
9HSTFMG*afbgci+ 

ISBN 978-952-60-5162-8 
ISBN 978-952-60-5163-5 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Science 
Department of Mathematics and Systems Analysis 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 8

0
/2

013 

Demand-responsive transport is a form of 
public transport between bus and taxi 
services, involving flexible routing of small 
or medium sized vehicles. This dissertation 
presents mathematical models for demand-
responsive transport and methods that can 
be used to solve combinatorial problems 
related to vehicle routing and journey 
planning in a transport network. 
 
 
The mathematical models proposed in this 
work can be used to simulate the operations 
of public transport services in a wide range 
of scenarios, from paratransit services for 
the elderly and disabled to large-scale 
demand-responsive transport services 
designed to compete with private car traffic. 
In addition to public transport, potential 
applications of the proposed methods for 
solving vehicle routing and journey planning 
problems include freight transportation, 
courier and food delivery services, military 
logistics and air traffic. 

L
auri H

äm
e 

D
em

and-R
esponsive T

ransport: M
odels and A

lgorithm
s 

A
alto

 U
n
ive

rsity 

Department of Mathematics and Systems Analysis 

Demand-Responsive 
Transport: Models and 
Algorithms 

Lauri Häme 

DOCTORAL 
DISSERTATIONS 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80709115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aalto University publication series 
DOCTORAL DISSERTATIONS 80/2013 

Demand-Responsive Transport: 
Models and Algorithms 

Lauri Häme 

A doctoral dissertation completed for the degree of Doctor of 
Science (Technology) to be defended, with the permission of the 
Aalto University School of Science, at a public examination held at 
lecture hall K of the school on 31st May 2013 at 12. 

Aalto University 
School of Science 
Department of Mathematics and Systems Analysis 



Supervising professors 
Prof. Esko Valkeila 
Prof. Olavi Nevanlinna 
 
Thesis advisor 
Dr. Harri Hakula 
 
Preliminary examiners 
Prof. Nelly Litvak, University of Twente, The Netherlands 
Dr. Silvio Nocera, Università Iuav di Venezia, Italy 
 
Opponent 
Prof. Lasse Leskelä, University of Jyväskylä 

Aalto University publication series 
DOCTORAL DISSERTATIONS 80/2013 
 
© Lauri Häme 
 
ISBN 978-952-60-5162-8 (printed) 
ISBN 978-952-60-5163-5 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
http://urn.fi/URN:ISBN:978-952-60-5163-5 
 
Unigrafia Oy 
Helsinki 2013 
 
Finland 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Lauri Häme 
Name of the doctoral dissertation 
Demand-Responsive Transport: Models and Algorithms 
Publisher School of Science 
Unit Department of Mathematics and Systems Analysis 

Series Aalto University publication series DOCTORAL DISSERTATIONS 80/2013 

Field of research Mathematics 

Manuscript submitted 18 January 2013 Date of the defence 31 May 2013 

Permission to publish granted (date) 16 April 2013 Language English 

Monograph Article dissertation (summary + original articles) 

Abstract 
Demand-responsive transport is a form of public transport between bus and taxi services, 

involving flexible routing of small or medium sized vehicles. This dissertation presents 
mathematical models for demand-responsive transport and methods that can be used to solve 
combinatorial problems related to vehicle routing and journey planning in a transport network. 

 
Public transport can be viewed as a market where demand affects supply and vice versa. In the 
first part of the dissertation related to vehicle routing, we show how a given demand for 
transportation can be satisfied by using a fleet of vehicles, assuming that the demand is known  
at the individual level. In the second part, by considering the journey planning problem faced 
by commuters, we study how the demand adapts to the supply of transport services, assuming 
that the supply remains unchanged for a short period of time. We also present a stochastic 
network model for determining the economic equilibrium, that is, the point at which the 
demand meets the supply, by assuming that commuters attempt to minimize travel time and 
transport operators aim to maximize profit. 
 
The mathematical models proposed in this work can be used to simulate the operations of 
public transport services in a wide range of scenarios, from paratransit services for the elderly 
and disabled to large-scale demand-responsive transport services designed to compete with 
private car traffic. Such calculations can provide valuable information to public authorities and 
planners of transportation services, regarding, for example, regulation and investments. In 
addition to public transport, potential applications of the proposed methods for solving vehicle 
routing and journey planning problems include freight transportation, courier and food 
delivery services, military logistics and air traffic. 

Keywords demand-responsive transport, public transport, graph problems, algorithms, 
networks, discrete optimization, stochastic optimization, Markov decision process, 
economics of transportation 

ISBN (printed) 978-952-60-5162-8 ISBN (pdf) 978-952-60-5163-5 

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 

Location of publisher Espoo Location of printing Helsinki Year 2013 

Pages 168 urn http://urn.fi/URN:ISBN:978-952-60-5163-5 





Tiivistelmä 
Aalto-yliopisto, PL 11000, 00076 Aalto  www.aalto.fi 

Tekijä 
Lauri Häme 
Väitöskirjan nimi 
Demand-Responsive Transport: Models and Algorithms 
Julkaisija Perustieteiden korkeakoulu 
Yksikkö Matematiikan ja systeemianalyysin laitos 

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 80/2013 

Tutkimusala Matematiikka 

Käsikirjoituksen pvm 18.01.2013 Väitöspäivä 31.05.2013 

Julkaisuluvan myöntämispäivä 16.04.2013 Kieli Englanti 

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit) 

Tiivistelmä 
Kysyntäohjautuvalla joukkoliikenteellä tarkoitetaan bussi- ja taksipalvelujen välimuotoa, 

joka perustuu pienten tai keskisuurten ajoneuvojen joustavaan reititykseen. Tässä 
väitöskirjassa esitetään matemaattisia malleja kysyntäohjautuvalle joukkoliikenteelle, ja 
menetelmiä, joilla voidaan ratkaista ajoneuvojen reitinlaskentaan ja matkansuunnitteluun 
liittyviä kombinatorisia ongelmia liikenneverkossa. 
 
Joukkoliikennettä voidaan tarkastella markkinana, jossa kysyntä vaikuttaa tarjontaan ja 
päinvastoin. Väitoskirjan ensimmäisessa osassa, joka käsittelee ajoneuvojen reitinlaskentaa, 
näytetään miten tunnettuun kysyntään voidaan vastata käyttämällä tiettyä ajoneuvokantaa, 
kun oletetaan kysyntä tunnetuksi yhden matkustajan tarkkuudella. Toisessa osassa 
tarkastellaan matkustajien matkansuunnittelua joukkoliikenneverkossa, eli sitä miten kysyntä 
mukautuu liikennepalvelujen tarjonnan mukaan, kun oletetaan tarjonta muuttumattomaksi 
lyhyellä aikavälillä. Lopuksi esitetään menetelmä taloudellisen tasapainopisteen, eli kysynnän 
ja tarjonnan kohtaamispisteen, määrittämiseksi, kun oletetaan että matkustajat pyrkivät 
minimoimaan matka-aikaa ja liikennepalvelujen tarjoajat pyrkivät maksimoimaan 
taloudellista voittoa. 
 
Tässä työssä esiteltyjen mallien avulla voidaan simuloida useita erityyppisiä liikennepalveluja 
vanhuksille ja liikuntarajoitteisille suunnatuista kutsulinjoista henkilöautoliikenteen kanssa 
kilpaileviin laajamittaisiin kysyntäohjautuviin joukkoliikennejärjestelmiin. Mallien avulla 
tehdyt laskelmat voivat tuottaa arvokasta tietoa viranomaisille ja liikennepalvelujen 
suunnittelijoille liikenteen säännöstelyyn ja investointeihin liittyen. Joukkoliikenteen lisäksi 
esiteltyjä reitinlaskenta- ja matkansuunnittelumenetelmiä voidaan soveltaa muun muassa 
rahti- ja lentoliikenteessä, lähetti- ja ruoankuljetuspalveluissa sekä sotilaslogistiikassa. 

Avainsanat kysyntäohjautuva joukkoliikenne, kutsujoukkoliikenne, älykäs joukkoliikenne, 
algoritmit, diskreetti optimointi, stokastinen optimointi, Markov-päätösprosessi, 
liikennetalous 

ISBN (painettu) 978-952-60-5162-8 ISBN (pdf) 978-952-60-5163-5 

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942 

Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2013 

Sivumäärä 168 urn http://urn.fi/URN:ISBN:978-952-60-5163-5 





Preface

In the beginning of my doctoral studies I worked in a research project related to

demand-responsive public transport, based in the Department of Computer Science

in Helsinki University of Technology (currently a part of Aalto University), and

launched by professor Reijo Sulonen. One of the main tasks in the project was to

design “from scratch” the routing strategy for a fleet of mini-buses without fixed

routes, for combining passengers’ trips in an on-line fashion. After working in the

project I continued to research on the same topic in the Department of Mathematics

and Systems Analysis under the guidance of Dr. Harri Hakula, which led to the pub-

lication of this dissertation. In the beginning of 2013, as an extension to the research

project, a test version of a fully automatized demand-responsive transport service

was deployed in Helsinki.

First, I would like to thank Dr. Harri Hakula for being the instructor of this work

and for providing professional guidance throughout my doctoral studies. I would

also like to express my gratitude to Professors Esko Valkeila and Olavi Nevanlinna

for supervising the work.

Furthermore, I would like to thank colleagues and superiors Dr. Esa Hyytiä, Dr.

Aleksi Penttinen, Teemu Sihvola, Jani-Pekka Jokinen, Jeremias Kangas, Tuukka

Sarvi, Prof. Samuli Aalto, Prof. Reijo Sulonen and Prof. Jorma Virtamo for sci-

entific support, and Prof. Nelly Litvak, Dr. Silvio Nocera, Prof. Venkat Anantharam

and Prof. Juuso Töyli for examining this dissertation.

Finally, I would like to thank my family and friends for their insightful comments

to improve the quality of this work.

This dissertation is dedicated to the memory of Esko Valkeila (1951–2012), late

professor in stochastics at Aalto University, and the supervisor of my master’s thesis

and this work until November 2012.

Helsinki, April 17, 2013,

Lauri Häme

1



Preface

2



Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

1. Introduction 9

1.1 Demand-responsive transport today. . . . . . . . . . . . . . . . . . . 9

1.2 . . .and tomorrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Possible issues . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Vehicle Routing 15

2.1 Single-vehicle dial-a-ride problem . . . . . . . . . . . . . . . . . . 15

2.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Adaptive insertion algorithm [Publication I] . . . . . . . . . 17

2.1.3 Routing by ranking [Publication V] . . . . . . . . . . . . . 21

2.1.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . 25

2.2 Multi-vehicle dial-a-ride problem . . . . . . . . . . . . . . . . . . . 27

2.2.1 The maximum cluster algorithm [Publication VI] . . . . . . 28

2.2.2 A priori screening . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . 30

3. Journey planning 33

3.1 Stochastic model of a scheduled network [Publication III] . . . . . . 35

3.1.1 Service legs and walking legs . . . . . . . . . . . . . . . . 35

3.1.2 Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



Contents

3.1.3 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Problem solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Markov Decision Process . . . . . . . . . . . . . . . . . . 37

3.2.2 Optimal policy . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Backward induction algorithm . . . . . . . . . . . . . . . . 39

3.2.4 Expected number of paths . . . . . . . . . . . . . . . . . . 40

3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Description of instances . . . . . . . . . . . . . . . . . . . 41

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. Economic equilibrium 43

4.1 Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Competitive market . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Network equilibrium . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 A three node example . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Long-run example . . . . . . . . . . . . . . . . . . . . . . 47

5. Conclusions 51

Errata 55

Bibliography 57

Publications 63

4



List of Publications

This thesis consists of an overview and of the following publications which are re-

ferred to in the text by their Roman numerals.

I Lauri Häme. An adaptive insertion algorithm for the single-vehicle dial-a-ride

problem with narrow time windows. European Journal of Operational Research,

209, p. 11–22, February 2011.

II Lauri Häme, Harri Hakula. Dynamic journeying under uncertainty. European

Journal of Operational Research, 225, p. 455-471, March 2013.

