

Aalto University

School of Electrical Engineering

Department of Communications and Networking

Degree Programme in Communications Engineering

Xi Chen

Automated Testing for Mobility Management Entity of

Long Term Evolution System

Master’s thesis

Espoo, October 20, 2012

Supervisor: Professor Jyri Hämäläinen, D.Sc

Instructor: Risto Nissinen, M.Sc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80709072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AALTO UNIVERSITY ABSTRACT OF THE MASTER’S THESIS

SCHOOL OF ELECTRICAL ENGINEERING

DEPARTMENT OF COMMUNICATIONS AND NETWORKING

Author: Xi Chen

Title: Automated Testing for Mobility Management Entity of Long Term Evolution

System

Date: 20.10.2012 Language: English Number of pages: 7+72

Department of Communications and Networking

Professorship: Radio communications code: S-72

Supervisor: Prof. Jyri Hämäläinen

Instructor: M.Sc. Risto Nissinen

This thesis starts with a brief introduction about LTE system and Automated Testing,

after which, it describes the implementation of test automation for Mobility

Management Entity (MME) of 4G LTE core network. The thesis work is focus on

testing of MME logical interfaces s1, s6 and s11. There is a test suite that is

developed, and is used to remotely control the Tektronix G35 tester to generate

network traffic for testing purpose. Besides, the test suite sends Man Machine

Language (MML) commands to the MME hardware platform called ATCA, and

periodically collects counters’ data, with which the test suite is able to track the

performance of the three interfaces of MME. As a conclusion, automated testing for

MME is found to be very important. It provides an efficient way to generate a clear

picture of the performance of MME, which is helpful when improving the quality of

MME.

Keywords

Test automation, Mobility Management Entity, test suite, Tektronix G35, Man

Machine Language

i

Preface

This MSc thesis is done in Nokia Siemens Networks Oy (NSN), in the team of NWS

CIC RD IP Control PET&PST. The thesis work is a research about test automation

of Mobility Management Entity (MME) of LTE core network with the usage of

Tektronix G35 tester. The purpose of the work is to track the performance of NSN’s

ATCA MME platform by implementing a test suite which could collect MME

counters’ statistics.

I would like to express my gratitude to Mr Risto Nissinen, my instructor, for

providing me not only the opportunity to work on this project, but also many helps

during my work. I would also like to thank Tanja Lindgren, Joni Turkki for their kind

assistance.

Espoo, 20.10.2012

Xi Chen

ii

Abbreviation and explanations

3GPP 3
rd

 generation partnership project

FDD Frequency Division Duplex

TDD Time Division Duplex

eNB evolved Node B

SAE System Architecture Evolution

SGW Serving Gate Way

GTP GPRS Tunneling Protocol

HSPA High Speed Packet Access

I-HSPA Internet HSPA

SGSN Serving Gateway Support Node

GGSN Gateway GPRS Support Node

BTS Base Transceiver Station

EPS Evolved Packet System

PDN Packet Data Network

QoS Quality of Service

EMM EPS Mobility Management

ECM EPS Connection Management

TA Tracking Area

IMSI International Mobile Subscriber Identity

TAU Tracking Area Update

RRC Radio Resource Control

HSS Home Subscriber Server

TA Tracking Area

NAS Non Access Stratum

S1AP S1 Application Part

TEID Tunnel Endpoint Identifiers

UTRAN Universal Terrestrial Radio Access Network

E-UTRAN Evolved UTRAN

EPC Evolved Packet Core

ROHC Robust Header Compression

iii

ARQ Automatic Repeat Request

PDU Protocol Data Unit

H-ARQ Hybrid ARQ

ATCA Advanced Telecommunications Computing Architecture

G35 A protocol tester device

LTE Long Term Evolution

MME Mobility Management Entity

SAE System Architecture Evolution

WCDMA Wideband Code Division Multiple Access

ATLM Automated Test Life-cycle Methodology

PICMG PCI Industrial Computer Manufactures Group

CPPU Control Plane Processing Unit

SMMU Signaling and Mobility Management Unit

MMDU Mobility Management and Database Unit

IPDU IP Director Unit

MCHU Marker and Charging Unit

OMU Operation and Maintenance Unit

CORBA Common Object Request Broker Architecutre

IDL Interface Definition Language

ORB Object Request Broker

DPE Distributed Programming Environment

SSH Secure Shell

MML Man Machine Language

iv

Table of Contents

Preface ...i

Abbreviation and explanations..ii

Table of Contents...iv

Preface………………………………………………………………………………..i

Abbreviation and explanations……………………………………………………..ii

Table of Contents...iv

Chapter 1 Introduction..1

1.1 Background .. 1

1.2 Motivation behind the thesis work ... 2

1.3 Objectives and hypothesis .. 3

1.4 Thesis structure .. 3

Chapter 2 LTE and SAE architecture..5

2.1 LTE network architecture ... 5

2.2 Radio Interface protocols of E-UTRAN .. 8

2.3 EPS Bear .. 10

2.4 Mobility Management .. 11

2.4.1 EMM and ECM states ... 11

2.4.2 Mobility management in ECM-IDLE state ... 13

2.4.3 Tracking Area Update ... 14

2.5 Connection management .. 14

2.5.1 Random access procedure ... 14

2.5.2 LTE attach procedure .. 16

2.5.3 UE initiated communication ... 18

2.5.4 Connection release .. 18

v

Chapter 3 Test tools, environment and methodology..19

3.1 Tektronix G35 protocol tester .. 19

3.2 MME ATCA platform ... 20

3.2.1 ATCA hardware architecture .. 20

3.2.2 Key functional units in ATCA MME ... 23

3.3 Robot framework ... 24

3.4 Agile methodology ... 30

Chapter 4 Automated software testing...32

4.1 Definition of automated testing .. 32

4.2 Automated test life cycle .. 34

4.3 Automated regression testing ... 36

Chapter 5 Automated Tektronix control and MME regression testing..............38

5.1 Traffic profile in Tektronix G35 .. 38

5.2 Enable Tektronix G35 remote control.. 46

5.3 Initial phase of test suite ... 49

5.4 Statistics collection phase of test suite ... 50

5.4.1 Tektronix G35 counters collection .. 50

5.4.2 ATCA CPPU & SMMU counters collection .. 52

5.4.3 ATCA GPRS Measurement Handling .. 54

5.4.4 TOPTEN tracking ... 56

5.5 Statistics recording phase of test suite & Graph generation 58

5.6 Test case design in time domain .. 59

Chapter 6 Results & Conclusions..62

6.1 Test phases & time domain overview .. 62

6.2 Results directory structure.. 63

6.3 Result statistics ... 65

vi

6.4 Further Improvements .. 68

References..69

1

Chapter 1 Introduction

1.1 Background

During the last decades, mobile communications has evolved fast. It has been a long

way from the first radio communication experiment to the current cellular system.

The development of mobile technologies nowadays is mainly conducted by global

standards developing organizations like 3GPP [1] which involves a lot of people. The

evolvement of mobile communications can be characterized by different generations.

The so called 1G was the analog mobile radio system in the 1980s. The first digital

mobile system was 2G system which was followed by the 3G system, the first mobile

system handling broadband data [1].

The IP based services delivered over Internet was heading towards wireless which

drives the mobile communication systems to deliver more and more IP based

services. As a result, the traditional circuit-switched services will be ported over IP

networks. With the massive increase in mobile data traffic, and as networks continue

to converge towards all-IP infrastructures [2], many operators are considering LTE,

or Long Term Evolution, a new network technology first defined in 3GPP release 8

[1] which promises to be an all-IP network infrastructure that will dramatically

decrease the cost of delivering high-value multimedia services and applications.

Given the advantages, LTE also introduces some unique challenges for network

operators that must be overcome in order to profitably deliver high quality services

and applications. Coming from a 2G/3G environment, operators have come to

understand what specific network parameters impact their network and services. In

the all-IP LTE environment, network behavior requires new tools and techniques

optimized for an IP environment. Interoperability is also a major issue since most

operators deploying LTE will be doing so alongside their existing 2G/3G legacy

networks.

With the advent of new wireless standards like LTE, mobile networks are evolving

towards complex heterogeneous systems consisting of a multitude of different

2

technologies. As a consequence, thorough testing of protocol implementations and

complete mobile network elements is becoming more important than ever before.

Telecom manufactures seek to improve test efficiency by means of test automation

[3]. Related test tools must be able to address all necessary technologies as well as all

phases of the test cycle to be cost-efficient.

1.2 Motivation behind the thesis work

The rapid growth of the number of subscribers forces the operators and vendors to

adopt new technologies and standards to provide better services at a lower cost than

the earlier systems [7]. The operators and vendors will undoubtedly drive the new

technologies to stay ahead of competitions.

The LTE Mobility Management Entity (MME) in this thesis work adopts ATCA as

its hardware platform [8]. ATCA (Advanced Telecom Computing Architecture) is a

hardware platform with bladed architecture which is designed according to the

requirements set by the next generation of communications equipment. Applying to

the telecommunications industry, ATCA eases the serviceability of LTE/4G and

other next generation wireless and wired infrastructure.

There are five key goals for ATCA [4]: to enable interoperability among

manufacturers’ components, to reduce time to market, to reduce development costs,

to reduce the length of development cycles and to create an open, standards-based

scalable, flexible platform architecture.

The hardware of LTE MME consists of a group of interconnected computer units.

Each computer unit has its own real-time task to do. There are several plug-in units

inserted to the shelf of ATCA, each plug-in unit builds up one computer unit.

Because of the big amount of data traffic in LTE core networks, whenever we want

to test the functionality or performance of a certain network element, like MME,

which is the key control node of LTE network, we would like to do it automatically.

This is the primary motivation behind the thesis work, which was done to evaluate

the performance of MME ATCA platform of LTE core network by implementing

3

automation testing cases which records and tracks the specific statistics to provide

vendor an overview of the performance of MME platform.

1.3 Objectives and hypothesis

The performance of the MME platform is crucial, as it is the key control node that is

responsible for the mobility management[5] of the LTE access network. We want to

make sure that it functions smoothly and efficiently, that’s also the reason why we

need to develop automation testing scenarios.

The aim of this thesis is to implement test suite which can monitor the s1, s6, s11

interfaces [6] of Mobility Management Entity (MME) of 4G LTE core network,

tracking the traffic of different unit counters, tracking the CPU loads of interested

computer units, and generating statistic graphs which show the trends of counters and

CPU loads during the testing period. These test cases consist of two parts, which are

remote protocol tester control and automated regression testing of MME. During the

development of the test suite, we will utilize a device called Tektronix G35 protocol

tester [9] to define the traffic profile and generate traffic to MME.

The test suite is supposed to have a user interface to allow engineer to define the

period of how long the automation test is going to run. Normally, the automation

testing suite runs overnight, so that engineers could see the final result in the next

morning. Based on the testing result, engineers are able to evaluate the performance

of the ATCA platform based MME, and take actions for certain failure accordingly.

The stability is very important for the network element, like MME, and our target is

to guarantee zero failure, since large financial losses can be faced if the network

element is not working properly in the commercial use by operators.

1.4 Thesis structure

The first two chapters generally introduce the LTE system and its core network

elements. Chapter 3 describes what tools, environment and methodology have been

used in this thesis work, while chapter 4 tells what automated testing and regression

testing are, and discuss the lifecycle of automated testing. The thesis work

4

implementation is described in chapter 5. Chapter 6 indicates the result and

conclusion of the thesis work. A further improvement is also proposed in chapter 6.

