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It was a common assumption on the Internet that endpoints access the network
through only one interface. But now, most mobile devices support several access
technologies and can have several IP interfaces. This diversity can be used to
improve network performance. Traditional protocols do not support multi-access
thus new solutions have to be deployed.

This thesis explores the use of MultiPath TCP as a solution to take ad-
vantage of multiple interfaces on mobile endpoints. It considers more specifically
the case of devices that support several 3G subscriptions. MPTCP can use several
interfaces concurrently but it raises a problem of power consumption. Dynamic
interface selection is proposed as a way to make a tradeoff between performance
and battery life.

To evaluate the performance of MPTCP and the different path selection
algorithms in real world conditions, this work included the design and im-
plementation of a test bed based on a laptop and three mobile phones. The
results showed that MPTCP with or without interface selection can improve the
performance of TCP connections on multihomed endpoints.

Keywords: MultiPath TCP, Mobile devices, Multihoming, Interface selection,
Test bed
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1 Introduction
In recent years, the success of mobile devices such as smartphones and tablet com-
puters changed the common assumptions about how users will access the Internet.
Those devices represent a more important part of the total traffic and that part
is still expected to increase [1]. In Europe, the number of mobile subscriptions per
capita is now higher than one [2]. At the same time, applications available on mobile
devices become closer to those traditionally reserved to laptops and desktop com-
puters. Thus, users may expect the same level of responsiveness from their network
applications regardless of the kind of device. In addition, due to the power and CPU
limitations of mobile devices, the trend is to rely on cloud computing to bring heavy
applications to mobile environments. Hence, the quality of the network access will
be even more important for mobile applications.

This brings forth new challenges as mobile devices do not always have access
to the reliable and efficient wired connections available to non-mobile computers
in home or corporate networks. To access the Internet, mobile endpoints typically
use a variety of mobile networks whose capacity and reliability depend on time and
location. This results in frequent changes in throughput or latency, especially while
moving fast. Some applications, such as video or audio streaming, may fail to handle
those events.

1.1 Initial motivation
Mobile devices may lack a reliable connection but they could take advantage of the
diversity of the networks to which they have access. Recent mobile endpoints usually
support Wireless LAN and different cellular network technologies such as UMTS or
GPRS. According to the resource pooling principle introduced by Whischik et al.
[3], using different paths concurrently between two endpoints would increase the
throughput, improve the response to burst traffic and strengthen the robustness of
the link.

Mobile endpoints would greatly benefit from such improvements. Availability
and capacity of wireless networks can largely vary depending on the location, the
time of day, and, of course, the operator. At the same time, due to both user and
application behavior, incoming traffic is bursty. Pooling the capacity of the different
available networks would help to handle traffic surges and to improve connection
reliability.

Whischik et al. [3] also suggest the use Multipath TCP as a way to achieve
resource pooling. These extensions to TCP support the use of several IP addresses by
a single TCP connection. As only the endpoints would need to be updated, it could
be easily deployed. Furthermore, MPTCP can be transparent to the application
layer. This advantage is not negligible as most common network applications use
TCP as their transport protocol.
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1.2 Interface selection
The results of this work will confirm that, if several wireless networks are simulta-
neously available, using MPTCP can considerably improve the reliability and the
throughput of TCP connections. However, using a radio interface requires power,
and using all of them at the same time may not be the best option in terms of energy
efficiency. This is a real problem since power consumption is a key concern on mo-
bile devices. Thus trying to use the available throughput on every path may come
at too high a price for the user that favors battery life over network performance.

Nevertheless, as MPTCP is able to recover from interface failures by switching
to backup interfaces, it still improves reliability. Thanks to its make-before-break
design, it can also move the traffic from one interface to another without interrupting
the TCP connection. Thus, even though only one interface is active, the mobile
device will still benefit from its other interfaces in case of failure, improving the
robustness of the connection. Furthermore, by providing a way for TCP connections
to be moved from one interface to another without any interruption, MPTCP allows
dynamic interface selection. It means that it can be operated along an interface
scheduler that dynamically chooses the best active interface in order to increase
performance without sacrificing energy-efficiency.

1.3 Objectives
There could be many different ways to design such interface schedulers. If some
of them have the ambition to be largely deployed on mobile endpoints, they will
eventually need to be tested in real conditions. The main goal of this work was
to implement a test bed to evaluate the performance of MPTCP, along different
path selection algorithms, in real-world situations. This thesis considers the case of
endpoints that can use several 3G connections simultaneously.

The problem of the routing configuration for MPTCP has to be solved by the
test bed. Tools to easily test different dynamic interface selection algorithms have to
be developed. Then, the performance of MPTCP and of different interface selection
methods has to be evaluated.

1.4 Results
A test bed for MPTCP was developed in the Python programming language. It
provides tools for implementing and evaluate path selection algorithms for MPTCP.
A generic solution to automatically configure routing tables on MPTCP-enabled
Linux systems was developed.

The results of real-world experiments proved that MPTCP performs well over
several 3G networks and in a mobile environment, considerably improving band-
width and latency. Measurements also showed that some simple dynamic interface
selection processes can constitute a reasonable compromise between performance
and power consumption.
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1.5 Structure
The first chapters will present related works and background elements relevant to
the main issues of the topic. That is to say:

• Multi-access and resource pooling on mobile devices

• MPTCP operation

• Network interface selection for mobile devices

Chapter 2 will review the multi-access solutions available on mobile endpoints,
that is to say protocols that could take advantage of multiple interfaces or achieve
some degree of resource pooling. Chapter 3 will focus on MPTCP concepts and
mechanisms. Chapter 4 will present the issue of interface selection for mobile devices
and will introduce the interface selection processes that has been experimented for
this thesis.

The design of the test bed and the implementation of its different components
will be described in Chapter 5. Chapter 6 will present the experiments and analyze
their results. The last chapter concludes the work and mention possible applications
and future works.
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2 Multi-access on mobile hosts
Most recent mobile devices support several access technologies, such as UMTS and
WLAN. Taken separately, these technologies may have significant shortcomings com-
pared with a wired connection (lower throughput and intermittent interruptions).
However, mobile endpoints could be able to use these interfaces simultaneously or
sequentially to improve the overall quality of the connection. Unfortunately, none
of the widely-deployed protocols on the Internet supports multihomed endpoints at
the moment. This feature has to be added by a new protocol or an extension of an
existing one.

Two key terms have to be defined before presenting the issue.

Multihoming
A multihomed device or endpoint is as a host with several active IP interfaces.
For instance, a laptop that maintains a wireless connection via WLAN and a
wired connection via Ethernet is multihomed.

Vertical handover
Vertical handover is the ability to switch between two different access technolo-
gies without interrupting the ongoing connections. As an example, a smart-
phone would perform a vertical handover if it moved from an UMTS cellular
connection to WLAN without interrupting ongoing connections. Handover
capabilities can ensure the continuity of the connections provided that the
network coverage of different access points or operators overlaps as in Fig-
ure 1.

Schmidt et al. [4] listed the main multi-access solutions for mobile endpoints and
classified them according to the layer at which they operate. Since different layers
tend to provide different functionalities, this is reasonable to wonder at which layer
multi-access should be supported. Other criteria are also taken into account, such
as concurrent multipath transfer and flow scheduling capabilities. It is also crucial
to consider potential obstacles to deployment and adoption.

Different protocols that support multiple interfaces will be presented and their
advantages and drawbacks will be discussed. The conclusion will explain why TCP-
based solutions are considered as the easier to deploy.
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Operator 1
Operator 1

Operator 2

Figure 1: Vertical handover allows reliability pooling between different networks

2.1 Offloading
Operators have already considered using the WLAN capability of mobile devices to
reduce the load on their cellular networks [5, 6]. A mobile device that primarily uses
a 3G or GPRS access can use opportunistic connections with other networks (e.g.
WLAN access points) to increase the available throughput and move the traffic away
from the cellular network. This is called offloading. The 3GPP developed its own
offloading technologies. Schmidt et al. [4] give a short description of some of these
solutions. Modifications and additional equipment in the network are necessary to
deploy these technologies. When an endpoint has access to a wireless LAN, it needs
to connect to a specific gateway that provides access to the core of the 3G network of
its service provider [7]. That is why these solutions cannot provide resource pooling
between cellular networks of different operators.

2.2 Mobile IP
Mobile IP adds mobility support at the network layer [8]. It is developed by the
IETF and supports both IPv4 and IPv6 [9, 10]. It requires an additional node with
a public address in the network, the home agent, that acts as a relay by receiving the
packets on behalf of the mobile host before forwarding them through an IP tunnel.
The home agent is informed of the current IP address of the mobile device either by
additional nodes, called foreign agents, or by the mobile endpoint itself.

This mobility mechanism supports vertical handover thus provides some relia-
bility pooling. Nevertheless, it does not allow the endpoints to concurrently use
multiple interfaces to improve throughput since multihomed devices can only use
one of their IP interfaces at a time. In addition, the presence of a relay (the home
agent) between the two endpoints may increase the latency, especially if both hosts
are far from the relay. Finally, mobile IP is in competition with the 3GPP solutions.
As a result, it has not been widely adopted as it was expected [11].
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2.3 SCTP
SCTP is a transport layer, connection oriented protocol originally designed for sig-
naling specified by the IETF [12]. One of the main strengths of this protocol is
its ability to support several streams per association 1. As a stream is established
between two IP interfaces, a multihomed endpoint that uses SCTP would be able
to create different streams over different paths and achieve resource pooling at the
transport layer.

However, it does not natively support vertical handover. Indeed, SCTP allows
endpoints to exchange their available IP addresses only during the establishment of
the connection. Furthermore, SCTP uses only one stream at a time for data trans-
fers and cannot take advantage of the pooled capacity of the interfaces to increase
throughput. But some extensions were designed to answer these shortcomings.

The Dynamic Address Reconfiguration extension (DAR) [13] permits an SCTP
connection to dynamically change the set of active IP addresses. DAR can be used
to add the support of vertical handover to SCTP [14, 15]. An extension adds the
support of Concurrent Multipath Transfer (CMT) to SCTP [16] to increase the
throughput of the association through capacity pooling [17, 18]. SCTP implemen-
tations are available for Linux and BSD and DAR is supported on these platforms.