III Lauri Häme, Harri Hakula. Dynamic Journeying in Scheduled Networks. IEEE

Transactions on Intelligent Transportation Systems, 14, p. 360-369, March 2013.

IV Lauri Häme, Jani-Pekka Jokinen, Reijo Sulonen. Modeling a competitive demand-

responsive transport market. In Kuhmo Nectar Conference on Transport Economics,

Stockholm, Sweden. 20 pages, June-July 2011.

V Lauri Häme, Harri Hakula. Routing by Ranking: A Link Analysis Method for

the Constrained Dial-A-Ride Problem. Operations Research Letters, Under minor

revision, 6 pages, 16.3.2012 .

VI Lauri Häme, Harri Hakula. A Maximum Cluster Algorithm for Checking the Fea-

sibility of Dial-A-Ride Instances. Transportation Science, Under minor revision,

16 pages, 16.3.2012 .

5



List of Publications

6



Author’s Contribution

Publication I: “An adaptive insertion algorithm for the single-vehicle
dial-a-ride problem with narrow time windows”

This article was written by the author.

Publication II: “Dynamic journeying under uncertainty”

The author was the main author of this article.

Publication III: “Dynamic Journeying in Scheduled Networks”

The author was the main author of this article.

Publication IV: “Modeling a competitive demand-responsive
transport market”

The author was the main author of this article, which was nominated for the best stu-

dent paper award in Kuhmo Nectar 2011. The article is under revision for publication

in Transportation Research Part B.

Publication V: “Routing by Ranking: A Link Analysis Method for the
Constrained Dial-A-Ride Problem”

The author was the main author of this article.

7



Author’s Contribution

Publication VI: “A Maximum Cluster Algorithm for Checking the
Feasibility of Dial-A-Ride Instances”

The author was the main author of this article.

8



1. Introduction

1.1 Demand-responsive transport today. . .

Demand-Responsive Transport (DRT) is often referred to as a form of public trans-

port between bus and taxi services involving flexible routing and scheduling of small

or medium sized vehicles. This means that the vehicle routes are updated daily or in

real time by incorporating information on the demand for transportation. Usually, the

customers of a DRT service are required to request and book their trips in advance

by placing trip requests including information on the origin and destination of the

trip as well as the desired pick-up or drop-off time. The vehicle operator uses this

information to provide service that satisfies the passenger needs.

DRT services are often fully or partially funded by local authorities as providers

of socially necessary transport. They are typically used to provide transportation in

areas with low transportation demand where a regular bus service might not be as

efficient. Another common application of DRT arises in door-to-door transportation

of elderly or handicapped people (paratransit). Most services provided by private

companies for commercial reasons are related to transporting passengers between

airports and urban areas.

The implementation of demand-responsive transport is strongly dependent on the

target group or the business concept of the service. Some DRT systems make use

of terminals, at one or both ends of a route, such as an urban center or airport. In

these applications (one-to-many or many-to-one), customers may specify either the

origin or destination of the desired trip. In many-to-many services, vehicle routes are

built freely according to customer requests. Such systems provide either a door-to-

door service within a specific area or a transport service between a set of specified

stops. For example, a DRT service operating in Nurmijärvi (Finland) aims to improve

the level and accessibility of services in a sparsely populated area and to reduce the

costs of public transport. The service operates on a "many-to-many" basis, that is,

9



Introduction

there are no predefined routes. The stop points are located at a maximum of 900

m from origins and destinations. In the case of special users, the stop points are

non-predefined (door-to-door service).

The popularity of demand-responsive transport has recently grown mainly due to

the shortcomings of conventional bus and taxi services, and new technical develop-

ments. In addition, flexible public transport services provided by local authorities and

bus operators in partnerships with employers, stores, and leisure centres are thought

to help to break down social exclusion [62]. However, current DRT services have

often been criticised because of their relatively high cost of provision, their lack of

flexibility in route planning, and their inability to manage high demand [54].

At the present moment, a large number of demand-responsive transport services

are in operation. Most of such services operate within relatively small neighbour-

hoods and during low-use daytime hours, when there is not enough demand for tra-

ditional public transport. Thus, while the current services meet their requirements,

demand-responsive transport remains a relatively small business compared to tradi-

tional transportation services, not to speak of private cars.

What if a DRT system was implemented in large scale, in a way that service could

be provided for an entire metropolitan area?

1.2 . . .and tomorrow

Several new ideas and concepts related to demand-responsive transport services op-

erating in urban areas have been recently presented, see for example [24, 45]. These

ideas are often motivated by problems arising from the congestion of urban areas

caused by the increasing number of private cars. Thus, one of the main present goals

of planning demand-responsive transport is seen to be the development of functional

public transport services able to compete with private car and taxicab traffic.

The popularity of the private car as a means of transport is partly based on a direct

connection between the origin and destination of a trip and a short total travel time.

Another major advantage of the private car is seen to be the availability of the car

at any time, even without planning beforehand. The study of large scale demand-

responsive transport has therefore been directed towards highly dynamic services,

which allow customers to request service not long before they are willing to depart.

In addition, a demand-responsive public transport system should be able to offer an

alternative for transportation without the inconvenience related to conventional public

transport.

The total travel time in public transport consists of walking time from origin to

pick-up point, waiting time at the pick-up point, ride time, that is, the time spent in the
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vehicle, possible transfer time and walking time from drop-off point to destination.

In order to attract people with private cars, it is necessary that the waiting and riding

times are within acceptable bounds. In addition, it can be suggested that the service

should be as close to a door-to-door service as possible and the amount of transfers

between vehicles should be minimal.

Intuitively, the idea of a large scale DRT system seems promising. With state-of-

the-art engineering, there should be no severe technical obstacles in implementing

such a service.

1.2.1 Opportunities

The fact that demand-responsive transport is "there for you when you want and where

you want" is thought to be a major advantage compared to conventional public trans-

port. While it may not be feasible to think that DRT could provide a level of service

substantially better than that offered by taxicabs, a system that could combine cus-

tomers’ trips efficiently could be more cost-efficient than a conventional taxi orga-

nization. This would make it possible to provide more inexpensive service without

compromising too much on the level of service experienced by customers.

Compared to private cars, demand-responsive transport is thought to have sev-

eral advantages in urban areas. For a model of a hypothetical large-scale demand-

responsive public transport system for the Helsinki metropolitan area, simulation

results published in 2005 demonstrated that "in an urban area with one million in-

habitants, trip aggregation could reduce the health, environmental, and other detri-

mental impacts of car traffic typically by 50 - 70%, and could attract about half of the

car passengers, and within a broad operational range would require no public subsi-

dies" [79]. In addition to providing affordable transportation without the additional

expenses related to maintenance, taxes and parking fees, demand-responsive trans-

port could eliminate many other, possibly concealed, concerns related to private cars,

including the difficulty of finding parking space and the stress related to driving in

hazardous conditions or traffic jams.

At this point, one might ask: If the large scale demand-responsive transport system

is superior compared to the alternatives, why has it not been implemented in practice?

1.2.2 Possible issues

While it is clear that implementing a large-scale demand-responsive transport system

would require significant investments, it is not clear whether there would be enough

demand for such a service were it implemented.

For example, it might not be realistic nor beneficial from the social point of view

11
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to think that a conventional heavy rail system was replaced by demand-responsive

minibuses, due to the high efficiency of heavy rail. Moreover, traditional public

transport in general has many significant advantages compared to demand-responsive

transport: Taking into account the current experience from DRT services, a major is-

sue can be seen to be the reliability of the service. So far, estimating ride times

accurately in a service with no fixed routes has proven to be a major challenge, not

least because of the human drivers, who are required to follow routes that are con-

stantly changing, and the differences in their driving styles. Another disadvantage of

DRT arises when customers are required to book their trips in advance and thus com-

mit themselves to the service or payment at the time the trip is booked. In traditional

bus services, this problem does not exist since customers may adjust their personal

schedules dynamically according to known timetables, without pre-commitments. A

commitment to a trip can be even more binding than in a taxi service: A normal taxi

can wait for some time for the customer, for example, if the customer is at home when

the taxi arrives, but it might not be reasonable that a demand-responsive minibus with

customers on board would wait many minutes for one customer with the expense of

other customers.

While demand-responsive transport has many advantages when compared to the

private car as argued above, the car has many characteristics that are hard to com-

pensate with public services. Firstly, a person who has already invested in a car and

thus settles with yearly taxes and maintenance costs, is often not willing to use other

transportation services since it would cost more than the marginal cost of using the

car. Secondly, the car is unbeatable in terms of flexibility: It is available at any time of

the day without planning beforehand. Even if a demand-responsive transport service

accepted immediate requests without a minimum pre-order time, the customer would

still be committed to wait for the designated vehicle to arrive. Thirdly, the private

car is thought to be the most convenient way of carrying large amounts of luggage

and goods. The car is also often used for storing equipment, which is not likely to be

possible in a public service.

Despite the above issues related to large scale demand-responsive transport, the

concept should be studied carefully. Even if the private car has its advantages in the

current state of the world, it may become practically useless in congested urban areas.

1.3 Problem statement

This work is focused on the discrete and combinatorial problems arising in the plan-

ning of public transport in general and demand-responsive transport in particular. The

main goals are (i) to develop models for a priori studying different forms of demand-
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Deterministic model Stochastic model

Single vehicle / single

customer

Publications I, V Publications III, II

Multiple vehicles and cus-

tomers

Publication VI Publication IV

Table 1.1. Classification of publications.

responsive transport without having to implement them in practice and (ii) to develop

algorithms for solving combinatorial problems related to public transport.

Generally, public transport can be viewed as a market where demand affects supply

and vice versa. For a given demand, we are interested in the optimal actions for the

transport operator and for a given supply, we study the optimal actions for customers

with specific travel needs. By relaxing both demand and supply, we seek to determine

the economic equilibrium, where the demand meets the supply. More precisely, the

three main research questions considered in this work are stated as follows:

In Chapter 2: Vehicle routing, the demand for transportation is assumed to be

known at the passenger level. The research question is: Using a given fleet of ve-

hicles, what is the best way to satisfy the demand?

In Chapter 3: Journey planning, the routes of transport services are assumed to

be known during a specific time horizon, and the travel times are assumed to be

stochastic. Taking into account the uncertainty in transport services, what is the best

way for a commuter to travel from a given origin to a given destination?

In Chapter 4: Economic equilibrium, we define the demand model by assuming

that customers seek trips with small travel times and the supply model by assuming

that transport service providers aim to maximize profit. Given these models, at which

point does the demand for transportation meet the supply and how do regulation

policies affect the economic equilibrium?

The remainder of this work is organized as follows. Section 2.1 in Chapter 2

presents deterministic algorithms for constructing a route for a single vehicle serving

a set of customers (Publication I and Publication V). An extension to the multi-

vehicle case is discussed in Section 2.2 (Publication VI). Chapter 3 studies a stochas-

tic journey planning problem involving a single customer and a set of transport ser-

vices (Publication III and Publication II). Finally, Chapter 4 introduces a stochastic

network model, with multiple vehicles and stochastic demand, for determining the

economic equilibrium in a transport network (Publication IV). The classification of

the publications is summarized in Table 1.1.
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2. Vehicle Routing

A vast majority of theoretical studies related to demand-responsive transport are for-

malized as combinatorial optimization problems involving the construction of vehi-

cle routes with respect to a set of customers, whose pick-up and drop-off points are

known a priori [78]. This problem is often referred to as the dial-a-ride problem.

A demand-responsive transport service operating in real time induces the following

major challenge: In order to be able to compete with private cars, service should be

available within a short period of time from the trip request. This calls for routing

algorithms capable of adapting to high-demand situations, since the modifications in

vehicle routes have to be executed in real-time, possibly in a distributed fashion. In

order to ensure a sufficient level of service, the customers’ waiting and ride times

should be relatively limited. Thus, the vehicle dispatching algorithms should be de-

signed in a way that the constrained nature of the problem is taken into account.

