
Aalto University

School of Electrical Engineering

Sakari Bergen

Conductor Follower:

Controlling sample-based synthesis with
expressive gestural input

Master’s Thesis
Espoo, December 12, 2012

Supervisor: Professor Tapio Lokki
Instructor: Professor Tapio Lokki

Aalto University
School of Electrical Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Sakari Bergen

Title:
Conductor Follower: Controlling sample-based synthesis with expressive gestural

input

Date: December 12, 2012 Pages: 9 + 63

Department of Signal Processing and Acoustics

Professorship: Acoustics and Audio Signal Processing Code: S-89

Supervisor: Professor Tapio Lokki

Instructor: Professor Tapio Lokki

Over the years, several systems that follow conductor movement and play back
a score accordingly have been implemented. Since conducting is essentially com-
munication between the conductor and the musicians – including more than only
gestural communication – it is clear that the problem is very complex to master
completely. Recent developments in the computer gaming industry have made
consumer grade motion sensing devices commonly available and easy to use in
software development, making such a device an intriguing choice for using as
the input of a conductor follower system. A system using such a device together
with a high quality sample based synthesis engine was designed and implemented.
These building blocks provide a solid foundation for a natural user experience,
and have not been previously used in a similar way.

The result is a VST plugin which uses MIDI scores as input, and may be config-
ured to work with any sample based synthesis engine supporting patch switching
via keyswitch events. The system was evaluated by a professional conductor,
and while the expressive features of the system are somewhat limited, the tempo
following functionality was concluded to resemble a real orchestra when adjusted
correctly.

Keywords: conductor follower, motion capture, musical gestures, score

following, expressive synthesis

Language: English

ii

Aalto-yliopisto
Sähkötekniikan korkeakoulu

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Sakari Bergen

Työn nimi:

Kapellimestariseuraaja: Samplepohjaisen synteesin ohjaus ekspressiivisillä eleillä

Päiväys: 12. joulukuuta 2012 Sivumäärä: 9 + 63

Signaalinkäsittelyn ja akustiikan laitos

Professuuri: Akustiikka ja äänenkäsittelytekniikka Koodi: S-89

Valvoja: Professori Tapio Lokki

Ohjaaja: Professori Tapio Lokki

Vuosien mittaan on kehitetty useita järjestelmiä, jotka seuraavat kapellimestarin
liikkeitä, ja soittavat musiikkia keräämänsä tiedon perusteella. Koska orkesterin-
johto on pohjimmiltaan kommunikaatiota kapellimestarin ja muusikkojen välillä
– sisältäen muutakin kuin eleiden kautta kommunikointia – on selvää, että on-
gelman täydellinen hallinta on hyvin monimutkaista. Tietokonepeliteollisuuden
viimeaikaisen kehityksen myötä kuluttajatason liikesensoreita on helposti saata-
villa, ja niille on helppo kehittää ohjelmistoja. Siksi ne ovat hyvin varteenotet-
tava vaihtoehto kapellimestariseuraajan syötteen tuottamiseksi. Tässä tutkimuk-
sessa suunniteltiin ja toteutettiin kyseisenlaista liikesensoria, sekä korkealaatuista
samplepohjaista syntetisaattoria käyttävä kapellimestariseuraaja. Nämä kompo-
nentit antavat hyvän perustan luonnolliselle käyttäjäkokemukselle, eikä niitä ole
aikaisemmin käytetty vastaavanlaisissa sovelluksissa.

Työn tulos on VST-liitännäinen, joka käyttää MIDI-tiedostoja syötteenään. Oi-
keilla asetuksilla liitännäistä on mahdollista käyttää lähes minkä tahansa sample-
pohjaisen syntetisaattorin kanssa. Järjestelmän toimintaa arvioitiin ammattika-
pellimestarin avustuksella, ja vaikka järjestelmän ekspressiiviset ominaisuudet
ovat jokseenkin rajoittuneet, sopivilla asetuksilla sen temponseuraamisominai-
suuksien todettiin muistuttavan oikeaa orkesteria.

Asiasanat: kapellimestariseuraaja, liikeenseuranta, musiikilliset eleet,

partituurin seuranta, ekspressiivinen synteesi

Kieli: Englanti

iii

Acknowledgements

The work for this thesis was done as a research assistant within the Virtual
Acoustics research team at the Department of Media Technology in Aalto
University School of Science, during May–December 2012. I would like to
express my gratitude to Professor Tapio Lokki for making the project possible
and supporting my work, Conductor Sasha Mäkilä for his invaluable feedback
and ideas, and my fellow employees at the Department of Media Technology
for contributing to a pleasant working environment. I would also like to
thank the open source community for providing me with all the awesome tools
that made this project possible. The research leading to these results has
received funding from the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no. [203636].

Espoo, December 12, 2012

Sakari Bergen

iv

Contents

Abbreviations and Acronyms viii

Notation ix

1 Introduction 1
1.1 Conducting Gestures . 1
1.2 Gesture-Based Human-Computer Interaction 2
1.3 Tempo Following . 3
1.4 Expressive Sound Synthesis 4
1.5 Thesis Overview . 4

2 Conductor Following 6
2.1 Previous Work . 6

2.1.1 Sensors for Gesture Capture 6
2.1.2 Methods for Gesture Analysis 7
2.1.3 Performance Control 8
2.1.4 Synthesis . 8

2.2 Design Rationale . 9
2.3 System Overview . 9

3 Motion Capture 12
3.1 OpenNI and Hand Tracking 12
3.2 Supporting Methods . 12

3.2.1 The Polynomial Regression Filter 13
3.2.2 Exponential Moving Average 13
3.2.3 Peak Holder . 14
3.2.4 Standard Deviation of the Sample 14

3.3 Beat Detection . 14
3.4 Start Gesture Detection . 15
3.5 Expressive Feature Extraction 16

3.5.1 Windowed Trajectory Length 17

v

3.5.2 Windowed Standard Deviation of Velocity 17
3.5.3 Filtered Peak Jerk . 18

4 Score Following 19
4.1 Physical Time and Score Positions 19
4.2 Beat Classification . 20

4.2.1 Beat Patterns . 21
4.2.2 The Beat Classification Operation 21

4.3 Tempo Adjustment . 23
4.3.1 Tempo Estimation . 23
4.3.2 Tempo Function . 23
4.3.3 Offset Compensation 25
4.3.4 Tempo Changes . 26
4.3.5 Relaxed Tempo Following 27

4.4 Start Tempo Estimation . 27

5 Sound Synthesis 28
5.1 Vienna Symphonic Library . 28

5.1.1 Virtual Studio Technology 29
5.2 Score Event Format . 29

5.2.1 The Musical Instrument Digital Interface 29
5.3 Patch Switching . 30

5.3.1 Patch Parameter Synthesis 30
5.3.2 Patch Distance Function 31

6 Visualization 33
6.1 Movement Tracing . 33
6.2 Spatial Beat Visualization . 33
6.3 Beat Offset Visualization . 35
6.4 Depth Sensor Output . 35

7 Implementation Details 36
7.1 Architectural Overview . 36

7.1.1 Modules . 36
7.1.2 Supporting Libraries 37

7.2 Real-time Computing and Threading 38
7.2.1 Real-time Computing 38
7.2.2 Thread Model . 39

7.3 Time Handling . 40
7.3.1 Jitter Correction . 40
7.3.2 Dimensional Analysis 41

vi

7.4 Essential Common Utilities 41
7.4.1 Event Buffer . 42
7.4.2 The Butler Thread . 42
7.4.3 Lock-Free Ringbuffer 42
7.4.4 Chen & Burns Buffer 43

7.5 Motion Capture . 43
7.5.1 The Polynomial Regression Filter 43

7.6 Data File Formats . 44
7.6.1 Score Description Files 44
7.6.2 Instrument Definition Files 45
7.6.3 Beat Pattern Definition Files 45

8 Discussion and Conclusions 47
8.1 Evaluation of Results . 47

8.1.1 Architecture . 47
8.1.2 Implemented Features 48
8.1.3 Feature Quality . 48

8.2 Future Work . 49
8.2.1 Machine Learning . 49
8.2.2 Motion Tracking . 50
8.2.3 Score Analysis . 50
8.2.4 Potential Modifications 51

8.3 Conclusions . 52

Bibliography 53

A Source Code Availability and Compatibility 57

B DSL Examples 58
B.1 Score Description Format . 58
B.2 Instrument Definition Format 59
B.3 Beat Pattern Definition Format 61

vii

Abbreviations and Acronyms

API Application Programming Interface

DSL Domain Specific Language

HCI Human-Computer Interaction

IEEE Institute of Electrical and Electronics Engineers

MIDI Musical Instrument Digital Interface

NI Natural Interaction

NUI Natural User Interface

RT Real-Time (computing)

UI User Interface

VST Virtual Studio Technology: A virtual instrument and
effect plugin architecture created by Steinberg GmbH

VSL Vienna Symphonic Library

viii

Notation

〈α, β, γ〉 Denotes a tuple containing the values α, β, and γ.

T := 〈a, b, c〉 Defines the tuple type T , which consists of the vari-
ables a, b, and c.

{α, β, γ} Denotes the set containing the values α, β, and γ.

T ∈ {α, β, γ} Defines the type T, which may only contain values
from the set {α, β, γ}.

ai Denotes the ith element in the array a.

size (a) Denotes the size of array a.

F : D1 → D2 Denotes that the function F maps values from domain
D1 to domain D2.

α (mod β) Denotes the floating point modulus operation. That
is, the value α − Nβ for an integer N such that the
magnitude of the result is less than β.

bαc Denotes the floor function of α. That is, the largest
integer smaller than or equal to α.

sgn (α) Denotes the signum function of α.

]α, β[Denotes an open interval from α to β.

[α, β] Denotes a closed interval from α to β.

]α, β] and [α, β[Denote half-open intervals from α to β.

ix

Chapter 1

Introduction

The interaction between conductors and musicians is a sophisticated form
of non-verbal communication. While the expressions used in conducting
have no strict rules, most gestures performed by experienced conductors
are understood by adequately experienced musicians. Modeling this com-
plex conductor-musician interaction requires understanding the fundamental
principles behind the communication. Once the relevant features are iden-
tified, it is possible to implement a system that follows the movements of a
conductor by capturing and interpreting relevant data. By combining this
conductor following with a musical score and a sound synthesis system, an
interactive sonic experience can be created.

1.1 Conducting Gestures

While some forms of musical conducting have been around for hundreds of
years [1], the developments that lead to the modern form of conducting were
driven by the increasing size and complexity of symphonic scores in the late
nineteenth century [2]. The task of the modern conductor is to mold an
interpretation by guiding the musicians to play a musical score according to
his or her vision. This is done not only by non-verbal gestures using body
postures, hand movements, eye contact and facial expressions, but also using
verbal instructions during rehearsals.

Studying conducting from a scientific, data based approach, is a rather
recent development. Sousa [3] was among the first, performing a study in
1988, which investigated the use of musical conducting emblems, and their
interpretation by instrumental performers. Sousa used videotaped conduct-
ing gestures, which he presented to university, high school and junior high
school students, to study which gestures could be classified as conducting em-

1

CHAPTER 1. INTRODUCTION 2

blems, non-verbal acts with precise meaning and a common interpretation
among instrumental performers. He concluded that 38 out of the 55 studied
gestures were recognized by over 70% of the subjects, with the recognition
rate having a strong correlation with the experience level of the musicians.

While some conducting gestures can be easily analyzed, and do have a
commonly recognized meaning, to really understand how the communica-
tion between conductors and musicians works, one has to study the whole
life cycle of a conducted performance – preparations made by the conductor
before rehearsing with the musicians, rehearsal with musicians, and finally
the actual performance. Konttinen [4] studied conducting as a practical and
sociological activity in her dissertation Conducting Gestures. She came to
the conclusion that the main purpose of all conducting gestures become ap-
parent in a social situation – a rehearsal, performance or conducting class –
where the communicational situation includes both the gesture and the social
context in which it is used. Therefore the meaning of conducting gestures
are heavily influenced by their social context – the musicians affecting the
way the conductor performs, and the conductor affecting the way the mu-
sicians interpret the gestures. Especially the rehearsal situation, where the
conductor needs to make the meaning of his gestures obvious, is crucial for
founding the basis for successful gestural communication.

1.2 Gesture-Based Human-Computer

Interaction

When using gestures for human-computer interaction (HCI), the device used
for gathering data plays a big role in the capabilities and limitations of the
system. Early gesture systems were based on input from a camera or a spe-
cially made input device, such as a light-pen and screen combination [5]. Re-
cent developments in technology – such as the popularization of touchscreen
smartphones – have made gestures as a form of HCI a part of everyday life
for an increasing amount of people. Judging by the over 600 IEEE confer-
ence publications related to gestures in 2011, it is obvious that gesture based
systems are an active field of research.

Depth sensor equipped motion sensing input devices – such as the Mic-
tosoft Kinect [6] – represent a recent trend of incorporating gesture based
interaction into consumer electronics. Interaction with applications using
these devices does not require touching or wearing any equipment, and thus
applications have the potential to provide a very natural gestural user inter-
face. However, the complexity of the subject lies in extracting meaningful

CHAPTER 1. INTRODUCTION 3

information out of the raw motion data provided by these devices. For sur-
veys on related literature, see [7] and [8].