5

Chapter 2 LTE and SAE architecture

LTE is the 4
th

 generation mobile communication system, which is packet switched

system, unlike the 2G and 3G cellular systems that designed from circuit switched

operations perspective. LTE is designed with only packet-switched network from end

to end for high speed data services. The LTE system targets to a peak data rate of

100 Mbps in downlink and up to 50 Mbps in uplink.

This chapter firstly gives the general view of LTE system architecture, and then

introduces the radio interface protocols of E-UTRAN. Finally, it describes the

Mobility Management and Connection Management in LTE.

2.1 LTE network architecture

The entire LTE network is composed by the radio access network (Evolved UTRAN)

and the core network (Evolved Packet Core), both of which have been defined as

new components of the end-to-end network in release 8 of 3GPP specification [1].

As a 4
th

 generation system, the LTE radio interface provides new packet data

capability with an evolved core network which is specified and commonly known as

System Architecture Evolution (SAE).

The 3GPP system architecture evolution (SAE) is concerned with the evolved core

network architecture. The SAE system defines a scalable IP-based architecture of the

Evolved Packet System (EPS) which consists of Radio Access Network also known

as Evolved UTRAN and the Evolved Packet Core [10]. The Evolved Packet System

is a packet based system, where the voice transport is based on Voice over IP (VoIP).

E-UTRAN is the radio access part of LTE architecture. It mainly consists of user

equipment (UE) and evolved Node B (eNB)s. The eNB supports LTE radio interface

and provides the packet-switched functionality of traditional radio network controller

(RNC) of 3G. Thus, the RNC was removed from Evolved UTRAN, which means

there are fewer network entities in the architecture.

The Uu is the LTE radio interface which is between user equipment and eNB. The

eNBs are interconnected with each other with the X2 interface which is used during

6

an inter-eNB handover. The eNBs are also connected to the Evolved Packet Core by

means of S1 interface. To be more specific, the eNBs are connected to the Mobility

Management Entity (MME) with S1-MME interface which carries control plane

signaling information between eNB and MME. They are connected to the Serving

Gateway (S-GW) with S1-U interface which carries the user plane data over a GTP

tunnel.

Figure 1 shows the overview of LTE network architecture.

Figure 1. LTE network architecture [10]

The Evolved Packet Core part consists of Mobility Management Entity (MME),

Serving Gateway(S-GW) and Packet Data Network Gateway (P-GW), they are

introduced in 3GPP Release 8.

MME is the key node in LTE EPC. It is responsible for tracking and paging

procedure, performs the signaling and control functions to manage the User

Equipment (UE) access to network connections. MME basically has all control plane

functions related to subscriber and session management [11].

The primary function of S-GW is to manage user-plane mobility, like the handover

with neighboring eNBs. It also takes care of data transfer across user plane. P-GW is

7

an anchor point for sessions towards the external PDN. It mainly supports policy

enforcement features, packet filtering and charging [11].

The interfaces related with EPC are defined by 3GPP [11] as follows:

The S4 interface between S-GW and SGSN provides a GTP tunnel for the user plane

during an inter-system handover.

The S3 interface carries signaling between the MME and the Serving GPRS Support

Node (SGSN) located in 2G or 3G packet switched core network.

The S11 interface is used to carry signaling message between Serving Gateway and

MME.

The S6a interface transfers subscription and authentication data between the Home

Subscriber Server (HSS) and MME.

The interface between PDN Gateway and the packet data network (PDN) is the SGi.

The PDN could be an external public or private IP network, or the operator’s IP

network, for example, the network which provides IP Multimedia Subsystem (IMS)

service.

Figure 2. LTE Control plane traffic and User plane traffic

There is a user plane connectivity between the access network and the external

packet data network, which is provided by S-GW and PDN Gateway (P-GW)

8

In Evolved Packet Core network, the MME element provides the basic control plane

functionality. There is no user plane traffic go through MME.

2.2 Radio Interface protocols of E-UTRAN

The LTE radio interface is designed based on a layered protocol stack [13] which

consists of user plane protocol stack and control plane protocol stack. Figure 3 shows

the protocol stack.

Figure 3. Radio interface protocol stack of LTE

The following layers compose the LTE radio interface protocol:

 Radio Resource Control (RRC): The RRC layer is part of LTE air

interface control plane. It performs the control plane functionalities, for

example, paging; establish, maintenance and release the RRC connection

between UE and E-UTRAN; broadcast of system information related to the

non-access stratum (NAS); broadcast of system information related to the

access stratum (AS), and so on.

9

 Packet Data Convergence Protocol (PDCP): This layer exists in UE and

eNB, it is part of the control plane and user plane of LTE air interface. The

main functionality of this layer includes compression and decompression of

IP packet header based on the Robust Header Compression (ROHC)

protocol; ciphering and deciphering of data, and so on. For the control

plane, the main services and functions of PDCP are ciphering and integrity

protection and control plane data transferring.

 Radio Link Control (RLC): This layer is part of LTE air interface user

and control planes. The main services and functionalities include protocol

error detection and recovery; segmentation, reassembly and concatenation

of data units; error correction through the Automatic Repeat Request(ARQ)

protocol; transfer of upper layer (Protocol Data Unit)PDUs, and so on. It

operates in three models:

1. Transparent Mode (TM): The TM mode is used for specific purpose,

for example the random access. The TM mode does not have RLC

header addition, data segementation or concatenation.

2. Unacknowledged Mode (UM): This mode does not require

retransmission of the missing PDUs, but it allows packet loss detection,

packet reordering and reassembly.

3. Acknowledged Mode (AM): In this mode, in addition to the features

supported by UM mode, the missing PDU is requested to retransmit.

 Medium Access Control (MAC): This layer is part of LTE air interface

user plane and control plane. The main services and functionalities include

Mapping between logical channel and transport channels; error correction

through the Hybrid ARQ (H-ARQ) ; multiplexing / demultiplexing of MAC

SDUs belonging to one or different logical channels; scheduling

information reporting; priority handling between logical channels of one UE

, priority handling between UEs by means of dynamic scheduling. This

layer is also responsible for transport format selection of scheduled UEs, for

example, selection of modulation format and code rate.

10

 Physical Layer (PHY): It is part of LTE air interface user plane and

control plane. This layer performs the actual transmission and reception of

data in forms of transport blocks. The control mechanisms in this layer

include signaling of H-ARQ feedback, signaling of scheduled allocations

and channel measurements.

Figure 4 below shows the user plane packet flow on different layers of radio

interface protocol.

Figure 4. Packet flow in user plane [12]

From top to bottom, in the PDCP layer, the PDCP header is added to IP packet which

forms a PDCP packet data unit (PDU). After that, the RLC header is added to the

PDCP PDU forms the RLC PDU. It is noticeable that there is only one RLC PDU

entity at the eNB and the UE per bearer [13] (The concept of ”bearer” is explained in

section 2.3). Then, the RLC PDU is added with the MAC header and any extra

padding as a result becomes the MAC PDU, which flows down to PHY layer

becomes the PHY transport block.

2.3 EPS Bear

A bear is an IP packet flow with a defined QoS between the PDN GW and the UE. In

the Evolved Packet System (EPS), the so called EPS bearers are employed for

11

carrying the user data between the UE and the PDN Gateway or between the UE and

the Serving Gateway.

The EPS bearer can consists of a radio bearer, an S1 bearer and an S5/S8 bearer. The

transport of user data between the eNB and PDN Gateway takes place within a

GPRS Tunneling Protocol (GTP) tunnel [6].

There is a certain Quality of Service (QoS) profile which is associated with each EPS

bearer. Different packet flows with different QoS requirements will be associated

with different EPS bearers, so that the network can prioritize packets accordingly.

A permanent EPS bearer is established for the lifetime of a Packet Data network

(PDN) connection when a UE connects to a packet data network, so that an always-

on IP connectivity with that PDN is provided. There are also additional dedicated

EPS bearers which may or may not be allocated for user data transportation.

2.4 Mobility Management

There are two kinds of mobility management functions in LTE system. One is the

mobility within the LTE system, which is called intra-LTE mobility. The other one is

the mobility to other 3GPP systems or non-3GPP systems, it is called inter-RAT

(Radio Access Technology) mobility [13]. When a UE moves between two eNBs

which are connected to the same MME, the intra-LTE mobility takes place. When a

UE moves from one eNB to another eNB which belongs to another Radio Access

Network (RAN) attached to a different MME, the inter-RAT mobility takes place.

2.4.1 EMM and ECM states

Based on the information held by the Mobility Management Entity, there are two sets

of states defined for each UE.

The two EPS Mobility Management (EMM) states:

 EMM-DEREGISTERED: The MME does not have the location information for

the UE, the UE is not reachable.

12

 EMM-REGISTERED: The UE enters this state either due to the LTE attach

procedure or due to a tracking area update (TAU) from a 2G or 3G network. The

UE can be reached by pagying.

The above two EMM states describe whether or not the UE is registered in the MME

and can be reached by paging.

There are also two EPS Connection Management (ECM) states, ECM-IDLE and

ECM-CONNECTED. The two states describe the signaling connectivity between UE

and Evolved Packet Core.

 ECM-IDLE: there is no signaling connection between UE and MME

 ECM-CONNECTED: there is a signaling connection between UE and MME.

The connection consists of an RRC connection between UE and eNB, and an S1-

MME connection between eNB and MME.

The main procedures for managing the end-to-end LTE system includes mobility

management procedures in ECM-IDLE states, connection management procedures

and mobility management procedures in ECM-CONNECTED state[14], which is

also known as handovers. Figure 5 shows the end to end procedures of LTE system.

Figure 5. LTE end to end procedures

13

2.4.2 Mobility management in ECM-IDLE state

The mobility management functions are needed for keeping tracking of the current

location of a UE. The basic procedures of mobility management in ECM-IDLE state

include tracking area update and paging. Tracking area update is needed when the

mobile terminal moves to a tracking area in which it is not registered.

The network coverage area is divided into cells; each cell belongs to a single tracking

area (TA). The network needs to know where the location of a UE is if the network

wants to communicate with the UE that is in ECM-IDLE state. For those cells that

belong to the tracking area in which the UE in ECM-IDEL state has been registered

can reach this UE. On the other hand, when a UE moves to a tracking area in which

it is not registered, a tracking area update will be performed to ensure the UE can be

reached.

A mobile terminal in ECM-IDLE state can only be reached through paging. The

mobile terminal is paged in the tracking area in which it is registered.

Paging is like a initiate contact with UE. For example, when there is user data arrived

in S-GW, the S-GW will send request to MME, then MME will page the UE to

which the data in S-GW should be sent. Basically, the MME sends a paging message

to every eNB in the UE registered tracking area.

In a paging process, the eNB broadcast the paging indication message in order to

indicate the paging group. The indication message includes information about how

the paging message can be read and what physical resources have been allocated for

it.

The UEs are allocated to paging groups based on UE identifier, for example IMSI.

The UE will read the full paging message only when it detected that its paging group

is being paged. After that, when a UE noticed that it is being paged, it starts to

transfer from ECM-IDLE to ECM-CONNECTED state, and establish an signaling

connection to MME.

14

2.4.3 Tracking Area Update

When there is a need to update tracking area , for example, the UE detects that the

current Tracking Area (TA) indicated on the broadcast channel is not on the list of

TAs in which the UE has registered. Then, the UE and eNB firstly need to establish

an RRC connection by using random access procedure.

After the RRC connection between UE and eNB has been established, the UE then

sends a TAU request to the MME. The TAU request message includes the last visited

TA which can be used to produce a new list of TAs and send to UE.

Then, the eNB forwards the TAU request to MME.

The MME now could perform an authentication based on the data acquired from

HSS. Once the MME accepts the TAU request, it sends a TAU acceptance message

to UE which includes a new list of tracking area in which the UE is now registered.

