
ISBN 978-952-60-4997-7 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Communications and Networking
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 1
/2

013

P
asi S

aro
lahti (e

d.)
P

ro
ce

e
d
in

g
s o

f S
e
m

in
ar o

n
 N

etw
o
rk P

ro
to

co
ls in

 O
p
e
ratin

g
 S

yste
m

s
A

alto
 U

n
ive

rsity

Department of Communications and Networking

Proceedings of Seminar on Network Protocols
in Operating Systems

Somaya Arianfar, Magnus Boye, Karthik Budigere, Antti Jaakkola, Aapo Kalliola,
Fida Ullah Khattak, Jouni Korhonen, Arseny Kurnikov, Jonne Soininen, Nuutti Varis,
Pasi Sarolahti (ed.)

SCIENCE +
TECHNOLOGY

SEMINAR
PROCEEDINGS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80707881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University publication series
SCIENCE + TECHNOLOGY 1/2013

Proceedings of Seminar on Network
Protocols in Operating Systems

Somaya Arianfar, Magnus Boye, Karthik
Budigere, Antti Jaakkola, Aapo Kalliola, Fida
Ullah Khattak, Jouni Korhonen, Arseny Kurnikov,
Jonne Soininen, Nuutti Varis, Pasi Sarolahti (ed.)

Aalto University
School of Electrical Engineering
Department of Communications and Networking

Aalto University publication series
SCIENCE + TECHNOLOGY 1/2013

© Author

ISBN 978-952-60-4997-7 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896 (printed)
ISSN 1799-490X (pdf)
http://urn.fi/URN:ISBN:978-952-60-4997-7

Unigrafia Oy
Helsinki 2013

Finland

�

�

�

�������	
����
����	
����
�������������������	
�

������	
����������
�

�

����
	��������������
	����	������������	
��
���
������ !" �
�

�

�

�

��������#�$�����%��

� ���������	�

���

� &��
#��'����

� (���$	��'#�	�����

� �
��	�)��������

� �����(���	����

� �	�������$�($������

�)�#
	�(��$�
�
�

� ����
��(#�
	����

�)�

����	
	
�
�

� �##��	�*��	��

�

�

�������	
������������������$���%�����	�������$�	�

+�%����
�,�
��
���
�

�

�������� ---.�

�

/	
#0�(��
�������	���	�
�1
���
��� --2�

����
��(#�
	����

�

1������
���	�
��
�+��
��	��	�
�,�
��������������	
�/	
#0 --------------------------- "!�

�
��	�)��������

�

+,�3��,�
����	�
�,�
�����1������
���	�
�	
�/	
#0�(��
��----------------------------- "4�

���������	�

���

�

/	
#0�1������
���	�
���#����
��������,�
�����+��
��	��	�
���������---- �

(���$	��'#�	�����

�

+$��1��2�1������
���	�
��
�/	
#0�(��
��������--- 5�

�	�������$�($������

�

���6�����,�

���	�
�+����	
���
����+�1������
���	�
 --------------------------------- .2�

&��
#��'����

�

&�%	���1��4�	
�/	
#0�(��
����
������������ -- 2!�

)�#
	�(��$�
�
�

�

7��	�����
���	����������1
���
���--- 24�

)�

����	
	
�
�

�

�����������	�����	�����	
�/	
#0 -- 8.�

�����(���	����

�

�
�������
���/	
#0�%�	��� -- 85�

�##��	�*��	��

2

���������
�

�

+$��/	
#0�
������	
����������
�������������
�	�������	������
���$	����$��������

������0�����
�����#��
���	�
���	���
�	
��$��������������
��$�������

���#��
���	�
�$��������
�9�������������	����:��#�������������	��-�+$�����	
����
�

������������������	
�������	
������������������
����	
��������
	����	����

7�������
���
�,���#
	���	�
���
���������	
�������	
���%������#
������
�	
��

�
��$���#���
������#���
��$��
������	
��	������
���	�
�	
��$��/	
#0����
��-�+$��

���	
���$���"!�����	�	��
���	
����	�	�
�����$��#
����	�
�������$�����	
���

����
	���-����$�����	�	��
���������	�
��������#���
�����$��/	
#0�
������	
��

	������
���	�
���
��$	�$����$�����������������%����	���
-�+$�����������	
���

��
��	
��$��
	
����#��#���
��$	������-�

�

�#�����#��$�������	
�������������������%�����
�������%��� !" ��
��

7����%��� !" ����
�������$������������
��������
������	��#����	

���
���
�	������

	��#���������������$�����	
������	����#�$�������$
	;#���
�����������	�	
���
��

���	��	
������������
���/	
#0����
�����%#��	
�-�

�

+$�����	
����	�#����������������	�
�	
	�������$��<����
������	�
���
��������

��������#�
���%���	�=�����%�����
������=���	������
�
���#����%��.���=

����	�	��
����
��$�����	
��-�'������
��$�����	���
���%����
	
�������	�
���
�

������������������������%��	
��#����	
��$���������	
��-�7#�	
�����#%�	��
	
���

�����$����$������	�	��
�������� !=�	
#��������
���	�
���
��$�	�����	��-��%�#��

 !������������
�����$��
	
��������$�����
�����	���������	�	�������	��#��	�
-�

�

���������
��$	�����	
���������#��
#���
��
#
��0���	�
���	
�����	
�������
��	�	���

�	�$����	�#����������	
�/	
#0����
������������	������
���	�
�-�1�%��	�����$����$��

�������	
��#����	
��$�����������	
����	���%��#��
#�������	��������
�����
����$����

	
���������	
�$����$��/	
#0�
������	
��������	��	������
���-�

�

�

���	�������$�	�

���	
�������
	����

�

3

Linux Kernel Application Interface

Arseny Kurnikov
Aalto University School of Electrical Engineering

PO Box 13000, FI-00076 Aalto
Espoo, Finland

arseny.kurnikov@aalto.fi

ABSTRACT
This paper describes different interfaces exposed by Linux
kernel to applications. The focus is on the socket application
interface that provides support for BSD sockets as defined
in Berkeley Software Architecture Manual, 4.4. Other top-
ics cover /proc/sys file system and system control (sysctl),
input/output control ioctl mechanism and Netlink sockets.

Different application programming interfaces (APIs) are used
for different purposes though their functionality overlaps
sometimes. The means of extending APIs and introducing
new features vary between mechanisms. To build a reliable
user space application and to keep the kernel stable and un-
polluted it is essential to know the details of the approaches
and to choose a suitable API whenever needed. The API
mechanisms described in this paper are compared from the
point of view of functionality and extendability. The inter-
nal API details are described.

Keywords
Kernel API, Linux sockets

1. INTRODUCTION
A kernel runs in the protected mode of CPU. It is not pos-
sible for user space applications to access kernel data struc-
tures and functions directly. Thus a kernel provides its ser-
vices to the applications through the means of Application
Programming Interface. API is needed to allow user space
applications to interact with the kernel.

API is a set of functions and protocols. It describes the
rules how to pass arguments and messages to request a spe-
cific kernel service. These rules remain the same throughout
the kernel development process to maintain backwards com-
patibility.

The Linux socket application programming interface is im-
plemented according to 4.4BSD specification [13]. API doc-

umentation is available in the form of manual pages [10].
Examples of typical socket usage are available as unoficial
tutorials, i.e. [3]. The focus of this work is what happens
inside the kernel when API functions are invoked by a pro-
cess. An overall picture of all kernel interfaces is given in
[2].

Another topic discussed is Netlink sockets. The formal spec-
ification of the Netlink protocol is available as RFC 3549
[11]. The Netlink manual page [7] describes the basic opera-
tion of the Netlink protocol and message structures. Netlink
is responsible for transporting data between communication
ends, and one of the protocols on top of it is Routing Netlink
protocol [8].

Ioctl and sysctl are two mechanisms to tune different pa-
rameters. Ioctl controls devices [6], sysctl deals with kernel
parameters [5]. Ioctl is used for changing socket parameters,
too, but it is outdated and Netlink was introduced to substi-
tute ioctl commands. Sysctl exposes networking parameters
as well. They are on a module scale, as opposite to per-
device ioctl commands. The list of sysctl IPv4 networking
parameters is available as part of the Linux source code un-
der Documentation/ip-sysctl.txt. Finally, for setting/getting
options (flags) of a single socket two functions from the
socket API are available: setsockopt and getsockopt [9].

The focus of this work is on the socket API. In the next
chapter, an overview of the API logic is given. In chapter
3, more details of some operations are described. Chapter
4 discusses the means of extending APIs and compares dif-
ferent mechanisms from different points of views. The last
chapter summarizes the information and gives the conclu-
sions.

2. OVERVIEW
This chapter describes several API mechanisms in general.
The first section presents socket API functions and struc-
tures. The next two sections are dedicated to ioctl and
sysctl. In the last section, Netlink sockets are introduced.

2.1 Socket API
A socket is an abstraction that represents one end of a com-
municating channel between two processes. These processes
may be on different machines in a network, or on the same
computer. One of the processes might be the kernel itself.

A socket belongs to a protocol family and works according

4

Table 1: Socket API functions
Function Description

socket create a new socket
bind bind a socket to an address

connect connect to another end
accept accept a new connection

socketpair create a pair of connected sockets
poll check for some activity on a socket
ioctl run ioctl command on a socket
listen wait for incoming connections

sendmsg send a message
recvmsg receive a message
setsockopt set socket options
getsockopt get socket options
shutdown block sending or receiving

close close the socket

to some protocol. A protocol family is a collection of proto-
cols. For example, IPv4 protocol suite contains TCP, UDP
and IP protocols and the part of the Internet Control Mes-
sage Protocol (ICMP) related to “ping” messages. Other
subsystems, like the Internet Group Management Protocol,
are also parts of the IPv4 protocol family but they do not
provide the functions to manipulate the sockets of their type.

Data can be read from or written to the socket. Other socket
operations include waiting for a new connection, binding a
socket to an address, accepting a new connection, setting
and getting socket options. Socket API functions are given
in Table 1 with a short description.

The socket functions are exposed to the applications through
the use of system calls. System calls is the main mechanism
used by all processes to interact with the kernel. During
the system call the execution mode is switched from user
space to kernel space. Then the kernel performs the required
service and returns the results to the process.

Each system call has an assigned system call number. Socket
system calls are multiplexed through one system call num-
ber socketcall. A subcode specifies which socket function to
invoke. There is also a non-multiplexed family for socket
system calls.

The structure that represents a socket in the kernel is struct
socket. It contains the fields for a socket state, a socket
type, socket flags, protocol specific socket operations, a cor-
responding file descriptor, underlying struct sock. The
latest structure is the internal protocol independent socket
representation. It includes the pointers to protocol specific
operations provided by the protocol family.

Figure 1 represents the relationships of the socket related
structures. Operations structures contain function pointers
for socket operations. They differ depending on how generic
the implementation is. Protocol level functions implement
protocol specific features. Protocol family callbacks perform
some common actions for a set of protocols and usually call
the protocol-specific handlers after that. The most generic
are file operations.

Figure 1: Socket data structures

Socket can be referred by the file descriptor it is associated
with. This is the reason why the socket structure contains
a file descriptor. Sending and receiving a message can be
done through the file operations read() and write(), too.
They are described in more details in the next chapter.

2.2 Ioctl mechanism
Ioctl is an acronym for input output control. The purpose
of ioctl is to setup different parameters of the devices or
perform device specific actions. It can be used with sock-
ets, too. The function ioctl() takes three arguments: the
socket descriptor, the ioctl command and the command ar-
gument.

A protocol family has a set of the ioctl commands. Some
of the commands go on to the socket level and are handled
by the protocol implementation. For example, IPv4 pro-
tocol family contains operations for manipulating routing
tables, ARP tables, device configuration. UDP protocol im-
plements two commands: SIOCOUTQ and SIOCINQ to report
the length of the outgoing and incoming queues.

Ioctls lack well-defined interface and structure [1]. There
is no agreement on what the command argument can be,
so it is up to a programmer to decide if it is a pointer to a
complicated data structure or an index in some internal table
and so on. The commands vary between devices and new
commands can be easily introduced though it is preferred to
have unique numbers for the commands and the conflicts are
very often. Ioctls cannot be transported over the network,
because the argument might be the pointer to a structure in
the user-space. That is why ioctl is deprecated but is still
used in legacy systems. To solve the ioctl problems Netlink
sockets were introduced.

2.3 Netlink sockets
A Netlink socket is a socket implementing kernel-user com-
municating protocol [7]. Netlink API is available for user
space processes and kernel modules. It is an address fam-
ily and follows the common scheme for address families: it
registers the protocol family operation for creating a socket,
in the creating function it allocates the socket structure and
sets up the socket operations.

The structure struct netlink_sock contains the fields for
underlying struct sock, port identificator that serves the
role of the netlink socket address, flags, multicast groups,
socket state. If a process owns only one Netlink socket it
sets the port identificator to its process id. The kernel can
also do it automatically. For several Netlink sockets it is the

5

Figure 2: Netlink message

responsibility of the process to keep the addresses unique.
The kernel Netlink socket address is always 0.

Netlink sockets are of type SOCK_RAW or SOCK_DGRAM. Ap-
plications fill up the header structure struct nlmsghdr. It
contains the fields for the length of the message, the type
of the content, flags, sequence number and the port of the
sending process. The payload follows each header [7]. The
Netlink message format is given on Figure 2.

One of the protocol using Netlink sockets is the Routing
Netlink protocol. It is described in the next chapter as a use
case: modifying a routing table.

2.4 Sysctl mechanism
Sysctl is a mechanism to tune different kernel parameters.
It represents an hierarchy under /proc/sys directory. Direc-
tories in this hierarchy are different sysctl subsystems, like
fs for filesystem, net for networking, kernel for core kernel
parameters and so on. Each leaf in this hierarchy is a file
that contains a value for one parameter. Since it is a file,
the generic mechanism of using struct file_operations to
define functions pointers for reading and writing operations
is utilized.

Several subsystems register themselves under sysctl direc-
tory for networking. They include IPv4 and IPv6 protocol
families, unix sockets, netfilter and core subsystem. The
registration function is register_net_sysctl() that in turn
calls __register_sysctl_table(). The main argument to
this function is a pointer to a node of the hierarchy.

The structure that represents a node in the sysctl hierarchy
is struct ctl_table. It contains a name for /proc/sys en-
try, a pointer to the data that is exposed through this entry,
an access mode and a callback handler for text formatting.
The callback handles the data passed to read and write func-
tions. There are several default handlers for strings, vectors
of integers and vectors of long integers. The default handlers
perform necessary formatting and conversions depending on
the type of parameter.

The implementation of the sysctl backend resides under the
implementation of /proc filesystem. It registers and unreg-
isters sysctl nodes, looks up the entries, provides callbacks
for read and write operations. The /proc filesystem not only
contains configurable parameters under sysctl subsystem but
also provides statistics about the kernel and processes run-
ning in the system. For networking the statistics is avail-
able under the /proc/net directory. It includes packet and
socket counters, detailed information about protocols used,
the routes registered, the network devices available and so
on.

Modules expose configuration parameters through sysctl.
For example, TCP protocol allows to configure the conges-
tion control mechanism, keepalive interval, keepalive time
and many others. IP has the parameters for default TTL,

whether or not IP forwarding is enabled, the range of the
local ports and so on.

3. OPERATIONS AND DETAILS
In this chapter, some of the operations are discussed in more
details. In particular, it is shown what happens when a pro-
cess invokes a system call. The following sections tells about
creating a socket and sending a message in more details. Fi-
nally, adding a route with the Routing Netlink protocol is
depicted.

3.1 Kernel and processes boundary
From the application side the entering point for invoking
kernel system calls is the C library. To make a system call
the original convention on Linux/i386 was to use interrupt
0x80. The modern approach is by sysenter/sysexit in-
structions. The C library defines the macro ENTER_KERNEL

that provides an appropriate way to switch between CPU
modes. The system call number should be put on EAX reg-
ister.

The C library functions for socket operations are declared in
sys/socket.h and implemented in assembler files depending
on architecture. The library includes stub versions of the
functions that are not supported by the architecture. A
stub function sets the error number to ENOSYS and returns
-1.

Implementations of all socket library functions are similar
and consist of the following steps:

• save registers

• put a subcode socket function number in EBX

• put the rest of the arguments address in ECX

• do ENTER_KERNEL

• restore registers

• return the result of the system call or set the error
number

Not only the execution mode is separated for the kernel and
the applications. Processes cannot access the kernel memory
and data, too. There are functions to copy data from user
space to kernel space and backwards: copy_from_user()

and copy_in_user(). Their implementation depends on the
architecture. For simple values, like char and int, there are
functions: put_user() and get_user().

3.2 Creating a socket
Figure 3 shows the procedure of creating a new socket. An
application calls socket() library function that invokes the
socket() system call. It performs the following steps:

• Check that arguments are valid.

• Allocate a new socket and inode and bind them to-
gether.

• Call create() provided by a protocol family.

6

Figure 3: New socket

• Allocate a new file descriptor and map it to the socket.

The file descriptor is saved in the file field of the socket
structure. In the private_data of the file descriptor struc-
ture there is a pointer to the socket that is mapped to this
file descriptor. Thus given a socket, the corresponding file
descriptor can be retrieved and vice versa.

Protocol families register themselves within the socket sys-
tem by calling sock_register(). The argument of this
function is a pointer to struct net_proto_family. This
structure describes a protocol family and contains a func-
tion pointer to create a socket of a certain type. The creat-
ing function is responsible for allocating struct sock, set-
ting up the operations field of struct socket and calling a
protocol specific initialization function.

The aforementioned operations field of the socket structure
serves the role of setting callbacks for the actions performed
on sockets. It represents struct proto_ops and works with
struct socket. The implementations of message sending
and receiving callbacks in struct proto_ops get the cor-
responding struct sock and call the appropriate function
from the protocol implementation. On the other hand, func-
tions like bind() and ioctl() are mostly implemented by
the protocol family as they are common for all protocols in
the family. Though for example, RAW sockets have their
own bind() implementation by the protocol.

The structure that describes each protocol is struct proto.
The protocol registration function is proto_register(). It
adds the protocol to the list maintained in net/core/sock.c.
Protocol families register their protocols at the initialization.
The fields of struct proto include the function pointers
for protocol specific socket initialization, connecting, discon-
necting, setting socket options and sending/receiving mes-
sages.

3.3 Sending messages
There are several ways to send and receive a message.

A socket is a file. Thus write() can be used to send a mes-

Figure 4: Sending a message

sage. The corresponding file descriptor contains a pointer to
struct file_operations. The socket write function does
necessary conversions of the arguments so it is possible to
call sock_sendmsg(). This function either uses the security
method for sending a message or proceeds to the operation
saved in the ops field of the socket structure. Since write()
is a generic function it is not possible to set socket specific
flags.

Another option is sendto() system call. It takes the follow-
ing arguments:

• int fd – the file descriptor

• void* buff – the buffer with the message

• size_t len – the length of the message

• unsigned int flags – sending flags

• struct sockaddr* addr – the destination address

• int addr_len – the length of the address

It looks up the socket associated with the given file descrip-
tor, fills up the structure struct msghdr, moves the address
to kernel space and calls sock_sendmsg().

The system call send() is implemented through sendto()

by setting the destination address and its length to zero.

Finally, there is sendmsg() system call. Its arguments are:
file descriptor, struct msghdr that contains the message,
sending flags. It gives the most control to the application,
because the message header structure is the one that is used
internally. It contains struct iovec that provides scatter-
ing capabilities. So the data can be put to this array from
different sources and sent as one message.

Figure 4 shows the sending functions and their common
point at __sock_sendmsg.

The receving functions are: read() that is a generic one for
files, recvfrom() that allows to specify flags, recv() that is
implemented through recvfrom(), and recvmsg(). So the
receiving message framework is a mirror of the sending one.

3.4 Adding a route
One of the protocols on top of netlink sockets is the routing
netlink protocol NETLINK_ROUTE. The messages of this proto-
col include routing tables modification and retrieving rout-
ing information, controlling neighbor lists and links avail-
able. The module rtnetlink creates a kernel netlink socket

7

and allows other modules to register message types, so that
different protocol families register routing manipulation mes-
sages of their own.

rtnl_register() is the registration function. Its arguments
are: a protocol family that implements the callback for the
message, the message type, the pointers to the callbacks.
There are three functions that can be registered for any mes-
sage type: doit(), dumpit() and calcit(). doit() is used
when a message performs some action, like adding a route.
dumpit() is implemented when a message is a request for
some information. calcit() is a helper function for calcu-
lating the buffer size for the information requested.

Message receiving function of rtnetlink gets the kind of the
message: request for action or request for information. If the
flags passed through struct nlmsghdr contain NLM_F_DUMP

then the message is a request for information and the dump
process is started. If calcit is available then it calculates
the minimum buffer size for the reply before starting the
dump.

If the message is a request for action and a user has suf-
ficient capabilities then rtnetlink gets the doit() callback
associated with the message type, extracts attributes from
the message and calls the callback passing in the attributes.
The attributes allow each message to contain subsequent
data.

A set of messages for manipulating routing tables in IPv4 in-
clude: RTM_NEWROUTE, RTM_DELROUTE and RTM_GETROUTE [4].
The first two register doit() callbacks and the third one
registers the dumpit() function.

The structure that represents a payload for the routing mes-
sage is struct rtmsg. It contains the following fields:

• rtm_family – the protocol family of the route, i.e.
IPv4 or IPv6 separately registers the messages for their
routing tables;

• rtm_dst_len – the destination address length;

• rtm_src_len – the source address length;

• rtm_tos – the type of service;

• rtm_table – the routing table to operate on;

• rtm_protocol – the type of the route, i.e. static or
dynamic;

• rtm_scope – is it a global route or the one internal for
a protocol family;

• rtm_type – the type of the route, i.e. unicast, broad-
cast, local, multicast, unreachable;

• rtm_flags – the flags.

For IPv4 the handling of the messages is done in the For-
warding Information Database (FIB) implementation, where
the registration of messages takes place. The processing
function for a new route is inet_rtm_newroute() that parses

the message to the format that FIB understands, looks up
the routing table and creates a new routing entry.

In order for a user-space application to add a new route the
procedure is as follows. A routing message structure struct
rtmsg is filled in with the route details. The netlink header
structure is initialized with the message type RTM_NEWROUTE,
the destination port 0 and the protocol family that the route
belongs to. Then the Netlink socket is created and the mes-
sage with the header structure and rtmsg as a payload is
sent. If the user has enough permissions then the route will
be added.

4. EXTENDING API
APIs are different from the point of view of functionality,
and extendability. This chapter discusses what is needed to
extend an API.

In [12] the process of creating Linux kernel modules is de-
scribed. The kernel has modular structure so that it is easier
to introduce new features. Modules can be loaded and un-
loaded without rebooting the kernel.

The most rich API is system calls. They provide the way
to request a kernel to perform some action. A system call
cannot be implemented in a module because the table that
contains system call functions is static. The kernel initializes
the table during the booting and never changes it after that.
The table is not exported to the modules so that it cannot
be modified.

To add a system call the following steps are required. First,
the syscall entry is added to entry.S. This file is archi-
tecture specific. For x86 processors the table is defined in
syscall_xx.tbl where xx is 32 bits or 64. Then the actual
system call is implemented. Finally, unistd.h is modified
to include the new system call and to change the overall
number of them in the kernel.

Adding a new ioctl handler does not give as much flexibility
as adding a new system call. Ioctl commands are bound to
the devices. To add an ioctl handler it is necessary to fill up
the structure struct file_operations and register a device
with this structure. Another possibility is to implement a
protocol family so that socket_ioctl system call ends up
in the handler. Each handler has two parameters: the ioctl
command and the command parameter.

As was already mentioned introducing new ioctls should be
done with care. The instructions to add a new ioctl are
available in Documentation/ioctl/ioctl-number.txt. It is not
restricted what the parameter can be. So if it is a pointer
to a structure then ioctl are flexible.

Another way to allow a module to expose API is to create a
Netlink socket and communicate with processes via Netlink
messages. In practice, it means designing and implementing
a new protocol on top of Netlink.

Finally, the natural way to expose module parameters is
sysctl. Only one step is needed for it: to register a new
ctl_table. This is done by filling up the control table struc-
ture with the file name in the hierarchy, the pointer to the

8

Table 2: API comparison

Method Functionality Extendability

System call Very rich Not in a module
Netlink Rich New protocol
Sysctl For module parameters New ctl table
Ioctl For device control Limited

data that will be exposed through the file, the access mode
and the handler for text formatting. Then register_sysctl

should be called specifying the path to the directory where
the file is to be put. The filled in table is passed as a second
parameter to the function. Thus the modification of the file
will result in calling the handler. And if one of the default
handlers is used then the modification of the file will result
in modification of the data pointed by the field in struct

ctl_table.

Table 2 lists APIs described in this paper and compares them
from the point of view of functionality and extendability.

5. CONCLUSIONS
In this work, different Linux kernel application interfaces are
described. They are used for different purposes. They are
also different from the point of view of documentation and
ease of extending and introducing new features.

Systems calls that socket API is based on, is the main way
the processes interact with the kernel. Implementing a new
system call requires modification of the kernel and is archi-
tecture specific.

Ioctl is used to control devices. This framework is legacy
and was a subject to discussion for re-design. To overcome
its limitations Netlink sockets were introduced.

Netlink sockets are based on a well-known sockets paradigm.
There is a lot of documentation available. Introducing new
features means implementing a new protocol. It requires
designing structures of messages and rules for exchanging
them. The functionality is close to that of system calls.

Finally, sysctl system is used to expose different kernel pa-
rameters as files. Thus, the changing of the parameter re-
quires writing a new value to the file. And the file can be
read to know the current value of the parameter.

Extending APIs should be done with clever thought of the
system design. Some of the frameworks put constraints on
what can be done, the others are more flexible but at the
same time they are more error-prone. The choice of the API
depends on the nature of tasks that should be performed.

6. REFERENCES
[1] Ioctl discussion.

http://yarchive.net/comp/linux/ioctl.htm.

[2] Linux kernel map.
http://www.makelinux.net/kernel_map/.

[3] Sockets Tutorial.
http://www.linuxhowtos.org/C_C++/socket.htm.

[4] N. Horman. Understanding And Programming With
Netlink Sockets, 0.3 edition, 2004.

[5] Linux man-pages project. sysctl(2), 3.27 edition, 1999.

[6] Linux man-pages project. ioctl(2), 3.27 edition, 2000.

[7] Linux man-pages project. netlink(7), 3.27 edition,
2008.

[8] Linux man-pages project. rtnetlink(7), 3.27 edition,
2008.

[9] Linux man-pages project. getsockopt(2), 3.27 edition,
2009.

[10] Linux man-pages project. socket(2), 3.27 edition, 2009.

[11] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov.
Linux Netlink as an IP Services Protocol, RFC 3549.
IETF, Network Working Group, 2003.

[12] P. J. Salzman. The Linux Kernel Module
Programming Guide, 2.6.4 edition, 2007.

[13] University of California, Berkeley, CA 94720. Berkeley
Software Architecture Manual, 4.4bsd edition.

9

Implementation of Transmission Control Protocol in Linux

Antti Jaakkola
Aalto University

Department of Communication and Networking
antti.t.jaakkola@aalto.fi

ABSTRACT
Transmission Control Protocol is the most used transmis-
sion layer protocol in the Internet. In addition to reliable
and good performance in transmission between two nodes,
it provides congestion control mechanism that is a major
reason why Internet has not collapsed. Because of its com-
plicated nature, implementations of it can be challenging
to understand. This paper describes fundamental details
of Transmission Control Protocol implementation in Linux
kernel. Focus is on clarifying data structures and segments
route through TCP stack.

1. INTRODUCTION
In May 1974 Vint Cerf and Bob Kahn published paper where
they described an inter-networked protocol, which central
control component was Transmission Control Program [3,
2].Later it was divided into modular architecture and in 1981
Transmission Control Protocol (TCP), as it is know today,
was specified in RFC 793 [8].

Today, TCP is the most used transmission layer protocol
in the Internet [4] providing reliable transmission between
two hosts through networks [8]. In order to gain good per-
formance for communication, implementations of TCP must
be highly optimized. Therefore, TCP is one of the most com-
plicated components in Linux networking stack. In kernel
3.5.4, it consists of over 21000 lines of code under net/ipv4/
-directory (all tcp*.c files together), while IPv4 consist of
less than 13000 lines of code (all ip*.c files in the same di-
rectory). This paper explains the most fundamental data
structures and operations used in Linux to implement TCP.

TCP provides reliable communication over unreliable net-
work by using acknowledgment messages. In addition to
provide resending of the data, TCP also controls its sending
rate by using so-called ’windows’ to inform the other end
how much of data receiver is ready to accept.

As parts of the TCP code are dependent on network layer
implementation, the scope of this paper is limited to IPv4
implementation as it is currently supported and used more
widely than IPv6. However, most of the code is shared be-
tween IPv4 and IPv6, and tcp ipv6.c is the only file related
to TCP under net/ipv6/. In addition, TCP congestion con-
trol will be handled in a separate paper, so it will be handled
very briefly. If other assumptions is made it is mentioned in
the beginning of the related section.

Paper structure will be following: First section “Overview
of implementation”will cover most important files and basic
data structures used by TCP (tcp sock, sk buff), how data
is stored inside these structures and how different queues
are implemented, what timers TCP is using and how TCP
sockets are kept in memory. Then a socket initialization and
data flows through TCP are discussed. Section “Algorithms
and optimizations” will handle logic of TCP state machine,
briefly look into congeston control and explain what is TCP
fast path.

2. OVERVIEW OF IMPLEMENTATION
In this section basic operation of TCP in Linux will be ex-
plained. It covers the most fundamental files and data struc-
tures used by TCP, as well as functions used when we are
sending to or receiving from network.

The most important source files of implementation are listed
in the Table 1. In addition to net/ipv4/, where most TCP
files are located, there are also few headers located in in-
clude/net/ and include/linux/ -directories. 1

Table 1: Most important files of TCP
File Description
tcp.c Layer between user and kernel

space
tcp output.c TCP output engine. Handles out-

going data and passes it to network
layer

tcp input.c TCP input engine. Handles incom-
ing segments.

tcp timer.c TCP timer handling
tcp ipv4.c IPv4 related functions, receives seg-

ments from network layer
tcp cong.c Congestion control handler, in-

cludes also TCP Reno implementa-
tion

tcp [veno|vegas|..].c Congestion control algorithms,
named as tcp NAME.c

tcp.h Main header files of TCP. struct
tcp sock is defined here. Note that
there is tcp.h in both include/net/
and include/linux/

1Note that this paper is based on kernel version 3.5.3. In
Linux 3.7, the new UAPI header file split moved some header
files to new locations.

10

2.1 Data structures
Data structures are crucial sections of any software in or-
der of performance and re-usability. As TCP is a highly
optimized and remarkably complex entirety, robust under-
standing of data structures used is mandatory for mastering
the implementation.