In Section 2.2, we study the multi-vehicle dial-a-ride problem which involves the

construction of a set of vehicle routes serving a set of customers. The multi-vehicle

problem can be decomposed as a set of single-vehicle dial-a-ride problems (Section

2.1). That is, solutions to the single-vehicle problem can be used as subroutines in

environments with multiple vehicles [67, 68].

2.1 Single-vehicle dial-a-ride problem

Different types of dial-a-ride services give rise to different types of mechanisms for

controlling vehicle operations. For example, if a dial-a-ride service requires cus-

tomers to request service during the previous day, the nature of vehicle dispatching

will certainly differ from a service in which customers may request immediate ser-

vice. This Section focuses on the single-vehicle DARP with time windows, in which

the goal is to determine the optimal route for a single vehicle serving a certain set of

customers.

The consideration of time windows means that the vehicle route is restricted by time
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limits for pick-up and delivery of each customer. Narrow time windows emerge in

transport services, in which each customer is given an estimate or guarantee regarding

the pick-up and delivery times in the form of time windows. These time windows

are examined as hard limits to be met by the vehicle. Time windows have been

incorporated in many early and recent studies of the DARP, see for example [68, 44,

53, 77, 21, 26, 81, 20, 11]. In these studies it is noted that in dynamic settings, time

windows eliminate the possibility of indefinite deferment of customers and strict time

limits help provide reliable service.

In [67], the objective function is defined as a generalization of the objective func-

tion of the Traveling Salesman Problem (TSP), in which a weighted combination of

the time needed to serve all customers and of the total degree of dissatisfaction is

minimized. In [68], the approach is extended to handle time windows on departure

and arrival times, but only the route duration is minimized.

In Publication I, both aspects of the problem (general objective function and time

windows) are considered. The main contribution is a solution method designed in a

way that (i) it is capable of handling practically any objective function suitable for

dynamic routing, and (ii) the computational effort of the algorithm can be controlled

smoothly: If the problem size is reasonable, the algorithm produces optimal solutions

efficiently and as the problem size increases, the search space may be narrowed down

in order to achieve locally optimal solutions with a small computational effort.

Publication V discusses a single-vehicle algorithm based on hyperlink-induced

topic search [48] for maximizing the number of customers in a single vehicle route.

The algorithm is designed to find feasible solutions to highly constrained instances

without defining a specific objective function. This approach is motivated by the fact

that in such instances, the number of feasible solutions becomes so limited that often

any feasible solution will be close to the optimal solution [68]. The method is seen

to be useful in determining the feasibility of multi-vehicle instances (Section 2.2).

2.1.1 Problem formulation

The single-vehicle dial-a-ride problem is defined as follows [11]. Let G = (V, A) be a

complete and directed graph with node set V = {0} ∪ P, where node 0 represents the

depot, and P represents the set of pick-up and drop-off nodes, where (|P| = 2n). The

set P is partitioned into sets P+ (pick-up nodes) and P− (drop-off nodes). Each arc

(i, j) ∈ A has a non-negative travel time Ti j. With each node i ∈ V associate a time

window [Ei, Li], a service duration Di and a load qi, where D0 = 0 and q0 = 0. Let

H = {1, . . . , n} be the set of customers and let T max be the maximum ride time for any

customer. With each customer i is associated a pickup node i+ ∈ P+, a delivery node

i− ∈ P− and a load qi+ = −qi− . The time parameters are illustrated in Figure 2.1.
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Let Q be the capacity of the vehicle. A route is a directed circuit over a set of nodes

in P, starting and finishing at node 0. The goal is to construct a vehicle route such

that: (i) for every customer i, the pick-up node is visited before the drop-off node; (ii)

the load of the vehicle does not exceed the capacity Q at any time; (iii) the ride time

of each customer is at most T max; (iv) the service at node i begins within the interval

[Ei, Li]; (v) a specific cost function is minimized.

Reference [67] defines the cost function as a linear combination of route duration

and the total dissatisfaction of customers. The adaptive insertion method described

in Publication I is designed in a way that several cost functions, that are thought to

be suitable for dynamic settings [43], may be incorporated with minimal work.

Ei+ Li+

Ei− Li−

Pick-up time Drop-off time

≤ TmaxDi+ Di−

Space

Time

Drop-off
node i−

Pick-up
node i+

Figure 2.1. Pick-up and drop-off time windows. The pick-up point of customer i is denoted by i+ and
the drop-off point is denoted by i−. The customer should be picked up at i+ within the time
window [Ei+ , Li+ ] and the customer should be dropped off at i− within the time window
[Ei− , Li− ]. The service times needed for the customer to get on the vehicle and get off
the vehicle are denoted by Di+ and Di− . The time between the drop-off and the pick-up
(excluding Di+ ) should not exceed the maximum ride time T max.

2.1.2 Adaptive insertion algorithm [Publication I]

In general, exact procedures for solving routing problems are computationally very

demanding, since the complexity is always more or less equal to the classical travel-

ing salesman problem. In addition, exact optimization can be seen to be needless at

run-time if routes are modified often. Despite these facts, exact algorithms are use-

ful in the sense that the performance of different heuristics may be compared to the

optimal solution.

The main idea in the adaptive algorithm presented in Publication I is that customers

are added to the vehicle route one by one by using an exhaustive insertion method,

which leads to a globally optimal solution, that is, a vehicle route which is feasible

with respect to all customers and minimizes a given cost function.

Many studies related to the dial-a-ride problem, see for example [44, 53, 26, 81],

make use of what is called the insertion procedure, in the classical version of which
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the pick-up and delivery node of a new customer are inserted into the current optimal

sequence of pick-up and delivery nodes of existing customers. That is, the classical

insertion algorithm does not take into account the fact that the insertion of a new

customer may render the optimal sequencing of existing customers no longer optimal.

The main idea in the adaptive insertion algorithm is to construct the optimal route

iteratively by implementing an insertion algorithm for each customer, one by one for

all feasible sequences of pick-up and delivery nodes of existing customers. Namely,

the procedure involves two steps for each customer:

1. Perform insertion of the new customer to all feasible service sequences with re-

spect to existing customers.

2. Determine the set of feasible service sequences with respect to the new customer

and existing customers.

It can be readily shown that the insertion of a new customer to all feasible service

sequences with respect to existing customers produces all feasible service sequences

with respect to the union of existing customers and the new customer and leads to a

globally optimal solution but is computationally expensive if the number of feasible

service sequences grows large. However, if the route is constructed under relatively

narrow time window constraints, the number of feasible routes with respect to all

customers will be small compared to the number of all legitimate routes. Further-

more, the algorithm is easily extended to an adjustable heuristic algorithm capable of

handling any types of time windows.

The idea of the advanced insertion method is clarified by the following example,

where no capacity or time constraints are taken into account.

Example. Let i+ denote the pick-up node of customer i and let i− denote the delivery

node of customer i. A service sequence is defined as an ordered list consisting of pick-

up and delivery nodes. For instance, the service sequence (i+, j+, j−, i−) indicates the

order in which customers i and j are picked up and dropped off.

Let us start the advanced insertion process with customer 1. Since the pick-up 1+

of customer 1 has to be before the delivery, 1−, the only possible service sequence

at this point is (1+, 1−). Thus, the set of potential service sequences with respect to

customer 1 consists of this single service sequence. By insertion of customer 2 into

the service sequence (1+, 1−) we get the six service sequences presented in Table 2.1.

By inserting the pick-up and delivery node of customer 3 into all of these service

sequences we get a total of 6(5+ 4+ 3+ 2+ 1) = 90 new potential service sequences.

However, if the time and capacity constraints are taken into account, not all service

sequences described above are necessarily feasible.
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Table 2.1. Potential service sequences with respect to customers 1 and 2. No capacity or time con-
straints are taken into account. i+ denotes the pick-up node and i− denotes the delivery node
of customer i.

A: 1+ 1− 2+ 2− B: 1+ 2+ 1− 2− C: 1+ 2+ 2− 1−

D: 2+ 1+ 1− 2− E: 2+ 1+ 2− 1− F: 2+ 2− 1+ 1−

In this way the algorithm produces the set S N of all feasible routes with respect

to customers 1, . . . ,N. Then the solution to the problem is obtained by choosing the

sequence s ∈ S N with minimal cost C(s), where C(·) denotes the cost function, for

example, route duration.

In the worst case, the number of feasible solutions is of order O(
√

N(N2/2)N).

However, an average case study of the exact algorithm discussed in Section 2.1.4

suggests that as time limits reduce the number of feasible solutions, instances with

up to 20 customers can be solved up to optimality with reasonable computational

effort. In addition, the algorithm has a special property of being extendable to an

adjustable heuristic, as described in the following section.

A heuristic extension

Even if the capacity and time constraints were not highly restrictive, the algorithm can

be modified easily by bounding the size of the set S i of service sequences, in which

new customers are inserted, by including only a maximum of L service sequences for

each customer i. More precisely, if after inserting customer i, the number of feasible

service sequences with respect to customers 1, . . . , i is larger than L, the set of feasible

service sequences S i with respect to customers 1, . . . , i is narrowed by including only

L service sequences that seem to allow the insertion of remaining customers. After

the last customer has been inserted, the feasible service sequences are evaluated by

means of the objective function.

This modification leads to a heuristic algorithm, in which the computational effort

can be controlled by the parameter L, referred to as the degree of the heuristic. The re-

sulting algorithm is somewhat sophisticated in a way that it produces globally optimal

solutions for small sets of customers. When the number of customers is increased,

the algorithm still produces locally optimal solutions with reasonable computational

effort. In the special case where L = 1, the algorithm reduces to the classical insertion

algorithm. If L ≥ (2N)!
2N , the heuristic coincides with the exact version of the algorithm

as no routes are discarded.
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Objective functions

In order to be able to efficiently make use of the above heuristic extension idea, the set

of service sequences is narrowed by means of a certain heuristic objective function

after the insertion of each customer. Since the main purpose of heuristics at the

operational level is to always produce some implementable solutions very quickly,

even if they were only locally optimal, such an objective function should be defined

in a way that the algorithm is capable of producing feasible solutions even if the

complexity of the problem was high.

Looking only at the cost may eliminate from consideration sequences that are

marginally costlier but would easily allow the insertion of remaining customers in

the route. Thus, more sophisticated criteria should be considered to help ensure that

the heuristic will find a feasible solution when one exists.

A

t = 0

j

iSpace

Time

Figure 2.2. Route flexibility. A vehicle is located at A at t = 0, and two customers are due to be picked
up within the presented time windows at i and j. The dashed lines represent two possible
routes for the vehicle. If the route duration were minimized, i should be visited before j.
However, since there would be no "slack time" at j, this decision would a priori exclude the
possibility that new customers could be inserted between i and j. On the other hand, if j
were visited before i, there would be more possibilities for inserting new customers on the
route before i.

In other words, the function should favor service sequences with enough time slack

for those customers, that have not been inserted into the sequences (see Figure 2.2).

Publication I suggests the following heuristic objectives.

Route duration favors service sequences in which the time to serve all customers

is as small as possible. This objective can be justified by the fact that it is likely that

new customers may be inserted at the rear of a route that is executed quickly.

Total time slack stores sequences in which the sum of excess times (or the average

excess time) at the nodes is maximized, that is, sequences which are likely to allow

the insertion of a new customer before the last node.

Max-min time slack seeks sequences in which the minimum excess time at the
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nodes of the route is maximized. In other words, the sequences in which there is at

least some time slack at each node are considered potential.

2.1.3 Routing by ranking [Publication V]

Several web information retrieval (IR) methods have been developed for finding the

most appropriate web pages corresponding to queries given to search engines. The

most sophisticated methods, such as HITS [48], PageRank [13] and SALSA [52] in

use today make use of the hyperlinked structure of the web, since the goodness of a

web page and the position of the page with respect to other web pages seem to have

a certain connection. For example, a web page may be considered good if there are

many other web pages linking to that page. In other words, web pages are ranked by

search engines not only by means of the content of the page, but also by exploiting

information regarding the hyperlink-induced relationships between pages.

