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A crucial step in kernel-based learning is the selection of a proper kernel function or kernel 

matrix. Multiple kernel learning (MKL), in which a set of kernels are assessed during the 
learning time, was recently proposed to solve the kernel selection problem. The goal is to 
estimate a suitable kernel matrix by adjusting a linear combination of the given kernels so that 
the empirical risk is minimized. MKL is usually a memory demanding optimization problem, 
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This study proposes an efficient method for kernel learning by using the low rank property 
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1. Introduction

1.1 Background

Recent advances in computer networks and storage technologies allow to col-
lect, store and share a significant amount of data with high resolution and fine
details. Financial markets, news articles, online social networks, online com-
puter games, network traffic, clinical trials records, and weather data are some
examples of major data sources. Such data allows us to have a better under-
standing of our surroundings. Analysis tools, for example statistical and ma-
chine learning devices, become paramount to copewith the considerable amount
of data.
A typical statistical data analysis includes making assumptions or building

a model for a particular data (model selection), fitting data to the model, and
extra model tuning. Having wide applications in data analysis and modeling,
regression and classification models are two major topics in machine learning,
see e.g. (Lehmann and Casella, 1998; Schölkopf and Smola, 2002; Davison, 2003;
Steinwart and Christmann, 2008; Izenman, 2008).
Kernel methods, such as Support Vector Machines (SVM) (Cortes and Vap-

nik, 1995; Vapnik, 1999), have been successfully applied to many regression and
classification problems and have become a standard solution for a significant
number of data analysis and modeling problems. For example, see (Burbidge et
al., 2001; Sebastiani, 2002; Guyon et al., 2002; Furey et al., 2002; Leopold and Kin-
dermann, 2002; Kim, 2003; Lanckriet et al., 2004a; Evgeniou et al., 2006; Tripathi
et al., 2006; Lu et al., 2009; Wilks, 2011).
The core of kernel methods is transferring the samples from the original Eu-

clidean space to a higher dimensional space using a non-linear mapping, called
feature map, and then finding the classification/regression function in that new
space using linear models (Vapnik, 1999; Schölkopf and Smola, 2002; Steinwart
and Christmann, 2008). This transfer improves the accuracy of prediction by
allowing to construct nonlinear decision functions in the original space. Many
classification methods use the concept of similarity between samples. For the
transferred samples, this can be simply computed using a so called kernel func-
tion in the original space. The kernel function can be constructed using the fea-
ture maps.
The performance of kernel methods depends on the selected feature map or,

practically, the kernel function, in addition to other tuning parameters. How-
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2 Introduction

ever, the selection of a suitable kernel is often left up to the user (Cortes and
Vapnik, 1995; Vapnik and Chapelle, 2000; Shawe-Taylor and Kandola, 2002; Vap-
nik, 1999). One approach to select a suitable kernel function is to use resampling
techniques over a set of kernel functions, which does not scale well with the
number of kernels or the number of samples. Therefore, the applicability of
such approaches is limited, for example see (Chapelle et al., 2002; Sonnenburg
et al., 2006; Rakotomamonjy et al., 2008).
Recently, kernel learning and in particular multiple kernel learning (MKL)

were proposed to solve the kernel selection problem. MKL searches for a kernel
function among a linear combination of given kernels such that it minimizes the
empirical risk of the plugged-in SVM.Most of the proposed algorithms for MKL
focus on improving the optimization steps involved in MKL. The size of a ker-
nel matrix grows as the number of samples increases, leading to larger memory
requirement and a concomitant increase in computational load. This naturally
limits the use of MKL methods in very large sample settings.
This thesis focuses on improving the efficiency of kernel learning by approxi-

mating the kernel bases with a set of rank one matrices. This type of approxima-
tion has been considered in the literature previously, but usually the final kernel
learning over the approximated set is handled using ordinary MKL techniques.
In particular, we show that, with some approximations, the MKL over this class
takes the Basis pursuit (Chen et al., 2001) optimization form, depending on the
loss function. For general loss functions we also provide similar results.
In machine learning and statistics, it is important to study the parameters

that influence the performance of a model over new sample points. In statis-
tical learning theory, for example (Vapnik, 1999; Koltchinskii, 2011; Mendelson,
2012), it is shown that the complexity of the hypothesis set controls the gener-
alization error, i.e. the prediction error for samples that are out of the training
set. In the MKL setting, the hypothesis set consists of linear functions that can
be separately constructed by the members of the kernel set. We show that this
complexity depends on the geometry (diameter) of the kernel set as well as on
its size. In addition, we provide an analysis of the approximation involved in
the proposed MKL approach.
Another important model in statistical data analysis is independent compo-

nent analysis (ICA), which is the focus in the rest of the thesis. In ICAwe assume
that the samples are linear combinations of a set of independent random vari-
ables, called independent components (Hyvärinen, 1999) or source signals. The
goal in ICA is to estimate the mixing or de-mixing coefficients, given only the
mixed samples. A set of algorithms have been proposed to solve the ICA prob-
lem (Hyvärinen et al., 2001). For instance, FastICA algorithm relies on central
limit theorem (Van der Vaart and Wellner, 1996), and searches for a vector such
that its inner product with the samples vector is as non-Gaussian as possible.
The result of FastICA algorithm may vary with the change of initialization or

sampling (Hyvärinen et al., 2001). Nevertheless, there is no straightforward way
to find confidence interval for the estimations. One possibility to circumvent
this issue is to subsample from the given data set for a number of iterations and
then combine the results coming out of FastICA runs. This setup/algorithm is
called Bootstrap FastICA. It has been shown that the bootstrapping or similar
randomization improves the data exploration in an ICA setting, for example see
(Reyhani et al., 2011). Similar technique applies to other ICA algorithms.
In the rest of the thesis, the convergence of the FastICA and bootstrap FastICA
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algorithms are studied. In addition, the relations between the rates of conver-
gence to, for instance, the number of independent variables and the sample size
are characterized. This is an attempt to establish similar results as of statistical
learning theory (Vapnik, 1999) for FastICA. Note that, the convergence of Fas-
tICA in population has been studied in literature. However, the connection to
sample analysis is missing and the technique of the proof in previous works can
hardly be extended for sample analysis, nor for the bootstrap version. Here,
applying the empirical process theory, we provide an analysis of FastICA and
bootstrap FastICA estimators.

1.2 Contributions

The main contributions of the thesis are summarized as follows. The results ap-
peared as a series of publications (Reyhani and Bickel, 2009; Hino et al., 2010;
Reyhani et al., 2011; Ogawa et al., 2011; Reyhani and Oja, 2011; Hino et al., 2012;
Reyhani, in print; Ylipaavalniemi et al., 2012).

-Multiple Spectral Kernel Learning

We derive an efficient numerical solution for utilizing the low rank property
of kernel matrices in multiple kernel learning framework through adjusting the
spectrum of rank one approximations, hence we call it multiple spectral kernel
learning (Multiple SKL).

-Geometrical Gaussian Complexity

A geometric Gaussian complexity for the multiple spectral class is derived, by
which we show that the complexity of the resulting hypothesis set depends not
only on the dictionary size, but also on the diameter of the dictionary.

-Consistency and Asymptotic Normality of FastICA and Bootstrap FastICA

We establish the consistency and asymptotic normality of the FastICA algo-
rithm. In addition, we show that the bootstrap FastICA is asymptotically nor-
mal. The results also contain a sample convergence analysis of this algorithm.

1.3 List of related publications

I. Reyhani, N. & Bickel, P. (2009). Nonparametric ICA for nonstationary instan-
taneous mixtures. In Proceedings of Workshop on Learning from non IID Data:
Theory, Algorithms and Practice, ECML–PKDD.

II. Hino, H., Reyhani, N., & Murata, N. (2010). Multiple kernel learning by con-
ditional entropy minimization. In Machine Learning and Applications (ICMLA),
2010 IEEE Ninth International Conference on, 223-228.

III. Ogawa, T., Hino, H., Reyhani, N., Murata, N., &Kobayashi, T. (2011). Speaker
recognition using multiple kernel learning based on conditional entropy min-
imization. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE Inter-
national Conference on, 2204-2207.

IV. Reyhani, N., Ylipaavalniemi, J., Vigário, R., & Oja, E. (2011). Consistency
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and asymptotic normality of FastICA and bootstrap FastICA. Signal Processing,
92(8), 1767-1778.

V. Reyhani, N., Hino, H., & Vigário, R. (2011). New Probabilistic Bounds on
Eigenvalues and Eigenvectors of Random Kernel Matrices. In Proceedings of
the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial In-
telligence (UAI-11), AUAI Press, 627-634.

VI. Reyhani, N., & Oja, E. (2011). Non-Gaussian component analysis using Den-
sity Gradient Covariance matrix. In Neural Networks (IJCNN), The 2011 Inter-
national Joint Conference on, IEEE, 966-972.

VII. Ylipaavalniemi, J., Reyhani, N., & Vigário, R. (2012). Distributional con-
vergence of subspace estimates in FastICA: a bootstrap study. In Proceedings of
the 10th International Conference on Latent Variable Analysis and Source Separation,
LVA/ICA 2012, 123-130.

VIII. Hino, H., Reyhani, N., & Murata, N. (2012). Multiple kernel learning with
Gaussianity measures. Neural Computation, 24(7), 1853-1881.

IX. Reyhani, N. (2013). Multiple spectral kernel learning and a gaussian com-
plexity computation. Neural Computation, in print.

1.4 Organization of the thesis

The thesis is organized as follows. We shortly introduce basic results in empir-
ical process theory and concentration inequalities in Chapter 2. Chapter 3 con-
tains a summary on the empirical risk minimization, kernel selection, multiple
kernel learning, and our developed framework for the kernel learning. Chap-
ter 4 provides a summary on previous results on Rademacher complexity of
hypothesis class of multiple kernels and their relation to proposed framework
together with the new bound for the Gaussian complexity. Chapter 5 contains
a short overview on the ICA model, some available algorithmic solutions such
as FastICA, bootstrap FastICA, and a sample analysis of FastICA. The statisti-
cal convergence analysis of the FastICA and Bootstrap FastICA algorithms is
provided in Chapter 6. The conclusions are drawn in Chapter 7.



2. Background theory

This chapter provides some definitions and results on empirical process theory
and concentration inequalities that will be used in other chapters.

2.1 Notation

The set of natural numbers, real numbers, and real positive numbers are denoted
by N, R, and R+. We denote scalars with lower case letters (e.g. x and λ), and
vectors with bold face letters (e.g. x and λ). We use capital letters for matrices
(e.g. K). The subscript for matrix, vectors, or scalars denotes the index. The
entries of a vector are denoted by lower case letters with subscript (e.g. xi for the
i-th entry of x). The (i, j) entry of a matrix Tl is denoted by [Tl ]i,j. Ip denotes the
identity matrix in Rp. The inner product between vectors x and y is denoted by
〈x, y〉. In addition, 〈x, x′〉 = x	x′ denotes the Euclidean inner product. The unit
ball in Rp is denoted by S p−1.
For random variable x or random vector x, their expectation is denoted by Ex

and Ex, respectively. The symbol ⊥⊥ denotes statistical independence. Condi-
tional expectation with respect to x given y is denoted by Ex|y or E{x|y}. Sim-
ilar notation is used for conditional probability. For a sequence of real num-
bers x = (x1, x2, . . . ), the �r-norm, r ≥ 1, is denoted by ‖ · ‖�r and ‖x‖�r =

(∑∞
i=1 xr

i )
1/r. The �r space is the space of sequences with finite �r-norm. We de-

note the Euclidean norm by ‖ · ‖. The space of functions with bounded Lr-norm,

i.e. { f : ‖ f ‖P,r :=
(∫
X | f |rdP

) 1
r < ∞, f : X → R}, is denoted by Lr(X , P),

where P denotes the probability measure. The norm in Hilbert space H is de-
noted by ‖ · ‖H. The Lipschitz constant for a function f : Rp → R is denoted by
| f |L, which is defined as a constant c such that | f (x)− f (x′)| ≤ c‖x− y‖ holds,
for all x, x′ in domain of f . For a metric space (A, d), the diameter of a set is
denoted by diam, diam A := supx,y∈A d(x, y) when the sup exists, otherwise
diam A = ∞.

2.2 Concentration inequalities

Concentration inequalities characterize the distance between the average of a
finite number of samples drawn independently from a particular distribution
and the mean or the median of that distribution as a function of, for example,
the number of samples. In the asymptotic case, the result matches the law of

5



6 Background theory

large numbers (Van der Vaart and Wellner, 1996). Here, we state Hoeffding’s
inequality and bounded difference inequality.

Theorem 2.2.1 (Hoeffding’s inequality, (Ledoux, 2001; Steinwart and Christ-
mann, 2008)). Let x1, . . . , xn, n ≥ 1, be random variables distributed independently
according to some distribution P, xi has values in [a, b], ∀i ≤ n, and a < b. Then, we
have

P

{
1
n

n

∑
i=1

(xi −Exi) ≥ (b− a)
√

τ

2n

}
≤ exp(−τ),

for all τ > 0.
Further, let x1, . . . , xn be independent and identically distributed random variables

with values in a Hilbert space H satisfying ‖xi‖∞ ≤ B, i = 1, . . . , n. Then, for all
τ > 0, we have

P

{∥∥∥∥∥ 1n n

∑
i=1

xi −Ex

∥∥∥∥∥H ≥ B

(√
2τ

n
+

√
1
n
+

4Bτ

3n

)}
≤ exp(−τ).

Theorem 2.2.2 (Bounded difference inequality, (Ledoux, 2001)). Let us suppose
that x1, . . . , xn with values in X ⊆ Rp are independent, and f : X n → R. Let
c1, . . . , cn satisfy

sup
x1,...,xn,x′i

∣∣ f (x1, . . . , xi−1, xi, xi+1, . . . , xn)− f (x1, . . . , xi−1, x′i, xi+1, . . . , xn)
∣∣ ≤ ci,

for i = 1, . . . , n, and x′i is an independent copy of xi. Then, for τ > 0 we have

P{| f −E f | ≥ τ} ≤ 2 exp
(
− 2τ2

∑n
i=1 c2i

)
.

2.3 Empirical process theory

In this section, we briefly bring definitions and results from probability theory,
which are mainly borrowed from (Van der Vaart and Wellner, 1996) and (Van
der Vaart, 1998).
A sequence of random vectors xn converges to x in probability, if

P{d(xn, x) > ε} → 0, ∀ε > 0,

where the function d : X × X → R+ denotes a metric on Rp. We denote the
convergence in probability by xn

P−→ x. We also use xn = oP(rn) to denote that

xn = ynrn, with yn
P−→ 0.

We say that xn converges almost surely to x if

P
{
lim
n→∞

d(xn, x) = 0
}
= 1,

A sequence xn converges in distribution if

P{xn ≤ y} → P{x ≤ y},

for every y at which the limit distribution y �→ P{x ≤ y} is continuous. We
denote the convergence in distribution by xn � x.
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Let x1, . . . , xn be a set of independent random variables with probability dis-
tribution P. The empirical measure is the discrete uniform measure on the ob-
servations, denoted by Pn := 1

n ∑n
i=1 δxi , where δxi is delta-Dirac that puts mass

1
n at xi, i = 1, . . . , n.
Given a measurable function f : X → R, we denote the expectation of f under

Pn by Pn f and the expectation of f under P by P f :

P f :=
∫
X

f dP and Pn f :=
1
n

n

∑
i=1

f (xi).

A stochastic process is an indexed collection {xt : t ∈ T} of random variables
defined on the same probability space. An empirical process is a stochastic pro-
cess that is indexed by a function class F and is defined by

√
n |(Pn − P) f | .

In analyzing asymptotic behavior of statistical estimators such as maximum
likelihood estimator or in studying the generalization error of kernel methods,
usually the supremum of the above term appears, i.e.

√
n sup

f∈F
(Pn − P) f , (2.1)

where F is the set of hypothesis functions consisting of hypothetical estima-
tors/predictors. Most of the results in empirical process theory are about study-
ing convergence of (2.1) or its characterizations depending on the size/entropy
of the class F .
The rest of this chapter presents basic concepts and results from empirical pro-

cess theory, which are essential to study the generalization error of kernel learn-
ing method, Chapter 4, and asymptotic normality of FastICA, which is estab-
lished in Chapter 5 and Chapter 6.

2.3.1 Rademacher and Gaussian Complexities

One of the classical approaches to study the supremum of empirical processes
is to reduce this process to a Rademacher process (see below), using the sym-
metrization device.

Lemma 2.3.1 (Symmetrization lemma (Van der Vaart andWellner, 1996; Koltchin-
skii, 2011)). For every nondecreasing, convex function ψ : R → R, and class of mea-
surable functions F ,

Eψ

(
sup
f∈F

|(Pn − P) f |
)
≤ 2Eψ

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

εi f (xi)

∣∣∣∣∣
)
, (2.2)

where x1, . . . , xn are independent and identically distributed random vectors with values
in X ⊆ Rp. Also, ε1, . . . , εn are independent random variables that take values in
{−1,+1} with probability 1

2 . We assume that εi are independent to xj, ∀1 ≤ i, j ≤ n.
The process Xf = ∑n

i=1 εi f (xi), ∀ f ∈ F is called Rademacher process.

In the above lemma the random variables ε1, . . . , εn are called Rademacher
random variables. The symmetrization device has been also presented in dif-
ferent forms. For example, taking the assumption of the Lemma 2.3.1 and for
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ε > 0, n ≥ 8v2
ε2
, the following holds:

P

{
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

f (xi)− P f

∣∣∣∣∣ > ε

}
≤ 4P

{
sup
f∈F

∣∣∣∣∣ n

∑
i=1

εi f (xi)

∣∣∣∣∣ > nε

4

}
, (2.3)

where v2 = sup f∈F var( f ). For the proof see (Van der Vaart and Wellner, 1996;
Mendelson, 2003a).
The expectation of the term with supremum in right hand side of the inequal-

ity (2.2) is commonly used as a notion of complexity of a class of functions, which
is formally defined below.

Definition 2.3.2 (Rademacher and Gaussian complexity (Bartlett and Mendel-
son, 2003; Koltchinskii and Panchenko, 2005)). Let us assume that x1, . . . , xn are
independent and identically distributed random vectors with values in X ⊆ Rp. For a
class of measurable functions F the Rademacher complexity is defined by

Rn
F = E

{
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

εi f (xi)

∣∣∣∣∣
}
, (2.4)

where ε1, . . . , εn are Rademacher random variables. The expectation is with respect to
both εi and xi. Similarly the Gaussian complexity is defined by

Gn
F = E

{
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

gi f (xi)

∣∣∣∣∣
}
, (2.5)

where g1, . . . , gn are independent normal random variables, i.e. gi ∼ N (0, 1), i =

1, . . . , n. The expectation is with respect to both gi and xi. Both Normal and Rademacher
random variables are independent to xi, i = 1, . . . , n.