2.1.1 struct tcp_sock
struct tcp sock (include/linux/tcp.h) is the core structure
of TCP. It contains all the information and packet buffers
for certain TCP connection. Figure 1 visualizes how this
structure is implemented in Linux. Inside tcp sock there is
a few other, more general type of sockets. As a next, more
general type of socket is always first member of socket type,
can a pointer to socket be type-casted to other type of socket.
This allows us to make general functions that handles with,
for example, struct sock, even in reality pointer would be
also a valid pointer to struct tcp sock. Also depending
on the type of the socket can different structure be as a
first member of the certain socket. For example, as UDP is
connection-less protocol, first member of struct udp sock
is struct inet sock, but for struct tcp sock first member
must be struct inet connection sock, as it provides us
features needed with connection-oriented protocols.

From Figure 1 it can be seen that TCP has many packet
queues. There is receive queue, backlog queue and write
queue (not in figure) under struct sock, and pre-queue and
out-of-order queue under struct tcp sock. These different
queues and their functions are explained in detail in sec-
tion 2.1.2.

struct inet connection sock (include/net/ inet connection
sock) is a socket type one level down from the tcp sock. It
contains information about protocol congestion state, pro-
tocol timers and the accept queue.

Next type of socket is struct inet sock (include/net/inet
sock.h). It has information about connection ports and IP-
addresses.

Finally there is general socket type struct sock. It contains
two of TCP’s three receive queues, sk receive queue and sk
backlog, and also queue for sent data, used with retransmis-
sion.

2.1.2 Data queues
Incoming data queues are used as data storage before user
reads the data to user space. These queues are implemented
as double linked ring-list of struct sk buffs (see section 2.1.3).

When user reads data from the socket, socket will be marked
as being in use to avoid conflicts. However, incoming seg-
ments must be saved even when the socket is in use. There-
fore, socket has several queues for incoming data: receive
queue, pre-queue, and backlog queue. In addition to these,
out-of-order queue is used as temporary storage for segments
arriving out of order.

In the normal case when segment arrives and user is not
waiting for the data, segment is processed immediately and

sk_buff

next
prev
sk

dev
len

head
data
tail
end
...

head
room

data

tail
room

Figure 2: Data storage inside structure sk buff

struct sk_buff_head

struct sk_buff struct sk_buff

struct sk_buffstruct sk_buff

struct sk_buff

Figure 3: Ring-list of sk buffs

the data is copied to the receive queue. Data will be copied
to user’s buffer when application reads data from the socket.

If user is using blocking IO and the receive queue does not
have as many bytes as requested, will the socket be marked
as waiting for data. When the new segment arrives, it will
be put to pre-queue and waiting process will be awakened.
Then the data will be handled and copied to user’s buffer.

If user is handling segments (socket is marked as being in
use) at the same time when we receive a new one, it will be
put to the backlog queue, and user context will handle the
segment after it has handled all earlier segments from other
queues.

In addition to incoming data queues, there is also outgoing
data queue known as write queue. It is implemented and
used in the same way as incoming buffers. Segments will be
put to write queue as user writes data to socket, and they
will be removed when an acknowledgment arrives from the
receiver.

Figure 4 visualizes use of receive, pre- and backlog-queues.

2.1.3 struct sk_buff
struct sk buff (located in include/linux/skbuff.h) is used
widely in the network implementation in Linux kernel. It
is a socket buffer containing one slice of the data we are
sending or receiving. In Figure 2 we see how data is stored
inside structure. Data is hold in the continuous memory
area surrounded by empty spaces, head and tail rooms. By
having these empty spaces more data can be added to before
or after current data without needing to copy or move it, and
minimize risk of need to allocate more memory. However, if
the data does not fit to space allocated, it will be fragmented
to smaller segments and saved inside struct skb shared

11

struct tcp_sock

inet_conn

tcp_header_len

xmit_size_goal_segs

pred_flags

rcv_next

copied_seq

snd_nxt

ucopy

snd_cwnd

rcv_wnd

out_of_order_queue

write_seq

…

struct
inet_connection_sock

icsk_inet

icsk_retansmit_timer
icsk_accept_queue

icsk_delack_timer
icsk_ca_ops

...

struct inet_sock

sk

inet_dport

inet_saddr

inet_sport

...

inet_num

struct sock

__sk_common

sk_receive_queue

….

sk_backlog

sk_timer

….

….

struct sock_common

skc_daddr

skc_daddr

….

struct sk_buff_head
next

prev

qlen

lock

struct
rmem_alloc

len

head

tail

struct

prequeue

iov
task

memory
len

struct sk_buff_head

next

prev

qlen

lock

Figure 1: Socket structures involved in TCP connection

info that lives at the end of data (at the end pointer).

All the data cannot be held in one large segment in the
memory, and therefore we must have several socket buffers
to be able to handle major amounts of data and to resend
data segment that was lost during transmission to receiver.
Because of that need of network data queues is obvious. In
Linux these queues are implemented as double linked ring-
lists of sk buff structures (Figure 3). Each socket buffer has
a pointer to the previous and next buffers. There is also
special data structure to represent the whole list, known as
struct sk buff head, that is used to indicate the first and
the last members of ring list. More detailed information
about the data queues is in section 2.1.2.

In addition data pointers, sk buff also has pointer to owning
socket, device from where data is arriving from or leaving
by and several other members. All the members are docu-
mented in skbuff.h.

2.1.4 Hash tables
Hash table is a data structure that is used to map a given
key to corresponding value.

Sockets are located in kernel’s hash table from where them
are fetched when a new segment arrives or socket is otherwise
needed. Main hash structure is struct inet hashinfo (in-
clude/net/inet hashtables.h), and TCP uses it as a type of
global variable tcp hashinfo located in net/ipv4/tcp ipv4.c.

struct inet hashinfo has three main hash tables: One for
sockets with full identity, one for bindings and one for lis-
tening sockets. In addition to that, full identity hash table
is divided in to two parts: sockets in TIME WAIT state and
others.

As hash tables are more general and not only TCP specific
part of kernel, this paper will not go into logic behind these
more deeply.

2.1.5 Other data structures and features
There are also several other data structures that must be
known in order to understand how TCP stack works. struct
proto (include/net/sock.h) is a general structure present-
ing transmission layer to socket layer. It contains function
pointers that are set to TCP specific functions in net/ipv4/
tcp ipv4.c, and applications function calls are eventually,
through other layers, mapped to these.

struct tcp info is used to pass information about socket
state to user. Structure will be filled in function tcp get
info(). It contains values for connection state (Listen, Es-
tablished, etc), congestion control state (Open, Disorder,
CWR, Recovery, Lost), receiver and sender MSS, rtt and
various counters.

To provide reliable communication with good performance,
TCP uses four timers: Retransmit timer, delayed ack timer,
keep-alive timer and zero window prope timer. Retransmit,
delayed ack and zero window probe timers are located in
struct inet connection sock, and keep-alive timer can be
found from struct sock (Figure 1).

Although there is dedicated timer handling file net/ipv4/tcp
timer.c, timers are set and reset in several locations in the
code as a result of events that occur.

2.2 Socket initialization
TCP functions available to socket layer are set to previ-
ously explained (section 2.1.5) struct proto in tcp ipv4.c.
This structure will be held in struct inet protosw in af
inet.c, from where it will be fetched and set to sk->sk prot
when user does socket() call. During socket creation in the
function inet create() function sk->sk prot->init() will be
called, which points to tcp v4 init sock(). From there the
real initialization function tcp init sock() will be called.

Address-family independent initialization of TCP socket oc-
curs in tcp init sock() (net/ipv4/tcp.c). The function will

12

Network
layer

Find TCP
socket

Socket not in use
and user does
not wait data

Socket is in use
Socket is not in
use, but user

waits data

Insert segment to
pre-queue

Process TCP
segment and

insert to receive
queue

Insert segment to
backlog-queue

Application:
read()

Mark socket in
use

No data in
receive buffer

Data available in
receive buffer

Mark socket as
waiting for data,
mark socket not

in use

Wait data from
pre-queue, mark

socket in use,
process segment
and copy data to

user buffer

Get data and copy
it to user buffer

Pre-queue
Receive
queue

Backlog
queue

Mark socket not in
use and handle
backlog-queue

Need
more data

Figure 4: Use of different incoming data queues
(without out of order queue)

be called when socket is created with socket() system call.
In that function fields of structure tcp sock are initialized
to default values. Also out of order queue will be initialized
with skb queue head init(), pre-queue with tcp prequeue
init(), and TCP timers with tcp init xmit timers(). At this
point, state of the socket is set to TCP CLOSE.

2.2.1 Connection socket
Next step to do when user wants to create a new TCP con-
nection to other host is to call connect(). In the case of TCP,
it maps to function inet stream connect(), from where sk-
>sk prot->connect() is called. It maps to TCP function
tcp v4 connect().

tcp v4 connect() validates end host address by using ip
route connect() function. After that inet hash connect()
will be called. inet hash connect() selects source port for
our socket, if not set, and adds the socket to hash tables.
If everything is fine, initial sequence number will be fetched

from secure tcp sequence number() and the socket is passed
to tcp connect().

tcp connect() calls first tcp connect init(), that will initial-
ize parameters used with TCP connection, such as maximum
segment size (MSS) and TCP window size. After that tcp
connect() will reserve memory for socket buffer, add buffer
to sockets write queue and passes buffer to function tcp
transmit skb(), that builds TCP headers and passes data
to network layer. Before returning tcp connect() will start
retransmission timer for the SYN packet. When SYN-ACK
packet is received, state of socket is modified to ESTAB-
LISHED, ACK is sent and communication between nodes
may begin.

2.2.2 Listening socket
Creation of listening socket should be done in two phases.
Firstly, bind() must be called to pick up port what will be
listened to, and secondly, listen() must be called.

bind() maps to inet bind(). Function validates port number
and socket, and then tries to bind the wanted port. If ev-
erything goes fine function returns 0, otherwise error code
indicating problem will be returned.

Function call listen() will become to function inet listen().
inet listen() performs a few sanity checks, and then calls
function inet csk listen start(), which allocates memory for
socket accept queue, sets socket state to TCP LISTEN and
adds socket to TCP hash table to wait incoming connections.

2.3 Data flow through TCP in kernel
Knowing the rough route of incoming and outgoing segments
through the layer is on of the most important part of TCP
implementation to understand. In this section a roughly
picture of it in most common cases will be given. Handling
of all the cases is not appropriate and possible under the
limits of this paper.

In this section it is assumed that DMA (CONFIG NET DMA)
is not in use. It would be used to offload copying of data to
dedicated hardware, thus saving CPU time. [1]

2.3.1 From the network
Figure 5 shows us a simplified summary about incoming data
flow through TCP in Linux kernel.

In the case of IPv4, TCP receives incoming data from net-
work layer in tcp v4 rcv() (net/ipv4/tcp ipv4.c). The func-
tion checks if packet is meant for us and finds the matching
TCP socket from the hash table using IPs and ports as the
keys. If the socket is not owned by user (user context is
not handling the data), we first try to put the packet to
pre-queue. Pre-queuing is possible only when user context
is waiting for the data. If pre-queuing was not possible,
we pass the data to tcp v4 do rcv(). There socket state is
checked. If state is TCP ESTABLISHED, data is passed
to tcp rcv established(), and copied to receive queue. Oth-
erwise buffer is passed to tcp rcv state process(), where all
the other states will be handled.

If the socket was not owned by user in function tcp v4 rcv(),
data will be copied to the backlog queue of the socket.

13

User space

Network layer

tcp_v4_rcv

tcp_data_queue

ACKs

tcp_v4_do_rcv

tcp_rcv
state
process

prequeue &
backlog
queue

receive
queue

tcp_queue_rcv

tcp_rcv_established

tcp_input.c

tcp_ipv4.c

Figure 5: Data flow from network to user

User space

Network layer

tcp_transmit_skb

tcp_pushtcp_sendmsg

retransmission
handling

tcp_push_one __tcp_push_pending_frames

tcp_write_xmit

tcp.c

tcp_output.c

Figure 6: Data flow from user to network

When user tries to read data from the socket (tcp recvmsg()),
queues must be processed in order. First receive queue, then
data from pre-queue will be waited, and when the process
ready to release socket, packets from backlog will be copied
to the receive queue. Handling of the queues must be pre-
served in order to ensure that data will be copied to user
buffer in the same order as it was sent.

Figure 4 visualizes the overall queuing process.

2.3.2 From the user
Figure 6 shows us a simplified summary about outgoing data
flow through TCP in Linux kernel.

When user-level application writes data to TCP socket, first
function that will be called is tcp sendmsg(). It calculates
size goal for segments and then creates sk buff buffers of cal-
culated size from the data, pushes buffers to write queue and
notifies TCP output engine of new segments. Segments will
go through TCP output engine and end up to tcp transmit
skb().

tcp write xmit() takes care that segment is sent only when it
is allowed to. If congestion control, sender window or Nagle’s
algorithm [7] prevent sending, the data will not go forward.
Also retransmission timers will be set from tcp write xmit(),
and after data send, congestion window will be validated
referring to RFC 2861 [5].

tcp transmit skb() builds up TCP headers and passes data
to network layer by calling function queue xmit() found from
struct inet connection sock from member icsk af ops.

3. ALGORITHMS AND OPTIMIZATIONS
This section will go through a few crucial parts of implemen-
tation and clarify why these are important features to have
and to work properly in a modern TCP implementation.

3.1 TCP state machine
There are several state machines implemented in Linux TCP.
Probably most known TCP state machine is connection state
machine, introduced in RFC 793 [8]. Figure 3.1 presents
states and transitions implemented in kernel. In addition to
connection state machine TCP has own state machine for
congestion control.

Majority of TCP states are handled in tcp rcv state process(),
as it handles all the states except ESTABLISHED and TIME
WAIT. TIME WAIT is handled in tcp v4 rcv(), and state
ESTABLISHED in tcp rcv established(). From the view-
point of user, ESTABLISHED is the most important state as
the actual data transmission happens in that state. There-
fore, tcp rcv established() is the most interesting and also
likely the most optimized function in the TCP implementa-
tion. Implementation of it is divided into two parts: slow
and fast path (section 3.3).

As stated, TIME WAIT is handled in tcp v4 rcv(). Depend-
ing on return value of tcp timewait state process, packet
will be discarded, acked or processed again with a new socket
(if the packet was SYN initializing a new connection). Im-
plementation of function is very clean and easy to follow.

3.2 Congestion control
At first TCP did not have specific congestion control algo-
rithms, and due to misbehaving TCP implementations In-
ternet had first ’congestion collapse’ in October 1988. In-
vestigation on that leaded to first TCP congestion control
algorithms described by Jacobson in 1988 [6]. However, it
took almost 10 years before official RFC based on Jacobson’s
research on congestion control algorithms came out [9].

Main file for TCP congestion control in Linux is tcp cong.c.
It contains congestion control algorithm database, functions
to register and to active algorithm and implementation of
TCP Reno. Congestion algorithm is linked to rest of the
TCP stack by using struct tcp congestion ops, that has
function pointers to currently used congestion control algo-
rithm implementation. Pointer to the structure is found in
struct inet connection sock (member icsk ca ops), see
it at Figure 1.

Important fields for congestion control are located in struct
tcp sock (see section 2.1.1). Being the most important

14

LISTEN

CLOSE

SYN_SENTSYN_RECV

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Figure 7: TCP connetion state machine in Linux
kernel

variable, member snd cwnd presents sending congestion
window and rcv wnd current receiver window. Congestion
window is the estimated amount of data that can be in the
network without data being lost. If too many bytes is sent
to the network, TCP is not allowed to send more data before
an acknowledgment from the other end is received.

As congestion control is out of scope of this paper, it will
not be investigated more deeply.

3.3 TCP fast path
Normal, so-called slow path is a comprehensive processing
route for segments. It handles special header flags and out-
of-order segments, but because of that, it is also requiring
heavy processing that is not needed in normal cases during
data transmission.

Fast path is an TCP optimization used in tcp rcv established()
to skip unnecessary packet handling in common cases when
deep packet inspection is not needed. By default fast path
is disabled, and before fast path can be enabled, four things
must be verified: The out-of-order queue must be empty,
receive window cannot be zero, memory must be available
and urgent pointer has not been received. This four cases
are checked in function tcp fast path check(), and if all cases
pass, will fast path be enabled in certain cases. Even after
fast path is enabled, segment must be verified to be accepted
to fast path.

TCP uses technique known as header prediction to verify
segment to fast path. Header prediction allows TCP input
machine to compare certain bits in the incoming segment’s
header to check if the segment is valid for fast path. Header
prediction ensures that there are no special conditions re-
quiring additional processing. Because of this fast path is

easily turned off by setting header prediction bits to zero,
causing header prediction to fail always. In addition to pass
header prediction, segment received must be next in order
to be accepted to fast path.

4. CONCLUSION
Implementation of TCP in Linux is a complex and highly
optimized to gain as high performance as possible. Because
of that it is also time-consuming process to get into code
level in kernel and understand TCP details. This paper
described the most fundamental components of the TCP
implementation in Linux 3.5.3 kernel.

5. REFERENCES
[1] Linux kernel options documentation. http://lxr.

linux.no/#linux+v3.5.3/drivers/dma/Kconfig.

[2] V. Cerf, Y. Dalal, and C. Sunshine. Specification of
Internet Transmission Control Program. RFC 675, Dec.
1974.

[3] V. G. Cerf and R. E. Khan. A protocol for packet
network intercommunication. IEEE TRANSACTIONS
ON COMMUNICATIONS, 22:637–648, 1974.

[4] K. Cho, K. Fukuda, H. Esaki, and A. Kato. Observing
slow crustal movement in residential user traffic. In
Proceedings of the 2008 ACM CoNEXT Conference,
CoNEXT ’08, pages 12:1–12:12, New York, NY, USA,
2008. ACM.

[5] M. Handley, J. Padhye, and S. Floyd. TCP Congestion
Window Validation. RFC 2861 (Experimental), June
2000.

[6] V. Jacobson. Congestion avoidance and control.
SIGCOMM Comput. Commun. Rev., 18(4):314–329,
Aug. 1988.

[7] J. Nagle. Congestion Control in IP/TCP Internetworks.
RFC 896, Jan. 1984.

[8] J. Postel. RFC 793: Transmission control protocol,
Sept. 1981.

[9] W. Stevens. TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms. RFC
2001 (Proposed Standard), Jan. 1997. Obsoleted by
RFC 2581.

15

TCP’s Congestion Control Implementation in Linux Kernel

Somaya Arianfar
Aalto University

Somaya.Arianfar@aalto.fi

ABSTRACT

The Linux kernel implements various parts of the network
stack. This paper is part of a joint attempt to describe the
structure and the implementation details of the kernel code.
In this specific paper, we explain parts of the Linux kernel
code that deals with TCP’s congestion control implementa-
tion. For this description we use the Linux kernel v 3.6.6.
Our main focus is describing the most common pieces of
the congestion control related code, which includes the con-
gestion control framework itself, the interface between con-
gestion control framework and rest of TCP, recovery state
machine, and details of an example congestion control algo-
rithms, TCP Cubic.

1. INTRODUCTION

The vast majority of the bytes on the Internet today are
transmitted using Transmission Control Protocol (TCP) [7].
As a transport protocol, TCP is expected to provide support
for different functionalities such as segmentation, reliability,
and congestion control.

TCP’s Congestion Control[6] is used to prevent conges-
tion collapse[6, 9] in the network. To achieve this goal, TCP
uses two basic elements: Acknowledgments (Ack) and Con-
gestion Window. Acknowledgments are used to acknowl-
edge reception of data by the receiver. Congestion Window
is used to estimate the bottleneck capacity and control the
maximum data that can be unacknowledged and on the fly
in a connection.

The congestion control logic in TCP, basically uses the
Additive Increase Multiplicative Decrease (AIMD) [1] model
for capacity probing. In basic AIMD every acknowledgment
results to an increase of maximum MSS (Maximum Seg-
ment Size) bytes to the congestion control window, while
once per Round Trip Time (RTT) every loss results to reduc-
ing the congestion control window to half.

There are two basic phases in the AIMD algorithm: slow
start and congestion avoidance. Slow start is usually used at
the beginning of a connection. At the slow start phase the
congestion control window increases exponentially. After
the congestion window size reaches a predefined threshold
(ssthresh), the algorithm enters the congestion avoidance
phase. During the congestion avoidance congestion win-
dow’s size doubles once per RTT, at maximum.

Some other concepts have been added to the basic con-
gestion control algorithm [6] later on and then became part
of the original algorithm in the form of New Reno[3] al-

gorithm. Some of these added features include: Selective
ACKs (SACKs) [1], Forward Acknowledgments (FACKs)[8],
fast retransmit, and fast recovery. For more information re-
garding these features, the interested reader is referred to the
IETF standard document on TCP’s congestion control[1].
Additionally, throughout the years various other competing
congestion control algorithms have been developed for TCP.
Some of these algorithms include: Vegas[2], BIC[11], and
Cubic[5].

These different congestion control algorithms for TCP,
each apply their own tweaks to the basic AIMD model for
better performance. Many of these algorithms are also im-
plemented in Linux kernel. The original congestion con-
trol algorithm (New Reno) remains wired to the kernel code,
while other algorithms could be plugged in, as we will de-
scribe later.

In this paper we attempt to describe part of the Linux ker-
nel code (v 3.6.6) that deals with the TCP congestion control.
We start by describing the code structure and relevant files in
the implementation. We then continue by describing the in-
formation flows between different function and explain the
approach taken in the kernel to implement the algorithmic
details.

2. THE CODE STRUCTURE

Linux kernel implements TCP and its different congestion
control algorithms. Before going into the kernel implemen-
tation details, it is important to note that congestion control
and reliability are intertwined functionalities both in TCP’s
abstraction and in its kernel implementation. Therefore, the
congestion control related code in kernel v.3.6.6 could be
conceptually divided into 4 different categories: the conges-
tion control framework itself, interface between congestion
control framework and rest of TCP, recovery state machine,
and details of different congestion control algorithms. Here
we are going to briefly describe main data structures and re-
lated files used in TCP congestion control implementation.

2.1 Important Data Types

2.1.1 tcp_ca_state
TCP’s congestion control implementation uses a state ma-

chine to keep and switch between different states of a con-
nection for recovery purposes. These different states are de-
fined in an enum type in tcp.h.
Open: When a connection is Open it is in a normal state,

1

16

with no dubious events, therefore packets received at this
state go through the fast path. TCP fast path eliminates the
extra processing that is required on flagged packets or in the
case of suspicious loss or out-of-order delivery.
Disorder: This state is very similar to Open but re-

quires more attention. It is entered when there are some
SACKs or dupACKs. In this state some of the processing
moves from fast path to the slow path.
CWR: State CWR is entered to handle some Congestion No-

tification event, such as ECN or local device congestion.
Recovery: This state shows that the congestion win-

dow has been reduced, and the connection is fast-retransmit
stage.
Loss: State Loss shows that congestion window was

reduced due to RTO timeout or SACK reneging.

2.1.2 tcp_congestion_ops
TCP congestion handler interface for different pluggable

congestion control algorithms is described in struct tcp
_congestion_ops, which is a structure of function call
pointers. This structure is defined in tcp.h file.

struct tcp_congestion_ops {
struct list_head list;
unsigned long flags;
/* initialize private data (optional) */
void (*init)(struct sock *sk);
/* cleanup private data (optional) */
void (*release)(struct sock *sk);
/* return slow start threshold (required) */
u32 (*ssthresh)(struct sock *sk);
/* lower bound for congestion window

(optional) */
u32 (*min_cwnd)(const struct sock *sk);
/* do new cwnd calculation (required) */
void (*cong_avoid)(struct sock *sk, u32

ACK, u32 in_flight);
/* call before changing ca_state (optional)

*/
void (*set_state)(struct sock *sk, u8

new_state);
/* call when cwnd event occurs (optional) */
void (*cwnd_event)(struct sock *sk, enum

tcp_ca_event ev);
/* new value of cwnd after loss (optional)

*/
u32 (*undo_cwnd)(struct sock *sk);
/* hook for packet ACK accounting

(optional) */
void (*pkts_acked)(struct sock *sk, u32

num_acked, s32 rtt_us);
/* get info for inet_diag (optional) */
void (*get_info)(struct sock *sk, u32 ext,

struct sk_buff *skb);
char name[TCP_CA_NAME_MAX];
struct module *owner;

};

Some of the most important function calls in this structure
are as follows:
init(): This function is called after the first acknowl-

edgment is received and before the congestion control algo-
rithm is called for the first time.
pkts_acked(): An acknowledgment that acknowledges

some new packets, results to a call to this function. Number
of packets that are acknowledged by this acknowledgments
is paseed through the num_acked argument.
cong_avoid(): This function is called every time an

acknowledgment is received and the congestion control state
allows for congestion window to increase.
undo_cwnd(): returns the congestion window of a flow,

after a false loss detection (due to false timeout or packet re-
ordering) is confirmed.

2.2 Files

The main files that deal with the TCP code in the kernel
are listed here. Many of these files could be found under
net/ipv4/ directory in the Linux kernel code, unless it is
mentioned otherwise.

tcp.h: this files includes the TCP related definitions, in-
cluding the data structures defined above. This file exist both
in include/net/ and include/linux/ directories.

tcp.c: includes general TCP code and covers the interface
between different sockets and the rest of the TCP code .

tcp_input.c: this is the biggest and most important file
dealing with incoming packets from the network. It also
contains the code for recovery state machine.

tcp_output.c: this files deals with sending packets to the
network. It contains some of the functions that are called
from the congestion control framework.

tcp_ipv4.c: IPv4 TCP specific code. This function hands
the relevant packets to the congestion control framework.

tcp_timer.c: implements timer management functions.
tcp_cong.c: implements pluggable TCP congestion con-

trol support and congestion control’s core framework with
default implementation of New Reno logic.

tcp_[name of algorithm].c: these files implement differ-
ent algorithm specific congestion control logic. For exam-
ple, tcp_vegas.c implements the Vegas logic and tcp_cubic.c
implements the TCP Cubic.

3. INFORMATION FLOW FOR THE RECOV-

ERY STATE MACHINE

In this section, we describe what happens after a TCP con-
nection is established and data and acknowledgment pack-
ets are exchanged. Adjustment of the congestion window
and transition through the recovery state machine mainly de-
pends on the reception of ACKs, or specific signs of con-
gestion like timeouts and Explicit Congestion Notification
(ECN [10]) bits. Simple form of TCP signals congestion
by packet drops. ECN, however, allows for congestion no-
tification without dropping packets. In case of congestion,
an ECN-aware router can mark in the IP header instead of
dropping the packet. The receiver of the packet echoes back
the congestion indication to the sender by setting ECN_Echo
(ECE [10])) flag in the TCP header.

Our main focus here is on handling received packets. But
first we briefly describe countermeasures that sender of a

2

17

data packet takes to be able to handle ACKs and recognize
congestion later on.

3.1 Recovery Handling Countermeasures

The main elements of handling ACKs and recognizing
congestion on the data sender side are retransmission
queue and retransmission timer. Transmission of
a data packet is always followed by placing a copy of that
data packet in a retransmission queue. The reception of an
ACK then results to removing related copies in the retrans-
mission queue. In current kernel the retransmission queue is
defined as a member of struct sock and under the name
write queue.

Each time a data packet is sent a retransmission timer is
set for that packet. This timer counts down over time. In
basic scenario, a packet is considered to be lost if its retrans-
mission timer expires before an acknowledgment is received
for that packet. In that case lost packets are retransmitted.

Anyhow, there are three tag bits, to mark packets in re-
transmission queue: SACKED (S), RETRANS (R) and LOST
(L). Packets in queue with these bits set are counted in vari-
ables sacked_out, retrans_out and lost_out, cor-
respondingly. While calculating the proper value for retrans
_out for counting the number of retransmitted packets is
pretty straight forward, marking right set of packets and cal-
culating proper values for sacked_out and lost_out
are a bit more complicated.
sacke_out counts the number of packets, which arrived

to receiver out of order and hence not ACKed. With SACKs
this number is simply amount of SACKed data. Without
SACKs this is calculated through counting duplicate ACKs.

For marking the lost packet and calculating the lost_out,
there are essentially two algorithms:

• FACK: Before describing the FACK algorithm to cal-
culate the lost_out, we introduce another variable
called fackets_out. In the code, fackets_out
includes both SACKed packets up to the highest re-
ceived SACK block so far and holes in between them.
As soon as the FACK algorithm decides that something
is lost, it decides that all not SACKed packets until
the most forward SACK are lost. I.e.lost_out =
fackets_out - sacked_out and left_out =
fackets_out. It seems to be a correct estimate, if
network does not reorder packets. But reordering can
invalidate this estimation. There, the implementation
uses FACK by default until reordering is suspected on
the path. Reordering is often suspected with the arrival
of duplicate Acks and SACKS.

• NewReno: when Recovery is entered, the assumption
is that one segment is lost (classic Reno). When the
connection is in Recovery state and a partial ACK ar-
rives, the assumption turns to be that one more packet
is lost (NewReno). This heuristics are the same in
NewReno and SACK.

����������	
�
������

�����������
������	�

�������	�������

����
����

����������

�����������

�����
���
��������
������

�����
������
���
�����

�
�����
����
�

Figure 1: Packet reception to recovery state machine

Within TCP’s retransmission logic[1]: with occurrence of
the retransmission timeout, the TCP sender enters the re-
transmission timeout recovery where the congestion window
is initialized to one segment and the whole window, which
remains unacknowledged, is retransmitted. Therefore, After
a RTO (retransmission timeout), when the whole queue is
considered as lost, lost_out equals packets_out.

3.2 Recovery State Machine

As noted earlier, functions in tcp_input.c deal with the re-
ceived packets. Therefore, the function calls we describe
here are mostly from tcp_input.c unless mentioned other-
wise.

As can be seen in Figure 1, reception of a data packet at
the end-host triggers a call to tcp_event_data_recv().
This function in itself is called by tcp_rcv_established()
which in turn called by tcp_v4_do_rcv() in tcp_ipv4.c.

The call to tcp_event_data_recv() results to mea-
suring the MSS and RTT, and triggers an ACK (or SACK).
The acking process benefits from two modes of operation:

• Quick ACK: It is used at the beginning of a TCP con-
nection so that the congestion window can grow quickly.

• Delayed ACK: A connection can switch to this mode
after a while. In this case an ACK is sent for multiple
packets.

TCP switches between these two modes depending on the
congestion experienced. Per default the quick ACK mech-
anism is enabled and ACK packets are triggered instantly
to raise the congestion window fast especially for bulk data
transfers. After a while when congestion window has grown
enough delayed ACKs could be used to reduce the excessive
protocol processing.

Incoming ACKs are processed in tcp_acks(). In this
function the sequence numbers are processed to clarify what
are the required actions after receiving an ACK. For instance
some of the proper reactions could be: cleaning the retrans-
mission queue, marking the SACKed packets, reacting to
duplicate ACKs, reordering detection, and advancing con-
gestion window. Here, we describe two of the most im-

3

18

����������������	���

	�	�	�
������	��������
��

��	�����������
���
�����������

�����	
�������������

����������������

��������������������
��

��	������������

��������������������
���

����������������������

�����
	���������
	��������

�	��
�������	���
��

��	�����������
���
�����������

Figure 2: Recovery related functional calls in

tcp_fast_retrans_alert()

portant functions that are called while processing ACKs in
tcp_acks().