The bringing of hyperlinks to bear on the ordering of web pages has given rise

to a mathematical analysis related to hyperlink-induced web IR methods, such as in

[28, 51, 61, 1], in which the behaviour of several IR methods is studied from the

computational point of view.

The HITS (Hyperlink-Induced Topic Search) algorithm defines authorities (web

pages with several inlinks) and hubs (several outlinks). The HITS thesis is that good

hubs point to good authorities and good authorities are pointed to by good hubs.

Based on this thesis, both a hub score and an authority score is assigned to each web

page [51].

Publication V presents an application of HITS on the dial-a-ride problem (DARP)

[9, 10, 11]. Here the DARP is examined as a constraint satisfaction problem, in which

the goal is to find a feasible vehicle route that serves all customers, or to maximize

the number of served customers.

In the context of the dial-a-ride problem, the links between nodes are defined as

feasible transitions with respect to the constraints of the problem: If node j can be

visited after i, a link from i to j is formed. Thus, a good hub score of a pick-up or

drop-off node i means that many nodes can be reached in time from i. Thus, in order

to efficiently find feasible solutions to the dial-a-ride problem, we suggest that nodes

with large hub scores should be visited first since there are many nodes that can be

visited after such nodes.

The HITS algorithm [48]

Given a web graph G = (V, A) consisting of pages V and links A between pages, the

authority and hub scores ai and hi are computed for each page i as follows. Letting

(i, j) represent a link from page i to page j, given that each page has been assigned
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an initial authority score ai(0) and hub score hi(0), HITS successively refines these

scores by computing

ai(k) =
∑

( j,i)∈A

h j(k − 1), hi(k) =
∑

(i, j)∈A

a j(k − 1)

for k ∈ {1, 2, . . .}. By using matrix notation, these equations can be written the form

a(k) = LT h(k − 1) and h(k) = La(k − 1), where a(k) is the authority vector containing

the authority scores of each of the pages at step k, h(k) is the corresponding hub

vector and L is the adjacency matrix of the graph with elements Li j = 1 if (i, j) ∈ A

and L = 0 otherwise [51].

It has been shown in [28] that the authority and hub vectors describing the authority

and hub scores of nodes of a given graph in the limit are given by the dominant

eigenvectors of the matrices LT L and LLT (or equivalently, dominant singular vectors

of L), where L is the adjacency matrix of the graph.

Modified HITS

For constrained routing problems, a modified version of the HITS algorithm is used,

in which only the hub scores are considered. More precisely, the thesis is that good

hubs point to good hubs. This formulation is motivated by Theorem 1 below, which

states that for a specific class of graphs, the hub score of a node i corresponds to the

number of self-avoiding paths from i to a given destination node. When attempting

to construct a path that visits all nodes, or to maximize the number of visited nodes,

the modified HITS idea induces the following intuitive policy: Good hubs are visited

first, since many nodes can be reached from good hubs.

The hub scores are calculated as follows. Let L denote the adjacency matrix of

a directed graph G. Similarly as in the HITS algorithm, the hub vector containing

the hub scores of nodes is first initialized, h(0) = (1, 1, . . . , 1) and the hub vector is

successively updated by means of the power method

h′(k) = Lh(k − 1). (2.1)

Similarly as in the original HITS algorithm, the hub vector converges to a dominant

eigenvector of L.

Theorem 1 characterizes the hub scores produced by the modified HITS algorithm

for sink graphs defined as follows.

Definition. Let G = (V, A) be a directed acyclic graph and let s ∈ V be a node such

that (s, i) � A for all i ∈ V. The graph Gs = (V, A ∪ (s, s)) is called a sink graph.

In other words, a sink graph is a directed acyclic graph (V, A) with the exception

that one node s ∈ V with zero outdegree is associated with a loop (s, s).
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Theorem 1. Let L denote the adjacency matrix of a sink graph Gs = (V, A), where

V = {1, . . . , |V |}, let hi denote the number of self-avoiding paths from i to s for i ∈

V \ {s} and let hs = 1. Then, h = (h1, . . . , h|V |)T is a unique dominant eigenvector of

L.

Note that since hi ≥ h j for all i, j ∈ V for which Li j = 1, the vector h defines a

topological ordering [23] of the nodes for which hi > 0. The result gives us an idea

of the behaviour of the modified HITS method: There are many paths beginning from

nodes with high hub scores.

In the following section, we show how the hub scores are used to guide a back-

tracking algorithm for the dial-a-ride problem.

The ranking method

Publication V presents an exact constraint programming method for the single-vehicle

DARP that produces a feasible solution whenever one exists or proves that the prob-

lem is infeasible. In the latter case, the algorithm returns a route that maximizes the

number of served customers.

Letting node 0 ∈ V be the location of the vehicle at t = 0, we aim to find a feasible

path (0, p1, . . . , p2n, 0) consisting of the pick-up and drop-off nodes of n customers.

The number of permutations is (2n)! and the number of feasible permutations with

respect to precedence constraints is (2n)!/2n.

Briefly, the approach to the problem is a depth-first search, in which the remaining

nodes are ranked by means of hub scores at each step and the order of the depth-first

search is determined by the ranking. The search begins from node 0 by ranking the

pick-up and drop-off nodes P of all customers. Then, the node p∗ with the high-

est ranking is added to the sequence and the ranking procedure is repeated for the

remaining nodes P \ {p∗}.

More formally, at each recursion step, we have the current sequence S and the set

of remaining nodes RS (nodes that can possibly be added to the sequence). Then,

the remaining nodes RS are ranked by hub scores. The recursion continues for all

sequences (S , i), where i ∈ RS in ranked order. In the following, we describe the

ranking of remaining nodes in more detail.

Hub scores

The ranking of the remaining nodes RS is determined in two phases: First, the adja-

cency matrix of the remaining nodes is determined by studying feasible transitions

between the nodes. Then, the hub vector is calculated by means of Equation (2.1).

The definition of feasible transitions is similar to the one studied in [27], in which

the set of admissible arcs between the pick-up and delivery nodes is constructed as a

preprocessing step in the pickup and delivery problem. The set of admissible arcs is
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made up of arcs which a priori satisfy the precedence, capacity and time constraints

of the problem. The difference in Publication V is that the feasibility of transitions is

defined as a function of the state of the vehicle (see Figure 2.3).

b

i

j

Space

Timetb tb + TbiEi Lj

a

ta

Figure 2.3. Feasible transitions. The figure shows the locations and time windows of two nodes i and
j. If the vehicle left from a at the instant ta, visited node i and moved directly to node j, the
time constraint Lj would be satisfied. However, assuming that at the instant tb the vehicle
is located at b, the transition i → j is seen to be S -infeasible.

The elements of the adjacency matrix are defined for all i, j ∈ RS by Li j = 1, if

i � j and i → j is S -feasible, Li j = 0 otherwise.

After the adjacency matrix L has been determined, the hub vector h = (h1, . . . , h|RS |)

of L is determined by Equation (2.1) (here the remaining nodes i ∈ RS are numbered

from 1 to |RS | for clarity). A large hub score of node i means that many nodes can be

visited after i. The hub ranking method is defined as follows.

Definition (Hub ranking). The remaining nodes i ∈ RS are sorted in descending

order of the hub scores hi: The branches are evaluated in the order i1, . . . , i|RS |, where

hi1 ≥ hi2 ≥ . . . ≥ hi|RS |
.

The hub scores are used to give guidance to the algorithm regarding the order in

which the depth-first search visits the nodes. In the best case, no infeasible states are

encountered and thus the complexity is of order O(n3).

A heuristic extension

The effort of the algorithm can be controlled by limiting the number of branches

that are evaluated by means of a positive parameter J. For example, if J = 1, the

algorithm constructs a single sequence and stops when the set of remaining nodes is

empty. By increasing J the search space is expanded and if J = (2n)!/2n (the number

of permutations that satisfy precedence constraints), the heuristic coincides with the

exact algorithm.
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Figure 2.4. Experiment 1. The complexity of the exact algorithm with respect to the number of cus-
tomers on a logarithmic scale. The three curves represent, as a function of the number of
customers, the average number of feasible sequences for R = 2, 2.5, 3 and μ = 1800s.

2.1.4 Numerical experiments

The following paragraphs present a summary of the computational results reported

in Publication I. The exact and heuristic versions of the single-vehicle advanced in-

sertion algorithm were tested on a set of problems involving different numbers of

customers and different time window widths determined by a travel time ratio R de-

scribing the maximum allowed ratio of travel time to direct ride time. The pick-up

and drop-off points of customers were chosen randomly from a square-shaped service

area and the ride times between the points were modeled by euclidean distances.

At first, the complexity of the problem was studied with respect to three parameters,

namely i) the number of customers N, ii) travel time ratio R and iii) the average time

interval μ between customer requests.

Then, the performance of the heuristic with different objective functions was eval-

uated. The complexity was measured in terms of the number of sequences evaluated

by the heuristic.

The experiments were performed on a standard laptop computer with a 2.2 GHz

processor. The CPU times and the number of evaluated sequences appeared to have a

roughly linear relationship. A typical problem instance involving 20 customers could

be solved up to optimality within less than a second.

Experiment 1: Number of customers

Figure 2.4 shows, as a function of the number of customers, the average number of

feasible sequences in feasible problem instances on a logarithmic scale.

Referring to the figure, it can be seen that the complexity of the problem increases

exponentially with respect to the number of customers with all studied values of the

travel time ratio. In addition, the complexity is increased with the travel time ratio.
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Figure 2.5. Experiment 2. The complexity of the exact algorithm with respect to travel time ratio on
a logarithmic scale. The three curves represent, as a function of the travel time ratio, the
average number of feasible sequences for N = 5, 10, 20 and μ = 1800s.
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Figure 2.6. Experiment 3. The complexity of the exact algorithm with respect to the average time inter-
val between customers. The solid lines represent the average number of feasible sequences
in feasible problem instances and all problem instances, on a logarithmic scale for N = 10
and R = 3. The dashed line corresponds to the fraction of problem instances, for which at
least one feasible solution was found.

Experiment 2: Travel time ratio

Figure 2.5 shows, as a function of travel time ratio, the average number of feasible

sequences in feasible problem instances on a logarithmic scale.

The figure shows that the effect of the travel time ratio on the complexity of the

problem is significant. The fact that the slopes of the curves increase with R on

the logarithmic scale indicates that the relation between complexity and R is super-

exponential.

Experiment 3: Time interval

The solid lines in Figure 2.6 represent, as a function of average time interval between

requests, the average number of feasible sequences in (i) feasible problem instances

and (ii) all problem instances, on a logarithmic scale. The dashed line corresponds to

the fraction of problem instances, for which at least one feasible solution was found.

The figure indicates that the complexity of feasible problem instances decreases
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Figure 2.7. Experiment 4. The performance of three different heuristic objective functions as functions
of degree L. The curves represent the fractions of instances for which a feasible solution
was found by the objective functions (compared to the exact algorithm), for N = 20, R = 3
and μ = 1800s. The total slack time objective function outperforms the other two in all
studied cases.

exponentially with respect to the average time interval μ. On the other hand, the

probability of finding at least one feasible solution is increased with μ. By looking at

the curve corresponding to the average complexity of all problem instances (including

infeasible cases), it can be seen that the complexity is maximized at a certain time

interval (μ = 24 minutes in this case), in which both the probability of finding a

feasible solution and the number of feasible sequences in feasible cases are relatively

large.

Experiment 4: Objective functions

Let us study the performance of three different heuristic cost functions as a function

of the degree L of the heuristic. Figure 2.7 shows the fraction of problem instances

for which a feasible solution was found by the heuristic (compared to the exact algo-

rithm).

Referring to the figure, it can be seen that the total time slack cost function is

capable of finding a feasible solution to randomized problems most often, while the

performance of the route duration cost function is worst of the three algorithms. Note

that as the degree L is increased, the fraction of feasible solutions converges to 1 for

any heuristic cost function, since whenever L ≥ (2N)!
2N , the heuristic coincides with the

exact algorithm regardless of the studied problem.