User interfaces that do not require an artificial input device and are based
on models that occur as natural to users, are sometimes referred to as natural
user interfaces (NUI), and the act of using such an interface Natural Interac-
tion (NI). Most NUIs are built on top of an application that presents the user
with rather abstract data, with no established set of gestures for operating
on it available. A conductor follower, however, is quite the opposite of the
usual case, as it is based on an already defined, albeit somewhat varying, set
of gestures.

1.3 Tempo Following

One of the most fundamental musical parameters communicated to the or-
chestra by the conductor, is tempo. Tempo is not, however, a simple parame-
ter to follow in a musically pleasing way. To understand the concepts related
to tempo following, one has to look at two separate problems: conductor-
performer synchronization, and expressive timing. Furthermore, since tempo
is essentially the first derivative of position, and both are communicated via
the same means – by conducting beats – synchronizing both tempo and po-
sition is not trivial.

Beat synchronization has been studied in both laboratory [9, 10] and mu-
sical rehearsal situations [11]. These studies provide insight into beat induc-
tion, i.e. what features are used to derive beats from continuous motion. The
studies conducted in rehearsal situations have shown that realistic conduct-
ing situations differ from laboratory beat induction tests. However, these
studies have been rather limited, and do not provide any insight on how
absolute tempo or tempo changes affect the synchronization.

Expressive timing refers to the mostly subtle differences in timing that
occur over phrases. These changes are used by the musician as a means
of expression. While the average tempo may be steady across a piece of
music, the length of a transcribed note duration (e.g. quarter note) differs
depending on its position in the score. This minute variance in timing has
been studied, and many studies have concluded, that simple parabolic tempo
curves are not sufficient for representing expressive timing [12, 13]. It has
also been discovered, that expressive timing is dependent on the absolute
tempo [12, 14], and is thus in no way trivial to model.

Several systems for producing expressive timing – based on rule sets, ma-
chine learning, or statistical models – have been developed. A comprehensive
overview of such systems can be found in [13]. These systems aim at adding

CHAPTER 1. INTRODUCTION 4

tempo and loudness variation to raw notation data, in order to make it sound
more human-like. Given that the tempo in the performance does not differ
much from the notated tempo, these features can be added to a score file
beforehand.

1.4 Expressive Sound Synthesis

Music is fundamentally a form of human expression, and thus expressiveness
a fundamental property of music. Therefore one could argue that the ulti-
mate goal of sound synthesis should be to support the expressive motives of
the composer and performer of the music. However, most control parameters
available in sound synthesis systems are not related to the expressive prop-
erties of the produced sound, but are rather based on the time-frequency
properties of the signal. Various studies have been made on the relation
between descriptive and emotional concepts, and the time-frequency proper-
ties of sound. The studies have covered both musical cues, such as tempo,
loudness and articulation [15], and the timbre of individual notes [16]. While
these studies do present clear results, the largest problem in applying them
in a conductor follower system is deriving the emotional descriptors from the
gestures of the conductor.

The majority of motion based expressive sound synthesis implementations
have been novel approaches, which do not model any existing form of musical
expression. Some have concentrated on using emotional data extracted from
the motion of the user, to control music in a way that the emotional features
of the music would match those of the user [17], while others have provided
means to create mappings between arbitrary motion data and sound features
[18]. Because bringing out expressive features of music is a crucial part of con-
ducting, a conductor follower is a rather natural candidate for an expressive
sound synthesis system.

1.5 Thesis Overview

This thesis is based on the development of a conductor follower system, which
uses motion capture and sound synthesis techniques to provide an interactive
experience of conducting a virtual orchestra. An example setup of the final
result is displayed in figure 1.1 for reference. Previous conductor follower
systems, motion tracking methods, score following methods, and expressive
synthesis methods are studied and analyzed, and a set of methods for an
implementation is devised based on the study. These methods are used to

CHAPTER 1. INTRODUCTION 5

Figure 1.1: An example setup, including a set of speakers, a Microsoft Kinect,
and a PC running Conductor Follower along with a synthesis environment,
Vienna Ensemble [19].

implement the system, and further details emerging from the implementation
are described and rationalized.

In this chapter the central concepts behind the work in this thesis are dis-
cussed. Chapter 2 discusses previous similar systems, and gives an overview
on the current system. Chapter 3 describes the methods related to motion
capture used for gesture and expressive feature detection. Chapter 4 for-
malizes the principles and defines the methods used for following the musical
score. Chapter 5 discusses sound synthesis related design and implementation
choices. Chapter 6 describes the visualization methods used in the system.
Chapter 7 highlights the most relevant details in the implementation of the
system. Finally, chapter 8 evaluates the results of the project, discusses rec-
ommended further work on the subject, and provides a conclusion of the
thesis.

Chapter 2

Conductor Following

Over the years, several conductor follower systems for performance, educa-
tional and research use have been designed and implemented. These systems
follow conductor gestures and produce or modify music based on the input.
This chapter provides a brief overview of previous systems, and introduces
the system to be implemented together with its design rationale.

2.1 Previous Work

Conductor following systems implemented in the past can be roughly classi-
fied based on four features: the types of sensors used for capturing gestures,
the methods used for analyzing the gesture data, the level of control they
provide, and the type of sound synthesis they use.

This section provides a brief overview on how these four features have
been implemented in previous systems. As more comprehensive overviews
can be found elsewhere – one of the latest and most detailed being [20] – the
overview here is kept brief.

2.1.1 Sensors for Gesture Capture

The history of conductor following systems can be traced back to computer
performance control systems, which allowed controlling score parameters dur-
ing playback. While the earliest systems used control interfaces which do not
resemble a conductor’s baton [21], the first system that tracked a baton-like
wand was developed in 1983 [22]. The system was able to analyze conducting
gestures performed with the wand, and control the tempo and dynamics of
a score. Since then, several similar systems have been developed, utilizing a
multitude of tracking methods, including the following:

6

CHAPTER 2. CONDUCTOR FOLLOWING 7

• systems that measure the capacitance between a baton and an ”an-
tenna”,

• accelerometer based systems,

• magnetic sensors,

• infra red based systems,

• video analysis from a regular video stream, and

• direct measurement of the conductor’s body movements with sensors
attached to the conductor.

In addition to tracking the movements of the baton or hands, breath and
gaze sensors have also been used. For examples of projects using each sensor
type, the reader is asked to refer to [20].

Capturing the relevant data from the conductor’s gestures provides the
raw input to the system. While the quality and quantity of this data sets the
baseline for what can be done in the later stages of processing, the method
used for acquiring the data is very loosely coupled to the rest of the system.

2.1.2 Methods for Gesture Analysis

The methods used for analyzing the raw data provided by the sensors define
the mode of interaction between the conductor and the system. The most
fundamental differentiation between different systems can be made based on
their mode of output: whether the method produces a set of continuously
varying parameters, or a stream of discrete events based on detecting discrete
gestures. Most systems combine both types of analysis methods. While it is
possible to use heuristics to extract data [23, 24], also hidden Markov models
(HMMs) [25–27] and artificial neural networks (ANNs) [23, 28] have been
used. All these methods can be used to produce both discrete events and
continuous values for parameters.

Since both hands have distinct roles in conducting, the methods used for
gesture analysis also differ between the hands. Since the right hand is used
for conducting the tempo and is in continuous motion, both continuous pa-
rameters – such as articulation and dynamics related features – and discrete
events – such as beats, fermatas and beat pattern changes – can be extracted
from its motion. The left hand, however, is usually used only for discrete
gestures.

The features described above are all rather low level. However, it is pos-
sible to also extract higher level features from the conductor’s movement.
While the output of the analysis differs from the lower level feature extrac-
tion, the methods used for analysis are somewhat similar, using methods such
as simple heuristics, HMMs or ANNs. The difference between these modes

CHAPTER 2. CONDUCTOR FOLLOWING 8

of control is discussed in more depth in the next section.

2.1.3 Performance Control

Fabiani et al. [20] define three levels of performance control: direct con-
trol, model-based performance control, and high-level control via semantic
descriptors. The distinction between these modes is necessarily fuzzy; many
systems use a combination of the three levels. In direct control systems,
the user is in direct control of the performance parameters, such as tempo,
dynamics, articulation, and instrument section balance. Model-based perfor-
mance control combines the input from the conductor with a performance
model. Performance models include e.g. changes in dynamics and tempo
for achieving expressive phrasing. In model-based systems there is always a
trade-off between stability and sensitivity – i.e. if much weight is put on the
model, the system is not very sensitive to the input, while too much weight
on the input can cause very large deviations from the model. Most of the
previously implemented conductor following systems use a combination of
direct and model based control.

The highest level of control utilizes semantic descriptors – such as emo-
tional expressions – to control the performance. This requires mapping the
descriptors to both motion features and performance features, which allows
first translating motion features to descriptors and then applying relevant
performance features based on the descriptors extracted. While studies have
produced clear results for the relation between semantic descriptors and mu-
sical and tonal qualities [15, 16], the mapping of conducting gestures to se-
mantic descriptors has not been studied as extensively.

2.1.4 Synthesis

Once the performance parameters have been generated based on the gestures
of the user, they need to be applied to the score. The methods implemented
in previous systems can be classified into two categories: synthesizing the
output from a score file using a synthesizer, or applying modifications to a
pre-recorded performance. While the former can obviously be implemented
very flexibly using any synthesis method available, the number of options for
implementing the latter is more restricted. The methods used for modifying
pre-recorded performances include time-frequency manipulation and mixing
different recordings [29].

CHAPTER 2. CONDUCTOR FOLLOWING 9

2.2 Design Rationale

If the real life interaction between a conductor and musicians were to be
modeled as closely as possible, it would require providing a feedback channel
equivalent to the verbal communication from conductor to musicians. This
channel could then be used to teach the style of the specific conductor to the
system. In other words, when the system misinterprets some gesture, the
conductor could correct this interpretation by providing the correct interpre-
tation via the feedback channel. This would make it possible for the system
to learn the style of the conductor over time, using machine learning tech-
niques. Implementing such a system would, however, be too large an effort
for the scope of this project. Instead, a more static and general heuristics
based system is considered and implemented.

The main goals of the project can be summarized with the following
statements:

1. The system should be usable without wearing or holding external equip-
ment.

2. The system should be usable by anyone familiar with conducting, with-
out having to provide extensive instructions on usage.

3. The system should react to conducting like a real orchestra.

4. The system should produce sound that resembles a real orchestra.

Out of these goals, only the first one is easily evaluated, while the rest are
more complex, at least point 3 requiring expert evaluation.

2.3 System Overview

The system can be broken down to four functional components: motion track-
ing, score following, sound synthesis and visualization. Since the synthesis is
not implemented in this project, we need to communicate with the synthesis
component via a third party application programming interface (API). For
this reason, a plugin component is required. Since the plugin standard used
in the project (discussed in more detail in section 5.1.1) provides a method
of creating user interfaces (UIs), the visualization is part of the plugin. This
leaves us with three modules to be implemented: the Motion Tracker, Score
Follower and Plugin. A data flow oriented overview of the architecture is
presented in figure 2.1.

The Motion Tracker takes depth sensor input, analyzes the body move-
ments of the conductor, and produces a stream of events and a set of con-
tinuously varying motion parameters. These events and parameters describe

CHAPTER 2. CONDUCTOR FOLLOWING 10

User

Motion Tracker

Score Follower

Data Files

Synthesis

Plugin

Score File

motion

motion events and
parameters

score, pattern and
instrument data

score events

score events and
parameters

sound

options, status,
score events

visualization data

visualization

Figure 2.1: Data flow oriented architecture overview. Sharp-cornered rect-
angles depict software modules and ellipses depict data sources. The round-
cornered rectangle is reserved for the user. A dotted outline implies that the
item was not implemented or specified in this project.

CHAPTER 2. CONDUCTOR FOLLOWING 11

those features of the conductor’s movement, which are relevant to conductor
following.

The output of the Motion Tracker is then analyzed for both tempo fol-
lowing and expressive synthesis purposes by the Score Follower. To do this,
the Score Follower needs additional data, provided by the user via data files.
This data includes score meta data, as well as information on the beat pat-
terns and instruments used in synthesis. Since the score data format is closely
related to the plugin standard used, the score data is provided by the Plugin,
using an API provided by the Score Follower for abstraction. Once all the
necessary data is available to the Score Follower, it can perform its actual
task, which consists of three parts: following tempo, producing expressive
synthesis parameters, and producing visualization data. The tempo follow-
ing and expressive synthesis together produce a stream of score events, which
are passed on to the Plugin, together with the visualization data. The Score
Follower also exposes its status, and a set of options for the Plugin to use.

Finally, the Plugin passes on the score events and parameters to the syn-
thesis component in the format required by the plugin API. It also produces
the visualization and UI for adjusting the options and observing the status
of the Score Follower.

Chapter 3

Motion Capture

Motion capture in the context of the conductor follower system, consists of
tracking the right hand of the conductor. The methods used for this are fairly
mature, and not in the main focus of this thesis. Since sufficient methods and
implementations for motion capture using depth sensor devices are commonly
available, there is no need to cover the details of those here.

This chapter introduces the methods used for extracting all relevant fea-
tures from the motion data. This includes tracking the hands, and detecting
beats and expressive features from the hand motion data.