3.2.1 tcp_sacktag_write_queue()
Incoming SACKs are processed in tcp_sacktag

_write_queue(). In here tcp_is_sackblock_valid()
tags the retransmission queue when SACKs arrive. This
function is also used for sack block validation. SACK block
range validation checks that the received SACK block fits to
the expected sequence limits, i.e., it is between SND.UNA
and SND.NXT. There is another function to limit sacked_out
so that sum with lost_out isn’t ever larger than packets_out.

3.2.2 tcp_fastretrans_alert()
The basic recovery logic and its related state transitions

are implemented in tcp_fastretrans_alert() func-
tion. This function describes the Linux NewReno/SACK/-
FACK/ECN state machine and it is called from tcp_acks()
in case of dubious ACKs. Dubious ACKs occur either when
the congestion is seen for the first time or in other word the
arrived ACK is unusual e.g. SACK, or when the TCP con-
nection has already experienced something unusual that has
caused it to move from the connection open state to any other
state in the recovery state machine as described below and in
Sec. ??.

As can be seen in Figure. 2 different set of functions are
called to check the state of a connection and do the proper
operations at each state. The most important function calls
executed in tcp_fastretrans_alert() are described
in the following:
tcp_check_sack_reneging(): Packets in the re-

transmission queue are marked when a SACK is received
(through another function as mentioned earlier). However,
if the received ACK/SACK points to a remembered SACK, it
probably relates to erroneous knowledge of SACK. tcp_check
_sack_reneging() function deals with such erroneous
situations.
tcp_time_to_recover(): This function checks pa-

rameters such as number of lost packets in a connection to
decide whether its the right time to move to Recovery state.
In other word, this function determines the moment when we
decide that hole is caused by loss, rather than by a reorder.
If it decides that is the recovery time; the CA State would
switch to Recovery.
tcp_try_to_open(): If its not yet the time to move

to recovery state, this function will check for switching the
state and other proper reactions based on the indication in

the packet. For example, if the ECE flag in the packet header
is set, then the state will switch to CWR. Then, congestion
window will be reduced by calling tcp_cwnd_down.
tcp_update_scoreboard(): This function will mark

the lost packets. Depending on the choice of SACK or FACK
all the packets which were not sacked (till the maximum seq
number sacked) might be marked as lost packets. Also unac-
knowledged packets that have expired retransmission timers
are marked as lost in this function. All the markings in
this function triggers recounting for lost, sacked and left out
packets.
tcp_xmit_retransmit_queue(): This function trig-

gers retransmission of lost packets. It decides, what we
should retransmit to fill holes, caused by lost packets.
tcp_try_undo_<something>(): The most logically

complicated part of algorithm is undo heuristics. False re-
transmits can occur due to both too early fast retransmit (re-
ordering) and underestimated RTO. Analyzing timestamps
and D-SACKs can identify the occurrence of such false re-
transmits. Detection of false retransmission and congestion
window reduction could be undone and the recovery phase
could be aborted. This logic is hidden inside several func-
tions named tcp_try_undo_<something>.

The functions above are mainly used for recovery state
machine, and getting around the retransmission queue when
there is a need for retransmission. However, we discuss
the implementation for calculating the actual amount of in-
crease/decrease in the congestion window size in the next
section.

4. CONGESTION CONTROL ALGORITHMS

The basic congestion control functionalities core function-
ality is defined in tcp_cong.cc. TCP’s original Reno al-
gorithm[6] is directly implemented in tcp_reno_cong
_avoid(). While in case of other algorithms, functions
such as tcp_slow_start() and tcp_cong_avoid_ai()
move the congestion window forward depending on the cal-
culations done by different algorithm. These functions are
called from different places in the code, for example from
tcp_input.c or from any of the tcp_[name of algorithm].c
files.

Figure 3 shows a high level abstraction of different con-
gestion control algorithms are set and initialized in the code.
Looking at the implementation from the users prospective,
the only configurable part in this structure is the choice of
congestion control algorithm. To achieve this goal, the im-
plementation uses pluggable pieces of code in different files.

To register the pluggable congestion control algorithms,
their implementation in different files such as tcp_vegas.c
and tcp_cubic.c include a static record of struct tcp
_congestion_ops to store and initialize the related func-
tion calls and algorithm’s name. All these implementations
register themselves into the system by calling (hooking to)
the tcp_register_congestion_control from tcp
_cong.c. However the algorithm used for every connection

4

19

����������	
	����������
	����������

	���
����� 	���
���	��

	���
�
	�������	
������	����

	���������

	�����	����
��	�������	
���
���	����

����	�

��������

��
�
	

��
�
	�	���������	
���
���
��	��

	������
�	���������	
���
���	����

	������
�����	������
�������

�
�
����������	
������	����
����
	���

Figure 3: TCP congestion control related setting in Linux

kernel (v 3.6.6)

is set up by kernel initialization or through a sysctl com-
mand. After the congestion control algorithm is set, defined
hooks in tcp
_congestion_ops are used to access the relevant algo-
rithm specific functions from the rest of the code.

Implementation of all the algorithms more or less depends
on the calculation of flight size and estimated size of the
congestion window. Flight size shows the amount of data
that has been sent but not yet cumulatively acknowledged.
Therefore, it could be used to progress the congestion win-
dow, or estimate the correct value for e.g. sshtresh. In opti-
mal situation, the flight size should be a reflection of band-
width delay product.

In the code the flight size is shown through the in_flight
variable.

in_flight = packets_out + retrans_out − left_out

In the equation above, packets_out is the highest data
segment transmitted (SND.NXT) minus the first unacknowl-
edged segment (SND.UNA) counted in packets. As shown
in the equation, the estimation also needs to consider the
number of retransmitted packets as part of the flight size cal-
culation.

Theoretically, the sum of retrans_out and packets_out
should show the flight size at any moment in time. However,
in practice because of the usage of SACKs and other fea-
tures, packets_out in its own reflects also those packets
that have left the network in form of SACKed packets or lost
packets, and thus are not in the flight anymore. In the equa-
tion above, left_out is number of these packets that left
network, but not ACKed yet.

left_out = sacked_out + lost_out

4.1 TCP Cubic in theory

The original Reno algorithm for TCP congestion control
have been designed in those days when both the link ca-
pacities and round trip times were limited. Now a days,

it is a known problem that as the bandwidth delay product
grows TCP’s sluggish behavior in increasing the congestion
window size could result to under-utilization of network re-
source.

TCP cubic is one of the newest modifications to the TCP
congestion control algorithm that changes the linear window
growth function of TCP to a cubic function, in order to im-
prove the bandwidth utilization in case of high bandwidth
delay product networks. It also achieves a better level of
fairness among flows with different round trip times. All
these attributes make the cubic the default congestion con-
trol algorithm in Linux.

As it comes from the name of this algorithm the window
growth function is a cubic function of elapsed time since the
last packet loss. The algorithm registers a W_max to be the
window size where the last packet loss event has happened.
The algorithm then performs a multiplicative decrease of
congestion window by a constant decrease factor. After-
wards, when the algorithm enters into congestion avoidance
phase from fast recovery, it starts to increase the window us-
ing the cubic function that we will describe later. The cubic
growth continues in a concave form until the window size
becomes equal to the W_max. After that, the cubic function
turns into a convex profile and the convex window growth
continues from there. The concave-convex style of window
growth helps the stability and better utilization of network
resources [5].

4.2 TCP Cubic in the code

As mentioned earlier different pluggable congestion con-
trol algorithms are implemented in tcp_[name of algorithm].c
files. They register themselves and their function calls to the
system through initiating an instance of tcp_congestion_ops.
One of these algorithms, which we are going to explain here,
is TCP cubic. TCP cubic initiates its function calls in the
code as follows:

static struct tcp_congestion_ops cubictcp
__read_mostly = {
.init = bictcp_init,
.ssthresh = bictcp_recalc_ssthresh,
.cong_avoid = bictcp_cong_avoid,
.set_state = bictcp_state,
.undo_cwnd = bictcp_undo_cwnd,
.pkts_acked = bictcp_acked,
.owner = THIS_MODULE,
.name = "cubic",

};

After the initialization phase, bictcp_acked() is called
on every received acknowledgment and triggers proper func-
tion calls for increasing/decreasing the congestion window.
This function basically tracks delays and delayed acknowl-
edgment ratio based on the following:

slidingwindowratio = (15 ∗ ratio + sample)/16

The reason for tracking delayed ACKs is the logic im-

5

20

plemented in TCP cubic’s code. In Cubic, congestion win-
dow is always increased if the ACK is okay, and the flow is
limited by the congestion window. If the receiver is using
delayed acknowledgement, the code needs to adapt to that
problem.

TCP cubic’s code integrates its own implementation for
changing the congestion window size both at the slow start
phase and at the congestion avoidance phase. Therefore,
bictcp_acked() can also result to a call to hystart
_update(). hystart_update() at the slow start phase
increases the congestion control window based on the HyS-
tart [4] algorithm instead of the standard TCP slow start
logic. In this implementation HyStart logic is triggered when
congestion window is larger than some threshold (hystart
_low_window __read_mostly = 16).

Cubic Hystart uses RTT-based heuristics to exit slow start
early on, before losses start to occur. Cubic HyStart use de-
lays for congestion indication, but it exits slow starts at the
detection of congestion and enters cubic’s standard conges-
tion avoidance.

For the congestion avoidance phase, the window growth
function of TCP cubic [5] uses the following cubic equation:

CW (t) = C ∗ (t − K)3 + CWmax

where C is a CUBIC parameter, t is the elapsed time from
the last window reduction, and K is the time period that the
above function takes to increase current congestion window
(CW) to CW_max when there is no further loss event and is
calculated by using the following equation:

K = cubicroot(CWmax ∗ beta/C)

where beta is the multiplication decrease factor (at the time
of a loss window decreases to beta *CW_max).

In the code, bictcp_cong_avoid() is called during
the congestion avoidance phase. The calculation of proper
congestion window size at this stage is done based on the
logic above and in bictcp_update() function. A sum-
marized view of the function calls resulting to the ultimate
final of the congestion window size, could be followed in the
tcp_cubic.c file:

5. CONCLUSIONS

In this paper, we have described TCP’s congestion control
implementation in the Linux kernel v 3.6.6. Our main focus
has been explaining the recovery state machine in the code
and high level abstractions of congestion control’s algorithm
implementation.

6. REFERENCES
[1] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control.

RFC 5681 (Draft Standard), Sept. 2009.
[2] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. Tcp vegas: new

techniques for congestion detection and avoidance. SIGCOMM
Comput. Commun. Rev., 24(4):24–35, 1994.

[3] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification
to TCP’s Fast Recovery Algorithm. RFC 3782, 2004.

[4] S. Ha and I. Rhee. Taming the elephants: New tcp slow start.
Comput. Netw., 55(9):2092–2110, June 2011.

[5] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly high-speed tcp
variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.

[6] V. Jacobson. Congestion avoidance and control. In Proc. of ACM
SIGCOMM ’88, volume 18, pages 314–329, Stanford, CA, USA,
Aug. 1988. ACM.

[7] C. Labovitz, D. McPherson, S. Iekel-Johnson, J. Oberheide,
F. Jahanian, and M. Karir. Internet Observatory Report. Proc.
NANOG-47, 2009.

[8] M. Mathis and J. Mahdavi. Forward acknowledgement: refining tcp
congestion control. SIGCOMM Comput. Commun. Rev.,
26(4):281–291, Aug. 1996.

[9] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896,
Jan. 1984.

[10] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168, Sept. 2001.

[11] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control
(bic) for fast long-distance networks. In Proc. of IEEE INFOCOM
2004, volume 4, pages 2514 – 2524, Hong Kong, March 2004.

6

21

Linux Implementation Study of Stream Control
Transmission Protocol

Karthik Budigere
Department of Commnunication and Networking

Aalto University, Espoo, Finland
karthik.budigere@aalto.fi

ABSTRACT

The Stream Control Transmission Protocol (SCTP) is a one
of the new general-purpose transport layer protocol for IP
networks. SCTP was first standardized in the year 2000 as
RFC 2960. SCTP is developed in complement with the TCP
and UDP transport protocols. SCTP improves upon TCP
and UDP and it also introduces new features such as multi-
homing and multi-streaming, multi-homing feature provides
the fault tolerance and the multi-streaming feature addresses
the head-of-line blocking problem. This paper describes
the high level details about the SCTP implementation in
Linux kernel. It mainly focus on SCTP module initialization
and registrations for socket layer abstraction, important data
structures, SCTP sate machine and packet flow through SCTP
stack.

1. INTRODUCTION

Stream control transmission protocol was designed to over-
come the limitations of other transport layer protocols on IP
such as TCP and UDP. The first SCTP specification was pub-
lished in October 2000 by the Internet Engineering Task Force
(IETF) Signaling Transport (SIGTRAN) working group in
the now obsolete RFC 2960 [5]. Since then, the original
protocol specification has been slightly modified (checksum
change, RFC 3309 [6]) and updated with suggested imple-
menter’s fixes (RFC 4460 [4]). Both updates are included
in the current protocol specification, RFC 4960 [3] that was
released in September 2007. SCTP is rich in new features
and capabilities. The capabilities of SCTP would make it
suitable as a general transport protocol.

The following are some of the important new features of
the SCTP; SCTP inherits some of the features from TCP
along with some new exclusive new features.

• Multihoming: SCTP sends packets to one destination IP
address and also has capabilities to reroute the messages
using alternate route if the current IP address becomes
unreachable. Hence SCTP offers resilience to the failed
interfaces and faster recovery during network failures.

• Multi-streaming: SCTP supports multiple simultaneous
streams of data with in the same connection. When

Figure 1: SCTP Multi Streaming Association

sending the message systems cannot send parts of the
same message through different streams; one message
must go through one stream. In an ordered delivery
option the stream is blocked when the packets are out
of order or missing. Only one stream that is affected
will be blocked where as the other streams will continue
uninterrupted. Figure 1 shows the number of streams in
an SCTP association.

• Multiple Delivery Modes: SCTP supports multiple de-
livery modes such as strict order-of transmission (like
TCP), partially ordered (per stream), and unordered
delivery (like UDP). Message boundary preservation:
SCTP preserves applications message boundaries by
placing messages inside one or more SCTP data struc-
tures, called chunks. Multiple messages can be bundled
into a single chunk, or a large message can be spread
across multiple chunks.

• Selective acknowledgments. SCTP uses selective ac-
knowledgment scheme, similar to TCP, for packet loss
recovery. The SCTP receiver provides SACK to the
sender with information regarding the messages to re-
transmit.

• Heartbeat keep-alive mechanism: SCTP sends heartbeat
control packets to idle destination addresses that are
part of the association. An SCTP association is nothing
but the connection between the two endpoints. At a
given time two endpoints will have only one SCTP
association. The protocol declares the IP address to
be down once it reaches the threshold of unreturned
heartbeat acknowledgments.

• DOS protection. To avoid the impact of TCP SYN

1

22

flooding like attacks on a target host, SCTP employs
a security cookie mechanism during association ini-
tialization. User data fragmentation: SCTP will frag-
ment messages to conform to the maximum transmit
unit (MTU) size along a particular routed path between
communicating hosts.

The SCTP protocol can be divided into number of func-
tions; these functions are Association startup and shutdown,
Sequenced delivery of data within the streams, Data frag-
mentation, SACK generation and congestion control, chunk
bundling, packet validation and path management. All these
functions are discussed in detail in the following sections of
the paper.

2. IMPLEMENTATION OVERVIEW

In this section we discuss the Linux implementation of
SCTP. Basic operations of SCTP will be explained along
with the description of the source code files, important fun-
damental data structures used by SCTP and we also describe
the important functions in SCTP used in the packet reception
from the network and to transmit packets back to the network.

The SCTP source code is present in the directory net/sctp
and include/net/sctp. The important SCTP source files are
listed in the table below.

File Name Description
input.c SCTP input handling, handles the

incoming packets from IP layer
output.c Hansles the outgoing SCTP packets

and passes it on to the network layer
socket.c SCTP extension for socket APIs.
sm_statetable.c SCTP state machine table implemen-

tation
inqueue.c SCTP input queue implementation
outqueue.c SCTP output queue implementation
ulpqueue.c SCTP uplink queue implementation,

reponsible for transfering data to ap-
plication

structs.h All the important SCTP data struc-
tures such as association structure,
end point structure are defined in
this file

2.1 SCTP Initialization

SCTP is implemented as an experimental module in the
Linux kernel. All the kernel modules have an initialization
and exit functions. The SCTP kernel module initialization
function is done in sctp_init(). This function is responsible for
the initialization of the memory for several data structures and
initialization various parameters used by the SCTP module.
It also it performs the registration with socket and IP layer.

The important data structures that are initialized in this
function are sctp_bucket_cachep of type sctp_bind_bucket,
this data structure is used for managing the bind/connect,
sctp_chunk_cachep that is of type struct sctp_chunk, this data

structure is used to store the SCTP chunks. SCTP chunks
are the unit of information within an SCTP packet, a chunk
consist of a chunk header and chunk specific content, initial-
izes SCTP MIB with SNMP (Simple Network Management
Protocol), MIB (Management Information Base) are virtual
database that are used for managing the entities in a com-
munication network, setting up proc fs entry for SCTP by
creating sctp directory under /proc (proc filesystem is used to
access information about processes and other system informa-
tion), initializes the stream counts and association ids handle,
memory allocation and initialization of association and end-
point hash tables that are used in connection management,
and initialization of SCTP port hash table.

2.1.1 Socket Layer Registration
The socket layer registration of SCTP is done by the

functions sctp_v4_protosw_init() and sctp_v6_protosw_init().
The Linux kernel network subsystem data structures, struct
proto defined in the file /include/net/sock.h and the struct
net_proto_family defined in the /include/linux/net.h encapsu-
lates the protocol family implementation. In order to register
SCTP to TCP/IP stack (using IP as the network layer) we
should Initialize an instance of struct proto and register to
Linux network sub-system with call proto_register(). If the
proto_register() function fails then the protocol addition with
socket layer inetsw protocol switch will done by the func-
tion inet_register_protosw(), this function is defined in the
net/ipv4/af_inet.c and takes argument of type proto structure
defines the transport-specific methods (Upper layer) such as
for connect (sctp_connect()), disconnect (sctp_disconnect()),
sending (sctp_sndmsg()) and recieving (sctp_rcvmsg()) mes-
sage etc, while the proto_ops structure defines the general
socket methods.

2.1.2 IP Layer Registration
The IP layer registration or adding new transport protocol

is performed in the function sctp_v4_add_protocol(). In this
function it calls the function register_inetaddr_notifier in or-
der to register to get notifications that notifies whenever there
is addition or deletion of inet address and inet_add_protocol()
function to add new protocol SCTP with inet layer. The
function takes two arguments, first one is of type struct
net_protocol in that we can specify the packet handler rou-
tine, for SCTP the packet handler routine is sctp_rcv() func-
tion and the second argument is protocol identifier that is
IPPROTO_SCTP (132). This way the SCTP packets when
received in the IP layer are sent to the sctp_rcv() function.

2.2 Data Structures

The following are some of the important data structures
used in the SCTP Linux implementation,

• struct sctp_globals: The entire SCTP module universe
is represented in an instance of struct sctp_globals. This
structure holds system wide defaults for things like the
maximum number of permitted retransmissions, valid

2

23

cookie life time, SACK timeout, send and receive buffer
policy, several flag variables etc. It contains list of all
endpoints on the system, associations on the system and
also the port hash table.

• struct sctp_endpoint: Each SCTP socket has an end-
point, represented as a struct SCTP endpoint. The end-
point structure contains a local SCTP socket number
and a list of local IP addresses. These two items defines
the endpoint uniquely. In addition to endpoint wide de-
fault values and statistics, the endpoint maintains a list
of associations. This logical sender/receiver of SCTP
packets. On a multi-homed host, an SCTP endpoint
is represented to its peers as a combination of a set of
eligible destination transport addresses to which SCTP
packets can be sent and a set of eligible source transport
addresses from which SCTP packets can be received.

• struct sctp_association: Each association structure is de-
fined by a local endpoint (a pointer to a sctp_endpoint),
and a remote endpoint (an SCTP port number and a list
of transport addresses). This is one of the most compli-
cated structures in the implementation as it includes a
great deal of information mandated by the RFC such as
sctp_cookie, counts of various messages, current gen-
erated association share key etc. Among many other
things, this structure holds the state of the state machine.
The list of transport addresses for the remote endpoint
is more elaborate than the simple list of IP addresses
in the local endpoint data structure since SCTP needs
to maintain congestion information about each of the
remote transport addresses.

• struct sctp_transport: The struct sctp_transport defined
by a remote SCTP port number and an IP address. The
structure holds congestion and reachability information
for the given address. This is also where we get the list
of functions to call to manipulate the specific address
family.

• struct sctp_packet: This is the structure which holds
the information about the list of chunks along with the
SCTP header information. These are getting assembled
for the transmission. It has the destination information
in the struct sctp_transport in it. An SCTP packet is a
lazy packet transmitter associated with a specific trans-
port. The upper layer pushes data into the packet, usu-
ally with sctp_packet_transmit(). The packet blindly
bundles the chunks. It transmits the packet to make
room for the new chunk. SCTP packet rejects packets
that need fragmenting. It is possible to force a packet
to transmit immediately with sctp_packet_transmit().
sctp_packet tracks the congestion counters, but handles
none of the congestion logic.

• struct sctp_chunk This is the most fundamental data
structure in SCTP implementation. This holds SCTP
chunks both inbound and outbound. It is essentially an

extension to struct sk_buff structure. It adds pointers to
the various possible SCTP sub headers and a few flags
needed specifically for SCTP. One strict convention is
that chunk->skb->data is the demarcation line between
headers in network byte order and headers in host byte
order. All outbound chunks are ALWAYS in network
byte order. The first function which needs a field from
an inbound chunk converts that full header to host byte
order. The structure also holds information about the
sub headers present in the chunk and the sctp_transport
information that tells source for an inbound chunk and
destination for the outbound chunk.

2.3 Queues

There are four different queues in SCTP Linux imple-
mentation. They are sctp_inq, sctp_ulpq, sctp_outq, and
sctp_packet. The first to carry information up the stack from
the wire to the use and the second to carry information back
down the stack. Each queue has one or more structures that
define its internal data, and a set of functions that define its
external interactions. All the queues have push inputs and
external objects explicitly put things in by calling methods
directly. A pull input is there for a queue and it would need to
have a callback function so that it can fetch input in response
to some other stimulus. These queue definitions are found in
net/sctp/structs.h and net/sctp/ulpqueue.h.

2.3.1 sctp_inq
SCTP inqueue accepts packets from the IP layer and pro-

vides chunks for processing. It is responsible for reassem-
bling fragments, unbundling, tracking received TSN’s (Trans-
port Sequence Numbers) for acknowledgement, and manag-
ing rwnd for congestion control. There is an SCTP inqueue
for each endpoint (to handle chunks not related to a specific
association) and one for each association.
The function sctp_rcv() (which is the receiving function for
SCTP registered with IPv4) calls sctp_inq_push() to push
packets into the input queue for the appropriate association
or endpoint. The function sctp_inq_push() schedules either
sctp_endpoint_bh_ rcv() or sctp_assoc_bh_rcv() on the im-
mediate queue to complete delivery. These functions call
sctp_inq_pop() to pull data out of the SCTP inqueue. This
function does most of the work for this queue. The functions
sctp_endpoint_bh_ rcv() and sctp_assoc_bh_rcv() run the
state machine on incoming chunks. Among many other side
effects, the state machine can generate events for an upper-
layer-protocol (ULP), and/or chunks to go back out on the
wire for transmission.

2.3.2 sctp_ulpq
sctp_ulpq is the queue which accepts events (either user

data messages or notifications) from the state machine and
delivers them to the upper layer protocol through the sockets
layer. It is responsible for delivering streams of messages
in order. There is one sctp_ulpq for every association. The

3

24

Figure 2: SCTP packet flow from network to userspace

state machine, sctp_do_sm(), pushes data into an sctp_ulpq
by calling sctp_ulpq_tail_data(). It pushes notifications with
sctp_ulpq_tail_event(). The sockets layer extracts events
from an sctp_ulpq with message written sk_data_ready()
function sk_buff.

2.3.3 sctp_outq
sctp_outqueue is responsible for bundling logic, transport

selection, outbound congestion control, fragmentation, and
any necessary data queueing. It knows whether or not data
can go out onto the wire yet. With one exception noted below,
every outbound chunk goes through an sctp_outq attached
to an association. The state machine injects chunks into
an sctp_outqueue with sctp_outq_tail(). They automatically
push out the other end through a small set of callbacks that
are normally attached to an sctp_packet. The state machine is
capable of putting a fully formed packet directly on the wire.

2.4 Packet Flow in SCTP

In this section we present the packet flow discussion of
SCTP in the Linux kernel.

2.4.1 Packet flow from network
The packet flow from network to SCTP module is as shown

in the Figure 2. The entry point for all the packets from the
network layer to the SCTP module is the function sctp_rcv().
This is the function specified as the handler routine during the
registeration with Network layer as discussed in the section
2.1.2.

Packets received from the network layer first undergoes
the basic checks like checking for the minimum length of
the packet received, checking for the out of the blue pack-
ets, etc. If the checks fail then the packet is discarded. All
the proper packets received are pushed on to the sctp_inq
for further processing. The packets are processed by the
sctp_endpoint_bh_rcv() or sctp_assoc_bh_rcv() function that

Figure 3: SCTP packet flow from user space

schedules packets from the sctp_inq. The processing of the
packets are done by the state machine routine sctp_do_sm().
The state machine checks the type of chunks received and pro-
cesses it accordingly. From the network layer we can either
receive data or we can receive the SCTP control messages. If
we receive data in the ESTABLISHED state then the data is
passed on to the user application using the sctp_ulpq. If the
packet received is one of the SCTP control message, then its
processed according to the state and suitable action will be
taken. If the state machine wants to reply the incoming mes-
sage, then it forms the reply message and inserts the packet
into sctp_outq for the transmission of the reply message to
the network layer.

2.4.2 Packet flow from user space
The packets sent by the user space is sent to SCTP module

using the function sctp_sendmsg() as shown in the figure
3. The packets are checked for the errors, if the packets
are free from errors then we call sctp_primitive_SEND() for
sending the packet. The SEND primitive calls the SCTP
state machine for performing the suitable actions. The state
machine function determines the suitable side effect action
to perform and calls the sctp_side_effects() function for the
command execution. If the packet is in order and error free
then its inserted to the sctp_outq which will be scheduled by
the function sctp_packet_transmit() function for transmitting
the packet to the network layer.

2.5 Multihoming in SCTP

There are two ways to work with multihoming with SCTP.
One way is to bind all your addresses through the use of
INADDR ANY or IN6ADDR_ANY. This will associate the
endpoint with the optimal subset of available local interfaces.
The second way is through the use of sctp_bindx(), which

4

25

allows additional addresses to be added to a socket after the
first one is bound with bind(), but before the socket is used to
transfer or receive data. The multihoming is implemented in
the function sctp_setsockopt_bindx() function. This function
takes a argument op which specifies whether to add or remove
the address from association. The binding completes by
Sending an ASCONF (Address Configuration Change Chunk
) chunk with Add IP address parameters to all the peers of
the associations that are part of the endpoint indicating that a
list of local addresses are added to the endpoint. If any of the
addresses is already in the bind address list of the association,
than we do not send the chunk for that association. But it will
not affect other associations. The associations are created on
the successful reception of the ASCONF_ACK chunk.

3. STATE MACHINE, ALGORITHMS AND

OPTIONS

3.1 State machine

The state machine in SCTP implementation is quite literal.
SCTP implementation has an explicit state table which keys
to specific state functions that are tied directly back to parts
of the RFC. The state machine table implementation can be
found in the file sm_statetable.c. The handling functions are
named uniquely as shown in the Table 1, function names
contain the section of the RFC that it is refering, for example
the function sf_do_5_1B_init is used for handling the INIT
message in the CLOSED state and the numbering 5_1that is
the suffix name in the function nae refers to the section 5.1 of
the RFC 2960. All the state machine functions can be found
in the file sm_statefuns.c. The core of the state machine is
implemented in the function sctp_do_sm().
Each state function produces a description of the side ef-
fects (in the form of a struct sctp sm_retval) needed to han-
dle the particular event. A separate side effect processor,
sctp_side_effects() in the file sm_sideeffect.c, converts this
structure into actions.
Events fall into four categories. The first category is about
the state transitions associated with arriving chunks. The
second category is the transitions due to primitive requests
from upper layers, Not defined completely in the standards
so its implementation specific. The third category of events is
timeouts. The final category is a catch all for odd events like
queues emptying. In order to create an explicit state machine,
it was necessary to first create an explicit state table. Table
1 shows the partial state machine table with functions for
different kind of chunks during different states.

3.1.1 SCTP connection Initiation
As SCTP and TCP are both connection oriented, they re-

quire communications state on each host. Two IP addresses
and two port numbers define a TCP connection. An SCTP
association is defined as [a set of IP addresses at A]+[Port-
A]+[a set of IP addresses at Z]+[Port-Z]. Any of the IP ad-
dresses on either host can be used as a source or destination

Figure 4: SCTP State Machine

in the IP packet and still properly identify the association.
Before data can be exchanged, the two SCTP hosts must ex-
change the communications state (including the IP addresses
involved) using a four-way handshake, a four-way handshake
eliminates exposure to the aforementioned TCP SYN flood-
ing attacks. The receiver of the initial (INIT) contact message
in a four-way handshake does not need to save any state infor-
mation or allocate any resources. Instead, it responds with an
INIT-ACK message, which includes a state cookie that holds
all the information needed by the sender of the INIT-ACK to
construct its state. The state cookie is digitally signed via a
mechanism. Both the INIT and INIT-ACK messages include
several parameters used in setting up the initial state:

• A list of all IP addresses that will be a part of the asso-
ciation.

• An initial transport sequence number that will be used
to reliably transfer data.

• An initiation tag that must be included on every inbound
SCTP packet.

• The number of outbound streams that each side is re-
questing.

• The number of inbound streams that each side is capable
of supporting.

After exchanging these messages, the sender of the INIT
echoes back the state cookie in the form of a COOKIE-ECHO
message that might have user DATA messages bundled onto
it as well (subject to pathMTU constraints). Upon receiving
the COOKIEECHO, the receiver fully reconstructs its state
and sends back a COOKIE-ACK message to acknowledge
that the setup is complete. This COOKIE-ACK can also
bundle user DATA messages with it. The Table 1 gives in-
formation of which functions will be executed on receieving
the messages based on the SCTP current state during the

5

26

Table 1: Partial SCTP state machine table

Message CLOSED COOKIE_WAIT COOKIE_ECHOED ESTABLISHED
SCTP_DATA sf_ootb Discard Discard sf_eat_data_6_2

INIT sf_do_5_1B_init sf_do_5_2_1_siminit sf_do_5_2_1_siminit sf_do_5_2_2_dupinit
INIT_ACK sf_do_5_2_3_initack sf_do_5_1C_ack Discard Discard

COOKIE_ECHO sf_do_5_1D_ce sf_do_5_2_4_dupcook sf_do_5_2_4_dupcook sf_do_5_2_4_dupcook
COOKIE_ECHO_ACK Discard Discard sf_do_5_1E_ca Discard
SCTP_HEARTBEAT sf_ootb Discard sf_beat_8_3 sf_beat_8_3

SCTP_HEARTBEAT_ACK sf_ootb sf_violation Discard sf_backbeat_8_3

connection Initiation. The SCTP state is maintained by the
sctp_association structure. Figure 4 shows how the SCTP
state changes depending on the messages and received.