2.2 Multi-vehicle dial-a-ride problem

Most recent studies related to the dial-a-ride problem are related to the multi-vehicle

case, in which a set of vehicle routes is designed for a predefined set of customers,
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see for example [21, 20, 8, 70, 84, 56, 63, 33, 9, 11, 12]. Reference [11] examines

the multi-vehicle dial-a-ride problem as a constraint satisfaction problem, in which

the goal is to find a set of m feasible vehicle routes that serve all customers, where m

is the number of vehicles, or to prove that such a set of routes does not exist. In this

reference, it is noted that an algorithm for checking the feasibility of a multi-vehicle

DARP instance has two main applications: 1) Determining the feasibility can be the

first phase in an optimization algorithm in a static setting, where all trip requests

are known, for example, one day in advance. 2) In dynamic services, a constraint

satisfaction algorithm can be used for deciding whether to accept or reject incoming

user requests.

2.2.1 The maximum cluster algorithm [Publication VI]

Publication VI presents the following exact approach to the multi-vehicle DARP as a

constraint satisfaction problem. By using the ranking algorithm described in Section

2.1.3 as a subroutine, the method produces a feasible solution to any instance or

proves that the instance is infeasible. The main idea is that the vehicle routes are

constructed one by one, each maximizing the number of served customers in the set

of remaining customers. The customers are denoted by numbers 1, . . . , n and the

vehicles are denoted by numbers 1, . . . ,m.

First, a route is constructed for vehicle 1, serving as many customers as possible.

Then, the process is repeated with vehicle 2 for the set of customers that were not

served by vehicle 1 and so forth (see Figure 2.8). If a feasible solution is not found

directly, the process is repeated by attempting to add the remaining customers to the

existing vehicle routes.

The above approach produces a set of customer-vehicle assignments such that for

each vehicle there exists a feasible route serving all customers assigned to the ve-

hicle or proves infeasibility by going through all possible sets of customer-vehicle

assignments.

2.2.2 A priori screening

Since the number of possible partitions of n customers into m sets is equal to the

Stirling number of the second kind, that is, |P| = S 2(n,m) = 1
m!
∑m

i=0(−1)i
(
m
i

)
(m −

i)n, going through all possible partitions is computationally taxing. However, some

instances are rendered infeasible by studying routes consisting two customers: If all

possible routes consisting of customers {i, j} are infeasible, an arc between i and j is

formed (customers i and j can not be assigned to the same vehicle). Then, we find

the maximum clique C within the set of customers (the largest set for which there is
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Figure 2.8. A one-dimensional example of the approach to the multi-vehicle problem involving five
customers and three vehicles. The first route is constructed by maximizing the number of
customers that can be served by a single vehicle (Figure b). Then, the customers 2 and 4
served by the first vehicle are removed from the set of remaining customers and the process
is repeated for the second vehicle (Figure c). Finally, a route is constructed for the third
vehicle, serving the last remaining customer 3 (Figure d).

an arc between all i, j ∈ C). If the size |C| of the maximum clique is greater than the

number m of vehicles, the instance is infeasible.

Otherwise, since the customers in the maximum clique C = {c1, . . . , c|C|} all have

to be assigned to different vehicles, with no loss of generality we may initially assign

customer c j to vehicle j for all j ∈ {1, . . . , |C|}. Then, the set of feasible vehicles

Vi for each customer i is determined by noting that if there is an arc between i and

c j ∈ C, customer i may not be assigned to the same vehicle as c j.

Note that assigning each customer i a vehicle number vi ∈ Vi defines a unique

partition. Since the vehicle number of customer i can be chosen from the set Vi of

feasible vehicles, the number of a priori feasible partitions is given by |P′| =
∏n

i=1 |Vi|,

which yields the following result.

Theorem 2. The number of a priori feasible partitions satisfies |P′| ≤ mn−|C|.

In summary, the worst case complexity is high especially when the set of a priori

feasible partitions P′ is large. However, as will be seen in the next section, solutions

to problems with loose constraints are usually found with little effort. On the other
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hand, tight constraints reduce the set of a priori feasible partitions P′ and thus also

the complexity of the algorithm.

2.2.3 Numerical experiments

In the following, an algorithm using the ranking idea is compared with two existing

solution methods, namely, a tabu search algorithm [21] and a constraint programming

(CP) algorithm [11].

The ranking algorithm was implemented in Matlab and the tests were performed

on a 2.2 GHz Dual Core Intel PC. The tabu and CP algorithms were tested on a 2.5

GHz Dual Core AMD Opteron computer [9].

In the studied instances the pick-up and drop-off points are located in a 20 × 20

square and the ride times between points (in minutes) are equal to Euclidean dis-

tances. The time windows have 15 minutes of length. The instances are described in

more detail in [20, 69, 11].

The results of the tests are shown in Table 2.2. The first column shows the instance

labels of the form am-n or bm-n, where m indicates the number of vehicles and n cor-

responds to the number of customers. The other columns show the average time (in

seconds) needed to solve the instances and the corresponding modifications by using

the different solution methods, calculated over ten runs. A number in parentheses in-

dicates that the instance was proven to be infeasible, a dash indicates that a solution

was not found in three minutes computing time and a star indicates that results for

the instance have not been reported.

By looking at the results obtained by the ranking algorithm we see that most in-

stances were solved within a fraction of a second. Except for a single modified in-

stance (b7-84, 75% of vehicles), the ranking algorithm produced a feasible solution

or proved infeasibility in all instances. Note that the ranking algorithm produced a

feasible solution or proved infeasibility in the modified instances with six vehicles

and 48 customers (b6-48), for which results have not been previously reported.

The CPU times obtained by the ranking algorithm are typically of order ten times

smaller compared to the results of the tabu and CP algorithms. The best improvement

factor is 109.5/0.04 ≈ 2700 compared to CP (instance b5-60) and 78.5/0.06 ≈ 1300

compared to tabu (instance a4-48, 75% of vehicles). Although the algorithms were

tested on different platforms, the results seem to justify the efficiency of the ranking

algorithm on the test instances. We acknowledge that there are instances in which

tabu and CP produced a feasible solution or proved infeasibility faster than the rank-

ing algorithm. However, the results suggest that the ranking algorithm may have

practical importance since it is capable of handling large problems in short computa-

tion times.
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Instance Original RT=30 RT=22 75 % of vehicles

Tabu CP Ranking Tabu CP Ranking Tabu CP Ranking Tabu CP Ranking

a4-40 0.8 0.5 0.02 0.8 0.5 0.02 0.5 0.3 0.05 1.7 0.3 0.64

a4-48 1.0 0.5 0.05 1.0 0.5 0.05 1.3 0.4 0.05 78.5 0.6 0.08

a5-40 0.3 0.3 0.02 0.3 0.3 0.02 0.3 0.3 0.02 1.3 0.3 0.02

a5-50 0.7 0.5 0.04 0.7 0.5 0.04 0.6 0.6 0.03 3.9 1.3 2.0

a5-60 1.4 1.0 0.05 1.4 1.0 0.05 1.5 0.9 0.05 - 24.5 64.7

a6-48 0.4 0.6 0.03 0.4 0.6 0.03 0.4 0.7 0.03 1.1 0.5 0.07

a6-60 1.0 5.6 0.04 1.0 5.6 0.04 - (1.1) (0.63) 11.6 6.2 10.7

a6-72 1.9 5.0 0.06 1.9 5.0 0.06 - (1.7) (0.77) 5.7 2.0 0.90

a7-56 0.5 1.8 0.04 0.5 1.8 0.04 - (0.6) (0.40) 0.9 1.5 0.06

a7-70 1.7 41.5 0.06 1.7 41.5 0.06 1.4 7.6 0.06 3.2 5.1 0.06

a7-84 2.7 3.4 0.08 2.7 3.4 0.08 3.0 4.1 0.08 7.5 3.5 0.07

a8-64 0.8 6.2 0.05 0.8 6.2 0.05 - (1.9) (0.84) 1.1 2.5 0.04

a8-80 1.5 8.5 0.07 1.5 8.5 0.07 1.8 6.0 0.07 3.0 3.6 0.07

a8-96 3.5 37.7 0.11 3.5 38.7 0.11 - (3.7) (1.72) 8.1 5.3 0.15

b4-40 0.6 0.4 0.02 0.4 0.3 0.05 0.4 0.3 0.05 - (0.1) (0.40)

b4-48 1.3 0.4 0.03 1.6 0.4 0.08 - (0.1) (0.32) - (0.1) (0.59)

b5-40 0.4 0.3 0.03 0.4 0.4 0.03 - (0.1) (0.27) - (0.1) (0.37)

b5-50 1.2 6.8 0.06 0.9 0.8 0.05 1.1 0.9 0.18 - (0.1) (0.58)

b5-60 1.5 109.5 0.04 1.8 3.1 0.04 1.6 1.2 0.04 - (0.1) (0.78)

b6-48 0.3 * 0.02 * * 0.02 * * 0.02 * * (0.54)

b6-60 0.9 5.1 0.04 1.5 1.5 0.04 1.0 1.4 0.04 5.3 3.8 3.2

b6-72 2.1 27.3 0.05 2.3 2.4 0.06 2.4 2.4 0.05 9.7 25.6 5.1

b7-56 0.5 13.3 0.04 0.6 1.5 0.03 0.5 1.5 0.04 2.1 3.9 0.19

b7-70 1.4 5.6 0.08 1.6 18.4 0.08 1.3 2.7 0.05 12.6 78.7 4.3

b7-84 3.0 25.8 1.60 2.9 6.3 0.08 - (0.1) (0.64) - - -

b8-64 0.7 12.7 0.09 0.8 1.9 0.09 0.8 1.9 0.04 1.8 4.8 0.98

b8-80 1.9 23.9 0.07 1.8 19.2 0.07 - (0.5) (1.28) 4.0 13.9 0.27

b8-96 4.1 149.1 0.12 3.9 34.8 0.12 3.9 56.1 0.15 8.2 - 0.74

Table 2.2. Comparison between a tabu search algorithm [21], a constraint programming algorithm [9]
and the ranking algorithm. The results obtained by the first two algorithms are given in
[9, 11]. The upper table shows the average time (in seconds) needed to solve the instance of
the dial-a-ride problem in the first column by using the different solution methods, calculated
over ten runs. The times without parentheses indicate that a feasible solution was found and
the times in parentheses indicate that the instance was proven to be infeasible. A star (*)
indicates that the computing time has not been reported.
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3. Journey planning

The urban journey planning problem involves determining a path, possibly involving

transfers between different transport modes, from a specified origin to a similarly

specified destination in a transport network. Common criteria used for evaluating

journeys include the total duration, number of transfers and cost [2, 89, 64, 58, 41,

42, 40, 75, 76, 88, 14, 19, 15, 17, 49, 36, 5, 73].

Reference [89] classifies these journey planning models into the following types of

formulations: 1) the headway-based model, in which a constant headway for each

transit line is assumed [83] and 2) the schedule-based model, which assumes a fixed

route and timetable for each transit line.

Publication II extends approach 2) into a dynamic model taking into account the

uncertainty of transport services (buses, trams, trains, ferries, . . . ). In contrast to

existing itinerary planning algorithms designed for scheduled public transport net-

works, where the path is a priori optimized with respect to an objective, for example,

[89, 2], the realized journey may differ from the original plan.

Passenger information systems provide real-time information on the status of trans-

port services (buses, trams, trains, ferries, . . . ) via mobile devices and displays at

public transport stops. This makes it possible for a commuter to dynamically modify

the planned journey in case of a delay or cancellation. For example, if a transfer

from a transport service to another is unsuccessful due to a delay, the commuter may

reconsider the remaining path to the destination. Clearly, the importance of being

able to modify the planned journey dynamically is emphasized when the number of

transfers between different transport services is increased.