A so called MME relocation procedure is taking place during Tracking Area Update

process. There are generally two MMEs be involved. That’s the old MME handles

the previous tracking area, while the new MME handles the new tracking area. In

MME relocation, there is a signaling between two MMEs, between the new MME

and HSS for adding new information, between old MME and HSS for removing old

information.

2.5 Connection management

There are four connection management procedures which are random access, LTE

attach, user data connection set up and the user data connection release.

2.5.1 Random access procedure

The UE performs random access procedure to initiate the communication with the

network. In LTE system, there are two random access procedures have been defined.

The first type of random access procedure is the so called contention based random

access, which is used when the UE starts the LTE attach procedure, or when the UE

is in ECM-IDLE state and wishes to contact the network. The other type of random

access procedure is non-contention based random access which is used when the UE

15

is in ECM-CONNECTED state. For example, when the network requests the UE to

perform a handover to another cell, the non-contention based random access is used

[13].

The contention based random access procedure consists of four steps which are

indicated in Figure 6.

Figure 6. The contention based random access procedure

In step one, the UE randomly selects a random access preamble based on the

information obtained from eNB. Open-loop power control is used to determine the

initial transmit power level.

In step two, based on the received random access preamble, the eNB sends a

response using the Physical Downlink Shared Channel (PDSCH) where multiple

random access responses may be multiplexed into one shared data channel control

message. Each response contains an uplink scheduling grant, timing advance

information, and an assignment of a temporary Cell Radio Network Temporary

Identifier (C-RNTI). The timing advance information is used by the mobile to time-

synchronize its uplink transmission [15].

16

The UE is uplink synchronized after step two, it is able to transmit additional

message on scheduled UL-SCH. It is possible that multiple UEs select the same

preamble which causes a collision. To resolve the contention for access, the UE that

detects a random access preamble transmits a message which contains a terminal

identity. If the UE is connected to a cell, Cell Radio Network Temporary

Identifier(C-RNTI) will be used, which is the unique UE ID at the cell level. In order

to improve the transmission reliability, the H-ARQ protocol is supported in this step

[15].

The forth step is called Contention Resolution, in which the eNB transmits the

contention-resolution message on the DL-SCH, which contains the identity of the

winning UE. The UE that observes a match between this identity and the identity

transmitted in step three declares a success and completes its random access

procedure. The UE with successful access will transmit an H-ARQ

acknowledgement [15].

2.5.2 LTE attach procedure

When a UE just power on, it intend to register with the EPC network, which means it

will move from the EMM-DEREGISTERED state to the MME-REGISTERED state.

In this case, the LTE attach procedure is performed.

Figure 7 shows the LTE attach procedure. [16]Firstly, a Radio Resource Control

(RRC) signaling connection between the UE and eNB is needed. In order to establish

this connection, a random access procedure is necessary. Then, an Attach Request

message is sent to the eNB by using the RRC signaling connection. The Attach

Request message is then forwarded to the MME. An authentication is probably

performed by MME at this stage. The MME then contacts the Home Subscriber

Server (HSS) for the user’s subscription data, with this data, MME can create a

context for the UE. During the LTE attach procedure, the default EPS bearer is

established, so that the UE enters the ECM-CONNECTED state.

17

Figure 7. LTE attach procedure [16]. The processes from 1 to 7 are explained

below.

1. The UE sends a Non Access Stratum (NAS) Attach Request message to eNB

encapsulated in an RRC message.

2. The eNB forwards the NAS Attach Request message to a selected MME

encapsulated in an S1AP Initial UE message. The selected MME serves the UE.

3. An authentication based on data from HSS is performed if the network does not

know any context for the UE.

4. The MME informs the HSS that it is now serving the UE by sending a location

update message.

5. The HSS sends the UE’s subscription data to the MME.

6. The MME acknowledges the above HSS action.

7. The update location message which is sent by MME is received and acknowledged

by HSS.

18

2.5.3 UE initiated communication

If UE has uplink data to be sent, a procedure is initiated by the UE. Generally, the

following steps are performed during this procedure [16]:

Firstly, an RRC connection between the UE and eNB is established. Then, the UE

sends a Service Request message to the MME, partly using the RRC connection. The

MME may perform authentication if necessary. After that, the S1 bearers are

established, after which the radio bearers are established. Finally, the user data is sent

in the uplink.

2.5.4 Connection release

From UE's point of view release a connection means to transit from ECM-

CONNECTED state to ECM-IDLE state. The following steps are performed:

1. The eNB send a UE Context Release Request to MME to release the

signaling and user plane connection with UE.

2. The MME sends an S1AP Update Bearer Request message to S-GW

informing the S-GW that the UE will be moved to ECM-IDLE state.

3. The S-GW releases the eNB related information, for example the Tunnel

Endpoint Identifiers (TEID) of the downlink GTP tunnel endpoints in eNB.

The S-GW acknowledges the release to MME. UE now can only be reached

through paging. The downlink data for the UE arrives at S-GW is go to buffer

now.

4. The MME sends an S1AP UE Context Release Command message to eNB.

5. Release the radio bearer over the air interface

6. The eNB release the S-GW related information, for example the Tunnel

Endpoint Identifiers of the uplink GTP tunnel endpoints in S-GW. The eNB

acknowledges the release to the MME by sending an S1AP UE Context

Release Complete message.

19

Chapter 3 Test tools, environment and

methodology

For telecommunication infrastructure manufacturer, in order to ensure positive return

for the business investment on all mobile network components, the phases of

development and deployment of the mobile network components require thorough

testing at the functional and performance level.

As a tool for testing telecommunication network in this thesis work, a terminal is

introduced which provides an interface with which developers can define a series of

network actions and execute them sequentially so that the network traffic can be

generated and the network status can be emulated. Thus, the network profile is

defined through this terminal. In considered test cases, the terminal been used is

Tektronix G35 protocol tester.

 This chapter introduces the protocol testing tool Tektronix G35 and employed

element platform ATCA. The Robot Framework and Agile methodology are also

presented in this chapter.

3.1 Tektronix G35 protocol tester

There is a lot of data exchanged among the network elements, governed by certain

rules which are called protocols. These protocols are defined in 3GPP technical

specification. A protocol tester normally has abilities, for example, to generate

traffic, display data in multiple views, detect errors automatically, determine the root

cause of errors and generate timing diagrams, etc.

Protocol testing is an essential step towards commercialization of standards-based

network element products. It helps to ensure that products from different

manufacturers will operate together properly ("interoperate") and satisfy customer

expectations. Besides, by utilizing a protocol tester during network element

development, the time needed for the product entering market will be reduced when

the productivity of testing is maximized.

20

The Tektronix G35 protocol tester [9] simulates protocols, generates traffic, provides

interoperability and performance testing of LTE air-interface and fix line interfaces

under various radio conditions through a fully integrated test system. It provides

functional tests of specific protocol layers, network nodes or subsystems in order to

verify correct implementation. It offers flexible protocol configuration and a wide

range of programming and scripting tools that allow developer to define test cases.

The G35 provides specific capacity testing applications, for example, with Tektronix

G35, you can verify the ability of specific network nodes (such as SGSN) to handle

the signaling traffic related to a large number of subscribers. The G35 can also

provide automated testing to efficiently verify a protocol layer’s or network node’s

functionality using standardized test suites [9].

3.2 MME ATCA platform

 “Our aim is to decouple hardware and software, making our network applications

more hardware independent. Decoupling creates a more open environment that gives

service providers greater flexibility to meet their hardware requirements and reduce

their operational costs.” said Michael Clever, head of voice and IP transformation at

Nokia Siemens Networks [18].

3.2.1 ATCA hardware architecture

The full name of ATCA is Advanced Telecom Computing Architecture which

usually referred to as AdvancedTCA or ATCA. ATCA is a specification from PCI

Industrial Computer Manufactures Group (PICMG)[19]. The specification is an open

standard which is created with the work by the major global computer manufactures

and telecommunication equipment manufactures. The availability, reliability and

serviceability are three significant aspects for telecommunication hardware which

must meet strict standards set by national and international industrial organizations.

PICMG [20] defines ATCA as an new generation architecture for building high end

equipment.

In ATCA shelf, there are 16 slots for computer units from which 2 slots are reserved

for HUB blades with the purpose of internal switching and communication. The

boards of ATCA are 322.25mm high and 280mm deep which are designed with

21

careful considerations about cooling, front panel space, backplane size and rear panel

I/O requirements [21]. Figure 8 shows an ATCA hardware.

Figure 8. ATCA hardware [22]

ATCA delivers the benefits of modularity, scalability and flexibility. It defines open

standards-based guidelines for the design and manufacture of next-generation carrier-

grade telecom hardware. Practically, those equipments based on ATCA conform to

standardized rack size and power supply guideline which makes it easier for

operators to plan for deployment, regardless of the actual detailed makeup of the

equipment. For example, Nokia Siemens Networks uses this hardware architecture in

all its core network solutions.

22

Figure 9. NSN ATCA rack [22]

By running core network software on ATCA hardware, network manufacturer

delivers to service provider the ability to support a great number of subscribers with

a smaller equipment footprint and significant energy saving. By using ATCA

platform, service provider can also combine several core network applications into

one hardware rack which helps to reduce the space required, the same hardware can

also be used in the spare part of ATCA architecture. With this kind of hardware

architecture, the management and maintenance of hardware are improved. Figure 9

shows an ATCA rack that contains three ATCA hardware units.

23

3.2.2 Key functional units in ATCA MME

The studied core network element Mobility Management Entity (MME) is based on

ATCA hardware. There are five key functional units in MME which are Control

Plane Processing Unit (CPPU), Signaling and Mobility Management Unit (SMMU),

IP Director Unit (IPDU), Marker and Charging Unit (MCHU), Operation and

Maintenance Unit (OMU).

CPPU is responsible for transaction based mobility management. SMMU is

responsible for storing information of visiting subscribers into the visiting subscriber

database, it provides S6a interface to Home Subscriber Server (HSS). IPDU is used

to balance the loads and connectivity. MCHU offers statistics functions. OMU

handles operation and maintenance functions[22].

Figure 10. Five key units of studied MME

Actually, each key unit is just an category of units, that’s each key unit category has

a group of units. The units of each key unit are paired with working status units and

spare status units. Figure 10 shows the five key unit categories (groups) of studied

MME element. The string inside parenthesis indicates the number of pairs of

working and spare units for each unit category. As figure 10 shows, CPPU contains

”n+” units which means there should be at least one unit of CPPU that is in working

status for CPPU unit group. The rest units of CPPU can be either in working or spare

status. The IPDU and SMMU are both indicated with ”n+1” , which means there has

to be at least one working unit and one spare unit for them. The ”2n” of OMU and

24

MCHU indicates that there have to be n working units and n spare units for OMU

and MCHU.

Actually, the SMMU was later removed from MME, and replaced by Mobility

Management and Database Unit (MMDU), which also handles subscribers database,

besides, it also controls the EPS mobility management and EPS system management

level functions for LTE subscribers.

The ATCA based MME has the capability to support 10M subscribers and 30M

sessions (bearers) in order to accommodate the increasing number of subscribers and

session in the network.

3.3 Robot framework

Robot framework is a generic test automation framework. It is open source software

whose license is under Apache 2.0.

This framework is implemented in Python, and can be extended with Python, Java or

other languages supported via XML-RPC based remote interface. It utilizes the

keyword driven testing approach to create test cases. User can create new keywords

from existing ones. The high level architecture of Robot Framework based test is

illustrated in Figure 11.

Figure 11. High level architecture of Robot Framework based test

25

Robot framework enables text based tests in a text editor. The test cases have a

column-oriented syntax. Robot framework utilizes test libraries with test library

integration, through which the robot framework interacts with the system under test.