3.1 OpenNI and Hand Tracking

OpenNI (for Open Natural Interaction), is a library with an open source API,
which provides a ready implementation for tracking hands using depth sensor
equipped motion tracking devices. While the API is open, the hand tracking
method is proprietary. It provides a solid implementation with adjustable
smoothing. OpenNI is discussed on an implementation level in Section 7.1.2.

3.2 Supporting Methods

Extracting meaningful information out of the motion data requires using
many time related analysis methods. Features such as velocity and acceler-
ation require inspecting the movement at a single point in time, while the
cyclic nature of conducting requires averaging over time, in order to extract
features that apply at the beat or bar level.

For the analysis at a single point, a polynomial regression filter is used.
For averaging over time, methods such as exponential moving averages and
peak holders are used. These averaging methods require selecting parameters

12

CHAPTER 3. MOTION CAPTURE 13

for the amount of averaging applied. When selecting these parameters, there
is always a trade-off between the ability to react to fast changes and the
amount of averaging provided.

3.2.1 The Polynomial Regression Filter

Luck and Toiviainen have studied the gestures of conductors both from a
beat synchronization [11] and expressive [30] point of view. Both studies
used polynomial regression filtering for data smoothing and differentiation.
As these studies form the basis for a lot of the analysis used in this project,
it is logical to use the same methods.

The filter uses polynomial fitting over a sliding window to approximate
the movement as a polynomial at each point, using a least squares method.
This approximation is applied to each spatial axis separately, using the points
at times ti−n . . . ti+n, for analyzing the movement at time ti, giving a filter
length of 2n + 1. Once the polynomial is approximated, it can be used for
solving a smoothed value and all derivatives up to 2n at ti.

The Polynomial Regression Peak Detector

As the polynomial regression filter provides the first derivative, it can be
easily used to detect the presence of local minima and maxima

M ∈ {None, Dip, Peak} .

A change in direction can be detected as a change of sign in the first deriva-
tive:

mi =

None if sgn

(
f ′i−1

)
= sgn (f ′i)

Dip if sgn
(
f ′i−1

)
< sgn (f ′i)

Peak if sgn
(
f ′i−1

)
> sgn (f ′i) ,

(3.1)

where f ′i is the first derivative of the observed function at time i.

3.2.2 Exponential Moving Average

Compared to a simple moving average (SMA), the exponential moving aver-
age (EMA) gives two benefits in our use case:

• The EMA reacts to sudden changes faster than a SMA, while still
offering good averaging.

• An EMA filter with a large amount smoothing is computationally much
lighter compared to a SMA filter providing a similar amount of smooth-
ing, as seen below.

CHAPTER 3. MOTION CAPTURE 14

The EMA can be effectively calculated recursively:

Si =

{
yi if i = 1

αyi + (1− α)Si−1 if i > 1,
(3.2)

where α ∈]0, 1[is the smoothing coefficient, and yi the ith observation. High
values of α provide less averaging with faster reaction to changes.

3.2.3 Peak Holder

A peak holder simply holds the peak value

Pi = max (yi . . . yi−n) , (3.3)

where yi is the ith observation, and n the length of the peak holder. High
values of n provide a smoother output, but do not react to sudden decreases
in magnitude as fast.

3.2.4 Standard Deviation of the Sample

The windowed standard deviation of the sample

SN =

√√√√ 1

N

N∑
i=1

(xi − x)2, (3.4)

where x1 . . . xN are the N latest observed values, and x is the mean value of
these observations. The output of the operation expresses the variability of
the input values over a window of N samples.

3.3 Beat Detection

The aim of the beat detection system is to work with as many conducting
styles as possible. The approach taken here is thus not based on specific
beat patterns or gestures. Many previous systems have been based on using
machine learning techniques with predefined beat patterns [20], but such
systems would easily get confused with the large variance present in the
style of many orchestral conductors. Instead, the approach is based on beat
induction from the motion features of the conductor’s hands.

Luck and Toiviainen [11] conducted a beat synchronization study, which
was novel in the sense that it studied the subject in a real orchestral rehearsal

CHAPTER 3. MOTION CAPTURE 15

situation. Previous studies have been made primarily in laboratory settings,
and thus do not present a good foundation for emulating the behavior of an
orchestra. The study analyzed the motion of the baton in four excerpts of
conducting, collected from one rehearsal situation. Since the study repre-
sented the conducting style of only one conductor, and the response of only
one orchestra, it does not present universally valid results.

Studies have shown that the feature with the largest correlation with
beats, is acceleration along the trajectory (at) [9, 10]. However, a good cor-
relation between features and events does not necessarily mean the features
can be used for detecting events trivially. Features with high correlation with
beats – including at – were evaluated for their suitability for beat detection
in the conductor follower system via simple experimentation. Initially the
most promising feature was vertical velocity (vy), which was noted as one
of the most correlated features in [11]. at on the other hand, was found to
have local minima around the beat, but also elsewhere. The timing of the
local minima also changes along with the conducting style. If a system based
on machine learning were to be made, the conducted experimentation would
suggest that vy and at would most likely be good input for the system.

Based on experiences with a trained conductor – both motion capture
data analysis and discussions – a very simple solution for beat detection
using only the vertical position of the hand was finally chosen. The method
combines the theoretical position of the beat in any beat pattern, the vertical
bottom, with the fact that musicians react to conducted beats with a lag.
Once a vertical minimum is found in the hand movement (based on change of
sign in vy), its timestamp and location are recorded. Each new position that
is not a new local minimum is checked for two criteria, using two different
thresholds for the vertical position – the reset threshold and beat threshold:

1. If the vertical position has not increased more than the reset threshold
from the minimum position, the timestamp for the minimum is reset.
This is done to accommodate situations, where the conductor’s hand
stays relatively still after its bottom position, but has not yet indicated
a beat.

2. If the vertical position has increased more than the beat threshold, and
the time since the bottom position is larger than a tempo dependent
value, a beat is detected.

3.4 Start Gesture Detection

The gesture for beginning playing the score is detected using basic motion fea-
tures. First of all, a momentary immobile state of the right hand is required

CHAPTER 3. MOTION CAPTURE 16

y

t

v < vthresh

∆yg

∆ti ∆tg

ymin

ymax

Figure 3.1: Start gesture parameters: immobile time (∆ti), gesture ampli-
tude (∆yg), and gesture time (∆tg).

before performing the actual start gesture. The immobile state is detected
from the absolute speed (v), which must be below a threshold (vthresh) for
the hand to be considered as immobile. To qualify as sufficient, the immobile
state has to be held for a while, and the entire start gesture has to be per-
formed within a limited time after the immobile period. After the immobile
period, the hand is required to make a vertical move, indicating the starting
tempo with the vertical minimum and maximum of that move. The criteria
for start gesture detection are concluded in figure 3.1 and in the list below:

• A long enough immobile state (∆ti greater than threshold) has been
detected not too long ago.

• A local minimum for the vertical position (ymin) has been detected after
the immobile state.

• A local maximum for the vertical position (ymax) has been detected
after the local minimum.

• The distance between the minimum and maximum (∆yg) is large enough.

• The time between the minimum and maximum (∆tg) is within a suit-
able range. This range is based on the start tempo estimation described
in section 4.4.

3.5 Expressive Feature Extraction

Luck and Toiviainen [30] studied the correlation between the kinematic fea-
tures of conductors’ hands and the perceived magnitude of different expres-

CHAPTER 3. MOTION CAPTURE 17

sions in their movement. The studied expressions were Expression, Valence,
Activity and Power. A point-light representation of two conductors’ move-
ments was presented to subjects, who rated the expressiveness on a con-
tinuous scale in both time and magnitude. The study showed correlations
between kinematic features such as position, velocity, acceleration, and jerk1

and the aforementioned expressions. However, the final conclusions of the
study stated that the findings should probably not be applied as such, but
that the most essential findings were that observers are indeed sensitive to
more fine-grained kinematic features, and that increased amplitude, greater
variance and higher speed of movement convey higher levels of expressivity.

Based on the results by Luck and Toiviainen [30], Sousa [3], and experi-
mentation, a set of kinematic features was selected for extracting expressive
features out of the motion data. These features are described in this section.
When analyzing the motion features, the dimensionality of all variables (po-
sition, speed, acceleration, and jerk) is reduced to two dimensions, ignoring
backward and forward movements. The reason for this can be found from the
hand tracking algorithm, which often interprets changes in the shape or angle
of the hand as forward or backward movements. These ”false” movements
produce unexpected results if included in the analysis.

3.5.1 Windowed Trajectory Length

The windowed trajectory length measures the overall amplitude of the hand
movement over a given time window. The length of the window is set to one
second, in order to give sufficient averaging over beat gestures. The trajectory
length over a given time can also be interpreted as the average absolute
speed over the same time window. However, using the positional information
to derive this metric produces more accurate results, as the results of the
polynomial regression analysis are more sensitive to noise in the data. In
addition to the size of the conducting pattern being shown to be a good
indicator of dynamics in [3], the velocity of the right hand showed a high
correlation with power in [30]. Therefore, using the windowed trajectory
length as an expressive feature is well justified.

3.5.2 Windowed Standard Deviation of Velocity

The windowed standard deviation of the absolute velocity (SN(v)) measures
how continuous the movement of the hand is. The value for N defines the
measurement period, and is derived from an analysis time that provides

1Jerk is the third derivative of position, i.e. the derivative of acceleration.

CHAPTER 3. MOTION CAPTURE 18

sufficient averaging over beat gestures: about 700 milliseconds. While [30]
doesn’t include any results to back up using SN(v) as an expressive feature,
[3] describes several conducting emblems related to the playing style on the
staccato–legato axis, which include the variability of velocity as an integral
component.

3.5.3 Filtered Peak Jerk

The values for jerk produced by the polynomial regression filter are rather
sensitive to noise, and thus need more filtering than the other features. The
absolute value of the two dimensional jerk is first filtered with an exponential
moving average filter and subsequently fed to a peak holder. Due to the large
variability in the absolute jerk, the hold time of the peak holder has to be
large: around 1300 milliseconds. Right hand jerk was shown to have a strong
correlation with power in [30]. Also, wen making forceful movements with
the hands, as some conducting styles were described in [3], the filtered peak
jerk has large values.

Chapter 4

Score Following

The task of score following in the context of a conductor follower system,
means scheduling score events (notes) based on the beat events extracted
from motion data. In essence, the task consists of establishing a mapping
between wall clock time and the relative timestamps of score events. This
mapping is based on the conducted tempo of the piece, which is formed based
on score data and beat events.

The aim of the score following system is to behave like a real orchestra
would, when reacting to a conductor. This implies that

1. The orchestra should not be confused by changes in the conducting
pattern.

2. Extra beats in ”unexpected” positions are not acted upon.

3. Sudden changes in tempo are not immediately followed.

Items 1 and 2 require that the tempo follower must have knowledge of all
the possible conducting patterns for each time signature, and that it must be
able to relate each beat to some beat in the pattern. In this chapter, we first
formalize the different time bases used, and then deconstruct score following
into three different tasks: beat classification, tempo adjustment and start
tempo estimation.

4.1 Physical Time and Score Positions

When modifying the playback speed of a musical score that has tempo vari-
ations already build into it, it is important to precisely define the concepts of
time used. Wall-clock time is the monotonically progressing concept of time
most familiar to humans. It is the time counted by a regular clock, and is
referred to as physical time, its dimension denoted by T and quantities with
t.

19

CHAPTER 4. SCORE FOLLOWING 20

Score positions, on the other hand, are slightly more complex. Musical
events in a fully defined score have two time bases:

1. Musical time has the base unit of beats, but it also includes a time
varying derived unit of bars. Any position in the score can thus be
expressed as either a beat offset, or a combination of bars and beats.
Its dimension is denoted with B and quantities with b.

2. Score time has the base unit of seconds. This is an offset from the
beginning of the score if the original tempo is followed. Its dimension
is denoted with Φ and quantities with ϕ.

A score position is thus defined as P := 〈b, ϕ〉 , and variables are denoted
with a p.

Mapping between physical time and score positions is denoted with the
mapping operator M : T → P, and it’s inverse M−1 : P → T.

The mapping operator (as well as its inverse) requires knowledge of the
realized playback speed, and can thus be applied reliably only to past events.
It is also possible to use the mapping operator for estimating future events.
These estimates, however, may produce results that differ from future map-
ping operations, and may only be used in special cases.

The relation between physical time and score time is embedded in the
mapping operator. To formalize the relation, we can represent the relation
with a warp factor

w =
∆φ

∆t
, (4.1)

which is piecewise constant over time.
The model here is a simplified model suitable for the problem at hand.

For a more musically oriented overview on the subject of score time and
physical time, along with a formalization of tempo, see [31].

4.2 Beat Classification

Once the beats are detected as described in section 3.3, the beats have to be
classified. A beat classification is defined as the tuple

C := 〈t, b,∆b〉 ,

where t is the time of the beat, b the (uncorrected) position of the beat,
and ∆b the offset to the classified position. Each beat pattern has a related
classification operation C : B → C, which uses the relative positions of the
detected beats within the current bar, to produce a classification. Out of the
set of classifications produced by the beat patterns, the classification with
the best quality is selected as the final classification.