Taking into account the uncertainty in transport services is particularly important

in difficult weather conditions when delays are common. In addition to traditional

public transport with fixed schedules, uncertainty should be given special attention in

flexible transport services without fixed routes [60]. If the vehicle routes are modified

in real time, the estimation of travel times between subsequent stops is more difficult

than in the case of fixed routes.
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Figure 3.1. The difference between stochastic and deterministic journey planning for a commuter trav-
eling from A to D. The four points represent public transport stops (A, B,C,D) and the
arrows between them represent public transport services (1, . . . , 5). Initially, there are three
possible journeys from A to D: (1, 2), (3, 4) and (3, 5). If the commuter initially chooses
service 1, the success of the journey is dependent of the success of the transfer from 1 to 2
at stop B. If the commuter chooses service 3 first, the destination is reached if one of the
transfers 3 → 4 or 3 → 5 is successful at stop C.

A simplified example clarifying the main difference between dynamic and a priori

journey planning is shown in Figure 3.1.

Generally, a commuter wishes to travel from an origin node vo to a destination

node vd within a time horizon [0,T ] using different transport services. Each transport

service is represented as a sequence of legs. Each leg is associated with a start node

and end node, as well as a random start time and end time. Adjacent nodes in the

network are connected with similarly defined walking legs.

A path from the origin to the destination is represented as a sequence of legs, in

which the start node of each leg is equal to the end node of the previous leg. We

assume that during the execution of a leg, the commuter receives information on

which services have already visited the end node and which are yet to arrive. In

other words, the customer “sees” the available successor legs of the current leg and

may choose to (i) stay in the vehicle, (ii) transfer to another vehicle or (iii) get off

the vehicle and start walking towards a nearby stop (or the destination). The goal

the above context is to determine an optimal policy specifying the actions that are

executed in different situations in order to optimize reliability, ride time, waiting

time, walking time, the number of transfers of a combination of these objectives.

Dynamic path finding problems (see [35, 6, 32, 57, 25, 47, 46, 4, 30, 74, 80])

are often modeled as Markov decision processes [66, 65], in which the actions of

a decision maker at a given state are independent of all previous actions and states.

Publication II presents a conditional Markov model, in which the path history is

included in each state by defining states as sequences of legs in the transport network.

That is, the current state is determined by the path taken so far. This model is further

approximated in Publication III, where the current state is defined as the current leg.
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In addition to public transport, a journey planning problem with a similar objective

arises in freight transportation by for-hire carriers.

3.1 Stochastic model of a scheduled network [Publication III]

Let V denote a set of nodes representing public transport stops in a specific area and

let K ⊂ N denote a set of public transport services operating in this area, indexed by

natural numbers.

The route of each service k ∈ K is represented as a sequence of nodes (vk
1, . . . , v

k
m)

in V. Service k departs at node vk
1 at a specific time and proceeds to nodes vk

2, . . . , v
k
m

in the order determined by the route. The expected passing time of service k at node

vk
j is denoted by tk

j . Thus, a service k can be represented as a sequence of nodes and

expected passing times ((vk
1, t

k
1), . . . , (vk

m, t
k
m)), see Figure 3.2.

Timetk1 tk2 tk3 tk4 tk5 tk6

vk1

vk2

vk3

vk4

vk5

vk6

Figure 3.2. The route and schedule of a transport service. The points represent the nodes vk
j that define

the route of service k and the real numbers tk
j on the timeline represent the expected passing

times of the service at the nodes.

3.1.1 Service legs and walking legs

Each service k ∈ K is decomposed as a set of scheduled legs between subsequent

stops. That is, each leg has a start node, end node, expected start time and expected

end time. By this decomposition, any path in the transport network can be represented

as a sequence of legs.

After each service leg, the commuter may choose to continue the journey by foot.

Thus, with each service leg is associated leg a set of walking legs beginning at the

end of the service leg, see Figure 3.3a.

3.1.2 Transfers

A transfer from leg i to leg j is possible only if leg j begins at the node from which

i ends. Letting L denote the set of legs and S i denote the successor set of leg i, the
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Figure 3.3. a) A sample transport network with eight stops and five transport services consisting of
a single leg (solid arrows 3, 4, 6, 8, 10). Adjacent stops are connected with walking legs
(dashed arrows 2, 5, 7, 9). b) A directed graph representing the relations of legs in Figure
3.3a. The origin and destination are represented by legs 1 and 11. The transfer probability
from leg i to leg j is denoted by pi j. Note that p12 = p45 = p67 = p69 = 1, since 2, 5, 7 and
9 are walking legs.

transfer probability from leg i to leg j is defined as a real number pi j satisfying

pi j

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

= 1, if j ∈ S i and k j < 0 ( j is a walking leg),

∈ [0, 1], if j ∈ S i and k j > 0,

0, otherwise.

(3.1)

Clearly, the legs and transfer probabilities form a directed acyclic graph, as in [66],

see Figure 3.3b. For analysis, we assume that the transfers between legs are indepen-

dent events.

Note that transfers to walking legs are always possible. However, the success prob-

ability of a transfer between successive legs of the same service may be less than one

due to vehicle breakdowns. Moreover, in the determination of transfer probabilities,

one should take into the account the fact that the breakdown of a vehicle running on

rail tracks blocks the way for other vehicles using the same tracks.

3.1.3 Paths

A path can be represented as a sequence of legs (i1, . . . , im) satisfying ih+1 ∈ S ih

for all h ∈ {1, . . . ,m − 1}, see Figure 3.4. The path is successful with probability∏m−1
h=1 pihih+1 and the subjective price C ((i1, i2, . . . , im)) of the path is defined as a

linear combination of expected waiting time, number of transfers, expected ride time,

expected walking time and reliability.

Timewalking in vehicle in vehicle walking

leg 1 leg 2 leg 3 leg 4

waiting
at v2

waiting
at v3

at v5At v1

p12 p23 p34 = 1

t1 t′1 t2 t′2 t3 t′3 = t4 t4

Figure 3.4. Representation of a path. The ticks on the time axis denote the schedule of a path from v1

to v5. The path is represented by four legs: 1) A commuter starts walking from the origin
v1, and arrives at stop v2. 2) A transport service departs at v2 and travels to stop v3. 3) A
transport service departs at v3 and arrives at stop v4. 4) The commuter continues by foot to
the destination v5. Note that the path is successful with probability p12 p23.
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3.2 Problem solution

In Section 3.2.1, we model the journeying problem as a Markov Decision Process

and propose an algorithm for maximizing the general objective function. In Section

2.1.3, we present a simplified algorithm for maximizing the reliability of a journey.

3.2.1 Markov Decision Process

In order to be able to handle a general objective function, we propose a finite-state

Markov decision process, where the goal is to determine an optimal policy with re-

spect to the objective function.

A policy defines for each leg i ∈ {1, . . . , n − 1} a ranking of successor legs i′ ∈ S i.

The policy is used to choose the best transfer options during the journey as follows:

At the end of each leg i ∈ {1, . . . , n − 1}, the transfer options to successor legs i′ ∈ S i

are revealed. After the transfer options are revealed, letting X ⊂ S i denote the set of

successor legs to which a transfer is possible, the commuter transfers to the leg x ∈ X

with the highest ranking, see Figure 3.5.

The above approach produces relatively easy to follow travel information, since the

commuter knows the ranking of successor legs before each transfer. Note that the

policy can be re-optimized during the journey if the transition probabilities between

legs are updated by using real-time traffic information. That is, a new optimal policy

for the remaining part of the journey can be calculated at t ∈ [0,T ] by using the up-

dated transition probabilities available at t. This type of dynamically adaptive policy

could be useful in situations in which there is substantial uncertainty in travel times.

84

65

95

23

47

16

Ranking of suc-

cessors of leg 84

End of leg 84:

transfer options

are revealed

1 : 23 ���1 : 23

2 : 16 2 : 16 ←

3 : 65 ���3 : 65

4 : 47 ���4 : 47

5 : 95 5 : 95

Figure 3.5. A ranking example. The left column of the table shows the a priori ranking of successors
of leg 84. When the commuter is at the end of leg 84, the available transfer options (16
and 95) are revealed. The commuter then transfers to leg 16, which has the highest ranking
among the possible transfer options.

Formally, the parameters of the Markov decision process (S , A, P·(·, ·),R·(·, ·)) are

defined as follows.
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States = Legs

The set of states S is equal to the set of legs1 numbered from 1 to n, that is, S =

{1, . . . , n}. State 1 is referred to as the origin state and state n is referred to as the

destination state.

Actions

The set of actions A consists of sets As of actions available at states s ∈ S . An

action a ∈ As is defined as a preference order of the successor states s′ ∈ S s, that is, a

bijection a : S s → {1, . . . , |S s|}, where a(s′) denotes the ranking of the successor state

s′ ∈ S s in the preference order. The successor states of s ranked by the preference

order a are denoted by sa,a(s′). Given the the sorted successor states sa,1, . . . , sa,|S s | ∈

S s of s, the commuter transfers to state sa,k if (i) the transfer to sa,g is unsuccessful

for 1 ≤ g < k and (ii) the transfer to sa,k is successful.

Transition probabilities

Pa(s, s′) is the probability that action a in state s at step t will lead to state s′ ∈ S s at

step t + 1. Given the preference order sa,1, . . . , sa,|S s | ∈ S s defined by action a ∈ As,

since successful transfers are assumed to be independent2 events, we have

Pa(s, sa,k) =
h∑

k=1

pssa,k

k−1∏
g=1

(1 − pssa,g), (3.2)

where pssa,k denotes the transfer probability from s to sa,k, as defined in Equation

(3.1).

Rewards

R(s, s′) is the expected immediate reward received after transition from state s ∈ S to

state s′ ∈ S with transition probability Pa(s, s′). Since the objective is to minimize

the subjective price of the trip, R(s, s′) is defined as the difference in subjective price

due to the transition from s to s′.

3.2.2 Optimal policy

The solutions to Markov decision processes are characterized as policies, that is,

functions π that specify the action a(s) that the commuter chooses when in state s.

The goal is to find an optimal policy, that is, a policy that maximizes the expected

reward. Generally, the calculation of an optimal policy requires two arrays indexed

by state: value V , which contains real values, and policy π which contains actions.

The value V(s) of s corresponds to the expected rewards to be earned by following a

policy that maximizes the expected rewards from s onwards.

1A more detailed model described in Publication II defines states as sequences of legs.
2See Publication II for a model in which the transfers between services are not independent.
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Reference [7] defines the value V(s) by

V(s) := max
a∈As

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
s′∈S s

Pa(s, s′)
(
R(s, s′) + V(s′)

)⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.3)

for all s ∈ S . Note that V(n) = 0 since S n = ∅.

An optimal policy is characterized as follows: When at state s, the available transfer

options R ⊂ S s to successor states are revealed. The commuter transfers to a state

s′ ∈ R for which R(s, s′) + V(s′) is maximized. Thus, an optimal action a at state s is

defined by

R(s, sa,1) + V(sa,1) ≥ . . . ≥ R(s, sa,|S s |) + V(sa,|S s |), (3.4)

where the successor states ranked by action a are denoted by sa,a(s′) for all s′ ∈ S s.

Equation (3.4) gives an optimal action for a state s, given that the values V(s′) of its

successor states are known. In the following, we present an algorithm for calculating

the values for all states that are reachable from the origin state.

3.2.3 Backward induction algorithm

The values V(s) of states can be determined by means of backward induction. The

recursive function Rec(s) executes the following procedures at each recursion step:

1. Check if the value of the current state s has been determined. If yes, return the

value.

2. For all successors s′ of the current state: Calculate the value of s′ by calling

Rec(s′).

3. Determine the optimal action for the current state s by ranking the successors.

4. Calculate and return the value of the current state.

By executing Rec(1), the program recursively calculates the values and optimal

actions for all states s that are reachable from the origin state 1. Initially, we only

know the value of the destination state, that is, V(n) = 0. Thus, the first states for

which the value can be calculated are the ones that precede the destination state.

The algorithm then proceeds backwards until the value V(1) of the origin state is

calculated.