Both the Rademacher and Gaussian complexities of a function class F mea-
sure the supremum of the correlation between any f ∈ F and pure independent
noise, described either as independent normal or Rademacher random vari-
ables. In machine learning, both the Rademacher and Gaussian complexity are
interpreted as an index of how likely the prediction class taken from F may
learn the noise rather than learning the data. These two complexity measures
are related as the theorem below states.

Theorem 2.3.3. (Tomczak-Jaegermann, 1989) There are absolute constants c and C
such that, for every class F and every integer n, cRn

F ≤ Gn
F ≤ C ln nRn

F .

It is usually hard to compute the value of Gn
F . However, it is possible to expand

the expectation into conditional expectation as below

Gn
F = E

{
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

gi f (xi)

∣∣∣∣∣
}

= EE

{
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

gi f (xi)

∣∣∣∣∣ ∣∣x1, . . . , xn

}
,

and find an upper bound or approximate the conditional expectation. This con-
ditional expectation is called empirical Gaussian complexity and is denoted by
Ĝn
F :

Ĝn
F := E

{
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

gi f (xi)

∣∣∣∣∣ |x1, . . . , xn

}
. (2.6)
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Similarly, the empirical Rademacher complexity, R̂n
F is defined by

R̂n
F := E

{
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

εi f (xi)

∣∣∣∣∣ |x1, . . . , xn

}
. (2.7)

Using concentration inequalities, we can compute Gn
F (Rn

F ) from Ĝn
F (R̂n

F )
when the empirical complexity is bounded. For example, by bounded differ-
ence inequality, we have

P
{∣∣∣R̂n

F −Rn
F
∣∣∣ ≥ ε

}
≤ 2 exp

(
−nε2

8

)
,

where we assume that ∀ f ∈ F , | f | ≤ 1. Similar holds for the empirical Gaussian
complexity (Bartlett and Mendelson, 2003).

2.3.2 Donsker and Glivenko-Cantelli classes of functions

The Rademacher process Xf := ∑n
i=1 εi f (xi), f ∈ F , f bounded, is a sub-Gaussian

process. In other words, the tails of the density of distances between Xf and Xg

for f , g ∈ F are not heavier than a Gaussian’s, i.e.

P{|Xf − Xg| > x} ≤ 2 exp
(
−1
2

x2

d( f , g)

)
,

for every f , g ∈ F , x > 0 and semi-metric d on the index set F . This property
can be established, for example, by bounded difference inequality. Then, we can
apply Maximal inequalities results, (Van der Vaart and Wellner, 1996)-Chapter
2.2, for sub-Gaussian processes, which provides an upper bound for the supre-
mum of Xf over F . This upper bound depends on the complexity or the size of
the function class F , which can be measured by covering number or bracketing
number.
In this section, we present basic results on some properties of the empirical

processes based on the bracketing number, which is defined below.

Definition 2.3.4 (Bracketing number and bracketing integral, (Van der Vaart and
Wellner, 1996; Van der Vaart, 1998)). Given functions l and u, both in Lr(P), the
bracket [l, u] is the set of all functions f with l ≤ f ≤ u. An ε-bracket in Lr(P) is
a bracket [l, u] with P(u − l)r < εr. The bracketing functions l, u must have finite
Lr(P)-norm but it is not required that they belong to F .

The bracketing number, N[](ε,F , Lr(P)), is the minimum number of ε-brackets re-
quired to cover the set F . The bracketing entropy is lnN[](ε,F , Lr(P)). The bracketing
integral is defined by

J[](δ,F , L2(P)) =
∫ δ

0

√
lnN[](ε,F , L2(P))dε.

A class of functions F is called P-Glivenko-Cantelli, if the following holds

sup
f∈F

|(Pn − P) f | → 0 P-almost surely. (2.8)

In the same line, a class of functions F is called P-Donsker if the limit of the
sequence of processes {√n(Pn− P) f : f ∈ F} is a P-Brownian bridge; for details
see (Van der Vaart and Wellner, 1996; Koltchinskii, 2011).
There are two important theorems which state the necessary conditions for

establishing the convergence of (2.1), stated below.
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Theorem 2.3.5 (Glivenko-Cantelli Theorem (Van der Vaart, 1998)-Theorem 19.4).
Every class F of measurable functions such thatN[](ε,F , L1(P)) < ∞ for every ε > 0
is P-Glivenko-Cantelli.

Theorem 2.3.6 (Donsker Theorem (Van der Vaart, 1998)-Theorem 19.5). Every
class F of measurable functions such that J[](1,F , L2(P)) < ∞ is P-Donsker.

Note that, a class of functions that satisfies the Donsker-Theorem’s condition,
also satisfies the Glivenko-Cantelli-Theorem’s condition.

Remark 2.3.7 (Bracketing entropy of Lipschitz parametric functions (Van der
Vaart andWellner, 1996; Van der Vaart, 1998)). Let us consider the function class F
defined by

F =
{

fθ : fθ : X → R, θ ∈ Θ
}
,

which consist of measurable functions that are indexed by a bounded set Θ ⊂ Rp, and
p is a positive integer constant.

In machine learning and statistics, Θ is usually called the parameter set, and p de-
notes the dimension of the parameter set. For example, in sparse linear regression Lasso
(Tibshirani, 1996) the function class is defined by

F =
{

fθ : fθ(x) = θ	x, ‖θ‖�1 ≤ C, θ ∈ Rp
}
,

for some C > 0. Recall that the Lasso regression is defined by ŷ = θ̂	x, where θ̂ is the
solution of

argmin
θ∈Rp

1
n

n

∑
i=1
‖yi − θ	xi‖+ λ‖θ‖�1 ,

and λ > 0 is the penalization term.
Suppose that there exists a measurable function ḟ , such that

| fθ1(x)− fθ2(x)| ≤ ḟ (x) ‖θ1 − θ2‖ , (2.9)

where θ1, θ2 ∈ Θ are in a small neighborhood of θ◦ ∈ Θ. Also, assume that P‖ ḟ ‖2 < ∞.
Let us consider brackets of size 2ε‖ ḟ ‖2 defined by [ fθ − ε ḟ , fθ + ε ḟ ], where θ belongs
to a suitably selected subset of Θ. Now, for any ‖θ1 − θ2‖ ≤ ε, ε > 0, θ1, θ2 ∈ Θ, by
Lipschitz assumption (2.9) we have

fθ2 ∈
[

fθ1 − ε ḟ , fθ1 + ε ḟ
]
.

Thus, the number of brackets to cover F is the same as the number of balls of radius ε/2
to cover Θ. The size of bounded subset Θ is at most diam(Θ), and we can cover it by
(diam Θ/ε)p cubes of size ε. So, we have,

N[](ε‖ ḟ ‖2,F , L2(P)) ≤ C
(
diam Θ

ε

)p

, 0 < ε < diam Θ,

where C depends only on p and Θ. With the preceding display, the entropy is of smaller
order than log 1

ε up to a constant. Hence the L2(P)-bracketing integral exists and is
finite, the class F is P-Donsker, and therefore, P-Glivenko-Cantelli.



3. Multiple spectral kernel learning
(multiple SKL)

This chapter gives a brief overview of the prediction problem, kernel methods,
and the selection problem in kernel methods. Several treatments for the kernel
selection problem, in particular, multiple kernel learning, are also studied. To
improve the scalability and efficiency in multiple kernel learning, here, a novel
approach is proposed, which uses rank one approximation of the given kernel
matrices. Parts of this chapter are presented mainly in (Reyhani, in print), and
partially in (Hino et al., 2010; Ogawa et al., 2011; Hino et al., 2012).

3.1 Empirical risk minimization

In prediction problems such as classification or regression, we assume that a set
of independent and identically distributed observations are available for train-
ing a model, which is called the training set. We further assume that the obser-
vations are in form of input and output pairs and the output variable smoothly
depends on the multivariate input variable. A new input sample is called a test
sample, and the set of test samples is called the test set. We assume that test
samples are independent to the training samples but drawn from the same dis-
tribution. The trained (fitted) model is used for predicting test samples outputs.
This setup is commonly known as supervised learning (Vapnik, 1999; Schölkopf
and Smola, 2002).
Let Sn = {(xi, yi), i = 1, . . . , n} be a set of independent copies of random

vector (x, y) with values in X × Y . We assume that X is a compact subset of
finite-dimensional Euclidean space Rp, for some finite non-zero integer p, and
Y is a subset of R. We assume that y smoothly depends on x. Here, Sn denotes
the training set.
Let us define the risk of a function f : X → Y with respect to joint density of

(x, y) by E�(y, f (x)). The function � : Y × Y → R+ is called the loss function
and it measures the discrepancy between f (x) and y. We assume that the loss
function is a convex function. Hinge-loss, i.e. �(z, y) = max{0, 1− yz}, and least
squares loss, i.e. �(z, y) = (z− y)2 are common loss functions for classification
and regression.
The goal in statistical learning is to estimate a function f̂ : X → Y using the

set Sn so that f minimizes the risk, i.e. f̂ is the solution of

inf
f :X→R

E�(y, f (x)), (3.1)

where f (x) predicts the output value of y for x ∈ X , and the expectation is with

11
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respect to joint distribution of (x, y). We assume that the minimization (3.1) can
be attained over all smooth functions. A function f̂ which attains the infimum
in (3.1) is called prediction or decision rule. From now on, we restrict the set of
candidate functions f (hypothesis set) to linear functions, i.e. f (x) = 〈w, x〉, for
some w ∈ Rp.
The joint distribution of (x, y) is usually not available, therefore, a natural way

to estimate f via (3.1) is through replacing the unknown measure with the em-
pirical measure, which results in the empirical risk minimization:

f̂ = argmin
w∈Rp

1
n

n

∑
i=1

�(yi, 〈w, xi〉).

The solution of the above minimization often leads to overfitting, i.e. almost
zero prediction error on the training samples and large error on the test sam-
ples. (Cortes and Vapnik, 1995; Vapnik, 1999) among others, suggest restricting
the solution w to have minimum norm by adding a regularization/penalization
term. The penalized empirical risk minimization (ERM), is defined by

min
w∈Rp

1
n

n

∑
i=1

� (yi, 〈w, xi〉) + λ

2
‖w‖2, (3.2)

where the parameter λ > 0 is called the penalization parameter and is defined
by the user. A similar way to restrict the solution space is to rewrite (3.2) as

min
w∈Rp

1
n

n

∑
i=1

�(yi, 〈w, xi〉)

‖w‖2 ≤ γ,

for a user defined parameter γ > 0.
There are other models that end up with the same formulation as (3.2). For

example, by using the hinge-loss we obtain support vector machines (SVM)
(Cortes and Vapnik, 1995; Vapnik, 1999; Schölkopf and Smola, 2002; Steinwart
and Christmann, 2008). Finding an estimator via optimization has a long his-
tory in statistics, which is known as M-estimation (Van der Vaart and Wellner,
1996; Lehmann and Casella, 1998; Koltchinskii, 2011). A typical example of this
category is the maximum likelihood estimator, which is widely used in statistics
and machine learning.
The solution of (3.2) is of the form

〈w, x〉 = − 1
nλ

n

∑
i=1

∂�(yi, 〈w, xi〉)〈xi, x〉, (3.3)

where, ∂� denotes subgradient of the convex function � (Ruszczyński, 2006;
Steinwart and Christmann, 2008). The above display is known as the Repre-
senter’s theorem, for example (Zhang, 2001; Steinwart and Christmann, 2008).
(3.3) can be simply derived by checking the first order optimality condition, that
is

n

∑
i=1

∂�(yi, 〈w∗, xi〉)xi + nλw∗ = 0.

The penalized ERM, (3.2), produces interpretable linear decision functions, how-
ever, it may perform poorly in non-linear and complex classification and regres-
sion problems.
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A major step in risk minimization problem in general, and SVM in particular
was the introduction of a non-linear mapping ψ : X → H, where the input
space X is mapped to an inner product feature spaceH with higher dimension.
The samples might be linearly separable in the new higher dimensional space
(Schölkopf and Smola, 2002). The decision rule that is produced in this way
becomes a nonlinear function in the original space (Cortes and Vapnik, 1995;
Vapnik, 1999).
The inner product space H usually has higher dimension than the original

set X , which is a barrier in computations, particularly in evaluating the inner
product in (3.3) or the norm computation in (3.2). This issue can be addressed
using kernel functions (Aronszajn, 1950; Schölkopf and Smola, 2002), which are
defined below.

Definition 3.1.1. LetX be a non-empty set. Then, a function k : X ×X → R is called
a kernel function on X if there exists a Hilbert space H over R and a map ψ : X → H
such that for all x, x′ ∈ X , we have

k(x, x′) = 〈ψ(x),ψ(x′)〉H,

where 〈·, ·〉H is inner product in H. The function ψ is called feature map and the space
H is called feature space.

Given a kernel function k and a sample set Sn, we define the kernel matrix K
by

[K]i,j := k(xi, xj), 1 ≤ i, j ≤ n. (3.4)

In the rest of this chapter, we use the kernel function k and the kernel matrix K
interchangeably.

Example 3.1.2. Two kernel functions that are used in many applications are of the form
k(x, x′) = f (‖x− x′‖) or f (x	x′), which are called distance kernel and inner product
kernel, respectively. For example a widely used kernel function is radial basis function
(RBF), which is defined by

k(x, x′) = exp
(
−‖x− x′‖2

σ

)
,

where σ > 0 is the kernel parameter.

A function k : X × X → R is a kernel only if it is symmetric and posi-
tive semidefinite (Schölkopf and Smola, 2002; Steinwart and Christmann, 2008).
Given a kernel function k and a point x ∈ X , we can define a feature map
ψ(x) = k(·, x) :=

(
k(x′, x)x′∈X

)
. In other words, k(·, x) is a vector with en-

tries k(x′, x) for all x′ ∈ X . It is defined for all x ∈ X pointwise, and it might
have infinite dimension. Few additional properties of the kernel functions are
as follows:

Definition 3.1.3 (Reproducing kernel Hilbert spaces (Aronszajn, 1950; Schölkopf
and Smola, 2002; Steinwart and Christmann, 2008)). Let us assume the Hilbert
space H consists of functions mapping from some non-empty set X to R. A function
k : X × X → R is called a reproducing kernel of H if we have k(·, x) ∈ H, for all
x ∈ X , and the reproducing property

f (x) = 〈 f , k(·, x)〉H
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holds for all f ∈ H and all x ∈ X . Also, H is called a reproducing kernel Hilbert
space (RKHS) over X if for all x ∈ X , the Dirac functions δx : H → R, defined by
δx( f ) := f (x) ∀x ∈ X and f ∈ H, are continuous.

Every RKHS has a unique reproducing kernel function (Steinwart and Christ-
mann, 2008). In addition, every kernel k defines a unique RKHS, which we
denote it byHk. We assume that there exists at least one feature map ψk that cor-
responds to a kernel function k. For RKHSHk with kernel function k the feature
map ψ(x) := k(·, x), x ∈ X is called the canonical feature map.
Let us assume that the feature map ψk(x) and the RKHS kernel function k

are available. By replacing x by ψk(x) in (3.2), we obtain an extension of the
penalized ERM in the feature space:

m�(k,λ) := min
w∈Hk

1
n

n

∑
i=1

� (yi, 〈w,ψk(xi)〉Hk) +
λ

2
‖w‖2Hk

(3.5)

In a similar way as for (3.3), by the general Representer theorem (Zhang, 2001;
Steinwart and Christmann, 2008), the prediction rule that is generated by (3.5) is
of the form

f̂ (x) = − 1
nλ

n

∑
i=1

∂�(yi, f (xi))k(x, xi). (3.6)

Indeed, we can rewrite (3.5) as

m�(k,λ) := min
w∈Hk

1
n

n

∑
i=1

� (yi, zi) +
λ

2
‖w‖2Hk

: zi = 〈w,ψk(xi)〉Hk∀i ≤ n. (3.7)

Let us denote the empirical risk byL(z) := 1
n ∑n

i=1 �(yi, zi)with z = (z1, . . . , zn)	.
The Lagrangian (Ruszczyński, 2006) associated with optimization problem (3.7)
is

L(w, z, α) := L(z) + λ

2
‖w‖2Hk

−
n

∑
i=1

αi(zi − 〈w,ψk(xi)〉Hk), (3.8)

where α1, . . . , αn are Lagrange multipliers and α = (α1, . . . , αn)	. By checking
KKT conditions (Ruszczyński, 2006), we obtain

w = − 1
λ

n

∑
i=1

αiψk(xi) = − 1
λ

n

∑
i=1

αik(x, ·). (3.9)

The decision function is of the form f̂ (x) = 〈w,ψk(x)〉Hk , which is equal to

f̂ (x) = − 1
λ

n

∑
i=1

αik(x, xi),

given that 〈ψk(xi),ψk(x)〉Hk = k(x, xi). By multiplying (3.7) by n, we obtain 1
nλ

instead of 1
n in the preceding display.

An important result in the theory of RKHSs is the Mercer’s theorem, which
provides a series representation for continuous kernels on compact domains.
Let us define the operator Tk : L2(X )→ L2(X ) by

(Tk f )(x) =
∫
X

k(x, x′) f (x′)dP(x′).

The operator Tk is compact, positive, and self-adjoint (Lax, 2002). By the Spectral
Theorem (Lax, 2002), the eigenvalues are at most countable. Then, we have the
following representation result about the kernel functions:
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Theorem 3.1.4 (Mercer’s theorem, (Mercer, 1909; Schölkopf and Smola, 2002;
Steinwart and Christmann, 2008)). Suppose k ∈ L∞(X × X ) is a symmetric real-
valued function such that the integral operator Tk is positive definite, i.e.∫

X 2
k(x, y) f (x) f (y)dP(x)dP(y) ≥ 0,

for all f ∈ L2(X ). Let φj ∈ L2(X ) be normalized orthogonal eigenfunctions of Tk

associated with the eigenvalues λj > 0, indexed such that λ1 ≥ λ2 ≥ . . . . Then, the
following results hold.

- {(λj)j≥1} ∈ �1.

- k(x, x′) = ∑j∈I λjφj(x)φj(x′) for almost all (x, x′) ∈ X × X . The index set I is
either a finite subset of N or total N. In the latter case, the series converges absolutely
and uniformly for almost all (x, x′).

Any kernel function that satisfies the Mercer’s theorem conditions is called
Mercer’s kernel. Let us denote the eigenvalues and eigenfunctions of the opera-
tor Tk by λi(k) and ui(k), respectively, and also the eigenvalues and eigenvectors
of the kernel matrix K by λi(K) and ui(K), i = 1, . . . , n. (Koltchinskii and Giné,
2000) shows that under certain rate of decay of eigenvalues of Tk, the eigenval-
ues and eigenvectors of K converge to those of Tk as n → ∞, i.e. eigenvalues and
eigenvectors of K are consistent estimators of eigenvalues and eigenvectors of
Tk.