3.1.2 Fault Management

• End Point Failure Detection: SCTP keeps track of the
total number of times the packet has been retransmitted
to its peer consecutively. sctp_retransmit() function is
used to retransmit the unacknowledged packets after
the timer expiry. If the counter exceeds the limit then
the peer endpoint is unreachable and the association
enters the CLOSED state. The counter will be reset
everytime when the DATA chunk is acknowledged by
the peer endpoint.

• Path Failure Detection: HEARTBEAT message is used
for the path management, everytime when a T3-rtx
timer expires or when a HEARTBEAT message sent
to an idle address is not acknowledged then the error
counter for that destination address is incremented, if
the counter exceeds the max value then the destination
transport address is marked inactive. The counter is
cleared when ever outstanding TSN is acknowledged
or the when the HEARTBEAT ACK packet is received.
sctp_do_8_2_transport_strike () function performs this
path failure detection in the SCTP code. When the
primary path is marked inactive the sender can automat-
ically transmit new packets to an alternate destination
address if it exists and is in the active state.

• Handling Out of blue packets: An SCTP packet is called
an "out of the blue" (OOTB) packet if it is correctly
formed, but the receiver is not able to identify the as-
sociation to which this packet belongs. These packets
are handled in the function sctp_rcv_ootb() as per the
section 8.4 in the RFC 2960.

• Verification Tag: Every outbound SCTP packet contains
the verification tag filled by the sending endpoint. The
verification tag value is filled by the Initiate Tag parame-
ter of the INIT or INIT ACK received from its peer. On
receiving an SCTP packet, the endpoint should ensure
that the value in the Verification Tag field of the received
SCTP packet matches its own Tag. If the received Ver-
ification Tag value does not match the receiver’s own

tag value, the receiver shall silently discard the packet
with some exceptions.

4. CONCLUSION

Despite a considerable amount of research, SCTP still
lacks a killer application that could motivate its widespread
adoption into the well-established IP networks protocol stack.
Hence, SCTP is still not part of the vendor-supplied TCP/IP
stack for widespread OSes[1]. One of the important mile-
stones towards a broader adoption of SCTP was the decision
within the mobile communications industry to select SCTP
as a transport protocol for the Long Term Evolution (LTE)
networks to support signaling message exchange between net-
work nodes. SCTP is also the key transport component in cur-
rent SIGTRAN suites used for transporting SS7 signaling in-
formation over packet-based networks. Hence, SCTP is used
in progressively adopted Voice over IP (VoIP) architectures
and thus becomes part of related signaling gateways, media
gateway controllers, and IP-based service control points that
are used to develop convergent voice and data solutions.[2]

5. REFERENCES

[1] Lukasz Budzisz, Johan Garcia, Anna Brunstrom, and
Ferr. A taxonomy and survey of sctp research. ACM
Comput. Surv., 44(4):18:1–18:36, September 2012.

[2] Preethi Natarajan, Janardhan R. Iyengar, Paul D. Amer,
and Randall Stewart. Sctp: an innovative transport layer
protocol for the web. In Proceedings of the 15th
international conference on World Wide Web, WWW
’06, pages 615–624, New York, NY, USA, 2006. ACM.

[3] R. Stewart. Stream Control Transmission Protocol. RFC
4960 (Proposed Standard), September 2007.

[4] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and
M. Tuexen. Stream Control Transmission Protocol
(SCTP) Specification Errata and Issues. RFC 4460
(Informational), April 2006.

[5] R. Stewart, Q. Xie, K. Morneault, and C. Sharp. RFC
2960, Stream control transmission protocol.
http://www.faqs.org/rfcs/rfc2960.html, October 2000.

[6] J. Stone, R. Stewart, and D. Otis. Stream Control
Transmission Protocol (SCTP) Checksum Change. RFC
3309 (Proposed Standard), September 2002. Obsoleted
by RFC 4960.

6

27

The IPv4 Implementation of Linux Kernel Stack

Fida Ullah Khattak
Department of Communication and Networking

School of Electrical Engineering
Aalto University

fidaullah.khattak@aalto.fi

ABSTRACT
The foundations of modern day communication networks are
based on the IPv4 protocol. Though specifications of IPv4
are readily available, this is not the case with its imple-
mentation details. Open source operating systems provide
a chance to look at IPv4 implementation. However, because
of their changing nature, the documentation of open source
operating systems is often out-dated. This work is an at-
tempt to document the implementation details of IPv4 in
the Linux kernel 3.5.4.

Detail description of IPv4 packet traversal paths at the Linux
kernel is provided. An overview of routing subsystem and
its role in the IPv4 packet traversal is also given.

Keywords
Linux Kernel Stack, IPv4, Routing

1. INTRODUCTION
The linux IPv4 [3] implementation can be broken down into
the input, the output and the forwarding paths. The IPv4
layer also interacts with supporting protocols, e.g. the ICMP
[7], and subsystems, e.g. the routing subsystem, in the Linux
stack for proper functioning.

An IPv4 packet that enters the IP layer, has to traverse
through one of the paths mentioned earlier. Based on its
origin and destination, the packet is routed to calculate the
path of the datagram inside the Linux kernel. The function-
alities of input, output and forwarding path traversal are
implemented in their respective files as shown in table 1. It
also shows the files that implements the routing functional-
ity.

A packet inside the kernel is represented with an sk_buff

structure. Apart from the datagram itself, this structure
contains all necessary information required for routing the
packet successfully. sk_buff is a common structure between
all the layers of the IP stack. However, at a given time, only
a single layer manipulates the values of this structure. In
some cases, it is also possible to create multiple copies of
the same structure for concurrent processing.

Table 2 shows some other structures important for packet
processing at the IPv4 layer. Few of these structures are ex-
clusive to the IPv4 layer, while others are shared by different
layers of the TCP/IP stack.

Figure 1 gives an overall view of how the datagrams are
processed at different paths. The traversal path has close
interaction with the netfilter framework [2], which is used
for functions like packet filtering and manipulation. Fea-
tures like NAT [9] and firewalls [6] are implemented using
the netfilter framework. As shown in Figure 1, there are sev-
eral netfilter hooks included in the traversal logic for filtering
packets at different points. Netfilter hooks pass control be-
tween different functions by taking a function pointer, called
okfn, as an argument, which is called if a packet successfully
traverses the hook.

The rest of the paper is structured as follows: Section 2 de-
scribes the ingress processing of IPv4 datagram. Section 4
covers forwarding while Section 5 explain the egress process-
ing. Routing subsystem is explained in section6.

2. PROCESSING OF INGRESS IPV4

DATAGRAMS
The IPv4 ingress traversal logic, defined in the ip_input.c

file, is responsible for delivering the datagrams to a higher
layer protocol or forwarding it to another host. It consists
of functions and netfilter hooks that process an incoming
datagram. As shown by Figure 1, this path starts with the
ip_rcv() function and ends at the ip_local_deliver_finish()
function. The ip_rcv() function is registered as the handler
function for incoming IPv4 datagrams at the system startup
by the ip_init() routine.

Before the control is passed to ip_rcv(), the lower layer
function, netif_receive_skb(), sets the pointer of the socket
buffer to the next layer (layer 3), such that the start of skb-

>hdr is pointing to the IPv4 header. This way, the packet
can be safely type-casted to an IPv4 datagram. We start
with a brief description of each function at the input traver-
sal path of IP layer, explaining how a datagram is processed
on its way up the stack.

2.1 ip_rcv()
The first check performed by ip_rcv() is to drop the pack-
ets that are not addressed to the host but have been re-
ceived by the networking device in promiscuous mode. It
may also clone the socket buffer if it is shared with the net
device. Next, ip_rcv() ensures that the IPv4 header is en-
tirely present in the dynamically allocated area. Afterwards,
the length, version and checksum values of the IPv4 header
are verified.

28

ip_local_deliver_finish()

NF_INET_LOCAL_IN

ip_local_deliver()

Ip_rcv()

NF_INET_PRE_ROUTING

Ip_rcv_finish()

skb_routable?

Local or
Remote?

Local

Route Cache Routing
Table(s)

Routing Subsystem

No

ip_queue_xmit()

skb_routable?

NF_INET_LOCAL_OUT

ip_local_out()

ip_output()

ip_finish_output()

NF_INET_POST_ROUTING

Ip_finish_output2

ip_forward() ip_forward_finish()

NF_INET_FORWARD

Remote
No

Resolved

Resolved

ip_input.c ip_output.c

ip_forward.c

route.c fib.c

Figure 1: Traversal of an IPv4 datagram through Linux stack

Table 1: IPv4 Important files
File Name Explanation

net/ipv4 input.c Functions related to ingress path
net/ipv4 output.c Functions related to egress path
net/ipv4 forward.c Functions related to forwarding path
net/ipv4 fragment.c Functions related to IP fragmentation
net/ipv4 route.c Implementation of the IP router

Once a packet has gone through all the sanity checks men-
tioned above, it is sent to the NF_INET_PRE_ROUTING hook.
As explained in section 1, netfilter hooks provide a flexi-
ble framework to implement functions related to filtering
and manipulation of IP datagrams. The PRE_ROUTING hook
can be used to manipulate incoming datagrams before they
have been routed. Thus all packets, local or remote, can be
processed by handler functions associated with PRE_ROUTING

hook. If a packet gets through this hook, the control is
passed to ip_recv_finish() function.

2.2 ip_recv_finish()
This function is passed as a function pointer to NF_INET_

PRE_ROUTING hook and is called when the packet has suc-
cessfully passed the hook. It performs the key operation of
routing the incoming datagrams using the ip_route_input_
no_ref() function. More detailed description of the routing
subsystem is given in the section 5 of this article.

If a packet is successfully routed, the routing subsytem ini-
tializes the route entry pointer in the socket buffer, sk_buff-
>dst, to a valid route from the routing subsystem. This

valid route, apart from other information, contains a func-
tion pointer, skb->dst->input, initialized to one of the fol-
lowing functions:

1.ip_forward() function is selected if the destination is not
the local host and the packet is to be forwarded to another
host.

2.ip_local_deliver() function is selected if the packet is
destined for the local host and has to be sent further up the
stack.

3.ip_mr_input() function is selected if the packet is a mul-
ticast packet.

After successfully searching a valid route, IPv4 options are
processed by calling ip_rcv_options() function. The last
step of this routine is the call to the dest_input() func-
tion. This is a wrapper function which calls the skb->dst-

>input() function pointer, returned through the route lookup
in the earlier step.

29

Table 2: IPv4 Related Data Structures
Data Structure Location Explanation

sk buff skbuff.h Socket buffer data structure
flowi4 flow.h Flow of traffic based on combination of fields

dst entry dst.h protocol independent cached routes
iphdr ip.h IP header fields

ip options inet sock.h IP options of the header
ipq ip fragment.c Incomplete datagram queue entry (fragment)

in device inet device.h IPv4 related configuration of network device

2.3 ip_local_deliver ()
This function is called when the routing entry returned in
the route lookup operation points to the local delivery of
datagram. The ip_local_deliver() routine is in charge
of defragmentation. It calls the ip defrag() function to
queue the fragmented datagrams untill all the fragments
have been received. After receiving a complete, unfrag-
mented datagram,ip_local_deliver() calls the NF_INET_

LOCAL_IN hook and passes ip_local_deliver_finish() as
the function pointer to be called after the netfilter process-
ing.

2.4 ip_local_deliver_finish ()
When a datagram successfully passes the netfilter hook called
at the previous step, it is passed on to ip_local_deliver

_finish() for some final processing at the IP layer. This
function strips the IPv4 header from the sk_buffer struc-
ture and finds the handler for further processing based on
the value of protocol field in the IPv4 header.

3. FORWARDING OF IPV4 DATAGRAMS
As shown in Figure 1, datagrams that reach the forward-
ing section have already been routed by the input path and
do not require another routing lookup. This makes the for-
warding path relatively simple in comparison to the input or
the output path. Forwarding path is responsible for checking
the optional features of “source routing” [1] and“router alert
option” [5] before forwarding packets to other hosts. IPSEC
policy checks for forwarded packets are also performed in
the forwarding path.

Source routing option can be used by a sender to specify a
list of routers through which a datagram should be deliv-
ered to the destination. Strict source routing implies that
datagram must traverse all the nodes specified in the source
routing list. If a datagram contains a “source routing op-
tion”, the forwarding path checks if the next hop selected
by the route lookup process matches the one indicated in
the source routing list. In case the two hops are not the
same, the packet is dropped and the source of the datagram
is notified by sending an ICMP message .

Router alert option is used to indicate to the routers that a
datagram needs special processing. This option is used by
protocols like “Resource Reservation Protocol” [8] . A func-
tion can register itself as a handler for routing alert option,
and if a datagram with a router alert option is received, the
forwarding path calls this handler function. par We briefly
take a look at the main functions, defined in ip_forward.c

file, responsible for handling datagrams through the for-
warding path.

3.1 ip_forward()
ip_forward() is the function that performs most of the for-
warding related tasks, including the check for source routing
and router alert options. Control is passed to the forward-
ing block when the routing logic decides that the packet is
to be forwarded to another host and sets skb->dst->input
pointer to the ip_forward() function.

Figure 2 shows the sequence of events in the ip_forward()

function. It first checks for the IPSEC forwarding policies
and the router alert option followed by checking the current
TTL value of the datagram. If the router alert option is
found, this function calls the corresponding handler respon-
sible for implementing the route alert functionality and does
not process the packet itself. If the TTL value of datagram
is going to expire, an ICMP TIME EXCEEDED message is sent
to the source and the packet is discarded.

Afterwards, the packet is checked for source routing. If the
datagram contains a strict source routing option, it is made
sure that the next hop, as mentioned in the source route list,
is the same as calculated by the local route lookup. If not,
the packet is discarded and source is notified.
At the end of the function, the netfilter hook, NF_INET_FOR
WARD is called , and ip forward finish() is passed as function
pointer to the hook. This function is later executed if the
packet successfully passes through the netfilter hook.

3.2 ip_forward_finish()
The ip_forward_finish () function calls the ip_forward_
options() function to finalize any processing required by the
options included in the datagram and calculates the check-
sum.
At this stage the IPv4 header has been created and the data-
gram has successfully traversed all checks in the forwarding
block. To transmit the packet, ip_forward_finish() calls
dst_output() function, another function set by the routing
subsystem during the ingress traversal.

4. PROCESSING OF EGRESS

IPV4 DATAGRAMS
A higher layer protocol can pass data to IPv4 layer in dif-
ferent ways. Protocols like TCP [4] and SCTP [10], which
fragment the packets themselves, interact with IPv4 layer
for outgoing datagrams through ip_queue_xmit() function.
Others protocols like UDP, that do not necessarily take
care of the fragmentation, can call ip_append_data() and
ip_append_page() functions to buffer data in Layer 3. This
buffered data can then be pushed as a single datagram by
calling the ip_push_pending_frames() function. TCP also

30

uses ip_build_and_send_pkt() and ip_send_reply() func-
tions for transmitting SYN ACKs and RESET messages re-
spectively.
However, as ip_queue_xmit() is the most widely used method
for interacting with upper layer protocols, here we discuss
the sequence of events when this function is called.

4.1 ip_queue_xmit()
ip_queue_xmit() is the main function of egress path which
performs many critical operations on the datagram.Figure 3
shows some of the main ip_queue_xmit() operations. It is
in the ip_queue_xmit() function that the outgoing data-
gram is routed and a destination is set for the packet.
The routing information required by a datagram is stored in
skb->dst field. In some cases, it is possible that the out-
going datagram has already been routed (e.g. by SCTP)
and the skb->dst contains a valid route. In that case,
ip_queue_xmit() skips the routing procedure, creates the
IPv4 header and sends the packet out.
In most cases, the skb->dst entry is empty and has to be
filled by the ip_queue_xmit() function. There are three
possible ways to route the packet.

1. The first option to find a valid route for an outgoing
datagram is by using information from the “socket” struc-
ture. The socket structure is a part of sk_buffer structure
and is passed as an argument to __sk_dst_check() function
to search for an available route. If packets have already been
sent by this socket, it will have a destination stored and can
be used by any future packets originating from this socket.

2. Another way to find a route is through a cache lookup
operation. If there is no route present in the socket structure
sk_buffer->sk, the ip_queue_xmit() calls __ip_route_ou

tput_key() function for a lookup of a possible route in the
routing cache.

This call is made through nested wrapper functions, ip_ro
ute_output_ports() and ip_route_output_flow(), which
besides calling the __ip_route_output_key() function, per-
form IPSEC checks by calling the functions of XFRM frame-
work and create a flowi4 structure. The flowi structure is
later used by __ip_route_output_key() function for rout-
ing cache lookup.

3. If route cache lookup also fails, ip_route_output_sl

ow() is called as a last resort to find a possible route by
performing a lookup on the routing table known as the for-
warding information base (FIB) .

After resolving the route, the ip_que_xmit() function cre-
ates the IPv4 header by using the skb_push() function. I
p_options_build() is called to build any IPv4 options. As
the last step, dst_output() function is called. If no routes
exist to the host, the packet is dropped while incrementing
the IPSTATS_MIB_NOROUTES counter.

4.2 ip_local_out
This function is a wrapper for __ip_local_out() which
computes the checksum for outgoing datagram after initial-
izing the value for “IP header total length”. It then calls the
netfilter hook NF_INET_LOCAL_OUT, passing the dst_output()
function as a function pointer. The NF_INET_LOCAL_OUT

xfrm_policy_check

Router Alert Option

Pass

TTL <=1

No

Xfrm_route_forward

No

Strict Source Route

No

TTL=TTL-1

NF_INET_FORWARD

Ip_forward_finish

Pass

Drop PacketFail

Call HandlerYes

Send ICMP TIME
EXCEEDEDYes

Drop PacketFail

Next Hop SSR ==
Next Hop Local Yes

Yes

Drop PacketFail

Pass

Figure 2: Forwarding of IPv4 Datagrams

hook provides a control point to manipulate, filter etc. all
outgoing traffic that is generated by the source itself.

4.3 dst_output()
Like the dst_input() function used for processing of incom-
ing datagrams, dst_output() function is a wrapper for the
function pointer skb->dst->output. This function pointer
is set to a specific function when the route lookup oper-
ation is performed and skb->dst is initialized.In the case
when the outgoing datagram is a unicast packet, the skb-

>dst->output is set to ip_output() function. For multi-
cast packets, the value of skb->dst->output will point to
the ip_mc_output() function. The routing operation is dis-
cussed in more detail in section 5.

If a packet successfully passes through the NF_INET_LOCAL

_OUT hook called in the previous step, it is passed to the
dst_output() function.At this point the datagram has been
routed and its IP header is in place. The dst output ()
function is called not only at the egress path but also at the
forwarding path to transmit the outgoing packets. As the
next step, this function invokes the function assigned to the
skb->dst->output pointer.

4.4 ip_output()
This function is invoked for transmission of unicast data-
grams. It is responsible for updating the stats of the outgo-
ing packets for the network device and calls the netfilter hook
NF_INET_POST_ROUTING . ip_finish_output() is passed as
a function pointer to the hook.

31

Build_ip_header()

skb_queue_xmit()

skb_routable?

Yes

ip_option_build()

ip_local_out()

NF_INET_LOCAL_OUT

__skb_dst_check()

Pass?

ip_route_output_ports()

ip_route_ip_flow()

ip_route_output_key()

Found?

ip_route_ip_slow()

No

No

fib_lookup()

Yes
No

Yes

Found?

Drop Packet

No

Yes

Figure 3: Egress Processing and Route Lookup

4.5 Ip_finish_output()
If the datagram traverses the NF_INET_POST_ROUTING hook
successfully, it is passed to the Ip_finish_output() func-
tion for fragmentation checks. A packet with size more than
the MTU is fragmented by calling the ip_fragment() func-
tion. When fragmentation is not required, the ip_finish_o
utput2() function is called, which is the last hop for egress
datagram processing at IP layer.

4.6 ip_finish_output2()
This function increments the counters for multicast and broad-
cast packets. It makes sure that the skb has enough space for
the layer MAC header. It then tries to find the L2 neigh-
bor address by searching for a prior cached entry for the
destination. If that fails, it tries to resolve the L2 address
by invoking the neigh->output() routine. After finding the
L2 address, it calls the corresponding L2 handler for further
processing. In case the search for L2 address fails, it drops
the packet.

5. ROUTING SUBSYSTEM
The routing subsystem is essential to TCP/IP stack and it
consists of a single routing cache and possibly many routing
tables. The routing cache is a quick way for route resolution
of datagrams. In case the route cache fails to provide an
appropriate route entry, the routing tables are consulted to
resolve the route.

Routing subsystem is initialized at the system startup by
ip_init() function by calling ip_rt_init() routine. This
routine initializes the routing cache by setting up the timers,

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Bucket 5

struct rcu_head rcu_head
struct dst_entry *child;
struct net_device *dev;
struct dst_ops *ops;

.

.

.

.

.

Rt_hash_table

dst_entry {}

Next

dst_entry {}

NextNext

dst_entry {}

Figure 4: A simplified route cache

defining the size of the cache and starting the garbage collec-
tor. The routing table is initialized by calling the _ip_fib

_init() and devinet_init() functions to register handlers
and initialize the “fib” database.

Routing subsystem is used by both input and output traver-
sal paths of the stack to “route” a datagram. A successful
route search operation will return a valid route in the shape
of dst_entry object, which is assigned to the skb- >dst

pointer. This dst_entry object, apart from other informa-
tion, contains two function pointers, dst->input and dst-

>output, which are initialized to point to a function based
on the destination address of the route. The input and out-
put traversal paths call these function pointers through their
wrapper functions, dst_input() and dst_output(), respec-
tively. As these function pointers can point to different han-
dler functions, the flow of control can be directed based on
the route entry. The assignment of one of the ip_forward(),
ip_local_deliver() or ip_mr_input() to the dst->input

function pointer, as shown in section 2.2, is an example of
such control flow manipulation at the input traversal path.

5.1 Route Cache
A route cache lookup is the faster way to route packets in
the Linux routing subsystem. The ip route input no ref()
function of the incoming traversal path and the ip route
output key() function of the output traversal path resolve
routes for incoming and outgoing datagrams respectively, by
performing the route lookup operation on the cache.

The route cache is implemented using the elements ofdst e
ntry structure, linked together to form “rt hash bucket”. It
is searched by using a “hash code” composed of the destina-
tion address, the source address, the TOS field values and
the ingress or egress device. The computed “hash code” is
compared against the hash code of the hash buckets, and if
a match is found, the entries in the bucket are compared
against the values of flowi4 structure that is passed as an

32

argument to the route lookup operation.

Every time a route entry is successfully returned after a
route lookup, a reference counter to the route cache entry
is incremented . As long as the reference count is positive,
the entry is not deleted. A garbage collection mechanism for
routing cache makes sure that old and unused cache entries
are deleted to create space for new entries in the cache. This
mechanism can be invoked synchronously, if memory short-
age is detected or asynchronously, through a periodic timer
that checks for the expiry of route cache based on timers
and reference counts.

5.2 Routing Table
The routing table is a complicated data structure. A default
routing table has two tables, an“ip fib local table” and an“ip
fib main table”.
The former is used to keep routes to all local addresses
whereas the latter is used for keeping routes to all other
addresses. The entries in the routing tables are accessed
through hash lookups, which provide an efficient search mech-
anism for matching route entries.

The IP layer functions use ip_route_input_slow() and ip

_route_output_slow() functions to perform route lookups
in the routing table, usually after route cache has failed.
This function returns a pointer to routing table entry. Ob-
jects of net and flowi4 structures are given as arguments.
Information about the source address, destination address,
possible output interface is gathered from the flowi4 struc-
ture. The type of service, input interface (as loopback by
default) and and scope of the flow is gathered from the “net”
argument and used for searching the route entries. The
scope of the flow, RT SCOPE HOST, RT SCOPE LINK or
RT SCOPE UNIVERSE indicates if the address belongs to
the local machine, to a machine on the local network or to
another machine that is not directly connected, respectively.

6. CONCLUSIONS
Even though IPv4 is an old and mature protocol, its ker-
nel implementation is constantly changing due to additions
and enhancements. In this paper, we discussed the imple-
mentation of IPv4 in a state of the art Linux kernel1. The
input, output and forwarding paths were discussed in detail
and the role of the routing subsystem in the routing of IP
datagrams was explained.
It will be interesting to experiment with the size of routing
cache and its impact on route lookup process as an extension
to this work in the future.

7. REFERENCES
[1] Ip source route options. http:

//www.juniper.net/techpubs/software/junos-es/

junos-es92/junos-es-swconfig-security/

ip-source-route-options.html.

[2] The netfilter project. http://www.netfilter.org/.

[3] I. S. Institute. Internet Protocol. RFC 791, RFC
Editor, September 1981.

[4] I. S. Institute. Transmission Control Protocol. RFC
793, RFC Editor, September 1981.

1version 3.5.4

[5] D. Katz. IP Router Alert Option. RFC 2113, RFC
Editor, February 1997.

[6] R. Oppliger. Internet security: firewalls and beyond.
Commun. ACM, 40(5):92–102, May 1997.

[7] J. Postel. Internet Control Message Protocol. RFC
792, RFC Editor, September 1981.

[8] E. R. Braden, L. Zhang, and S. Berson. Resource
Reservation Protocol. RFC 2205, RFC Editor,
September 1997.

[9] P. Srisuresh and K. Egevang. Traditional IP Network
Address Translator (Traditional NAT). RFC 3022,
RFC Editor, January 2001.

[10] Q. Xie, C. Sharp, and H. Schwarzbauerl. Stream
Control Transmission Protocol. RFC 2960, RFC
Editor, October 2000.

33

Netfilter Connection Tracking and NAT Implementation

Magnus Boye
Aalto University School of Electrical Engineering
Department of Communications and Networking

P.O.Box 13000, 00076 Aalto, Finland
Email: firstname.lastname@aalto.fi

ABSTRACT
Good sources of information about the implementation of
the Linux kernel are scarce. Due to the constant develop-
ment, existing documentation quickly becomes outdated, al-
though the general architecture of the kernel rarely changes
radically. This paper attempts to give a detailed overview of
the connection tracking and NAT modules in Netfilter. Un-
derstanding the architecture and implementation of these
modules is necessary in order to modify or extend Netfilter.
The architecture and implementation covered in this paper
are based on kernel version 3.5.4.

Keywords
Linux kernel, Netfilter, connection tracking, NAT

1. INTRODUCTION
The small address space of IPv4 inevitably caused Network
Address Translation (NAT) to be used in networks that are
not assigned a public IP address range. In reality this is
mostly residential Internet gateways where NAT offers mul-
tiple devices to share a single public IP address. It can be
argued that NAT provides some level of security by hiding
the structure of the LAN connected to the gateway. How-
ever, NAT is generally disliked in the networking community
because it breaks the end-to-end principle, and IPv6 offers a
solution to the problem that caused NAT to be used in the
first place.

NAT is a stateful system that keeps track of incoming and
outgoing flows of a network. NAT ensures that outgoing
flows are mapped to a unique combination of IP address
and transport-layer identifier on the external network. Fig-
ure 1 shows an illustration of source and destination NAT.
Two client hosts A and B connect through a NAT gateway
to an external network and have coincidentally selected the
same source port for their outgoing flows. The NAT gateway
performs source NAT on the outgoing flows by replacing the
source IP address with the address of the gateway on the
external network, and the source ports with available source
ports associated with the IP address on the external net-
work. Source NAT guarantees that a combination of internal
network IP address and source port is mapped to a unique
combination of external network IP address and source port.
If such a mapping is not possible, traffic is dropped. When
return traffic arrives at the NAT gateway, the destination
IP address and destination port is replaced with the origi-
nal source IP address and port. The gateway also performs
destination NAT which is commonly called ”port forward-

ing” in consumer routers. In figure 1, the gateway performs
destination NAT on port 80 and 22 on incoming traffic from
the external network. Destination NAT works by modify-
ing the destination of incoming traffic, just like source NAT
does for return traffic. In this scenario traffic to port 80 and
22 are directed to the hosts WWW and SSH on the inter-
nal network, respectively. Source NAT and destination NAT
can be used simultaneously, as long as source NAT does not
map any outgoing flows to ports used by destination NAT.
Depending on the configuration, destination NAT can have
various purposes, for instance load balancing.

In addition to transport-layer protocols, some protocols such
as ICMP also use identifiers to distinguish between flows.
The most common identifiers are 16 bit port numbers as
used by TCP and UDP. The size of the protocol-specific
identifier determines the number of connections the gateway
can handle for the protocol. A 16 bit identifier theoretically
allows for up to 216−1 simultaneous flows through a gateway.
The number of possible simultaneous flows can be increased
by using NAT with multiple external IP addresses.

A

B

49152
49153

49152
49153

SNAT

49152
49153
49154
49155

Internal network External network

DNAT
80
22

WWW 80

SSH 22

Dynamic

Static

Figure 1: Source and destination NAT.

The book by K. Wehrle et al.[4] gives a broad and detailed
overview of the Linux networking architecture and imple-
mentation. The book describes the architecture as of kernel
version 2.4 which dates back to 2001. Many aspects of the
architecture described in the book are similar with the ker-
nel version 3.5.4, but the source code is far from the same. J.
Engelhardt[1] is maintaining a short guide on how to create
Netfilter modules. The guide gives a brief introduction to
Netfilter and connection tracking, but does not describe the
architecture and implementation of connection tracking and
NAT in detail. The connection tracking and NAT modules
support several transport-layer protocols. In order to give a
more concise overview in this paper, it was decided to focus
on the generic aspects of the modules, and UDP over IPv4.

34

This paper is structured as follows. Section 2 gives a short
introduction to the Netfilter hooks used Netfilter modules.
Section 3 gives an overview of the connection tracking mod-
ule, its key data structure and functions. Section 4 gives
an overview of the NAT module and how it relates to the
connection tracking module. Section 5 describes potential
vulnerabilities in the implementations of connection track-
ing and NAT.

