clock managers have locked and resetting 

appropriate functions inside the FPGA accordingly to different reset conditions such as 

external reset triggering, internal reset etc. 

The module number two is the DCM or digital clock manager module for the system. 

This module takes the external oscillator (25MHz) as an input and from this generates 

three different frequencies which are all in the same phase. The frequencies are 100 

MHz, which is used by the EtherCAT functionality, 25MHz which is used by the 

microcontroller, memory and option modules and finally 5MHz which is used by all 

other low-frequency functionality such as the front panel unit and the bottom I/O. 

The third module is the encrypted Beckhoff EtherCAT IP-core. Because of the 

encryption, this module only show the port map and some basic configurations to the 

user and therefore the only thing the designer can do is connect the appropriate signals 

to the ports and configure things such as vendor ID, product number etc. However, 

these configurations are primarily done automatically with software that Beckhoff 

included with the IP-core. 

The fourth module is the µC-interface, which lies between the user logic and the 

EtherCAT IP-core. This interface exchanges data to and from the EtherCAT packages 

and so functions as the link between the local application on the ACN I/O module and 

the EtherCAT system. In upcoming versions this module, now purely implemented in 

VHDL, is probably replaced by a VHDL microcontroller in order to add some 

functionality that is now left out. This will not be discussed further in this thesis. 

Module nine is the bottom I/O module which includes the digital I/O and the two RS422 

serial ports. First, this module handles the I/O signals, which are usually coming from 

the EtherCAT IP-core through the µC-interface and then connected to each I/O buffer 

along with the diagnostic signals (if the buffer is configured as an output). Second, the 

module has its own sub-modules for handling the serial ports. The sub-modules include 

a baud rate generator together with one transmit and one receive unit. These sub-

modules are not implemented in the first version of the product but will be added later 

on if needed. 

Module 5 and 6 

The fifth module in the picture is the memory module of the system. This module 

contains instantiations of the two microcontroller RAM-banks as well as the program 

ROM. Along with these; this module also connects the external EEPROMs of the 

option boards to the microcontroller RAM as well as handles all the microcontroller 
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I/O-ports and SFRs. The two latter are also both connected to specific RAM-addresses. 

Both the RAMs and ROM are synchronous and edge sensitive to the 25MHZ clock fed 

in to the module. 

The sixth module of the system is the microcontroller module, which itself contains an 

ALU and a boot loader sub-module. The microcontroller in this project is a stripped and 

modified VHDL-implemented copy of the old PIC16F84 microcontroller [20]. 

Explained here is at first hand the microcontroller interfaces to other modules and not 

the implementation itself. Also, some details how the microcontroller and the boot 

loader are used will be discussed more thoroughly in chapter 4.2.1.. The microcontroller 

module is the top-module in this sub-system containing no logic itself and therefore 

works only as a route-through module connecting the memory to the ALU-module and 

to the boot loader-module. The ALU module executes the instructions it reads from the 

program ROM-memory and accordingly communicates with the RAM-memory. The 

boot loader module has an UART interface which is used to erase and write to the 

program memory if a software update is uploaded. The UART interface can be 

expanded in the future if necessary to read from the EtherCAT module or any other 

appropriate data interface. The following picture will give a clearer view of the memory 

block, the microcontroller and the boot loader and their interconnections and functions. 

 

Picture 11. Signal connections between some of the VHDL modules 
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For clarity, in picture 11 the green lines indicate single- or bus-signal connections 

between the modules and the blue lines are clock or reset signals. Shown in the picture 

are all the memory interface signals from and to the microcontroller, along with some 

single signals of the system, such as the clock, reset and UART signals. Also shown are 

the internal functions of the memory which include the special function register of the 

microcontroller (SFR) and the boot-load-manager which erases and writes to the ROM. 

The SFR handles the RAM-bank selecting along with some but not all of the functions 

included in the PIC16F84-type microcontroller’s SFRs [p. 7-12, 20]. Some of the 

functions that are not needed in the design are intentionally left out in order to reduce 

code-size and complexity. However, the choices made concerning what to implement 

and what not to implement will not be discussed.  

As can further on be seen in the picture, there are two OR:ed reset signals in the system, 

one external and one coming from the boot loader. The function of the external reset is 

obvious but the boot loader reset is only active when the UART-unit has received a 

specific reset command. Finally, the µC ports are connected internally to the SFR part 

of the RAM in order to give them physical RAM-addresses which can be accessed by 

the microcontroller program. From there, the port signals goes through the top-module 

to their specific destinations, which can be the front panel, option modules and bottom 

I/O, for example. 