To create test case in a uniform way, robot framework enables tabular [23] syntax for

creating it. User uses keywords to construct the test cases. There are robot framework

build-in keywords, user can also import keywords from test libraries or create own

keywords [24]. Table 1 shows a test case example of Robot Framework using tabular

syntax.

Table 1. Test case example of Robot Framework

Test Case Action Argument Argument

Valid login Input Name First argument Second argument

Setting variables Do something First argement Second argument

 ${value}= Get some value

The above table shows the basic syntax of a test case. There are step definitions, each

row is one step. They are executed row by row during the execution of the test case.

The first column of the table indicates the test case name, while the second column

contains either keyword or variables (like ” ${value}=” in above table) which holds

the return value of one keyword. The columns after keyword name contain possible

arguments to the keyword. With this keyword-driven style, the test cases do not need

to know what is happening underneath besides keywords. You can consider each

keyword as one function call which accepts arguments.

Each variable in robot framework has a scope. It can be defined as global variable,

which is recommended to use all capital letters [24], for example ${PATH}. It can

also be defined as a test suite specific or test case specific variable that is only

available in certain test suites or test cases. Variables can be defined directly in test

definitions or can be input from command line or can be from external resource file.

26

So, different test scenarios can be described into test cases by using keywords. All

test cases are encapsulated in one test suite. Each test scenario could actually be split

into more detailed sub-scenarios, so that more descriptive keywords can be used to

construct the test case. At the beginning of writing test cases, the build-in keywords

can be used, but as the test cases become more and more specific, the build-in

keywords are quite limited that there is a need to create own key words. The self-

created keywords are called user keywords to differentiate them from lowest

level library keywords. In robot framework, creating user keyword is easy as long as

you know Python or other programming languages [24]. If using Python, each

keyword is actually one Python function call when running the test case.

How to create a user keyword of robot framework? Firstly, we need to know what

functions we need for the test. Then, we can implement each function in a

programming language (e.g. Python). After that, we should add the programmed

class in ”Library” of settings. Finally, we can call the function implemented in the

external class as a keyword in robot framework syntax. For example, figure 12 shows

a simple code snippet of Python which creates a function named add_two_numbers.

It simply takes two numeric arguments, and returns the summation of the two

arguments.

Figure 12. A Python function used as keyword

Table 2 shows a test case which utilizes the above Python code. In the ”Settings” part

of Robot Framework, we add the python class as a library to ”Library” section of the

test case. Then, in test case implementation, we call the python function by replace

underscores of the python function name with space, and capitalize the first letter of

each word. The return value is assigned to an ${result} variable.

27

Table 2. A test case with user keyword

Settings value

Library AddLibrary

Test case Action Arguments

Example test case ${result}= Add Two

Numbers

 Should Be Equal

In the above example, we created an ”Add Two Numbers” user keyword of robot

framework and used it in one test case. It is quite easy and intuitive.

In general, with robot framework, we have high level tests that specify the general

work flows, while underneath, we have keywords that deal with the details of how

the implantations of functions are called. All these make robot framework a handy

tool.

In each test suite, there are Setup and Teardown parts. The Setup part defines the

initial phase of the test suite which allows actions for initialization and preparation of

test cases. For example, in Setup, we can check if the database connection is

established, if the database server is started before real tests run. The Teardown part

is the final phase of a test suite, in which we can define some final actions for the test

suite. Table 3 shows an example of setup and teardown settings. The availability of

Setup and Teardown phases make it easy to keep the real tests focused. Test cases

only focus on real tests definitions, leave other things be handled by the context. The

individual test cases can also have their own setup and/or teardown.

28

Table 3. Setup and Teardown settings

Setting Value Value Value

Test Setup Check db

connection

db name

Test Teardown Close db

connection

db name

After test cases execution finished, there are output files be created which contain

test results in XML format, based on which a log file and a report file are generated.

The detailed information of executed test cases can be seen from log file. The log file

is an important resource for tester to investigate, especially when problems rise up

during test cases run. Figure 13 shows the test log file.

Figure 13. Test log file

Report file is a high-level overview of test results in HTML format. It contains links

to log file to provide easy access for detailed information. With report file, it is easy

to see both the overall test execution status and the detailed step information. If all

29

critical tests pass, the background of the report is green (like figure 14 shows),

otherwise it is red (like figure 15 shows).

Figure 14. Test report file (All pass)

Figure 15. Test report file (with failure tests)

30

3.4 Agile methodology

Nowadays, we often hear the word ”Agile” in software development. What

is ”Agile” in this circumstance? The answer can be seen from the manifesto for

Agile software development [25]:

“We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.”

In software development, perhaps the biggest problem is changing requirement. A

project that is readily accepting changes can cost less than that without accepting

changes. Nowadays, the Agile development model becomes popular in software

development because of its efficiency and flexibility for accepting changes. The

main principle of Agile methodology is developing working software while keeping

customer satisfaction in mind. In Agile way, the working software can be delivered

frequently with shorter timescale. The customer is able to make changes on the

requirement during each review of the delivered software.

Generally, Agile process is an iterative and incremental model [26]. The whole

development process is divided into development cycles, where in each cycle there is

the intention of doing only a small portion of the whole software product. The tasks

in each cycle are supposed to be completed on time to be ready for the next iteration

round. In case if the tasks are not finished at the end of the current cycle, they will be

moved to the next iteration round. In this way, the team always try to take a portion

of work which they estimated that they are able to finish during one development

cycle.

31

There are a number of agile methods, of which the most well-known one is probably

the ”Scrum”. The Scrum model is more concentrated in project management than

software development practices. Its process is aimed at flexibility, adaptability and

productivity [27]. The assumption in Scrum is that during the software development,

the requirements, time frame, resource and technologies will most probably be

changing during the process. It makes the Scrum an efficient project management

tool in situation where it is difficult to plan ahead. In Scrum, the work is organized

into short development cycle called Sprint, which normally could be one week or

two weeks in one Sprint. During the development, the features of the software are

chosen and prioritized together with customer. A Daily Scrum is conducted in order

to get immediate feedbacks from customer and the development team. There are also

planning meeting in the beginning of each Sprint and a Review meeting at the end of

each Sprint [27].

32

Chapter 4 Automated software testing

Briefly, software testing could be understood as a procedure of finding faults and

defects in a software application so that the problems could be fixed by software

developers. With this procedure, the quality of the software application is

guaranteed. This chapter firstly talks about what automated testing is, after which an

introduction of the life-cycle of automated test and the concept of automated

regression testing are presented.

4.1 Definition of automated testing

The new challenge of today’s software development is that the time schedule is

shrinking, software development needs to be performed within a short period and

within minimum resources, that’s to do more with less. Software testing is a required

step guarantees the software application’s quality. Organizations would like to do the

test adequately, meanwhile, as quickly and thoroughly as possible. To achieve this

goal, organizations nowadays choose to use automated testing.

In manual testing, a person who plays a tester role initiates a test, interacts with it.

The tester needs to interpret, analyze and document the test results. A brief

description of automated testing is that a tester-free procedure runs a suit of test

cases, automatically generates the test results, makes analysis and reports the pass

and fail of each test case for the test run.

In order to closely reflect and meet user’s needs and preferences, software

development is conducted in the way of continuous changing through each software

build [28]. Software testing is performed in an iterative manner. Each new build of

application is accompanied by a considerable number of new tests as well as reworks

to the existing test scripts. In this environment, automated software testing becomes

an important control mechanism for the software application which is under the

continual changes during development. Automated testing ensures the stability and

accuracy of the software through each build.

33

The main question in modern software development is not whether to use automated

testing or manual testing. Instead, one should consider of the level of automation to

use and which level of tests is feasible to automate [31].

The initial step in test automation is to understand what software application is going

to be tested, identify the features we would like to test, and identify the environment

the software is running upon. Besides, we should understand the features of testware

and tools for test automation. It is not necessary to test everything of the software, it

is important to identify which component of the software should be included in

automation test, and which should be excluded. The most important features that to

be tested should be defined [32].

Test environment and interfaces must be considered. Under what environment the

tests are supposed to run? What interfaces of utilities would be used in tests? What is

the immediate technical environment? The answers to these questions are important

for test automation since they provide the facilities and constrains on practical

approach. If there are requirements to support the test automation in different

platforms and environments, we should take into account that tools and utilities could

be available across different platforms but have incompatible interfaces.

When running a test, there are input data and output result. The input data could be

keystrokes or a simple user input. It is also possible that the input data of an

automation test is one keystroke which triggers a function to load external data from

a remote database. The output result could be counters, statistics or graphs, which

must draw a proper conclusion for the tests. So, the definition of input data and

expected output results is also an important issue.

The existence and availability of testware elements and tools defines the scope of

planned automation tasks [32]. The testware elements here mean the documentation,

program and associated procedures for test activities. The tools means the operating

system utilities, test selection and control programs, etc. It is common to have a

requirement to include existing testware in automation test [32], which should of

course be carefully considered since if the existing testware can cover all the

targeting level of automation test for an application, there would be no need to

develop our own automation test.

34

In manual test, tester will check the result data and program states, make

investigations on them, and judge whether the test is passed or failed. In automated

testing, we need to implement this procedure programmatically. That’s to verify the

results, to identify the important indications of errors and systematically checking

them after each test. More preferably, the automated test could generate a final report

to show the overall view of test results.

4.2 Automated test life cycle

Automated testing provides the benefits of improving product quality and

minimizing project schedule and effort. In order to achieve these benefits, test

engineer should be involved in analysis and design activities, so that test engineers

get a clear view of customer needs. The test team can then develop an appropriate

test environment and test design. Besides, by involving test engineers in analysis and

design activities, errors can be detected early without migrating the errors from

requirement specifications to design.

The Automated Test Life-cycle Methodology (ATLM) [28] is introduced in

automated testing. It represents a structured approach for the implementation and

performance of automated testing. This approach mirrors the benefits of modern

rapid application development.

Figure 16. Automated Test Life-cycle Methodology (ATLM) [28]

35

By applying ATLM, test engineers can be involved early in the system life cycle

from business analysis to design and development, which enables the test team to

conduct a thorough review of requirement specification, gain a complete

understanding of business needs and requirement so that a more appropriate test

environment can be designed, and a more rigorous test design can be generated.

The first phase of ATLM is the decision to automated test. So, what does the term

”Decision” here actually mean? Basically, it means the test team should understand

the expectations of automated testing. Moreover, the test team can outline the

potential benefits of automated testing. At this phase, an approach for developing a

test tool proposal is outlined, which will be helpful in acquiring management

support.

The next phase is to select a proper automated test tool. The selected tool should fit

the requirements of the organization and allows the organization to make the most

use of the tool. There is normally a process takes place in test team for test tool

evaluation and selection. In this thesis work, the test tool has already been defined by

NSN.

The third phase is to introduce the automated test to a new project to which the test

team is targeting. A test process analysis is supposed to take place in order to ensure

that an overall test process and strategy are in place. The test team defines the test

process metrics so as to allow process improvement. The definitions of test goal,

objectives and strategies must be done in this phase.

In test planning phase, the test team defines the hardware, software and network

requirements which support the test environment. Besides, the test team identifies the

test procedure, test data requirement, performance measurement requirement and a

defect tracking procedure. A preliminary test schedule should also be defined.

Setting up the test environment is part of testing planning, which includes the

installations of hardware, software and network resources.

Test design addresses the definition of test scenarios, the number of tests to be

performed, and how those tests should be approached. The development of the

36

designed tests consumes most of the time. The test suit and its test cases are

implemented. Each test case should be reusable, repeatable, and maintainable [29].

After each execution of test scripts, an refinement could be made according to the

test procedure execution schedule. An evaluation activity of test execution outcomes

should be conducted too [28]. If there are system problems, a report should be

generated which describes the where goes wrong. Finally, the test team should

perform regression tests, and track the problems.