CHAPTER 4. SCORE FOLLOWING 21

4.2.1 Beat Patterns

To interpret the beats of a conductor properly, knowledge of beat patterns has
to be applied. Each time signature has a set of common conducting patterns,
which may be varied within the piece being conducted. For example the 6/8
signature may be conducted placing beats on all six eighth notes, on the first
and fourth eighth, or even only on the first.

The beat classification operation presented in section 4.2.2 attempts to
not get confused by changes in beat patterns. As an example, a change from
beating all six eighths in 6/8 to beating only the first and fourth eighth,
the second beat in a bar could easily be mistakenly classified as a beat on
the third or fifth eighth by a näıve method. The presented method should,
however, be able to detect the pattern change as a more probable choice,
producing a correct estimate.

4.2.2 The Beat Classification Operation

The classification operation C, uses the positions of beats in a beat pattern
(p), and the history of the latest beats (h), to classify the detected beats.
To keep all the relevant beats in h, the current bar is tracked continuously.
When a new beat is to be classified, it is added to the end of h, and all beats
that have been classified as being in prior bars are removed. Next, the match
quality for each beat pattern is assessed:

1. Let the quality of a match between a detected beat and a beat in a
pattern be

q(i, j) = −|hi − pj|. (4.2)

2. Let α be such that q(1, α) is maximized, i.e. the best match for the
first beat.

3. For all other beats hk, q(k, α) and q(k, α + 1) are evaluated, affecting
the score in the following way:

(a) If α exceeds the size (p) in any quality evaluation

• The wrapped value α′ = α (mod size (p)) is used instead of
α.

• The compensated value p′j = pj +
⌊

α
size(p)

⌋
l, where l is the

length of the bar, is used instead of pj.

(b) If q(k, α) ≤ q(k, α + 1)

• α is incremented, and the evaluation is repeated.

• If this was not the first evaluation for the current value of k,

CHAPTER 4. SCORE FOLLOWING 22

a penalty for a missing beat is added to the total quality of
the match.

(c) If q(k, α) > q(k, α + 1)

• The best match has been found, and q(k, α) is added to the
total quality of the match.

• If α has not yet been incremented, a penalty for duplicate
beats is added to the total quality.

To achieve a better response to tempo changes, the evaluation of beat
patterns is repeated using a range of stretch factors. The positions in h are
adjusted with respect to the first beat in the array:

h′i = hi + s(hi − h1), (4.3)

where h′ is the corrected array, and s the stretch factor. To reduce the
possibility for false positive tempo changes, the range of s is restricted to
be close to unity, and a penalty proportional to the difference from unity is
applied to the scores produced with stretch factors.

Once each beat pattern and stretch factor combination has been evalu-
ated, the best match is selected for classifying previously unclassified beats.
The classification method depends on the amount of beats detected for the
current bar:

• The first beat in any bar is assumed to always be on the first beat.
Thus, its position does not depend on the beat pattern of the current
bar, and it can be classified based on the beats in the previous bar.
This maximizes the number of beats used to estimate the beginning of
each bar, and should thus also maximize the probability of a correct
estimate.

• The first and second beats in a bar do not usually provide enough
information about the beat pattern used in that bar. Therefore the
second beat in a bar is only given an estimate if it scores better than
its neighboring beats in the winning beat pattern by a given factor, i.e.

q(β, γ) > a q(β, γ ± 1), (4.4)

where β is the beat being classified, γ the best estimate, and a the
factor determining how much better the estimate has to be compared
to its neighbors.

• Considering the number of beats in most beat patterns, three or more
beats should give a good enough estimate (or else there is no hope
of ever getting one). Therefore all beats after the second are always
classified.

CHAPTER 4. SCORE FOLLOWING 23

4.3 Tempo Adjustment

After a successful beat classification, the current position and tempo offsets
are estimated. Based on these estimates, changes to the playback tempo are
made, which attempt to correct the offsets so that the playback matches the
conducting as well as possible. The change in tempo is realized by adjusting
the warp factor w for each audio block (see section 7.3 for details).

4.3.1 Tempo Estimation

The instantaneous tempo estimate is calculated from the beat classifications
as

vi =
(b−∆b)− (b′ −∆b′)

t− t′
, (4.5)

where b and ∆b are the position and offset of the latest conducted beat, t the
time of the latest conducted beat, and b′, ∆b′ and t′ those of the previous
conducted beat, respectively.

Since the beats are not uniformly spaced in time, a conventional moving
average can not be used for filtering the instantaneous tempi. Instead, a
linearly decaying time dependent filter is used. The filter is defined by its
cut-off time tco, which forms the limit for how old tempo estimates are taken
into account. Each tempo estimate (vi) not older than tco is given a weight
coefficient

ci(∆t) = 1− ∆t

tco
, (4.6)

where ∆t is the absolute offset to the current time. The target tempo is then
the weighted and normalized sum of all the estimates:

vt =

∑
civi∑
ci
. (4.7)

4.3.2 Tempo Function

The parameters ∆b and vt form the basis for tempo adjustment. The target
of the adjustment is to be at the tempo vt, and having made a position
adjustment of ∆b after a catchup time tc. As can be seen, the operation
requires adjusting two interlinked parameters, tempo and position, which is
not possible using a linear function. Instead, the tempo change is built as
the sum of two functions

v(t) = vi + vt(t) + vb(t), (4.8)

CHAPTER 4. SCORE FOLLOWING 24

v

t
t0 t0 + tc

−∆bvb

∆b

vi

vt

∆vv(t)

Figure 4.1: Tempo function v(t), showing the total tempo change ∆v, total
position change ∆b, and position change caused by the non-linear part of the
tempo function, ∆bvb . Also visible are the initial and target tempi, vi and vt
respectively.

where vi is the initial tempo, vt(t) is a linear function contributing to the
total tempo change, and vb(t) a non-linear function contributing to the posi-
tion change without affecting the final tempo. A visualization of the tempo
function is presented in figure 4.1. The values of t in the following functions
are relative to the beat classification time, and are always larger or equal to
zero.

Correcting tempo differences

To make a tempo change over tc equal to ∆v, we define the tempo changing
part of our tempo function

vt(t) =

{
∆v
tc
t if t < tc

∆v otherwise.
(4.9)

Since the tempo is changed gradually, it does not immediately match the tar-
get tempo. The difference to the target tempo causes a cumulative difference
in position, which can be simply solved by integrating over time:∫

vt −∆v dt = ∆v

(
t2

2 tc
− t
)

+ C. (4.10)

The difference in position caused by the difference between vt(t) and ∆v
accumulates over the catchup time tc, causing a gross difference of

∆bvt =

∫ t+tc

t

vt −∆v dt = −∆v tc
2

. (4.11)

This difference in position needs to be taken into account when defining vb(t),
which should compensate for the position difference.

CHAPTER 4. SCORE FOLLOWING 25

Correcting position differences

To have an effect on position, but zero effect on the final tempo, we define
the position changing part of our tempo function

vb(t) =

{
a sin

(
πt
tc

)
if t < tc

0 otherwise,
(4.12)

where a is the correction coefficient contributing to the amount of change in
position. To solve a, we need to look at the cumulative position difference
caused by vb(t), which can be solved from the integral∫

vb dt =
at

π

(
1− cos

(
πt

tc

))
+ C. (4.13)

Similarly to ∆bvt , the gross difference in position caused by vb over tc

∆bvb =

∫ t+tc

t

vb dt =
2 a tc
π

. (4.14)

To completely correct the position after tc, vb needs to both compensate for
∆b and counter the positional change caused by vt, giving the equation

∆bvb = − (∆b+ ∆bvt) . (4.15)

Thus, applying equation (4.14), we can solve a as

a = −π (∆b+ ∆bvt)

2tc
. (4.16)

4.3.3 Offset Compensation

Given the previous beat offset ∆b′ (at time t′), and current vt and vb, the
current offset can be estimated as

∆b(t) = ∆b′ −
∫ t

t′
vt + vb dt. (4.17)

To get the best beat classifications, C is used with the relative beat position

b′ =M (t)− pB −∆b(t), (4.18)

where t is the time of the beat, and pB the beginning of the current bar. The
offset approaches zero as t approaches t′ + tc.

CHAPTER 4. SCORE FOLLOWING 26

4.3.4 Tempo Changes

Tempo changes in the score are taken into account by changing the tempo
function accordingly. When the tempo changes by a factor a, new values for
∆v and ∆b are calculated, and the tempo function is reset. The new value
for the required change in tempo

∆v = a (v′i + ∆v′)− v′(t), (4.19)

where v′i is the previous initial tempo, ∆v′ the previous tempo change, and
v′(t) the current tempo. The new value for the offset

∆b = ∆b′(t), (4.20)

where ∆b′(t) is the previous offset function as defined in equation (4.17), is
expressed in beats, and is thus not affected by the tempo change.

When changing a tempo function that has not yet finished applying its
changes, the most intuitive course of action would be to set

tc = t′c − t, (4.21)

where t′c is the previous value of tc, and t the time since the function was
last reset. However, since ∆v is finite in most cases, we can see that the
coefficient ∆v

tc
in equation (4.9) approaches infinity, as t approaches t′c:

lim
t→t′c

∆v

t′c − t
= ±∞, ∆v 6= 0. (4.22)

Thus it is not feasible to use equation (4.21), but we instead define tc = t′c.
In some situations tempo changes can be very difficult for the conductor

to follow, causing unexpected results when the tempo in the score changes.
An example of this could be a gradual decrease in tempo followed by an
instant return to the original tempo. If the conductor were to conduct the
decelerando without changing conducting tempo, the return to the original
tempo would cause a sudden increase in tempo. Since this issue is highly
dependent on the score used, a user adjustable parameter is provided, which
scales the change factor a in equation (4.19):

a′ = 1 + α (a− 1) , (4.23)

where a′ is the new value for a, and α ∈ [0, 1] the desired fraction of tempo
changes to follow.

CHAPTER 4. SCORE FOLLOWING 27

4.3.5 Relaxed Tempo Following

Since the tempo adjustment function defined in section 4.3.2 is non-linear,
selecting the catchup time tc properly is critical. To have a consistent state
for each beat estimation, the adjustment should be fully completed or very
near completion at the time the next beat occurs. A very short time, however,
would cause very abrupt changes in tempo. Thus tc is selected as the time
between the current and previous beat, which should predict the time to the
next beat fairly well.

The tempo adjustment method described above is very strict, as it at-
tempts to do a full tempo and position correction between each beat. In a
real life situation the timing of the detected beats often have some fluctua-
tion over time, causing large beat offsets. When such an offset is present, the
non-linear part of the tempo function, trying to correct the offset, causes a
large temporary change in tempo.

It is not viable to filter the beat offset values, as is done with the instan-
taneous tempi, for the offset is directly affected by the tempo adjustment
function. Doing so would cause feedback in the system, with hard to predict
results. Instead, only part of the beat offset is compensated for. This ad-
justment does not apply to the offset caused by the tempo change (equation
(4.10)), but only the offset of the latest beat. To relax the tempo following,
only a fraction of the beat offset ∆b is corrected, modifying the coefficient
for the non-linear part of the tempo function, defined in equation (4.16).

The fraction discussed above, together with the tempo filter cutoff time
presented in equation (4.6), mostly define the sensitivity of the tempo fol-
lowing method. These two are made user-adjustable parameters, so they can
be adjusted based on both the score and the user’s preferences.

4.4 Start Tempo Estimation

The start tempo is estimated based on the duration of the start gesture. As
there are several beat patterns for a given time signature, the length of the
start gesture may also differ. The duration from bottom to top position is
assumed to be half the length of the first conducted beat. The starting tempo
is thus

vs =
∆tb1,2

2
(tt − tb), (4.24)

where ∆tb1,2 is the time between the first and second conducted beat, tt the
time at the top of the gesture, and tb the time at the bottom of the gesture.
From the different values of vs derived from the different conducting patterns,
the one closest to the transcribed tempo is selected as the final start tempo.

Chapter 5

Sound Synthesis

Since the objective of the system is to emulate an orchestra, also the sound
synthesis system should be able to provide realistic synthesis of an entire
orchestra. It should be able to reproduce a musical composition at varying
tempi and articulations. The most straightforward approach to supporting
these requirements is feeding score events – notes, tempo events, etc. – to
a synthesis engine, which produces the final output in real time. The score
event format needs to be in (or convertible to) a format that is understood by
the synthesis engine. This means the score format is tightly coupled to the
synthesis engine, while the coupling to the rest of the system is rather loose.
The synthesis engine and score format selected for the system are presented
in this chapter.

5.1 Vienna Symphonic Library

There are several commercial orchestral synthesizers available, the majority
of which use some form of sampling or concatenative synthesis. Based on
the feature set provided and subjective evaluation of sound quality, Vienna
Symphonic Library (VSL) [19] was chosen for the task. VSL uses a form
of concatenative synthesis, using a vast library of samples played at various
velocities and articulations [32].

Each instrument in VSL contains a set of patches, which represent a cer-
tain articulation and/or playing style. Each patch is capable of synthesizing
the whole scale of the given instrument at several velocities. Some patches
(such as staccato articulations) have a limited note length, while others al-
low stretching out the note infinitely. Switching between patches can be
accomplished with keyswitch events.