Module 7 

Module 7 stands for the module dealing with the four individual option module 

connectors. Each individual sub-module corresponding to a specific option module 

connector has to contain all possible logic needed to communicate with all the different 

modules that can be connected. To implement this, each option module is equipped with 

a small EEPROM which stores information telling the motherboard what kind of 

module is connected. Each individual module’s EEPROM is read at startup by the 

microcontroller and according to the module ID appropriate logic is assigned to handle 

the option boards’ I/O pins for communication. This function makes it possible to 

connect any option module to any of the four places and also allows one to have several 

option modules of the same type connected at the same time. It also makes it possible to 

add or remove option boards later on to the product without any firmware updates 

because all the needed logic is already inside the FPGA. The above information about 

logic association is true for option modules containing high-speed functions, which is 

usually the case with for example encoder reading. However, to save some logic, 

modules not requiring high-speed data transfer could be handled by the microcontroller 

I/O ports. In such a case a tradeoff is made between the microcontroller’s RAM/ROM-

memory requirements and the used amount of logic in the FPGA. Finally, the option 

module data is not only connected to the EtherCAT µC-interface but also connected to 

the memory module which makes it possible to read / write data through the front panel 

buttons + LCD-interface. 

Module 8 

Module 8 is the module driving the front panel of the product. The front panel itself 

consists of a PCB populated with an LCD display, a few buttons and a number of LEDs. 

These are all driven and read from the motherboard in a serial fashion. This means that 

a specific bit-sequence accompanied with a clock signal is fed through some of the pins 

of the front panel connector. Each bit in the sequence corresponds to a specific LED 

row/column, LCD pin or button. As a result, it is up to the logic of the front panel 

module to assemble the bits in the right order in the sequence while continuously 
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driving the sequence to the front panel at a decent refresh rate. The input data from the 

buttons is written on the fly onto the sequence as it passes through the panel logic and 

returns to the motherboard. The function can be compared to a shift-register. The bits to 

be included in the sequence are fed to this front panel module from a few of the 

microcontroller’s ports. 

4.1.4 Working with Xilinx FPGA design tools 

For the basic FPGA designer, the Xilinx (or any other Vendor’s) tools usually work fine 

without the need of interference from the user. In short, this means that the only thing 

the user has to do is to write the code and assign the physical I/O-pins of the FPGA 

package and leave the code synthesizing, translation and the FPGA placing and routing 

to the automatized software. This is often the case when the FPGA design easily meets 

all internal and external timing constraints and all the logic fits well inside the FPGA 

i.e. the device utilization is low to moderate. If this is not the case, there are user 

configurable options in each step of the process from VHDL code to FPGA 

programming file. With these options the user can choose between things such as the 

optimization grade of the code, the effort level of the placer & router and other different 

options to improve for example timing. The tradeoff with these additional options is 

often that the synthetizing time grows significantly. If these configurations do not help, 

a last resort including more radical measures can be done, which include for example 

placing the logic onto the FPGA manually and performing different timing analyzes to 

help solve the problem. 

However, in this project at the time of this writing there was no need to interfere with 

the default options, as the FPGA utilization grade is quite low < 50% at the time. As a 

remainder, the FPGA chosen at this prototype stage was the largest possible in the 

series. However, because of the low utilization it could be possible to choose a smaller 

one for the production versions as the software develops. This choice could possibly 

then give raise to the problems described above in the last paragraph. However, it is 

beyond the scope of this thesis to discuss the possible counter-measures etc. if such a 

situation would arise.  

4.1.5 Future expansion 

Some of the possible future improvements concerning the programming were discussed 

in the earlier chapter, such as replacing the µC-interface with a microcontroller and 

communicating with the memories on-board. However, some even more radical 

changes to the overall VHDL system can be made. One of the most interesting things 

that could give more value to the product at the time is that the FPGA could possibly 

contain a more efficient processor and together with it implement the intelligent part of 

a complete servo drive. If this could be put off, the module could possible behave as one 

or more servo drives and use very simple motor drives as the power output stages, 

resulting in a cheap servo system providing some of the same modification possibilities 

as with the numeral option modules and customer specific software. However, this will 

not be further discussed in this thesis and is only mentioned here as an example for the 

many possibilities the VHDL software gives rise to. 
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 Other additional software 4.2

In contrary to the VHDL coding, there are some other parts of the project that needs 

software in order to work. One of them, the microcontroller, was discussed in the earlier 

chapter. The microcontroller naturally needs a machine code program, which in this 

project was written in a combination of C and Assembly and then assembled by a tool 

capable of assembling C code for microcontrollers [21]. The other software is for the 

EtherCAT master, which needs a markup-file written in XML in order to work together 

with our slave. This XML-file can shortly be described as a description file for the 

master telling what kind of a slave is connected and what kind of data transfer is used 

and what other properties it has. Coding and building EtherCAT projects on the master 

side in software such as CodeSYS or similar will not be covered in this thesis. 