Since the algorithm involves sorting, the complexity is bounded above byO(nm log m+

nm) = O(nm(1 + log m)), where m = maxs∈{1,...,n−1} |S s| is the size of the largest suc-

cessor set. Note that although the total number of possible actions for a successor

set S s equals |S s|!, the complexity of the algorithm is smaller due to the fact that the

successors of each state are ordered only once. That is, the algorithm goes through

all states reachable from the origin state but not through all possible actions.
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3.2.4 Expected number of paths

In the following we present a straightforward method for maximizing the reliability of

a journey by redefining the value of a state. Namely, the value of state s ∈ {1, . . . , n−

1} is defined as the expected number of successful paths from s to the destination

state n. The approach is motivated by the idea that paths that allow several detours

are considered more reliable than paths with no alternatives (see Figure 3.1).

Definition. Let P(s) denote the set of paths from state s ∈ {1, . . . , n − 1} to state n.

For each path r ∈ P(s), let P(r) denote the probability of success of r. The value of

state s is defined by hs =
∑

r∈P(s) P(r).

In this formulation, when the commuter is at state s and sees the available transfer

options F to successor states, the commuter transfers to the state s′ ∈ F for which

R(s, s′) + hs′ is maximized.

Theorem 3 establishes a relation between eigenvectors and the expected number of

successful paths hs. For this purpose, we define a (weighted) sink graph as follows.

Definition. Let G = (X, A) be a weighted directed acyclic graph, where a weight

pss′ ∈ [0, 1] is assigned to each arc (s, s′) ∈ A and let k ∈ X be a node such that

(k, s) � A for all s ∈ X. The graph Gk = (X, A ∪ (k, k)), where pkk = 1, is called a

sink graph.

Similarly as in Definition 2.1.3, a sink graph is a directed acyclic graph (X, A) with

the exception that one node k ∈ X with zero outdegree is associated with a loop (k, k).

Theorem 3. Let P denote the adjacency matrix of a sink graph Gk = (X, A), where

X = {1, . . . , |X|}, let hs denote the expected number of successful paths from s to n for

s ∈ X \ {k} and let hk = 1. Then, h = (h1, . . . , h|X|)T is a unique dominant eigenvector

of P.

Theorem 3 states that by constructing a sink graph, the expected number of success-

ful paths hs from state s to the destination state n is given by the dominant eigenvector

of the adjacency matrix P consisting of the transfer probabilities pss′ between states

(and pnn = 1).

The expected number of successful paths can also be calculated for all states that are

reachable from the origin state by means of a procedure similar to the one described

in Section 3.2.3. Since calculating the expected number of successful paths does not

involve sorting, the complexity of the algorithm is of order O(n + |A|), where A is the

set of transfers for which pss′ > 0. Letting m = maxi∈{1,...,n−1} |S i| denote size of the

largest successor set, the complexity is bounded above by O(n(m + 1)).
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3.3 Numerical experiments

In the following, computational results obtained by backward induction are pre-

sented. The transfer probabilities between legs are determined by assuming gamma

distributed ride times similarly as in [71, 18]. More precisely, given the expected ride

time ti of leg i, we define the ride time τi as a random variable τi ∼ Gamma(αti, β, δti),

where the Gamma(α, β, δ) distribution is defined by the probability density function

f (x) =
(x − δ)α−1e−(x−δ)/β

βαΓ(α)
for x > δ ≥ 0. (3.5)

The numerical examples are restricted to calculating the the expected number of fea-

sible paths and the probability of reaching the destination during a pre-defined time

horizon. However, a general objective function defined as a combination of expected

waiting time, number of transfers, expected ride time, expected walking time and

reliability is incorporated with minimal effort (see Equation (6) in Publication III).

3.3.1 Description of instances

The Helsinki tram network consists of ten tram lines, operated by 50 trams, and 154

stops. The tram schedules of Helsinki Region Transport are available at [39] and the

instances are available at http://math.tkk.fi/%7elehame/dju.

In each instance, the origin and destination nodes vo and vd are chosen randomly

from the set of 154 tram stops, see Figure 3.6. The departure time is set equal to 9:00

and the length of the time horizon is defined by T = 1.6d(vo, vd), where d(vo, vd) is the

expected duration of the shortest path from vo to vd in the tram network. Each (tram)

service k operating within the time horizon is determined by a scheduled route ex-

tracted from the timetables, that is, a sequence ((vk
0, t

k
0), . . . , (vk

p, t
k
p)) of nodes, where

tk
i is the expected passing time at node vk

i for i = 0, . . . , p. Each service is decomposed

as a set of legs.

3.3.2 Results

The computational results of ten instances are shown in Table 3.1. For each instance

the name, the probability V(1) of reaching the destination during the time horizon,

the expected number of successful paths h1, and their respective computation times

are given. By looking at the computation times, we see that all instances were solved

within a fraction of a second. In addition, calculating the expected number of suc-

cessful paths is slightly faster than calculating probability, which involves sorting.

Since the expected number of successful paths represents the number of alterna-

tives, even a large value of h1 does not guarantee that the destination will be reached

in time (b10). On the other hand, small values of h1 seem to correspond to small prob-
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Figure 3.6. The tram network of Helsinki consisting of ten tram lines and 154 stops.

Table 3.1. Computational results. The table shows the probability V(1) of reaching the destination leg
n from the origin leg 1, the expected number of successful paths h1 from 1 to n and the
corresponding computation times in seconds.

Instance
Probability Exp. number of paths

CPU time (s) V(1) CPU time (s) h1

b1 0.23 0.97 0.15 106.88

b2 0.06 1. 0.04 42.31

b3 0.06 1. 0.04 20.72

b4 0.06 0.46 0.04 1.25

b5 0.31 0.97 0.22 7.05

b6 0.1 0.91 0.07 2.67

b7 0.09 0.85 0.06 12.72

b8 0.05 0.7 0.03 0.7

b9 0.12 0.99 0.08 25.67

b10 0.08 0.79 0.06 83.34

abilities (b4 and b8). For instances b2 and b3 with V(1) = 1, the expected number of

successful paths gives additional information: Instance b2 provides more alternative

routes for the commuter than b3.
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4. Economic equilibrium

Publication IV introduces a stochastic network model to characterize the behav-

ior of customers and transport operators in a demand-responsive transport market.

Customers seek rides to minimize travel time and transport operators aim to max-

imize profit. Demand-responsive transport is considered as a complementary ser-

vice to conventional public transport services and customers are assumed to choose

the utility-maximizing alternative from the available transport modes. An economic

equilibrium is defined as a state in which the demand meets the supply of trips: the

choices of transport operators do not change if the demand remains constant and the

choices of customers do not change if the supply of trips remains constant.

This approach is somewhat similar to the taxi model proposed in [85]. The main

difference is that in a taxi service, customers are delivered to their destinations di-

rectly, whereas in a demand-responsive transport service, a vehicle can serve several

customers simultaneously and therefore a customer’s trip from an origin to a destina-

tion is not necessarily a direct one. In other words, the route of a taxi is determined

by two points (origin and destination), but demand-responsive transport routes may

include several stops, similarly as bus routes.

The stochastic model for demand-responsive transport is governed by the following

preliminary assumptions.

1. There are N vehicles that produce trips between origins and destinations in a spe-

cific operating zone. Different trips may have different prices and travel times. A

single vehicle can simultaneously serve several customers.

2. The subjective price of a trip is defined as a combination of ticket price and travel

time. Customers choose between trips provided by DRT and a virtual mode1 by

comparing the subjective prices of different trips.

1The virtual mode represents alternatives for the DRT service.
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4.1 Demand

Let us consider a set of nodes I representing the origins and destinations of customers

in a specific operating zone. Each pair of nodes (i, j) ∈ I × I is associated with a

specific direct ride time ti j.

A trip from an origin i0 ∈ I to a destination id ∈ I is defined as an acyclic sequence

of nodes (i0, i1, . . . , id−1, id) in I. When a customer takes a trip (i0, i1, . . . , id−1, id), the

customer enters a vehicle at i0, which visits the nodes i1, . . . , id−1 before the drop-off

of the customer at id. That is, the trip denotes the path of the vehicle that transports

the customer from i0 to id. For example, a direct trip from i0 ∈ I to id ∈ I, denoted

by (i0, id), describes a trip in which a customer enters a vehicle at i0 and the vehicle

drives directly to id without stopping between i0 and id.

Each trip r has a specific ticket price pr. Note that the prices of trips with the same

origin and destination may be different. Each customer seeks a trip to minimize the

subjective price gDRT
r , defined as a combination of ticket price pr and travel time

tDRT
r , that is,

gDRT
r = pr + βtDRT

r , (4.1)

where pr is the ticket price for the trip r and β is the customers’ monetary value of

unit travel time.

The choices of customers are determined by a logit model as follows. The subjec-

tive trip price of a trip from i to j provided by the virtual mode is denoted by ḡi j. The

probability that a customer traveling from i to j chooses a DRT trip r ∈ Ri j, where

Ri j denotes the set of trips from i to j, is defined by

PDRT
r =

exp(−θgDRT
r )

exp(−θḡi j) +
∑

r′∈Ri j exp(−θgDRT
r′ )
, (4.2)

where θ is a nonnegative parameter describing the uncertainty in transport services

and demand from the perspective of customers. Clearly, the above logit model has

the property of independence from irrelevant alternatives, that is, the ratio Pr/Pr′

depends on the subjective prices of trips r and r′ but not on the subjective prices of

other trips [72].

The expected demand for a trip r ∈ Ri j is given by QDRT
r = Qi jPDRT

r , where Qi j

denotes the total demand from i to j, including the demand QDRT
i j for DRT and the

demand for the virtual mode.

4.2 Supply

We assume that there are N vehicles available for transporting customers. At any

point in time, each vehicle follows a specific route (i0, i1, . . . , im) determined by a
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sequence of nodes in the transportation network. The vehicle starts at the first node i0

and proceeds by visiting the other nodes ik for k = 1, . . . ,m in the order determined

by the route. Each node corresponds to a stop during which customers may enter or

exit the vehicle.

During the execution of the route (i0, i1, . . . , im), the vehicle produces trips that are

subsequences of (i0, . . . , im). This idea of producing trips is in fact similar as in tradi-

tional public transport: a bus with a given route produces trips that are subsequences

of the route.

The state of a vehicle describes which part of the route the vehicle is currently ex-

ecuting. Each time a vehicle following a route (i0, . . . , im) arrives at stop ik, we say

that the vehicle transfers to a new state. Similarly as routes, the states are defined

as sequences of nodes. The difference between states and routes is that the state of

a vehicle corresponds to the remaining part of its current route. That is, the vehi-

cle transfers to a new state each time it arrives at a stop, even if the route remains

unchanged. During the execution of a route (i0, . . . , im), the vehicle successively

transfers to states (i0, . . . , im), (i1, . . . , im), (i2, . . . , im), . . . , (im−1, im).

4.3 Competitive market

Most existing demand-responsive transport services provide door-to-door transporta-

tion for elderly or handicapped people and require customers to book trips at least

one hour in advance [22, 38]. Conventionally, the trips are organized centrally via

travel dispatch centers, which have the capability of assigning customers to vehicles

and optimizing the routes [54]. In contrast to such centralized services, Publication

IV considers a competitive form of demand-responsive transport in which each driver

providing service attempts to maximize his/her profit. That is, the movement of ve-

hicles is governed by the decisions of individual drivers, instead of a travel dispatch

center controlled by a single transport operator. This market structure is in fact similar

to conventional taxi-markets, which have been extensively studied, see for example

[34, 3, 16, 31, 50, 82, 55, 29, 59, 86, 87, 85].

In a competitive market, the drivers attempt to transfer to states at which the ex-

pected profit rate is maximized.

By assuming a logit model similar to the one in Equation (4.2), the probability that

a vehicle at state s transfers to state s′ ∈ S is given by

Ps,s′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp(θdU(s′))∑

s′′∈Ss exp(θdUs′′ )
, if s′ ∈ Ss (Ss = successor set of s),

0 otherwise,
(4.3)

where θd is a nonnegative parameter reflecting the uncertainty on demand and DRT
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services from the perspective of drivers, U(s) is the expected profit rate at state s and

Ss is the set of states to which a transfer from state s is possible.