VSL also contains a Multi Impulse Response Mixing and Reverberation

28

CHAPTER 5. SOUND SYNTHESIS 29

engine (MIR). MIR allows simulating an acoustic environment with the pos-
sibility of placing virtual instruments and microphones rather freely in a
room. MIR includes impulse response data for the Vienna Konzerthaus, and
allows placing the virtual microphones at the conductor’s podium.

5.1.1 Virtual Studio Technology

Virtual Studio Technology (VST) [33] is a virtual instrument and effect plu-
gin architecture created by Steinberg GmbH. It is one of the plugin formats
that VSL is available in. While the plugin API should be considered an im-
plementation detail, it can not be completely ignored in the design phase,
because of the vast effect design choices can have on implementation com-
plexity.

5.2 Score Event Format

In order to play a score, the score events need to be provided to the system
in some format. The objective was to be able to use existing material as
much as possible. The format used in the system combines a MIDI score,
discussed in section 5.2.1 and a terse domain specific language (DSL) based
score description format, discussed in section 7.6.1.

5.2.1 The Musical Instrument Digital Interface

Regardless of its limitations and age, the Musical Instrument Digital Interface
(MIDI) is still one of the most used standards for the digital representation
of musical events. MIDI is also the built-in way to communicate musical
events in the VST plugin format. Thus using MIDI as the score format is a
natural choice.

A MIDI score contains note, time signature and tempo information.
It may also contain program change events, as specified in the General
Midi specification [34], to indicate the instrument to be used for each track.
However, practical experience with MIDI files showed, that using program
changes to deduce the instrument to use, was not sufficient. Often scores
would use the string ensemble patch for all strings, even though the string
instruments were separated to individual tracks. In cases like this it is nec-
essary to be able to manually define the instrument to be used with each
track.

CHAPTER 5. SOUND SYNTHESIS 30

5.3 Patch Switching

In order to control the switching of patches, the synthesis system must have
some knowledge of the available instruments and their patches. The param-
eters used for describing the patches are:

Length The maximum note length allowed by the patch.

Attack The sharpness of the attack portion of the notes.

Weight The musical weight of the note, i.e. an accented note would have
a large weight.

In addition to the instrument context described above, the patch selection
uses a note and conductor context to select the most appropriate patch for
each note. The note context includes the length of the note, the current
relative tempo, the time to the next note, and the velocity of the note.
Furthermore, the conductor context includes all the motion based expressive
features, as described in section 3.5.

When a new note is to be played back, the best patch is selected in three
stages: First a set of instrument patch parameters is synthesized from the
note and conductor contexts. Second, a distance between the synthesized
parameters and each instrument patch is calculated. Finally, the closest
match is selected, causing the instrument patch to be changed if it differs
from the patch currently in use. The patch parameter synthesis and distance
function is described in the following sections.

5.3.1 Patch Parameter Synthesis

Synthesizing instrument patch parameters from the note and conductor con-
texts, consists of applying mapping functions, one for each patch parameter,
to the contexts. The length of the note is scaled by the relative tempo, and
used as the length parameter. Also, the weight is a direct mapping from the
normalized jerk peak in the conductor context.

Attack, however, is synthesized from a combination of the time to the
next note, and the standard deviation of velocity and windowed trajectory
length in the conductor context. Experimentation showed that the standard
deviation of velocity strongly correlated with the windowed trajectory length,
and to achieve more control over the system, this correlation was taken into
account: The basis for attack

a =
SN(v)

(1− α) + α lt
, (5.1)

where SN(v) is the standard deviation of velocity, α the level of correlation

CHAPTER 5. SOUND SYNTHESIS 31

desired, and lt the windowed trajectory length. All variables except a have
values within [0, 1], a larger α causing lt to have greater effect on a.

Additionally, if the time to the next note is below a given threshold, a
reduction to the attack is applied. This tries to prevent playing in a staccato
style in fast passages, if the notes are short, but not separated from each
other in the score. This relies on the fact that most MIDI scores are written
with some separation between notes in staccato passages.

An additional parameter, which does not affect the patch selection, but
is related to the conductor context, is velocity. The reason this is an ex-
ception, is that some patches are layered, which means that the synthesis
engine uses different samples, based on the velocity of the notes played. The
windowed trajectory length in the conductor context is used to calculate the
final velocity

v = α vc + (1− α) vs, (5.2)

where α is the weight given to the conductor context, vc the velocity in the
conductor context, and vs the velocity in the score. Finally, v is limited to
be in the range [vmin, vmax], where vmin > 0, in order to neither mute notes
nor exceed the maximum velocity.

It is worth noting, that the values for all the parameters in the conductor
context, have already been scaled and clamped to be in the range [0, 1]. The
sensitivity of the system can be adjusted by adjusting all parameters except
velocity using the equation

p′ =
1

2
+ α

(
p− 1

2

)
, (5.3)

where p′ is the scaled parameter, α ∈ [0, 1] the sensitivity, and p the origi-
nal value of the parameter. The sensitivity of velocity can be adjusted by
changing the value of α in equation (5.2) instead. All values used in the
implementation were adjusted based on informal testing.

5.3.2 Patch Distance Function

Initially a simple euclidean distance function was used to measure the patch
distance. This did not, however, produce satisfactory results, so a more
sophisticated method was produced from a mostly empirical basis. The basis
of the distance function is applying different weights to the parameters, to
emphasize the perceptually more important parameters:

d =
∑

wi |pit − pi| , (5.4)

CHAPTER 5. SOUND SYNTHESIS 32

where d is the distance, wi the weight of the ith parameter, pit the target for
the ith parameter, and pi the ith parameter. Ultimately, weight and attack
are given equal weight, while length is emphasized. As the length parameter
describes the longest possible note, the distance function for the weight also
has to be adjusted to give a larger penalty for too short notes:

dl =

{
wl |lt − l| if lt − l > 0

αwl |lt − l| otherwise,
(5.5)

where dl is the contributing factor of length to the sum in equation (5.4),
wl > 1 the weight given to length, lt the target length, l the length, and
α < 1 the distance reduction factor for too long notes.

Chapter 6

Visualization

During the development of the conductor follower, a good mechanism for
observing the state of the system in real time was lacking, which eventually
lead to developing a real time visualization. While the visualization provided
its greatest benefits during the development of the system, it can also provide
valuable feedback to users of the system. This chapter discusses the func-
tionality and motivation behind each visualization feature separately. All the
features are presented in figure 6.1.

6.1 Movement Tracing

When conducting a pattern, it is very difficult for the conductor himself to
perceive the actual shape of the hand movement. These days it is common
practice to videotape the rehearsals of conducting students [4] for the stu-
dents to better see how they perform. However, this method does not provide
an immediate form of feedback during the rehearsal.

By visualizing both the current position of the hand, and a trace of the
movement history, immediate visual feedback can be provided. An intuitive
way of presenting the movement history is to draw a colored line segment
between each sampled position, with the opacity of the segment decreasing
the older the samples are.

6.2 Spatial Beat Visualization

The visualization can show the spatial position of the detected beats, which
occur along the traced hand trajectory. Due to the nature of the beat de-
tection algorithm – which does not represent an absolute truth about how
beats should be detected – the usefulness of this visualization for pedagogical

33

CHAPTER 6. VISUALIZATION 34

Figure 6.1: Visualization screenshot, showing movement trace (red line),
spatial beat position (green dot), current bar phase (turquoise segment),
beat offsets (red and greed segments), and depth sensor data (grayscale).

CHAPTER 6. VISUALIZATION 35

purposes is questionable. However, the visualization was a good aid during
the development of the system, and could be a good aid if the system is to
be developed further.

6.3 Beat Offset Visualization

To indicate the positions of the detected beats relative to their classifications,
a circular visualization is used. The progress of the current bar is visualized
with a segment of a circle, alternately growing to a full circle, and shrinking
to zero length, as the bars progress to their ends. The detected beats are
visualized outside this circle, as a segment from the detected position to
the position of the respective classification. Beats that happened early are
visualized in green, and beats that happened late in red. Similarly to the
movement tracing, the opacity of the old beats decreases and they eventually
disappear as time progresses.

6.4 Depth Sensor Output

In addition to visualizations that describe the state of the conductor follower,
the raw output of the depth sensor can be displayed as a gryscale video.
This is mainly useful for solving possible issues related to the way the depth
sensor works: In some situations infra red sources, such as the sun, or certain
hand positions can cause problems with the hand tracking algorithm. The
depth sensor output can in some situations help in identifying and possibly
correcting these problems.

Chapter 7

Implementation Details

This chapter describes details and implementation choices that have been left
out from the previous parts of this thesis, as they are not at the core of solving
the problems at hand: The architecture is discussed from an implementation
centric view, the timing and threading constraints of the implementation
are discussed, time handling and motion capture implementation details are
described, and the data file formats used by the system are specified. Further
details regarding the source code availability and compatibility can be found
in appendix A.

7.1 Architectural Overview

Since the synthesis environment is a VST plugin, implementing the conduc-
tor follower as a VST plugin as well, was a logical choice. The input for the
plugin is read from a MIDI file and the output is MIDI events via the VST in-
terface. These implementation details are, however, hidden behind carefully
designed interfaces, separating the core functionality from the input/output
functionality. The module division that allows this abstraction, along with
the libraries used to implement the features, are described in this section.

7.1.1 Modules

To achieve good abstraction and loose coupling between the different parts
of the system, the implementation is divided into six well defined and loosely
coupled modules:

1. Common utilities

2. Data file parsers

3. Motion capture

36

CHAPTER 7. IMPLEMENTATION DETAILS 37

4. Expression to synthesis parameter mapper

5. Score Follower (the core functionality)

6. The VST plugin

The common utilities module contains components that are not specific to
conductor following. These include utilities for lock-free programming, math-
ematical operations and algorithms, time and geometry handling, logging,
and debugging.

The data file parser module contains all the parser definitions and sup-
porting data structures for all the input files used by the system. Its main
purpose is to hide the implementation of parsing behind a concise API. The
format of the data files is discussed in more detail in section 7.6.

The motion capture module provides a simple event-based API for motion
related data. It includes the logic for extracting relevant events from motion
data. The methods used are described in chapter 3, and the most important
implementation details in section 7.5.

The expression to synthesis parameter mapper maps expression param-
eters to synthesis parameters. The methods used are discussed in section
5.3.

The score follower module provides most of the core functionality, not
including motion capture. This includes beat classification, tempo and score
following, jitter correction, and instrument patch switching among other
things. It also provides abstract interfaces for hiding the implementation
details of the score format. The methods used in this module are discussed
in chapter 4, and some of the implementation details in section 7.3.

The VST plugin module’s main purpose is to separate as much plugin
implementation detail from the rest of the system. It implements the VST
interface, provides the plugin UI, and the visualization. It also implements
the score related interfaces, defined in the score follower module.

In addition to these six modules, the project contains four unit test mod-
ules. These modules are not significant regarding the functionality, but
merely had a supporting role during system development.

7.1.2 Supporting Libraries

The implementation makes heavy use of several of the Boost C++ libraries
[35]. The most noteworthy ones are described in the following list. Libraries
included in the C++11 standard [36] are denoted with ∗, while libraries not
yet in the official boost distribution are marked with †.

Chrono∗ Time library for timestamping and jitter correction.

Lockfree† Various lock-free constructs.

CHAPTER 7. IMPLEMENTATION DETAILS 38

Spirit A parsing library, used for configuration file parsing.

Thread∗ Threading utilities.

uBLAS Linear algebra, used for polynomial fitting.

Units Compile-time dimensional analysis.

The OpenNI Framework [37] is an open source cross-platform framework
for Natural Interaction (NI) devices. PrimeSense Ltd [38] provides a propri-
etary middleware package called NITE, which works with the OpenNI API,
providing higher level functionality such as skeletal and hand tracking. NITE
is used via the OpenNI APIs for hand tracking. The motion tracking module
contains all the code that uses the OpenNI APIs, so that the rest of the
system has no dependencies on OpenNI.

Juce [39] is an open source, multimedia oriented cross-platform C++
library. It was used for its VST plugin wrapper, MIDI file I/O, and user
interface (UI) functionality. Juce is only used in the plugin, and the rest of
the system has no dependencies on it.

7.2 Real-time Computing and Threading

A real-time audio plugin, which uses motion tracking hardware and has a
user interface, imposes certain restraints on how it may be implemented to
achieve acceptable performance. These restraints and the patterns used for
solving them are discussed in this section.

7.2.1 Real-time Computing

A real-time (RT) system is defined as a system where calculations need to be
completed before a given deadline, and can be classified into three categories:

Hard Missing a deadline is a total system failure.

Firm The usefulness of a result is zero after its deadline.

Soft The usefulness of a result degrades after its deadline.

An audio plugin has firm real-time constraints, since the result for each block
of audio needs to be delivered in time. Missing a deadline means that the
missed block is not played back, causing a glitch in the sound output.

It is important to understand the difference between deadline based real-
time constraints and throughput based constraints. Sometimes a calculation
is called real-time if the throughput is high enough to complete a large cal-
culation in a given time. For example, if one minute of audio is processed
in (or under) one minute, it might be said that the calculation happens in

CHAPTER 7. IMPLEMENTATION DETAILS 39

real time. This does not, however, mean that the same implementation is
capable of repeatedly processing smaller blocks of the audio and produce the
output for each block given a deadline equal to the block length. Throughput
based real-time constraints have more to do with the algorithmic complexity
of the methods used, while deadline based constraints require special pro-
gramming techniques on the implementation level. All further references to
RT constraints in this thesis refer to the deadline based definition.