As opposed to TCP and UDP, it natively supports multihoming, thus it could
have been a straightforward solution to achieve resource pooling on multihomed
mobile devices. Unfortunately, several obstacles hinder its adoption. Firstly, many
network devices, such as NATs and firewalls, do not support SCTP [19]. Even if
some endpoints support SCTP, it would not be functional for general use with mo-
bile devices since NATs are omnipresent. One solution would be to operate SCTP
on top of UDP [20] but it would require further modifications of the current imple-
mentations. Finally, SCTP would have to be supported by applications. Software
and application-level protocols would need to be modified so as to use that new
transport protocol instead of the widely used and known TCP and UDP.

2.4 TCP-based solutions
In 2002, Hsieh and Sivakumar proposed the pTCP protocol [21]. It has been designed
to allow throughput aggregation between different interfaces and already considered
multihomed mobile devices as a potential use case. They provided simulation results
but their protocol was never implemented or specified.

An IETF draft [22] published in 2009 describes a set of TCP options to simul-
taneously use different interfaces at the sender side. However, in the case of mobile
devices, this is of limited interest. Indeed, since users tend to download more con-
tent than they upload, the sender side is not the mobile endpoint but some server
on the public Internet. Thus, it does not allow the mobile device to concurrently
receive data on its several radio interfaces. Even if the server has several interfaces,
it may not help to improve throughput or reliability significantly as the bottleneck

1SCTP uses the term association instead of connection.
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of the connection is more likely to be the radio interface of the mobile system and
not the typically fast and reliable Internet access on the server side.

The IETF Multipath TCP working group chose MPTCP as a solution to add
multihoming support to TCP. RFC 6182 [23] depicts the MPTCP architecture. It
works on both sender and receiver sides. RFC 6824 [24] specifies the new TCP
options MPTCP needs for signaling. It is transparent to applications, transparent
to most NATs, supports subflow priority and can fall back to regular TCP in case
of failure. It can add new interfaces to the connection after the initial establishment
thus it supports vertical handover. Last but not least, an implementation of MPTCP
in the Linux kernel is available [25, 26].

Nevertheless, some middleboxes that strip TCP options or perform packet in-
spection to check the payload may prevent MPTCP from working. Moreover, the
limited size of 40 bytes for TCP options may be limiting for additional features such
as authentication algorithms that would require long keys. That is why other pro-
posals suggested to limit or give up the use of TCP options and embed the signaling
in the TCP payload.

Multi-Connection TCP (MCTCP) [27, 28] is similar to MPTCP but only a few
TCP options are exchanged during the establishment of TCP flows. The other
signaling messages are carried in the payload. As long as only one interface is active,
MCTCP behaves like a normal TCP connection. When a new path is available,
MCTCP encloses both connection data and signaling messages in TLV fields.

Payload Multi-connection Transport (PLMT) [29] does not use any TCP options
for signaling. Instead, it opens a second TCP connection dedicated to signaling on
a predefined port. Then, all data or signaling messages are sent in the TCP payload
in TLV fields. That method was successfully used by TLS [30] before. Since there
is no need to modify the TCP stack, PLMN can be implemented in user space.

2.5 Application layer solutions
Schmidt et al. [4] also consider some application layer solutions. To implement
multi-access protocols at the application layer, one can simply use the socket API
and bind different sockets to different interfaces. If routing is appropriately con-
figured, data written on different sockets will take distinct paths in the network.
Moreover, the protocol can be tuned to fit the exact needs of the application.

On the downside, the application developer would need to implement himself
congestion control, subflow management, security and packet scheduling. This rep-
resents a lot of work and cannot reasonably be done for each network application.
It may be preferable to implement multi-access capabilities at lower layers so a large
number of applications can benefit from multi-access.

Still, it may be interesting to add multi-access support to some generic or very
popular application layer protocols. In those cases, implementations of these pro-
tocols may be available in popular libraries or frameworks. If the new multi-access
features are included in those libraries, existing applications could be easily updated.

For instance, HTTP is by far the most popular protocol. Countless applications
use HTTP because they want to be accessible in a web browser or be able to go
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through NATs and firewalls. If a popular web browser or a generic HTTP imple-
mentation was able to send different requests through different interfaces, many
web-based applications would benefit from resource pooling. Because of the con-
nectionless nature of HTTP, no additional mechanism is needed. However, it does
not really support vertical handover and is somehow unfair to HTTP persistent
connections since multiple TCP connections will get more throughput together at
bottlenecks than a single TCP connection. The latter problem is discussed in Sec-
tion 3.2.

The file sharing protocol Bittorent would also be able to use several interfaces
for downloading a file since it is able to retrieve different pieces of a same file from
different sources using different connections [31].

RTP is a generic protocol for real-time applications developed by the IETF [32].
In most cases, RTP is operated on top of UDP but TCP is supported as well. If
it were able to support multi-access to increase the available throughput, many
real-time applications, such as IP telephony and video streaming could improve the
quality of the streamed media. Multipath RTP (MPRTP) [33, 34] is a solution
to achieve resource pooling for real-time multimedia applications by using several
interfaces simultaneously.

RTP is often used along SIP for signalization. It is possible to use SIP to perform
vertical handovers [35, 36] and achieve reliability pooling. However, that solution
does not consider concurrent transfers on multiple interfaces. Like MPRTP, this
protocol is somehow specific to real-time applications and is not suited for reliable
data transfers.

2.6 Conclusion
Different protocols and mechanisms could allow mobile endpoints to take advantage
of several interfaces, each one having advantages and drawbacks. However, apart
from some application layer solutions, TCP-based solutions are probably the easiest
and fastest to deploy. They have two key advantages:

• Multi-access is entirely supported by the endpoints. There is no need for
heavy modifications in the network. Even though some NATs or firewalls may
cause some problems by stripping unknown TCP options, most middleboxes
are expected to see multi-access enabled TCP traffic as normal TCP traffic.
Furthermore, there is no need to buy and deploy dedicated network equipment
such as relays or gateways.

• All already existing TCP applications could benefit from multi-access without
any modification if the operating system supports the new variant of TCP. This
is a strong argument in favor of such solutions since most popular application
protocols run on top of TCP. As shown by Falaki et al. [37], on smartphones,
common TCP applications are responsible for most of the traffic.

Other solutions, depending on the layer at which they operate, may require more
efforts in order to be deployed:
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• The network layer solutions proposed by the 3GPP are specific to cellular
data networks and would not allow users to access the Internet via different
operators. Both mobile IP or 3GPP solutions require specific relays and/or
gateways [7, 9, 10].

• A completely new protocol at the transport layer would encounter problems
with NATs and other middleboxes. SCTP is a good example. This protocol is
available on endpoints as it is implemented in recent versions of open-source
operating systems. Nevertheless, it is still very difficult to operate SCTP be-
cause of the omnipresence of NATs that do not support it [19]. Encapsulation
in UDP is often the only solution. In addition, applications have to be modified
to support the new protocol.

• Though no modification of the network is necessary, application layer solutions
require a lot of work on the endpoints. Indeed, all existing applications have
to be modified or rewritten to benefit from multi-access. Unless it affects a
very popular protocol such as HTTP or address a specific issue like real-time
applications, adding multi-access support at lower layers is probably a more
economical solution.
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3 Multipath TCP
Multipath TCP is a set of TCP extensions defined in RFC 6824 [24] that allows
a single TCP connection to send and receive data using different IP addresses si-
multaneously. It is necessary to present its mechanics before explaining the design
of the test bed and the results of the experiments. Thus, this chapter will present
important MPTCP concepts and will provide an outline of its operation. Some
predictions on the impact of MPTCP on performance will be given. The existing
works on the application of MPTCP to mobile devices will be reviewed at the end
of the chapter.

Application

IP IP

MPTCP (data-level)

TCP subflow TCP subflow

Semantic layer

Flow/Endpoint layer 

Transport layer
Socket API

Figure 2: MPTCP protocol stack, adapted from RFC 6128

3.1 Specific concepts
Before going into the details of MPTCP operation, some concepts that are specific
to this protocol need to be defined and explained. This section will follow the termi-
nology section of RFC 6824 but will provide additional examples and considerations.

Subflows

With normal TCP, there is only one data flow per connection, between to pairs of
IP addresses and ports. With MPTCP, data belonging to a same connection can be
transmitted with different source and destination IP addresses and ports. Packets
having the same source and destination IP addresses and ports belong to a same
subflow. An MPTCP can be made of several subflows.

To MPTCP-unaware middleboxes, MPTCP subflows are like normal TCP con-
nections since they have their own sequence number space, are opened with a three-
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way handshake and terminated either by a four-way handshake or a reset packet.
However, as long as there is more than one subflow, subflows only carry a fraction
of the application level data. The payload is not meaningful on its own and must be
reordered and combined with pieces of data carried by other subflows before being
delivered to the application socket. That is why it may confuse network devices that
perform packet inspection.

Connection level

The concept of connection is not the same for normal TCP and MPTCP. Indeed,
with normal TCP, a connection is limited to a single address and a single port on each
endpoint. With MPTCP, a connection can use several subflows and is not identified
by the source and destination addresses and ports. As visible on Figure 2, which
presents the high-level architecture of MPTCP, the transport layer is now divided
in two parts. RFC 6182 [23] makes the difference between the application-oriented
semantic layer and the network-oriented flow and endpoint layer. The semantic layer
ensures the reliable data transmission between the two distant applications and the
flow and endpoint layer focuses on congestion control and endpoint identification.

At the MPTCP connection level, data is reordered and ready to be delivered to
the application socket. According to RFC 6824, data-level can be used as a synonym
of connection level. Figure 2 shows that the connection level is an abstract layer
between the transport layer and the application layer.

Paths

The path taken by packets is defined by the successive hops between routers before
they arrive at the destination host. To achieve resource pooling, an important
assumption is that packets belonging to different subflows can take different paths
to reach their destination. This depends on routing configuration and network
architecture. Paths may have links in common, they do not need to be disjoint;
as long as they differ from one link, there are still some benefits from resource
pooling, at least for reliability.

3.2 Operation
This section explains the different mechanisms that allow MPTCP to create, main-
tain and close a connection made of several subflows. It does not mention corner
cases. The related drafts and RFCs [24, 38, 39] provide a more detailed functional
specification.
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Table 1: MPTCP options subtypes as assigned by IANA
Value Symbol Description

0x0 MP_CAPABLE Multipath Capable

0x1 MP_JOIN Join Connection

0x2 DATA_SEQUENCE_SIGNAL Data ACK and Data Sequence Mapping

0x3 ADD_ADDR Add Address

0x4 REMOVE_ADDR Remove Address

0x5 MP_PRIO Change Subflow Priority

0x6 MP_FAIL Fallback

0x7 MP_FASTCLOSE Fast Close

0x8-0xe Unassigned

0xf Reserved for private use

MPTCP options

In order to support multipath-specific functionalities, MPTCP uses TCP options
for signaling. As specified by RFC 793 [40], a new TCP option kind is necessary. In
additions, MPTCP options contain a subtype field. The MPTCP option kind and
its subtypes are defined by RFC 6824 and assigned by a specific IANA registry [41].
The subtypes listed in Table 1 will be encountered in the following description of
MPTCP operation.