2. NETFILTER FRAMEWORK
Netfilter is a framework for packet manipulation and filter-
ing. The framework provides access to packets through five
hooks in the Linux kernel at key points in packet process-
ing. The hooks exist for both IPv4 and IPv6. Figure 2
shows in which order the Netfilter hooks are called when
processing an IPv4 packet. The return value from a Netfil-
ter hook must be one of five options: NF_ACCEPT, NF_DROP,
NF_STOLEN, NF_QUEUE, NF_REPEAT. The return value is also
referred to as a verdict. The first two options accept or drop
a packet, respectively. If multiple functions are attached to
a hook, the packet will be dropped if a single function re-
turns NF_DROP. The return value NF_STOLEN indicates that a
packet has been consumed by the hook function and further
processing by other functions attached to the hook is not
possible. NF_QUEUE indicates that the packet should be in-
serted into a queue, and NF_REPEAT indicates that the hook
function should be called again. When functions are reg-
istered to hooks, a priority of the functions is given. This
priority determines the order order in which the functions
attached to the same hook are called. This paper focuses
on events that mainly take place at the NF_IP_PRE_ROUTING
and NF_IP_POST_ROUTING hooks, as these are key points in
connection tracking and NAT.

Hooks are registered by calling nf_register_hook(), which
takes a pointer to a struct nf_hook_ops as parameter. This
structure defines the actual function called by the hook, ad-
dress family, priority, and at which hook the function should
be called as shows in Figure 2. The various hooks are in-
tegrated into the IPv4 implementation using two functions:
NF_HOOK() and NF_HOOK_COND(). The former executes hooks
and the later works just like NF_HOOK, except an execution
condition can be given. Both functions are passed a pointer
to okfn() which is the callback function for the hook point.
The provided okfn() is called if the condition is false when
using NF_HOOK_COND(), or if the final verdict of the functions
registered to the hook is NF_ACCEPT. The functions in the
IPv4 implementation where hooks are executed are shown
in Table 1.

Figure 3 shows how functions registered to hooks are exe-
cuted when NF_HOOK() is called. nf_hook_thresh() check if
Netfilter hooks are enabled and then calls nf_hook_slow(),
which calls the main function nf_iterate() and evaluates
the return value of this function. As the name suggests,
nf_iterate() iterates over the function registered to the
hook specified when NF_HOOK() was called. nf_iterate()

calls each registered function and checks their return values.
If any of the functions return NF_DROP, the packet must be
dropped and thus it is not necessary to call any remaining
functions for the hook. If the function return NF_REPEAT,
the function is called again in nf_iterate(), and if no
functions have been registered for the hook NF_ACCEPT is

Hook Caller
NF_INET_PRE_ROUTING ip_rcv()

NF_INET_LOCAL_IN ip_local_deliver()

NF_INET_FORWARD ip_forward()

NF_INET_LOCAL_OUT __ip_local_out()

NF_INET_POST_ROUTING ip_output()

Table 1: Netfilter hooks in IPv4.

returned. The return value of nf_iterate() is evaluated
by nf_hook_slow(), mainly to perform potential queuing.
Only the eight least significant bits of the return value are
used to store one of the five possible Netfilter verdicts. The
remaining bits in the 32 bit return value can be used for
other data. If the Netfilter verdict is NF_QUEUE, the 16 most
significant bits are used to indicate which Netfilter queue the
packet should be inserted into. The queue number is passed
to nf_queue() which queues the packet. When the packet
has passed through the queue it will be re-injected into the
packet processing flow by the function nf_reinject(). If
the verdict returned by nf_iterate() is NF_DROP, the func-
tion kfree_skb() is called and the packet is dropped.

NF_IP_PRE_ROUTING

NF_IP_LOCAL_IN

NF_IP_FORWARD

NF_IP_POST_ROUTING

NF_IP_LOCAL_OUT

ROUTING

ROUTING

Packet received

Packet sent by host

Packet delivered to host

Packet transmitted

Figure 2: Netfilter IPv4 hook traversal.

NF_HOOK() nf_hook_thresh()

verdict = nf_iterate()return okfn()

return verdict
verdict ==

NF_ACCEPT

nf_hook_slow()

TRUE

FALSE

kfree_skb()

verdict

NF_DROP

ret =nf_queue() NF_QUEUE

ret == 0 ret !=0

Figure 3: Hook execution by nf_hook()

3. CONNECTION TRACKING
The connection tracking(CT) module is responsible for iden-
tifying trackable packets belonging to trackable protocols.
The module supports tracking of both stateless and state-
full protocols. The CT module operates independently of
the NAT module, but its primary purpose is to support the
NAT module.

35

3.1 Tuples
The most important data structure of the CT module is
struct nf_conntrack_tuple. This ”tuple” structure is used
to represent a unidirectional packet flow by its network-layer
and transport-layer addresses. Bidirectional flows are thus
represented using a tuple for each direction. Figure 4 shows
a simplified representation of struct nf_conntrack_tuple.
The data structure uses unions to contain both protocol-
specific fields and generic fields in dst.u. This makes the
source code easier to understand, optimizes memory, and al-
lows new protocol-specific fields to be added without break-
ing the existing code. The dst.u field defines a union of
16 bit that contains fields for the following protocols: TCP,
UDP, ICMP, DCCP, SCTP, and GRE. The fields reveal in-
formation about the header information in different proto-
cols used to uniquely identify a packet flow. For instance,
TCP and UDP use port numbers while ICMP uses ICMP
type and code.

nf_conntrack_tuple.h

struct nf_conntrack_man src

union { __be16 udp.port, … } dst.u

u_int8_t dst.protonum, dst.dir

struct nf_conntrack_tuple

union nf_inet_addr dst.u3

Figure 4: struct nf_conntrack_tuple

Since a tuple contains different information depending on
both the network-layer protocol and transport-layer proto-
col of a packet, each supported protocol is implemented
as a module. The modules conform to the interface de-
fined by the two structures struct nf_conntrack_l3proto

and struct nf_conntrack_l4proto. The structures con-
tain function pointers that are initialized to the appropri-
ate functions in the protocol-specific modules. Figure 5
shows the initialization values of the two structures for a
UDP packet encapsulated by IPv4. The most important
function pointer that both structures have in common is
pkt_to_tuple(). This pointer points to a function which
maps a packet to a tuple based on its network-layer or
transport-layer data. In the case of IP, pkt_to_tuple() sets
the dst.u3 and src.u3 fields of a tuple to the source and des-
tination IP address of the packet, respectively. In the case
of UDP, pkt_to_tuple() sets the dst.u and src.u fields to
the source and destination UDP ports, respectively.

The l3proto and l4proto fields in Figure 5 are set to ad-
dress family and protocol numbers as defined in the Linux
kernel. Note that these values are not the same as specified
by IANA[2][3], although some of them overlap. An explana-
tion of the difference between Linux and IANA address fam-
ilies could not be found. Considering that IP was invented
before IANA was founded, it is possible that the numbering
of address families in Linux is simply a legacy from previous
operating systems. The get_timeouts() function returns
the timeout values of the protocol. The error() function
checks for special packets that cannot be tracked, and new()

Constant Description
IPS_EXPECTED The connection was expected
IPS_SEEN_REPLY Bidirectional traffic has been seen
IPS_ASSURED Never expire connection prematurely
IPS_CONFIRMED Packets were transmitted
IPS_SEQ_ADJUST TCP needs sequence number adjustment
IPS_DYING Connection is dying

Table 2: Connection status values.

is called when a new flow is seen by the CT module. Finally,
packet() function is called for all packets which are deemed
trackable by error().

3.2 Hashing
The CT module is optimized for performance and therefore
stores the CT state of active connections in a hash table.
The function hash_conntrack_raw() returns a generic 32
bit hash of a tuple. The hash value is based on the source
and destination IP addresses and protocol-specific identifier.
The nf_conntrack_tuple_hash structure is used to store a
CT state in the hash table and contains the tuple along
with a pointer to a linked list of CT state associated with
the tuple. The linked list is used to handle hash collisions.

3.3 Connections
Netfilter uses the term connection even for packet flows in
connectionless protocols. For the sake of clarity the term
flow is used in this paper. A tracked flow is represented by a
struct nf_conn which is shown in Figure 6. The tuplehash
field contains a struct nf_conntrack_tuple_hash for each
direction of the flow, and these structures contain a reverse
pointer to the nf_conn structure. The key fields in the data
structure are timeout and status. The timeout field con-
tains a list of timers related to the connection state. These
timers are necessary in order to optimize resource utiliza-
tion. The CT states of inactive flows are removed to reduce
memory and enable faster hash table lookups. Connection-
oriented protocols have multiple states and the lifetime of
CT states for such flows depend on the protocol state. The
connection tracking module gives priority to established con-
nections in the case of connection-oriented protocols and
bidirectional flows in the case of connection-less protocols.
For instance, the CT state of a TCP connection has a lower
lifetime during the initial three-way handshake compared
to after the handshake has been completed. In the case of
UDP, unidirectional flows have a shorter lifetime than bidi-
rectional flows, because the bidirectionality indicates that a
flow is important. The status field is used as a bitset where
different bits correspond to different protocol states, as spec-
ified by enum ip_conntrack_status. The most important
connection states are shown in Table 2.

3.4 Tracking
The CT modules uses three Netfilter hooks
to track incoming and outgoing packets. The
function nf_conntrack_in() is called by the
NF_INET_PRE_ROUTING and NF_INET_LOCAL_OUT hooks.
The function nf_conntrack_confirm is called by the
NF_INET_POST_ROUTING hook. The nf_conntrack_in()

function is the main function of the CT module. The initial
steps of the nf_conntrack_in() function is to determine the

36

socket.h

nf_nat_proto_udp.c

struct nf_conntrack_l4proto

udp_new()

udp_packet()

udp_pkt_to_tuple()

udp_destroy()

udp_error()udp_get_timeouts()
in.h

IPPROTO_UDP = 17

nf_conntrack_l4proto.h

struct nf_conntrack_l4proto

int (*packet)

bool (*pkt_to_tuple)

bool (*new)

void (*destroy)int (*error)

unsigned int *(*get_timeouts)

u_int8_t l4proto

nf_conntrack_l3proto.h

struct nf_conntrack_l3proto

bool (*pkt_to_tuple)

int (*get_l4proto)

u_int16_t l3proto

nf_conntrack_l3proto_ipv4.c

static bool ipv4_pkt_to_tuple()

AF_INET = 2

static int ipv4_get_l4proto()

udp_destroy()udp_error()

Figure 5: struct nf_conntrack_l3proto and struct nf_conntrack_l4proto

nf_conntrack.h

nf_conntrack_tuple.h

struct nf_conn

unsigned long status

struct nf_conntrack_tuple_hash[2]

struct nf_conn *master

struct timer_list timeout

union nf_conntrack_proto proto

spinlock_t lock

struct nf_conntrack_tuple_hash

struct nf_conntrack_tuple tuple

struct hlist_nulls_node hnnode

Linked list

Figure 6: struct nf_conntrack_tuple_hash and struct

nf_conn

network-layer protocol and transport-layer protocols. If the
protocols can be tracked, a struct nf_conntrack_l3proto

and a struct nf_conntrack_l4proto are initialized, as
previously described. Before the main protocol-specific
tracking functions are called, the error() function is called.
In the case of UDP, the function checks for malformed
packets with invalid payload size or invalid checksum.
If the error() function returns NF_ACCEPT the packet
is trackable and resolve_normal_ct() is called. This
function ensures that a CT state exists for the packet tuple,
by creating a new CT state if this is the first packet in a
flow. The function begins by calling the protocol-specific
pkt_to_tuple() function and obtains a tuple. The hash of
the tuple or inverse tuple is calculated and used to retrieve
a possibly existing CT state from the hash table of the CT
module. If no CT state is found a new state is created by
calling init_conntrack(). Otherwise the existing the CT
state is returned.

The init_conntrack() function creates a new nf_conn

structure and initializes its values by calling the protocol-
specific function new(). The function continues by checking
if the packet was expected as a result of protocol behavior in
a flow tracked by another CT state. If the flow was expected,
the master field of the nf_conn structure is set accordingly.
Some application protocols utilizes multiple packet flows and
in order for such applications to function properly, the NAT
module must be able to direct incoming flows to the right
host. Since protocol behavior varies from protocol to proto-
col, protocol-specific modules are needed to detect protocol
behavior that results in new flows. For instance, in passive
FTP the client tells the server to connect to the client on a
specified address and port when a file transfer is requested.
The CT module creates an expected CT state for the incom-
ing flow, so that it can be identified and directed by the
NAT module. The struct nf_conntrack_tuple_hash of
the packet is inserted into a list of unconfirmed connections.
If the packet is not dropped by any other Netfilter modules,
the packet should be observed by nf_conntrack_confirm

at the NF_INET_POST_ROUTING hook. The purpose of this
function is to check that a packet belonging to a connection
actually makes it onto the network and was not dropped by
another module. If the packet is seen by this function, the
state of the connection is changed to IPS_CONFIRMED and
the connection is removed from the list of unconfirmed con-
nections and inserted into the hash table of the CT module.
After the resolve_normal_ct() function has ensured that
a CT state exists, the function returns a pointer to the CT
state of the packet.

nf_conntrack_in() continues by obtaining the protocol-
specific timeout values and then calls the packet() which
points to udp_packet() for the UDP protocol. Because
UDP is connectionless, the connection tracking functions are
not very advanced. The udp_packet() function simply ex-
tends the timeout of the connection based on whether the
IPS_SEEN_REPLY bit has been set in the connection status. If
bidirectional traffic has been seen, the connection timeout is
extended further than if only unidirectional traffic has been
seen. As mentioned earlier, the reason for this behavior is
that the CT module optimizes resource consumption by in-
active flows. The shorter timeout for unidirectional connec-
tions does not limit connectivity, but requires more frequent
packet transmissions to prevent the flow from expiring. The

37

shorter timeout also makes the CT module more tolerant
to denial-of-service attacks, although the default timeouts
are still too high to mitigate attacks. The default timeout
specified for UDP in the CT module is 30 seconds for a
unidirectional (unreplied) connection, and 3 minutes for a
bidirectional connection.

The udp_packet() function always returns NF_ACCEPT since
screening for bad packets has already been performed by
udp_error() and therefore nothing can go wrong in this
function. The final verdict returned by nf_conntrack_in()

is determined by udp_error() or udp_packet() function in
the case of UDP.

4. NETWORK ADDRESS TRANSLATION
Although the Netfilter NAT module does modify the
network-layer addresses of packets, it appears the addresses
may be altered by other modules invoked after the NAT
module. In particular the Masquerade module replaces the
source IP address of packets such that they match that of
the transmission interface. The module creates a NAT rule
such that traffic in the reverse direction will have their des-
tination address replaced with the original source address.
This section covers transport-layer NAT. The inner work-
ings of the Masquerade module and network-layer NAT is
an area that needs further documentation.

The NAT module is comprised of a set of core
functions that perform general NAT tasks, and sev-
eral protocol-specific NAT modules. The main func-
tion of the NAT module is nf_nat_fn() which is
called by four helper functions at the following Net-
filter hooks: NF_IP_PRE_ROUTING, NF_IP_POST_ROUTING,
NF_IP_LOCAL_OUT, and NF_IP_LOCAL_IN. The protocol-
specific modules are needed because some protocols ex-
change address information at the application layer and
this information needs to be altered according to the ad-
dress modifications performed at the network and trans-
port layers. The protocol-specific modules conform to the
interface defined by struct nf_nat_protocol. The struc-
ture defines four function pointers and their relationship to
the UDP NAT module is shown in Figure 7. The func-
tion manip_pkt() alters a packet based on a tuple and the
type of NAT: source NAT or destination NAT. The func-
tion replaces the network-layer address and transport-layer
address information in the packet with the information in
the supplied tuple. The function unique_tuple() provides
the tuple that is passed to manip_pkt(). The purpose of
the function is to determine an available protocol-specific
identifier on the external network. In the case of UDP the
function nf_nat_proto_unique_tuple() is used to provide
an available 16 bit port number. The function can be used
by all protocols that use 16 bit port numbers and returns
either a randomly selected and available port, or an avail-
able port from a specified range. The random port number
is generated by inputting source address, destination ad-
dress, destination port, and a random number into the MD5
algorithm. If a static port range has been specified, the
port number is not selected randomly but from the begin-
ning of the specified range. The unique_tuple() function
updates the offset of the range each time it is called, and
thereby ensures that returned port numbers increase mono-
tonically within the range. The address range is provided

by the nlattr_to_range() function. The in_range() func-
tion determines if a packet belongs to a group of packets
that should be processed by the NAT module. If the ad-
dress range is exhausted the NAT modules will begin to
drop packets. The UDP NAT module utilizes the function
nf_nat_proto_in_range(), which checks if the port num-
ber of a packet is within a range that should be processed
by the NAT module. The function ensures that if a small
range of port numbers is used by the NAT module, then the
more complex NAT functions are only called if the packet
might actually have been altered by the NAT module. If
port numbers are chosen randomly the function will almost
always return.

The main NAT function is nf_nat_fn() is called
by the following hooks: NF_INET_PRE_ROUTING,
NF_INET_POST_ROUTING, NF_INET_LOCAL_OUT, and
NF_INET_LOCAL_IN hooks. The NAT module is called
at all points in the network stack where packets enter or
leave the host. The hooks are registered with a priority
such that the CT module is always called before the NAT
module, and the packet filtering module is always called
after the NAT module. This is necessary because the NAT
module depends on the states generated by the CT module.

The nf_nat_fn() function starts by obtaining a CT state
for the packet being processed. If a CT state is not found it
means that the CT module was unable to track the packet
and thus it cannot be translated by NAT either. If a CT
state is found and the state is IP_CT_NEW, the NAT rule for
the packet is obtained. If no NAT rule is found, the function
returns NF_ACCEPT without altering the packet. If a NAT
rule for the packet exists, the function nf_nat_packet() is
called. This function calls manip_pkt() which in turns calls
the protocol-specific function by the same name as defined
by a struct nf_nat_protocol. If the manip_pkt() fails
to alter the packet according to the NAT rule, the packet
is dropped. The return value of the protocol-specific ma-

nip_pkt() determines the final verdict on the packet by the
NAT module.

The manipulation of the tuples generated by the CT mod-
ule is performed by the function nf_nat_setup_info().
This function is called when a packet belonging to a
new connection is sent or received. The setup func-
tion calls the get_unique_tuple() function which in turn
calls the protocol-specific function defined in the struct

nf_nat_protocol of the protocol. In the case of UDP, the
function obtains an external IP address and port number.
The tuples in the CT state are then updated with the new
external IP address and port number. Due to the changes
in the tuples, the hash value of the tuples will no longer
point to the correct entry in the CT module’s hash table.
Therefore the hash value is recalculated and the CT state is
moved accordingly.

5. POTENTIAL VULNERABILITIES
The design and implementation of the connection tracking
and NAT modules contains several features that can make a
device running NAT vulnerable to denial-of-service attacks
if not configured correctly. Hash tables are inherently vul-
nerable to hash collision attacks. If an attacker sends a large
number of packets with different source ports, the hash of

38

nf_nat_proto_common.c

nf_nat_proto_udp.cnf_nat_protocol.h

struct nf_nat_protocol

uint protonum

bool (*manip_pkt)

bool (*in_range)

void (*unique_tuple)

int (*nlattr_to_range)

static void udp_unique_tuple()

static bool udp_manip_pkt()

unsigned short udp_port_rover

bool nf_nat_proto_in_range()

int nf_nat_proto_nlattr_to_range()

Figure 7: struct nf_nat_protocol and its initializations for the UDP protocol.

the tuples used by the CT module will collide depending on
the size of the hash table. In Linux the default number of
hash buckets depends on the amount of RAM available. For
instance, a system with 4 GB of RAM has 16384 hash buck-
ets and supports a maximum of 65536 simultaneous connec-
tions. If the maximum number of connections is reached the
hash table will contain an average of four entries per hash
bucket. Such a system will not become unstable if flooded
by single source, but routers typically do not have 4 GB of
RAM.

Another issue with NAT, is that packets are dropped if the
external address space is exhausted. Flooding a gateway
with packets from different source port numbers, will force
NAT to allocate an external address to each flow. Because it
only takes a single packet to reserve an external address, the
external address space can be depleted very quickly. This
problem is tied to the length of protocol timeout values.
The default timeout value for unidirectional UDP traffic is
30 seconds and it is possible to send 65535 packets with all
of the available source port numbers within this timeout pe-
riod. A shorter timeout period results in external addresses
being freed more quickly and thus denial of service is less
likely. The timeout should not be set lower than the typical
RTT of a connection in order to avoid replies to legitimate
traffic from being dropped.

A third issues with NAT, is that connection tracking may re-
quires transport-layer information or even application-layer
information. In order to inspect data at these layers, frag-
mented IP packets must be defragmented and this is prob-
lematic. The defragmentation process requires the NAT de-
vice to buffer incoming packets until the whole IP packet can
be assembled. The buffering consumer system resources and
depending on the number of fragmented packets, this may
be a problem. Because of this, some NAT devices refuse to
process fragmented IP packets. Like the hash-collision at-
tack, it may be possible to increase memory usage in a NAT
device by sending many fragmented packets.

Obvious solutions to hash-collision and address exhaustion
attacks are to allocate more memory to the hash table and
reduce timeout values for connections. Another solution
could be to dynamically adjust hash table sizes and timeout

values to mitigate attacks. Dynamic adjustment of time-
out values would provide better service when a device is not
heavily loaded. With respect to the fragmentation issue, the
simplest solution is to drop fragmented IP packets.

6. CONCLUSIONS
Netfilter is a complex and important part of the Linux ker-
nel. This paper has given a detailed overview of the core
functions and data structures used by the connection track-
ing and NAT modules. Some issues in connection tracking
and NAT in general were also discussed. Hopefully this pa-
per will serve as a future reference for developers who wish
to contribute to the development of Linux and Netfilter.

7. REFERENCES
[1] J. Engelhardt and N. Bouliane. Writing netfilter

modules, July 2012.
http://inai.de/documents/Netfilter_Modules.pdf.

[2] IANA. Address family numbers. October 2012.
http://www.iana.org/assignments/

address-family-numbers/address-family-numbers.

xml.

[3] IANA. Assigned internet protocol numbers. October
2012. http://www.iana.org/assignments/
protocol-numbers/protocol-numbers.xml.

[4] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and
M. Bechler. The linux networking architecture: Design
and implementation of network protocols in the linux
kernel. August 2004. ISBN 978-0131777200.

39

Mobile IPv6 in Linux Kernel and User Space

Jouni Korhonen
∗

Mutkatie 2 A 4
1100 Riihimäki

Finland
jouni.korhonen@iki.fi

ABSTRACT

Linux implementation of Mobile IPv6 is divided into both
kernel space and user space. The modifications done in ker-
nel are minimal and mainly concentrate around IPv6 exten-
sion header processing. The actual logic and operation is
entirely realized in user space daemon. This paper describes
briefly how Mobile IPv6 is implemented in Linux.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.2 [Computer-Communication
Networks]: Network Protocols—IPv6, Mobile IPv6 ; C.2.5
[Computer-Communication Networks]: Local andWide-
Area Networks—Internet ; D.4.4 [Operating Systems]: Com-
munications Management—Network communication

Keywords

Mobile IPv6, Linux Kernel, XFRM6

1. INTRODUCTION
Mobile IPv6 (MIPv6) [14] is an extension to IPv6 [3],

which allows a mobile node (MN) to change the point of
attachment to the Internet while maintaining a stable IP
address. This stable IP address is called the Home Address
(HoA). A topological anchor for the HoA is a Home Agent
(HA) gateway/router, and the link where the HoA topolog-
ically belongs to is called a home link. While the mobile
node is away from its home link, the mobile node registers
its current IPv6 address, the Care-of Address (CoA) with
the Home Agent using the binding management signalling.
The mobile node and the home agent use IP tunnelling be-
tween each other and thus allow tunnelling IP traffic sourced
from or destined to HoA via the home agent with other Cor-
respondent Nodes (CN) in Internet. The tunnel is between

∗J. Korhonen participated to the course as a lazy indepen-
dent contributor and wrote this during the last night.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OS Protocols ’12 Espoo, Finland
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the mobile node’s current location, the CoA, and the Home
Agent Address (HAA). Mobile IPv6 also supports Route
Optimization (RO), where a mobile node and a correspon-
dent node exchange IPv6 traffic directly between each other
bypassing the home agent. The Ro requires additional re-
turn routability procedure (RRP), after which the mobile
node and the correspondent node with the help of the home
agent are able to establish a good enough level of security
between each other. Figure 1 shows the basic Mobile IPv6
architecture and related messaging paths between a mobile
node, a home agent and a correspondent node.

Correspondent NodeMobile Node

MN-HA IPIP tunnel for user tra
ffic

and return routability procedure (HoTi/HoT)

Home Agent

Return routability procedure (CoTi/CoT)
and route optimized traffic

Binding management (BU/BA etc)

Figure 1: Simplified Mobile IPv6 architecture

According to the standard [14] the mobile node and the
home agent must use transport mode IPsec [9] Encapsulat-
ing Security Payload (ESP) [8] with non-NULL payload au-
thentication algorithm to provide data origin authentication,
connectionless integrity, and optional anti-replay protection
for all Mobile IPv6 signalling between the mobile node and
the home agent. This is to prevent malicious hosts to redi-
rect traffic and cause denial of service attacks towards victim
hosts. The required security association (SA) can be man-
ually configured or using Internet Key Exchange (IKE) [4]
protocol. The security between the mobile node and the cor-
respondent node is realized using a Binding Authorization
Data option in relevant signalling messages. The option uses
and Kbm key, which is established during the return rout
ability procedure.
This brief paper goes through Mobile IPv6 implementa-

tion in Linux (MIPL) kernel version 3.5.3. Mobile IPv6 ver-
sion implemented in Linux kernel is based on the older ver-
sion of the protocol [7] with small cherry picked error correc-
tions from the current protocol version [14]. Mobile IPv6 use
of IPsec for securing the traffic between the mobile node and
the home agent that is implemented in Linux kernel is also
based on the older version of the security protocol frame-
work [1]. The main difference between the current IPsec for

40

Mobile IPv6 specification [4] and the older one is the version
of IKE.

The Linux implementation of Mobile IPv6 is divided into
both kernel space and user space. The kernel side support
is kept minimal and consists of a single loadable module
(mip6.ko) and a number of small patches mainly for han-
dling of the new IPv6 extension headers required by Mobile
IPv6. Linux Mobile IPv6 implementation makes extensive
use of the XFRM framework [19, 18, 10]. Most of the logic
and the actual Mobile IPv6 operation is implemented en-
tirely in user space, including the required extensions to
IPv6 neighbor discovery protocol (NDP) [11]. The orig-
inal MIPL code is hosted at http://www.mobile-ipv6.org/
but also available as part of the Proxy Mobile IPv6 [6] code
branch at http://www.openairinterface.org/openairinterface-
proxy-mobile-ipv6-oai-pmipv6. The most recent branch of
Linux Mobile IPv6 is UMIP, see http://www.umip.org. This
paper emphasises on pinpointing the Mobile IPv6 originated
changes in Linux kernel and most essential concepts imple-
mented in user space. We surface the XFRM framework but
do not really dive into the details of it.

The rest of the paper is divided as follows. Section 2 de-
scribes what IPv6 extension and mechanisms Mobile IPv6
involves, and how they are implemented in Linux. In Section
3 we look briefly into packet processing, tunnel management
and other Mobile IPv6 specific operations. Finally we con-
clude the paper in Section 4.

2. MOBILE IPV6 IMPLEMENTATION

2.1 Implementation strategy
As mentioned earlier, Linux Mobile IPv6 implementation

is divided into both kernel space and user space parts. This
design decision allows for extending Mobile IPv6 rather eas-
ily as long as no new IPv6 extension headers are required.
Proxy Mobile IPv6 a good example of this. At the same time
the changes in kernel can be kept minimum, which typically
means more robust implementation.

The user space part is referred in this paper usually as
MIPL. The kernel code takes care of Mobile IPv6 related
IPv6 extension header handling (for both incoming and out-
going IPv6 packets), tunnelling traffic between an mobile
node and a home agent, and XFRM-based IPsec solution
for Mobile IPv6 [10]. An user space Mobile IPv6 daemon
then has to take care of the rest of Mobile IPv6 logic, tunnel
& binding management, IPsec policies & security associa-
tions management for Mobile IPv6 purposes, ICMPv6 [2]
and IPv6 neighbor discovery protocol [11, 17] extensions. It
should be noted that the Mobile IPv6 coed used for this
paper did not include IKE support for managing security
associations. IPsec part of the configuration is read from a
configuration file that the user space Mobile IPv6 daemon
then uses to set up possible security associations for protect-
ing traffic between a mobile node and a home agent.

The main Mobile IPv6 support code is located in mip6.c
file, which can be compiled as a loadable module. We will
discuss the details of this file later in Section 3.1. Unless
specifically noted, all kernel source files are located under
$SRC/net/ipv6/ directory. Possible user space MIPL source
files are located under $MIPL/src/ directory, unless noted
differently. The same code base for the user space and the
kernel space apply to all Mobile IPv6 functions: mobile
nodes, home agents and correspondent nodes.

It is quite surprising but there are no any major data
structure within kernel that would be Mobile IPv6 specific.
Maybe the XFRM policy database and the security asso-
ciation database could be considered one but those are, at
the end, just normal XFRM data structures. On the other
hand, the user space Mobile IPv6 daemon then has multiple
vital data structures. The most important mobile node side
data structure is the list of struct bulentry entries (see
the bul.h file) used by an mobile node for maintaining its
bindings to home agents and correspondent nodes. Likewise
both home agent and correspondent node maintain a list
of struct bcentury (see the bcache.h file) entries for their
mobile node bindings.

2.2 Mobility header
Mobile IPv6 adds a new extension header Mobility Header

(MH), which is used to convey Mobile IPv6 specific messages
such as Binding Update (BU), Binding Acknowledgement
(BA) , Home Test (HoT) & Home Test Init (HoTI), and
Care-of Test Init (CoTi) & Care-of Test (CoT). The mobility
header has a Next Header value 135. The mobility header
is used by all mobile nodes, home agents and correspondent
nodes for their Mobile IPv6 signalling. Refer Section 6.1.1
of [14] for the mobility header format.
An user space program can send and receive mobility

headers using RAW sockets. The RAW socket filtering and
local delivery support kernel implementations for the IP-

PROTO_MH can be found from the kernel raw.c and mip6.c
files. In user space the MIPL the mh.c file and functions
mh_init(), mh_recv() and mh_send() serve as good exam-
ples of using RAW sockets for the mobility header handling.

2.3 IPv6 extension headers
Mobile IPv6 introduces two new IPv6 extension headers:

Home Address Option (HAO) carried in an IPv6 Destina-
tion Option and Type 2 Routing Header (RH2) carried in
an IPv6 Routing Header. The home address option is sent
by a mobile node (when away from its home link) to carry
its HoA to the recipient. Refer Section 6.3 of [14] for the
home address option format.
The type 2 routing header is used by an home agent and a

correspondent node to send traffic directly to mobile node’s
care-of address using source routing (while the mobile node
is away from its home link). While the packet is on transit
the type 2 routing header contains the home address of the
mobile node. Refer Section 6.4 of [14] for the format of the
type 2 routing header.
The extension header processing is mainly located in the

kernel exthdrs.c file for incoming packets. The home address
option is currently the only implemented destination option
(see the ipv6_dest_hao() function), which swaps the IPv6
header source address with the home address found in the
home address option. The type 2 routing header handling
is added into the ipv6_rthdr_rcv() function, which swaps
the IPv6 header destination address with the home address
found in the type 2 routing header. Note that the Mobile
IPv6 extension header handling takes only place if there is
a matching xfrm_state and xfrm_policy established for in-
coming traffic that may contain a type 2 routing header
or a home address destination option. A packet with a
type 2 routing header or a home address destination option
that arrives out of blue is dropped as a security measure.
These extension header handler functions are called by the

41

ip6_input_finish() function located in ip6 input.c file us-
ing the normal inet6_protos[] handler chain.