7.2.2 Thread Model

In addition to having RT constraints, the 30Hz frame rate of the motion cap-
ture system makes the application a multirate, multithreaded system. Work-
ing in such an environment requires using lock-free programming techniques,
such as atomic variables and lock-free ringbuffers. The multirate nature also
requires having robust timestamping and synchronization mechanisms.

The VST architecture implies using at least two threads: one for audio
and/or MIDI processing, and another for the UI. In addition to these two
threads, motion capture needs it’s own thread, and one additional thread
is needed for some lock-free programming techniques. To summarize, the
threads are:

1. VST MIDI (audio)

• Provided by plugin host.

• Produces the MIDI events.

• Has firm RT requirements.

• Low latency required.

2. VST UI

• Provided by plugin host.

• Renders the plugin UI.

3. Motion Capture

• Runs the motion capture device.

• Has soft RT requirements.

• Higher latencies allowed compared to the MIDI thread (30 Hz).

4. Butler

• Runs asynchronous tasks for the RT threads.

CHAPTER 7. IMPLEMENTATION DETAILS 40

7.3 Time Handling

Handling time in a multirate, multithreaded system, is not a trivial task. The
motion capture thread is in a blocking state most of the time, waking up at
a 30 Hz frequency to process data provided by the motion capture system.
The plugin, however, needs to provide MIDI data based on the host’s audio
settings, a typical configuration running the plugin at around 100 Hz (an
audio block length of 10ms). Additionally, the thread in which the plugin
runs is controlled by the host, and the code has to be completely lock-free.

Considering the implications of needing to run lock-free code on a mod-
ern multi-core system, running a general purpose operating system (OS),
no assumptions about causality or parallelism between motion capture and
plugin code execution can be made – scheduling latencies and parallel execu-
tion forces the use of a reliable timestamping mechanism for synchronization
between the audio and motion capture threads. The Boost Chrono library
provides a steady clock, which measures time since the latest system boot-
up. Acquiring the current timestamp was verified to be lock-free at least
on Windows and OS X as of Boost version 1.49.0. These timestamps are
used for measuring the interval between events happening in the motion cap-
ture and plugin threads. Timestamping events in the motion capture thread
is straightforward, each event simply being timestamped with the current
timestamp returned by the system. The plugin thread, however, requires
jitter correction to prevent timing problems.

7.3.1 Jitter Correction

The plugin thread needs to know not only the timestamp corresponding to
the beginning of the current audio block, but also an estimate for the end of
the block. Let the audio block be defined by its beginning and end:

τ := [τb, τe[.

Using the information provided to the plugin, the theoretical block length

∆τ ′ =
nb
fs
, (7.1)

where nb is the block size in samples and fs the samplerate. This length is
then used for estimating the end of each block

τe = tc + ∆τ ′, (7.2)

where tc is the current timestamp at the beginning of the block. Due to
scheduling latencies, the value of tc might differ from the previous block

CHAPTER 7. IMPLEMENTATION DETAILS 41

end estimate τeprev . In order to prevent gaps and overlaps between the time
estimates of consecutive audio blocks, the beginning of each block is taken
from the end of the previous block

τb = τeprev . (7.3)

The VST specification requires each MIDI event to have its position defined
as a sample offset from the beginning of the current block. As the actual
block length

∆τ = τe − τb (7.4)

differs from the theoretical block length ∆τ ′ most of the time, this difference
needs to be taken into consideration when calculating the event sample offset

∆ne =
∆τ ′

∆τ
(te − τb)fs, (7.5)

where te is the event time. Using equation (7.1), this can be simplified to

∆ne = nb
te − τb

∆τ
. (7.6)

7.3.2 Dimensional Analysis

Because of the various time bases and units used (see section 4.1), using com-
pile time dimensional analysis using Boost.Units [40] eased the development
process. Boost.Units uses zero runtime overhead C++ template metapro-
gramming techniques [41] to check during compile time, that all calculations
have the proper dimensions. This does not guarantee dimensionally proper
calculations all the time (e.g. dimensionless units may cause errors), but does
catch many errors made during development. For handling time, a custom
unit system was declared. This system contains base dimensions for beats,
bars, samples and physical time, and derived dimensions for bar durations,
tempi, sample rates, and speed changes. The unit system is described in de-
tail in Table 7.1. The difference between physical time and score time (both
in seconds), comes inherently from the libraries used: Boost.Units for score
time and Boost.Chrono for physical time. This implies that an explicit con-
version function is always needed to convert between these two dimensions.

7.4 Essential Common Utilities

A number of utilities are widely used across the application, and reserve a
mention. These are mostly related to lock-free programming techniques.

CHAPTER 7. IMPLEMENTATION DETAILS 42

Dimension Unit Notes

beats beat Base for musical time
bars bar See bar duration.
samples sample See sample rate.
time second Base for physical time.
sample rate samples per second Derived dimension.
bar duration beats per bar Derived dimension.
tempo beats per second Derived dimension.
tempo change beats per second squared Derived dimension.

Table 7.1: Overview of custom unit system for time.

7.4.1 Event Buffer

The event buffer is probably the most used utility in the implementation.
It is a container for storing timestamp-event-pairs. It allows specifying the
internal storage depending on the use case. For data that is collected when
loading the score, a dynamically resizable container (such as std::vector) can
be used, while buffers used during playback mostly use a statically sized
ringbuffer to guarantee memory allocation free operation. Utilities for ac-
cessing timestamp-based ranges, with all valid combinations of bounded,
left-bounded, left-open and left-closed are available.

7.4.2 The Butler Thread

The butler thread is used for asynchronously running tasks that can not
be run in an RT thread. The butler thread is configured with a maximum
execution interval, and checks for new tasks and executes them repeatedly,
until terminated. The thread blocks as necessary to not exceed the maximum
execution interval.

7.4.3 Lock-Free Ringbuffer

The lock-free ringbuffer provided by the Boost.Lockfree library [42] is used
for most of the lock-free inter-thread communication. This includes passing
events from the motion capture thread to the MIDI thread, and logging from
RT threads using the Butler thread. It is an essential utility for lock-free
multithreaded programming.

CHAPTER 7. IMPLEMENTATION DETAILS 43

7.4.4 Chen & Burns Buffer

While the lock-free ringbuffer is a good solution for event-like data, better
mechanisms exist for sharing a single instance of data, e.g. a state. For this
use, a fully asynchronous reader-writer mechanism as described by Chen and
Burns [43] was implemented. The mechanism allows lock-free access for a
single writer and a fixed number of readers. It uses a number of copies of the
data, and a set of atomic variables to track the reading and writing states.

7.5 Motion Capture

Since most of the hard work related to motion capture is done by NITE – the
implementation of which is proprietary – there is not much to discuss in this
section. However, a quick overview on the implementation of the polynomial
regression filter is provided.

7.5.1 The Polynomial Regression Filter

The polynomial regression filter is used for three purposes in the system:
smoothing, differentiation and interpolation. The polynomial fitting part for
the filter is implemented using matrix operations and the uBLAS library.
Estimating the polynomial coefficients is done by the equation

â =
(
XTX

)−1
XTy, (7.7)

where â are the estimated coefficients, y the observations, and X the design
matrix

X =

1 x1 x2

1 . . . xm1
1 x2 x2

2 . . . xm2
1 x3 x2

3 . . . xm3
...

...
...

...
1 xn x2

n . . . xmn

 , (7.8)

where x1 . . . xn are the observation times, and m the order of the resulting
polynomial. It is required that n > m. Smoothing and differentiation is
implemented by selecting an odd value for n and evaluating the polynomial
at the center value xbn

2
c. An optimization that is easy to implement for

equally sampled data, is to pre-calculate
(
XTX

)−1
XT , with xbn

2
c = 0. The

value and derivatives at the center point can thus be calculated from the
polynomial

ŷ(x) = âm x
m + âm−1 x

m−1 + . . .+ â2 x+ â1. (7.9)

CHAPTER 7. IMPLEMENTATION DETAILS 44

The simplified equations being

ŷ(0) = â1 (7.10)

for the value, and
ŷ(n)(0) = n! ân+1 (7.11)

for the nthderivative.
To make XTX invertible, it is also necessary to reverse the values x1 . . . xn

used in equation (7.8). This change requires a correction to equation (7.7):
the observation values y need to be reversed also.

7.6 Data File Formats

For additional data needed by the system, a number of JSON-like [44] do-
main specific languages (DSLs) were developed. The syntax in all of them
is similar, only the contained data varying between different formats. The
formats are described here briefly.

7.6.1 Score Description Files

Because the data present in a MIDI score was not sufficient alone, a format
for describing additional data related to the score was developed. A score
definition file includes the following information:

Name A human readable name for the score.

MIDI file The path of the related midi file.

Instrument file The path of the related instrument definition file.

Beat pattern file The path of the related beat pattern file.

Track information A list of track to instrument mappings.

Score events A list of score events.

An example of a score description file can be found from Appendix B. For
more information on instrument definitions, see section 7.6.2, and for beat
patterns section 7.6.3. While the format supports having different types of
score events, only one type of score event was implemented. This event type
is described in detail below.

Tempo Sensitivity Events

A tempo sensitivity event contains the following information:

Position The score position to which this sensitivity change applies.

CHAPTER 7. IMPLEMENTATION DETAILS 45

Sensitivity A sensitivity value in the range 0 . . . 1.

The event causes the catchup time tc, as described in section 4.3.2, to be
adjusted to provide a different level of sensitivity in tempo following. A low
sensitivity leads to a long tc, whereas a high sensitivity translates to a short
tc.

7.6.2 Instrument Definition Files

The purpose of instrument definition files is to provide the necessary data
for mapping expressive parameters to different instrument patches. It also
defines the MIDI channel configuration used in the synthesis environment.
The format allows several instruments of the same type to be used at the
same time, whose count is limited to the number of MIDI channels reserved to
it. The file is a list of instrument definitions, which include patch definitions.
A patch definition includes the following information:

Name A human readable name for the patch.

Keyswitch The keyswitch for selecting this patch.

Length Length of patch, as described in section 5.3. This is
a relative value in the range]0, 1].

Attack Attack of patch, as described in section 5.3.

Weight Weight of patch, as described in section 5.3.

Each patch is unique to an instrument, each instrument also including the
following information:

Name A human readable name for the instrument.

Shortest note The length for the relative note length of 0.

Longest note The length for the relative note length of 1.

Channels A list of MIDI channels to use for instances of this
instrument.

Patches List of patches.

An example of an instrument definition file can be found from Appendix B.

7.6.3 Beat Pattern Definition Files

The beat pattern definition files include the information for all the conducting
beat patterns that the system recognizes. Each beat pattern includes the
following information:

Meter The time signature to which this pattern applies.

CHAPTER 7. IMPLEMENTATION DETAILS 46

Beats A list of beat times as an offset into the bar in quarter
notes.

An example of a beat pattern definition file can be found from Appendix B.

Chapter 8

Discussion and Conclusions

While evaluating systems similar to the conductor follower has been discussed
in e.g. [45], no formal evaluation was performed for the system implemented.
The content in this chapter is mostly based on testing during development,
and a few informal testing sessions with a professional conductor.

8.1 Evaluation of Results

The conductor follower system implemented tracks the motions of the user,
analyses them, and plays back a modified score via a synthesis engine. The
system is evaluated from three different perspectives:

1. The overall architecture,

2. the implemented feature set, and

3. the quality of the implemented features.

8.1.1 Architecture

The architecture was designed largely based on the real-time computing and
threading restrictions discussed in section 7.2. Also the selected synthesis
environment (chapter 5) and supporting libraries (section 7.1.2) had some
influence on the architecture. These implementation specific design motives
lead to designing an architecture with a rather large amount of clearly de-
fined, minimal interfaces. While having loose coupling between implemen-
tation modules is usually good, inserting an abstraction layer in the wrong
place can be detrimental to the clarity of the related interface.

While the data file interfaces and the main score follower interface (de-
picted in figure 2.1) worked out very well, the motion tracker interface was
more implementation detail driven, and thus not quite as elegant. This is

47

CHAPTER 8. DISCUSSION AND CONCLUSIONS 48

due to the fact that the motion data processing is done in the motion track-
ing thread, in order to keep the MIDI thread load as low as possible. This
design choice can be justified by taking into account the timing constraints
for each thread. The coupling between the motion tracker and score follower
is tighter than it should, because it is only feasible to extract the motion
features needed by the score follower from the motion data. This means
that the score follower needs to be aware of exactly which events the mo-
tion tracker is producing and the motion tracker aware of what events the
score follower expects to receive. Only passing the raw motion data and the
polynomial regression filter results (speed, acceleration, and jerk, see section
3.2.1) would loosen the coupling between the modules.

8.1.2 Implemented Features

Since the communication modeled in a conductor follower system happens
between people – the conductor and the musicians – having a ”complete” so-
lution to it would essentially require passing the Turing test [46] in a conduct-
ing situation. Examined from this perspective, the most significant feature
lacking from the system is a communication channel outside of conducting
gestures, as discussed in section 2.2. A practical viewpoint will, however, re-
veal that this feature is only complementary to other features, as it can only
be used to adjust features that are already present in the system. Imple-
menting a system that could actually learn new features based on conductor
feedback is unfeasible with current technology.