3.2 Kernel selection and multiple kernel learning: a brief
survey

The representation (3.6) shows that the decision rule is a linear combination of
similarities between previous observations and a new sample point. The simi-
larity, here, is measured by an inner product or equivalently a kernel function.
Therefore, the performance of the prediction rule depends also on the choice of
the kernel function. This issue has been investigated empirically in literature,
for example (Chapelle et al., 2002; Vapnik and Chapelle, 2000; Schölkopf and
Smola, 2002). However, there is no clear guide on how to efficiently select a
suitable kernel function for any given classification or regression task.
A common approach for finding a suitable kernel parameter is cross-validation

(Schölkopf and Smola, 2002; Steinwart and Christmann, 2008). Let us assume
that a finite set of kernel functions {k1, . . . , kL} is available, which are called
kernel bases. Cross validation procedure randomly divides the training samples
Sn into two subsets, training and validation sets. The sizes of these two sets are
predefined by the user. The training set is used to find a solution for m�(kl ,λ) for
some l = 1, . . . , L, and the accuracy of the learned decision rule will be evaluated
on the validation set.
After a few iterations of training and validation, a kernel k◦ ∈ {k1, . . . , kL}with

minimum average prediction error on the validation sets will be selected. This
averaged error is called the validation error and it can be used to estimate the
risk of the decision rule that is generated by the kernel function k◦. The cross-
validation with only one sample in the validation set is called leave-one-out. It
is known that leave-one-out error estimation is almost an unbiased estimator of
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the risk (Schölkopf and Smola, 2002; Chapelle et al., 2002).
The numerical computation involved in cross-validation depends on the sam-

ple size and the number of kernels, L, which naturally confine the application
of cross-validation when a large set of kernel candidates are available and/or
the training set is large (Amari andWu, 1999; Bengio, 2000; Chapelle et al., 2002;
Lanckriet et al., 2004b). The computations involved in leave-one-out can be re-
duced by using the fact that the solution of m�(k,λ), for a kernel function k,
does not change if a non-support vector, a sample xi with ∂�(yi, f (xi)) = 0 in
(3.6) or αi = 0 in (3.9), is removed from the training set (Jaakkola and Haussler,
1999; Vapnik and Chapelle, 2000). Nevertheless, the computational load is not
affordable in many applications.
(Amari and Wu, 1999; Bengio, 2000; Chapelle et al., 2002) further suggest pa-

rameterizing the given set of kernels, and using the gradient descent method
(Ruszczyński, 2006) to find the optimal parameters; instead of using cross vali-
dation or other resampling techniques. The optimality is measured by the em-
pirical risk. This framework has been revisited and further developed to ker-
nel learning. For example, (Lanckriet et al., 2004b) proposes to find a positive
definite matrix in the span of the kernel bases by minimizing the penalized em-
pirical risk. This framework is called linear Multiple Kernel Learning (MKL). A
large number of studies has been devoted to analyze different theoretical and
numerical aspects of the MKL, such as the complexity of the hypothesis set and
efficient algorithms. For instance, see (Bousquet and Herrmann, 2003; Micchelli
and Pontil, 2005; Sonnenburg et al., 2006; Zien and Ong, 2007; Rakotomamonjy
et al., 2008; Bach, 2008; Cortes et al., 2009; Xu et al., 2009; Koltchinskii and Yuan,
2010; Cortes et al., 2010; Suzuki and Sugiyama, 2011; Hino et al., 2012). The rest
of this section introduces the MKL and similar approaches.
The kernel matrix learning, or kernel learning (in brief), can be defined by

min
K∈K̃

m�(K,λ),

where K̃ is a bounded set of positive definite kernel matrices or functions and
m�(K,λ) is defined in (3.5), e.g. (Lanckriet et al., 2004b; Micchelli and Pontil,
2005). For example, given a set of kernel bases {K1, . . . ,KL}, we can define the
set K̃ by Linear Matrix Inequality (LMI) (Boyd et al., 1994):

K̃ :=
{

K =
L

∑
i=1

plKl : μIn � K � γIn, pl ≥ 0, μ < γ
}
,

where μ > 0 and γ > 0 are determined by the user. The notation A � B denotes
A− B is negative semidefinite. The LMI in the definition of K̃ ensures that the
condition number of the matrices in K̃ are bounded.
Here, we are interested in studying and developing the linear MKL, denoted

by m�(K̃,λ), and is defined by

m�(K̃,λ) := min
K∈K

min
f∈HK

1
n

n

∑
i=1

�(yi, f (xi)) +
λ

2
‖ f ‖2HK

, (3.10)

where the kernel set is

K̃ :=
{

K ∈ Rn×n : K =
L

∑
l=1

plKl , p ∈ Δ1

}
, (3.11)
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and

Δ1 :=
{

p ∈ RL
+ : p = (p1, . . . , pL)

	,
L

∑
l=1

pl ≤ 1
}
.

The decision rule generated by (3.10) is a linear combination of decision rules
generated separately by each kernel function/matrix. This is an implication of
lemma below.

Lemma 3.2.1. (Micchelli and Pontil, 2005). Let us assume that the kernel functions
k1, . . . , kL are given, and denote the RKHS generated by these kernels byHk1 , . . . ,HkL .
Then, the following holds:

inf
k∈K̃

‖ f ‖Hk = min
f=∑L

l=1 fl
fl∈Hkl

, l=1,...,L

(
L

∑
l=1
‖ fl‖2Hkl

) 1
2

,

where f belongs to the RKHS that is constructed by the direct sum ofHk1 , . . . ,HkL and
K̃ is the convex hull of k1, . . . , kL.

Indeed, using the above lemma, the optimization problem (3.10) reads

m�(K̃,λ) = min
fl∈Hkl

l=1,...,L

1
n

n

∑
i=1

�(yi, f1(xi) + · · ·+ fL(xi)) +
λ

2

L

∑
l=1
‖ fl‖2Hkl

, (3.12)

which implies that the solution of linear MKL, i.e. (3.10), has additive represen-
tation

f = f1 + · · ·+ fL, fl ∈ Hkl .

3.2.1 Previous works on linear MKL

(Lanckriet et al., 2004b) phrases the linear MKL in terms of semi-definite pro-
gramming (SDP) (Ruszczyński, 2006), for the class of fixed trace positive definite
linear combination of kernel bases, and for different loss functions. The main
goal, there, is to find both bases coefficients (mixing coefficients) and the pa-
rameters of penalized ERM simultaneously within a single optimization round.
However, the SDP-solvers in general are not scalable, which limits the applica-
bility of this method (Sonnenburg et al., 2006; Rakotomamonjy et al., 2008).
The computational limitation of SDP-MKL has stimulated further researches

to resolve numerical difficulties involved in MKL. Many have tackled this dif-
ficulty by using the differentiability of the dual of the penalized ERM at the
maximal point. The idea originally goes back to, e.g. (Chapelle et al., 2002) and
usually leads to an alternating-optimization, which means that the inner op-
timization, i.e. the dual of the penalized ERM, is solved first, while the outer
optimization variables, i.e. mixing coefficients, are fixed and vice versa; until
some convergence is achieved. Semi-infinite linear programming (SILP) (Son-
nenburg et al., 2006), extended level method (Rakotomamonjy et al., 2008; Xu
et al., 2009), and SimpleMKL (Rakotomamonjy et al., 2008) are various imple-
mentations of this framework. The main difference between these algorithms
is the optimization techniques that are used for finding the mixing coefficients.
SimpleMKL and SILP can be summarized in Algorithm 1 below (Xu et al., 2009).
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Algorithm 1 SILP and SimpleMKL
Input: ε > 0,λ > 0, and the kernel basis K1, . . . ,KL. Output: p, the coeffi-
cients for the kernel combinations.

i ← 0.
repeat
solve

max
0≤α≤ 1

nλ ,α
	y=0

h(pi, α),

and obtain dual variables αi for a fixed λ.
update p for SILP by the update rule

pi ←argmin
p

ν

s.t. h(p, αj) ≤ ν, j = 0, . . . , i,

and for SimpleMKL by

pi ← argmin
p

1
2
‖p− pi‖2 + γi(p− pi)∇ph|pi ,αi .

i ← i + 1
until ‖pi − pi−1‖ ≤ ε

In this algorithm, the dual of m�(K,λ) for the hinge-loss with K ∈ K̃ is denoted
by h:

h(p, α) = α	1− 1
2
(α ◦ y)	

(
L

∑
l=1

plKl

)
(α ◦ y),

where α is the dual variable and p contains the kernel mixing coefficients. The
gradient vector of the dual is

∇ph|pi ,αi = −1
2

(
(αi ◦ y)	K1(α

i ◦ y), . . . , (αi ◦ y)	KL(α
i ◦ y)

)	
.

In above, ∇ph|pi ,αi denotes ∇ph evaluated at pi, αi. Note that, the dual of (3.5)
for the hinge loss, SVM, is

max
α

α	1− (α ◦ y)	K(α ◦ y)

s.t. 0 ≤ α ≤ 1
nλ

,
(3.13)

where α ◦ y = (α1y1, . . . , αnyn)	. Additional constraint α	y = 0 is required if
we add bias term to the decision function, i.e. (〈w,ψ(x)〉 + b), where b ∈ R.
The derivations can be also carried on for other loss functions, for details see
(Sonnenburg et al., 2006; Rakotomamonjy et al., 2008).
In a slightly different setup, (Cortes et al., 2009) simplifies the MKL by limiting

the loss function to �2 loss function, and the kernel set to

K̃ =

{
L

∑
l=1

plKl , p ∈ M
}
,
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whereM =
{

p ∈ RL
+ : ‖p− p0‖2 ≤ Λ2} for a user defined vector p0 and thresh-

old Λ > 0. Note that the dual of (3.5) for �2 loss, �(z, y) = (z− y)2, is of the form

max
α

− λα	α− α	Kα + 2α	y,

where α ∈ Rn
+ is the dual vector variable. Then, the MKL over K̃ is

min
p∈M

max
α

−λα	α−
L

∑
l=1

plα
	Klα + 2α	y. (3.14)

(Cortes et al., 2009) shows that the above MKL problem can be solved by alter-
nating between p and α, where

p = p0 + Λ
v
‖v‖ and α = (K + λIn)

−1y,

v = (v1, . . . , vL)
	, vl = α	Klα, and K = ∑L

l=1 plKl . p and α are closed form
solutions of (3.14). TheMKL solution, p∗, in above may have lots of small values
close to zero due to solution space of p. This slightly violates the original idea
of kernel selection using MKL. Compared to the other MKL methods, here, we
get an extra parameter, Λ, yet to be determined.

3.2.2 Previous works on kernel approximation in MKL

Kernel matrices with large dimensions are usually expected to have low effi-
cient rank (Donoho, 2000; Drineas and Mahoney, 2005), i.e. a small subset of
eigenvalues are large and distant, whereas the rest are small and similar. These
matrices can be well approximated by low rank approximation, that is keeping
the top eigenvalue/eigenvector pairs of the given matrix. The low efficient rank
property of large dimensional kernel matrices has been utilized to improve the
scalability of many kernel methods (Drineas and Mahoney, 2005; Talwalkar and
Rostamizadeh, 2010; Jin et al., 2011). Therefore, it is also reasonable to use a low
rank approximation of the given kernel matrices to improve the numerical ef-
ficiency in the MKL framework. For example, (Bousquet and Herrmann, 2003;
Lanckriet et al., 2004b; Bach, 2008) propose to use rank one kernels as the kernel
bases. Each rank one kernel is the self-outer product of a single eigenvector of
the given kernel matrix.
(Lanckriet et al., 2004b) proposes a quadratic programming with quadratic

constraint for MKL over rank one kernels. For the hinge loss SVM, they sug-
gest the following optimization with quadratic constraints:

max
α,t

2α	1− ct

s.t. (v	l α)2 ≤ t, l = 1, . . . , L

α	y = 0, 0 ≤ α ≤ 1
λ
1,

where y = (y1, . . . , yn)	, vl = (diag y)bl , bls are orthonormal vectors (eigenvec-
tors of the original kernel bases), and c > 0 is a predefined constant. The vector
α is the dual vector in the hinge-loss SVM.
Similarly, (Bousquet and Herrmann, 2003) studies the case where rank one

bases are constructed from the whole set of eigenvectors of the given kernel ma-
trix. It can be considered as adjusting the eigenvalues of a given kernel matrix.
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This kernel learning algorithm consists of repeating a gradient descent step for
finding a linear combination of kernels and a usual SVM learning step. How-
ever, the experimental results in (Bousquet and Herrmann, 2003) do not encour-
age this approach in kernel learning.
Both of these two approaches to rank one MKL are designed for transductive

setup. This setup assumes that both training and test sets are available at the
time of learning. The kernel learning for the inductive setting has not been ad-
dressed.
(Bach, 2008) studies a particular setup where the closed form of the spectral

decomposition of the Mercer’s kernel functions are all available. This method is
called hierarchical MKL (HMKL). The closed forms of eigenfunctions are used
for building rank one kernels that are functions of all possible selections of input
space features, which results in a kernel bases of enormous size. The learning
algorithm is a combination of a greedy search algorithm, to select a subset of
kernel bases, and the general MKL optimization, e.g. SimpleMKL or SILP, in a
loop. The greedy search algorithm confines the set of kernel bases that feeds
MKL. The general MKL optimization finds the best mixing vectors and solves
the penalized ERM/SVM. The advantage of HMKL over other rank one kernel
learning or general MKL is the ability to perform feature selection in the input
space. This cannot be easily handled by the previous rank one MKL methods
due to the size of the produced kernel bases.

3.2.3 No-loss optimization approaches to MKL

There are other scenarios for kernel learning, which do not search for the opti-
mal kernels combination through minimizing the empirical risk. For instance,
(Shawe-Taylor and Kandola, 2002) proposes adjusting the spectrum of the given
kernel matrix K, so that the inner product between K and the labels’ Gram ma-
trix, i.e. 〈K, (y1 . . . yn)	(y1 . . . yn)〉tr, becomes maximal. (Shawe-Taylor and
Kandola, 2002) shows that the kernel adjustment improves the classification ac-
curacy in several datasets. This approach is called kernel target-alignment, see
(Shawe-Taylor and Kandola, 2002) for details.
The kernel matrix generated by the kernel target-alignment may lead to over-

fitting (Bousquet and Herrmann, 2003). Because adjusting the spectrum of the
kernel matrix could swap the order of the eigenvectors, which leads to a highly
non-smooth decision function. (Bousquet andHerrmann, 2003) suggests adding
an extra constraint in the kernel target-alignment to ensure that the order of
eigenvectors remains fixed after adjusting the eigenvalues. The empirical pre-
diction results did not show much improvement.
In a recent study (Hino et al., 2010), we proposed finding themixing coefficient

vector p by solving:

min
α∈R

p
+,p∈Δ1

H

(
n

∑
i=1

αik(x, xi)
∣∣∣y1, . . . , yn

)
− γH

(
n

∑
i=1

αik(x, xi)

)
, (3.15)

where k(x, xi) = ∑L
l=1 plkl(x, xj), ∀i = 1, . . . , n, and α = (α1, . . . , αn)	, α ∈ Rn

+.
γ > 0 is a penalization parameter determined by the user. The function H(x)
denotes the Shannon entropy (Cover and Thomas, 2006) of a random variable x
and is defined by

H(x) = −
∫

p(z) ln p(z)dz.
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The conditional entropy (Cover and Thomas, 2006) of random variable x given
z is defined by

H(x|z) =
∫ ∫

p(xi, zi) ln
p(zj)

p(xi, zj)
dxdz.

The conditional entropy satisfies H(x|z) = H(z, x)− H(z).
The empirical results in (Hino et al., 2010) and (Ogawa et al., 2011) are compet-

itive to other MKL algorithms. In particular, (Ogawa et al., 2011) shows that for
the speaker identification problem, the information theory basedMKL improves
the previous MKL results significantly. Nevertheless, the objective function in
(3.15) is highly nonlinear and solving this optimization problem is numerically
hard.
In (Hino et al., 2012), we suggest finding a linear combination of kernels, such

that the samples in the feature space are as Gaussian as possible. Then, the linear
discriminant analysis (LDA) is a Bayes optimal classifier (Izenman, 2008) in the
corresponding feature space, implying high classification accuracy. The feature
space in this work is the space generated by the canonical feature map of the
linear combination of kernels.
The objective function of MKL in (Hino et al., 2012) consists of a cost and a

penalization term. The cost term measures the Gaussianity of both the positive
and negative classes in the feature space. The penalization term is to guaran-
tee that the positive and negative classes share same covariance matrix in the
feature space. Formally, we suggest finding the coefficients by the following
minimization:

min
p∈Δ1

MG
(
ψp(S+

n )
)
+ MG

(
ψp(S−n )

)
s.t. MV

(
ψp(S+

n ),ψp(S−n )
) ≤ γ,

(3.16)

where, γ is a penalization parameter,

S+
n := {xi : (xi, yi) ∈ Sn, yi = +1} ,

and
S−n := {xi : (xi, yi) ∈ Sn, yi = −1} .

The mapping ψp is the canonical feature map, which corresponds to the kernel
function/matrix k = ∑L

l=1 plkl .
The function MG in (3.16) measures the distance between a Gaussian distribu-

tion/characteristic function and an empirical distribution/characteristic func-
tion of the observed data. The function MG is defined using the fact that a
random vector x with values in Rp and characteristic function c(t), t ∈ Rp is
Gaussian if and only if − ln |c(t)|2 = t	Σt, where Σ ∈ Rp×p is a positive defi-
nite matrix. For Dn is either S+

n or S−n , they defined the function

MG(ψp(Dn)) =
|Dn|

n
(g1(p,Dn) + ln g2(p,Dn))

2 ,

where g1(p,Dn) = p	ΣDn p,

ΣDn =
1
|Dn| ∑

xi∈Dn

v(t, xi)v	(t, xi),

and

v(t, xj) =
(

k1(t, xj)− 1
|Dn| ∑

xi∈Dn

k1(t, xi), . . . , kL(t, xj)− 1
|Dn| ∑

xi∈Dn

kL(t, xi)
)	

.
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Also,

g2(t, p,Dn) =

⎡⎣ 1
n ∑

xj∈Dn

cos

(
L

∑
l=1

plkl(t, xj)

)⎤⎦2+
⎡⎣ 1

n ∑
xj∈Dn

sin

(
L

∑
l=1

plkl(t, xj)

)⎤⎦2 .
The expressions above are obtained by computing the characteristic functions
of the relevant random variables, for further details and derivations see (Hino
et al., 2012). Here, t is an arbitrary sample point that belongs to the training set.
The function MV in (3.16) measures the distance between empirical covariance
matrices of two sets of data in the feature space and is defined as follows:

MV(ψp(S+
n ),ψp(S−n )) =

(
p	(ΣS+

n
− ΣS−n )p

)2
.

The proposed algorithms for maximumGaussianityMKL are computationally
heavy. This computational issue makes it difficult to use this approach in large
scale applications. On the other hand, the empirical results provided in (Hino
et al., 2012) show improvement in the classification accuracy, which suggests
that this type of MKL requires more work and deeper analysis.