Establishing connection

An MPTCP-enabled host opens a TCP connection by sending a SYN packet that
contains the MP_CAPABLE option. If the other endpoint supports MPTCP, then the
SYN/ACK response will contain the MP_CAPABLE option as well. The first host com-
pletes the three-way handshake with an ACK packet that also carries the MP_CAPABLE
option. If the other endpoint does not support MPTCP, or if middleboxes on the
path stripped MPTCP options, the connection falls back to normal TCP. Figure 3
illustrates a successful MPTCP connection establishment.

The hosts will also exchange keys and agree on a cryptographic algorithm during
the three-way handshake. For now, the only algorithm that has been specified
by RFC 6824 is HMAC-SHA1. The keys are also used to generate two tokens, that
uniquely identifies the connection on a host. The tokens, shared keys and chosen
algorithm will be used by the endpoints to identify the connection and authenticate
each other when new subflows will be added.
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Host A Host B

Address A2 Address A1 Address B1

SYN
MP_CAPABLE(A's key)

SYN/ACK
MP_CAPABLE(B's key)

ACK
MP_CAPABLE(A's key & B's key)

SYN
MP_JOIN(B's token & A's nonce)

SYN/ACK
MP_JOIN(B's HMAC & B's nonce)

ACK
MP_JOIN(A's HMAC)

Figure 3: Initial handshake and subflow opening with MPTCP options, adapted
from RFC 6824

Opening subflows

To open a new subflow, one of the endpoints has to send a new SYN packet with the
MP_JOIN option. As the option includes the token of the connection, the receiver
can associate the new subflow to the appropriate MPTCP connection. The SYN and
SYN/ACK packets also carry an address identifier. It may be used later to refer to
that address on another subflow, even if one of the hosts is behind a NAT.

The hosts will also use the method they chose during the initial connection
establishment to authenticate each-other. If they use the HMAC-SHA1 algorithm,
which is the only available method for now, they will exchange randomly-generated
numbers (nonces), combine them with the keys, generate a SHA1 hash from the
result, and sending it back to the other endpoint. This ensures that an attacker
cannot open a new subflow with one of the host unless he managed to sniff the
initial handshake. The exchange process is depicted by Figure 3.
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A multihomed host may not be able to open new subflows with the other endpoint
if the latter is behind a NAT. The multihomed endpoint can announce the existence
of supplementary interfaces on an already established subflow with the ADD_ADDR
option. The other endpoint may then decide to open a new subflow to the announced
address.

Closing connection

As the data-level is independent of the subflow level, the FIN and RST flags cannot be
used to cleanly terminate an MPTCP connection. These are reserved for closing a
single subflow. The four-way handshake triggered by the FIN flag is used to normally
terminate a subflow while the RST flag is used to abort operations on a subflow in
case of error (e.g. inconsistent data-level to subflow-level mapping). There are two
ways to close an MPTCP connection at the data-level. The equivalent of the RST
packet at the connection-level is the MP_FASTCLOSE option and the normal way to
close the connection is the DATA_FIN flag of the DATA_SEQUENCE_SIGNAL option.

When a host wants to abort the connection, it sends RST packets on all sub-
flows except one. On the remaining subflow, it sends an ACK packet containing the
MP_FASTCLOSE option. The connection can be terminated when a RST packet from
other endpoint is received on that subflow. To normally terminate a connection, a
host will send a DATA_SEQUENCE_SIGNAL option with the DATA_FIN flag set to one.
Each subflow has then to be terminated with a FIN packet, including the subflow
on which the DATA_SEQUENCE_SIGNAL option has been sent, so as to ensure that all
data has been received.

Data reordering

MPTCP subflows are like normal TCP connections. Hence, they have their own 32-
bits sequence number space. Yet, as MPTCP splits the data between the different
subflows, a second sequence number space is necessary to reorder the data at the
connection level. An MPTCP connection has then its own 62-bits sequence number
space.

This data-level sequence number does not have to be sent with every TCP packet.
Instead, packets sometimes contains a mapping between the subflow-level sequence
numbers and the data-level sequence numbers in the DATA_SEQUENCE_SIGNAL option.
This method decreases overhead as there is no need to resend the mapping as long
as the mapping of the last acknowledged DATA_SEQUENCE_SIGNAL is still valid.

RFC 6824 does not specify how the data should be divided between the different
subflows at the sender side. This aspect is implementation-specific. However, it may
have an important impact on performance, especially latency. The method adopted
by the reference Linux implementation is outlined in Section 5.1.

Receive window

All the subflows of an MPTCP connection use the same receive window size. Never-
theless, the subflow-level acknowledgements cannot be used to get the lower bound of
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the receive window. Indeed, different subflows may have different RTTs. The result
is that even though all data on each subflow may be acknowledged, there may still
be holes in data-level sequence numbers. Then a data-level acknowledgement is nec-
essary for the sender to know when it can free data from its buffer. That is why the
DATA_SEQUENCE_SIGNAL option carries a cumulative data-level acknowledgement.

Host A

Host C

Host B Shared
bottleneck

8 Mb/s

4 Mb/s

Figure 4: Multipath with per-flow congestion control is unfair to isolated flows at
the bottleneck

Congestion control

Multipath TCP cannot use a normal TCP congestion control algorithms on each
subflow. Per-flow congestion control mechanisms such as defined by RFC 5681 [42]
only guarantees fairness between flows. Now, the problem is that MPTCP can
use several subflows per connection. It is possible to encounter bottleneck links
where several subflows of the same MPTCP connection compete against regular
TCP flows or isolated subflows of other MPTCP connections. These so-called shared
bottlenecks would probably be a common case as they may appear when paths are
not disjoint, which is the case when one of the endpoints has only one interface. With
normal congestion control, each of these subflow would get as much throughput as
a normal TCP connection as in the scenario of Figure 4, which would be unfair to
isolated TCP or MPTCP flows at the bottleneck. Therefore, congestion control on
one subflow cannot be independent of other subflows.

The MPTCP reference implementation uses the coupled congestion control algo-
rithm described by RFC 6356 [38]. This window-based method takes into account
the congestion windows of other subflows of the same connection. Its design has been
explained by Wischik et al. [43] 2. This algorithm has been designed to comply with
the three following rules.

2In their paper, the algorithm of RFC 6356 is called semicoupled instead of coupled since coupled
names another, simpler, congestion control mechanism.
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• An MPTCP connection should be at least as efficient, in terms of throughput,
as a normal TCP connection.

• On a given path, a multipath flow should not take more resources than a
normal TCP flow.

• MPTCP should move the traffic from congested paths to uncongested paths.

This algorithm is flawed, as Khalili et al. [44] prove that it may harm other TCP
flows. They also suggest a better alternative as do Hassayoun et al. [45]. However,
as coupled is the default algorithm for the available Linux implementation [25] as well
as the only one specified by an RFC, this work will consider that MPTCP uses the
coupled congestion control algorithm. The basics of this algorithm are introduced
below.

In case of packet loss, coupled congestion control behaves like normal TCP for
each subflow. The congestion window of the subflow is halved and the slow start
algorithm is triggered. But the congestion avoidance phase is different.

Formula (1) comes from RFC 6356. It computes the increment ∆CW of the
congestion window in bytes when an acknowledgement is received on the subflow i.
L is the size, in bytes, of the acknowledged data; MSSi is the maximum segment
size on the path of the flow i; CWi is the congestion window of the flow i; CWtotal

is the sum of the congestion windows of the flows that belong to the same MPTCP
connection.

∆CWi = min
(
α · L ·MSSi

CWtotal

,
L ·MSSi

CWi

)
(1)

We observe that the second term guarantees that the subflow will not increase
its congestion window faster than a regular TCP flow. The important part of the
formula is the parameter α, which is chosen such as the MPTCP connection respects
the two following constraints.

• The connection should get as much throughput as would get a normal TCP
connection on the best path.

• To be fair at the bottleneck, the connection should not get more throughput
as would get a normal TCP connection on the best path.

α = CWtotal ·
max

i

(
CWi

RTT 2
i

)
(∑

i

CWi

RTTi

)2 (2)

Wischik et al. explain how to calculate α. The final expression is Formula (2)
where RTTi is the measured RTT on the subflow i. The window increase is then
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lower than one MSS, which is intended. An MPTCP connection will take more time
to reach maximum utilization than separate TCP flows on separate interfaces.
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scheduler
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Figure 5: MPTCP subflow priority system

Subflow priority

The packet scheduler is implemented in kernel space and cannot be configured by
the applications. Hence, the subflow priority system of MPTCP is an important
feature. Indeed, dynamic interface selection will need a way to move traffic from
one interface to another and this can only be done in user space by using the priority
system. It can also be useful for applications that need some degree of responsiveness
to set lower priorities to a path with a high RTT. MPTCP supports two priority
levels: a normal priority and a backup priority. A subflow can be set as a backup
subflow that will not be used to send data unless other subflows fail. The packet
scheduler will then share the traffic only between the normal subflows as illustrated
by Figure 5.

The priority of a subflow can be notified during the handshake, in the MP_JOIN
option, or after the subflow has been established, using the MP_PRIO option. That
second option allows the receiver endpoint to change the priority of a subflow dy-
namically. If an endpoint receives a message that sets the priority of a subflow to
backup, it will avoid sending data on that subflow as long as other subflows are
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available. However, data can still be received from backup subflows.
If an interface is temporary unavailable due to problems on lower layers it is still

possible to change its priority by sending the MP_PRIO option on another subflow.
The option will then include the address ID that refers to the source address of the
unavailable subflow.

3.3 Expected behavior
Before taking into account the results of various experiments, it is interesting to
look at the expected performance of MPTCP to check later if the TCP extension
really met its objectives.

Reliability

By its very design, MPTCP helps to recover from link failures if several interfaces
are available on one of the endpoints. As an example, Figure 1 shows that a mo-
bile device that has two radio interfaces should be able to maintain an MPTCP
connection as long as one interface is available.

Throughput

The global throughput is expected to be at least as good as the available through-
put on the best path, as the congestion control mechanism is designed with this
goal. At the same time, in order to ensure fairness at the bottleneck, the coupled
congestion control algorithm is less aggressive than individual TCP flows. The total
throughput that an MPTCP connection can achieve would be lower than the sum
of the throughputs of individual TCP flows. Whischik et al. [43] explain that the
connection can actually reach maximum utilization on uncongested paths.