The extension header handling and processing is possible
for an user space program using sendmsg() and recvmsg()

socket functions and their ancillary data structures. Of
course using RAW sockets is another possibility to manipu-
late extension headers. Good examples can be found from
the MIPLmh.c file and mh_recv() and mh_send() functions.

2.4 Neighbor discovery protocol
The IPv6 neighbor discovery protocol [11] has been ex-

tended to carry the home agent information. A new ’H’-bit
has been added into the Router Advertisement (RA) mes-
sage header flags field and a corresponding ’R’-flag into the
Prefix Information Option (PIO) for the home agent IPv6
address (note, it is an address, not a prefix). These changes
have no kernel changes. An user space application has to
implement its own router advertisement daemon to advertise
on the home link that this specific node is a home agent.

The MIPL home agent implementation (see the ha.c file)
merely monitors for incoming router advertisements to learn
other home agents around it for Dynamic Home Agent Dis-
covery (DHAAD) purposes. On the other hand, the home
agent has to defend for the home address on the home link
while the mobile node is away and also perform Duplicate
Address Detection (DAD) [17] for every configure home ad-
dress. For this purpose the MIPL implements a subset of the
neighbor discovery protocol. The home agent initiated ad-
dress resolution and the DAD are implemented in the ndisc.c
file. The mobility header also implements a very brief router
advertisement handler and the Neighbor Unreachability De-
tection (NUD) as part of its movement detection algorithm
(see the movement.c file and e.g., the md_start() function
as a starting point).

2.5 Extensions to ICMPv6
Mobile IPv6 adds several new ICMPv6 [2] types. These

include the Home Agent Address Discovery Request Mes-
sage (type 144), the Home Agent Address Discovery Re-
ply Message (type 145), the Mobile Prefix Solicitation Mes-
sage Format (type 146) and the Mobile Prefix Advertisement
Message Format (type 147). These ICMPv6 messages have
no kernel impact and in MIPL their implementations can
be found from the icmp6.c file. See also the dhaad.c and
mpdisc *.c files for further ICMPv6 handling details.

The Mobile IPv6 user space daemon uses RAW sockets for
implementing required new ICMPv6 extension. This con-
cerns both neighbor discovery protocol and other Mobile
IPv6 specific ICMPv6 types.

2.6 Security and use of XFRM
The XFRM framework for Linux and its IPv6 extension

XFRM6 [19, 18] is a rather large and complex subsystem.
The XFRM uses stackable destination architecture for ef-
ficient outbound packet processing. It is basically a link
list of dst_entry{} structures that are constructed once the
packet is outputted and its destination gets looked up. The
generic address family agnostic XFRM framework is located
in $SRC/net/xfrm/ and its IPv6 extensions in the usual
place $SRC/net/ipv6/. Mobile IPv6 makes extensive use of
the XFRM for three purposes:

• Protecting binding management traffic between the
mobile node and the home agent using IPsec in trans-

port mode and/or protecting the user traffic using IPsec
in tunnel mode. The use of IPsec optional.

• Inserting the home address option into IPv6 packets
with a mobility header between the mobile node and
the home agent, and into any IPv6 packet targeted to
correspondent nodes in route optimization mode.

• Inserting the type 2 routing option into IPv6 packets
destined to a home agent or correspondent nodes in
route optimization mode.

The XFRM implementation for Mobile IPv6 is described
in [10] in greater detail. In general the xfrm_state{} struc-
ture corresponds to an IPsec security association (i.e., IPsec
SA), the xfrm_policy{} corresponds to the IPsec security
policy (i.e., IPsec SPD) and the xfrm_tmpl{} is a glue be-
tween the policy and the state. Mobile IPv6 adds two type
handlers to the XFRM: one for the IPv6 home address op-
tion handling and one for the IPv6 type 2 routing header
handling. There are also two new XFRM modes for Mobile
IPv6 route optimization purposes (see the xfrm6 mode ro.c
file) i.e., to add space for the new IPv6 extension headers.
The mode can be invoked using the XFRM_IN_TRIGGER or
XFRM_MODE_ROUTEOPTIMIZATION mode specifier when creat-
ing a new XFRM template. The latter is used for inserting
the appropriate extension header for a matched IP flow and
the former is used for triggering the user space daemon to
initiate the route optimisation procedure.
There is one peculiar aspect in the binding management

signalling originated by either the home agent or the corre-
spondent node. The home agent or the correspondent node
user space daemon has to insert the type 2 routing header
manually into the binding management messages it sends to
the mobile node (using sendmsg() and its ancillary data (see
the mh_send() function in the MIPL mh.c file). Before send-
ing a packet with a mobility header the home agent or the
correspondent node makes sure no XFRM policy matches to
the packet sent to a mobile node. Figure 2 summarises how
XFRM is used along with Mobile IPv6 signalling and route
optimization. The figure is taken from [10].
The user space part of the Mobile IPv6 is entirely respon-

sible for managing the XFRM policies and states. The MIPL
xfrm.c file contains a number of utility functions to manip-
ulate the XFRM policies and states. The communication
between the user space daemon and the kernel uses netlink
[15]. The required netlink utility functions are located in
the MIPL rtnl.c file, which then uses the libnetlink.c located
in the $MIPL/lib/libnetlink/ directory.
Within the kernel, the struct xfrm_state and its mem-

ber coaddr carries the care-of address for the established
XFRM state. When a XFRM state gets created for ei-
ther the destination header (IPPROTO_DSTOPT) or the routing
header (IPPROTO_ROUTING), the care-of address must be de-
fined. Also, the new XFRM handlers for Mobile IPv6 IPv6
extension header handling carry the XFRM_TYPE_LOCAL_COADDR
or XFRM_TYPE_REMOTE_COADDR bit in the respective xfrm_type
structure flags field. This information is used when the
XFRM framework searches for a policy that is specific for
Mobile IPv6 purposes.

2.7 Address selection
Every IPv6 host should implement a default address se-

lection algorithm [5, 16], which is used e.g., to select the

42

MN HA

xfrm_policy
 src: ANY
 dst: HA
 proto: MH
 type: BU
 priority:normal
 direct: in

xfrm_tmpl
 src: ANY
 dst: HA
 proc HAO

xfrm_tmpl
 src: ANY
 dst: HA
 proc ESP
 mode TR

xfrm_policy
 src: HoA
 dst: HA
 proto: MH
 type: BU
 priority:normal
 direct: out

xfrm_tmpl
 src: HoA
 dst: HA
 proc HAO

xfrm_tmpl
 src: HoA
 dst: HA
 proc ESP
 mode TR

BU

IPv6 HAO ESP MH

xfrm_policy
 src: HoA
 dst: HA
 proto: ANY
 type: none
 priority:high
 direct: in

xfrm_tmpl
 src: HoA
 dst: HA
 proc HAO
 addr CoA

xfrm_policy
 src: HA
 dst: HoA
 proto: ANY
 type: none
 priority:high
 direct: out

xfrm_tmpl
 src: HA
 dst: HoA
 proc RT2
 addr CoA

xfrm_policy
 src: HA
 dst: ANY
 proto: MH
 type: BA
 priority:normal
 direct: out

BA

IPv6 RT2 ESP MH

xfrm_tmpl
 src: HA
 dst: ANY
 proc ESP
 mode TR

xfrm_policy
 src: HoA
 dst: HA
 proto: MH
 type: BU
 priority:normal
 direct: in

xfrm_tmpl
 src: HoA
 dst: HA
 proc RT2

xfrm_tmpl
 src: HoA
 dst: HA
 proc ESP
 mode TR

*Type 2 routing header is added by MIPd.
*TR is IPsec transport mode.
*TNL is IPsec tunnel mode.

xfrm_policy
 src: HoA
 dst: HA
 proto: ANY
 type: none
 priority:high
 direct: out

xfrm_tmpl
 src: HoA
 dst: HA
 proc HAO
 level use
 addr CoA

xfrm_policy
 src: HA
 dst: HoA
 proto: ANY
 type: none
 priority:high
 direct: in

xfrm_tmpl
 src: HA
 dst: HoA
 proc RT2
addr CoA

Routing Optimization

IPv6 HAO Payload

IPv6 RT2 Payload

xfrm_policy
 src: HoA
 dst: ANY
 proto: MH
 type: HoTI
 priority:low
 direct: in

xfrm_policy
 src: ANY
 dst: HoA
 proto: MH
 type: HoT
 priority:low
 direct: out

xfrm_policy
 src: HoA
 dst: ANY
 proto: MH
 type: HoTI
 priority:low
 direct: out

xfrm_policy
 src: ANY
 dst: HoA
 proto: MH
 type: HoT
 priority:low
 direct: in

Making a tunnel

IPv6 IPv6ESP Payload

xfrm_tmpl
 src: HpA
 dst: ANY
 proc ESP
 mode TNL

xfrm_tmpl
 src: AMY
 dst: HoA
 proc ESP
 mode TNL

xfrm_tmpl
 src: HoA
 dst: ANY
 proc ESP
 mode TNL

xfrm_tmpl
 src: ANY
 dst: HoA
 proc ESP
 mode TNL

IPv6 IPv6ESP Payload

INITALIZE

Figure 2: XFRM usage example with Mobile IPv6
(taken from [10])

preferable source address for a given destination address.
Mobile IPv6 extends the default address selection. Specifi-
cally the source address selection Rule 4 (see Sections 5 and
6 of [?]) allows preferring home address over other addresses
(assuming the mobile node has multiple IPv6 addresses of
the same scope). The ipv6_get_saddr_eval() function in
the kernel addrconf.c file is the place where the rule gets veri-
fied. An user space program can, however, affect the address
selection policy using setsockopt() and manipulating the
IPV6_PREFER_SRC_COA flag in the IPv6 address preferences
flags [12]. Setting this flag basically downplays the Rule 4

and the kernel may pick up other source address than the
home address.

2.8 Tunnelling
Finally, the last part of the Mobile IPv6 implementation

we look into is the IPv6 traffic tunnelling between the mobile
node and the home agent is realised. Apart from the normal
IP-in-IP tunnelling support [13] basically any Linux kernel,
there are no kernel changes. The user space Mobile IPv6
daemon is responsible for: a) creating a tunnel interface
and b) maintaining the tunnel endpoint addresses based on

the current binding state. MIPL uses a sequence of ioctl()
commands to create/modify/delete a tunnel interface. See
functions tunnel_add(), tunnel_del() and tunnel_mod()

in the MIPL tunnelctl.c file. The tunnel is established be-
tween an mobile node and a home agent when the mobile
node is away from the home link. The tunnel is create both
mobile node and home agent after a successful exchange of
Binding Update and Binding Acknowledgement messages.
The mobile node side of the tunnel is bound to the current
care-of address and the home agent side of the tunnel is
bound to the home agent address (see tunnel_mod() func-
tion in the tunnelctl.c file).
In order to route specific traffic into the tunnel the MIPL

uses netlink interface to add/delete/modify routes to the
kernel. See functions route_add/del/mod() in the MIPL
rtnl.c file. When the mobile node is away from the home
link, it points the default route to the tunnel. When the
mobile node moves between networks and the care-of ad-
dress also changes, the mobile node has to modify the tunnel
addresses again.
Then, when traffic gets tunnelled over the IPIP tunnel

and when it gets route optimized? When a mobile node and
a home agent set up a binding state, they always implicitly
setup XFRM state that route optimizes traffic between the
two i.e., traffic is exchanged using type 2 route header and
home address destination option. However, when a packet
sources by the mobile node is destined to some other node
than the home agent, it gets reverse tunnelled. Similarly
when a packet arrives to the home agent from the inter-
net that is destined to the mobile node, the packet is tun-
nelled to the mobile node. However, whenever the mobile
node sees reverse tunnelled traffic with other nodes than the
home agent, it attempts to initiate the route optimization
procedure (assuming route optimization was enabled in the
first place). In order this to happen the mobile node has to
first install appropriate XFRM policies for triggering route
optimization.

3. MOBILE IPV6 OPERATION
This section gives a short overview how packet processing

works for incoming and outgoing packets. We also look what
happens when Mobile IPv6 gets initialised. All these aspects
are only looked from the kernel point of view. Last we have
few words actual experimentation.

3.1 Initializing Mobile IPv6
When the Mobile IPv6 starts up i.e., the mip6.ko ker-

nel module is loaded using typical Linux means and the
__init_mip6_init() gets called in the mip6.c file, the ker-
nel does two things. First, the mip6_mh_filter() handler
function for mobility header filtering gets installed for RAW
sockets using the rawv6_mh_filter_register() function.
After this user space programs may filter IPv6 packets with
mobility header using RAW sockets.
Second, two XFRM type handlers get registered into the

XFRM framework using the xfrm_register_type() func-
tion. These handlers allow e.g., input and output procession
of the IPv6 home address destination option and the type 2
routing header. We already discussed for what these XFRM
types and later corresponding policies and rules are used for
in Section 2.6.
After these three handler registrations the Linux Kernel

is ready for Mobile IPv6 operation. The rest is then left

43

for the user space programs to set up. Initially there are no
XFRM policies or states for any flows so the kernel will drop
all incoming packets with the type 2 routing header and no
packet gets inserted with either the home address option or
the type 2 routing header.

3.2 Input packet processing
When an IPv6 packet arrives to an it gets eventually into

the ip6_input_finish() function. If a RAW socket has
been opened with a mobility header filter, the IPv6 packet
gets delivered into the user space by rawv6_local_deliver()

function. If there are required XFRM policies and tem-
plates available for type 2 routing header (see Figure 2), then
eventually ipproto->handler(skb) processes the extension
header and once successfully completed passed the packet
through XFRM handlers into the upper layer application.
These both functions are located in the ip6 input.c file. Note
that the default XFRM handlers do nothing for the type 2
routing header in the input chain (see mip6_rthdr_input()
function in the mip6.c file).

Figure 3 shows an overview howMobile IPv6 related packet
flows through the IPv6 input handlers and invokes the XFRM,
and eventually reaches the upper layers.

mip6_rthdr_input

ip6_input_finish

mip6_destopt_input

IPv6 Payload

xfrm_state(RT2)

xfrm_state(HAO)sk_buff

sec_path

upper layer
input

xfrm_tmpl(HAO)

xfrm_tmpl(RT2)

xfrm_policy(MIPv6)

xfrm_check

comparing sec_path
with xfrm_policy

XFRM architecture

input sequence a processed packet

IPv6 PayloadHAO

IPv6 PayloadHAORT2

append HAO and swap src

append RT2 and swap dst

RT2

HAORT2

���
��	������	
��������������	
�������	�������	

�����	���	��������	
���������
��������	

Figure 3: Input packet processing example with Mo-
bile IPv6 (modified from [10])

3.3 Output packet processing
For output processing we look into two cases: first when

the packet contains a mobility header and second for the
packet without mobility header.

When an IPv6 packet with a mobility header is sent from
an application, it eventually after completing the dst_output
(passed by one of the output functions in the ip6 output.c
file) gets caught by XFRM handlers. We assume there is a
matching XFRM policy and template for the IPv6 packet
address pair and the mobility header installed. The XFRM
handler function mip6_dstopt_output() in the mip6.c file
inserts the home address option into the IPv6 packet, swaps
the source address in the IPv6 header and in the home ad-
dress option, and passes the packet further in the XFRM
chain. Eventually the packet gets sent out (see Figure 2).

The operation for an IPv6 packet without the mobility
header is similar but now depending on the installed XFRM
policy and template either the home address option or the
type 2 routing header gets inserted into the IPv6 packet.
These extension header insertions are done either in the
mip6_destopt_output() or the mip6_rthdr_output() func-
tions in the mip6.c file. Note that the user space application

has to insert the type 2 routing header manually into the
IPv6 packet when the packet contains the mobility header.
In this case the kernel does not do it.
Figure 4 shows howMobile IPv6 related packets flow through

the IP stack and make use of the stackable destination fea-
ture of the XFRM before reaching the final IP output.

xfrm_tmpl(RT2)

xfrm_tmpl(HAO)

xfrm_policy(MIPv6)

xfrm_state(RT2)

xfrm_state(HAO)

dst_entry

xfrm
output()
child

dst_entry

xfrm
output()
child

mip6_dest_output

mip6_rthdr_output

dev_queue_xmit

dst_entry

xfrm
output()
child

IPv6 Payload

IPv6 PayloadHAO

IPv6 PayloadHAORT2

dst_output

IPv6 output
process

stackable destination

output sequence a processed packet

original packet
bundles

append HAO and swap src

append RT2 and swap dst

xfrm architecture

��� �����������!"�	

��������
��"�	

Figure 4: Output packet processing example with
Mobile IPv6 (modified from [10])

4. CONCLUSION
This paper made a quick survey how Mobile IPv6 is imple-

mented in Linux. The implementation in split into a small
set of kernel space functions and user space daemon. The
kernel mainly takes care of new extension header process-
ing and packet forwarding, while the real Mobile IPv6 logic
is in the user space daemon. Linux Mobile IPv6 makes also
extensive use of the XFRM framework for both securing Mo-
bile IPv6 using IPsec and also processing both IPv6 home
address destination option and type 2 routing header under
specific cases. In addition to few lines long patches here and
there the main Mobile IPv6 kernel implementation is in two
files exthdrs.c and mip6.c with both being relatively short
ones.
The kernel implementation is rather straight forward ex-

cluding the XFRM framework part. The real complexity,
after all, is found in the user space daemon that handles the
Mobile IPv6 protocol logic. The division between the ker-
nel and user space is nice in a sense that it makes further
development of the Mobile IPv6 simple as long as no new
IPv6 extension headers need to be included or the XFRM
framework can be used for IPsec and other packet mangling
purposes. For example, there is a Proxy Mobile IPv6 imple-
mentation build on top of the Linux MIPL implementation
with minimal changes to the user space application.

5. REFERENCES
[1] J. Arkko, V. Devarapalli, and F. Dupont. Using IPsec

to Protect Mobile IPv6 Signaling Between Mobile
Nodes and Home Agents. RFC 3776, Internet
Engineering Task Force, June 2004.

[2] A. Conta, S. Deering, and M. Gupta. Internet Control
Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification. RFC 4443, Internet
Engineering Task Force, Mar. 2006.

[3] S. Deering and R. Hinden. Internet Protocol, Version
6 (IPv6) Specification. RFC 2460, Internet
Engineering Task Force, Dec. 1998.

44

[4] V. Devarapalli and F. Dupont. Mobile IPv6 Operation
with IKEv2 and the Revised IPsec Architecture. RFC
4877, Internet Engineering Task Force, Apr. 2007.

[5] R. Draves. Default Address Selection for Internet
Protocol version 6 (IPv6). RFC 3484, Internet
Engineering Task Force, Feb. 2003.

[6] S. Gundavelli, K. Leung, V. Devarapalli,
K. Chowdhury, and B. Patil. Proxy Mobile IPv6. RFC
5213, Internet Engineering Task Force, Aug. 2008.

[7] D. Johnson, C. Perkins, and J. Arkko. Mobility
Support in IPv6. RFC 3775, Internet Engineering
Task Force, June 2004.

[8] S. Kent and R. Atkinson. IP Encapsulating Security
Payload (ESP). RFC 2406, Internet Engineering Task
Force, Nov. 1998.

[9] S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol. RFC 2401, Internet Engineering
Task Force, Nov. 1998.

[10] K. Miyazawa and M. Nakamura. IPv6 IPsec and
Mobile IPv6 implementation of Linux. Proceedings of
Linux Symposium, 2:85–94, July 2004.

[11] T. Narten, E. Nordmark, W. Simpson, and
H. Soliman. Neighbor Discovery for IP version 6
(IPv6). RFC 4861, Internet Engineering Task Force,
Sept. 2007.

[12] E. Nordmark, S. Chakrabarti, and J. Laganier. IPv6
Socket API for Source Address Selection. RFC 5014,
Internet Engineering Task Force, Sept. 2007.

[13] C. Perkins. IP Encapsulation within IP. RFC 2003,
Internet Engineering Task Force, Oct. 1996.

[14] C. Perkins, D. Johnson, and J. Arkko. Mobility
Support in IPv6. RFC 6275, Internet Engineering
Task Force, July 2011.

[15] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov.
Linux Netlink as an IP Services Protocol. RFC 3549,
Internet Engineering Task Force, July 2003.

[16] D. Thaler, R. Draves, A. Matsumoto, and T. Chown.
Default Address Selection for Internet Protocol
Version 6 (IPv6). RFC 6724, Internet Engineering
Task Force, Sept. 2012.

[17] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless
Address Autoconfiguration. RFC 4862, Internet
Engineering Task Force, Sept. 2007.

[18] H. Yoshifuji, K. Miyazawa, M. Nakamura, Y. Sekiya,
H. Esaki, and J. Murai. Linux IPv6 Stack
Implementation Based on Serialized Data State
Processing. IEICE Trans Commun (Inst Electron Inf
Commun Eng), E87-B(3):429–436, March 2004.

[19] H. Yoshifuji, K. Miyazawa, Y. Sekiya, H. Esaki, and
J. Murai. IPv6 IPsec and Mobile IPv6 implementation
of Linux. Proceedings of Linux Symposium, 1:507–523,
July 2003.

45

Device Agnostic Network Interface

Jonne Soininen
Aalto University
P.O. Box 11000

FI-00076 AALTO
jonne.soininen@renesasmobile.com

ABSTRACT
There is a lack of up-to-date, easily approachable documen-
tation of the Linux kernel networking stack. This paper tries
to address that gap by describing parts of the stack - the de-
vice agnostic network interface (net device), and the kernel
network buffers (sk buff). In addition, the paper describes
the two different approaches for using the device agnostic
network interface - the traditional and the New API - seek-
ing to describe the strengths of the New API, and prove
them, at least partly, through an experiment.

Keywords
Linux, kernel, networking, drivers

1. INTRODUCTION
This paper concentrates on describing how network device
drivers are connected to the Linux kernel, and how the pack-
ets are transferred between the device driver and the Linux
kernel. The aim of this paper is to give an overview to an
interested reader of that interface, and its anatomy. The
focus is on this interface itself, and the buffer management
related to it. Other topics, such as the actual device drivers,
and the networking protocols, such as Internet Protocol ver-
sion 4 (IPv4)[1], and Internet Protocol version 6 (IPv6)[3]
are described in other papers of the Network Protocols in
Operating Systems course. Thus, we only mention them
to describe the functionality of the device agnostic network
interface.

This article is based on the Linux kernel version 3.5.4 as
published at kernel.org [4]. There is no other special reason
for picking up this specific kernel version than it was the
newest at the time this article was started. The references
to the Linux kernel files are made as relative file paths to the
specific file or directory in the Linux kernel source tree. For
example, include/net/ping.h refers to a file called ping.h in
the directory include/net under the kernel source tree. Ab-
solute paths, e.g. /var/log are used to refer to a directory

or a file in a Linux distribution file system. The used path
names should be generic. However, there are sometimes vari-
ations between different Linux distributions. This article is
based on the Debian Project distribution[5].

Network drivers are connected to the Linux kernel differ-
ently from other drivers. As generally in Unix, and also in
Linux, all device drivers are usually represented by a file in
the /dev directory (or in Linux case also through files in the
/sys directory), and the user space applications use these
to control and communicate with the device. However, net-
work devices do not have file nodes associated to them in
the same way. Therefore, there is no associated /dev file
for the Ethernet driver. Network devices are connected to
Linux via network interfaces. The device interface between
the network protocols and the device drivers is the device
agnostic interface, and the actual data is transferred in the
network buffer structure called sk_buff.

2. DEVICE INTERFACE OVERVIEW
The device agnostic interface, also known as the Net Device
Interface, is the interface between the device specific device
driver and the network protocol stack. For instance, between
the Ethernet network card device driver, and the Internet
Protocol version 6. As the name already indicates, the same
interface is used regardless of the physical device, and the
network protocol stack used. There is a good reason to have
such a generic interface. It allows the protocol stack not
to be changed when a new device driver is introduced to
the system. In addition, the device drivers do not have to
be tweaked if a new network protocol is introduced. The
need for this becomes even more evident when looking at the
hundreds of network device drivers at the drivers/net. You
can find in that location drivers for many different network
devices ranging from ham radio, to the modern ultra high
speed Ethernet devices.

In a considerably simplified view, the life cycle of a network-
ing device can be categorized in the following stages.

1. Initialization

2. Opening a network interface

3. Transmitting packets (sending and receiving packets)

4. Closing the interface

5. Removal

Clearly, the receiving or sending of packets usually do hap-
pen multiple times and very much in any order during the

46

lifetime of a device. In some setups, for instance in a con-
sumer’s computer, the system receives considerably more
packets than it ever sends. On the other hand, in other se-
tups, such as a web server, the system actually sends many
more packets than it ever receives. In addition, in a router
configuration, the device practically sends and receives an
equal amount of traffic. Thus, generally speaking, both re-
ceiving and transmitting packets are performance sensitive
operations.

In the following, we will look at these different steps in more
detail, and explain how they work, and what happens in
each step, and how the steps are implemented in the Linux
kernel. We will start with opening and closing a network
interface. In the end of the section, we explain the packet
transmission itself.

2.1 Network driver initialization and removal
The first step in the life of a network device is the initial-
ization. This is the process where the Linux kernel is intro-
duced the new device. A device is initialized, for example,
at the loading of the module to the kernel. The device ini-
tialization comprises of the following steps.

1. Allocate the network device memory :

(alloc_netdev) The initialization sequence starts with
the memory allocation for the structure holding the de-
vice information - net_device. We will examine this
more in detail when looking at the net_device struc-
ture in this paper.

2. Perform optional setup checks:

(netdev_boot_setup_check) Checks boot time options
of the device. This is an optional step. In addition,
this step is used by legacy device drivers. It is not in
use in modern device drivers.

3. Setup the device:

In this step, the net_device structure is populated
with the device specific information, and the device
specific routines.

4. Registering the device to kernel :

(register_netdev) Registers the device to the kernel,
and informs the kernel the device is ready to be used.

The device removal is considerably more straight forward.
To remove the device from kernel, the device has to be
only unregistered (unregister_netdev), cleaned up, and ul-
timately freed (free_netdev). This usually happens at the
removing of the device module from the kernel.

2.2 Starting and stopping a network interface
Before sending, and receiving packets, the network interface
has to be opened. Opening the network interface may hap-
pen either during the boot or at runtime. For example, in
modern computers the inbuilt interfaces (such as the Ether-
net card) can be set up already during the boot sequence, if
just the physical media (i.e. the Ethernet cable) is present.
However, there are also other interfaces that are mainly set

up during runtime. These interfaces include, for instance,
cellular network interfaces.

During runtime, the network interface can be turned up us-
ing such command line tools as ifconfig. An example of
turning on the first ethernet interface (eth0) can be seen in
the following:

root@Debian:~$ ifconfig eth0 up

In the device agnostic interface, setting the interface up re-
sults to a call to the function dev_open(), which allocates
the transmit and receive resources, registers the interrupt
handler to the OS, sets the device watchdog, and informs
the kernel the device is up. The watchdog timer is used to
detect network interface halts, and if the watchdog is acti-
vated the device is reset.

The opposite can be performed by typing the following to
the command line.

root@Debian:~$ ifconfig eth0 down

This triggers the call for the dev_close(), which does the
exact opposite of the dev_open(): The interrupt handler is
deregistered, the transmit and receive resources are freed,
and the device is set to be down.

2.3 Packet transmission
Once the network interface is up, packets can start to flow
over the interface to both directions. We will try to give
an overview how sending and receiving packets is done in
Linux in this section. We will start with receiving packets,
and then look at sending packets.

2.3.1 Sending packets
When sending packets from the Linux host towards the net-
work, the packets are usually queued in the transmission
queue. The Linux network queue policy and internals are
outside of the focus of this paper. Eventually, the packets
will need to be transmitted, and dev_hard_start_xmit() is
called to perform the packet transmission. As the result of
this, the dev_hard_start_xmit() will call the start_xmit(),
which points to the device specific transmission method.
The device specific transmission method then moves the
packets to be sent to the device itself. Figure 1 shows the
flow graphically.

2.3.2 Receiving packets
The receiving of packets is a slightly more complex and send-
ing packets, but not much. The packets can arrive at any
point, and the device has to have a method to tell the ker-
nel that a packet has arrived. This is done by the software
interrupt registered at the network interface open. Two dif-
ferent strategies to handle the device interrupts exist. Thus,
also two different kernel internal APIs exist: The traditional
interface, and the New API (NAPI)[7]. The former create
a software interrupt every time a packet is received. The
NAPI, however, only creates a software interrupt for the
first packet in the burst, and then schedules the kernel to
poll the interface. This strategy can save considerably in
software interrupts, and therefore is well adapted for high

47

Packet queue

dev_hard_start_xmit
calls dev->ops->
ndo_start_xmit

Device Specific Xmit
Device specific code
transmits the packet

Packet on the
wire

Figure 1: Transmitting packets to the network in-
terface

speed interfaces. We will discuss the traditional interface
versus the NAPI later in this paper. As the traditional in-
terface is a bit simpler, we will go through its functionality
in this section.

You can find the receive packet flow in Figure 4. When a
packet comes into the device the device raises an interrupt.
This interrupt calls the device specific software interrupt
routine. The software interrupt routine copies the packet
into memory, and calls netif_rx() routine, which provides
the packet to the Linux kernel.

Device gets a
packet

Interrupt controller
Moves the packet to
sk_buf and calls netif_rx

netif_rx
Passes the packet to the

network protocol

Packet at
network
protocol

Figure 2: Receiving packets in the network interface

2.4 Related data structures, and functions
This section will look at the data structures and functions,
which implement the device agnostic interface. In the end
of this section, we will also look at the work split between
the device agnostic interface, and the device specific code.

2.4.1 Data structures
Table 1 shows the most important data structures used in
the device agnostic interface. The main structure is the
net_device structure. This structure is the definition of the
actual interface. The structure itself is very complex, and
has many fields. It makes little sense for us to go through all
the fields in this paper. An interested reader can look up the

Data Struc-
ture

Location Description

net device include/linux/netdevice.h The device ag-
nostic interface
definition.

net device ops include/linux/netdevice.h The device op-
erations.

net device stats include/linux/netdevice.h Device statis-
tics.

Table 1: Device agnostic interface relevant data
structures

Field Description
char name Name of the interface.
unsigned long mem start,
mem end

Shared memory area.

unsigned long base addr device I/O address.
unsigned int irq Device interrupt request number.
const struct net device ops
*netdev ops

Structure containing the device
operations.

const struct header ops
*header ops

Hardware header description.

unsigned int flags Interface flags.
unsigned char perm addr Permanent hardware address.
unsigned char addr len Hardware address length.