3.3 Multiple spectral kernel learning (Multiple SKL): A
novel efficient rank one MKL

3.3.1 Spectral kernel class

Our general idea is to improve the rank oneMKL (see Section 3.2.2) by collecting
a set of eigenvectors from each given kernel matrix and combine them so that the
empirical risk is minimized. We also intend to keep the number of eigenvectors
or basis as small as possible. The main goal is to improve scalability of MKL
to have lighter memory demand and computational load, while the accuracy is
kept quite similar to general MKL.
Let us define multiple spectral kernel class by

K :=
{

K ∈ Rn×n : K =
L

∑
l=1

plblb	l , p ∈ Δ1

}
, (3.17)

where the set {b1, . . . , bL : bl ∈ Rn} is called the spectral dictionary, or dictionary
for short. The vectors bl are some eigenvectors of the given kernel matrices
Kl , l = 1, . . . , L. To build a dictionary, we can take a subset of eigenvectors from
each given kernel matrix. Note that, the elements of the dictionary are not nec-
essarily orthogonal to each other. One may also construct vectors bl from a set of
orthonormal basis functions in �2, such as Hermite polynomials, and construct
basis vectors by evaluating those functions on the sample points.
We call the kernel learning over the spectral kernel class, multiple spectral kernel

learning (multiple SKL). In the rest of this section, we first analyze the ERM in
terms of eigenvectors of the kernel matrix, and later, present multiple SKL for
different loss functions in Section 3.3.2 and 3.3.3.
It is natural to ask about the effect of low rank approximation or actually the

role of eigenvectors of the kernel matrix K in the minimization (3.5). Note that,
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with the choice of w in (3.9), we can write an equivalent form of (3.5) as

m�(K,λ) =min
z

max
α

−α	z + L(z)− 1
2λ

α	Kα

max
α

−L∗(α)− 1
2λ

α	Kα,
(3.18)

where we used the fact that 〈ψk(xi),ψk(xj)〉Hk = k(xi, xj). The superscript “∗”
denotes the convex conjugate (Ruszczyński, 2006), which is defined by

g∗(z) = sup
θ

θ	z− g(θ),

for given function g : X → R.
The maximum in (3.18) with respect to α is attained at α∗ = −λK−1z. By

plugging α∗ back into (3.18), we get

m�(K,λ) = min
z
L(z) + λ

2
z	K−1z. (3.19)

In (3.19) we assume that K−1 exists. We can further expand K in terms of its
eigenvectors and eigenvalues:

m�(K,λ) = min
z

L(z) + λ

2

n

∑
i=1

1
λi(K)

〈z, ui(K)〉2, (3.20)

where ui(K) denotes the eigenvector of K corresponding to i-th largest eigen-
value of K. The expansion in (3.20) implies that the penalized ERM, m�(K,λ),
searches for a vector that simultaneously minimizes the empirical risk L and is
as dissimilar as possible to the eigenvectors of the kernel matrix K—depending
on their eigenvalues. The penalized ERM tends to find a vector z such that the
summands corresponding to small eigenvalues are close to zero.
In summary, the expansion above suggests that using low rank approximation

of the kernel matrices may not change the decision rule significantly, provided
that a sufficient number of eigenvector are present. The low rank approximation
has the same effect as removing some of summands in the second term of (3.20).
However, it requires special treatment due to rank deficiencies. In addition, to
compensate the role of small eigenvectors, further eigenvalues adjustment may
become necessary.

3.3.2 Multiple SKL with �2-loss

In this section, we present multiple SKL for �2 loss function. Later, we generalize
it for more general loss functions.
Note that for �2 loss function �(x, y) = |x− y|2, (3.5) reads

m2
�2
(K,λ) :=min

w
‖y−ψ	K w‖2 + λ‖w‖2

=min
w,z

‖z‖2 + λ‖w‖2 : z = y−ψ	K w,

where ψK = (ψK(x1) | . . . | ψK(xn)) and y = (y1, . . . , yn)	. By taking the
Lagrangian with dual variables α, we can equivalently rewrite m2

�2
(K,λ) as

m2
�2
(K,λ) = min

w,z
max

α
‖z‖2 + λ‖w‖2 + 2α	(y−ψ	K w− z).
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We can exchange the min and max by Theorem 3.5.2. In addition, by removing
the parameters w and z, we obtain

m2
�2
(K,λ) = max

α
2y	α− 1

λ
α	(K + λIn)α, (3.21)

Note, that m2
�2

= λy	(K + λIn)−1y and α∗ = λ(K + λIn)−1y. m�2 denotes the
value of m�2(K,λ) evaluated at the optimum point.
The multiple SKL over the kernel class K, that is defined in (3.17), reads

m2
�2
(K,λ) := min

p∈Δ1
m2

�2

( L

∑
l=1

plblb	l ,λ
)

= min
p∈Δ1

max
α

2y	α− 1
λ

α	
( L

∑
l=1

plblb	l
)

α

= max
α

2y	α− 1
λ
max
1≤l≤L

(b	l α)2.

The third line comes from the fact that the �1-norm achieves its maximum at the
coordinates. At the optimum we have

m2
�2
= λy	

(
L

∑
l=1

plblb	l

)−1
y,

and also,

α∗ = λ

(
L

∑
l=1

plblb	l

)−1
y. (3.22)

Note that, in the above derivations we assume that the spectral dictionary is
sufficiently rich so that the inverse in (3.22) exists. Applying the scaling trick,
α = γβ, such that γ > 0 and max1≤l≤L

∣∣b	l β
∣∣ = 1, to m2

�2
(K,λ), results in

m2
�2
(K,λ) =max

γ,β
2γy	β− 1

λ
γ2

s.t. max
1≤l≤L

|b	l β| = 1.

By solving the preceding maximization over variable γ, i.e γ∗ = λ(y	β∗), we
obtain

m2
�2
(K,λ) =max

β
λ
(

y	β
)2

s.t. max
1≤l≤L

|b	l β| = 1.

If we further replace the constraint max1≤l≤L
∣∣b	l β

∣∣ = 1 by
∣∣b	l β

∣∣ ≤ 1, ∀l =

1, . . . , L, we get

m�2(K,λ) = max
β

√
λ
(

y	β
)

s.t.
∣∣∣b	l β

∣∣∣ ≤ 1, ∀l = 1, . . . , L,
(3.23)

where again at the optimal solutions we have

α∗ = γ∗β∗ =
√

λm�2β∗. (3.24)
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The Lagrangian of (3.23) is

L(q, β) :=
√

λ
(

y	β
)
+

L

∑
l=1

(
|ql | − ql

(
b	l β
))

,

where q is the dual vector. By checking the optimality conditions, we can re-
move the variable β and, therefore, m�2 reads

m�2(K,λ) =min
q
‖q‖�1

s.t. y =
1√
λ

L

∑
l=1

qlbl ,
(3.25)

which is a linear and impressively simple and efficient program. Instead of a
least-squares type closed-from solution appearing in (Cortes et al., 2009), we end
up with the Basis pursuit (Chen et al., 2001) formulations, where an efficient al-
gorithm already exists and this optimization form guarantees to generate sparse
solutions (Chen et al., 2001; Bickel et, al., 2009).
The primal variable p can be obtained by checking the optimality conditions.

By (3.24) and (3.22) we have

y =
1
λ

(
L

∑
l=1

pl∗blb	l

)
α∗ =

1
λ

(
L

∑
l=1

pl∗blb	l

)
γ∗β∗

=
(
y	β∗

) L

∑
l=1

pl∗(b	l β∗)bl .

On the other hand, the optimality condition of (3.23) suggests that

ql∗(b	l β∗) = |ql∗|,
which is equal to

|ql∗|(b	l β) = ql∗.

Now we choose

pl =
|ql∗|
m�2

, ∀l = 1, . . . , L, (3.26)

where m�2 is the value of (3.25). We obtain

y =
(y	β)

m�2

L

∑
l=1
|ql∗|(b	l β∗)bl =

L

∑
l=1

qlbl = y,

where the last equality follows from the fact that at the optimal point the con-
straint (3.25) is satisfied. As conclusion, the optimal value of the mixing vector
p can be recovered by (3.26).
The constraint in (3.25) is well defined if the vector y is in the range of matrix

(b1 | . . . | bL). Otherwise, we can extend the dictionary by adding coordinate
vectors ej, j = 1, . . . , n to the dictionary. Based on (3.25) we can write a similar
kernel learning on the kernel class Ke := K ∪ {e1, . . . , en} as follows:

m�2(Ke, λ̃) =min
u,v

‖u‖�1 + ‖v‖�1

s.t. y =
L

∑
l=1

ulbl + λ̃v.
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The preceding minimization is equivalent to

λ̃m�2(Ke, λ̃) = min
u

∥∥y−
L

∑
l=1

ulbl
∥∥
�1
+ λ̃
∥∥u
∥∥
�1
. (3.27)

The primal values can be recovered through

bl =
|vl∗|
λ̃m�2

and pl =
|ul∗|
m�2

,

where v = y − ∑L
l=1 ulbl and m�2 is the value of (3.27). Then, the solution be-

comes

K =
L

∑
l=1

plblb	l +
n

∑
i=1

bieie	i .

3.3.3 Multiple SKL for a general loss function

Let us consider the dual of (3.5) for some kernel matrix K and bounded convex
loss function � as appeared in (3.19):

m�(K,λ) = min
z
L(z) + λ

2
z	K−1z.

The kernel learning over the kernel class K̃, as defined in (3.11), reads,

m�(K̃,λ) = min
z
L(z) + λ

2
h2(z), (3.28)

where
h(z) := min

K∈K̃
‖K−

1
2 z‖.

By taking the convex conjugate of h2(z) we obtain

1
2

h2(z) = max
ξ

ξ	z− 1
2
max
K∈K̃

ξ	Kξ.

Again, we play the scaling trick: by replacing the variable ξ with γη, such that

max
K∈K̃

η	Kη = 1. (3.29)

The penalization term h2(z) can then be simplified to

1
2

h2(z) = max
γ,η

γη	z− 1
2

γ2 : max
K∈K̃

η	Kη = 1.

By solving the above maximization for γ, we obtain,

1
2

h2(z) =max
η

1
2
(η	z)2 : max

K∈K̃
η	Kη = 1

=max
η

1
2
(η	z)2 : η	Klη ≤ 1, l = 1, . . . , L,

where we used the fact that every kernel K ∈ K̃ has the form K = ∑L
l=1 plKl .

Similar to �2-loss derivation in the previous section, for the optimal value of η∗,
we have

γ∗ = η	∗ z.
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Thus, we obtain,

h(z) = max
η

η	z : η	Klη ≤ 1, l = 1, . . . , L.

The above holds for the general kernel class K̃. For the multiple spectral kernel
class K, defined in (3.17), we can simplify h(z) to

h(z) =max
η

η	z : (η	bl)
2 ≤ 1, ∀ l = 1, . . . , L

=max
η

η	z :
∣∣∣η	bl

∣∣∣ ≤ 1, ∀ l = 1, . . . , L,
(3.30)

which is a linear program. In a similar way as for �2-loss, we can construct the
Lagrangian function

L(η, q) = η	z +
L

∑
l=1

(|ql | − ql(η
	bl))

where q = (q1, . . . , qL)
	 is dual variable. Therefore, we can simplify h(z) to

h(z) = min
q
‖q‖�1 : z =

L

∑
l=1

qlbl .

If we now plug h(z) back in (3.28), we obtain

m�(K,λ) = min
z,q

L(z) + λ

2
‖q‖2�1 : z =

L

∑
l=1

qlbl

or equivalently,

m�(K,λ) = min
q

L
( L

∑
l=1

qlbl

)
+

λ

2
‖q‖2�1 . (3.31)

The �1 penalization is due to the simplex constraint in definition of the kernel
classK. Therefore, instead of quadratic constraints, as in (Lanckriet et al., 2004b),
we obtain linear constraints.
In the same line as in (3.25), the original variable p can be recovered by check-

ing the optimality conditions. Indeed, the constraint used for making the scaling
trick (3.29) leads us to

max
K∈K

η	∗ Kη∗ = max
p∈Δ1

L

∑
l=1

pl(η
	∗ bl)

2 = 1.

Using the optimality condition of (3.30), we see that by choosing

pl =
|ql∗|

h

we have
L

∑
l=1

pl(η
	∗ bl)

2 =
1
h

L

∑
l=1
|ql |(η	∗ bl)

2

=
1
h

L

∑
l=1

ql(η
	∗ bl)

=
1
h

L

∑
l=1
|ql | = h

h
= 1,
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which implies that our choice for pl is optimal. The second and third line are
direct implication of the optimality condition of (3.30). The last line follows by
the value of h(z) at the optimal solution.
Thus, for low rank kernel matrices, instead of using the complete kernel ma-

trix, we can just take a small subset of eigenvectors from each matrix and apply
the optimization problems introduced in (3.25), (3.27), and (3.31). Using this
framework we can achieve a considerable amount of decrease in the amount of
memory and computation demands compared to general MKL algorithms such
as SimpleMKL (Rakotomamonjy et al., 2008) and (Sonnenburg et al., 2006).
The spectral decomposition of kernel matrices is an expensive computational

task. However, we only need the top eigenvectors of the kernel matrices once,
which can be efficiently computed using powermethods, such as Lanczosmethod;
see (Golub and Van Loan, 1996) for more details.

3.4 Nyström-extension for inductive multiple SKL

The formulations presented in Section 3.3 apply to the transductive settingwhere
both training and test sets are available at the time of learning. To use the results
of multiple SKL for classifying test samples, access to eigenvectors at the test
samples is crucial. A naive approach to solve this issue is to add the test sample
to each of the original kernel matrices, and then take the eigenvalue decompo-
sition of the new matrices. However, this solution becomes infeasible for large
kernel bases.
Here, we suggest using the Nyström extension, which provides an approx-

imation of eigenvectors of any (bounded) kernel function by discretizing the
integral in the eigenvalue equation for a linear operator (Baker, 1977). The
Nyström extension is used extensively for improving the scalability of machine
learning methods, for example (Drineas andMahoney, 2005; Talwalkar and Ros-
tamizadeh, 2010).
Let us define a new kernel matrix Kn+1 using the available kernel matrix K by

Kn+1 =

(
K k

k	 k(xn+1, xn+1)

)
,

where k = (k(xn+1, x1), . . . , k(xn+1, xn))	 and (xn+1, yn+1) is distributed identi-
cally and independently as (x1, y1) ∈ Sn. The Nyström extension approximates
the eigenvector ui(Kn+1), i = 1, . . . , n + 1 by extending ui(K) to

ui(Kn+1) ≈ (ui(K)	 ci(xn+1))
	,

where

ci(xn+1) =
1

nλi(K)

n

∑
j=1

k(xj, xn+1)e	j ui(K)

=
k	ui(K)
nλi(K)

.

Going back to our multiple SKL, let us assume that the dictionary is built using
eigenvectors of several kernel matrices. For any test sample, we first extend the
elements bl of the spectral dictionary with l ∈ I = {l : 1 ≤ l ≤ L, ql �= 0} to b̃l

using the Nyström extension. We generate a new extended matrix ∑l∈I pl b̃l b̃	l ,
and then evaluate the learned classifier for the kernel matrix with new entries.
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Similarly, the Nyström extension can be used for extending other rank one
MKL methods to the inductive setting, for example (Lanckriet et al., 2004b).

3.5 Empirical Results

Here, we present the empirical results of the multiple SKL on several classifi-
cation datasets including a selection of UCI dataset, protein subcellular local-
ization (Zien and Ong, 2007), and flower recognition (Nilsback and Zisserman,
2008).
Our empirical results show that the multiple SKL provides a good classifica-

tion rate compared to other MKL methods, and to some extent, it improves the
scalability of the kernel learning.

3.5.1 Empirical results on UCI data sets

Here, we present empirical comparisons of the classification accuracy between
the multiple SKL and state-of-the-art MKL approaches including SimpleMKL
(Rakotomamonjy et al., 2008), extended level method (Level method) (Xu et al.,
2009), and SILP (Sonnenburg et al., 2006). We perform this study on a selection
of UCI-classification datasets, available for download from http://archive.
ics.uci.edu/ml/. By classification accuracy, we mean the performance of a
soft-margin SVM with a kernel matrix obtained via any MKL algorithm.
The classification accuracies of different kernel learning methods are summa-

rized in Table 3.1. For the multiple SKL, we employ the linear programming
toolbox of Mosek1 in Matlab2 environment. For other methods we used the
code provided in (Rakotomamonjy et al., 2008; Sonnenburg et al., 2006; Xu et al.,
2009).
Each cell in the Table 3.1 contains two numbers. The number in top is the aver-

age classification accuracy (together with standard deviation information) and
the number in bottom shows the computation time in seconds for computing
the kernel coefficients. The classification accuracy is computed by averaging the
classification rate over 50 trials. In each trial 50% of available samples are ran-
domly selected as training and the rest as testing set. In each row n shows the
size of the training set.
We used RBF kernels for each data set with kernel widths of 10−6, 10−5, . . . , 102.

The singular values of the RBF kernel matrices, with the above width ranges are
in line with the low rank assumption, thus we can apply the multiple SKL. We
took 20 eigenvectors, corresponding to the 20 largest eigenvalues of the RBF
kernel matrices and then built the spectral dictionary proposed in (3.27). The
learned kernel is then plugged to SVMwith �2-loss and the hinge-loss functions.
Both showed almost identical performances. For simplicity, the results for the
hinge-loss are presented in the Table 3.1. For all sample sets, the penalization
parameter of SVM is selected using 5-fold cross validation for all MKL methods
as well as multiple SKL separately.
The results show that the multiple SKL significantly improves the classifica-

tion accuracy in 4 datasets and follows the state-of-art in the other two. How-

1 www.mosek.com
2 www.mathworks.com
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ever, the computational time is remarkably reduced in all different cases.

Dataset Name SimpleMKL SLIP Level Method multiple SKL
Iono n = 175 92.10± 2.0 92.10± 1.9 92.10 ±1.3 95.61± 2.51
Time 33.5±11.6 1161.0±344.2 7.1±4.3 1.55±.15
Pima n = 384 76.5±1.9 76.9±2.8 76.9±2.1 98.19±1.45
Time 39.4±8.8 62.0±15.2 9.1±1.6 2.12±0.75
Sonar n = 104 79.1±4.5 79.3±4.2 79.0±4.7 90.96±2.97
Time 60.1±29.6 1964.3±68.4 24.9±10.6 0.10±0.08
Heart n = 135 82.2±2.2 82.2±2.2 82.2±2.2 82.87±2.81
Time 4.7±2.8 79.2±38.1 2.1±0.4 1.51±0.45
Wpbc n = 198 77.0±2.9 77.0±2.8 76.9±2.9 72.92 ±2.13
Time 7.8±2.4 142.0±122.3 5.3±1.3 1.45±.34
Wdbc n = 285 95.7±0.8 96.4±0.9 96.4±0.8 88.41±0.35
Time 122.9±38.2 146.3±48.3 15.5±7.5 1.33±.62
Vote n = 218 96.0±1.1 95.7±1.0 95.7±1.0 95.03±0.11
Time 23.7±9.7 26.3±12.4 4.1±1.3 1.11±.43

Table 3.1. UCI dataset-Numbers, the first line per row displays accuracy of each method, and the
numbers in the second line show the learning time in seconds. Values that are in bold
face have passed the two samples t-test with 95% confidence interval.