4.2.1 Microcontroller C and Assembly  

The microcontroller, which handles a good part of the internal functions of the module, 

will be further on discussed in this sub-section. The microcontroller was chosen to be 

developed and implemented in this project because it saves a lot of logic in the FPGA 

by moving a lot of the functionality to a processor program instead of doing the same 

things with plain logic. It also significantly eases the process of implementing the 

functions and modifying them later on. As already known, the microcontroller is a 

striped and modified VHDL implemented PIC16F84, using the 14-bit length op-code 

instruction set typical for the PIC16Fxxx family. In practice, this means that any type of 

microcontroller of the 16F family could be implemented easily by making relatively 

small modifications to the VHDL code. As could be seen in picture 11 earlier, the 

program ROM is 16-bits wide which leaves two empty bits in the op-code. These could 

be used to implement own instructions, which could come in handy if the program has 

to do a specific function which is easier or more efficiently implemented directly in 

VHDL. 

The microcontroller is mainly programmed in C and the code assembled by the 

compiler given in [21]. However, some parts have to be implemented in Assembly 

directly because the VHDL microcontroller is modified from the original one and the C 

compiler naturally isn’t designed to handle such cases. These modified parts are the 

own VHDL implemented instruction codes and some of the port communication parts, 

as the modified microcontroller has more I/O ports than the original one. Assembly can 

also be used to implement timing critical parts, which usually are harder to write in 

plain C-code. A good thing about the compiler mentioned earlier is that it can handle 

mixed code written in both Assembly and C inside the same code file. The specific 

microcontroller program used inside the product will not be discussed in the thesis. 

As a reference for 8-bit microcontroller program writing in C, the book found in [22] 

was used. This book covers the parts of Ansi C which are applicable to the 

microcontrollers in question (16F series). Further on the book gives some advice using 

the CCSC compiler, which however not will be covered here. 
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4.2.2 XML markup file for an EtherCAT master 

An XML markup file used by the master in an EtherCAT system is needed to provide 

information to the master about the slave(s) connected to the system. The ESI i.e. 

EtherCAT slave information included in the XML-files ranges from technical 

information such as number of sync-managers, PDO-mapping and other features to 

more informative info such as Vendor IDs, product number and bitmaps containing 

Vendor logos etc. The build-up of the XML-files follows a schema specific for 

EtherCAT. From the information provided by the slave specific XMLs the EtherCAT 

master builds up the EtherCAT network information (ENI) of the system. More about 

the XMLs and their structure can be found on the EtherCAT group homepage in [4], but 

it requires membership to access to the files. 

The ESI for the motherboard was designed to consist of two different XML-files 

because of its modular build-up. The first XML-file contains information such as the 

Vendor, product number, version, Sync-managers and PDO-mapping for the bottom I/O 

and option modules. The additional file contains more specific information about every 

option module that can be connected to any of the four option module connectors. This 

gives us an easier way to include the slave into the master software by first adding the 

base module (motherboard) and then further on appending the different option modules 

used in the specific system. 

 Testing and evaluation of software 4.3

To begin with, testing the VHDL software can roughly be divided into two main 

methods, both with their pros and cons. The first one is simulating the VHDL software 

with a simulator such as ModelSIM [23] and observe the results by adding test-signals 

to the module under test. The other method is to directly download the code to the target 

FPGA and observe the operation together with an oscilloscope and / or other indicators. 

The first method can be faster in some cases and allows the user to see the behavior of 

any arbitrary signal in the system easily on a PC, which eases bug-hunting significantly. 

However, there are some drawbacks compared to downloading the code to the FPGA 

and testing the software in real hardware. First off, as a result of the internal placing and 

routing, there will be some hardware delays inside the FPGA which can affect the most 

timing critical systems. These effects can hardly be predicted without synthetizing the 

VHDL software to the target FPGA and reading the timing reports. Another 

disadvantage, related to this project, is that the EtherCAT IP-core can’t be simulated 

because the source code is encrypted.  