Sousa [3] lists eight different conducting emblem categories: beat pat-
terns, dynamics, styles, preparations, releases, fermatas/holds, tempo changes,
and phrasings. Out of these, beat patterns, dynamics, styles, tempo changes,
and phrasings are supported at some level, and are discussed in more detail in
the next section. Looking at the remaining features, the biggest shortcoming
of the system is the lack of support for holds and grand pauses (fermatas).
Missing a fermata will cause the system to drift off badly, and is a much more
severe problem than missing almost any other expressive feature. Also, de-
pending on the style and timing of a release gesture, it might disrupt tempo
following. Supporting preparations, on the other hand, would only serve a
pedagogical or entertainment value, as the system does not miss notes unless
such behavior is explicitly implemented.

8.1.3 Feature Quality

Utilizing the category division by Sousa [3], the following conducting em-
blem categories are supported at some level: beat patterns, dynamics, styles,

CHAPTER 8. DISCUSSION AND CONCLUSIONS 49

tempo changes, and phrasings. Dynamics, styles, and phrasings are not
directly interpreted, but are indirectly supported by the expressive feature
extraction (section 3.5) and synthesis patch switching mechanisms (section
5.3). The mechanism is somewhat limited, but gives some level of freedom
to modifying the expressive features of the score.

Beat patterns are supported on the timing level, i.e. the system under-
stands that the beat timing can vary between different conducting patterns
in the same time signatures. It does not, however, try to use the directional
information of the pattern to make the following more robust. This is partly
a design choice, as conductors often do not follow the ”textbook” patterns
very precisely, but instead use more freedom in their movements to convey
expressive features, as can be seen from recorded conductor movements [11].
Thus, the directional information can not be relied on too much in beat
classification, but should rather be used as a complementary data source.

Tempo change support is the most tested feature in the system. It was
evaluated by a professional conductor, and based on this very informal eval-
uation, it was concluded to perform very well with moderate tempo changes.
Abrupt changes did, however, sometimes cause classification problems, caus-
ing the follower to lose synchronization with the conductor. Also, if the score
file contained tempo changes, which the conductor did not follow, it made
the situation even worse, as the expectations of the system differed largely
from the conducted tempo.

8.2 Future Work

As discussed in section 8.1.2, creating the ”perfect” conductor follower is
something that is not going to be achieved in the foreseeable future. This
means that there will always be something to improve in the system. How-
ever, some features and improvements will be more beneficial than others,
and this section attempts to address the most relevant ones. Potential mod-
ifications based on alternative use cases are also considered.

8.2.1 Machine Learning

Machine learning was not used in this system, mostly because it would have
implied having to train the system for each user separately, or having to
collect a large amount of training data. However, if this approach would
be taken, it would definitely be possible to improve many of the features
implemented. Due to the modular approach taken in designing the overall
architecture of the system, incorporating machine learning methods into the

CHAPTER 8. DISCUSSION AND CONCLUSIONS 50

system should be feasible without introducing too much technical debt.
Based on previous work, one of the most likely parts of the system to use

machine learning in, would be gesture detection [20]. Also, expressive score
manipulation is a subject where machine learning has been used earlier [13].

8.2.2 Motion Tracking

Improvements in the motion tracking methods could both improve existing
features, and introduce new features to the system. As all of the continuous
user input to the system is provided via the motion tracking interface, limited
capabilities in motion tracking cause a bottleneck to the capabilities of the
whole system.

From existing features, the beat tracking method is one of the most sim-
plified ones with regards to motion tracking. This is due to the fact that
it only uses the times of detected beats, and dismisses all other information
related to the beat pattern trajectory. However, using the directional infor-
mation for beat classification is not a very simple problem, as discussed in
section 8.1.3. While other methods could most probably provide improve-
ments to the system, using machine learning and conductor specific training
is probably the most feasible way to improve beat tracking.

As for supporting very specific gestures, such as holds or preparations,
there is almost no support present in the system. While implementing such
features requires having methods for detecting the gestures from the motion
input, they also require work in other parts of the system. As the system
does not include anything closely related to the problem at hand, future
implementations of such features are free to use any applicable methods
available.

8.2.3 Score Analysis

Several methods for applying expressive features to musical scores and per-
formances have been developed over the years [13]. They all analyze the
score, and produce expressive modifications to it, based on the results of the
analysis. Using such analysis in tandem with the input from the conductor,
could possibly lead to much improved and more human like expressiveness.

The current system largely uses expressive features built into the MIDI
score, while the aforementioned systems analyze ”raw” scores, with no dy-
namic or timing variations built in. While the expressive feature in the MIDI
score work well when the tempo is constant – the quality of the MIDI file
setting the baseline for the quality – changes in tempo can produce unsat-
isfactory results. The problem is mostly caused by the non-linear part of

CHAPTER 8. DISCUSSION AND CONCLUSIONS 51

the tempo function (see section 4.3.2), which does not present a musically
satisfactory result [12, 13]. Also, the absolute tempo of the piece has an effect
on expressive timing [14], which is not taken into account in the current sys-
tem. Using a more ”intelligent” system to make tempo adjustments, would
definitely be an improvement.

8.2.4 Potential Modifications

In its current form, the use cases for the system are somewhat limited, due to
the purely academic nature of the implementation. However, there are other
potential use cases for the system, which would require some modifications
or extensions to the system. Some of them are discussed in this section.
Others, such as use in conducting classes, would require more research into
what features would actually be useful.

Conduct your own recordings One use case for the system is being
able to record the result of your conducting, for the purpose of listening to
it later on. Given a well made score and high quality synthesis environment,
the recordings can reach a high quality. Listening to the resulting recordings
could be beneficial for conductors or composers evaluating different inter-
pretations, or for plain entertainment purposes. Extending the idea to the
internet, these recordings could also be shared among friends, or one could
even hold virtual conducting competitions where the recordings are shared
and judged online. Since currently the audio is output from a VST plugin,
recording it with a third party software is possible. However, it would be
possible to make this task a lot easier by building the functionality into the
system. Especially if the recording is to be shared, having one application
for the whole task would be a crucial improvement to the user experience.

”Conductor Hero” Given the popularity of games like Guitar Hero, where
the player uses an instrument like controller to simulate playing along with a
band, modifying the system to behave like a similar game for conducting is
a use case easily come up with. However, the setting in such games is quite
the opposite of the current functionality of the conductor follower system –
where in the game, the user has to keep up with the system, in the conduc-
tor follower, the system has to keep up with the user. Nevertheless, there
are several components in the system, which could be reused in a game; the
required development effort would be very large though.

CHAPTER 8. DISCUSSION AND CONCLUSIONS 52

8.3 Conclusions

The main purpose of the work was to implement a conductor follower system
using consumer grade motion tracking equipment and a high quality sample
based synthesis environment. Also among the goals was keeping the mode of
operation on a generalized level, so that the system works without the need
for training. Even though there is room for improvement – and always will
be for systems of such complexity – the end result met the main goals.

While the methods applied do not contain anything especially novel, the
system does have a well documented and extensible architecture, and should
be usable as an implementation basis for future projects. Also, compared to
previous similar projects, lots of effort was put into thoroughly documenting
the underlying methods – especially ones related to tempo following. All in
all, the system is able to model an essential subset of conductor-musician
communication, and produce a satisfying interactive experience resembling
conducting a real orchestra.

Bibliography

[1] Elizabeth A. Green. The Modern Conductor. Englewood Cliffs, NJ:
Prentice Hall, 1981.

[2] Ronald Wayne Gallops. “The effect of conducting gesture on expressive-
interpretive performance of college music majors”. PhD thesis. Univer-
sity of South Florida, 2005.

[3] Gary Donn Sousa. “Musical conducting emblems: an investigation of
the use of specific conducting gestures by instrumental conductors and
their interpretation by instrumental performers”. PhD thesis. The Ohio
State University, 1988.

[4] Anu Konttinen. “Conducting gestures: institutional and educational
construction of conductorship in Finland, 1973–1993”. PhD thesis. Hel-
sinki University, 2008.

[5] Matthew Turk. “Gesture recognition”. In: Handbook of Virtual En-
vironments: Design, Implementation, and Applications. Mahwah, NJ:
Lawrence Erlbaum Associates, 2002.

[6] Zhengyou Zhang. “Microsoft Kinect sensor and its effect”. In: Multi-
media, IEEE 19.2 (Feb. 2012), pp. 4 –10. issn: 1070-986X. doi: 10.

1109/MMUL.2012.24.

[7] Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. “A survey
of advances in vision-based human motion capture and analysis”. In:
Computer Vision and Image Understanding 104.2 (Nov. 2006), pp. 90–
126. issn: 1077-3142. doi: 10.1016/j.cviu.2006.08.002.

[8] Daniel Weinland, Remi Ronfard, and Edmond Boyer. “A survey of
vision-based methods for action representation, segmentation and recog-
nition”. In: Computer Vision and Image Understanding 115.2 (2011),
pp. 224 –241. issn: 1077-3142. doi: 10.1016/j.cviu.2010.10.002.

[9] G. Luck and J. Sloboda. “Exploring the spatio-temporal properties of
simple conducting gestures using a synchronization task”. In: Music
Perception 25.3 (2008), pp. 225–239.

53

http://dx.doi.org/10.1109/MMUL.2012.24
http://dx.doi.org/10.1109/MMUL.2012.24
http://dx.doi.org/10.1016/j.cviu.2006.08.002
http://dx.doi.org/10.1016/j.cviu.2010.10.002

BIBLIOGRAPHY 54

[10] G. Luck and J.A. Sloboda. “Spatio-temporal cues for visually mediated
synchronization”. In: Music Perception 26.5 (2009), pp. 465–473.

[11] Geoff Luck and Petri Toiviainen. “Ensemble musicians’ synchronization
with conductors’ gestures: an automated feature-extraction analysis”.
In: Music Perception 24.2 (2006), pp. 189–200.

[12] P. Desain and H. Honing. “Tempo curves considered harmful”. In: Con-
temporary Music Review 7.2 (1993), pp. 123–138.

[13] Alexis Kirke and Eduardo R. Miranda. “An overview of computer sys-
tems for expressive music performance”. In: Guide to Computing for
Expressive Music Performance. Ed. by Alexis Kirke and Eduardo R.
Miranda. Springer London, 2013, pp. 1–47. isbn: 978-1-4471-4122-8.
doi: 10.1007/978-1-4471-4123-5_1.

[14] Peter Desain and Henkjan Honing. “Does expressive timing in mu-
sic performance scale proportionally with tempo?” In: Psychological
Research 56.4 (1994), pp. 285–292. issn: 0340-0727. doi: 10.1007/

BF00419658.

[15] Patrik N. Juslin. “Cue utilization in communication of emotion in mu-
sic performance: relating performance to perception.” In: Journal of
Experimental Psychology: Human Perception and Performance 26.6
(2000), p. 1797.

[16] O. Moravec and J. Stepanek. “Verbal descriptions of musical sound tim-
bre and musician’s opinion of their usage”. In: Fortschritte der Akustik
31.1 (2005), p. 231.

[17] Anders Friberg. “A fuzzy analyzer of emotional expression in music
performance and body motion”. In: Proceedings of Music and Music
Science. 2004, pp. 28–30.

[18] Kia C. Ng. “Music via motion: transdomain mapping of motion and
sound for interactive performances”. In: Proceedings of the IEEE. Vol. 92.
4. Apr. 2004, pp. 645–655. doi: 10.1109/JPROC.2004.825885.

[19] Vienna Symphonic Library GmbH. Vienna Symphonic Library. url:
http://www.vsl.co.at (accessed on 2012-11-23).

[20] Marco Fabiani, Anders Friberg, and Roberto Bresin. “Systems for in-
teractive control of computer generated music performance”. In: Guide
to Computing for Expressive Music Performance. Ed. by Alexis Kirke
and Eduardo R. Miranda. Springer London, 2013, pp. 49–73. isbn:
978-1-4471-4122-8. doi: 10.1007/978-1-4471-4123-5_2.

http://dx.doi.org/10.1007/978-1-4471-4123-5_1
http://dx.doi.org/10.1007/BF00419658
http://dx.doi.org/10.1007/BF00419658
http://dx.doi.org/10.1109/JPROC.2004.825885
http://www.vsl.co.at
http://dx.doi.org/10.1007/978-1-4471-4123-5_2

BIBLIOGRAPHY 55

[21] W. Buxton, W. Reeves, G. Fedorkow, et al. “A microcomputer-based
conducting system”. In: Computer Music Journal (1980), pp. 8–21.

[22] F. Haflich and M. Burnds. “Following a conductor: the engineering of
an input device”. In: Proceedings of the 1983 International Computer
Music Conference. San Francisco, 1983.

[23] Tommi Ilmonen. “Tracking conductor of an orchestra using artificial
neural networks”. MS thesis. Helsinki University of Techonology, 1999.

[24] H. Morita, S. Hashimoto, and S. Ohteru. “A computer music system
that follows a human conductor”. In: Computer 24.7 (1991), pp. 44–53.

[25] S. Usa and Y. Mochida. “A multi-modal conducting simulator”. In:
Proceedings of the International Computer Music Conference. 1998,
pp. 25–32.