4.3.1 Network equilibrium

The drivers attempt to maximize profit rate by transporting as many customers per

unit time as possible. Thus, we expect that the drivers prefer detours instead of direct

routes in order to serve more customers. In some cases, however, producing only

direct trips may be more profitable.

We also expect that the customers prefer direct trips instead of detours. However,

if many vehicles produce non-direct trips, the travel times in non-direct trips may be

smaller than in direct trips due to small waiting times.

The movement of vehicles is described by means of the arrival rates of vehicles at

different states and the movement of customers is described by means of the demands

for different DRT trips. A network equilibrium denotes a situation in which the arrival

rates at states and demands for different trips meet. By using Brouwer’s fixed point

theorem, the following result is obtained.

Theorem 4. For any finite transportation network, there exists a network equilib-

rium.

The idea for finding a network equilibrium is to solve both the customer choice

subproblem and the vehicle movement subproblem iteratively until a convergence

criterion is met, similarly as in [85].

4.3.2 A three node example

Let us demonstrate the calculation of the competitive network equilibrium in a simple

case in which the network consists of three nodes denoted by 1, 2, 3, as shown in

Figure 4.1. The set of states consists of the 12 possible sequences of two and three

nodes. In large networks, one might want to limit the number of states by including

only a part of all possible sequences, since the number of possible sequences of n

nodes equals n!.

The solid lines in Figure 4.2 show the arrival rates Ts of vehicles at different states

s ∈ S after each step of the equilibration algorithm. The black and grey dashed

lines show on a logarithmic scale the convergence of the arrival rate vector T and the

demand vector QDRT, respectively.

By looking at the solid lines, we see the oscillatory nature of the arrival rates: When

the arrival rate of vehicles in a specific state s increases during the equilibration,

the number of customers available for a single vehicle in that state decreases. This

causes the drivers to choose other states instead of s. When the arrival rate at state
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2

1 3

t12 = t21 = 3

t13 = t31 = 4

t23 = t32 = 5

Figure 4.1. A three node example network. The distances between the nodes (in kilometers) are equal
to the direct ride times ti j.

s decreases, it becomes more profitable for individual vehicles and results in drivers

choosing state s more often. In the network equilibrium, the arrival rate is highest at

state (2, 1, 3) and lowest at state (2, 1).

Referring to the dashed lines, which are roughly straight lines on a logarithmic

scale, we see that the norms of the arrival rate and demand vectors converge expo-

nentially with respect to the number of iterations.

4.3.3 Long-run example

In an unregulated demand-responsive transport service operated by a single operator,

we expect that the number of vehicles and ticket price are chosen in a way that the

total profit rate is maximized in the long run. In a competitive demand-responsive

market with no entry limits, we expect that the number of vehicles increases as long

as the profit rate of vehicles is positive. Regulating the number of vehicles and ticket

price could improve the service from the customers’ point of view as well as from the

perspective of transport operators. In the following, we study different characteristics

of demand-responsive transport as a function of the number of vehicles N and average

price per kilometer p. The network equilibrium was calculated for different numbers

of vehicles N and prices per kilometer p. For each combination of N and p, the total

profit rate, profit rate per vehicle and customer surplus2 were calculated. The results

are shown in Figure 4.3.

The solid curves represent contour lines in which the total profit rate U(N, p) of

vehicles is equal (= 0, 10, 20). In particular, the outermost contour line corresponding

to U(N, p) = 0 encloses the feasible region, that is, the area in which the service is

2Customer surplus is defined as the difference between the subjective price of the virtual
mode and the subjective price of DRT ,namely, by

∑
(i, j)∈I×I

∑
r∈Ri j

QDRT
r (ḡi j−gr),where QDRT

i j

is the total demand for DRT trips from i to j, Qi j − QDRT
i j is the demand for the virtual mode

from i to j, Ri j is the set of DRT trips from i to j, gr is the subjective price of trip r and ḡi j is
the subjective price of the virtual mode from i to j.
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Arrival rates at states in the network equilibrium T ∗

State s (1,2) (1,3) (2,1) (2,3) (3,1) (3,2) (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

Arrival rate Ts 0.603 0.627 0.590 0.628 0.619 0.632 0.631 0.631 0.644 0.626 0.639 0.621

Figure 4.2. Convergence of the equilibration algorithm in the three node example. The solid lines in
show the arrival rates Ts of vehicles at different states s ∈ S after each step of the algorithm.
The black and grey dashed lines show on a logarithmic scale the convergence of the arrival
rate vector T and the demand vector QDRT, respectively. The network equilibrium is defined
by the arrival rates at different states shown in the table below the figure.

profitable for drivers. The dashed curve shows the number of vehicles for different

prices for which the total profit rate is maximized. The points represent the long-run

market equilibria defined in the previous section.

The table in Figure 4.3 shows the demand for DRT, total profit rate, profit rate per

vehicle, customer surplus, the average ratio of travel time to direct travel time and the

average number of customers in a single vehicle in the four equilibrium points.

By looking at the figure, we note that there is a significant difference between the

equilibria. In the free entry equilibrium, the number of vehicles is significantly higher

than in the other points. The average travel time ratio and the average occupancy

are extremely low. This indicates that with no regulation, the DRT service would

approach a taxi-type service, in which all customers are transported privately and all

trips are direct trips.

The difference in price between the free entry equilibrium and the point in which

the total profit rate is maximized is small. In addition, the number of served customers

(demand for DRT) is only slightly smaller in the maximum profit rate case compared

to the free entry case. However, maximizing the profit rate of vehicles would decrease

the customer surplus and decrease the average level of service, as can be seen by

looking at the average travel time ratio and average occupancy.

The profit rate per vehicle is maximized with an extremely small number of vehi-
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Equilibrium Number

of

vehicles

price per

kilome-

ter

Demand for

DRT (cus-

tomers/min)

Tot. profit

rate / per

vehicle

(EUR/min)

Surplus

(EUR/min)

Travel

time

ratio

Average

occu-

pancy

Max. customer

surplus

28 0.22 16.1 0.13 / 0.005 35.9 1.24 2.4

Maximum total

profit rate

23 0.64 10.8 16.5 / 0.7 3.9 1.28 1.9

Maximum profit

rate per vehicle

12 0.52 8.4 12.6 / 1.0 0.2 1.50 3.0

Free entry equi-

librium

71 0.72 12.4 0.1 / 0.001 8.7 1.11 0.7

Figure 4.3. Long-run market equilibria for the three node example. The first column shows the four
studied equilibrium points. The second and third columns show the number of vehicles and
price per kilometer with which the equilibrium is achieved. The remainder of the columns
show the total demand for DRT, total profit rate and profit rate per vehicle, customer surplus,
the average ratio of travel time to direct travel time and the average number of customers in
a single vehicle.

cles. In this case, only a small number of customers could be served and the level of

service would be poor.

The customer surplus is maximized by using a significantly lower ticket price than

would be optimal from the perspective of drivers. This is mainly due to the fact that

the low price results in a high demand for DRT. Moreover, we note that the customer

surplus equilibrium is achieved by using price regulation exclusively. That is, the

results suggest that the optimal solution from the customers’ point of view would be

to regulate price and allow free entry.

Reference [37] repeats the above example for a demand-responsive transport monopoly,

where a single transport operator controls the transition probabilities of vehicles be-

tween states, in contrast to the competitive market in which the routing decisions are

made by individual drivers. In this case, the matrix P containing the transition prob-
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abilities Ps,s′ between states is referred to as a routing strategy and the goal is to find

a routing strategy that maximizes a given objective.

The results suggest that centralized routing strategies can be used to improve the

efficiency of demand-responsive transport: By maximizing profit by means of a cen-

tralized strategy, the total profit rate, demand and social welfare are increased from

the competitive equilibrium. The difference between the mechanisms is explained by

the fact that in the competitive market, the routing decisions are based on the drivers’

incomplete market information whereas in the case of a single transport operator, the

routing strategy is optimized by using information on the state of the entire network.
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5. Conclusions

This work presents mathematical models for demand-responsive transport and meth-

ods that can be used to solve combinatorial problems related to vehicle routing and

journey planning in a transport network.

First, we show how the demand for transportation can be satisfied by constructing

routes for a fleet of vehicles, assuming that the origins, destinations, and time limits of

customers’ trips are known. Then, by considering a stochastic journey planning prob-

lem in a public transport network we determine the optimal actions of commuters,

assuming that the vehicle routes are fixed during a specific time horizon. Finally, we

present a stochastic network model for determining the economic equilibrium in a

transport network, that is, the point at which the demand meets the supply, by assum-

ing that commuters attempt to minimize travel time and transport operators aim to

maximize profit.

The proposed models can be used to simulate the operations of public transport

services ranging from paratransit services for the elderly and disabled to large-scale

demand-responsive transport services. These calculations can provide valuable in-

formation to public authorities and planners of transportation services, regarding, for

example, regulation and investments. The new methods for solving vehicle routing

and journey planning problems can be used to improve the performance of different

types of intelligent transportation systems and to provide real-time travel information

via mobile devices and electronic displays. In addition to public transport, potential

applications of the proposed algorithms include freight transportation, courier and

food delivery services, military logistics, and air traffic.

The main contributions to scientific methodology are summarized a follows.

The adaptive insertion algorithm introduced in Publication I generalizes the inser-

tion algorithm which is used to solve routing problems. The computational complex-

ity of the adaptive algorithm can be controlled smoothly, closing the gap between a

greedy heuristic and complete enumeration.

Publication V presents the routing by ranking method, which connects recommendation-

51



Conclusions

type link analysis to combinatorial path-finding problems. The idea is based on HITS,

an eigenvector algorithm originally developed for web information retrieval.

The maximum cluster algorithm (Publication VI) is used to solve constrained rout-

ing problems with multiple vehicles by finding maximal sets of customers that can be

assigned to a single vehicle. The article also introduces the clique detection method,

which finds a maximal set of customers, such that no pair of customers in the set can

be served by a single vehicle due to the constraints of the problem. This method is

used to narrow down the search space and to detect infeasible problem instances.

Publication III and Publication II model the journey planning problem in a sched-

uled transport network as a Markov Decision Process (MDP). The actions of the

MDP are defined as preference orders of possible alternatives in each part of the

journey. The articles also show how the calculation of an optimal policy can be ac-

celerated by assuming history independence and how the reliability of a journey is

maximized by considering the expected number of successful paths to the destination.

In this context, a path is defined as a sequence of scheduled legs in the transport net-

work and for each pair (i, j) of successive legs there is a specific transfer probability

from i to j.

Publication IV introduces a stochastic network model for determining the economic

equilibrium for demand-responsive transport. The existence of such an equilibrium

is proved by using Brouwer’s fixed point theorem. The model is used for optimizing

fleet size and pricing as well as studying the effects of different regulation policies.

The following directions for future work are suggested: One could attempt to ex-

tend the routing by ranking algorithm to handle different types of cost functions. For

example, the reliability of solutions could be optimized by defining travel times as

random variables. The dynamic journey planning models could be enhanced by par-

titioning public transport stops into clusters, which would reduce the complexity of

dynamic journey planning in large transport networks. Finally, the economic equi-

librium model could be used to study the feasibility of demand-responsive transport

services in different types of real-life scenarios.

As a conclusion, it can be stated that there are many computational results that

support the technical viability of demand-responsive transport. State-of-the-art al-

gortihms are capable of efficiently solving complex routing problems with multiple

vehicles (see for example Table 2.2. in Chapter 2). However, as suggested in [24],

one of the key issues in a large scale demand responsive service ever becoming a

reality, is the institutional inertia against change in transit paradigms. No models

exist that are directly applicable in finding to what extent a completely new trans-

portation system is possible in real life. How to accurately estimate the demand for a

hypothetical transportation service remains a relatively open question. In order to be
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able to access such practical problems, future work calls for real-life pilot services,

which would probably give valuable information on the demand for and performance

of demand-responsive transport.
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Errata

In Publication III, Theorem 1, L should be replaced with P.
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