Testing the complete VHDL program which was used in this product was done in many 

stages. Due to the modular build-up of the VHDL code it was possible to test every 

module separately and when confirmed working, the module could be added to the 

system. Because of the relatively easy structure of all the modules except the 

microcontroller and EtherCAT IP-core, every module except these were tested in 

hardware directly. However, the microcontroller was first tested with the ModelSIM 

simulator to ensure proper operation because it contains many complex internal signals 

which would have been hard and effortful to trace using an oscilloscope. Every time 

when a new module or sub-module was tested and confirmed to be working, it was 

added to the complete VHDL structure and synthetized together with all the other 

modules. This was done for reasons described before, namely that the internal placing 

and routing can affect the results. As a conclusion, it will only be stated here that all the 
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different VHDL modules was tested one at a time and they were confirmed to be 

working together as excepted. No more details of the tests will be given, because they 

are rather a matter of writing the initial code, testing, bug fixing, testing again and so 

on. 

The microcontroller C-code was first of all compiled by the CCSC compiler [21] 

described before and then downloaded through a PCs serial port to the FPGA internal 

memory. Testing was done completely in hardware by observing the function and using 

an oscilloscope for signals not otherwise detectable. 

The XML-file for the master was harder to test because there is no compiler-type 

software which tells what possibly went wrong other than syntax errors. Due to this fact 

the XML-file was made by trial and error together with the Beckhoff EtherCAT master 

software TwinCAT [24]. 
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5 Results and conclusions 

The purpose of this work was to give insight into the key parts of the design of a new 

product to be included into an existing product family managed and developed by the 

company SKS Control Oy. The new module to be designed was intended to replace a 

number of other older modules of the product family, while simultaneously adding new 

properties and features, such as using the EtherCAT protocol for communication. The 

work included everything from the theory behind the product features to the key parts of 

the practical product development, including design phases such as designing the 

electrical schematics, PCB and software and finally testing the near production ready 

product. By near production ready it is meant that the prototype discussed in this work 

differs from the final production version by only less significant minor details. 

 Testing and confirmation of function 5.1

At the time this is written, the product was tested as described in the hardware and 

software sections of this thesis, but some additional testing is yet to be done. To begin 

with, the product has to be tested in different environments similar to the real 

operational conditions, such as inside an electrical cabinet together with servo drives 

which produce some unwanted noise, for example. Secondly, the product has yet to be 

tested for EMC compliance in order to fulfill the requirements for the CE-mark [25]. 

Additional to this, it is possible but not necessary to test the product by a certified 

EtherCAT test center in order to get an EtherCAT conformance certificate, which 

allows the vendor to sell the product as an EtherCAT conformance tested product. 

Although, it is still an open question if the conformance certificate is considered 

relevant in this project. 

 Future work 5.2

In contrary to the future testing discussed in the last section, some additional hardware 

and software work are also to be done. As already known, the product is modular in 

structure which allows for the possibility to develop any number of option modules that 

can be connected to the motherboard. This among others things is one of the things to 

which effort will be put before and after the product is released to market. The FPGA 

along with the microcontroller it contains makes it possible to change the hardware 

description and the software for the microcontroller whenever needed. This means that a 

lot of the future work will involve these soft wares in order to make a product that could 

easily be updated to serve the needs of different customers. In other words this means 

customer specific software. 
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 Final summary 5.3

The main objective of this work was to discuss the development of a modular 

EtherCAT field-bus module. The work begun with a theoretical overview of the 

technology involved in order to gain enough understanding to get started. The 

technology behind the product was tested in an earlier stage with breadboards and 

evaluation kits. It was seen from these earlier test results of the hardware design that 

adapting the same technologies together into a single motherboard PCB was successful. 

After this, the thesis focused on the software design part, were §an initial FPGA and 

microcontroller software were discussed. The features required by the initial hardware 

description software and the microcontroller software were seen to be successfully 

implemented to the motherboard’s FPGA. As a result of all this, it can be said that the 

near production-ready product fulfilled all the requirements set in the beginning with 

very little obstacles throughout the design process. 
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Appendix 

A. 

Front panel with:  

Display

Buttons

LEDs

EtherCAT ports

Bottom PCB 
with power
and I/O 
connectors
(not shown)

Option module places 1 & 2

Option module places 3 & 4

The complete product inside the plastic enclosure together with the surrounding PCB 

boards and a preliminary layout of the front panel. 
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