Table 2: A sample of the net_device structure fields.

structure in the header file. However, the most interesting
fields with the explanation are listed in the following.

The net_device structure contains the device name, the I/O
specific fields, the device status, the interface flags, the de-
vice hardware address, and the device statistics among other
information. The structure also contains the pointer to the
net_device_ops structure specific to this device. Table 2
shows a sample set of the net_device structure fields. The
structure itself is very complicated, and an interested reader
should look directly at the source code.

The net_device_ops structure lists the pointers to the de-
vice operations functions. We will look at the operations in
next Section.

2.4.2 Functions
The support functions for the device agnostic interface are
implemented in net/core/dev.c. These include the following
functions: alloc_netdev(), netdev_boot_setup_check(),
register_netdev(), unregister_netdev(), free_netdev(),
dev_open(), dev_close(), dev_hard_start_xmit(), and in
addtion netif_rx() we have mentioned before. These in-
clude the generic implementation of those functions, which
then call the device specific implementations, which are linked
as pointers in the net_device_ops.

2.4.3 Work split between the device agnostic inter-
face and the device specific implementation

The device agnostic network interface is the generic inter-
face to the kernel for the device drivers. Therefore, it should
minimally include any device specific information. This is
also partly achieved, though some at least link-layer spe-
cific information is embedded in the device agnostic interface
as well. On the other hand, the device driver - the device

48

Field Description
sk buff *next, *prev Support for packet listing and

queuing.
sock *sk Socket owning the packet.
net device *dev The device the packet is belonging

(incoming or outgoing).
unsigned char *head Pointer to the start of the packet.
unsigned char *data Pointer to the data of the packet.
sk buff data t tail Pointer to the end of the data.
sk buff data t end Pointer to the end of the packet.
sk buff data t transport header Pointer to the beginning of the

transport protocol header.
sk buff data t network header Pointer to the beginning of the

network protocols header.
sk buff data t mac header Pointer to the beginning of the

Layer 2 header.

Table 3: Relevant fields in sk_buff structure

specific implementation should contain the functions, and
data structures specific for the device, and the device driver
should provide the translation from the device specific im-
plementation to the generic.

As described above, the device agnostic interface is defined
in the net_device structure in include/linux/netdevice.h.
The functions needed for the device initialization, opening,
transmission, closing, and de-initialization can be found at
net/core/dev.c. These definitions and functions are common
for all the device drivers.

The device specific implementations can be found at drivers/net.
When a new device is initialized the device specific initializa-
tion sets up the net_device structure with the information
needed by the device agnostic interface. This includes also
the callback functions to operate the device. The pointers
to these functions are set to the net_device_ops structure.
The device specific implementation is outside the scope of
this paper.

3. LINUX NETWORK BUFFER MANAGE-

MENT
An important part of the network device functionality is the
network buffer management. This includes the management
of the incoming packets, and the out-going packets in their
buffers. This part includes both the packet buffer struc-
ture itself, and the functions used to manipulate the packet
buffers.

3.1 sk_buff data structure
The Linux kernel uses a data structure called sk_buff to
store the packets. The sk_buff structure is defined in in-
clude/linux/skbuff.h.

The sk_buff is a complex structure. Though, it is not
quite as complex as the net_device structure, it is com-
plex enough not to be listed completely here. An interested
reader can look at the header file to find the additional infor-
mation. The relevant information in the focus of this paper
is listed in Table 3.

The most important fields in the focus of this paper are
head, data, tail, end, transport_header, network_header,
and mac_header. These tell us where the different parts

Function Description
alloc skb()/dev alloc skb() Allocates a sk_buff.
skb clone() Clones the sk_buff structure

without copying the payload data.
build skb() Builds a buffer
kfree skb()/dev kfree skb() Frees the sk_buff

Table 4: Basic operations on sk_buff

of a packet are. The head points to the beginning of the
whole packet. The data points to the beginning of the data
of the packet. What is the ”data” depends on the proto-
col level currently processed by the kernel. When process-
ing the network protocol (IPv4 or IPv6) the data points
to the beginning of the network protocol header. How-
ever, on higher layer - on transport layer (such as TCP[2]),
the data points to the transport layer protocol. Thus, the
data pointer changes as the packet moves up the protocol
stack. The tail behaves similarly pointing into the end
of the data. The transport_header, transport_header,
network_header, and mac_header point to their respective
header locations in the packet buffer. Figure 3 shows how
these different pointers relate to the buffered packet.

head
data
tail
end
transport_header
network_header
mac_header

sk_buff

Data
TCP Header
IP Header
Ethernet Header

Packet

Figure 3: Relationship between the sk_buff fields
and the buffered packet

3.2 Managing sk_buff structures
The net/core/skbuff.c contains a great variety of operators
to manage sk_buffs. These operations range from queue
management to the basic operations on sk_buffs. In the
interest of space, we will here only focus on the basic op-
erations used to manage the Linux kernel network buffers.
These very basic operations are listed in Table 4.

The alloc_skb() and dev_alloc_skb() allocate an sk_buff.
The later is used from the device, and the previous in the
kernel. The kfree_skb and dev_kfree_skb are used to free
an allocated buffer. The skb_clone provides copying the
sk_buff structure. However, it does not copy the buffer con-
tents, but just the structure. This allows manipulating the
structure, for instance, on different protocols layers without
the overhead of copying the packet memory. The skb_put()
provides a mechanism to put data into the buffer.

4. NAPI
The New API (NAPI) interface was introduced to the Linux
kernel to improve the network performance. The aims of the
NAPI are listed in the following.

Interrupt mitigation means minimization of the software
interrupts the device creates when a new packet ar-
rives. The traditional interface creates a software in-
terrupt at arrival of every packet. This causes both

49

considerable and unnecessary load on the system. When
performing high speed networking the system may be-
come overwhelmed by processing just the software in-
terrupts. The NAPI addresses this consideration.

Packet throttling means dropping the packet as soon as
possible when the system cannot handle the inflow of
packets. With NAPI, the packets can be dropped al-
ready at the device without even introducing them to
the kernel if the system is not able to process the pack-
ets.

The NAPI was introduced in the Linux kernel version 2.6,
and by the kernel version we are concentrating on here - 3.5.4
- many, if not most, of the device drivers have moved to use
the NAPI. However, a device driver can be still written to
use the traditional interface, and the traditional interface is
still supported by the kernel today. This may introduce con-
siderable constraints on the devices performance, though.
We will be looking at the performance considerations more
in detail in Section 5.

In this section, we will look at how the NAPI works.

4.1 Overview
The basic principle of NAPI is to move the processing of
the packets away from the interrupt handler to the kernel
as much as possible. This does not mean that the soft-
ware interrupt handler would not be used at all anymore,
however. Let’s remind ourselves first how the traditional
interface works.

The traditional interface registers a software interrupt han-
dler, which is called at packet arrival. The handler then calls
netif_rx() to provide the received packet to the Linux ker-
nel. The NAPI changes this behavior. Instead of calling
netif_rx() a NAPI interrupt handler disables the software
interrupt, and schedules the polling of the interface. The
flow in the interrupt handler is on high level as follows.

interrupt Handler

Disable Interrupts

napi_schelule_prep()

__napi_schedule()

Scheduling NAPI

napi_struct->poll

Read packets into buffer

Return

Polling

Packets left? napi_complete()

Figure 4: NAPI flow - left side shows the first call
on interrupt handler, and right side the kernel poll
sequence

1. Disable the packet reception interruption for the de-
vice.

2. Check if it is possible to schedule the incoming packet
polling with napi_schedule_prep.

3. Schedule the polling of the device with __napi_schedule.

Practically, this means the packet processing is removed
from the interrupt handler and postponed to a time in the
future. In addition, the interrupt masking means that no
new interrupts from this device are coming in before the
interrupts are enabled, again.

To process the packets, the kernel needs to poll the device
to pull the packets into the kernel. The scheduling of the
poll tells the kernel that there are packets to be polled. In a
suitable time for the kernel, the kernel will perform the poll
operation. Currently, the Linux kernel supports multiple
poll queues per device, which can all be polled separately.
However, here we simplify the actual functionality a bit.
The poll queues are stored in the napi_struct structure,
which includes the poll function among other items. The
poll function is device specific, and transfers all the pack-
ets waiting for processing to the kernel. The NAPI uses
netif_receive_skb() instead of netif_rx. When the job
is complete, the poll function sets the interrupts on again,
and performs napi_complete. This turns the device back to
the interrupt driven mode. This disables the polling of the
device, if there is nothing to process anymore.

4.2 NAPI requirements for devices
The NAPI introduces certain requirements for the device.
The requirements are listed in the following.

• Direct Memory Access (DMA) ring support, or enough
memory to store the packets in the software device.

• Ability to turn the related interrupts off.

Devices that can support these requirements can be sup-
ported by NAPI. Otherwise, the device has to use the tradi-
tional interface. However, devices not compatible with the
NAPI requirements will unlikely be high speed networking
devices, and thus, the traditional interface should be ade-
quate for them.

5. PERFORMANCE CONSIDERATIONS
In this Section, we examine the performance differences be-
tween NAPI and the traditional device interface. First we
will examine the results from available literature, and then
we will explain the test system created to perform own test-
ing of the comparison.

5.1 Literature study
A study on NAPI was described in a USENIX article in
2001[6]. The results are also published on the Linux Founda-
tion[8] web page on NAPI[7]. The USENIX article describes
a situation where a Linux system used a router collapses af-
ter a certain number of packets per second after the Central
Processing Unit (CPU) load goes to 100%. The main reason
is the number of interrupts the traditional interfaces causes
on the CPU during when the computer receives a high speed
data transfer. The high number of interrupts is caused by

50

the traditional interface causing an interrupt at every re-
ceived packet. 1

The performance improvement of NAPI is based on sup-
pression of interrupts especially when receiving packets. On
traditional interface the input packet ratio to the interrupts
is 1. The system creates an interrupt at every packet that
is received. NAPI can improve this considerably while there
are packets in the input queue. The Linux Foundation page
refers a ratio of 17 interrupts per 890k packets/second. Try-
ing to push this amount of interrupts per second through
any system will cause a considerable load, and most prob-
ably choke the system. In a situation like this, the NAPI
clearly brings benefits.

However, if the input buffer cannot be kept occupied through-
out the transmission, the benefits of NAPI start to decline.
At worst, the NAPI reduces again to packet per interrupt
performance with the additional overhead of NAPI. Though,
the NAPI overhead is not considered to be meaningful, the
benefits can only be obtained from a constantly occupied
input buffer. Though, it may seem that this is not a signif-
icant problem as the packets are coming at a slow enough
speed for the CPU to handle them, it can cause the CPU
load to raise, and reduce the capacity of the computer to
perform other duties.

5.2 Testing NAPI against the traditional inter-

face
Due to the lack of up to date literature, an extremely small
scale test was conducted. The purpose of the test was to try
to measure the differences between NAPI to the traditional
interface. In this section, we will describe first the test setup,
and then analyze the results of the tests.

5.2.1 Description of the test setup
In the absence of suitable hardware, the test was performed
on using Linux virtual machines. The test setup is described
in Figure 5. The test setup consists of two Linux virtual
machines running a Apple MacBook Pro running Mac OS
X. The virtualization software used was VirtualBox from
Oracle[9]. Iperf[10] was used to test the network speed.

One of the machines was setup as an Iperf client. This ma-
chines was running Debian 6.0 with the Linux kernel version
3.5.4 described in this paper. The other machine was setup
as an Iperf server. The two virtual machines were connected
by using the VirtualBox’s This machine’s performance was
measured as it was the machine receiving the transmission.
The network interface selected was VirtualBox’s emulated
Intel Gigabit Ethernet device. The kernel version (2.6.26)
was selected as it was the last version of the network card de-
vice driver (e1000), which had a possibility to turn off NAPI.
Test runs were run both on NAPI supported, and non-NAPI
supported modules for comparison purposes. The number
of packets received, and the number of interrupts handled
were recorded before and after the test run, and the dif-
ference was calculated - hence, calculating the number of

1The Salim paper was written in 2001. Hence, there is lit-
tle point to repeat the packets per second numbers, which
caused problems to Linux at that time. It seems that little
up to date literature exists currently.

VirtualBox

Host-only Adapter

iPerf Client
Debian 6.0
Linux 3.5.4

iPerf Server
Debian 5.0

Linux 2.6.26

Mac OS X

Figure 5: Test setup with two Linux virtual machine
in VirtualBox on Mac OS X host

packets received, and number of interrupts handled during
the session.

Two versions of e1000.ko were compiled - one with NAPI
turned on, and one with NAPI turned off. The e1000.ko

default parameters were used. Three different tests were
conducted - transferring 300 MB, and 1 GB of data over
Transmission Control Protocol (TCP)?? using Message Seg-
ment Size 1 KB, and 300 MB over User Datagram Protocol
(UDP)?? in 150 byte size packets. The reason for selecting
these packet sizes was in TCP to control the packet size, and
in UDP to try the performance with small packets.

This was not done with real hardware, we did not study the
VirtualBox’s architecture, and limitations, and the measur-
ing of the packets, and the interrupts was done by hand at
looking at Linux’s counters. Thus, this test was by no means
scientifically representative. The only target of this test was
to empirically see an indication of the difference, and, of
course, personal learning. Obviously, the reader should take
the results with a pinch of salt. In this setup, it was not pos-
sible to isolate all other variables, and the setup itself created
certainly effects on the results. In addition, one should per-
form many more test runs to create a representative data
set.

5.2.2 Analysis of the test results
The result of the test runs can be found in Table 5. The
most difference can be found in the number of raised in-
terrupts. The traditional API 300MB TCP data transfer
causes almost and the 1 GB transfer over ten times as many
interrupts than the NAPI transfer. The reader should notice
that the number of interrupts per packet even in traditional
API is much less than the number of packets transferred.
This is because the e1000 driver does tries to throttle the
number of interrupts even in traditional API case.

The differences in data transfer speed are more moderate
- in the 300 MB transfer the difference is ca 14%, and in
the 1 GB transfer ca 8%. As stated in the previous section,
these results are not exactly trustworthy due to the lack of
adequate testing, and the lack of real hardware. However,
they indicate that using NAPI can make the data transfer

51

Protocol Method Packets Interrupts Size Speed
(MB/s)

TCP Traditional 318399 58472 300MB 23.4
TCP NAPI 318399 6102 300MB 27.2
UDP (150
bytes)

Traditional 2097103 1428427 300MB 0.76

UDP (150
bytes)

NAPI 2097163 1438770 300MB 0.75

TCP Traditional 1086789 263699 1GB 20.60
TCP NAPI 1086789 19280 1GB 22.5

Table 5: Comparison between NAPI and traditional
interface test results

considerably more efficient.

The UDP results actually describe a different situation. The
traditional API was actually a bit quicker. However, for
some reason the NAPI interface seems to have transferred
more packets. The reasons for this were not studied.

6. SUMMARY
This paper described the functionality of the device agnostic
network interface, the network buffer management, and the
New API (NAPI).

The device agnostic network interface is defined in include/linux/netdevice.h.
It defines the data structure (net_device) that stores the de-
vice information, and the includes the functions to operate
the interface. The functions are implemented in net/core/dev.c.

The network buffers in Linux are stored in the sk_buff data
structure. The sk_buff is defined in include/linux/skbuff.h.
Linux provides a set of tools to manage the sk_buffs. These
operations are implemented in net/core/skbuff.c.

We also looked at the NAPI, which increases network per-
formance by performing interrupt mitigation, and packet
throttling at the device. We also discussed the performance
aspects of NAPI, and concluded the NAPI performs better
than the traditional interface, when the input buffers can be
kept occupied, and the ratio between interrupts per packets
can be kept low. In the worst case, the performance degrades
to the level of the traditional API at 1 interrupt/packet.

7. REFERENCES
[1] Postel J., ”Internet Protocol”, IETF, RFC 791,

September 1981.

[2] Postel J., ”Transmission Control Protocol”, IETF, RFC
793, September, 1981.

[3] Deering S. and Hinden R., ”Internet Protocol, Version 6
(IPv6) Specification”, IETF, RFC 2460, December
1998.

[4] kernel.org, ”The Linux Kernel Archives”, kernel.org,
2012.

[5] Debian Project, ”Debian”, www.debian.org, 2012.

[6] Salim J., Olsson R., Kuznetsov A., ”Beyond Softnet”,
USENIX, 2001.

[7] The Linux Foundation, ”napi”,
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi,
2009.

[8] The Linux Foundation, ”The Linux Foundation”,
http://www.linuxfoundation.org/, 2012.

[9] Oracle, ”Oracle VM VirtualBox”,
https://www.virtualbox.org/, 2012.

[10] Sourceforge, ”Iperf”,
http://sourceforge.net/projects/iperf/, 2012.

[11] Postel J., ”Transmission Control Protocol”, IETF,
RFC 793, September 1981.

[12] Postel J., ”User Datagram Protocol”, IETF, RFC 768, Au-
gust 1980.

52

Network device drivers in Linux

Aapo Kalliola
Aalto University School of Science

Otakaari 1
Espoo, Finland

aapo.kalliola@aalto.fi

ABSTRACT
In this paper we analyze the interfaces, functionality and
implementation of network device drivers in Linux. We ob-
serve that current real-life network drivers are very heavily
optimized compared to a minimum baseline implementation.
Additionally we analyze some of the optimized functionality
in greater detail to gain insight into state-of-the-art network
device driver implementations.

Keywords
device driver, network interface, linux

1. INTRODUCTION
Devices in Linux are divided into three main categories:
block, character and network devices. Block devices provide
adressable and persistent access to hardware: after writ-
ing to a specific block address subsequent reads from the
same address return the same content that was written. In
contrast, character devices provide unstructured access to
hardware. Character device may be a separate devices such
as a mouse or a modem or part of the internal computer
architecture, for instance a communications bus controller.

Character devices do not typically do buffering while block
devices are accessed through a buffer cache. In some cases
block devices can also have character device drivers specifi-
cally for bypassing the cache for raw I/O.

Network devices in Linux differ significantly from both block
and character devices [4]. Data is typically sent by an up-
per program layer by placing it first in a socket buffer and
then initiating the packet transmission with a separate func-
tion call. Packet reception may be interrupt-driven, polling-
driven or even alternate between these modes depending on
configuration and traffic profile. An optimized driver wants
to avoid swamping the CPU with interrupts on heavy traf-
fic but the driver also wants to maintain low latency in low
traffic scenarios. Therefore it cannot be categorically stated

that interrupt-driven would be better than polling or vice
versa.

In this paper we will examine network device drivers in
Linux starting from driver basics and interfaces and finish-
ing in a partial analysis of certain functionality in the e1000
network driver. The device agnostic network interface is de-
scribed in another report [9], so it will not be discussed in
detail here.

2. OVERVIEW
2.1 Network drivers and interfaces
A network driver is in principle a simple thing: its purpose is
to provide the kernel with the means to transmit and receive
data packets to and from network using a physical network
interface. The driver is loaded into the kernel as a network
module.

The network device driver code interfaces to two directions:
the Linux network stack on one side and device hardware
on the other. This is illustrated in Figure 1. While the
network stack interface is hardware-independent the inter-
face to network interface hardware is very much dependent
on the hardware implementation. The functionality of the
network interface is accessed through specific memory ad-
dresses, and is thus very much non-generic. For the purposes
of this paper we try to remain generic where possible and
go into device-dependent discussion only where absolutely
necessary.

In Linux kernel source tree network driver code for manu-
facturers is located in linux/drivers/net/ethernet/ [7]. Our
later analysis of Intel e1000 driver code will be based on the
code that is in linux/drivers/net/ethernet/intel/e1000/.

2.2 Common data structures
While in this paper we focus on the driver internals, two
data structures common with the device agnostic network
interface require mentioning at this point: net device and
sk buff.

A network interface is described in Linux as a struct net device
item. This structure is defined in <linux/netdevice.h>. The
structure includes information about the interface hardware
address, interface status, statistics and many other things.

Packets are handled in transmission as socket buffer struc-
tures (struct sk buff) defined in <linux/skbuff.h>. In addi-

53

Connectivity

Hardware

Kernel
subsystem

System call interface

Networking

Software
support

Network
subsystem

Interface
driver

Network
interface

Figure 1: Device driver role in network connectivity

tion to containing pointers to actual packet data it contains
(among many things) information about the owner socket,
owner device and also possible requirements for protocol of-
floading in hardware.

3. DRIVERS IN PRACTISE
In this section we look into network device drivers in the real
world. First we look into the minimal functionality a net-
work driver needs to have to transmit and receive packets.
Then we look at the e1000 driver for Intel network inter-
face cards and summarize its code organization. Finally we
look to into the optimizations and other code that the e1000
driver has in addition to the bare minimum functionality.

3.1 Simple driver
Aminimal network device driver needs to be able to transmit
and receive packets. In order to be able to do this the driver
needs to do a series of tasks: the physical device needs to be
detected, enabled and initialized [6]. After initialization the
device can be readied for transmitting and receiving packets.
For all this to be possible we need to have an understanding
of the network device, bus-independent device access, PCI
configuration space and the network device chipset’s trans-
mission and receive mechanisms.

For device detection it is possible to use the pci find device
function with our device manufacturer’s vendor ID and de-
vice ID. This gives us a pointer to the device. The device
can then be enabled with pci enable device using the pointer
as the only argument.

The purpose of bus-independent device access is to provide
an abstraction for performing I/O operations independent of
bus type. Most commonly this is used by drivers in reading
and writing to memory-mapped registers on a device. One
practical example of this woud be the cleaning of TX/RX
buffers, in which 0 is written to the relevant registers.

As previously discussed, network interfaces are seen by the
Linux networking stack as devices in net device. This struc-
ture is then updated with actual device values during device

initialization. In initialization the driver retrieves the base
memory address for the device registers, which is needed in
all subsequent addressing of device registers.

The transmission and receiving mechanisms on hardware are
device-dependent and can be discovered either through man-
ufacturer documentation such as [8] (on which this simple
driver is based) or by reverse engineering. Usual areas of
interest are the transmit and receive memory buffers. These
buffers can be implemented on hardware as, for instance,
ring buffers. A ring buffer is a data structure of fixed size in
which the end of the buffer is connected to the beginning.
Thus the buffer appears circular.

The ring buffer does not contain the whole of packet data,
but rather a set of descriptors. These descriptors point to
addresses in the system main memory. When a packet is
ready for transmission the device reads the packet content
from the location pointed to by the descriptor, uses direct
memory access (DMA) to place the data into its own FIFO
and then transmits the data from the physical network port.

On the RX side the memory is also a ring buffer with the
difference that it will overwrite oldest stored packet once
full. On reception an interrupt is generated resulting in an
interrupt handler getting called, which will then process the
received packet. Later in interrupt throttling feature analy-
sis we will observe a more complicated process.

3.2 e1000
In this section we observe some points of interest in the e1000
code.

3.2.1 struct e1000_adapter
The structure struct e1000 adapter in e1000.h is the board-
specific private data structure. It contains many interesting
fields for features related to VLANs, link speed and duplex
management, packet counters, interrupt throttle rate, TX
and RX buffers, and also the operating system defined struc-
tures net device and pci dev. An adapter may have multiple
RX and TX queues active at the same time.

3.2.2 e1000_probe
Function e1000 probe initializes an adapter. This includes
operating system initialization, configuration of the adapter
private structure struct e1000 adapter and a hardware reset.
In addition the function does hardware integrity checks and
Wake-on-LAN initialization.

3.2.3 e1000_open
When an e1000 network interface is activated by the system
the function e1000 open is called. This function allocates
resources for transmit and receive operations, registers the
interrupt (IRQ) handler with the operating system, starts
a watchdog task and notifies the stack that the interface is
ready. Since e1000 driver uses the New API (NAPI) [2] it
also calls napi enable before enabling the adapter IRQ.

3.2.4 Buffers
e1000 has receive (RX) and transmit (TX) buffers imple-
mented as ring buffers with definitions in e1000.h.

54

The RX (e1000 rx ring) and TX (e1000 tx ring) buffer sizes
can be defined when loading the driver module with possible
buffer sizes between 80 and 4096 descriptors each. While
increasing buffer sizes may help in avoiding packet drops
during heavy CPU utilization large buffers may cause issues
with increased latency and jitter.

3.3 Simple driver vs. e1000 driver
It is obvious that the e1000 driver is hugely more complex
than the simple driver: whereas the simple driver can be
implemented in under 1000 lines of code (LOC) the e1000
driver has closer to 20.000 LOC. The difference in complex-
ity comes mainly from additional features and optimization
of basic functionality such as interrupt rate control on packet
reception.

e1000 simple name description
� � TX and RX buffers
� - Device statistics
� - active vlans Virtual LAN
� - wol Wake-on-LAN
� - tx itr, . . . Interrupt throttling
� - Link speed control
� - HW checksumming
� - NAPI
� - Thread safety
� - Watchdog functions

Table 1: Driver private structure comparison

One comparison that can be done to get some insight about
the feature differences between the simple driver and the
e1000 driver is to look into their private data structures and
see what fields they contain. These names are shown, if
applicable, and grouped into categories with descriptions in
Table 1.

4. FEATURES
In this section we look into specific feature implementations
in the e1000 driver, namely interrupt throttling and TCP
offloading.

4.1 Interrupt throttling
When the network interface receives a series of packet it can
send an interrupt, buffer the packet and wait for a poll later
on, or buffer the packet and send an interrupt when the
allocated buffer size hits a given threshold or a time limit is
reached. This set of different behaviours is an area that has
plenty of opportunities for optimization for different traffic
profiles. Polling is typically less resource-consuming with
heavy traffic, whereas interrupt-driven operation is better
for low latencies when the traffic is not very heavy.

Without throttling the basic interrupt processing proceeds
as shown in the following list. If NAPI is enabled, the inter-
rupt handler e1000 intr will in practise schedule the adapter
for NAPI polling.

1. Network card transmits or receives a packet.

2. Network card generates an interrupt.

3. CPU handles the interrupt. This includes handling
state information and executing an interrupt handler.

4. Device driver takes actions based on the interrupt cause.

5. CPU resumes its previous activity.

The e1000 driver has an internal interrupt throttle rate (ITR)
control mechanism that has the option to dynamically ad-
just the interrupt frequency depending on the current traffic
pattern. In effect this adds a new step in the interrupt pro-
cessing between steps 1. and 2. of the previous listing. In
this new step the network card delayes generating the inter-
rupt in order to transmit or receive more packets during the
delay.

The interrupt throttling functionality is controlled using the
InterruptThrottleRate parameter in e1000 param.c. The pur-
pose is to set the maximum number of interrupts per second
the interface generates when receiving or transmitting pack-
ets [1]. Similar to other configurable parameters, the ITR
can be set on loading the driver module, for instance ”mod-
probe e1000 InterruptThrottleRate=1” [3].

The ITR value has different meanings depending on what
value it is set to. This is presented in the following list. The
default setting is 3.

• 0 = off

• 1 = dynamic

• 3 = dynamic conservative

• 4 = simplified balancing

• 100..100000 = max interrupts/sec fixed to this value

The dynamic options adjust the actual ITR by categorising
the current traffic periodically into one of three different
classes:

• bulk latency for large number of packets/sec of normal
size,

• low latency for small number packets/sec or a signifi-
cant portion of small packets,

• lowest latency for very small number of packets/sec or
almost completely small packets.

In dynamic mode the driver reduces latency quite aggres-
sively for small packets: ITR is increased all the way to
70000 if the traffic profile is lowest latency. For bulk traffic
ITR value is 4000. Low latency profile results in an ITR of
20000. The dynamic conservative mode is identical to dy-
namic mode with the exception that lowest latency traffic is
capped to the same ITR value of 20000 as the low latency
traffic.

In simplified mode the maximum ITR is set based on TX/RX
traffic ratio. With equal traffic in both direction ITR is set
to 2000 , with completely asymmetric traffic ITR is set to
8000. Cases falling between these extremes result in an ITR
somewhere between 2000 and 8000. Off mode turns off all
interrupt moderation resulting in one interrupt per packet.

As an interesting sidenote the driver takes a shortcut for link
speeds less than 1Gbps: in this case ITR is fixed to 4000.

Within e1000main.c the functions relevant to ITR are:

• e1000 update itr

55

• e1000 set itr

Current traffic profile is calculated in e1000 update itr based
on number the of packets and bytes accumulated since pre-
vious interrupt. This results in a very up-to-date view of
current traffic, though the calculation must be quite min-
imal to avoid heavy overhead. The calculation has three
different base cases, one for each current traffic profile. The
calculation is shown in Figure 2.

Current
profile

Lowest latency Low latency Bulk latency

avg bytes /
packet >8000

packets <5 and
bytes >512

Lowest
latency

No

No

Bulk
latency

Yes

Low
latency

Yes

bytes > 10000

bytes > 2000

packets <=2
and

bytes <512

Low
latency

No

No

No

Lowest
latency

Yes

Bulk
latency

Yes

avg bytes/
packet >8000Yes

packets <10 or
avg bytes/
packet >1200

No

Yes

packets >35

No

bytes > 25000

No

No

bytes <6000

Bulk
latency

No

packets >35

Yes

Low
latency

Yes

Figure 2: Per-interrupt traffic class determination

It is noteworthy that in no condition does the traffic class
update from bulk to lowest with a single ITR update: it
must go through the low latency class first.

After the traffic class has been updated e1000 set itr then
sets the actual ITR depending in ITR configuration and the
traffic class. Finally the actual throttling of interrupts is
achieved using the throttle value and several absolute and
packet timers in implemented in the device controller hard-
ware.

4.2 Protocol offloading
Protocol offloading in general is meant to lessen the load
of the system CPU while maintaining high throughput by
doing some protocol processing already on the network in-
terface hardware. It has been studied in detail with various
scenarios, for instance by Freimuth et al [5].

TCP Segmentation offloading (TSO) is the functionality that
does the cutting of packets to maximum transmission unit
(MTU) sized chunks on transmission. This size is typically
1500 bytes. A TSO-capable network card also needs to sup-
port TCP checksum offloading as checksum calculation is
an important part of cutting the oversized data packet into
valid smaller chunks.

Since the operating system must know if the network in-
terface supports TSO the support is defined by the e1000
driver in the hardware features of the net device structure.
Once the networking stack above driver level is aware that
the network card and driver support TSO it is possible to
deliver large chunks of data to the network card. Typical
packet size from the upper stack point of view is 64kB.

The actual TSO operation is done in function e1000 tso. In

the beginning the function checks that the sk buff is meant
to be segmentation offloaded using function skb is gso. After
this the IP header and TCP checksum creation is handled
separately for IPv4 and IPv6, after which the remaining crit-
ical fields are filled and the newly cut packet is placed into
the TX ring buffer.

TCP and UDP checksum offloading is enabled for packet
reception in e1000 configure rx. Actual RX checksum veri-
fication is done in e1000 rx checksum. From the driver point
of view the checksum checking is simple: the driver simply
checks for various possible issues with the checksum and
finally, if the packet is a TCP or UDP packet and the hard-
ware checksum indication is ok, increment the checksum ok
counters.