Latency

It is difficult to estimate the impact of MPTCP on latency. The exact performance
of MPTCP regarding latency depends on how the sender splits the data between
the different established subflows, which is implementation-specific. At that point,
it is unclear whether the observed RTT will be lower or higher.

On the one hand, as data can come from different sources, it is necessary to
wait for missing packets coming from all networks. Thus, if the traffic is shared
between all interfaces, the lower bound for the overall latency is the RTT on the
slower path. Then it would be unsuitable to use MPTCP if the endpoint is running
an application that favors responsiveness over throughput.

On the other hand, if an application generates a lot of traffic, bufferbloat must
be taken into account. MPTCP could be able to share the load between the buffers
of different paths and decrease latency. Indeed, the congestion control algorithm
does not ensure that every path is used at its full capacity.
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3.4 Application to mobile endpoints
The advantages of MPTCP on mobile devices are presented by Raiciu et al. [46].
They explain that the make-before-break capabilities of MPTCP offer smoother
handover than network layer solutions such as mobile IP. The problem of energy
consumption is mentioned and a simple scheduler similar to the one defined in
Section 4.4 is tested. Results of simulations and indoors experiments show the
benefits of MPTCP in terms of throughput and energy-efficiency.

Paasch et al. experiment vertical handover between WLAN and 3G [47]. They
consider different ways to use the handover capabilities MPTCP. For instance, if
the user prefers battery life over performance, WLAN and 3G will not be used
concurrently. Short experiments are done in real networks and show the delay
necessary for MPTCP to perform the handover. In some cases, the handover is too
long due to the loss of signaling packets. The authors suggest a modification of
MPTCP that solves the latter problem.

The issue of transmitting multimedia streams to mobile devices over MPTCP
is explored by Diop et al. [48]. Like TCP, MPTCP ensures a reliable data trans-
fer. But real-time applications such as video streaming may accept some packet
losses and reliability mechanisms may create unnecessary overhead and delay. The
authors of simulated a video streaming over MPTCP (with two interfaces used con-
currently), TCP and UDP using the ns-2 simulator. The results show that MPTCP
transport can deliver a better video quality than streaming over UDP. Additional
QoS mechanisms to improve video streaming quality with MPTCP are explained
and evaluated in the simulator.

Pluntke et al. address the problem of MPTCP power consumption on mobile
devices [49]. They use MPTCP vertical handover capabilities along with path sched-
ulers in order to improve energy-efficiency. Power consumption models for WLAN
and 3G interfaces are provided. The proposed path selection algorithm is evaluated
with different types of applications. Application models are generated from traffic
measurements done on a smartphone.

Most of these papers consider the case of a mobile host with one 3G access and
one WLAN interface. It is, indeed, the case of most smartphones nowadays. But
one could wonder how MPTCP performs on a mobile endpoint that has more than
two active interfaces. This could be the case, for example, of smartphones with
active dual-SIM capabilities and a WLAN interface. This thesis will cover such a
case since the test bed will use three 3G interfaces.

Furthermore, WLAN usually offers better performances than UMTS regarding
throughput and energy consumption. Thus, interface selection may be simple as
WLAN is assumed to be the best choice in most cases. On the contrary, when
available interfaces are of the same kind, interface selection becomes difficult as the
choice of the best interface will vary depending on network load and radio coverage.
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3.5 Conclusion
This chapter presented the key elements of MPTCP design and operation. Subflow
management, data reordering and flow and congestion control with MPTCP have
been explained. Expectations about MPTCP performance and previous works on
that experimented MPTCP on mobile devices were reviewed. Still, it is necessary
to make long real-world experiments to confirm previous theoretical results before
planning any deployment. Real-world measurements could reveal effects that were
not predicted or included in simulations.
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4 Interface selection
Interface selection is the process of choosing one network among several available
interfaces. Many aspects of this issue are not specific to multi-access enabled end-
points. For instance, when a mobile device with only one WLAN interface connects
to the Internet, it often has to choose among several WLAN access points. Even a
host that supports concurrent transfer over different interfaces may prefer to choose
only one path so as to decrease energy consumption or latency (that case is the one
considered with MPTCP on mobile devices).

The user can, of course, select the interface himself, but it does not guarantee
that the choice is judicious. In addition, the characteristics of the available networks
may be constantly changing and the interface selection redone regularly. Thus, it
is necessary to automate that process. When the mobile device supports vertical
handover, the benefits of an automated and efficient algorithm for interface selection
are higher since switching from one path to another does not interrupt the ongoing
data transfers.

This chapter will explain the issue of interface selection and present some related
works. The interface selection algorithms that were implemented for this thesis will
be defined.

4.1 Objectives
The objective of the interface selection process is to select the best available network.
Before trying to determine which interface is the best, it is necessary to define the
criteria that are used to define a good or a bad network. The objective can vary
depending of the definition of a good connection.

Throughput and latency are obvious characteristics that an interface selection
process could try to optimize. Reliability could be also important, for instance
for long bulk data transfers, and jitter may be considered by real-time applications.
There are other path characteristics that are not related to performance or reliability
but may be considered by an interface selection algorithm. On mobile devices, data
transfer price and energy consumption would probably be very important criteria
for the user.

Now, this may not be possible to find a single interface that optimizes all these
criteria simultaneously. Furthermore, different applications may run at the same
time on the same device and have different requirements. That is why tradeoffs
are inevitable while defining what is the best network. Each criterion has to be
combined with the others but not all of them are of equal importance.

Among methods to make decisions based on multiple parameters are the use of
utility functions [50, 51] and MADM algorithms [52, 53, 54]. Mohamed and al. [55]
state that giving the right weight to each parameter is still an issue and compares
different methods intended to solve the problem for MADM methods. Nevertheless,
for some parameters such as energy consumption or the price of the transfer, a
completely automated process cannot make an objective decision.
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4.2 Obtaining information
Making a good decision requires having information about the possible choices, that
is to say, about the characteristics of the available interfaces. This is not a trivial
problem but most of the papers cited in Section 4.1 do not address the issue. Before
selecting an interface and starting a transfer, a mobile endpoint has no idea of the
characteristics of the path. Here are several ways to obtain information about the
available networks:

1. Predict the network characteristics from local characteristics

2. Using the interface or probing the interface before the selection

3. Retrieving information from device history or some database

4. Receiving information from the network

Method 1 is probably the simplest and the most common. The device can select
an interface with only basic information about the interface, such as its type (GPRS,
3G, WLAN, Ethernet) or its signal strength. This is what most smartphones are
doing. The interface selection process assumes that a WLAN connection will usually
provide a better throughput than a 3G connection and uses the WLAN access points
when they are available. This may change with the deployment of LTE and LTE Ad-
vanced as cellular networks will be able to provide higher throughputs than WLAN
connections [56]. Hardware information can be used to predict energy consumption
as proposed by Pluntke et al. [49]. But these are only rough approximations as it
is impossible to predict the exact RTT or available throughput. Moreover, those
methods do not work when the system has to choose among several connections of
the same type with similar characteristics, such as different 3G connections with
different operators.

Method 2 has the advantage to provide accurate and up-to-date information
about the path. Unfortunately, it implies using, at least for short periods of time,
interfaces that would not be used otherwise. By temporary moving the traffic to
another interface whose characteristics are potentially very bad, the selection process
could deteriorate the connection performance during the probing time.

To avoid that, one could do active measurements by sending dummy traffic to
probe unused interfaces [57, 58]. This could be useful method to get information
about RTT and loss rate but it would imply consuming a lot of bandwidth with
useless traffic to get information about the available throughput. Olvera-Irigoyen et
al. [58] suggest such a method but limit the scope its to home networks. Indeed, on
a mobile endpoint connected to public networks, flooding an interface for the sole
purpose of measuring the available throughput is highly questionable.

However, this is less of an issue on hosts that support concurrent transfers on
multiple interfaces, e.g. MPTCP-enabled devices. In order to probe the different
paths, such a device can simply spread the traffic over the available interfaces and
use that real and useful traffic to get the characteristics of the different paths.
Moreover, if the multipath protocol implementation automatically shares the traffic
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between the different paths according to their capacity, it does not take the risk
to decrease the performance of the connection during the probing time. Once the
measurements are over, it can starts a selection algorithm and switch back to a
single-interface mode. Raiciu et al. [46] employ this process to measure energy-
efficiency with MPTCP traffic.

Method 3 collects then exploits information about the context to get an estima-
tion of the current characteristics of an interface. In the case of mobile hosts, these
characteristics depend on radio coverage and network load. The history could, for
instance, include the day of the week, the time of day, the location of the device
and various performance criteria. As an example, Hyeyeon Kwon and al. [59] use
a history database containing information about cells and access points to perform
handovers from WLAN to UMTS. Such a history may provide useful estimates when
the user often open connections with his device in the same areas. Yet, if the user
is frequently traveling and access the Internet in new areas, the history will be of
little help.

To solve that problem, several users could share their history and create a global
database. Then, the user would need to connect to a third-party server to query
the database or update its local copy. This leads to method 4. That is to say, the
information about the available interfaces comes from the network. Method 4 is also
considered by Ericsson [60]. The network itself would directly inform the endpoint
about the load on the WLAN and 3G access points and the device would exploit
that information to make a decision about a potential handover (yet, such a system
is limited to handover between the access points of a same operator).

4.3 Performing vertical handover
Once the device collected enough information about the interfaces and applied some
method to select the one that is considered the best, it can switch to the new inter-
face. However, that action may have undesirable effects on the ongoing connections.
In the simplest case, when the host do not support vertical handover, the selection
process will interrupt the ongoing connections. The handover process may otherwise
create additional latency as with mobile IPv6 [61]. The handover may also have a
cost in energy, which is the case with a 3G interface, as it will remain active and
consumes power for a few seconds after the handover. That is why it is not always
optimal to always switch to the best interface.

However, if the device supports multi-access and concurrent transfer on different
interfaces, as in the case of MPTCP, the delay problems could disappear. Indeed,
it is possible to keep sending data on the previous interface while beginning to send
data on the new one. This make-before-break ability allows not only to maintain
the active connections but also to avoid handover delay. As a consequence, interface
selection can be done much more often without taking the risk of degrading the
performance of the ongoing connections.