3.5.2 Empirical results for protein subcellular localization

The prediction of subcellular localization of proteins is an important subject in
cell biology (Zien and Ong, 2007), where MKL has been successfully applied to
this problem (Kloft et al., 2010; Zien and Ong, 2007). The data set in this ex-
periment can be obtained from http://www.fml.tuebingen.mpg.de/raetsch/
suppl/protsubloc, for details see (Kloft et al., 2010).
The data set contains 69 different kernels that are obtained for 4 different or-

ganisms: plants, non-plant eukaryotes, Gram-positive and Gram-negative bac-
teria. Similar to (Kloft et al., 2010), in each trial we divided the sample set into
training and test sets using the sub-sampling index that is provided with the
dataset. We applied the multiple SKL on the training set to obtain a kernel ma-
trix. Using that kernel matrix we trained a SVM with hinge-loss and evaluated
the classification result on the test set. The results of classification, in terms of av-
eragedMathew’s correlation coefficient (MCC) (Zien and Ong, 2007), are shown
in table 3.2. MCC is defined by

TP× TN − FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TP and TN denote the number of true positive and true negative classi-
fied test samples. Similarly, FP and FN denote the number of false positive and
false negative classified test samples.
In our experiments, the original kernels are first normalized with multiplica-

tive normalization suggested in (Kloft et al., 2010; Zien and Ong, 2007). We then
took the top 25 eigenvectors of each normalized kernel matrix to build the spec-
tral dictionary. Note, that we executed the algorithm in transductive setting.
While the accuracy of classification is very similar to the result of SILP (as

appeared in (Kloft et al., 2010)), the computational load and memory demand in
the multiple SKL are greatly improved, as shown in Table 3.1.
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organism (Kloft et al., 2010) [SILP] multiple SKL
plant 8.18±0.47 8.18±0.47
non plant 8.97±0.26 9.01±0.25
positive gram 9.99±0.35 9.87±0.34
negative gram 13.07±0.66 13.07±0.07

Table 3.2. The MCC scores computed for the multiple SKL and SILP. Values that are in bold face
have passed the two samples t-test with 95% confidence interval.

3.5.3 Empirical results on flower recognition dataset

Flower recognition is an image based classification task with a large number of
classes, for which the MKL is shown to improve the classification rate (Nilsback
and Zisserman, 2008).
We applied the multiple SKL on the flower images dataset provided in http:
//www.robots.ox.ac.uk/~vgg/data/flowers/index.html. This webpage pro-
vides a set of distance matrices, which contain the distances between samples
using different feature sets. Four sets of features are used to compute distance
matrices over samples: the histogram of gradient orientations, HSV values of
the pixels, and the scale invariant feature transforms that are sampled on both
the foreground region and its boundary. In our experiments, we used these
distance matrices to generate RBF kernel matrices, and the kernels widths are
10−2, 10−1, 1, 10, 102, . . . , 107.
The training set contains 1000 images with 17 classes and 361 samples as test

set and the rest for training. We call this remaining set “total training" set. 340
samples out of the total training set are randomly selected for the validation. In
each trial, the validation and training sets are resampled from the total training
set.
In this experiment, we consider two settings: inductive and transductive. In

the transductive setting, the classification accuracy (MSE) over all classes is 94±
0.20. The accuracy of inductive setting is 92± 0.28, which is lower than in the
trandsuctive setting due to the error of Nyström approximation. The best re-
sults reported in (Varma and Ray, 2007) and (Nilsback and Zisserman, 2008) by
MKL methods is 88± 0.3 (for the inductive setting), which is lower than results
achieved by the multiple SKL.

Appendix

An error analysis of ERM

Let us consider a kernel matrix K and a perturbation of that, let us say K̃. Here,
we want to study the difference between the solutions of m�(K,λ) and m�(K̃,λ).
The following theorem provides an estimate of this difference, which appeared
in (Bousquet and Elisseeff, 2002). For the sake of completeness, we also provide
a proof for this theorem.

Theorem 3.5.1. Let us consider kernel functions k and k̃, and denote their feature maps
by ψk and ψk̃. For sample set Sn, we denote the feature maps with ψK and ψK̃, respec-
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tively. We assume that the feature maps are finite dimensional.
Let us consider m�(K,λ), where �(·, ·) is a convex function with respect to the second

argument, with Lipschitz norm |�|L. Let us further denote the solution of m�(K,λ) and
m�(K̃,λ) by w∗ and w̃∗. Then, the following holds.

‖w∗ − w̃∗‖2 ≤ |�|L
2nλ

(‖w∗‖+ ‖w̃∗‖)
n

∑
i=1

∥∥ψK(xi)− ψK̃(xi)
∥∥ .

Proof (Theorem 3.5.1). We follow similar derivation as appeared in (Bousquet
and Elisseeff, 2002) and (Zhang, 2001). Let us define

L(w) :=
1
n

n

∑
i=1

�(yi, 〈w,ψK(xi)〉),

L̃(w̃) :=
1
n

n

∑
i=1

�(yi, 〈w̃,ψK̃(xi)〉),

and Δw = w̃∗ −w∗. Also, assume that t ∈ (0, 1]. Since w∗ and w̃∗ attain the
minimum of m�(K,λ) and m�(K̃,λ), respectively, we have

L(w∗) +
λ

2
‖w∗‖2 ≤ L(w∗ + tΔw) +

λ

2
‖w∗ + tΔw‖2,

and similarly

L̃(w̃∗) +
λ

2
‖w̃∗‖2 ≤ L̃(w̃∗ − tΔw) +

λ

2
‖w̃∗ − tΔw‖2.

Combining the above inequalities reads

λ

2
(‖w∗‖2 − ‖w∗ + tΔw‖2 + ‖w̃∗‖2 − ‖w̃∗ − tΔw‖2) ≤

L(w∗ + tΔw)−L(w∗) + L̃(w̃∗ − tΔw)− L̃(w̃∗),

which is equal to

λ(1− t)t‖Δw‖2 ≤ L(w∗ + tΔw)−L(w∗) + L̃(w̃∗ − tΔw)− L̃(w̃∗).

By assumption, the loss function is a convex function, and therefore, we can
expand the right hand side of the above inequality:

λ(1− t)‖Δw‖2 ≤L(w̃∗)−L(w∗) + L̃(w∗)− L̃(w̃∗)

=
1
n

n

∑
i=1

(
�(yi, 〈w̃∗,ψK(xi)〉)− �(yi, 〈w∗,ψK(xi)〉)

+ �(yi, 〈w∗,ψK̃(xi)〉)− �(yi, 〈w̃∗,ψK̃(xi)〉)
)

Note that, in the preceding display, we divided both sides by t. By the Lipschitz
assumption, we further have,

λ(1− t)‖Δw‖2 ≤|�|L
n

n

∑
i=1

(
|〈w̃∗,ψK(xi)− ψK̃(xi)〉|

+ |〈w∗,ψK̃(xi)− ψK(xi)〉|
)

Let us take the limit of the above expression when t → 0. Then, by the Cauchy-
Shwartz inequality, we obtain

‖Δw‖2 ≤ |�|L(‖w∗‖+ ‖w̃∗‖)
nλ

n

∑
i=1
‖ψK(xi)− ψK̃(xi)‖
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Let us assume that the kernel matrix K has eigenvalue decomposition

K =
n

∑
i=1

λi(K)ui(K)u	i (K).

We define the feature map

ψK(xi) = (
√

λ1(K)e	i u1(K), . . . ,
√

λn(K)e	i un(K)).

Let us assume that the low rank approximation of K̃ contains top R eigenvectors
of the kernel matrix K. Then, it has similar feature map:

ψK̃(xi) = (
√

λ1(K)e	i u1(K), . . . ,
√

λR(K)e	i uR(K)).

Using Theorem 3.5.1, we have

‖Δw‖2 ≤ |�|L(‖w∗‖+ ‖w̃∗‖)
nλ

n

∑
i=1
‖(0R,

√
λR+1(K)e	i uR+1, . . . ,√

λn(K)e	i un(K))‖.

Then,

‖Δw‖2 ≤|�|L(‖w∗‖+ ‖w̃∗‖)
nλ

n

∑
i=1

(
λR+1(K)

n

∑
j=R+1

(e	i uj(K))2
) 1

2

≤|�|L(‖w∗‖+ ‖w̃∗‖)
λ

√
λR+1(K)(n− (R + 1)).

On the other hand both w∗ and w̃∗ have representation 1
nλ ∑n

i=1 αik(xi, ·) for
different values of αi ≥ 0 for each weight vector. If we further assume that
k(x, x) ≤ T, for T > 0, we obtain,

‖w∗‖ =
∥∥∥∥∥ 1

nλ

n

∑
i=1

αik(xi, ·)
∥∥∥∥∥

≤ ‖α‖∞

nλ

n

∑
i=1
‖k(xi, x1), . . . , k(xi, xn)‖

≤ ‖α‖∞
√

nT
λ

.

Similar holds for w̃∗. For the hinge loss, the dual variables in (3.13) satisfiy
‖α‖∞ ≤ 1

nλ . Therefore, for differences between weight vectors we obtain,

‖Δw‖2 ≤ 2T|�|L
λ2

√
λR+1(K)(n− (R + 1))

n
.

Saddle point theorem

For some function ψ : X × Z → R where X ⊆ Rp,Z ⊆ Rq, let us define
functions tz : Rp → (−∞,∞] and rx : Rq → R by

tz(x) =
{

ψ(x, z) x ∈ X
∞ x /∈ X ,
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and

rx(z) =
{ −ψ(x, z) z ∈ Z

∞ z /∈ Z ,

respectively. Let us further define functions t(x) := supz∈Z tz(x) and r(z) :=
supx∈X rx(z).

Theorem 3.5.2 (Saddle point theorem (Bertsekas et al., 2003)-Theorem 2.6.4). Let
us assume that the function tz, ∀z ∈ Z is closed and convex, and similarly, rx, ∀x ∈ X
is closed and convex,

inf
x∈X

sup
z∈Z

ψ(x, z) < ∞,

and that the level sets {x|t(x) ≤ γ},γ ∈ R, of the function t are compact. Then, the
minimax equality

sup
z∈Z

inf
x∈X

ψ(x, z) = inf
x∈X

sup
z∈Z

ψ(x, z),

holds and the infimum over X in the right-hand side above is attained at a set of points
that is nonempty and compact.

The saddle point theorem above is a variant of the minimax theorem (Bert-
sekas et al., 2003).



4. Error bound of multiple spectral
kernel learning

This chapter present a new geometric bound for the Gaussian complexity of the
hypothesis set of the multiple spectral class introduced in Chapter 3. A brief
overview of the relation between the complexity and the generalization bound,
and also previous upper bounds for the Rademacher complexity of the general
MKL hypothesis set are provided. Parts of this chapter are presented in (Rey-
hani, in print).

4.1 Introduction

As previously mentioned in Section (3.1), in supervised learning, the goal is to
find a decision rule f̂ (x) by fitting a model to the training set Sn. It is natural to
ask about an upper bound for the error of prediction for a test sample. Indeed,
we are often interested in having some estimate of

P� ◦ f̂ = E�(y, f̂ (x)),

where f̂ is the solution of the empirical risk minimization and � is a bounded
and convex loss function. This error is called generalization error, or risk, and
it has been extensively studied in statistics and machine learning, for example
(Koltchinskii, 2011; Koltchinskii and Panchenko, 2005; Mendelson, 2003b; Bous-
quet and Elisseeff, 2002; Bartlett andMendelson, 2003). Note that, to avoid over-
fitting we usually assume that f belongs to a small set of measurable functions
F . For example, in linear penalized ERM (3.2) the decision rule belongs to the
set F = { fw| fw(x) = w	x, ‖w‖ ≤ γ}, for a user defined parameter γ. The set
F is called the hypothesis set.
A common characterization of generalization error relates the risk to the em-

pirical risk and the complexity of the hypothesis set. Recall that the empirical
risk is

Pn� ◦ f =
1
n

n

∑
i=1

�(yi, f (xi)).

For every function f ∈ F , the risk is smaller than the empirical risk, Pn� ◦ f , plus
the supremum of the unweighted empirical process, i.e.

P� ◦ f ≤ Pn� ◦ f + sup
h∈�◦F

(P− Pn)h. (4.1)

We assume that sup f∈F P� ◦ f < ∞. The supremum term in the inequality (4.1)
is bounded and therefore we can replace this random term by the expectation

35
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term
E sup

h∈�◦F
(P− Pn)h,

using concentration inequalities. Therefore, with probability 1− δ and ∀ f ∈ F ,
we have

P� ◦ f ≤ Pn� ◦ f + E sup
h∈�◦F

(P− Pn)h +

√
ln 1

δ

2n
.

Now, it remains to control the expectation term in the right hand side of the
above inequality. As discussed earlier, this expectation depends on the size of
� ◦ F . The most common approach to control this term is to use the bracketing
number of � ◦ F , which is briefly explained in Section 2.3.2. However, by the
symmetrization lemma (Theorem 2.3.1) and contraction lemma (Van der Vaart
and Wellner, 1996), the expectation term can be replaced by the Rademacher
complexity ofF scaled by the Lipschitz norm of �, see for example (Koltchinskii,
2011; Mendelson, 2012).
In the following we bring a result on the generalization bound, which relates

the risk to the Gaussian complexity of the hypothesis set and the empirical risk.

Theorem 4.1.1 ((Bartlett and Mendelson, 2003) Corollary 15 and Theorem 8).
Consider a loss function � : Y × Y → [0, 1] and a function φ : Y × Y → [0, 1]
that dominates the loss function �, i.e. ∀y ∈ Y and a ∈ Y , φ(y, a) ≥ �(y, a). Let
F be a class of functions f : X → Y and let Sn = {(xi, yi)}n

i=1, where (xi, yi) are
independent copies of random vector (x, y). Then for any integer n and any 0 < δ < 1,
with probability of at least 1− δ, the following holds:

P� ◦ f ≤ Pn� ◦ f + c|�|LGn
F +

(
8
n
ln

2
δ

) 1
2

∀ f ∈ F ,

where |�|L is the Lipschitz norm of the loss function and Gn
F denotes the Gaussian com-

plexity of the hypothesis set F .

(Bartlett andMendelson, 2003) presents similar result where the Gaussian com-
plexity is replaced by the Rademacher complexity, and shows that the following
inequality holds under the conditions of the preceding theorem.

P� ◦ f ≤ Pn� ◦ f + c|�|LRn
F +

(
8
n
ln

2
δ

) 1
2

, (4.2)

where Rn
F denotes the Rademacher complexity of F . For more details on gen-

eralization bounds and proof techniques see (Koltchinskii and Panchenko, 2005;
Mendelson, 2003a; Bartlett and Mendelson, 2003; Koltchinskii, 2011; Steinwart
and Christmann, 2008). Note that, we can replace the complexity term in the
above theorem by the empirical complexity at the cost of an additional term that
depends on n and some constants.
In the following sections, we first briefly review some previous works on the

empirical Rademacher complexity ofMKL, and then provide our Gaussian com-
plexity computations in Section 4.3.

4.2 Bounds for complexity of the general MKL

The multiple SKL framework is similar to the MKL, with the exception that all
the kernel bases are of rank one. Therefore, we could still use the complexity
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computations available for general MKL to estimate the risk of themultiple SKL.
In this section, we bring some definitions/computations related to the complex-
ity of the hypothesis set for the general MKL setup as well as previous results
on the empirical Rademacher complexity of this set.
Let us denote the hypothesis set in the general multiple kernel learning setup

by FK̃, where K̃ is a kernel set, e.g. (3.11) or (3.17). It consist of all linear func-
tions of the form 〈w,ψ(x)〉, where the norms of vectors w are bounded. The
inner product is evaluated by the corresponding kernel function that belongs to
the kernel class K̃. In summary we have,

FK̃ :=
{

fw

∣∣∣ fw(x) = 〈w,ψK(x)〉HK , ‖w‖HK ≤
1
γ
,K ∈ K̃

}
.

Alternatively, the dual representation of the linear decision functions in the pre-
ceding display is of the form ∑n

i=1 αik(xi, x) for αi ∈ R+, i = 1, . . . , n, and k is a
kernel function corresponding to K ∈ K̃. The norm constraint is equal to

n

∑
i,j=1

αiαjk(xi, xj) = α	Kα ≤ 1
γ2 ,

where α = (α1, . . . , αn)	 and [K]i,j = k(xi, xj), 1 ≤ i, j ≤ n. The set FK̃ can be
written as

FK̃ =

{
fα

∣∣∣ fα(x) =
n

∑
i=1

αik(xi, x), α	Kα ≤ 1
γ2 ,K ∈ K̃

}
.

Let g1, . . . , gn be independent standard Gaussian random variables and also
define Z = (g1, . . . , gn)	. We assume that x1, . . . , xn are independent and iden-
tically distributed random vectors, and that the random variable xi is indepen-
dent to gj for all different 1 ≤ i, j ≤ n. Conditioning on x1, . . . , xn, the following
holds for the empirical Gaussian complexity:

Ĝn
FK̃ =

1
n

E

∣∣∣∣∣ supf∈FK̃

n

∑
i=1

gi f (xi)

∣∣∣∣∣ (4.3)

=
1
n

E sup
K∈K̃

sup
‖w‖HK≤ 1

γ

∣∣∣∣∣〈w,
n

∑
i=1

giψK(xi)
〉
HK

∣∣∣∣∣
≤ 1

nγ
E sup

K∈K̃

∥∥∥∥∥ n

∑
i=1

giψK(xi)

∥∥∥∥∥HK

=
1

nγ
E sup

K∈K̃

(
Z	KZ

) 1
2

≤ 1
nγ

(
E sup

K∈K̃
Z	KZ

) 1
2

. (4.4)

The third line follows from the definition of the norm. For the last line we used
the fact that E{x

1
2 } ≤ E{x} 1

2 for any nonnegative random variable x.
Similar result holds for the Rademacher complexity, where the random vari-

ables gi are replaced by Rademacher random variables εi, i = 1, . . . , n:

R̂n
FK̃ ≤

1
nγ

(
E sup

K∈K̃
ε	Kε

) 1
2

, (4.5)
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where ε = (ε1, . . . , εn)	. Note, that the term ε	Kε in (4.5) cannot be greater than
‖ε‖2λ1(K). Therefore, conditioning on x1, . . . , xn, we have

E sup
K∈K̃

ε	Kε = Emax
p∈Δ1

ε	
(

L

∑
l=1

plKl

)
ε

≤ E max
1≤l≤L

ε	Klε

≤ ‖ε‖2 max
1≤l≤L

λ1(Kl)

= n max
1≤l≤L

λ1(Kl).