[26] P. Kolesnik and M. Wanderley. “Recognition, analysis and performance
with expressive conducting gestures”. In: Proceedings of the Interna-
tional Computer Music Conference (ICMC), Miami, USA. 2004.

[27] E. Lee, I. Grüll, H. Kiel, et al. “conga: a framework for adaptive con-
ducting gesture analysis”. In: Proceedings of the International Con-
ference on New Interfaces for Musical Expression (NIME06). 2006,
pp. 260–265.

[28] B. Bruegge, C. Teschner, P. Lachenmaier, et al. “Pinocchio: conduct-
ing a virtual symphony orchestra”. In: Proceedings of the Interna-
tional Conference on Advances in Computer Entertainment Technol-
ogy. ACM. 2007, pp. 294–295.

[29] Jan Borchers, Eric Lee, Wolfgang Samminger, et al. “Personal orches-
tra: a real-time audio/video system for interactive conducting”. In:
Multimedia Systems 9.5 (2004), pp. 458–465. issn: 0942-4962. doi:
10.1007/s00530-003-0119-y.

[30] Geoff Luck and Petri Toiviainen. “Perception of expression in conduc-
tors’ gestures: a continuous response study”. In: Music Perception 28.1
(2010), pp. 47–57.

[31] Guerino Mazzola. “Tempo curves”. In: Musical Performance. Ed. by
Guerino Mazzola. Computational Music Science. Springer Berlin Hei-
delberg, 2011, pp. 47–56. isbn: 978-3-642-11838-8.

[32] Diemo Schwarz. “Concatenative sound synthesis: the early years”. In:
Journal of New Music Research 35.1 (2006), pp. 3–22. doi: 10.1080/
09298210600696857.

http://dx.doi.org/10.1007/s00530-003-0119-y
http://dx.doi.org/10.1080/09298210600696857
http://dx.doi.org/10.1080/09298210600696857

BIBLIOGRAPHY 56

[33] Steinberg GmgH. Steinberg Releases VST 2.4 Standard With New Fea-
tures. url: http://www.steinberg.net/index.php?id=334&L=1 (ac-
cessed on 2012-11-29).

[34] MIDI Manufacturers Association Incorporated. General MIDI 2 Spec-
ification. 2003.

[35] Boost C++ Libraries. url: http://boost.org (accessed on 2012-11-23).

[36] ISO. ISO/IEC 14882:2011 Information Technology — Programming
Languages — C++. Geneva, Switzerland: International Organization
for Standardization, Feb. 28, 2012, 1338 (est.)

[37] OpenNI. url: http://www.openni.org (accessed on 2012-11-23).

[38] Primesense Ltd. PrimeSense Natural Interaction. url: http://www.

primesense.com (accessed on 2012-11-23).

[39] Raw Material Software Ltd. JUCE (Jules’ Utility Class Extensions).
url: http://www.rawmaterialsoftware.com/juce.php (accessed on
2012-11-23).

[40] Matthias Christian Schabel and Steven Watanabe. Boost.Units: Zero-
overhead Dimensional Analysis and Unit/Quantity Manipulation and
Conversion. url: http://www.boost.org/doc/libs/release/doc/

html/boost_units.html (accessed on 2012-11-23).

[41] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming:
Concepts, Tools, and Techniques From Boost and Beyond. Addison-
Wesley Professional, 2004.

[42] Tim Blechmann. Boost.Lockfree: Lock-free C++ Data Structures. url:
http://boost-sandbox.sourceforge.net/doc/html/lockfree.html

(accessed on 2012-11-23).

[43] Jing Chen and Alan Burns. A Fully Asynchronous Reader/Writer Mech-
anism for Multiprocessor Real-time Systems. Tech. rep. 1997.

[44] Douglas Crockford. RFC 4627 - The application/json Media Type for
JavaScript Object Notation (JSON). Tech. rep. url: http://tools.

ietf.org/html/rfc4627.

[45] Roberto Bresin and Anders Friberg. “Evaluation of computer systems
for expressive music performance”. In: Guide to Computing for Ex-
pressive Music Performance. Ed. by Alexis Kirke and Eduardo R. Mi-
randa. Springer London, 2013, pp. 181–203. isbn: 978-1-4471-4122-8.
doi: 10.1007/978-1-4471-4123-5_7.

[46] A. M. Turing. “Computing machinery and intelligence”. In: Mind 59
(1950), pp. 433–460.

http://www.steinberg.net/index.php?id=334&L=1
http://boost.org
http://www.openni.org
http://www.primesense.com
http://www.primesense.com
http://www.rawmaterialsoftware.com/juce.php
http://www.boost.org/doc/libs/release/doc/html/boost_units.html
http://www.boost.org/doc/libs/release/doc/html/boost_units.html
http://boost-sandbox.sourceforge.net/doc/html/lockfree.html
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://dx.doi.org/10.1007/978-1-4471-4123-5_7

Appendix A

Source Code Availability and
Compatibility

At the time of publishing, the source code for the implementation is freely
available on GitHub, at https://github.com/sbergen/ConductorFollower. The
project was developed using Microsoft Visual Studio 2010 (VS2010) on Win-
dows 7. The implementation uses some of the C++11 features available in
VS2010, but does not by default use any Windows specific features. Thus it
should be rather trivial to port the code to any other platform with:

• A compiler that supports the used C++11 features,

• support for OpenNI,

• support for Juce, and

• support for Boost.

Porting will, however, require creating a build script for the given environ-
ment, as only VS2010 project files are included. Feasible platforms include
at least OS X and Linux. Pull requests for compatibility fixes for different
platforms are highly welcome.

Sample instrument patches for VSL and their respective instrument def-
inition files, along with a beat pattern definition file can be found from the
data content directory in the repository. The instrument patches require
the Vienna Special Edition volumes 1, 1+, 2, and 2+.

57

https://github.com/sbergen/ConductorFollower

Appendix B

DSL Examples

B.1 Score Description Format

score {

name: "Mozart: Trio for piano , clarinet and viola in E

flat major , KV 498 (1786)",

midi_file: "/scores/mozart_498.mid",

instrument_file: "/scores/instruments.def",

beat_pattern_file: "/scores/beat_patterns.def",

tracks: [

track {

name: "clarinet",

instrument: "clarinet Bb"

},

track {

name: "viola",

instrument: "chamber viola"

},

track {

instrument: "ignore"

},

track {

name: "piano right hand",

instrument: "piano"

},

track {

name: "piano left hand",

instrument: "piano"

}

],

events: [

tempo_sensitivity {

58

APPENDIX B. DSL EXAMPLES 59

position: 0|0,

sensitivity: 1.0

},

tempo_sensitivity {

position: 1|0,

sensitivity: 0.8

},

tempo_sensitivity {

position: 3|0,

sensitivity: 0.5

},

]

}

B.2 Instrument Definition Format

[

// Special "keyword" for ignoring a track

instrument { name: "ignore" },

instrument {

name: "clarinet Bb",

shortest_note_threshold: 0.05,

longest_note_threshold: 1.0,

channels: [1, 2],

patches: [

patch {

name: "perf -rep staccato"

keyswitch: C1

length: 0.05,

attack: 0.7,

weight: 0.5

},

patch {

name: "staccato"

keyswitch: C#1

length: 0.1,

attack: 0.7,

weight: 0.5

},

patch {

name: "portato"

keyswitch: D1

length: 0.2,

attack: 0.4,

weight: 0.5

APPENDIX B. DSL EXAMPLES 60

},

patch {

name: "perf -rep legato"

keyswitch: D#1

length: 0.5,

attack: 0.2,

weight: 0.5

},

patch {

name: "sfortzato"

keyswitch: E1

length: 0.8,

attack: 0.9,

weight: 1.0

},

patch {

name: "fortepiano"

keyswitch: F1

length: 0.8,

attack: 0.4,

weight: 1.0

},

patch {

name: "sustain"

keyswitch: F#1

length: 1.0,

attack: 0.3,

weight: 0.4

},

patch {

name: "legato"

keyswitch: G1

length: 1.0,

attack: 0.5,

weight: 0.5

},

patch {

name: "legato -sus"

keyswitch: G#1

length: 1.0,

attack: 0.4,

weight: 0.6

}

]

},

instrument {

name: "piano",

APPENDIX B. DSL EXAMPLES 61

channels: [3, 4],

patches: [

patch {

name: "regular"

keyswitch: C0

length: 0.5,

attack: 0.5,

weight: 0.5

}

]

}

]

B.3 Beat Pattern Definition Format

[

// 2/4

beat_pattern {

meter: 2/4,

beats: [

beat { time: 0.0 },

beat { time: 1.0, },

]

},

beat_pattern {

meter: 2/4,

beats: [

beat { time: 0.0 },

]

},

// 3/4

beat_pattern {

meter: 3/4,

beats: [

beat { time: 0.0 },

beat { time: 1.0, },

beat { time: 2.0, },

]

},

beat_pattern {

meter: 3/4,

beats: [

APPENDIX B. DSL EXAMPLES 62

beat { time: 0.0 },

]

},

// 4/4

beat_pattern {

meter: 4/4,

beats: [

beat { time: 0.0 },

beat { time: 1.0 },

beat { time: 2.0 },

beat { time: 3.0 },

]

},

beat_pattern {

meter: 4/4,

beats: [

beat { time: 0.0 },

beat { time: 2.0, },

]

},

beat_pattern {

meter: 4/4,

beats: [

beat { time: 0.0 },

]

},

// 6/8

beat_pattern {

meter: 6/8,

beats: [

beat { time: 0.0 },

beat { time: 0.5 },

beat { time: 1.0 },

beat { time: 1.5 },

beat { time: 2.0 },

beat { time: 2.5 },

]

},

beat_pattern {

meter: 6/8,

beats: [

beat { time: 0.0 },

APPENDIX B. DSL EXAMPLES 63

beat { time: 1.5 },

]

},

beat_pattern {

meter: 6/8,

beats: [

beat { time: 0.0 },

]

},

]

	Cover page
	Contents
	Abbreviations and Acronyms
	Notation
	1 Introduction
	1.1 Conducting Gestures
	1.2 Gesture-Based Human-Computer Interaction
	1.3 Tempo Following
	1.4 Expressive Sound Synthesis
	1.5 Thesis Overview

	2 Conductor Following
	2.1 Previous Work
	2.1.1 Sensors for Gesture Capture
	2.1.2 Methods for Gesture Analysis
	2.1.3 Performance Control
	2.1.4 Synthesis

	2.2 Design Rationale
	2.3 System Overview

	3 Motion Capture
	3.1 OpenNI and Hand Tracking
	3.2 Supporting Methods
	3.2.1 The Polynomial Regression Filter
	3.2.2 Exponential Moving Average
	3.2.3 Peak Holder
	3.2.4 Standard Deviation of the Sample

	3.3 Beat Detection
	3.4 Start Gesture Detection
	3.5 Expressive Feature Extraction
	3.5.1 Windowed Trajectory Length
	3.5.2 Windowed Standard Deviation of Velocity
	3.5.3 Filtered Peak Jerk

	4 Score Following
	4.1 Physical Time and Score Positions
	4.2 Beat Classification
	4.2.1 Beat Patterns
	4.2.2 The Beat Classification Operation

	4.3 Tempo Adjustment
	4.3.1 Tempo Estimation
	4.3.2 Tempo Function
	4.3.3 Offset Compensation
	4.3.4 Tempo Changes
	4.3.5 Relaxed Tempo Following

	4.4 Start Tempo Estimation

	5 Sound Synthesis
	5.1 Vienna Symphonic Library
	5.1.1 Virtual Studio Technology

	5.2 Score Event Format
	5.2.1 The Musical Instrument Digital Interface

	5.3 Patch Switching
	5.3.1 Patch Parameter Synthesis
	5.3.2 Patch Distance Function

	6 Visualization
	6.1 Movement Tracing
	6.2 Spatial Beat Visualization
	6.3 Beat Offset Visualization
	6.4 Depth Sensor Output

	7 Implementation Details
	7.1 Architectural Overview
	7.1.1 Modules
	7.1.2 Supporting Libraries

	7.2 Real-time Computing and Threading
	7.2.1 Real-time Computing
	7.2.2 Thread Model

	7.3 Time Handling
	7.3.1 Jitter Correction
	7.3.2 Dimensional Analysis

	7.4 Essential Common Utilities
	7.4.1 Event Buffer
	7.4.2 The Butler Thread
	7.4.3 Lock-Free Ringbuffer
	7.4.4 Chen & Burns Buffer

	7.5 Motion Capture
	7.5.1 The Polynomial Regression Filter

	7.6 Data File Formats
	7.6.1 Score Description Files
	7.6.2 Instrument Definition Files
	7.6.3 Beat Pattern Definition Files

	8 Discussion and Conclusions
	8.1 Evaluation of Results
	8.1.1 Architecture
	8.1.2 Implemented Features
	8.1.3 Feature Quality

	8.2 Future Work
	8.2.1 Machine Learning
	8.2.2 Motion Tracking
	8.2.3 Score Analysis
	8.2.4 Potential Modifications

	8.3 Conclusions

	Bibliography
	A Source Code Availability and Compatibility
	B DSL Examples
	B.1 Score Description Format
	B.2 Instrument Definition Format
	B.3 Beat Pattern Definition Format