Still, it does no mean, of course, that the sender will immediately send the
packets to the newly selected interface. The mobile endpoint needs to inform the
sender side of the modification, it will require at least one RTT before the first



24

packets are received on the new interfaces. Thus, it should be assumed that the
previously selected interface will remain active during at least one RTT. If it is not
the case, some packets will be lost. However, a reliable protocol such as MPTCP
should manage to do the handover by retransmitting the lost data.

4.4 Chosen algorithms
This section presents the different interface selection processes that have been im-
plemented and tested for this project. When the available interfaces do not use the
same technology, the selection process can rely on the fact that one of the paths
(e.g. through a WLAN interface) has usually better characteristics than the other
(e.g. a UMTS access). Unfortunately, in the case of this work, three 3G interfaces
are considered. Thus, it is necessary to collect information about the available paths
before the selection.

This thesis tests different ways to obtain information about the available net-
works rather than methods exploiting the available information. The objective is to
outline the behavior, advantages and drawbacks of MPTCP on a mobile endpoint
with a few basic interface selection methods and not tuning the decision process to
achieve maximal performance or energy-efficiency.

The definition of performance can vary depending on the use cases. Neverthe-
less, throughput, packet loss, RTT and jitter are the basic values on which are built
other performance criteria. There are other parameters that a path selection algo-
rithm could take into account but that are out of the scope of this work. Energy
consumption itself could be predicted or measured in real time to affect the path
selection. The price of data transfers is also a very important criterion for the user.
A selection algorithm could try to minimize costs instead of energy consumption
and select the cheapest operator, switching to the other ones only in case of failure.

The objective is to make a tradeoff between the performance offered by MPTCP
and energy consumption. Thus, there are two basic requirements that an interface
selection algorithm has to meet.

1. It should not decrease performance compared with a normal device using a
single interface.

2. In order to improve energy efficiency, it should avoid using interfaces that pro-
vide bad performance. Appendix A shows that keeping only the best interface
increases energy-efficiency.

Throughput probing

The objective of this scheduler is to find and select the interface with the highest
available throughput. Appendix A explains why selecting the interface with the
highest bandwidth increases energy-efficiency compared with normal MPTCP. As
the available bandwidth changes over time, the simplest way to get accurate informa-
tion is to probe the network before making a decision. As explained in Section 4.2,
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probing the available bandwidth with MPTCP is relatively safe for performance and
does not require to flood the network with useless packets.

This scheduler refreshes its interface selection every ∆T seconds. This interval
is split into the probing part and the path selection part. During the probing time
P < ∆T , MPTCP uses all interfaces simultaneously. At the end of the probing
time, the path with the higher throughput is selected.

P should be large enough to let the MPTCP subflows reach their maximum
throughput. But the device will also consume more energy as all interfaces are active
during the probing time. Optimizing P is then determining the exact amount of
time that MPTCP needs to download at full speed, which depends on the congestion
control algorithm, the RTT and the network capacity. These last two parameters
will unfortunately vary over time or as the device moves. As a result, an arbitrary
value will be chosen.

In order to react quickly when the active path is no longer the better one, ∆T
should not be too large. If ∆T is too large, then a path can remain active even
though the conditions changed. The worst case being when network characteristics
change just after the probing time. However, if ∆T is too small and the available
throughput on one or more of the available interfaces is oscillating, then the device
might constantly change its active interface to little or no benefit, or worse. Indeed,
3G interfaces still consume energy for a few seconds after the end of the transmission.

Location and history-based selection

This algorithm also tries to select the interface that provides the highest throughput
but uses a database and the location of the device to obtain an estimate for the
bandwidth instead of probing the interfaces. The current location is obtained via a
GPS chip. The algorithm queries a database [62] that contains records of previous
measurements. A typical entry of this database contains GPS coordinates, PLMN
identifier and various measurements such as average throughput, latency or jitter.
The scheduler selects the entries whose coordinates are close to its current location
and it compares the average throughput provided by different operators. The 3G
interface that uses the best operator is then selected.

Figure 6 describes the decision process. It takes into account the entries whose
coordinates are within a disc centered on the current position. The initial radius
of the disc is 100 meters. If there is no entries whose coordinates are close to the
current position, the algorithm doubles the radius until if finds enough entries. This
is not a very accurate solution since small structures may modify the quality of
the radio link, especially inside buildings. Moreover, if the measurements are only
a few in the area, the operator selection may be based on measurements that are
too far from the current position and then are meaningless, even though there is a
maximum value for the radius of the disc.

It is also assumed that a 3G connection cannot give as much throughput as
WLAN or Ethernet connections. Therefore, if a WLAN or Ethernet wired connec-
tion is available, that scheduler does not query the database and automatically uses
these connections instead of the 3G interfaces.
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This method avoids actively probing the different networks to get some informa-
tion about them. Thus, only one interface is used at once, which is better for energy
consumption. Furthermore, it allows the selection process to get information on a
given network even if it is currently in use. For instance, comparing the RTT on
the active interface with the RTT on other interfaces is meaningless, as the traffic
on the active interface may artificially increase the latency because of bufferbloat.

If such a solution were deployed, the database would need to be updated fre-
quently as network coverage and performance may evolve as operators update base
stations and network devices or if new structures modify shadowing. Moreover, such
a database could only provide trends and does not guarantee that the selected net-
work has the best characteristics at the moment. Indeed, as opposed to probing,
this method does no take into account temporary modifications of the path prop-
erties, due to the random nature of user behavior. For instance, if several users in
the same area uses the same scheduler with the same database, they will all use the
same operator, potentially overloading the base station and missing the opportunity
to share the traffic between different networks.

Best RTT

The objective of this scheduler is to make a tradeoff between power consumption
and latency. The RTT is obtained by probing the available interfaces with a ping-
like application. Two approaches are combined to avoid high latencies. Firstly, the
scheduler frequently changes the active interface. Indeed, the active interface is more
likely to be the one with the higher RTT, because of bufferbloat. When the active
subflow changes regularly, the traffic is shared between the buffers of different paths,
avoiding congestion, bufferbloat and decreasing latency. Secondly, when multiple
other interfaces are available, the one with the lowest latency is selected.

Avoiding paths with high latency may also increase throughput. Indeed, the
Mathis formula [63] gives an upper bound for the TCP throughput that increases as
the RTT decreases. Moreover, a high latency may indicate that the path is congested
and the available throughput potentially lower than other paths. Though, this does
not ensure that the average throughput will be better, as some paths with higher
available bandwidth may also have a higher latency.

4.5 Conclusion
Interface selection is a decision making problem that involves different parame-
ters. Some of these parameters are non-technical and the user would have to define
himself the choices and tradeoffs between, for instance, battery life and network
performance. Many works propose MADM algorithms as a solution for interface
selection. Nevertheless, most of them do not broach the problem of gathering the
required information about the available networks. Thanks to its make-before-break
design, MPTCP can make an extensive use of vertical handovers and interface selec-
tion without much performance drawbacks. The three interface selection algorithms
that has been tested along MPTCP in this thesis have been presented.
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Figure 6: Location and history-based selection decision process
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5 Test bed
In order to evaluate the performance of MPTCP, at test bed has been designed and
implemented. The test environment had to recreate conditions that are close to
those of a mobile device user interacting with some MPTCP-enabled server on the
Internet. Tools for measuring performance and implementing the interface selection
algorithms had to be developed.

This chapter will describe the main software and hardware components on which
the test bed relies. The testbed is made of a mobile client and a server that has a
public IP address. Both use the reference MPTCP Linux implementation [25, 26].
Section 5.1 gives more details about the Linux implementation. The mobile client
is a laptop that accesses the Internet using three Nokia N9 smartphones and the
NetworkManager configuration utility [64]. These are presented in Section 5.2. A
Python script automatically configures routing. Indeed, with MPTCP, routing con-
figuration is specific. This issue is addressed in Section 5.3. To simulate traffic and
make measurements, a client and a server written in Python are running respectively
on the laptop and on the server. They are presented in Section 5.4. Interface selec-
tion algorithms are implemented using a specific framework whose implementation
is detailed in Section 5.5.

5.1 Linux kernel implementation
Being the most common open source operating system, Linux seemed to be a
straightforward choice for both the server and the client. Above all, an imple-
mentation of MPTCP for the Linux kernel is available [25, 26]. Some details about
this Linux implementation can be found in an IETF draft [39] although it is not up
to date. It is necessary to know how the implementation shares the load between
the different subflows and how MPTCP configuration can be modified from user
space.

Packet scheduler

An important aspect of an implementation is the packet scheduling method. It
defines how the traffic will be shared between different subflows at the sender side.
As explained in Section 3.3, it may have an important impact on the latency of the
MPTCP connection.

When there is room in the congestion windows of all subflows, this implementa-
tion sends the packet to the interface whose RTT is the lowest. By preferring the
fastest path, that implementation ensures that an application that does not send
enough data to be limited by the network bandwidth, will benefit from a low RTT.

The mentioned draft specified that flow priority cannot be changed by the
MP_PRIO presented in Section 3.2 This option is essential to transmit the dynamic
interface selection information to the sender side. Fortunately, it is now supported.
At the server (sender) side, the packet scheduler takes the subflow priority into
account as illustrated by Figure 5.
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MPTCP configuration

The modified ip-link program shipped with that implementation allows the user to
modify how MPTCP will use an interface. The four following options are available:
multipath on

For each MPTCP connection, one subflow will be established and used on the
interface.

multipath off
MPTCP will not use this interface.

multipath backup
For each MPTCP connection, one backup subflow will be established on the
interface. It will only be used if other subflows fail.

multipath handover
MPTCP will not use this interface unless it is the only available one.

If the priority of an interface is modified after the MPTCP connection estab-
lishment, an MP_PRIO option will be sent to all subflows that operate through this
interface so as to notify the other endpoints about the priority modification.

5.2 Internet connection
In terms of hardware, the test environment will use a laptop and three mobile
phones. The laptop is multihomed and establishes MPTCP connections with the
server over three different cellular networks. Figure 7 illustrates the setup. The In-
ternet connection is established by NetworkManager and a Python script automates
the process.

Client Server

Single MPTCP
connection

PPP over USB

Figure 7: Connection between the multihomed client and the server over 3G net-
works
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Mobile phones

Mobile phones are Nokia N9 running Meego Harmattan. Each phone has an Internet
access provided by a specific operator. Operators are different and, in the case of an
MVNO, its carrier is different from the two others. The laptop can connect to the
Internet by establishing PPP connections over USB with the phones, using them as
modems.