So, the empirical Rademacher complexity can be simply bounded as follows:

R̂n
FK̃ ≤

1√
nγ2

max
1≤l≤L

(λ1(Kl))
1
2 .

This is a simple bound that we can get directly from the definition. This bound
is independent to the number of kernel bases and only depends on the spectral
information of the kernel bases. In other words, we can insert new kernels to the
bases set and the complexity remains the same as long as they do not change the
maximum operator norm of the basis matrices in the set.
As it appeared, the main object to work with in complexity computations is ei-

ther the Gaussian chaos term that is defined by E supZ	KZ or the Rademacher
chaos which is defined by E sup ε	Kε. (Ledoux and Talagrand, 2011; Van der
Vaart andWellner, 1996; Talagrand, 2005; Mendelson and Paouris, 2012) provide
general technologies to bound the Rademacher chaos, using geometric proper-
ties of the search space. However, we choose a simpler idea, which is called the
decoupling technique, in Section 4.3 to compute a new bound for the empirical
Gaussian complexity.
A comprehensive comparison of previous bounds for the Rademacher com-

plexity of MKL can be found in (Cortes et al., 2010). Here, we briefly present
results of few previous studies.
The first result is due to (Lanckriet et al., 2004b), which states that:

Theorem 4.2.1 ((Lanckriet et al., 2004b), Theorem 24). Let us assume that the kernel
functions k1, . . . , kL are given. Then, for c > 0, the following holds.

R̂n
F ≤

[
c

nγ2 min
(

L, n max
1≤l≤L

λ1(Kl)

trKl

)] 1
2

,

where λ1(Kl) denotes the largest eigenvalue of the matrix Kl and F denotes the hypoth-
esis set of intersection of K̃ (defined in (3.11)) and matrices with trace c > 0.

Theorem 4.2.1 shows that the empirical Rademacher complexity is bounded
by the minimum of

√
L and the scaled supremum of the spectral ratio of the

bases.
Recall that the spectral kernel class is defined by

K :=
{

K ∈ Rn×n : K =
L

∑
l=1

plblb	l , p ∈ Δ1

}
, (4.6)

where bl belongs to the spectral dictionary

{b1, . . . , bL : bi ∈ Rn, bi �= bj, 1 ≤ i �= j ≤ L}.
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In this chapter, we further assume that the norm of elements of dictionary are
bounded from above. For the spectral kernel class, the spectral ratio λ1(Kl)/trKl

is 1. Thus, the empirical Rademacher complexity by Theorem 4.2.1 is at most√
cL

nγ2 for L < n,

otherwise, it is
√

c/γ2. However, for L < n the multiple SKL optimization,
for example with �2 loss is not well defined and including the coordinate bases
becomes necessary. So, for the spectral kernel class the above bound is not in-
formative.
(Srebro and Ben-David, 2006) improves the dependency between the Rademacher

complexity of the MKL hypothesis set and the number of kernels, and shows
that for general loss functions R̂n

FK̃(γ) is of order

O
⎛⎝√ 8

n

[
2+ L ln

128n3eR2

γ2L
+ 256

R2

γ2 ln
neγ

8R
ln

128nR2

γ2

] 1
2

⎞⎠ ,

where supx∈X k(x, x) ≤ R2 and e is the natural logarithm base number. The
above bound depends on the number of bases through the term L ln 128n3eR2

γ2L .
(Cortes et al., 2010) shows that the bound may become greater than one. In
addition, they present a tighter and simpler bound, as stated below.

Theorem 4.2.2. [(Cortes et al., 2010)] The empirical Rademacher complexity of the
hypothesis set FK̃ can be bounded as follows:

R̂n
FK̃ ≤

√
η◦r‖u‖r

nγ
, ∀r ∈ N, r ≥ 1, (4.7)

where u = (trK1, . . . , trKL)
	 and η◦ = 23

22 .

Applying Theorem 4.2.2 to the spectral set requires computing the trace of
elements of the spectral kernel class, which is

trKl =
n

∑
i=1

(e	i bl)
2 = ‖bl‖2, ∀l = 1, . . . , L.

Then, for any r ≥ 1, (4.7) implies that

R̂n
FK ≤

√
η◦r‖(1, . . . , 1)	‖r max1≤l≤L ‖bl‖2

nγ

=

√
η◦rL

1
r

nγ
max
1≤l≤L

‖bl‖.
The above bound holds for any r ≥ 1, so, we search for a value of r for which
the squared root term is minimum. The function r �→ rL

1
r attains its minimum

at r◦ = ln L, thus, we obtain,

R̂n
FK ≤

√
η◦e�ln L�

nγ
max
1≤l≤L

‖bl‖, (4.8)

where �x� denotes the smallest following integer to x andwe assume that L ≥ 3.
(4.8) shows that the Rademacher complexity of set of rank one kernels can be
controlled by the logarithm of the number of bases times the maximum Eu-
clidean norm of bases. (Cortes et al., 2010) also shows similar inequality to (4.8)
for general kernel matrices with bounded diagonal entries. There, the max term

is replaced by max1≤l≤L (trKl)
1
2 .
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4.3 A novel geometric bound for the Gaussian complexity

In this section, we compute a new bound for the empirical Gaussian complex-
ity of the multiple spectral kernel class K defined in (4.6). Most of the previous
results on the empirical complexity of the MKL hypothesis set are about com-
puting the Rademacher complexity. However, a rich set of results about the
Gaussian process and Gaussian chaos are available, which could make the com-
plexity’s computation easier and perhaps different. This is our main motivation
to take a different approach and compute a bound for the empirical Gaussian
complexity of the multiple SKL hypothesis set. The technique can be simply ap-
plied for computing bounds for the general MKL hypothesis set. Nevertheless,
the Gaussian complexity is bounded from below and above by the Rademacher
complexity. Let us state our results and leave the proof to Section 4.4.

Theorem 4.3.1. Let us consider the spectral kernel class defined in (4.6). Then, for
sufficiently large L, we have

Ĝn
FK ≤

1+
√
18 ln L
n

max
1≤l≤L

‖bl‖ , (4.9)

where FK := { f | f (x) = 〈ψK(x),w〉, ‖w‖2 ≤ 1,K ∈ K} and Ĝn
FK is the empirical

Gaussian complexity for the hypothesis set FK.
In addition, by assuming that ‖bl‖ = 1, we have,

Ĝn
FK ≤

√
6
√
2C ln L
n

max
1≤l,l′≤L

(1− b	l′ bl)
1
4 +

1
n
, (4.10)

where C > 0 is a constant.

The bound presented in (4.9) shows the dependency between the complexity
and logarithm of the number of kernel bases in a similar way to the empirical
Rademacher complexity bound presented in (4.8). However, we got a larger
constant, which is consistent with Theorem 2.3.3.
In addition, (4.10) relates the geometry of the dictionary to the empirical com-

plexity via the term maxl,l′(1− b	l bl′). The geometric term counts the similarity
between the bases and achieves its maximumwhen at least two orthogonal vec-
tors are present in the dictionary. This bound suggests that the complexity can
also be increased by the angle between the bases, which is an additional infor-
mation and we can not achieve this conclusion from any of previous bounds.
The additional term 1

n in both bounds in (4.9) and (4.10) is due to the decoupling
technique applied to the Gaussian chaos.

4.4 Proof

In this section we provide the proof of Theorem 4.3.1 that relies on decoupling
of the Gaussian chaos, Slepian’s lemma, and maximal inequalities, which we
introduce shortly.

Lemma 4.4.1 ((Ledoux and Talagrand, 2011), pp. 79, Maximal Gaussian inequal-
ity). Let x = (x1, . . . , xn) be a Gaussian random variable in Rn. Then, we have

E max
1≤i≤n

xi ≤ 3
√
ln n max

1≤i≤n

√
Ex2i .
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This result also holds for sub-Gaussian random variables where the coefficient 3 is re-
placed by a constant C > 0.

Lemma 4.4.2 (Slepian’s lemma, (Ledoux and Talagrand, 2011) pp. 77 and 79,
(Bartlett and Mendelson, 2003)). Let x1, . . . , xn be random variables defined by

xj :=
n

∑
i=1

aijgi,

for gi ∼ N (0, 1), gi ⊥⊥ gj, ∀1 ≤ i �= j ≤ n. Then, there exists a constant C > 0 such
that

E max
1≤i≤n

xi ≤ C
√
ln n max

1≤i,i′≤n

√
E(xi − xi′)2.

Lemma 4.4.3 (Decoupling of Gaussian quadratic form, (Levina and Vershynin,
2010; De la Peña and Giné, 1999)). Let z be a centered normal random vector in Rp,
and let z′ be independent copy of random vector z. LetA be a set of symmetric matrices.
Then,

E sup
A∈A

|〈Az, z〉 −E〈Az, z〉| ≤ 2E sup
A∈A

∣∣〈Az, z′〉∣∣ .
Proof (Theorem 4.3.1). Let g1, . . . , gn denote independent standard normal ran-
dom variables, that are independent to the samples x1, . . . , xn. We also define
Z := (g1, . . . , gn)	. In deriving the upper bound in (4.4) the set K̃ was selected
arbitrarily. Thus, for the empirical Gaussian complexity of the spectral kernel
class K with the hypothesis set FK, we have

Ĝn
FK ≤

1
n

(
E sup

K∈K
Z	KZ

) 1
2

=
1
n

(
E max
‖p‖≤1

Z	
( n

∑
l=1

plblb	l
)

Z

) 1
2

=
1
n

(
E max

1≤l≤L
Z	blb	l Z

) 1
2

. (4.11)

Before applying the decoupling lemma we should first remove the mean of
Z	blb	l Z, which is equal to

EZ	blb	l Z =
n

∑
i,j=1

Egigje	i blb	l ej

=
n

∑
i=1

(e	i bl)
2 = ‖bl‖2.

Therefore, from (4.11) we obtain

Ĝn
FK ≤

1
n

(
E max

1≤l≤L
Z	blb	l Z

) 1
2

≤ 1
n

(
E max

1≤l≤L
(Z	blb	l Z− ‖bl‖2)

) 1
2

+
1
n
max
1≤l≤L

‖bl‖

≤ 1
n

(
2EZEZ′ max

1≤l≤L
(Z	bl)(b	l Z′)

) 1
2

+
1
n
max
1≤l≤L

‖bl‖. (4.12)
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In the third line we used Lemma 4.4.3. Both terms Z	bl and b	l Z′ are Gaussian
random variables and can be treated independently. In the following we com-
pute the first term in the right hand side of (4.12) in two different ways:

1◦:

EZEZ′ max
1≤l≤L

(Z	bl)(b	l Z′) ≤ 3
√
ln LEZ max

1≤l≤L

(
(Z	bl)

2EZ′(Z′	bl)
2
) 1

2

= 3
√
ln LEZ max

1≤l≤L

∣∣∣Z	bl

∣∣∣ ‖bl‖
≤ 9 ln L max

1≤l≤L
‖bl‖2 (4.13)

In the first line we used the Gaussianmaximal inequality. We can further assume
that ‖bl‖ = 1, ∀l ≤ L, and the bound will be reduced to 9 ln L.

2◦:

EZEZ′ max
1≤l≤L

(Z	bl)(b	l Z′) ≤ 3
√
ln LEZ max

1≤l≤L

(
(Z	bl)

2EZ′(Z′	bl)
2
) 1

2

= 3
√
ln LEZ max

1≤l≤L

∣∣∣Z	bl

∣∣∣ ‖bl‖

≤ 3C ln L max
1≤l,l′≤L

(
E(‖bl‖b	l Z− ‖bl′ ‖b	l′ Z)2

) 1
2

= 3C ln L max
1≤l,l′≤L

(
‖bl‖4 + ‖bl′ ‖4 − 2‖bl‖‖bl′ ‖b	l bl′

) 1
2
.

In the first line we used the Gaussian maximal inequality and in the third line
we used the Slepian’s lemma. Using the assumption that norm of bl is 1, we
have

EZEZ′ max
1≤l≤L

(Z	bl)(b	l Z′) ≤ 3
√
2C ln L max

1≤l,l′≤L
(1− b	l bl′)

1
2 . (4.14)

By replacing the expectation terms in (4.12) by the upper bounds derived in
(4.13) or (4.14), we obtain the claimed results (4.9) or (4.10), respectively.



5. FastICA and bootstrap FastICA

This chapter contains a short summary about the ICA model, approaches to
solve the ICA problem, FastICA, and bootstrap FastICA algorithm. Here, a sam-
ple convergence analysis of FastICA algorithm is provided. Parts of this chapter
are presented in (Reyhani and Bickel, 2009; Reyhani andOja, 2011; Reyhani et al.,
2011).

5.1 ICA model

Let us assume that s1, . . . , sp are independent random variables with values in
R and some continuous density functions, and that the matrix Ã ∈ Rp×p is a
deterministic matrix. The ICA model is defined by

x = Ãs,

where s = (s1, . . . , sp)	. The random vector x is called the mixed signals and
s1, . . . , sp are called the source signals.
Suppose that random vectors x1, . . . , xn are independent copies of x with co-

variance matrix
Σp = E(x−Ex)(x−Ex)	.

The goal in ICA is to estimate Ã given x1, . . . , xn without knowing the marginal
distribution of si, i ≤ p, (Comon, 1994; Hyvärinen and Oja, 1997; Hyvärinen
et al., 2001) among others.
We can transfer the random vectors into isoperimetric position, using trans-

formation z := Σ−
1
2

p x for population covariance matrix Σp, and similarly for
samples by defining,

zi = Σ̂−
1
2

p xi, ∀i = 1, . . . , n,

where

Σ̂p :=
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)	,

and x̄ := 1
n ∑n

i=1 xi. We assume that the sample covariance matrix Σ̂p is invert-
ible.
In the rest of this chapter, we work mainly with the following model

z = As, provided that AA	 = Ip,

with an orthogonal mixing matrix A. We define the set Sn = {z1, . . . , zn}, which
is called the sample set. It has been shown that ICA model is identifiable up

43



44 FastICA and bootstrap FastICA

to rotation and scaling provided that at most one source signal is normally dis-
tributed (Comon, 1994).
A common approach for estimating the mixing matrix is to take a set of statis-

tics, let us say {Mj}j≥0, Mj ∈ Rp×p, such that all Mj admit decomposition

Mj = ADj A	,

where Dj, ∀j, are diagonal matrices. For example, under the ICA model, fourth
cumulant matrices of the random vector z can be decomposed into the mixing
matrix and diagonal matrices. The diagonal matrices are cumulant matrices of
the corresponding random vector s. Also, the Hessian of logarithm of charac-
teristic function, variant of Fisher information matrix, and covariance matrix (in
case of time series), can be used to build Mjs. All of these estimations generate
diagonal matrices for independent source signals.
Within this framework, themixingmatrix can be estimated by finding amatrix

A∗, which simultaneously factorizes all matrices Mi, ∀i ≥ 1. The joint factoriza-
tion can be casted as

min
K

∑
i=1

∥∥∥∥∥A	Mi A−
p

∑
j=1

di,jeje	j

∥∥∥∥∥
2

w.r.t. A ∈ Rp×p, di,j ∈ R, 1 ≤ i ≤ K, 1 ≤ j ≤ p

s.t. AA	 = Ip.

A major difficulty is to design a fast algorithm for joint matrix factorization
as well as finding a set of proper matrices Mi that are sufficiently different in
norm. For details on joint matrix factorization approaches see (Pham and Car-
doso, 2001; Hyvärinen et al., 2001; Samarov and Tsybakov, 2004; Reyhani and
Bickel, 2009; Reyhani and Oja, 2011; Ylipaavalniemi et al., 2012).

5.2 FastICA algorithm

There are other approaches to estimate the mixing matrix that are based on dif-
ferent sets of statistical properties of independent or mixed signals. For instance,
by the standard central limit theorem, the distribution of a linear combination of
independent random variables is closer to Gaussian, compared to a single ran-
dom variable. Therefore, we can estimate a separating direction through finding
a suitable vector w ∈ S p−1, which maximizes some measure of non-Gaussianity
of the variable w	z. The constraint w ∈ S p−1 reduces the solution space, and
indicates that the algorithm is searching for a projection matrix. This is the main
idea behind the FastICA algorithm (Hyvärinen and Oja, 1997; Hyvärinen and
Oja, 2000).
In details, (Hyvärinen and Oja, 1997; Hyvärinen and Oja, 2000) proposes to

find a demixing vector w through maximizing the non-Gaussianity of w	z,w ∈
S p−1, where the non-Gaussianity of a random variable x is measured by EJ(x).
The function J(x) is defined by

J(x) := (G(x)− G(ν))2 ,

where G : R → R is an arbitrary nonlinear function and ν ∼ N (0, 1). They also
assume that all elements of z have unit variance. The demixing or separating
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direction can be estimated by maximizing J over all orthogonal directions, with
a fixed nonlinear function G, i.e.

ŵ = argmax
w∈S p−1

EJ(w	z). (5.1)

The solution space for preceding optimization problem is S p−1, which is com-
pact. Therefore, the optimization problem has a solution in the quotient space
of scaling and unitary rotations. We denote this solution by w◦.
Furthermore, they proposed to replace the problem defined in (5.1) by

ŵ = argmax
w∈S p−1

EG
(

w	z
)
, (5.2)

as it has the same optimum, ŵ, for functional J, as long as z has unit variance
(Hyvärinen et al., 2001). For finite sample Sn, the demixing direction can be
estimated as follows:

ŵn = argmax
w∈S p−1

1
n

n

∑
i=1

G
(

w	zi

)
.

Note that, finding the demixing projection by optimizing aGaussianity-measure
falls in Projection Pursuit framework (Huber, 1985), where we search for a de-
sired low dimensional direction, or a projection of the given high dimensional
data by optimizing a loss function.

Remark 5.2.1. Here, the main assumption is that the quantity EG
(
w	z

)
exists and

is bounded. This assumption may require bounds on moments of random vector z. For
example, for G(x) = x4, the criterion function in (5.2) is well defined, provided that the
fourth moment of z is bounded. In cases such as

G(x) := log cosh(x),

we may assume samples are distributed over a compact manifold, or all their moments
exists and are bounded.

The first order optimality condition of (5.2) reads

F := Ezg
(

w	◦ z
)
= 0, w◦ ∈ S p−1, (5.3)

where g : R → R is the first derivative of function G. One can estimate the
demixingmatrix, by finding roots or zeros of F or approximately by its empirical
estimate:

1
n

n

∑
i=1

zig(w	zi).