Test review and assessment should be performed throughout the testing life cycle,

thereby allowing continuous improvement. In order to improve the test process,

metrics need to be evaluated and a final review and assessment need to be conducted.

4.3 Automated regression testing

The automation of test activities provides its greatest value in instances where test

scripts are repeated or where test script subroutines are created and then invoked

repeatedly by a number of test scripts. During the development and integration of

product, such testing, where reusable scripts may be run a great number of times,

offers a significant payback. As an important control mechanism, automated testing

ensures the accuracy and stability of the target system or product (e.g. software) [28].

Regression testing at the system test level seeks to verify that the functions of a

modified system or software product perform the same as specified, the operation of

the system or product has not encountered any unintended change [29]. By allowing

automated testing for regression testing, the regression testing can be executed in a

more efficient manner.

In practice, regression testing means either that, the functionalities which are

working before any changes have been made to the software, are still working as

expected, or means that the test cases which used to pass before making changes are

still passed.

In this thesis work, we can consider our test suite as a client, and the platform we are

testing as a server. Regards to a client-server or Web environment, the tests can

include many types of assessments, for example, functional requirement testing,

37

server performance testing, user interface testing, unit testing, integration testing,

system load performance testing. This thesis work is more focusing on functional

requirement testing, server performance testing and load performance testing, which

can be performed in a more efficient, repeatable manner.

38

Chapter 5 Automated Tektronix control

and MME regression testing

How can we test one element of the core network? The answer could be various

depending on from which perspective you consider it, however, one thing should

definitely be included in the answer, that’s a method for emulating the different

status of the network, so that the performance of the network can be evaluated. To

facilitate this kind of emulation, telecommunication network manufactures normally

introduce a terminal which provides either an interface for developers to program

with or a user interface with which developers can configure the network profile.

This thesis work uses Tektronix G35 tester as the terminal.

5.1 Traffic profile in Tektronix G35

The general idea is that G35 tester generates network traffic, which will be

monitored in the Mobility Management Entity (MME) of core network. The

performances of MME’s s1, s6 and s11 interfaces are evaluated finally. Thus, the

first thing to do is to setup G35 to generate network traffic. G35 tester provides an

Emulation Scenario Editor user interface to facilitate the configuration of network

traffic profile.

Figure 17. G35 Emulation Scenario Editor

39

In G35 tester, engineer can define multiple traffic profiles. Each traffic profile is

located under its own directory which is labeled with an id that is shown in a square

bracket of the directory name. For example, a directory with the name Profile[38]

indicates that it is the network traffic profile with id 38. Figure 18 shows the

directories of network traffic profiles in G35 tester.

Figure 18. Directories of network traffic profile in G35 tester

 In each profile, there is a bunch of parameters which can be edited. We can edit the

traffic profile by setting proper values to parameters as shown in Figure 17.

There are three important parameters in the traffic profile, which are ”Start scenario”

, ”Call scenario” and ”Stop scenario”. They form a sequence of communications in

the automatic mode of network traffic procedure. We normally define the ”Start

scenario” to do some preparation tasks for the network traffic generation that is

going to happen in ”Call scenario”. In ”Call scenario” we define the real actions to

generate the traffic, for example, attaching subscribers to the network. The ”Stop

scenario” is usually used to define some final phase actions on the network, for

example detaching subscribers from the network. A concrete view of automatic

network traffic procedure in G35 tester is showing in Figure 19.

40

Figure 19. Sequence diagram of automatic traffic procedure

The above sequence diagram shows that the ”Start scenario” and ”Stop scenario”

are supposed to be run only once during the whole procedure, while the ”Call

scenario” can be run circularly. We can explicitly stop the ”Call scenario”.

In G35, the three scenario parameters and all the other parameters are editable in a

emulator editor window. Figure 20 shows what the possible parameters are in a G35

traffic profile in the editor window.

41

Figure 20. Traffic profile parameters

42

Since there are many parameters and sub-parameters in G35 traffic profile, I will use

bold italic font to indicate the main parameters that is showing in Figure 20, and use

italic font to indicate sub-parameters and its values. Those sub-parameters are

defined inside each keyword which will be explained.

As we see in Figure 20, the three important parameters ”Start scenario”, ”Call

scenario” and ”Stop scenario” each contains a value that consist of a string of action

keywords. For example, ”Wait Poffset, reset_subs, reset_subs_cnf, set_pos”. These

keywords define a sequence of actions on the network that yields a specific traffic

sequence.

The value of ”Start Scenario” parameter is a string of action keywords which are

supposed to be executed only once in the starting phase of the traffic profile. The

traffic profile specific ”Poffset” usage is also an important action which guarantee a

constant and stable message rate and CPU usage[33]. For example, in Figure 20, we

have an action keyword ”Wait Poffset” in ”Start Scenario”. We also call the string of

action keywords as traffic sequence.

The ”Profile Toffset” parameter in the traffic profile defines the network traffic

speed implicitly. The ”Wait Poffset” action in parameter ”Start scenario” defines the

waiting time interval between subscribers. In other words, ”Wait Poffset” means that

before we start this traffic profile, we will wait the time that has been defined for the

”Profile Toffset” parameter. To be clearer, let’s take an example. We set ”Profile

Toffset” parameter with value 10ms, then we will get the traffic speed by dividing

one second by ”Profile Toffset”, which is 1000ms / 10ms = 100attach/sec . Thus, the

traffic speed is 100 subscribers attaching to the network per second. If we have three

similar profile running simultaneously, the traffic speed will be 300attach/sec. Well,

in the automated regression testing system, the highest traffic speed that has been

used in our team is 1000 attach/second.

Like what I have already mentioned above, in G35 tester, traffic sequence parameters

are defined by using the keywords, those keywords actually come from so called

LTE CALLGEN Scripts. Generally, each keyword represents a network action, for

example, actions of subscribers’ attachment and detachment are described with

43

keywords ”ATTACH” and ”DETACH” respectively. Table 4 shows some keywords

used for traffic sequence definition.

Table 4. Example keywords of LTE CALLGEN Scripts

Action Keywords Parameter 1 Parameter 2

Attach ATTACH Position(0..299)

Detach DETACH Detach type (EPS,

POWER_OFF)

Set position SET_POS Position(0..299) Cell Idx(0..15)

Reset

subscriber

RESET_SUBS

Start timer WAIT Timer id or time in ms

As can be seen in Table 4, there are sub-parameters which can be defined for each

keyword. These parameters have certain range of values defined.

Since G35 tester is used to emulate communication systems. For the emulation case

of 4G LTE system, there are of course definitions of eNB. The maximum number of

eNBs for the Tektronix G35 tester is 5000. Each eNB is identified by its id. The

parameter ” Position(0..299)” in above table means that we will use eNBs with id

from 0 to 299. So, eNBs with id 0 to 299 are reserved for this network traffic profile

only. Other available eNBs can be used in other profiles, for example, if we have a

second network traffic profile, we could use eNBs with id from 300 to 599. This

eNBs configuration can be going on until eNB with id 4999, with which we have

reached the maximum allowed amount of eNBs in G35 tester.

The ”SET_POS” keyword represents the action of ”Set position” for eNBs. It is used

as the last action in ”Start scenario” in our case. It sets the traffic profile to start the

scenario by using the first eNB (that’s the eNB with id 0) that is defined for this

traffic profile. More detailed explanation is that, our traffic profile which has the

44

eNBs with id from 0 to 299 will start the traffic by using eNB with id 0 firstly for the

first subscriber, then, uses eNB with id 1 for the second subscriber, and so on with a

round robin fashion.

As you may have noticed already, in traffic profile, we can define subscribers in

network traffic in G35. For example, in ”Call scenario”, we can define a string of

actions like ”attach, attach_cnf, wait tp1”. The last action of this string ”wait tp1” is

actually a timer. In order to allow a large number of subscribers to be used in G35

tester without overloading the CPU, a timer must be placed. The timer can be used

between any actions that are defined in action strings.

There are several timers in Tektronix G35, they are ”Tp1,Ttp2,Ttp3,Ttp4,Tp5”. Like

Figure 20 shows, we defined the value of timers as following in our case:

Table 5. Timers

Timer Value(ms)

Tp1 760000

Tp2 1000

Tp3 1000

Tp4 1000

Tp5 1000

G35 tester user can use the defined timer to set delays for the traffic profile in any

place that is needed.

Normally, we might want to attach all subscribers in the ”Start scenario” while

doing routing area updates in ”Call scenario” for example, and detach them all in

”Stop scenario”. But in our particular traffic profile, we do not define subscribers

attachment in ”Start scenario”, instead, we define it in ”Call scenario”. Besides, we

do not have ”Stop scenario” action in the profile. The reason is that, we would like

to periodically attach subscribers into the network instead of attaching them once

45

only, and we would like to see the performance of MME when the traffic is attached

and detached .

Our ”Start scenario” and ”Call scenario” action strings are defined as below in

Table 6.

Table 6. Start scenario, call scenario and stop scenario of network traffic profile

Start scenario Wait Poffset,reset_subs,reset_subs_cnf,set_pos

Call scenario attach,attach_cnf,wait tp1,detach, detach_cnf,wait tp2

Stop scenario -

In ”Start scenario” of Table 6, the ”reset_subs” parameter means to reset terminals.

While, the ”set_pos” parameter means to set positions of eNBs which are going to be

used and identified by id. The ”*_cnf” parameters represent confirmation messages,

since G35 tester will wait for the confirmation.

With all the explanations above, we can easily translate the action strings in Table 6.

We can say that the ”Start scenario” in Table 6 firstly wait for an amount of time

which is defined by ”Profile Toffset” (that’s 27 milliseconds). After that, it resets the

terminals, and waits for a confirmation message for it (that’s a reset successful

message). Finally, the ”Start scenario” set the position of eNBs that will be used.

The action string of ”Call scenario” indicates that, the tester firstly attach subscribers

with a speed of ”1sec/Poffset” attaches per second, then, it waits for the confirmation

message of successful attachment. After all subscribers have been attached, the tester

waits for 760 seconds (because here ”Tp1” is set to 760000 milliseconds), after

which G35 tester then starts to detach the subscribers until it gets the detach

successful confirmation message. Finally, the ”Call scenario” waits for 1 second, as

”Tp2” is set to 1000 milliseconds.

We have no action for ”Stop scenario” as indicated in Table 6.

Some other noticeable parameters in traffic profile are:

46

- ”End terminal” which represents the number of subscribers in the

traffic. For example, in Figure 20, we set it with value 57000, that’s

in total 57000 subscribers.

- ”Start position” which indicates the id of starting eNB when traffic

starts. In Figure 20, we set it to 0. That’s start with eNB 0.

- ”End position” which indicates the id of ending eNB. In Figure 20,

we set it to 300. As we use the id range of eNBs from 0 to 299,

there are totally 300 eNBs, the ending eNB with id 300 is actually

not in use during the traffic time.

- ”Traffic profile options”, this parameter defines what is going to do

after all the scenarios (”Start scenario”, ”Call scenario”, ”Stop

scenario” and so on) have gone through. In our case, we just stop

everything after scenarios have gone through. You can find the

value ”Stop after Traffic Profile” for this parameter in Figure 20 .

- ”Start Automatic calls”, this is actually a button which triggers the

traffic to start running.

- ”Stop Automatic calls”, this is also a button like element which can

stop everything immediately during the running of network traffic.

With the network traffic profile tool in G35 tester, we can define a sequence of

network actions with an amount of subscribers to achieve one or multiple network

traffic scenario(s). G35 tester strongly facilitates us to generate network traffic for

the purpose of testing network elements.