TX checksums are unsurprisingly done in e1000 tx csum.
The TX checksumming appears to be only for TCP, not for
UDP.

5. CONCLUSION
Modern network device driver and hardware handles func-
tionality that has originally been the responsibility of the
operating system and the CPU, such as packet fragmenta-
tion and checksum computation. This leads to significant
complexity in the driver compared to a more feature-limited
approach.

One of the interesting findings in this paper was that the
e1000 driver has significant control over the packet process-
ing mode: it is capable of adjusting its interrupt generation
depending on current traffic profile. This also places a signif-
icant amount of burden on the network interface hardware
and drivers as a weak implementation might well hamper
the performance of the whole system.

Overall our analysis of a minimal network device driver and
the state-of-the-art e1000 driver shows that the current real-
life drivers are thoroughly optimized and feature-rich.

6. REFERENCES
[1] Interrupt Moderation Using Intel GbE Controllers.

http://www.intel.com/content/dam/doc/

application-note/

gbe-controllers-interrupt-moderation-appl-note.

pdf, April 2007.

[2] NAPI. http://www.linuxfoundation.org/
collaborate/workgroups/networking/napi, November
2009.

[3] Linux e1000 base driver overview and installation.
http://www.intel.com/support/network/adapter/

pro100/sb/cs-032516.htm, November 2011.

[4] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux
Device Drivers, Third Edition. 2005.

[5] D. Freimuth, E. Hu, J. LaVoie, R. Mraz, E. Nahum,
P. Pradhan, and J. Tracey. Server network scalability
and TCP offload. In Proceedings of the annual
conference on USENIX Annual Technical Conference,
ATEC ’05, pages 15–15, Berkeley, CA, USA, 2005.
USENIX Association.

[6] M. L. Jangir. Writing network device drivers for linux.
Linux Gazette, (156), November 2008.

56

[7] lxr@linux.no. http://lxr.linux.no/\#linux+v3.6.7/
drivers/net/ethernet, November 2012.

[8] Realtek. RTL8139(A/B) Programming guide: (V0.1).
1999.

[9] J. Soininen. Device agnostic network interface, 2012.

57

Anatomy of a Linux bridge

Nuutti Varis
Aalto University School of Electrical Engineering,
Department of Communications and Networking

P.O.Box 13000, 00076 Aalto, Finland
Email: {firstname.lastname}@aalto.fi

ABSTRACT
Ethernet is the prevalent Local Area Networking (LAN)
technology, offering a cost efficient way to connect end-hosts
to each other. Local area networks are built by network-
ing devices called switches, that forward Ethernet frames
between end-hosts in the network. The GNU/Linux oper-
ating system can be used to create a software based switch,
called a bridge. This paper explores the architecture, design,
and implementation of the Linux bridging component, and
attempts to chart some of the processing characteristics of
the frame forwarding operation, inside the bridge and in the
operating system as a whole.

1. INTRODUCTION
Network devices, called switches (or synonymously, bridges)
are responsible for connecting several network links to each
other, creating a local area network. Conceptually, the ma-
jor components of a network switch are a set of network
ports, a control plane, a forwarding plane, and a MAC learn-
ing database. The set of ports are used to forward traffic
between other switches and end-hosts in the network. The
control plane of a switch is typically used to run the Span-
ning Tree Protocol (STP) [15], that calculates a minimum
spanning tree for the local area network, preventing physi-
cal loops from crashing the network. The forwarding plane
is responsible for processing input frames from the network
ports, and making a forwarding decision on which network
ports the input frame is forwarded to.

Finally, the MAC learning database is used to keep track of
the host locations in the LAN. It typically contains an entry
for each host MAC address that traverses the switch, and
the input port where the frame was received. The forward-
ing decision is based on this information. For each unicast
destination MAC address, the switch looks up the output
port in the MAC database. If an entry is found, the frame
is forwarded through the port further into the network. If
an entry is not found, the frame is instead flooded from all
other network ports in the switch, except the port where
the frame was received. This latter provision is required to
guarantee the ”plug-and-play” nature of Ethernet.

In addition to Linux, several other operating systems also
implement local area network bridging in the network stack.
FreeBSD has a similar bridging implementation to Linux
kernel, however the FreeBSD implementation also imple-
ments the Rapid Spanning Tree Protocol (RSTP). The FreeBSD
bridge implementation also supports more advanced fea-

tures, such as port MAC address limits, and SNMP mon-
itoring of the bridge state. OpenSolaris also implements a
bridging subsystem [12] that supports STP, RSTP, or a next
generation bridging protocol called TRILL [14].

There has been relatively little evolution in bridging since
the inception of the STP. Switches have evolved in con-
junction with other local area network technologies such
as Virtual LANs [16], while the STP has been incremen-
tally extended to support these new technologies. Currently,
there are two practical next-generation solutions for switch-
ing: RBridges (TRILL), and the Shortest Path Bridging
(SPB) [1]. Both TRILL and SPB diverge from STP based
bridging in several important ways. Some of the key differ-
ences are improved loop safety, more efficient unicast for-
warding, and improved multicast forwarding. Additionally,
the well known scalability issues [2] of the local area net-
works, and the advent of data center networking has also cre-
ated a number of academic research papers, such as SPAIN [10],
Port Land [11], VL2 [6], DCell [7], and BCube [8].

This paper explores the architecture, design and the im-
plementation of the Linux bridging module. In addition,
the paper also analyzes the processing characteristics of the
Linux bridging module by profiling the kernel during for-
warding, and observing various counters that track the per-
formance of the processors and the memory in the multi-core
CPU. The design and implementation of STP in the Linux
bridge module is considered out of scope for this paper.

The rest of the paper is structured as follows. Section 2
presents an overview of the central data structures of the
Linux bridge, creation of a Linux bridge instance, and the
processing flow of an incoming frame. Next, Section 3 de-
scribes the forwarding database functionality of the bridge
implementation. Section 4 describes the experimentation
setup, and analyzes some of the performance related aspects
of the bridging module and the operating system. Finally,
Section 5 finishes the paper with some general remarks of
local area networks and the Linux bridging implementation.

2. OVERVIEW
The architectural overview of the Linux bridging module
is divided into three parts. First, the key data structures
for the bridging module are described in detail. Next, the
configuration interface of the Linux bridging module is dis-
cussed by looking at the bridge creation and port addition
mechanisms. Finally, the input/output processing flow of

58

�������	
�

��
�

���������

	��

���

�������
�

����

���

�������	
������

��

	��

����

�

�������	
���	��
�����

�����

	��

���

��	���	

���	

�		�

������

�������

����	
��
���	���
�

Figure 1: Primary Linux bridge data structures

the Linux bridging module is discussed in detail.

2.1 Data structures
The Linux bridge module has three key data structures that
provide the central functionality for the bridge operation.
Figure 1 presents an overview of the most important fields
and their associations in the three key data structures. The
main data structure for each bridge in the operating system
is the net_bridge. It holds all of the bridge-wide configura-
tion information, a doubly-linked list of bridge ports (net_
bridge_port objects) in the field port_list, a pointer to
the bridge netdevice in the field dev, and the forwarding
database in the field hash. The technical details and the
functionality of the hash array table are described in 3.1.
Finally, the field lock is used by the bridge to synchronize
configuration changes, such as port additions, removals, or
changing the various bridge-specific parameters.

Each bridge port has a separate data structure net_bridge_
port, that contains the bridge port specific parameters. The
field br has a back reference to the bridge that the port
belongs to. Next, the dev field holds the actual network
interface that the bridge port uses to receive and transmit
frames. Finally, position of the data structure object in
the net_bridge->port_list linked list is stored in the field
list. There are also various configuration parameter fields
for the port, as well as the port-specific state and timers for
the STP and IGMP [5] snooping features. IGMP snooping
will be detailed in Section 3.2.

Finally, the third key data structure for the Linux bridge
module is the net_bridge_fdb_entry object that represents
a single forwarding table entry. A forwarding table entry
consists of a MAC address of the host (in the field addr),
and the port where the MAC address was last seen (in the
field dst). The data structure also contains a field (hlist)
that points back to the position of the object in a hash table
array element in net_bridge->hash. In addition, there are
two fields, updated and used, that are used for timekeeping.
The former specifies the last time when the host was seen
by this bridge, and the latter specifies the last time when
the object was used in a forwarding decision. The updated

field is used to delete entries from the forwarding database,
when the maximum inactivity timeout value for the bridge
is reached, i.e., current time−updated > bridge hold time.

2.2 Configuration subsystem

�������	
�������
���

���������	
���
�
�����
�

�������	
��������

����		����	�

����		���

�������	
�����	���
��

���	
���
�
�

����
����	���

�
�	
��������	�
���
����
�

����
����	���

�������
�	
�

��	��
�����

��	��
����

���	�
��
���
���������	
�

Figure 2: Linux bridge configuration; adding a
bridge and a bridge port

The Linux bridging module has two separate configuration
interfaces exposed to the user-space of the operating system.
The first, ioctl interface offers an interface that can be used
to create and destroy bridges in the operating system, and
to add and remove existing network interfaces to/from the
bridge. The second, sysfs based interface allows the manage-
ment of bridge and bridge port specific parameters. Figure
2 presents a high level overview of the kernel ioctl process,
that creates and initializes the bridge object, and adds net-
work interfaces to it. The functions on dark grey areas are in
the generic kernel, while the lighter areas are in the bridge.

The creation of a new bridge begins with the ioctl command
SIOCBRADDBR that takes the bridge interface name as a
parameter. The ioctl command is handled by the br_ioctl_
deviceless_stub function, as there is no bridge device to
attach the ioctl handler internally. The addition of a new
bridge calls the function br_add_bridge, that creates the
required bridge objects in the kernel, and eventually calls
the alloc_netdev function to create a new netdevice for
the bridge. The allocated netdevice is then initialized by
the br_dev_setup call, including assigning the bridge device
specific ioctl handler br_dev_ioctl to the newly allocated
netdevice. All subsequent bridge specific ioctl calls are done
on the newly created bridge device object in the kernel.

Ports are added to bridges by the ioctl command SIOCBRAD-
DIF. The ioctl command takes the bridge device and the in-
dex of the interface to add to the bridge as parameters. The
ioctl calls the bridge device ioctl handler (br_dev_ioctl),
that in turn calls the br_add_if function. The function is re-
sponsible for creating and setting up a new bridge port by al-
locating a new net_bridge_port object. The object initial-
ization process automatically sets the interface to receive all
traffic, adds the network interface address for the bridge port
to the forwarding database as a local entry, and attaches the
interface as a slave to the bridge device. Finally, the func-
tion also calls the netdev_rx_handler_register function
that sets the rx_handler of the network interface to br_

handle_frame, that enables the interface to start processing
incoming frames as a part of the bridge.

2.3 Frame processing
The Linux bridge processing flow begins from lower layers.
As mentioned above, each network interface that acts as a
bridge interface, will have a rx_handler set to br_handle_

frame, that acts as the entry point to the bridge frame
processing code. Concretely, the rx_handler is called by

59

����������������	���

����
�	�����
��������

����
��������

�������������������

����������������������

����
��������
 ������������������

����	����	
��

����
��������

	���������!���

����
�����
�����

����
�	����
�
�
�
��

���������
�������
�	

���"��	�����
�	

���������
�	

������	�����

����
�	�����
�� �������
�	

	������������

�����������������

������������������	�
��
�����������������	�
��

Figure 3: Architectural overview of the Linux bridge
module I/O

the device-independent network interface code, in __netif_

receive_skb. Figure 3 presents the processing flow of an in-
coming frame, as it passes through the Linux bridge module
to a destination network interface queue.

The br_handle_frame function does the initial processing
on the incoming frame. This includes doing initial validity
checks on the frame, and separating control frames from nor-
mal traffic, because typically these frames are not forwarded
in local area networks. The bridge considers any frame that
has a destination address prefix of 01:80:C2:00:00 to be a
control frame, that may need specialized processing. The
last byte of the destination MAC address defines the behav-
ior of the link local processing. Currently, Ethernet pause
frames are automatically dropped, STP frames are either
passed to the upper layers if it is enabled on the bridge,
or forwarded, when it is disabled. Finally, if a forwarding
decision is made, and the bridge is in either forwarding or
learning mode, the frame is passed to br_handle_frame_

finish, where the actual forwarding processing begins.

The br_handle_frame_finish function first updates the for-
warding database of the bridge with the source MAC ad-
dress, and the source interface of the frame by calling br_

fdb_update function. The update either inserts a new entry
into the forwarding database, or updates an existing entry.

Next, the processing behavior is decided based on the desti-
nation MAC address in the Ethernet frame. Unicast frames
will have the forwarding database indexed with the destina-
tion address by using the __br_fdb_get function to find out
the destination net_bridge_port where the frame will be
forwarded to. If a net_bridge_fdb_entry object is found,
the frame will be directly forwarded through the destination
interface by the br_forward function. If no entry is found for
the unicast destination Ethernet address, or the destination
address is broadcast, the processing will call the br_flood_

forward function. Finally, if the frame is a multi-destination
frame, the multicast forwarding database is indexed with the
complete frame. If selective multicasting is used and a multi-
cast forwarding entry is found from the database, the frame
is forwarded to the set of bridge ports for that multicast ad-

dress group by calling the br_multicast_forward function.
If no entry is found or selective multicasting is disabled, the
frame will be handled as a broadcast Ethernet frame and
forwarded by the br_flood_forward function.

In cases where the destination MAC address of the incom-
ing frame is multi- or broadcast, the bridge device is set to
receive all traffic, or the address is matches one of the lo-
cal interfaces, a clone of the frame is also delivered upwards
in the local network stack by calling the br_pass_frame_

up function. The function updates the bridge device statis-
tics, and passes the incoming frame up the network stack by
calling the device independent netif_receive_skb function,
ending the bridge specific processing for the frame.

The forwarding logic of the Linux bridge module is im-
plemented in three functions: br_forward, br_multicast_
forward, and br_flood_forward, to forward unicast, mul-
ticast, and broadcast or unknown unicast destination Eth-
ernet frames, respectively. The simplest of the three, the
br_forward function checks whether the destination bridge
interface is in forwarding state, and then either forwards
the incoming frame as is, clones the frame and forwards the
cloned copy instead by calling the deliver_clone function,
or doing nothing if the bridge interface is blocked. The br_

multicast_forward function performs selective forwarding
of the incoming Ethernet frame out of all of the bridge inter-
faces that have registered multicast members for the destina-
tion multicast address in the Ethernet frame, or on interfaces
that have multicast routers behind them. The br_flood_

forward function iterates over all of the interfaces in the
bridge, and delivers a clone of the frame through all of them
except the originating interface. Finally, all three types of
forwarding functions end up calling the __br_forward func-
tion that actually transfers the frame to the lower layers by
calling the dev_queue_xmit function of the interface.

3. TECHNICAL DETAILS
The Linux bridge module has two specific components that
are explored in detail in this section. First, the functionality
of the forwarding database is described in detail. Secondly,
an overview of the IGMP snooping and selective multicas-
ting subsystem of the Linux bridge is given, concentrating
on the functional parts of the design.

3.1 Forwarding database
The forwarding database is responsible for storing the loca-
tion information of hosts in the LAN. Figure 4 shows the
indexing mechanism for the forwarding table, and the struc-
ture of the forwarding database array. Internally, the for-
warding database is an array of 256 elements, where each
element is a singly linked list holding the forwarding table
entries for the hash value. The hash value for all destination
MAC addresses is calculated by the br_hash_mac function.

The hashing process begins by extracting the last four bytes
of the MAC address, creating a 32 bit identifier. The last
four bytes are chosen because of the address organization in
MAC addresses. Each 48 bit address consists of two parts.
The first 24 bits specify an Organizationally Unique Identi-
fier (OUI) that is assigned to the organization that issued
the address. The last 24 bits specify an identifier that is
unique within the OUI. The fragment of the MAC value

60

�
��������

������	
� ������	
��

��� ��� ������

������	
� ������	
� ���
����������������

�� �� �� ��

�

������
������
��	������ ���������������
�������
���

���������
�

�
���������

�������	

Figure 4: Linux bridge forwarding table indexing

used by the bridge contains a single byte of the OUI and all
three bytes of the OUI specific identifier. This guarantees
a sufficiently unique identifier, while still allowing efficient
hashing algorithms to be used.

The MAC address fragment, along with a randomly gen-
erated fdb_salt value is passed to a generic single word
hashing function in the Linux kernel, called jhash_1word.
The resulting 32 bit hash value is then bounded to the max-
imum index in the hash array (i.e., 255) to avoid overflowing.
The forwarding table entry for the destination MAC address
is found by iterating over the linked list of the hash array
element, pointed by the truncated hash value.

Unused entries in the forwarding table are cleaned up pe-
riodically by the br_cleanup function, that is invoked by
the garbage collection timer. The cleanup operation iterates
over all the forwarding database entries and releases expired
entries back to the forwarding table entry cache. During
iteration, the function also keeps track of the next invoca-
tion time of the cleanup operation. This is done by keeping
track of the next expiration event after the cleanup invoca-
tion, based on the expiration times of the forwarding table
entries that are still active during the cleanup operation.

3.2 IGMP Snooping
The IGMP snooping features of the Linux kernel bridge
module allows the bridge to keep track of registered multi-
cast entities in the local area network. The multicast group
information is used to selectively forward incoming multicast
Ethernet frames on bridge ports, instead of treating multi-
cast traffic the same way as broadcast traffic. While IGMP
is a network layer protocol, the IPv4 multicast addresses
directly map to Ethernet addresses on the link layer. Con-
cretely, the mapping allows local area networks to forward
IPv4 multicast traffic only on links that contain hosts that
use it. This can have a significant effect in the traffic char-
acteristics of the local area network, if multicast streaming
services, such as IPTV are used by several hosts.

IGMP snooping functionality consists of two parts in the
Linux kernel: First, multicast group information is managed
by receiving IGMP messages from end hosts and multicast
capable routers on bridge ports. Next, based on the multi-
cast group information, the forwarding decision of the bridge
module selectively forwards received multicast frames on the
ports that have reported a member on the multicast group
address in the Ethernet frame destination address field. This
paper discusses the latter part of the operation by going over
the details of the multicast forwarding database, and the
multicast forwarding database lookup.

Figure 5 presents an overview of the multicast forwarding

��	��������	��
�
���
�

	
��

���

�
�

�

�����������	��
������

���

���

���

�����

���

����

���

���������������
������

����

����

������

���
����

������

���

Figure 5: Linux bridge multicast forwarding
database structure

database structure, and the relationships between the main
data structures. The multicast forwarding database is con-
tained in the net_bridge_mdb_htable data structure. The
field mhash points to a hash array of linked list objects,
similar to the normal forwarding database. The signifi-
cant difference between the normal forwarding database and
the multicast forwarding database is that the hash table
is dynamically resized, based on the number of multicast
groups registered by the operating system, either from local
or remote sources. To support the efficient resizing of the
database, a special field old is included in the data struc-
ture. This field holds the previous version of the multicast
forwarding database. The previous version is temporarily
stored because the rehashing operation of the multicast for-
warding database is done in parallel with read access to
the previous database. This way, the rehashing operation
does not require exclusive access to the multicast forwarding
database, and the performance of the multicast forwarding
operation does not significantly degrade. After the rehash
operation is complete, the old database is removed. Finally,
the data structure also contains the field secret, that holds
a randomly generated number used by the multicast group
address hashing to generate a hash value for the group.

Each multicast group is contained in a net_bridge_mdb_

entry data structure. The data structure begins with a two
element array hlist. These two elements correspond to the
position of the multicast group entry in the two different
versions of the multicast forwarding database. The current
version of the multicast forwarding table is defined by the
net_bridge_mdb_htable->ver field, that will be either 0 or
1. The ports field contains a pointer to a net_bridge_

port_group data structure that contains information about
a bridge port that is a part of this multicast group. Finally,
the addr field contains the address of the multicast group.

The third primary data structure for the multicast forward-
ing system is the net_bridge_port_group. The data struc-
ture holds a pointer to the bridge port, and a pointer to
the next net_bridge_port_group object for a given net_

bridge_mdb_entry object. The data structure also contains
the multicast group address and various timers related to
the bookkeeping of the multicast group information.

The multicast forwarding database lookup is similar to the
forwarding table lookup. Figure 6 presents an overview of
the operation. The hashing function takes two separate

61

�������	
�

�������	
 �������	
�

��� ��� ������

�������	
 �������	
 ��
�������

���

 �

�����	
����
!
�������������� ����������������	
������"
�������
���

���������	�

�	��������

������

Figure 6: Linux bridge multicast forwarding
database indexing

values and passes them to a generic hashing function in
the Linux kernel (e.g., jhash_1word), similar to the MAC
address hashing operation. For IPv4, the full multicast
group address and the contents of the field net_bridge_

mdb_htable->secret field are passed to the hashing func-
tion, resulting in a hash value. IPv6 uses a different hashing
function that takes the full 128-bit address as an array of
4 32-bit integers. The hash value is then bounded to the
maximum index of the multicast forwarding database hash
array. As with the normal forwarding table, the correct net_
bridge_mdb_entry is found by iterating over all the elements
in the linked list, pointed by the bounded hash value.

4. EXPERIMENTATION
Packet processing on generic hardware is generally seen as
memory intensive work [3, 4]. The experimentation in this
paper explore the processing distribution between the differ-
ent components of the system during the forwarding process.

4.1 Evaluation Setup
Figure 7 presents the experiment environment. It consists
of a Spirent Testcenter traffic generator, and a Linux server
using kernel version 3.5.3, with a bridge acting as the Device
Under Test (DUT). The Spirent Testcenter generates a full
duplex stream of Ethernet frames that are forwarded by the
DUT using two 1Gbps network interface ports. The Linux
kernel on the server collects performance statistics during
the tests using the built-in profiling framework in the kernel.

The performance framework is controlled from the user space
by the perf tool [13]. The tool offers commands to man-
age the performance event data collection, and to study
the results. To collect performance event data, the user
defines a list of either pre-defined performance events that
are mapped to CPU-specific performance events by the tool,
or raw performance events that can typically be found from
the reference guide of the CPU or architecture model.

To generate usable performance event data, the Spirent Test-
center was used to run the RFC 2889 [9] forwarding test with
64 byte frames to determine the maximum forwarding rate of
the DUT. The forwarding test performs several forwarding
runs, and determines the maximum forwarding rate of the
DUT by using a binary search like algorithm to narrow the
forwarding rate to within a percent of the maximum. Then,
five separate tests using the maximum forwarding rate with
performance event data collection were run with one and
1024 Ethernet hosts on each port. The reason the perfor-
mance event data collection was done this way was to elim-
inate the effects of frame discarding from the results, due to
receiving too many frames from the traffic generator.

���#$�������

���%������	
�'���

��
���

��
���������������

�����

�����

�����

�����

���������
��	�%��

�����	���

����

Figure 7: Experiment environment

The kernel was instrumented to collect two different per-
formance events during the testing: used clock cycles, and
cache references and misses. The cycles can be used as an
estimator on the distribution of CPU processing inside the
kernel. Cache references and cache misses can be used to es-
timate the workload of the memory subsystem in two ways.
Each cache reference and miss can be likened to an oper-
ation in the CPU, that requires the program to access the
main memory of the system. Cache reference occurs, when
the accessed information is found in a cache, avoiding an
expensive main memory access. Conversely, a cache miss
happens when the information is not available in any of the
caches of the CPU, and the operation requires an expensive
access to the main memory of the computer.

4.2 Results
Table 1 presents the distribution of work between the dif-
ferent subsystems of the Linux kernel during the forwarding
test with 64 byte frames. The results are given as a per-
cent of the total number of event counters collected in the
tests. The work is divided into four different subsystems:
the bridge module, the network interface card driver and the
network device API, the locking mechanism of the kernel for
shared data structures, and the memory management.

Table 1: Performance event data distribution for
RFC 2889 forwarding test

Hosts

2 2048 2 2048 2 2048

Subsystem Cycles% Cache Ref% Cache Miss%

Interface 45.7% 40.5% 55.0% 42.2% 77.5% 77.9%

Bridge 21.0% 29.2% 11.1% 31.5% 4.2% 3.8%

Memory/IO 19.6% 17.2% 28.8% 22.0% 5.1% 5.4%

Locks 13.7% 13.2% 5.2% 4.3% 13.2% 12.9%

Almost 46% of the CPU cycles are spent in the device driver
and the network device independent layer of the network
stack. Next, the Linux bridging module and the memory
management of the kernel are spending roughly 20% of the
cycles each. Finally, the locking mechanism of the kernel is
taking up the last 15% of cycles. As the number of hosts
in the test increases from two to 2048, we can see that the
bridge uses a larger portion of the overall cycles. The in-
crease in used cycles is related to the organization of the
hash array in the forwarding database.

The network interface and the device driver are also respon-
sible for 55% of the cache references, and 78% of the cache
misses, when there are two hosts in the LAN. We can also see
a similar trend with the Linux bridging module here, as with

62

the cycle use. When the number of hosts increases from two
to 2048, the Linux bridging module uses significantly larger
portion of memory operations (and thus, caching operations)
to update and query the forwarding database.

Table 2 presents the distribution of work in the Linux bridge
module between the four busiest functions during the for-
warding test. The results are given as a percent of the total
number of event counters collected in the tests. Note that
the table only holds four of the 13 different functions that
participate in the DUT forwarding operation.

Table 2: Performance event distribution for
RFC2889 forwarding test in the bridge module

Hosts

2 2048 2 2048 2 2048

Function Cycles% Cache Ref% Cache Miss%

nf iterate 19.6% 13.2% 2.3% 3.4% 12.1% 8.8%

br fdb update 18.2% 26.1% 42.0% 39.0% 0.1% 0.3%

br handle frame 13.5% 8.6% 2.7% 1.1% 3.7% 6.9%

br fdb get 10.0% 23.6% 41.3% 42.9% 0.1% 0.6%

The most interesting piece of information can be seen in
these results. During testing, most cycles in the Linux bridg-
ing module are not used by a bridge-specific function. The
nf_iterate function is used by the netfilter module to it-
erate over the rules that have been specified in the system.
All of the work performed by the nf_iterate function dur-
ing the frame forwarding tests is essentially wasted, as the
system had no netfilter rules defined nor does the bridging
module require netfilter for any operational behavior.

We can also see from the table that most of the mem-
ory related operations are performed by the two forward-
ing database functions br_fdb_update and __br_fdb_get.
When the number of hosts during testing is increased to
2048, the two functions also consume most of the cycles
during testing. The reason for the increased processor cycle
usage with increased number of hosts is explained by the
architecture of the forwarding database. As mentioned in
3.1, the forwarding database consists of an array of 256 el-
ements, where each element is a linked list. The hashing
function assigns the forwarding database entry for the MAC
address to one of the linked lists. Thus, the more hosts the
system sees, the longer the average length of the chain for a
single linked list will become. The entries in the linked lists
are in arbitrary order, which requires a linear seek through
the full list. This significantly increases the number of clock
cycles required to find the MAC address from the linked list.

As can be seen from the table, the number of cache ref-
erences stays roughly the same while the number of hosts
is increased. In addition, the forwarding database in both
cases fits into the system cache, as the number of misses dur-
ing the forwarding database functions is insignificant. The
majority of cache misses occur in the various netfilter related
functions of the overall frame processing.

5. CONCLUSION
Ethernet based LANs are the building block of IP based net-
works, and the network application ecosystem. Local area
networks are built by bridges that connect multiple Ethernet
links into a single larger Ethernet cloud.

The Linux kernel contains a bridge module that can be
used to create local area networks by combining network
interface ports of a computer under a single bridge. While
Linux bridges are not able to compete with specialized ven-
dor hardware in performance, Linux bridging can be used in
environments where performance is not the priority.

The experimentation conducted for this paper explored the
performance characteristics of the Linux kernel during the
bridge operation. The results show that most of the process-
ing time is consumed by the device driver and the network
interface, instead of the bridge. We can also see that mod-
ern most of the packet forwarding to occur inside the caches
of the CPU. The evaluation also shows a significant increase
in processing requirements in the bridge module, when the
number of hosts in the LAN is significant increased.

6. REFERENCES
[1] D. Allan et al. Shortest path bridging: Efficient

control of larger ethernet networks. IEEE
Communications Magazine, 48:128–135, Oct. 2010.

[2] G. Chiruvolu, A. Ge, D. Elie-Dit-Cosaque, M. Ali, and
J. Rouyer. Issues and approaches on extending
Ethernet beyond LANs. Communications Magazine,
IEEE, 42(3):80 – 86, March 2004.

[3] N. Egi et al. Towards high performance virtual routers
on commodity hardware. CoNEXT ’08. ACM.

[4] N. Egi et al. Forwarding path architectures for
multicore software routers. PRESTO ’10. ACM, 2010.

[5] W. Fenner. Internet Group Management Protocol,
Version 2. RFC 2236, Internet Engineering Task
Force, November 1997.

[6] A. Greenberg et al. VL2: a scalable and flexible data
center network. In SIGCOMM. ACM, 2009.

[7] C. Guo et al. Dcell: a scalable and fault-tolerant
network structure for data centers. In SIGCOMM,
pages 75–86. ACM, 2008.

[8] C. Guo et al. BCube: a high performance,
server-centric network architecture for modular data
centers. In SIGCOMM. ACM, 2009.

[9] R. Mandeville and J. Perser. Benchmarking
Methodology for LAN Switches. RFC 2889, Internet
Engineering Task Force, August 2000.

[10] J. Mudigonda, P. Yalagandula, M. Al-Fares, and
J. Mogul. SPAIN: COTS data-center ethernet for
multipathing over arbitrary topologies. In NSDI.
USENIX, 2010.

[11] R. Niranjan Mysore et al. PortLand: a scalable
fault-tolerant layer 2 data center network fabric. In
SIGCOMM, pages 39–50. ACM, 2009.

[12] Opensolaris rbridge (IETF TRILL) support. http://
hub.opensolaris.org/bin/view/Project+rbridges/.

[13] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org.

[14] R. J. Perlman. Rbridges: Transparent routing. In
INFOCOM, pages 1211–1218, 2004.

[15] Media Access Control (MAC) Bridges. Standard
802.1D, IEEE, 2004.

[16] Virtual Bridged Local Area Networks. Standard
802.1Q-2005, IEEE Computer Society, 2005.

63

ISBN 978-952-60-4997-7 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Communications and Networking
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 1
/2

013

P
asi S

aro
lahti (e

d.)
P

ro
ce

e
d
in

g
s o

f S
e
m

in
ar o

n
 N

etw
o
rk P

ro
to

co
ls in

 O
p
e
ratin

g
 S

yste
m

s
A

alto
 U

n
ive

rsity

Department of Communications and Networking

Proceedings of Seminar on Network Protocols
in Operating Systems

Somaya Arianfar, Magnus Boye, Karthik Budigere, Antti Jaakkola, Aapo Kalliola,
Fida Ullah Khattak, Jouni Korhonen, Arseny Kurnikov, Jonne Soininen, Nuutti Varis,
Pasi Sarolahti (ed.)

SCIENCE +
TECHNOLOGY

SEMINAR
PROCEEDINGS