Indeed, by Newton method we can estimate w iteratively by the fixed point
iteration

w ← w− F(∇F)−1,

where the gradient of F is equal to:

∇wF = Ezz	g′
(

w	z
)

≈ Eg′
(

w	z
)
.
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The approximation in second line is proposed in (Hyvärinen and Oja, 1997;
Hyvärinen and Oja, 2000). Here, g′ : R → R is the second derivative of the
function G, which is assumed to be continuous. The approximation is due to the
fact that the expectation in the above expression does not generally factorize.
However, at solution w◦, the error of approximation becomes negligible.
By simplifying ∂

∂w F, and plugging this quantity into the Newton iteration, we
obtain the fixed point iterations:

w(k + 1) = E
(

zg(w(k)	z)−w(k)g′(w(k)	z)
)
, (5.4)

w(k + 1) =
w(k + 1)
‖w(k + 1)‖ . (5.5)

The fixed-point iteration in (5.4), and the normalization in (5.5) constitute the
core of FastICA algorithm. The sample estimator consists of similar iterations:

ŵn(k + 1) =
1
n

n

∑
i=1

(
zig(ŵn(k)	zi)− ŵn(k)g′(ŵn(k)	zi)

)
, (5.6)

ŵn(k + 1) =
ŵn(k + 1)
‖ŵn(k + 1)‖ , (5.7)

where ŵn(k) denotes the estimated value after k iterations using n samples.
From now on, the vector ŵn refers to wn(k + 1) for some k ≥ 1, such that
‖wn(k + 1)−wn(k)‖2 ≤ ε, for a fixed small ε > 0. This condition corresponds
to a stopping criterion that may appear in implementations. Similar notation
applies to the population case. In the rest of this chapter and also in the next
chapter s◦ denotes the source corresponding to w	◦ z.

Remark 5.2.2 (Stein’s identity and FastICA iterations). The FastICA fixed point
iteration can also be derived directly from Stein’s identity (Stein, 1956).

The Stein’s identity shows that for a Gaussian vector z with identity covariance matrix
and any smooth nonlinear function h : Rd → R,

Ezh(z)−∇h(z) = 0, (5.8)

holds. However, for non-Gaussian random vectors the Stein’s formula (5.8) is generally
nonzero. By choosing

h(z) = g(〈w, z〉),
with smooth and nonlinear function g : R → R, we arrive at the same expression as in
(5.4) or (5.6).

It is not difficult to show that a single iteration of (5.8), with fixed function g and
initial direction w would point to a non-Gaussian direction (Blanchard et al., 2006).
Therefore, a recursive application of (5.8) would point to the most non-Gaussian direc-
tion in a few iterations. With the same argument as for FastICA, the most non-Gaussian
direction would be the same as a separating direction.

5.2.1 The sample convergence of FastICA

In this section, we present a probabilistic convergence analysis of FastICA. To
the best of our knowledge, this type of analysis has not been presented before.
We define the error of the sample FastICA after k iterations by

‖w◦ − ŵn(k)‖,
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which can be bounded from above as follows.

‖w◦ − ŵn(k)‖ ≤ ‖ŵn(k)− ŵn‖+ ‖ŵn −w◦‖,

where ŵn is the fixed point solution for the sample set Sn. Below, we find
bounds for each term on the right hand side separately.
Recall that the fixed point iteration in FastICA finds roots of the equation

1
n

n

∑
i=1

zig(w	zi) = 0,

using the Newton method. Due to using second order information, i.e. Hessian,
this algorithm is expected to converge fast, which agrees to some extent with
the experimental results (Hyvärinen et al., 2001). Using Theorem 5.5.1 (see the
Appendix), we can compute an upper bound for the distance between the value
of the current iteration ŵn(k) and the solution ŵn. Indeed, we have,

‖ŵn(k)− ŵn‖ ≤
(
‖ŵn(0)− ŵn‖2|Ĥn|L

2λ

)k

, (5.9)

where |Ĥn|L is the Lipschitz norm of the Hessian matrix at some w ∈ S p−1,
defined by

Ĥn :=
1
n

n

∑
i=1

ziz	i g′
(

w	zi

)
,

and λ is the smallest eigenvalue of the matrix Ĥn.
In the derivation of FastICA, the random Hessian matrix Ĥn is approximated

by

Ĥn ≈ Σ̂p
1
n

n

∑
i=1

g′
(

w	zi

)
. (5.10)

Using the above approximation we can easily compute Lipschitz norm of the
sample Hessian, |Ĥn|L. Let us denote Ĥn evaluated at w2 and w1 by Ĥ1

n and Ĥ2
n.

Then, we have

|Ĥ2
n − Ĥ1

n| =
∥∥∥Σ̂p

∥∥∥ ∣∣∣∣∣ 1n n

∑
i=1

(
g′(w	

2 zi)− g′(w	
1 zi)
)∣∣∣∣∣

≤ λ1

(
Σ̂p

)
|g′|L 1n

n

∑
i=1
‖zi‖ ‖w2 −w1‖

=
∣∣∣Ĥn

∣∣∣
L
‖w2 −w1‖ ,

where λ1(Σ̂p) denotes the largest eigenvalue of Σ̂p ∈ Rp×p. The vectors w1,w2 ∈
S p−1, are arbitrary points in a small neighbourhood of w◦. Now, the ratio be-
tween elements relating to the Hessian matrix in convergence bound (5.9) be-
comes

|Ĥn|L
λ

≈
λ1

(
Σ̂p

)
λp

(
Σ̂p

) · |g′|L ∑n
i=1 ‖zi‖

n |∑n
i=1 g′ (ŵ	

n zi)| ,

where λp(Σ̂) denotes the smallest eigenvalue of Σ̂p. The effect of dimensionality
should appear mostly in the approximation of Σ̂p. However, in FastICA, it is
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furthermore assumed that the samples are in isotropic position, i.e. Σ̂p = Ip.
The condition number term in the above expression becomes

λ1

(
Σ̂p

)
λp

(
Σ̂p

) = 1.

Thus, the increment of dimension may not sharply affect the convergence of the
sample FastICA. Note that, having white data is crucial for FastICA algorithm.
For sufficiently large number of samples, we can look at ŵn as perturbation

of w◦. So, the initialization of (5.6) with w◦ should result in ŵn, as it is argued
in (Oja and Yuan, 2006). By initializing both population and sample FastICA
iterations with w◦, we obtain

w◦ = E
(

zg(w	◦ z)−w◦g′(w	◦ z)
)
,

and

ŵn =
1
n

n

∑
i=1

(
zig(w	◦ zi)−w◦g′(w	◦ z)

)
,

assuming that n is sufficiently large. The above equalities imply that the norm
difference ‖w◦ − ŵn‖ depends on the size of the quantity ‖ 1n ∑n

i=1(ξ i − Eξ i)‖,
where

ξ i :=
(

zig(w	◦ zi)−w◦g′(w	◦ zi)
)
.

By assuming that |si| ≤ C1, |g| ≤ C2, and |g′| ≤ C3, we obtain

‖ξ i‖ ≤ ‖As‖|g(s◦)|+ |g′(s◦)|
≤ √pC1C2 + C3.

Therefore, by the Hoeffding’s concentration inequality, the following probabilis-
tic bound holds:

P

{∥∥∥ 1
n

n

∑
i=1

(ξ i −Eξ i)
∥∥∥ ≥ (

√
pC1C2 + C3)

(√2τ

n
+

√
1
n
+

4τ

3n

)}
≤ exp(−τ).

Therefore, with probability 1− exp(−τ), τ > 0 the following holds:

‖w◦ − ŵn‖ ≤ (
√

pC1C2 + C3)

(√
2τ

n
+

√
1
n
+

4τ

3n

)
. (5.11)

5.3 Bootstrap FastICA

5.3.1 Bootstrap

In most estimation problems, it is required to provide some estimation of the er-
ror or accuracy (Lehmann and Casella, 1998; Lehmann and Romano, 2005; Davi-
son, 2003). Usually, the bias and variance are good indicators for this purpose.
However, a more accurate indicator is the confidence interval. Let θ̂ denotes the
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estimator of the parameter θ for observations drawn according to P. The distri-
bution of θ − θ̂ contains all the information we need for assessing the accuracy
of θ. Indeed, conditioned on P, we have

P
{

θ̂ − ξβσ̂ ≤ θ ≤ θ̂ − ξ1−ασ̂
}
≥ 1− β− α,

where σ̂ typically is an empirical estimation of the standard deviation of θ̂ and
ξα is the upper α-quantile of the distribution of θ−θ̂

σ̂ . The quantiles and the dis-
tribution of θ̂ − θ usually depend on P, and therefore, only observations alone
are not enough to asses the accuracy of the estimator in terms of the confidence
interval.
In the case that the distribution of θ̂−θ

σ̂ tends to a normal random variable, then,
we can estimate the distribution of θ̂− θ by a normal distributionwith zeromean
and variance σ̂2. Therefore, an asymptotic confidence interval of level 1− α− β

is [
θ̂ − zβσ̂, θ̂ − z1−ασ̂

]
,

where zβ is normal β-quantiles.
The bootstrap idea is to replace the distribution P in the above computations

by P̂, which is estimated using the observations (Efron, 1979; El-Sherief and
Sinha, 1979; Shao, 1990). For example, the empirical distribution can be used to
estimate P. The distribution θ̂− θ is a function of P, which can be then estimated
using P̂. Let θ̂∗ and σ̂∗ denote the estimations computed from observations that
are drawn according to P̂ in the same way θ̂ and σ̂ are computed from the orig-
inal observations. Therefore, the bootstrap estimator for the distribution of θ̂−θ

σ̂

conditioned on P is the distribution of θ̂∗−θ̂
σ̂∗ conditioned on P̂. Here, we look

at θ̂ as a nonrandom variable. To compute the confidence interval we should
compute the bootstrap quantiles.
A bootstrap estimator for a quantile ξα of θ̂−θ

σ̂ is a quantile of the distribution

of θ̂∗−θ̂
σ̂∗ conditioned on P̂, which is the smallest value x = ξ̂β such that

P

{
θ̂∗ − θ̂

σ̂∗
≤ x|P̂

}
≥ 1− β.

Then, the bootstrap confidence interval with asymptotic level 1− α− β is[
θ̂ − ξ̂βσ̂, θ̂ − ξ̂1−ασ̂

]
=

{
θ : ξ̂1−α ≤ θ̂ − θ

σ̂
≤ ξ̂β

}
.

In the above interval computation, we used the fact that, if P̂ is close to P, then
the bootstrap quantiles should be close to the true quantiles, implying that

P

{
θ̂ − θ

σ̂
≤ ξ̂β|P

}
≈ 1− β.

For further details on the theory of the bootstrap, see (Van der Vaart and Well-
ner, 1996; Van der Vaart, 1998; Shao, 1990). In the rest of this section, we shortly
explain simple bootstrap sampling.
For any set of samples {x1, . . . , xn}, let us define bootstrap samples x∗1, . . . , x

∗
n,

that are independently and uniformly drawn from the empirical distribution,
with a given policy, e.g. with or without replacement. One can simulate the sam-
pling policy by introducing a set of exchangeable random variables Dn1, . . . ,Dnn
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that are called random weights into the empirical measure. The result is called
weighted bootstrap measure, which is defined by

P∗n :=
1
n

n

∑
i=1

Dniδxi .

A general requirement is that the weights are exchangeable and have bounded
variance. The exchangeability is to guarantee that there is no decision behind
taking a particular sample. The requirements are listed below. For further de-
tails see (Van der Vaart and Wellner, 1996)-Condition 3.6.8.

B1. The vector D = (Dn1, . . . ,Dnn)	 is exchangeable for all n = 1, 2, . . . , i.e. the
joint probability distribution of any permutation of Dn1, . . . ,Dnn is the
same as the original sequence,

B2. Dni ≥ 0, ∀i and n, and ∑n
i=1 Dni = n,

B3. For some positive constant B < ∞,
∫ ∞
0

√
PD{Dn1 > u}du ≤ B,

B4. limλ→∞ lim supn→∞ supt≥λ t2PD{Dn1 > t} = 0

B5. 1
n ∑n

i=1(Dni − 1)2
PD−→ c2 > 0, for some c > 0.

PD denotes the probability with respect to random vector D. For brevity, we
drop the termweighted from the bootstrap. Two practical examples for theweight
random variables are given as follows.

Example 5.3.1. One important example for weight vectors, D, satisfying con-
ditions B.1-B.5 is the multinomial vector (Dn1, . . . ,Dnn), with parameters n and
probabilities

( 1
n , . . . ,

1
n

)
. This set of weights represents Efron’s empirical boot-

strap with replacement.

Example 5.3.2. Another example is the set of weight vectors (Dn1, . . . ,Dnn), built
as a row of k times the number n(n − k)− 1

2 k− 1
2 and n − k times 0, randomly

ordered and independent to samples. These weights correspond to bootstrap
without replacement, or k-out-of-n bootstrap. For technical details, see (Van der
Vaart and Wellner, 1996), Example 3.6.14.

5.3.2 Bootstrap FastICA

The sample FastICA is sensitive to the initial conditions and the sample set. The
results may fluctuate either by subsampling or by changing the initialization.
This phenomenon can be frequently observed in applications with sufficiently
large number of dimensions. In practice, one might use different randomiza-
tions by changing the initial values or subsampling to have a robust estimation
of the mixing matrix.
The bootstrap FastICA can be obtained by replacing the samples by the boot-

strap samples:

ŵ∗
n(k + 1) =

1
k

n

∑
i=1

(
z∗i g(ŵ∗	

n (k)z∗i )− ŵ∗	
n (k)g′(ŵ∗	

n (k)z∗i )
)
,

ŵ∗
n(k + 1) =

ŵ∗
n(k + 1)

‖ŵ∗
n(k + 1)‖ ,

(5.12)
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wherewe denote separating directionwith bootstrapping at iteration k by ŵ∗
n(k).

The bootstrap FastICA, at each bootstrapping trial, may provide slightly dif-
ferent results; therefore, an additional step is required to group the results from
different bootstrap trials that are indicating to the same direction.
A bootstrap FastICA algorithm that is an extension of a similar algorithm in

(Ylipaavalniemi and Soppela, 2009; Reyhani et al., 2011) is summarized in Al-
gorithm 2. The method FastICA in the algorithm takes an optional initialization
and a sample set, and it returns source separating directions by solving itera-
tions (5.6, 5.7) or (5.12). The method bootstrap returns a bootstrapped sample set
based on a weight vector as explained in, for instance, Example 5.3.2.

Algorithm 2 Bootstrap FastICA

Input: samples Sn and the number of bootstrap trials R
Output: Clusters

Σ̂ ← 1
n ∑n

i=1(xi − x̄)(xi − x̄)	 and x̄ ← 1
n ∑n

i=1 xi

S′n ← {Σ̂− 1
2 (x1 − x̄), . . . , Σ̂− 1

2 (xn − x̄)}
W(0)←FastICA(S′n)
for i = 1, . . . ,R do
Sn(i)←Bootstrap(S′n)
W(i)←FastICA(Sn(i);W(0))

end for
W ← (W(1), . . . ,W(R))
C ←Corr(W)

Cluster(W(1), . . . ,W(R);C)

The method cluster in Algorithm 2 returns a grouping on all different direc-
tions stored in W(1), . . . ,W(R), for a given correlation matrix. Any clustering
algorithm can be used for the grouping here. The correlation matrix provides
distance information between different directions. Empirical results show that
it might be more suitable if we first produce a binary matrix out of the corre-
lation matrix by a threshold. A threshold between 0.97 and 0.99 is suitable for
many applications. Then, the clustering is performed using this binary matrix
as distance information. By ranking the clusters based on the number of estima-
tions appeared in each cluster we can obtain a suitable aggregation.

5.4 Extensions of the ICA model

In this section, we briefly explain some extensions of the ICA model. In the
standard ICA model, the component or source signals are univariate. One pos-
sible extension is to assume that each component is multivariate, and that the
multivariate components are independent. In other words, we have,

x = As, s = (s1, . . . , sd), s1 ∈ Rp1 , . . . , sd ∈ Rpd ,

and si ⊥⊥ sj, 1 ≤ i �= j ≤ d. p1, . . . , pd denote the dimension of each component.
This model is called Independent Subspace Analysis (ISA).
Some of the ICA methods such as joint matrix factorization, which are ex-

plained in the beginning of section 5.1, can be adapted to handle multivariate
situations with the exception that the diagonal matrix in the matrix decomposi-
tion part may be replaced by a block diagonal matrix.
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Another extension of ICA is called non-Gaussian component analysis (NGCA),
which is also a special case of ISA model. NGCA assumes that only two sub-
spaces exist. One of them, usually the one with higher dimension, is assumed to
be a pure Gaussian signal, and the other one is a multivariate component. The
NGCA model is originally proposed in (Kawanabe et al., 2006), and is mainly
used for noise reduction purposes.
In NGCA, we have

x = AN s̃N + n, n ∼ N (0,Σp).

This model can be recasted as

x = ANsN + AGsG,

where sN contains both the non-Gaussian signal s̃N and part of n that is on the
range of AN . Random vector sG contains pure Gaussian that is on kernel space
of AN . This model is identifiable as we look only for the non-Gaussian subspace,
i.e. a projection matrix.
The joint factorization methods are also applicable to this model. The main

difference compared to the case of ICA model is that the matrix Di is block di-
agonal, and consists of two blocks. The first one is an arbitrary matrix, whereas
the second one is at most a diagonal matrix for whitened samples, which means
that the diagonal elements can be zero, for example in cumulant matrices. The
block with lower dimension corresponds to non-Gaussian signals. For details
see (Kawanabe et al., 2006; Blanchard et al., 2006; Sugiyama et al., 2006; Kawan-
abe et al., 2007; Reyhani and Oja, 2011).

5.5 Appendix

Theorem 5.5.1 (Speed of convergence of theNewtonmethod (Ruszczyński, 2006),
Theorem 5.13). Assume function f is twice continuously differentiable, and its Hes-
sian is positive definitive at all θ in the set Θ◦ = {θ : f (θ) ≤ f (θ◦)}. Assume Θ◦ is
bounded, and {θk}k≥1 is generated by the Newton’s iteration. Then, {θk} is convergent
to a minimum θ◦ of f . The rate of convergence is

‖θk+1 − θ◦‖ ≤ L
2λ
‖θk − θ◦‖2,

where λ is the smallest singular value of the Hessian matrix, and L is the Lipschitz norm
of the Hessian.

Another computation for the sample convergence of FastICA

Without the approximation (5.10) in computing the Hessian matrix, we can still
compute the elements required for computing the convergence rate of the Fas-
tICA iteration, i.e. the Lipschitz norm of the Hessian and the smallest eigenvalue
of the sample Hessian.
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Using similar notation as in 5.2.1, for the Lipschitz norm we have,∥∥∥Ĥ2
n − Ĥ1

n

∥∥∥ = ∥∥∥∥∥ 1n n

∑
i=1

ziz	i g′(w	
2 zi)− 1

n

n

∑
i=1

ziz	i g′(w	
1 zi)

∥∥∥∥∥
≤
∥∥∥∥∥ 1n n

∑
i=1

ziz	i |g′L‖zi‖
∥∥∥∥∥ ‖w2 −w1‖

≤|g′|LC1
√

p

∥∥∥∥∥ 1n n

∑
i=1

ziz	i

∥∥∥∥∥ ‖w2 −w1‖

=|Ĥn|L‖w2 −w1‖.
Similar to previous computations, we assume that ‖s‖ ≤ C1

√
p. Thus, we ob-

tain,
|Ĥn|L ≤ p

√
pC1λ1(Σ̂p).