An information server is launched before the tests. It collects information from
the phone, such as the GPS location, the operator’s PLMN identifier or information
about the selected cell. The laptop is able to establish a TCP connection with
the phones to retrieve the data on demand. This is used to collect statistics about
operator selection and, as the laptop has no GPS chip, is required if any interface
selection program chooses the operator depending on the current location of the
device.

NetworkManager

NetworkManager is a network configuration utility available with most Linux dis-
tributions. Some components of the test bench rely on that software and use the
same concepts as those internally used by NetworkManager.

Two important types of objects are used by the test bed: devices and connections.
A device object represents a physical device. Devices may be of different types,
such as wifi, gsm or ethernet. When connected, a device is bound to an IP
interface, an object that holds its current IP configuration. A connection object
is a predefined configuration that NetworkManager can apply to an interface to
establish a connection. It holds, for instance, static IP configuration, certificates
and credentials for PEAP or PIN code if connecting using a SIM card. A connection
has a unique identifier and is related to a specific device type.

NetworkManager Command Line Interface (nmcli) allows to communicate with
NetworkManager using a bash shell. A D-Bus interface is also available. Thus,
measurement and configurations scripts can access and manipulate NetworkManager
objects.

Automatic connection

Before the routing can be configured, the three phones have to be connected to the
laptop. The operating system uses the phones as if they were modems so as to
connect to the Internet. The connection with the phone (or the modem) must be
appropriately configured. That configuration depends on the operator. Network-
Manager stores the connection settings into a connection object. Then, each device
must be connected with the right connection object. Normally, the user can do the
operation with the GUI. Both connections and devices can be identified using their
name. Unfortunately, device names only describe the model of the phone and no
unique identifier is easily available. It is a problem since the phones that will be
connected simultaneously will be Nokia N9; then all three will be visible under that
name in the GUI.
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That is why an additional script was needed for that operation. To uniquely
identify devices, the script uses their USB serial number and links them to the right
NetworkManager device object using the symbolic links between serial devices and
network devices that are fortunately present in the /dev/serial/by-id/ directory.
The association between the USB serial number of the device and the unique iden-
tifier of the appropriate connections is stored in a dictionary in a Python script.
Using the dictionary, the script is able to connect each plugged phone to the right
operator.

5.3 Routing
If MPTCP is able to give different source or destination addresses to different sub-
flows, it does not ensure that the packets belonging these distinct subflows will take
distinct paths. It only depends on routing. In order to effectively use separate paths,
the multihomed host has to use a separate interface and gateway for each subflow.
Otherwise, the different subflows will not only probably take the same path but may
also be blocked because of ingress filtering. A generic MPTCP-compatible routing
process is described in an IETF draft [65]. Yet, in the case of Linux, there is no
need to fundamentally change the routing process.

The reference Linux implementation does not modify the default routing configu-
ration and routing tables need to be manually modified to support MPTCP. Indeed,
the Linux kernel assumes that the host will use only one default gateway and one
default interface. All packets, regardless of their source address, are sent through
the same interface to the same router. In order to send the packets through the
appropriate interface and to the appropriate gateway, routing must take the source
address into account.

This can be achieved by using Linux routing policies. Before routing a packet, the
kernel will first look into the policy database and, only then, choose the appropriate
routing table. Linux routing policies can be modified to use a specific routing table
depending on the source address. There should be one rule in the policy database
and one associated routing table for the source address of each interface supported
by multipath TCP.

As an example, the routing policy database of an MPTCP-enabled host that has
three interfaces eth0, wlan0 and ppp0 should be similar to Listing 1. The local,
main and default tables are the three default routing tables used by the Linux ker-
nel. The local routing table is automatically generated from other routing tables
by the kernel. The main and default tables can be modified by the user. However,
these are generic routing tables and it would not be clever to reserve them to a
specific source address. Instead, new routing tables are created: these are tables 1,
2 and 3. The contents of these tables should be similar to Listing 2, Listing 3 and
Listing 4. The new routing tables contain two entries: a default route that uses the
appropriate device and the appropriate gateway, an entry for destination hosts that
are in the same local network.
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Listing 1: Routing policy database
0 : from a l l lookup l o c a l
32763 : from 192 . 1 6 8 . 1 . 2 lookup 1
32764 : from 192 . 1 6 8 . 2 . 2 lookup 2
32765 : from 192 . 1 6 8 . 3 . 2 lookup 3
32766 : from a l l lookup main
32767 : from a l l lookup de f au l t

Listing 2: Routing table 1
d e f au l t v ia 1 92 . 1 6 8 . 1 . 1 dev eth0
192 . 168 . 1 . 0/24 dev eth0 scope l i n k

Listing 3: Routing table 2
d e f au l t v ia 1 92 . 1 6 8 . 2 . 1 dev wlan0
192 . 168 . 2 . 0/24 dev wlan0 scope l i n k

Listing 4: Routing table 3
d e f au l t v ia 1 92 . 1 6 8 . 3 . 1 dev ppp0
192 . 168 . 3 . 0/24 dev ppp0 scope l i n k

Manual configuration for MPTCP

The ip-rule command is used to modify the source-based routing policies and the
ip-route command is used to create new routing tables and add entries. Listing 5
shows the configuration of a new interface on device eth0. The first two lines create
the entry of the new routing table and the third one adds the corresponding routing
policy. The configuration requires the device name, the IP address of the interface,
the IP address of the gateway and the address of the network.

Listing 5: Configuring routing for a new interface
# ip route add 192 . 168 . 1 . 0/24 dev eth1 scope l i n k tab l e 1
# ip route add de f au l t v ia 1 92 . 1 6 8 . 1 . 1 dev eth0 tab l e 1
# ip ru l e add from 192 . 1 6 8 . 1 . 2 t ab l e 1

This must be done whenever a new interface is activated or if its IP address
changes. Moreover, if the device is unplugged or the interface disabled, the con-
figuration must be removed with the appropriate commands to delete the routing
policy rule and flush the associated routing table. Hence, doing the configuration
manually takes a lot of time if devices are constantly plugged and unplugged, which
may be the case during some tests.
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Automatic configuration

As some tests will require to often plug or unplug devices, the first new necessary
component of the test bench is a tool that automatically overrides the default rout-
ing configuration by MPTCP-ready routing tables. Such a tool would need to be
executed whenever the state of an interface changes (such as a disconnection or a
new DHCP lease). NetworkManager detects such events and executes the scripts
present in the dispatcher.d directory when they happen. Furthermore, Network-
Manager passes information to such script as environment variables. This includes
device name, IP addresses of the interface, network prefix length, gateway, connec-
tion identifier and the type of event that triggered the script. All the information
required for routing configuration is thus available.

A Python script parses the information provided by NetworkManager and au-
tomatically adds the right routing policy and creates a new routing table when an
interface is connected. When the interface is disabled, the configuration is automat-
ically removed. This script supports devices of all kinds as long as they have an
IPv4 address. It could easily be extended to support IPv6.

Associations between devices and routing tables are kept in an SQL database.
This method has two advantages. Firstly, it allows the tool to directly know which
routing table must be removed when an interface is disconnected, avoiding calling
the IP route command variants and parsing their results to get that information.
Secondly, as the database only contains routing tables generated by the script, it
avoids accidental deletions of manually-defined routing tables.

5.4 Performance measurements
The test bed had to include components that measure the performance of the net-
work connection in order to evaluate MPTCP and the different interface selection
algorithms. It can be evaluated using some of the following criteria: connection
availability, round-trip time, jitter, throughput and energy consumption.

Availability, latency and throughput can easily be obtained by establishing TCP
connections between the laptop and an MPTCP-enabled server. Unfortunately,
measuring energy consumption is quite difficult as the test bench is made of four
different devices, each one having its own battery and activity. For instance, commu-
nication between the phones and the laptop over the USB cables may also increase
consumption, as well as various the processes running on the laptop. Moreover, the
laptop is charging the phones through the USB interface. As energy consumption
measurements may not be meaningful, the scripts focuses on the other criteria.

In order to measure throughput, a simple Python TCP download server sends
dummy data on request of the client. The client can request bulk transfers of various
sizes, including infinity.

A TCP echo server allows to get RTT and availability. It sends a new request only
when it got the response to the previous one, so the impact of latency measurements
on throughput measurement and their contribution to bufferbloat are as small as
possible. If the latency reaches a threshold of several seconds, the connection is
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considered lost and the client has to reconnect.
The MPTCP-enabled server keeps track of the TCP connections with the down-

load server by recording tcpdump captures during the measurements. Time, through-
put, latency, availability and the currently active interface are recorded in .csv for-
mat on the client side. A Python script that parses the CSV data and generates
statistics is available but plots can also be generated directly from the output files.

5.5 Interface selection
The test bed has to support interface selection algorithms. It should be easy to
implement and test new path schedulers. This section explains how the test bed
supports the interface selection and presents the implemented interface selection
algorithms.

Framework

A Python framework was written in order to facilitate the implementation and the
evaluation of new interface selection decision processes. Such a framework should
facilitate the three following steps of the decision process.

1. Gather information about the interfaces.

2. Run some algorithm at precise intervals.

3. Change the priority of the interfaces (then of the subflows).

The first aim of this framework is then to gather all available information about
a connected device and make it easily accessible in the path selection code. A spe-
cific module, NetworkManager utilies, contains different functions and classes that
handle interfacing with NetworkManager but also with kernel network input/out-
put counters and the remote information server on the phones. Thus, it can gather
the necessary information about the interfaces. Some classes are close to their Net-
workManager counterparts since the framework heavily rely on nmcli. Figure 8 is
a simplified version of the class diagram of the implementation of these utilities.

The code that communicates with the phones is in the Phone class. Its instances
represent connected Nokia N9 or N950 devices. These can be use to get informa-
tion about a phone, its IP interface and the associated NetworkManager connection.
Data is collected from different sources, such as NetworkManager, the Meego infor-
mation server running on the phone or from the kernel network I/O counters.

The Device class is more generic. It can be any kind of device such as an
Ethernet or WLAN interface. It provides methods to connect a device, change
its multipath settings or get statistics about the interface. The Connection class
is a simple interface with NetworkManager connection object. Its functionalities
are limited but it could be extended to provide some sort of advanced automatic
configuration.

The SelectorAlgorithm class provides a structure to quickly implement a new
path selection decision process. To do so, one can subclass it, reimplement its
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different methods and change the default value of its attributes. The scheduling
algorithm can be chosen before starting the tests. Most other components of the
test scripts are independent of the path selection process.