5.2 Enable Tektronix G35 remote control

The G35 tester provides a Distributed Programming Environment (DPE), which

allows for a remote-controlled implementation and evaluation of measurements. The

DPE is installed as part of Tektronix G35 Remote Operation Package (ROP) which

consists of two parts: 1. A CORBA interface for self-created remote control

programs. 2. A web-based querying possibility. We use the first solution to

implement a remote control of G35 tester.

47

The G35 tester supports test automation by providing a CORBA based interface,

which enables the tester to remotely control a customer specific external test

management system. In this way, user does not need to develop test scenarios using

the actual test hardware on Tektronix G35, instead, the test scenarios can be

developed in a remote client and running remotely through networks.

CORBA is the acronym for Common Object Request Broker Architecture. The

Object Management Group (OMG) defines CORBA [34]. OMG comprises almost all

the major vendors and developers of distributed object technology. CORBA is a

vendor independent architecture. Computer applications can use it to work together

over networks. A CORBA based program from any vendor, on almost any computer,

operating system, programming language and network can interoperate with a

CORBA based program from the same or another vendor, on almost any other

computer, operating system, programming language and network [34].

Figure 21. Remote control of G35 through CORBA

The basic CORBA paradigm is to request for services of a distributed object. There

is one interface that is defined in OMG’s Interface Definition Language (IDL), which

we called IDL interface. The remote distributed object is identified by object

reference which is typed by IDL interface. Client holds an object reference to the

distributed object, and send request through the so called Object Request Broker

48

(ORB). The ORB delivers client request to the distributed object and returns the

results which are generated by the services of the distributed object to the client. The

ORB is a distributed service which implements the request to the distributed object.

It also locates the remotely distributed object on the network, delivers client request

to the object, waits for the results, and transfer the results back to the client [35].

With CORBA interface, the remote client can access Tektronix G35 through the

advertised interface. Client invokes the operations that are exposed by G35 tester

through its IDL interface.

The CORBA software comes with an IDL compiler, which compile the IDL into

client stub and object (G35 tester) skeleton. That’s producing IDL definitions for the

usage with IDL stub on client and the usage with IDL skeleton on G35 tester. IDL

compiler can translate the IDL files to Java, Python or C++. Stub and skeleton serve

as proxies for client and G35 tester respectively. IDL defines interfaces very strictly

that there is no problem even if the client stub and G35 tester skeleton are compiled

into different programming languages, or running on different ORBs from different

vendors.

On G35 tester, there are three IDL files which are control.idl, protocoltest.idl and

session idl. In order to initialize the client side local ORB and establish the client

stub successfully, we have to copy these three IDL files from G35 tester to client like

figure 22 shows.

Figure 22. Three IDL files from G35 tester to client

After client got the three IDL files from G35 tester, it uses a tool called omniidl to

compile the IDL files to python files (control_idl.py, protocoltest_idl.py and

session_idl.py). The client program developed for remotely controlling the G35 tester

uses Python as the programming language. The client python program imports the

49

above mentioned three python files so that the client local ORB object can be

initialized. The client local ORB is used to instantiate proxy objects which are

defined in IDL interface. The services defined in proxy objects are invoked in client

python program, the local ORB then generates and transmit the case specific request

to the remote ORB on G35 tester.

5.3 Initial phase of test suite

The initial phase test case builds the working environment of Tektronix G35 tester,

configures the SSH feature on ATCA server, set the test suite variables and organize

the directories structure of tests results. These initial steps prepare all the things that

are needed for main test cases. Basically, by running this initial test case, we want to

make sure all these preparations are successful, if anything is failed during the test

case running, the whole test suite will be stopped at that point.

There are several computer units in ATCA, we are interested in their CPU loads

during test running. In order to track the CPU load of each computer unit in ATCA

simultaneously, there is one python script which implements the multithreading

feature. This Python script is located on a remote Linux server. In order to

communicate with ATCA server, we established an SSH connection between the

Linux server and ATCA. SSH is a protocol that provides secure network

communications with authentication, encryption and data integrity capabilities. SSH

offers a secure command-shell, secure file transfer and remote access to applications

via a secure tunnel [36].

There are two SSH connections involved in order to get the CPU load of each

computer unit in ATCA. The first SSH connection is between the Linux server and

ATCA, through which, the python script on Linux server can send MML commands

to ATCA server to track the CPU loads. The second SSH connection is between the

client PC where test case is running and the Linux server, so that test case can trigger

the python script remotely on Linux server. The ATCA server’s SSH feature must be

activated, and by default, it is in the inactivate mode, so, the test case must activate

the SSH feature in ATCA as an initialization step.

50

There are test suite variables defined in this phase. Variables like results directory

paths, counter IDs are defined as test suite variables, which means they are visible by

test cases inside the test suite.

5.4 Statistics collection phase of test suite

The essential part of the test suite is the counter statistics collection for both G35

tester and ATCA server.

We use Robot framework to develop the test suite. The first part of the test suit is the

test cases of Tektronix G35 control, which includes loading of G35, configuration of

network traffic (traffic profile), starting and stopping of traffic and collection of

counter statistics.

Counter statistics collection is periodically conducted. Both the values of counters on

ATCA and G35 tester are collected. The results are organized and write to files in

order to show periodical statistics which then be drawn as time-value graphs

automatically.

5.4.1 Tektronix G35 counters collection

Our test case remotely controls Tektronix G35 tester so that the developer does not

need to work besides the G35 tester physically when creating the test case. It eases

the work physically, because developer is able to focus on working with his/her

workstation, while the G35 tester can be located besides the ATCA MME, so that the

other tasks besides MME won’t be bothered.

Section 5.2 has introduced how to enable remote control for G35 tester by utilizing

the CORBA interface defined in Tektronix G35 Remote Operation Package (ROP).

After everything has been setup correctly, a custom Python file named

”TesterController.py” is created on client like Figure 23 shows. This custom Python

file imports the python files compiled from IDL files from G35 tester. Developers

can freely create functions in this file to control the G35 tester. This Python file is

located under Remote_G35_SE/ directory on client.

51

Figure 23. Python file for Tektronix G35 remote control

Our test case for G35 remote control utilizes the functions in TesterController.py to

establish a remote connection to G35 tester and get the counters which we are

interested in.

There is a customized keyword in our test case. This keyword invokes a function

named create_tektronix_counter_parameter_list that is defined in Python file

TesterController.py. The corresponding keyword in robot framework is then named

“Create Tektronix Counter Parameter List” which invokes the Python function. This

Python function creates a list that contains all the counter parameters defined in G35

tester. In order to get the counter list of G35 tester, the Python function needs to

know where the counters’ value could be found on G35 tester. In our case, the

counter parameters’ path on G35 tester is “ENB_UE_NAS

52

Statistics.Counter.Procedure”. So, the Python function is able to get all counters’

value by accessing this path.

5.4.2 ATCA CPPU & SMMU counters collection

The ATCA based MME contains the following operation units:

OMU ... OPERATION AND MAINTENANCE UNIT

CPPU .. CONTROL PLANE PROCESSING UNIT

MCHU .. MARKER AND CHARGING UNIT

SMMU .. SIGNALING AND MOBILITY MANAGEMENT UNIT

The SMMU has been replaced by MMDU later on. MMDU stands for Mobility

Management and Database Unit, which stores visiting subscriber information into the

visiting subscriber database.

In this thesis work, we are mostly interested in CPPU and SMMU counters on ATCA

MME.

We use Man Machine Language (MML) command [37] to communicate with ATCA

MME. MML is an interface for managing a network device from a console. We have

a terminal window through which the engineer can send MML command to access

data and to operate units on MME. Figure 24 shows the ATCA terminal window.

In order to get the MME counters, our test cases firstly establish a telnet connection

to ATCA server, and then it starts a remote session to the operation unit of ATCA

MME which we are interested in. By giving the MML command ”ZDDS” on ATCA

terminal, a remote session is started, the only thing left is to tell the terminal to which

operation unit the remote session would like to connect. For example, we are

interested in CPPU, the test case executes command ” ZDDS:CPPU” on terminal to

establish a remote session to CPPU unit. After the remote session has been

established, the terminal is in CPPU’s Linux operating system, we can execute Linux

command on that unit.

53

Figure 24. ATCA terminal

There is one jar file located under path opt/java/ of CPPU’s operation system. We

run the following commands to run this jar program:

java -jar mmeCLIHandler-1.0-SNAPSHOT.jar

After run the jar file, the terminal is switched to the level of MME CLI, in where we

execute the command ”getctr -r 7250-7283” to get the CPPU counters. The “7250-

7283” is the range of CPPU counter ID. Figure 25 shows the results of CPPU

54

counters we got from ATCA terminal. Our test case gets the counters’ data showing

on the terminal, a further manipulation on these data will be conducted later on.

Figure 25. CPPU internal counters

Finally, the test case kills the remote session established with CPPU unit and close

the telnet connection to ATCA MME.

Basically, we use the similar way to get SMMU counters. By giving the command

”ZDDS”, the terminal is in the level of service terminal, then, execute the commands

”‘ZLP:1,MMT;’, ‘1’” and ”‘L’” to get the SMMU counters.

5.4.3 ATCA GPRS Measurement Handling

In ATCA MME, there are five types of GPRS measurement, which are listed below:

55

MMMT MOBILITY MANAGEMENT TRANSACTION MEASUREMENT

SMMT SESSION MANAGEMENT TRANSACTION MEASUREMENT

USLM USER SMMU LEVEL MEASUREMENT

UMLM USER MME LEVEL MEASUREMENT

SMLM SECURITY MME LEVEL MEASUREMENT

On ATCA terminal, we execute the MML command “ZTP” to enter into GPRS

measurement handling part. There are also counters for each measurement, our test

case collect those counters too.

The measurements are time based. ATCA terminal provides measurement time

configuration. To get the GPRS measurement counters, the first thing need to do is to

set the measurement time characteristic for each measurement type. Thus, for each

measurement type, we need to define the ”Measurement Day”, which is supposed to

be picked from weekdays; the ”Measurement Interval” for the day, which includes

the measurement ”start time” and the measurement ”stop time”; also the ”Output

Interval” which defines how often to write the counter results to XML files.

For example, if we execute the MML command:

 ZTPM: MMMT,ALL,00-00-24-00,24:;

it is for MMMT measurement, the measurement days are from Monday to Sunday,

which is indicated by “ALL”; on each day, the measurement start time is 00:00, the

measurement stop time is 24:00, that’s “00-00-24-00”, which means the

measurement lasts 24 hours on each day; the output interval is 24 hours, indicated by

the last figure “24”, which means we only get the measurement output at the end of

the day. So, for each day, we only have one output which will be written to XML

files.

On ATCA server, the counter data of GPRS measurements are both written on XML

files and buffered on the memory. As explained above, we have set an “Output

Interval” (e.g. “2”) for the measurement, which constrained that the measurement

data is only able to be written on XML files after the output interval has reached (e.g.

56

24 hours), which means during the output interval, there is no record written on

XML files. To get rid of this limitation, during the measurement, our test case is

designed to get the measurement results directly from the memory, which gives the

instantaneous result at any particular time without any constraint. Though, it sounds

like the “Output Interval” setting is a useless action, it is an obligatory parameter to

be set anyhow.

By executing the MML command ‘ZTPP’ on ATCA terminal, the terminal is led to

the level of ‘DISPLAY MME MEASUREMENT COUNTERS’ which shows all the

counters result from memory. The complete MML command to get courters result

from memory is

ZTPP:[measureType],MEM:;

where “[measureType]” is supposed to be the name of measurement type. For

example, to get the counters data of MMMT measurement, the complete MML

command is ZTPP:MMMT,MEM:; . Our test case goes through all the measurement

types to get the counters data of all five measurements.