It could be interesting for the scheduler to know the RTT on a specific inter-
face. Unfortunately, TCP cannot be used to get that information, since, as we use
MPTCP, a single TCP socket may use different subflows at once. An MPTCP-aware
socket API considered by RFC 6897 [66] would allow application developers to limit
a TCP connection to a given interface. However, such an API is not available at the
moment. That is why the test bed uses UDP to get the latency on different paths.
Through a set of UDP sockets, each one bound to a specific interface, the laptop
communicates with an UDP echo server located on the MPTCP-enabled server, re-
trieving the latency on the different paths. This information may not be useful for
all decision processes, thus, this feature is optional and UDP packets are sent only
if the chose path selection algorithm needs RTT measurements.

NetworkObject
#nmcli_output: string

Connection
+uuid: string
+name: string
+type: string
+active: bool

Device
+name: string
+interface_name: string
+type: string
+mac_address: string
+state: string
+ip_address: string
+prefix_length: int
+gateway: string
#network_mask: string
+refresh()
+connect(con:Connection)
+get_stats(): list
+set_multipath(state:string)

Phone
+isp: int
+mode: string
+usb_device: Device
+get_location(): (int, int)
+get_cell_info(): dic

Figure 8: Class diagram of the NetworkManager utilities module

Simple interface selection

Some very simple network selection strategies can be considered edge cases of path
schedulers. Strictly speaking, these are not schedulers. However, from the test bed
point of view, these selection processes are implemented as selection algorithms.
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A mobile device can use only one interface as long as it is available and use the
others in case of failure. It performs as least as well as a single interface, fulfill-
ing the first requirement mentioned in Section 4.4, and does not use all interfaces
simultaneously, fulfilling the second requirement. It does not exploit the ability of
MPTCP to move the traffic from one interface to another. However, it benefits from
the pooling of reliability between available networks, improving robustness.

Another simple strategy could be to randomly choose a new path at regular
intervals. It may seem pointless but if the period is short enough, it helps to prevent
bufferbloat. Indeed, the data would be shared between the buffers of the available
networks, resulting in a shorter RTT.

A scheduler could also select the best interface depending on its type. For in-
stance, a wireless LAN is more likely to perform better than a UMTS access. So the
scheduler can set the WLAN interface as the default path whenever it is available.
Yet, this is not always true as shadowing or temporary congestion may change the
situation. Moreover, if all available interfaces use the same technology, as in the
case of this work, this strategy is useless.

There is also a theoretical edge case, a scheduler that could know in advance
which interface will be the most efficient. Such a scheduler is called an oracle. This
scheduler could only exist in virtual test environment, where network characteristics
and user behavior are deterministic. In such a case, the oracle can be considered as
the optimal scheduler and provide an optimal boundary with which other algorithms
can be compared. As this thesis aimed to do real-world experiments, this algorithm
was not implemented in any simulation environment.

5.6 Conclusion
This chapter detailed the different components of the test bed. The software and
hardware bases on which the test bed has been built were presented. A solution for
the generic issue of routing configuration with MPTCP was proposed. The interface
selection framework designed to allow experiments to implement and test interface
selection algorithms was described. The experiments done with the test bed and
their results are presented in the next chapter.
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6 Results
This chapter will present the experiments and analyze their results. Section 6.1 will
present the context of the experiments. Section 6.2 will provide an overview of the
results. The following sections will focus on specific configurations and algorithms.
For each of them, the results will be presented and explained.

6.1 Experiments
Measurements were done in two different contexts: static indoor experiments and
mobile outdoor experiments. They respond to different needs and have specific
advantages and drawbacks.

Indoor experiments

Indoors experiments have the advantage to provide a relatively stable environment
that permits to compare the performance of different configurations and path selec-
tion algorithms. Experiment conditions are easily reproducible as the device does
not move and the radio environment remains the same. This does not ensure that
the network characteristics will not vary. That is why the performance of the connec-
tion through each operator was checked before each measurement in order to ensure
the conditions of the experiments were the same for each tested configuration.

As the network characteristics remain more or less stable, there is no need to
record measurements over long periods of time. Hence, these experiments were
quite short, typically a few minutes. It also allows to quickly confirm that a selection
algorithm or a specific configuration behaves as indented before testing it with longer
mobile experiments.

Outdoor experiments

In order to observe the behavior of MPTCP and the different path selection algo-
rithms in a real mobile environment and with fast-changing network characteristics,
tests were made in public transportation between Helsinki and Espoo. These are
longer measurements that take into account variations in network characteristics.

These experiments were done in a bus between Otaniemi in Espoo and Kan-
nelmäki in Helsinki. The total distance is about 11 kilometers and the measure-
ments last 40 minutes. That itinerary includes different phases. Depending on these
phases, the mobile node was moving slowly, fast or was immobile.

Measurements can be done in two directions at different hours on different days.
The link quality may vary as the network load changes depending on the hour of
the day or the day of the week due to general trends in user behavior. That is why
measurements were made four times for a given configuration, on different days and
at different hours. In order to measure the throughput during the entire journey,
the client constantly downloads dummy data from the server.
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Test bed configuration

The test bes was used to do experiments with different configurations. The simplest
was a single phone connected to the laptop. This is the basic case that does not
use the capabilities of MPTCP. The mobile device will open a single TCP flow with
the download server using the cellular network of one operator. The TCP packets
still contain the MPTCP options and an MPTCP connection will be established
during the initial handshake. However, as only one interface is available at each
end, only one TCP flow will be opened. In that case MPTCP behaves like TCP.
The overhead resulting from MPTCP options will be considered negligible. Before
the experiment, one of the three operators will be selected: DNA, Elisa or Tele
Finland 3. It is expected that, due to different cellular network coverages, the results
differ depending on the chosen operator. Thus, measurements have to be done for
each operator and the average performance will be a reference against which other
configurations can be compared.

The other configuration uses the three phones at the same time. The laptop will
open three MPTCP subflows. Depending on the interface selection process, they
will be used simultaneously or sequentially. UDP connections can also be used to
probe the path through the different interfaces.

The interval between two executions of the algorithm is 10 seconds in the case of
the RTT-based algorithm and the location and history based selection. For through-
put probing, the interval between two selections is one minute. The problem is that
the probing time should be long enough to let TCP reach its maximum throughput
on every interface but still negligible in comparison with the non-probing time. Be-
fore the measurements, it is not possible to know the optimal probing time. A quick
indoor experiment showed that at least 5.5 seconds were necessary for TCP to reach
the maximum throughput on all interfaces. The probing time for longer experiments
was arbitrarily set to 10 seconds and the non-probing time to 50 seconds.

6.2 Results overview
Table 2 compares the performance of the different configurations. Results are ex-
pressed as a fraction of the value obtained by the average single-path connection
in the same conditions. As expected, concurrent multipath provides the highest
throughput for both indoor and outdoor measurements. Interface selection algo-
rithms obtain more throughput than the average single-path connection but not as
much as MPTCP, which is normal. Concurrent multipath and all interface selection
algorithm improve latency.

Figure 9 shows the non-relative results for different configurations in the case
of outdoor experiments. These are average values of several measurements of ap-
proximately 40 minutes. The conditions of outdoor experiments are unfortunately
not exactly reproducible. As a result, it is difficult to compare the different con-
figurations in the case of outdoor measurements. However, obvious trends can be
commented and explained.

3Tele Finland is an MVNO that operates on the network of Sonera.
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Table 2: Comparison of throughput and latency for different configurations
Test bed configuration Throughput Latency

Indoor experiments
1 interface, average 100% 100%
1 interface, DNA 80% 67%
1 interface, Elisa 65% 159%
1 interface, Sonera 155% 75%
3 interfaces, concurrent multipath 247% 13%
3 interfaces, Throughput probing + selection 182% 35%
3 interfaces, RTT probing + selection 128% 23%

Outdoor experiments
1 interface, average 100% 100%
1 interface, DNA 113% 111%
1 interface, Elisa 81% 78%
1 interface, Sonera 105% 113%
3 interfaces, concurrent multipath 249% 24%
3 interfaces, Throughput probing + selection 119% 76%
3 interfaces, Database query (throughput) + selection 109% 81%
3 interfaces, RTT probing + selection 100% 20%
3 interfaces, Random interface selection 97% 22%
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Figure 9: Outdoor experiments: average throughput and latency for different path
selection methods
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Figure 10: Outdoor experiments: MPTCP throughput compared with normal TCP
connections

6.3 Concurrent multipath
This configuration measures the performance of multipath TCP using the three
operators simultaneously. The three phones are connected to the laptop and all
interfaces are active. There is no interface selection process going on. This con-
figuration was expected to provide the highest throughput. Aside from possible
power consumption problems, Multipath TCP with three active interfaces improves
performance. It has beneficial effects on both throughput and latency.

Throughput

Figure 10 shows that using MPTCP considerably increases throughput. However,
it seems that MPTCP does not manage to reach full throughput utilization on the
three interfaces. If it were the case, the throughput obtained by MPTCP would
have been close to the sum of the available throughputs of the three interfaces, but
results on Figure 10 show that it is not the case. The available throughput with
concurrent multipath is only 83% of the sum of the average measured single-path
throughput.

There are at least two possible explanations for this apparent underutilization.
The first one is the presence of a bottleneck shared by the different subflows, the
second one comes from the coupled congestion control algorithm.

When MPTCP concurrently uses the three interfaces, the laptop opens three
subflows with the remote server and starts receiving data through them. Each
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Figure 11: Possible effect of a shared bottleneck on total throughput

subflow will go through a different interface then its path will be different from
other subflows. However, different paths are not always disjoint and the paths of
the subflows may share one or more common links. If this link is a bottleneck, the
total throughput will be lower than the sum of single-path throughputs. Figure 11
illustrates such a case. Since the MPTCP-enabled server of the test bed is not
multihomed, it is certain that the different paths share, at least, one common link.

The coupled congestion control algorithm may explain why MPTCP cannot get
as much throughput as three separate TCP connections. As explained in Section 3.2,
the coupled congestion control only ensures that MPTCP gets as much throughput
as TCP would get on the best path. It is, of course, possible to get more throughput
but it is not guaranteed and it takes some time. The congestion window increase of
MPTCP subflows is slower than normal TCP flows. Figure 12 shows that it takes
more time for MPTCP to reach the maximum throughput than three individual
TCP flows. This behavior is normal and necessary to ensure fairness at shared
bottlenecks but it may explain bandwidth underutilization when network character-
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Figure 12: Indoor experiment: MPTCP throughput compared with the sum of
normal TCP connections

istics are frequently changing, as shown on Figure 10 in the case of outdoor mobile
experiments. However, it means that MPTCP is not suited for short transfers. In-
deed, the connection will not have time to reach a high throughput and the different
interfaces will be activated and consume energy for little or no benefit.

Latency

Figure 9 shows that using MPTCP with three active interfaces simultaneously de-
creases latency compared with normal TCP. This is not a trivial result. As explained
in Section 3.3, MPTCP could have been limited by the path with the highest RTT
thus would have increased the latency of the connection. Instead, using several in-
terfaces simultaneously seems to improve latency. This could be explained by the
packet scheduling policy of the reference Linux implementation or by a lower impact
of bufferbloat on a multipath connection.

The packet scheduler of the Linux implementation described in Section 5.1 sends
the packets on the interface with the lowest RTT when it is possible. It means
that an application that is not limited by the bandwidth, such as the TCP ping
client used to record the latency on the client side, will not use the subflows with
high RTTs. Even better, the scheduler automatically optimizes responsiveness. An
application that is limited by the bandwidth, such as the download client used to
record the throughput on the client side, will use the available throughput of the
three subflows and get the requested data faster at the connection level, improving
its responsiveness as well.
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Figure 13: Indoor experiment: MPTCP latency compared with normal TCP con-
nections

Figure 14: Indoor experiment: MPTCP latency slowly increases
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Figure 15: Indoor experiment: MPTCP throughput compared with normal TCP
connections

The previous section showed that MPTCP does not reach full utilization. On
an underutilized path, router queues are shorter and bufferbloat is less important.
Hence, an MPTCP connection may have less problems with bufferbloat. This is vis-
ible on Figure 13, which shows the evolution of latency for normal TCP connections
and an MPTCP connection during an indoor experiment (the client downloads as
much data as possible from the MPTCP-enabled server). The latency of the normal
TCP connections increases. Figure 14 shows that the latency has a tendency to-
wards increase for MPTCP as well but it is much slower. The MPTCP connection
that simultaneously uses the same three interfaces has a far better latency and a
higher throughput (Figure 15 shows the evolution of the throughput for the same
experiment).

6.4 Throughput probing
Figure 9 shows that the throughput probing algorithm provides better results than
normal single-path TCP connections. This result was expected. The behavior of
the algorithm is observable on Figure 16. It uses MPTCP on all interfaces during a
probing time of 10 seconds then select the interface with the best throughput for the
next 50 seconds. In that indoor experiment, the interface connected to the network
of Sonera provides the higher throughput. Thus, after probing phases, the interface
selection algorithm selects the Sonera network.

The connection gets extra throughput during the probing phases. It is normal
since the traffic used for probing is normal application traffic sent over the three
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Probing

Figure 16: Indoor experiment: selection based on throughput probing compared
with normal TCP flows
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Figure 17: Outdoor experiments: operator selection ratio for different algorithms

interfaces using MPTCP. Hence, probing times increase the average throughput
obtained at the end of the experiment. The probing time represents one sixth
of the total time. As MPTCP on three interfaces provides 250% of the average
available throughput on a single interface, the probing time alone could increase the
throughput up to 125% of the normal single-path throughput.

During indoor experiments, that path scheduler provided 182% of the average
single-path throughput to the connection. However, during outdoor experiments,
it was only 119%. It is still better than the best throughput measured for single-
path experiments but not as high as expected. This performance problem may be
explained by a lack of responsiveness when network characteristics are quickly and
frequently changing. Indeed, after the probing phase, the same operator is selected
for 50 seconds. As a result, an interface may be selected during a long period of
time during which it is no more the best interface.

6.5 Location and history-based selection
The use of a database to replace probing before selecting the operator that provides
the best throughput allows to refresh the selection more frequently. In addition,
it spares the energy required for probing on the other interfaces. Figure 9 shows
that it provides better throughput and latency than the average single-path con-
nection. However, it is not as efficient as its probing-based counterpart. Moreover,
the improvement is slight and may be due to a difference in the conditions of the
experiments.
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Figure 17 shows that the decisions based on the database entries greatly differ
from those based on probing. It means that the information stored in the database
does not accurately describe the characteristics of the available networks at the
moment of the decision process. In some areas, the database contains less than
one measurement per 200 meters squared. In such cases entries are too sparse to
get meaningful information about all three different operators. Moreover, network
characteristics may change depending of the hour of the day and that path scheduler
does not take the hour of the measurement into account. If more measurements were
available in some areas, the location and history-based selection may show better
results.

6.6 Best RTT and random selection
The three phones are connected to the laptop but only one is active at a time. The
path selector chooses one random phone every 10 seconds. It may seem of limited
interest but it allows to see if switching from one interface to another has unwanted
of interesting effects on the connection. Moreover, as explained in Section 5.5,
frequently changing the active interface may help to decrease bufferbloat and latency.

Outdoor experiments show that the best RTT algorithm is the selection process
that provides the best latency. It is approximately five times lower than the average
latency measured for single-path configurations. It seems to have little impact on
throughput during outdoor experiments. MPTCP has a better latency during indoor
experiments but it uses three interfaces concurrently. Overall, that algorithm met
its objective.

Figure 18 is the evolution of latency over four minutes of measurements. The
RTT based selection is triggered every 10 seconds and avoid the slow increase of the
latency visible with normal TCP connections. The periodical peaks in the latency
are due to the selection of an interface whose RTT is low when there is no traffic. As
soon as the MPTCP priority system moves the traffic to that interface, the latency
rapidly increases.

Figure 9 also shows that the random selection algorithm, which changes the
active interface every 10 seconds, gets a low latency as well. Choosing a random
interface is apparently enough to solve most of the problem as the difference between
the selection based on the best RTT and the random selection is negligible.

Thus, bufferbloat may be the main reason behind high latency. Frequently chang-
ing the active interface can solve the problem of bufferbloat since it shares the load
between the buffers on different paths and avoids the slow increase of latency ob-
served on Figure 13.

One may want to give up the slightly lower latency of the RTT-based selection
and get rid of the RTT probing over UDP. Indeed, probing consumes a lot more
energy since it prevents the 3G interfaces from being completely turned off.



49

Figure 18: Indoor experiment: selection based on best RTT compared with normal
TCP flows

6.7 Conclusion
In this section, the results of the experiments were presented and analyzed. An
overview of the results for all configurations was given. For each configuration,
notable or unexpected observations were underlined and explained.

The measurements confirm that MPTCP can substantially increase throughput
if the available interfaces are used concurrently. It turned out that MPTCP can also
decrease latency.

The interface selection algorithms met their objective as they improve perfor-
mance without using all interfaces at once. Nevertheless, the results of the selection
algorithm based on history and location are not as good as expected.
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7 Conclusions
This thesis explored the use of Multipath TCP on multihomed mobile devices. As
opposed to the previous related works that considered mobile devices equipped with
one 3G access and one WLAN interface, this work focused on devices that sup-
port several 3G subscriptions. Phones with an active dual-SIM functionality are a
possible application.

MPTCP allows a legacy TCP application to send and receive data on different
paths concurrently thus increases the available bandwidth. Nevertheless, as using
several interfaces simultaneously consumes more power, mobile endpoints could in-
stead use the vertical handover capability of MPTCP to make a tradeoff between
performance and power consumption. The active interface can be dynamically cho-
sen according to a specific performance criterion such as available throughput or
latency. In this way, MPTCP can be used to improve performance even though
only one interface is used at a time. Three simple solutions for interface selection
were considered in this work.

Previous works backed their results with simulations and short experiments.
Nevertheless, the performance of MPTCP or any associated interface selection algo-
rithm will eventually have to be evaluated in real-world conditions. That is why this
work included the design and implementation of a test bed dedicated to real-world
experiments. It comprises a framework that support easy implementation and eval-
uation of new interface selection processes for MPTCP. The three proposed path
selection algorithms were implemented and tested.

To work appropriately, MPTCP requires a specific routing configuration. For
now, as no operating system officially supports MPTCP, this configuration must
be done manually. In order to make the process easier and save time during tests,
this thesis proposed a tool that automatically configures Linux routing tables for
MPTCP. It is a generic solution that works along the popular network configuration
utility NetworkManager.

The results of the real-world experiments performed with the test bed confirmed
that MPTCP increases the available throughput but also that it reduces the effects of
bufferbloat. The interface selection algorithms met their objectives as they increased
performance while limiting simultaneous transfers through 3G interfaces.

Future works could focus on optimizing interface selection by tuning the existing
algorithms or implementing more elaborated ones. The test bed could be adapted
to mobile platforms so it could use dual-SIM mobile devices instead of a laptop.
This would be closer to potential applications and would allow to measure the real
impact of the different configurations on energy consumption.

To conclude, MPTCP provides substantial network performance improvements
on multihomed mobile endpoints. Dynamic interface selection is a reasonable way
to reconcile energy-efficiency and resource pooling between available paths.
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A Energy-efficiency and throughput-based selec-
tion algorithms

The case of a mobile host that has three 3G interfaces 1, 2 and 3, identical in terms
of energy consumption is considered. It begins to download a file of size S. The
throughput available through each interface remains constant during the transfer
and MPTCP is able to maximize throughput utilization. The mobile device runs
an interface selection algorithm that selects the interface with the best throughput
(in this case, interface 1). According to Pluntke et al. [49], energy the consumption
of a 3G interface during a data transfer can be expressed as in (A1).

Cc + Ct · T (A1)

(A1) is the power consumption of the interface (in Watts), Cc is a constant com-
ponent and Ct · T a component that linearly depends on the throughput where T
is the throughput. (A2) is the energy needed to download the file of size S con-
currently on all three interfaces, C0 being the energy consumption due to timeouts
after the end of a transfer on a 3G interface. (A3) is the energy needed to download
the same file after the selection of the interface 1. In both cases, the device will
consume at least 3 · C0 as all interfaces have to be activated once, either for data
transfer in the case of normal MPTCP or for probing or database querying in the
case of interface selection.

S

T1 + T2 + T3
[3 · Cc + Ct (T1 + T2 + T3)] + 3 · C0 (A2)

S

T1
(Cc + Ct · T1) + 3 · C0 (A3)

In order for the selection to be useful in terms of energy efficiency, (A3) must be
lower than (A2). It leads to inequalities (A4) and (A5).

S

T1
(Cc + Ct · T1) ≤ S

T1 + T2 + T3
[3 · Cc + Ct (T1 + T2 + T3)] (A4)

T1 ≥ T1 + T2 + T3

3 (A5)

In order for the selection algorithm to decrease energy consumption compared
with normal MPTCP, the selected interface must provide a better throughput than
the average throughput of the three interfaces. Then, selecting the interface with
the best throughput improves energy-efficiency.
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