After all the GPRS measurements are completed, the measurements need to be

stopped. We execute the MML command ZTPE: [measureType],; to stop the

measurements, where “[measureType]” should be replaced by the actual name of the

measurement type as well. If the measurement is not stopped properly, there will be

an error message of ‘GPRS is unlocked and busy’ when you are trying to run the

MML command to display the measurement counters again.

5.4.4 TOPTEN tracking

The term “TOPTEN tracking” means to track the CPU loads of all units on ATCA.

The reason why we check the CPU loads is that we need to make sure the CPU load

of each unit is reasonable for the automation test. We need to check that the load

does not increase more than it should be. For example, there could be some leakage

in CPU load which would cause the CPU load to increase indefinitely until the unit

runs out of free CPU capacity. Besides, we would like to make sure that the load is

within acceptable levels. For another example, the CPU load is supposed to not

exceed more than 70% of its total capacity in order to make sure that the system is

57

still functional well. So, if the CPU load becomes near to 100%, then we know that

we probably will run into problems, since the unit is already overloaded.

The test case functions of TOPTEN tracking are mainly implemented in a Python

script which is located on a remote Linux server. Robot framework test case invokes

the functions as keyword. The units to be tracked on ATCA server are OMU-0,

OMU-1, MCHU-0, MCHU-1, SMMU-0 and CPPU. All the CPU loads of those units

are tracked simultaneously by implementing the multithreading feature in python.

There are two SSH connections established, one of them is between the client

computer in where the test case is running and the remote Linux server, the other one

is between the Linux server and the ATCA server.

So, the general process is that, the test case firstly establish a SSH connection to the

Linux server, then, it remotely executes a Linux command through SSH connection

to run the python script (i.e. unitsLoadsTrack.py) on the Linux server. After that, the

running python script on the Linux server establishes a SSH connection to ATCA

server and sends MML commands through SSH connection to ATCA to get the units

CPU loads. Finally, the python script gets the ATCA returned units CPU loads, and

returns the results to the test case. The process is illustrated in Figure 26.

Figure 26. The process of TOPTEN unit load tracking

ATCA
Linux

Server

Test case

1.run unitsLoadsTrack.py

2. Get CPUs loads from ATCA

3. Return results

4. Return results

58

5.5 Statistics recording phase of test suite & Graph generation

After the test cases get all the groups of counters data, they write the data into files.

The statistics recording phase includes three steps, which are data extraction, item

formatting and value recording.

Basically, the counter data got from ATCA are in plain text, from which the test case

needs to extract the data and information which we are interested in. The test case

firstly converts the plain text into a list of string, where each item of the list is

generated from one row of the plain text, that’s one record. The test case then iterates

through the list and gets each counter name and counter value which we are

interested in from each row of the plain text.

For each row of the plain text, after the counter name and counter value have been

extracted, the test case then organizes those items into the format of “Start Time

Period, Counter Number, Counter Name, Counter Value” which is considered as one

record item. After that, each record item will be written to a *.dat file. The following

table shows the sample records in a *.dat file:

Table 7. Sample records of counter’s data

#PERIOD_START_TI

ME

#COUNTER_NUMBE

R(s)

#COUNTER_NAM

E(s)

#COUNTER_VALU

E(s)

25-5-2010_11:9:37 20059 Tau---Paging-

COLLISION

0000000000

25-5-2010_11:10:6 20059 Tau---Paging-

COLLISION

0000000000

25-5-2010_11:10:31 20059 Tau---Paging-

COLLISION

0000000000

25-5-2010_11:10:55 20059 Tau---Paging-

COLLISION

0000000000

59

As the above table shows, our test case records the timestamp, counter ID, counter

name and counter value into a DAT file. After the test case got these records, it is

ready to generate statistic graphs of each counter.

We use a command-line driven graphing utility called Gnuplot [38] as the tool to

generate statistic graph from DAT file. With the generated DAT file, our test case

continues generating *_setting.gnu files which is used by Gnuplot tool to generate

graphs. Generally, the *_setting.gnu files are configurations which define the data

used for graphs, and how the data should be shown on the generated PNG graphs.

The test case executes command “gnuplot” to generate PNG graphs.

5.6 Test case design in time domain

One requirement for this test automation is that a test engineer is able to start the test

cases before he/she leaves the office, and can get the test results on the next working

day. In other words, the test cases are supposed to be running for more than 10 hours.

Of course the actual running time depends on when the test engineer starts and stops

the tests. During the tests run, most of the time is actually consumed by periodical

counters data collection from G35 and ATCA.

There is a user interface which allows test engineer to define explicitly the time

domain parameters for the test suite, which is shown in figure 27.

Figure 27. Test case time domain parameters

60

 As you see in figure 27, there are three important time domain parameters, which are

trafficPeriod, plusPeriod, and recordDuration. These parameters actually implicitly

define the running period of our tests, as explained below.

Figure 28. Traffic Period, Plus Period and Duration

Figure 28 above shows the definitions of the three parameters in time domain. The

green color “Start” and red color “Stop” in figure 28 indicate the traffic starting and

stopping time. The parameter “trafficPeriod” in figure 27 refers to the term Traffic

Period of our tests in Figure 28. It indicates the total period spent on periodical

counters collection after the network traffic started. Plus Period (”plusPeriod” in

Figure 27) means the period spent on counters collection after we stopped the

network traffic. The “Duration” in figure 28 is identical to parameter

“recordDuration” in figure 27 which tells the time amount used for each round of

counters collection.

The complete general view of our tests in time domain is showing in Figure 29.

Figure 29. Tests in time domain

61

Firstly, the test case makes some preparations for Tektronix G35 tester and ATCA

server. This mainly includes preparations for G35 counters and timer definitions for

counters collection from MME (ATCA) memory (see section 5.4.3).

After that, before the traffic is started, there is an initial counters collection step.

Generally, this step gets the data of the initial status of counters on G35 and ATCA.

Then, the test case starts the traffic from Tektronix G35 remotely. At this point, the

real traffic started, counters start to record new values.

After the traffic started to flow, the test cases start the main task, that’s the periodical

counters data collection. By utilizing the user (test engineer) inputted parameter

‘trafficPeriod’ and ‘recordDuration’ (this ‘recordDuration’ indicates how often to

collect counters), the test suite is able to calculate how many rounds of collections

there will be. If user defined traffic period is not exactly equal to an integer

multiplied by user defined collection duration, the number of collection rounds will

be extended properly. After the traffic stopped, the test cases wait for a ‘plus period’

which is also defined manually, and then starts the last counters collection. The final

step is to stop the counters measurement on ATCA.

62

Chapter 6 Results & Conclusions

The test suite is divided into several test cases. We consider each test case as one

phase of this automation test. There are also time domain measurements for each test

case. After the completion of test suite run, a bunch of results are generated. In this

chapter, a summary of the average time spend on each test case during a test run is

concluded; the results are explained. Besides, a further improvement is also proposed

in this chapter.

6.1 Test phases & time domain overview

In general, there are seven test cases in our test suit, which implies seven phases for a

complete test run. They are the “Tektronix G35 and ATCA MME preparation” phase,

the “Initial statistics collection” phase, the “Traffic starting” phase, the “Periodical

statistics collection of traffic period” phase, the “Traffic stopping” phase, the

”Waiting & statistics collection of plus period” phase and the “Final step” phase.

Figure 30 shows the sequences of the seven phases.

Figure 30. Seven phases (test cases) of our test suite

There is a conclusion on the average time spent for each phase during the test run. As

above figure shows, the first phase ”Tektronix G35 and ATCA MME preparation”

63

takes about 22 seconds in average, where most of the time is spent on setting timers

for counters measurement from MME memory.

The step to prepare for G35 counters is faster, it takes about 2 seconds. At this point,

the preparation for counters' collection is done; however, there is no network traffic

yet, so the initial statistics collection is very fast. Our test case directly catches the

values of counters in this phase, which is followed by a traffic starting action.

The network traffic is started in the third phase, after which there is traffic flowing

on the core network. The most time consuming phase is the “Periodical statistics

collection of traffic period”. The total time spend on this phase is depending on the

user's definition of “Traffic period” and “Plus period”, which implies the number of

rounds the test would take for the periodical statistics collection. On average, one

round collection for all counters takes about 44 seconds, which includes around 14

seconds spending on G35 counters collection, 1 second spending on CPPU counters

collection, 22 seconds for TOPTEN data collection and 6 seconds for organizing the

counters' data and generating the statistic files. The steps for collecting SMMU

counters and MME measurements are very fast, the time spends on them is less than

1 second.

After the periodical statistics collection, our test case stops the traffic, and enters to

the “Waiting & statistics collection of plus period” phase. Here, we are interested in

the changes of counter values after we stopped the traffic. So, the test case waits for a

“Plus period” defined by user. Then, it triggers a last time collection for counters.

The last collection takes about 44 seconds.

The final phase of our test suit is named “Final step”, which stops the measurement

of counters from MME memory. This part takes 20 seconds in average.

Overall, the most time consuming steps among all the phases are the setting of timers

for counters measurement from MME memory, TOPTEN tracking and the stopping

of counters measurement from MME memory.

6.2 Results directory structure

All the test results are automatically stored under a directory named “Statistics” on

the workstation. Since the test suite collects counter statistics in several rounds

64

during the execution, we use timestamp to indicate each round of the counters

collection. The timestamp indicates each collection's start date and time, in the

format of “date@time”. For example, one result directory under ”Statistics” folder is

named ”2010-06-24@15_47_34” which indicates that the results under this folder

are generated from the collection that is started at time 15:47:34 on the date

24.06.2010. The number of timestamp folders is equal to the number of collections

that are conducted during the test run.

Under each “date@time” directory, there are sub-directories for different collection

groups of counters. The sub-directories of result folder are named by counter group

names, for example: ‘MME \ MMMT’, ‘SMMU\’. Inside each counter group folder,

there are DAT (”*.dat”) files which contain the records of counters’ name and value.

Besides, there are GNU (”*_Settings.gnu”) files which include configurations for

graph generation. The most important files are those PNG “*.png”) files which are

the counters' statistic graphs that are generated from DAT files. Figure 31 shows the

directory structure of test results.

Figure 31. Directory structure of test results

mailto:date@time
mailto:date@time

65

6.3 Result statistics

Generally, there are three technical frameworks in the whole test system. There is a

counter-framework in Tektrnoix G35, there is an ATCA MME counter-framework,

and there is our test framework. Our test framework collects available counters data

from both Tektronix G35 and ATCA MME counter-frameworks.

Tektrnoix G35 generates the network traffic and updates its counters in every second.

The ATCA MME counters on the other hand are updated periodically. In ATCA

MME, there is a waiting period which defines how often MME updates its counters.

This period can be configured before starting the measurement. For example, the

period in MME could be set to thirty minutes, or one hour, or even one day. MME

counters are updated in every period.

Figure 32. Statistics of ATCA MME counters

Let’s take an example of our test scenario. We set the period of MME to one hour,

which means MME updates its counters once in every hour. We define the duration

of test run to a bit more than one hour, that’s to define the ”Traffic period” of our test

66

to one hour, and define the ”Plus period” to about three minutes. So, if our test

framework collects data in every five minutes, the counters value will be zero in the

first hour. Once one hour is reached, MME updates its counters, after which our test

framework collects data again. There will be at least one sample which is valid

practically. Figure 32 and figure 33 show the generated statistics graph of our

example scenario.

Figure 33. Statistics of Tektronix G35 counters

Figure 32 shows the result statistics of ATCA MME counters. Since MME updates

its counters in every one hour, and our test framework collects data in every five

minutes, so the counters are zero in the first hour. After then, MME updates its

counters, and our test framework got one sample during the “Plus period”. The

counters value in the sample is 1.79974*10^6.

Figure 33 shows the statistics of Tektronix G35 counters of our example. Since

Tektronix G35 updates its counter in every second, so, we got a steady increase of

67

counter values, but except the last collection period. Because that is the “Plus

period”, the network traffic has been stopped at the beginning of this period.

Let’s also take a look at the statistics of MME TOPTEN tracking which are the

MME CPU loads in our example. Figure 34 shows the CPU loads of CPPU.

Figure 34. CPU loads of CPPU

The purpose to have also a statistics for the CPU loads is that we need to check that

the CPU loads did not increase more than it should be. In figure 34, there are three

colored lines. There is one blue line which indicates the idle usage, thus, how much

is not in use. There is also one green line which indicates the user CPU usage. The

purple line indicates the system CPU usage.

The relationship among the three usage lines is that when user usage and system

usage are increasing, the idle usage will be decreasing. That’s the total CPU load is

increasing.

68

Generally, Figure 34 shows that our test did not load the unit very much, since the

user usage and system usage are only couple of percent, which is very low.

6.4 Further Improvements

During this thesis work, the Agile method [39] has been applied to the development

process, because we want to make efficient development and set the goals clearly on

weekly basis. During the test suite development, there are of course bugs coming out.

Developers have to spend time to look for the bugs and fix them. This is

understandable but it could be the bottleneck for the development process.

In the world of software development, produce reliable builds is an important part.

One of the best practices in software development is to apply a fully automated build

and test process that can notify the development team multiple times a day.

Continuous Integration (CI) [40] is the term used for this practice, and it is actually a

core Agile method practice. The fundamental benefit of using CI is that it removes

the time spend on bug hunting during the development work. Generally, there are test

suites written for the software during development, with CI, we are able to ensuring

that the project compiles and pass its test suite.

Jenkins is an open source Continuous Integration tool written in Java [41]. It is very

easy to use and can be used for projects in a wide variety of languages and

technologies. As our test suite is developed based on Robot framework, there is also

Robot framework plugin of Jenkins [42] available. This plugin currently provides

features like showing test suite and case details with trend graphs, generate a

summary of latest Robot run on build page and so on.

69

References

[1] Abdullah, M.F.L., Yonis A.Z. Performance of LTE release 8 and release10 in wireless

communications. Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), 2012

International Conference on 26-28 June 2012

[2] Sawahashi, M. Broadband radio access: LTE and LTE-advanced. 2009 International

Symposium on Intelligent Signal Processing and Communication Systems (ISPACS

2009) December 7-9, 2009

[3] Kreuer, D. Applying test automation to type acceptance testing of telecom networks: a

case study with customer participation. Ericsson Eurolab Deutschland GmbH, 52134

Herzogenrath, GermanyOct 1999

[4] Diversified Technology, AdvancedTCA. e-document, from:

http://www.dtims.com/products/atca/whatisatca.php

[5] Liu, R. An investigation on LTE Mobility Management, IEEE TRANSACTIONS ON

MOBILE COMPUTING, National Chiao Tung University, Hsinchu, Taiwan. 2011.

[6] Magnus Olsson, SAE and the Evolved Packet Core: Driving the Mobile Broadband

Revolution, Academic press 2009, ASIN B0084F0RTM , Chapter 10, 227-237, chapter

6, 109-116

[7] Dahlman E., Parkvall S., Sköld J., Beming P. 3G Evolution : HSPA and LTE for Mobile

Broadband, Academic Press, 2007, ISBN 9780123725332 , Chapter 2 P17-21, Chapter

13 P314-316

[8] Nokia Siemens Networks: open core system technical white paper, e-document, from

https://www.online.nokia.com/ [Retrieved 03.022012]

[9] Tektronix: WiMAX testing on the K1297-G35 platform, e-document, from

http://www.tek.com/datasheet/wimax-testing-k1297-g35-platform [Retrieved on

10.022012]

[10] 3GPP LTE overview, 3rd Generation Partnership Project webpage, from

http://www.3gpp.org/Technologies/Keywords-Acronyms/LTE [Viewed on 10.02.2012]

http://ieeexplore.ieee.org.libproxy.aalto.fi/xpl/mostRecentIssue.jsp?punumber=6238218
http://ieeexplore.ieee.org.libproxy.aalto.fi/xpl/mostRecentIssue.jsp?punumber=6238218
http://www.dtims.com/products/atca/whatisatca.php
https://www.online.nokia.com/
http://www.tek.com/datasheet/wimax-testing-k1297-g35-platform
http://www.3gpp.org/Technologies/Keywords-Acronyms/LTE

70

[11] General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial

Radio Access Network(E-UTRAN) access, 3GPP TS 23.401 v10.8.0 (2012-6)

[12] freescale semiconductor: Long Term Evolution Protocol Overview, e-document, from

http://www.freescale.com/files/wireless_comm/doc/white_paper/LTEPTCLOVWWP.p

df

[13] Arunabha G., Jun Z., Jeffrey G. A., Rias M..Fundamental of LTE. Pearson Education,

Inc. 2010 , ISBN 0137033117, chapter 6, chapter 9, P348-350 chapter 10, P371-377.

[14] Xueli,An; Pianese, F.; Widjaja, I.; Acer, U.G.. DMME: Virtualizing LTE Mobility

Management, Local Computer Networks(LCN), IEEE 36th conference on 4-7 Oct. 2011

[15] Vukovic, I; Filipovich, I. Throughput analysis of TDD LTE Random Access Channel,

Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd

International Symposium on 11-14 Sept. 2011

[16] radisys white paper: Protocol Signaling Procedures in LTE, e-document, from

http://go.radisys.com/rs/radisys/images/paper-lte-protocol-signaling.pdf

[17] Artiza Networks: LTE resources, RRC Connection Establishment/Release Procedure,

e-document, from http://www.artizanetworks.com/lte_tut_cpl_pro.html

[18] Nokia Siemens Networks website: http://www.nokiasiemensnetworks.com/ [viewed on

13.03.2012]

[19] Rajan, D. Building IP networks using Advanced Telecom Computing Architecture.

Nortel, Research Triangle Park, North Carolina, USA. 19-25 June 2007

[20] PICMG: AdvancedTCA, website:

http://www.picmg.org/v2internal/resourcepage2.cfm?id=2 [viewed on 15.03.2012]

[21] PICMG 3 (AdvancedTCA) questions & answers, e-document, from

http://www.picmg.org/pdf/AdvancedTCAQA.pdf

[22] Nokia Siemens Networks Flex Network Server, NSN customer document:

https://www.online.nokia.com [Viewed on 14.12.2011]

[23] Korpela J., Tab Separated Values (TSV): a format for tabular data exchange, e-

document, from: http://www.cs.tut.fi/~jkorpela/TSV.html, [viewed on 20.03.2012]

http://www.freescale.com/files/wireless_comm/doc/white_paper/LTEPTCLOVWWP.pdf
http://www.freescale.com/files/wireless_comm/doc/white_paper/LTEPTCLOVWWP.pdf
http://go.radisys.com/rs/radisys/images/paper-lte-protocol-signaling.pdf
http://www.artizanetworks.com/lte_tut_cpl_pro.html
http://www.nokiasiemensnetworks.com/
http://www.picmg.org/v2internal/resourcepage2.cfm?id=2
http://www.picmg.org/pdf/AdvancedTCAQA.pdf
https://www.online.nokia.com/

71

[24] Robot Framework User Guide version 2.1.3, e-document, from

http://robotframework.googlecode.com/svn/tags/robotframework-

2.1.3/doc/userguide/RobotFrameworkUserGuide.html [viewed on 20.03.2012]

[25] Manifesto for Agile Software Development, e-document, from: http://agilemanifesto.org/,

[retrieved on 22.03.3012]

[26] Lisa Crispin, Janet Gregory. Agile Testing: A Practical Guide for Testers and

Agile Teams, Addison-Wesley Professional, 2008, ISBN 978-0-321-53446-0

[27] Minna Räisänen, Case of three Scrum teams: Agile software development methods at

Nokia - The people perspective, Master's thesis, 2012, Aalto University School of

Economics

[28] Elfriede Dustin, Jeff Rashka, John Paul, Automated software testing , Addison-Wesley,

2008, ISBN 0-201-43287-0, P3-19

[29] Collins, E.F., de Lucena, V.F., Software Test Automation practices in agile development

environment: An industry experience report, Automation of Software Test (AST), 2012

7th International Workshop on 2-3 June 2012.

[30] Wissink, T., Amaro C., Successful Test Automation for Software Maintenance, Software

Maintenance , 2006. ICSM ’06. 22nd IEEE International Conference on 24-27 Sept.

2006

[31] Patton Ron, Software Testing, 2nd edition, Sams, 2005, ISBN 978-0672327988, page

231-240

[32] Douglas Hoffman, Test Automation Architectures: Planning for Test Automation,

Software Quality Methods, LLC. 24646 Heather Heights Place Saratoga, California

95070-9710

[33] UMTS SGSN Capacity Testing Including 2G/3G Handovers Using the K1297-G20, e-

document from:

http://direct.www.tek.com/Measurement/App_Notes/2F_17575/eng/2FW_17575_0.pdf

[Retrieved on 03.05.2012]

http://robotframework.googlecode.com/svn/tags/robotframework-2.1.3/doc/userguide/RobotFrameworkUserGuide.html
http://robotframework.googlecode.com/svn/tags/robotframework-2.1.3/doc/userguide/RobotFrameworkUserGuide.html
http://direct.www.tek.com/Measurement/App_Notes/2F_17575/eng/2FW_17575_0.pdf

72

[34] CORBA basics, e-document from: http://www.omg.org/gettingstarted/corbafaq.htm

[Viewed on 10.05.2012]

[35] Alex Chaffee, Bruce Martin, Introduction to CORBA, e-document from:

http://java.sun.com/developer/onlineTraining/Downloads/CorbaIntro.PDF [Retrieved on

10.05.2012]

[36] SSH Overview, e-document from:

http://www.vandyke.com/solutions/ssh_overview/ssh_overview.pdf [Retrieved on

10.05.2012]

[37] MML command overview, e-document from:

http://www.cisco.com/en/US/docs/voice_ip_comm/pgw/9/command/reference/mmlovw

.pdf [Retrieved on 20.05.2012]

[38] gunplot, gnuplot website: http://www.gnuplot.info/ [Viewed 20.05.2012]

[39] Cockburn, A.: Agile Software Development. Addison-Wesley, 2001.

[40] Paul M. Duvall, Steve Matyas, Andrew Glover. Continous Integration: Improving

Software Quality and Reducing Risk. Addison-Wesley, 2007. ISBN-10 0321336380

[41] John Ferguson Smart. Jenkins: The Definitive Guide, Continuous integration for the

masses. O’Reilly Media, 2011. ISBN-10 1449305350

[42] Janne Piironen : Robot Framework Plugin of Jenkins, 2012 , website:

https://wiki.jenkins-ci.org/display/JENKINS/Robot+Framework+Plugin [Viewed on

20.07.2012]

http://www.omg.org/gettingstarted/corbafaq.htm
http://java.sun.com/developer/onlineTraining/Downloads/CorbaIntro.PDF
http://www.vandyke.com/solutions/ssh_overview/ssh_overview.pdf
http://www.cisco.com/en/US/docs/voice_ip_comm/pgw/9/command/reference/mmlovw.pdf
http://www.cisco.com/en/US/docs/voice_ip_comm/pgw/9/command/reference/mmlovw.pdf
http://www.gnuplot.info/
https://wiki.jenkins-ci.org/display/JENKINS/Robot+Framework+Plugin