At the solution w◦ the population Hessian matrix is H = Ezz	g′(w	◦ z), which
can be decomposed into

H = AOA	,

where O is a diagonal matrix with p− 1 entries equal to Eg′(s◦) and one entry
equal to Es2◦g′(s◦). Indeed, we have

H =Ezz	g′(w	◦ z)

=AEss	g′(s◦)A	

=AOA	,

where [O]i,j = Esisjg′(s◦), which is

[O]i,j =

⎧⎨⎩
0 i �= j
Eg′(s◦) i = j �= ◦
Es2◦g′(s◦) i = j = ◦

.

Here, “◦" denotes the index of the source signal which corresponds to the vec-
tor w◦. The smallest eigenvalue of H, i.e. λp(H), is min

{
Eg′(s◦),Es2◦g′(s◦)

}
.

Similarly, the sample Hessian matrix at w◦ admits the decomposition

Ĥn = AÔn A	,

where, for all 1 ≤ k, l ≤ p

[Ôn]k,l =
1
n

n

∑
i=1

sk,isl,ig′(s◦,i).

In above sk,i denotes the i-th sample of random variable sk where i = 1, . . . , n
and k = 1, . . . , p.
In sample case the matrix Ôn is not a diagonal matrix for n small. For bounded

source signals and |g′| ≤ C2, the entries of Ôn are bounded and they are con-
centrated around their mean. By Hoeffding’s inequality, with probability 1 −
2 exp(−τ) for τ > 0, we have

|[Ôn]i,j − [O]i,j| ≤ C2
1C2

√
τ

2n
. (5.13)

Additionally, by Weyl’s matrix perturbation inequality (Bhatia, 1997), we have

|λi(Ôn)− λi(O)| ≤ ‖En‖,
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where the norm is the operator norm and En = Ôn−O. In addition, the operator
norm is bounded by the trace norm, and we have

‖En‖ ≤ ‖En‖fro ≤
(

p

∑
i,j=1

[En]
2
i,j

) 1
2

(5.14)

By combining (5.13) and (5.14), we have, with probability 1− 2 exp(−τ)

|λi(Ôn)− λi(O)| ≤ pC2
1C2

√
τ

2n
∀1 ≤ i ≤ p.

Therefore, the ratio L/λ in Theorem 5.5.1, with probability 1− 2 exp(−τ), τ > 0,
is bounded by

p
√

pC1λ1(Σ̂p)

min
{∣∣λp(H)± pC2

1C2
√

τ
2n

∣∣} .



6. Statistical analysis of FastICA and
bootstrap FastICA

This chapter provides a consistency and asymptotic normality of FastICA esti-
mation. Similar results for bootstrap FastICA are also provided. These results
can be used, for example, to derive a statistical test of the convergence of these
ICA algorithms. Parts of this chapter are presented in (Reyhani et al., 2011; Yli-
paavalniemi et al., 2012).

6.1 Introduction

FastICA algorithm has been widely used in source separation applications due
to its speed of convergence and the accuracy, for example (Hyvärinen and Oja,
1997; Hyvärinen et al., 2001; Comon and Jutten, 2010; Suzuki and Sugiyama,
2011). Some of the statistical properties of FastICA algorithm have been stud-
ied too. For example, (Hyvärinen, 1999) presents a population analysis show-
ing that the fixed point algorithm converges quadratically with any continuous
differentiable nonlinear function. In their proof it is required that the nonlin-
ear function has up to the fourth-order bounded derivatives and source signals
have bounded fourth moment. The proof relies on the assumption that the al-
gorithm is initialized by the true solution. The result in (Hyvärinen, 1999) does
not provide any sample analysis.
Moreover, (Oja and Yuan, 2006) shows that the fixed point algorithm is stable

in the presence of small-norm perturbations of the true direction. (Tichavsky
et al., 2006) shows that the FastICA fixed-point iteration is asymptotically nor-
mal, if the iteration converges in a single step. Single step convergence again
requires that the algorithm is initialized by the true solution. The setup can be
relaxed to some extent using the convergence under perturbation results in (Oja
and Yuan, 2006).
In summary, the previous works mainly showed that, the FastICA population

fixed-point iteration finds a separating direction if it is initialized within a small
neighborhood of the true solution. The main contribution of this chapter is to
establish consistency and asymptotic normality of FastICA and bootstrap Fas-
tICA. To show these results we borrow some techniques from M-/Z- estimation
theory, which is popular in mathematical statistics.
In the rest of this chapter, we first introduce M-and Z-estimators, the related

consistency and asymptotic convergence results. We then present our theoretical
and numerical results.

55



56 Statistical analysis of FastICA and bootstrap FastICA

6.2 M- and Z-estimator

A significant number of statistical estimators are defined through maximizing
or minimizing a random criterion function over a finite dimensional Euclidean
subset. This type of estimator is called M-estimator (Van der Vaart and Well-
ner, 1996; Van der Vaart, 1998). Empirical risk minimization (ERM) (see Section
3.1) and maximum likelihood estimator are the most popular examples of M-
estimators (Shao, 1990; Lehmann and Casella, 1998; Davison, 2003; Koltchinskii,
2011).
Let us assume that x1, . . . , xn with values in X ⊆ Rp are independent and

identically distributed samples. We consider the problem of estimating param-
eter θ◦ ∈ Θ ⊂ Rp, by maximizing (or minimizing) the functional

Pmθ =
∫
X

mθ(x)dP(x).

We assume that the function mθ : X ×Θ → R is known.
An M-estimator is defined by

θ̂ := argmax
θ∈Θ

M(θ) := Pmθ , (6.1)

and similarly the sample M-estimator is defined by

θ̂n := argmax
θ∈Θ

Mn := Pnmθ , (6.2)

where Pnmθ =
1
n ∑n

i=1 mθ(xi). We may replace θ̂ and θ̂n by sets of solutions when
the solutions are not unique.
There are situations where a statistical estimator is defined by the root(s) of a

system of equations:
θ̂ :=

{
θ :
∥∥Pψθ

∥∥ = 0, θ ∈ Θ
}
, (6.3)

where the norm in the above expression is a proper norm and ψθ : Θ × X →
Rp, for a finite integer p. This estimator is called Z-estimator. The equations
involved in defining a Z-estimator, i.e. (6.3), often can be seen as the optimality
condition of some optimization problem, thus, M and Z-estimators are strongly
related.
A sample Z-estimator is an estimator θ̂n, which makes the score function ap-

proximately zero, i.e.

θ̂n :=
{

θ :
∥∥Pnψθ

∥∥ = oP

(
n−

1
2

)
, θ ∈ Θ

}
. (6.4)

The notation oP(1) denotes the convergence to zero in P-probability.

Example 6.2.1 (FastICA is an M-estimator). FastICA can be seen both as an M-
estimator and a Z-estimator. Indeed, a demixing direction estimation is charac-
terized by

ŵn ∈
{

w : ‖Pn fw‖ = oP(n−1/2),w ∈ S p−1
}
, (6.5)

where fw(z) = zg(w	z). Alternatively, a demixing direction can be defined as
an optimization problem:

ŵn = argmax
w∈S p−1

PnGw, (6.6)

where Gw = G(w	z). In above, function g is the derivative of nonlinear func-
tion G : R → R.
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Statistical properties such as rate of convergence and asymptotic normality
of the M- and Z-estimators are extensively studied in statistical literature, for
example see (Van der Vaart andWellner, 1996; Van der Vaart, 1998; Van de Geer,
2000).
One of the tools for showing the asymptotic distribution of an M-estimator

is the argmax mapping lemma (Van der Vaart and Wellner, 1996). The argmax
lemma states that the convergence in distribution of a random criterion function
would imply the convergence in distribution of the point of maximum to the
point of maximum in the limit. This property holds as long as the limit function
has a well-separated maximum. The well separated condition means that the
criterion function at the maximum should be strictly greater than any point of
its neighborhood. The proof of argmax lemma relies on the continuous mapping
theorem, for details see (Van der Vaart and Wellner, 1996).
The classical approach to prove the asymptotic normality of M-estimator is

through Taylor expansion of the criterion function around the true solution (Van
der Vaart, 1998; Van de Geer, 2000), which is sometimes called linearization tech-
nique. Similar techniques have been applied to prove convergences of Z-estimator.
In the following, we bring two theorems about the consistency, i.e. conver-

gence in probability to the true solution, and convergence in distribution of M-
estimator, which we will use later to establish statistical properties of FastICA.
For a comprehensive treatment on this topic see, for example, (Van der Vaart
and Wellner, 1996; Van der Vaart, 1998; Van de Geer, 2000).

Theorem 6.2.2 (Consistency of M-estimator, (Van der Vaart and Wellner, 1996),
Theorem 3.3.7, or (Van der Vaart, 1998) Theorem 5.7). Let θ̂n, θ, Mn and M be as
defined in (6.1) and (6.2). In addition, let us assume that the following conditions hold:

Condition I. sup
θ∈Θ

|Mn(θ)−M(θ)| P−→ 0,

Condition II. sup
θ:d(θ,θ◦)≥ε

M(θ) < M(θ◦),

for some ε > 0. Then, the sequence of estimators θ̂n converges in probability to θ◦ if
Mn(θ̂n) ≥ Mn(θ◦)− oP(1).

The convergence in distribution requires some extra conditions in addition to
the conditions I and II. These extra conditions are:
Condition III. Suppose the function mθ is differentiable in quadratic mean at
θ◦, or mθ has Frechet derivative, i.e. there exists a function ṁθ : Θ → Rp, with
components in L2(P), such that∥∥∥mθ −mθ◦ − (θ − θ◦)	ṁθ

∥∥∥ = o (‖θ − θ◦‖) .

Condition IV. For θ ∈ Θ, ‖θ − θ◦‖ ≤ δ with δ > 0 small, the difference P(mθ −
mθ◦) can be well approximated by a quadratic form, i.e. there exists a positive
definite matrix Vθ◦ , such that

P(mθ −mθ◦) =
1
2
(θ − θ◦)	Vθ◦(θ − θ◦) + o(‖θ − θ◦‖2).

Condition V. The class Fθ =
{

fθ : fθ =
mθ−mθ◦
‖θ−θ◦‖ , 0 < ‖θ − θ◦‖ ≤ δ

}
∪ {0} is P-

Donsker.
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Lemma 6.2.3 (Asymptotic normality of the M-estimator, (Van deGeer, 2000)-The-
orem 12.6). Let θ̂n, θ, Mn and M be as above and assume that conditions III, IV, and V
hold. Moreover, assume that θ̂n is a consistent estimator of θ◦. Then,

√
n(θ̂n − θ◦)� N (0,Σ) ,

where Σ := V−1θ◦ Uθ◦V
−1
θ◦ , where Uθ◦ := Pṁθ◦ṁ

	
θ◦ is a non-singular and bounded ma-

trix.

Remark 6.2.4. With the above theorem, given any consistent estimator Σ̂ of Σ, we have√
nΣ̂− 1

2 (θ̂n − θ◦)� N (0, Id).

6.2.1 Bootstrap Z-estimator

A bootstrap Z-estimator, θ̂∗n, is an estimator that makes the score functions ap-
proximately zero with respect to the product measure, i.e.

θ̂∗n :=
{

θ : ‖P∗n ψθ‖ = oPXD

(
n−

1
2

)}
,

where

P∗n :=
1
n

n

∑
i=1

Dniδxi ,

and ψθ is the estimating function (Wellner and Zhan, 1996; Cheng and Huang,
2010). Here, PXD = PX × PD. Dn1, . . . ,Dnn is a set of exchangeable random
variables defined in Section 5.3 that satisfy the technical conditions enlisted in
the same section.
Similarly, the bootstrap M-estimator, θ̂∗n, is defined by maximizing the func-

tional P∗n mθ , i.e.
θ̂∗n =: argmax

θ∈Θ
P∗n mθ ,

for some criterion function mθ .

Example 6.2.5. For a set of random weights Dn1, . . . ,Dnn that satisfy conditions B.1-
B.5 in pp. 48 the bootstrap FastICA can be obtained by replacing the samples by the
bootstrap samples. In other words, the bootstrap FastICA is defined by

ŵ∗
n = argmax

w∈S p−1
P∗n Gw,

or equivalently,
ŵ∗

n =
{

w : ‖P∗n fw‖ = oP(n−
1
2 )
}
, (6.7)

where Gw and fw are defined in Example 6.2.1.

Under certain technical conditions, the asymptotic normality of bootstrap Z-
estimator can be established, which is summarized in lemma below.

Lemma 6.2.6 ((Wellner and Zhan, 1996)-Corollary 3.1, (Cheng andHuang, 2010)-The-
orem 3.1). Let us assume that:

Condition VI. There exists a θ◦ ∈ Θ, such that

Pψθ◦ = 0,
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and the function Pψθ is differentiable at θ◦ with non-singular derivative matrix

Vθ◦ = P
∂ψθ

∂θ

∣∣
θ◦
.

Condition VII. For any δn → 0, the following stochastic equicontinuity condition
holds at the point θ◦:

sup
‖θ−θ◦‖≤δn

‖√n(Pn − P)(ψθ − ψθ◦)‖
1+

√
n‖θ − θ◦‖ = oP(1).

Condition VIII. The function ψθ is square integrable at θ◦, with the covariance matrix

U = Pψθ◦ψ
	
θ◦ < ∞,

and for any δn → 0, the envelope function

Fn(x) := sup
‖θ−θ◦‖≤δn

|e	i (ψθ − ψθ◦)|
1+

√
n‖θ − θ◦‖ , i = 1, . . . , p, (6.8)

satisfies the following condition

lim
λ→∞

lim sup
n→∞

sup
t≥λ

t2P(Fn(X1) > t) = 0.

Condition IX. Both θ̂n and θ̂∗n are consistent estimators, i.e. ‖θ̂n − θ◦‖ PX−→ 0, and

‖θ̂∗n − θ◦‖ PXD−−→ 0.

Condition X. The bootstrap weights satisfy conditions B.1-B.5 (see pp. 50).

Then,
√

n(θ̂n− θ◦) converges in distribution to a Gaussian distribution with zero mean
and covariance matrix Zp := (Vθ◦)

−1Uθ◦(Vθ◦)
−1. Moreover,

√
n(θ̂∗n − θ̂n) converges

in distribution to a normal distribution with the zero mean and the covariance matrix
c2Zp, in P-probability. The constant c > 0 depends on the weight random variables and
is defined in B.5.

6.3 Consistency and asymptotic normality of FastICA and
Bootstrap FastICA

Using the results introduced in the previous section, we can derive the consis-
tency and asymptotic normality of FastICA by checking the necessary condi-
tions of Theorem 6.2.2 and Theorem 6.2.3. We summarize the requirements and
the result in the following theorem.

Theorem 6.3.1 (Consistency and Asymptotic Normality of FastICA). Let us as-
sume that Ez = 0, and z has all the moments up to the fourth, Ezz	 = Id, the function
G : R → R has bounded and continuous derivatives, and that G and its first derivative
are Lipschitz. Furthermore, we assume that the quantities Eg′(si) �= 0,Es2i g′(si) �=
0,Eg2(si) �= 0, and Es2i g2(si) �= 0, and EG(w	z), ∀w ∈ S p−1, i = 1, . . . , p, exist
and are bounded. Then the sequence

ŵn = argmax
w∈S p−1

PnGw,



60 Statistical analysis of FastICA and bootstrap FastICA

that is produced by the FastICA iteration (5.6) is consistent and is asymptotically nor-
mal. In other words, we have

ŵn
P−→ w◦,

and √
n(ŵn −w◦)� N

(
0,V−1w◦ Uw◦V

−1
w◦

)
,

where
Vw◦ = Ezz	g′(w	◦ z),

and
Uw◦ = Ezz	g2(w	◦ z).

Note, that we can simplify V−1w◦ Uw◦V−1w◦ further to Σ, where

Σ = A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eg2(s◦)
Eg′(s◦)2

. . .
Es2◦g2(s◦)

(Es2◦g′(s◦))2
. . .

Eg2(s◦)
Eg′(s◦)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
A	.

For the proof of the above theorem see Section 6.6.1.

Remark 6.3.2. For any consistent estimator Σ̂ of Σ, we have
√

nΣ̂−
1
2 (wn −w◦)� N (0, Ip).

It is of both practical and theoretical interest to check if the bootstrap FastICA
converges, or if it shows asymptotic normality. Note that due to randomization,
the local analysis approach used in previous works, such as (Hyvärinen, 1999;
Oja and Yuan, 2006; Tichavsky et al., 2006) is not applicable anymore. Using the
setup introduced in previous section, we can check the asymptotic normality
of the bootstrap FastICA by showing that the conditions (VI)-(X) are satisfied
under certain conditions. The requirements and the result are provided in the
following theorem.

Proposition 6.3.3. In addition to the assumption of Theorem 6.3.1, let us assume that,
for i = 1, . . . , p, Es2i g′2(si), Esig′2(si), Eg

′2(si), Es4i g′2(si), and source signals are
bounded. Then the bootstrap estimator is consistent and the following holds,

√
n(ŵ∗

n − ŵn)� N
(
0, c2V−1w◦ Uw◦V

−1
w◦

)
(in P)

where
Vw◦ = Ezz	g′(w	◦ z),

and
Uw◦ = Ezz	g2(w	◦ z).

The positive constant c depends on weight random variables (D1n, . . . ,Dnn) through
1
n ∑n

i=1(Din − 1)2
PD−→ c2 > 0.

Similar statistical results can be established for other ICA methods, which are
shortly introduced in the beginning of Section 5.1. However, a different set of
statistical techniques, such as U-statistics (De la Peña and Giné, 1999; Van der
Vaart, 1998), might be needed to study the rate of convergence or other statistical
properties of matrices Mi, defined on pp. 43.
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6.4 Empirical Results

To illustrate the theoretical implications in practice, a series of experiments were
performed with both artificially generated and real-world data using Algorithm
2.
In both simulated and real cases, we first run the FastICA for 100 runs without

bootstrapping but with different initializations, in order to determine represen-
tative sets of initial conditions. All other parameters are the same as used in the
following experiments. This set of initial conditions are kept fixed during the
bootstrap analysis so that all the randomness in the estimated solutions are due
to the resampling. For the normality test, we used the Henze-Zirkler’s Multi-
variate Normality Test (Henze and B. Zirkler, 1990). A matlab implementation
of this test can be found in (Trujillo-Ortiz et al., 2007).

6.4.1 Simulated Data

Here, we used three simulated signals available in FastICA toolbox. These sig-
nals are a sinusoid, a sawtooth wave, and a periodic sigmoidal wave. They
were mixed with a random 3× 3 mixing matrix generated in such a way that it
produces an already whitened data-matrix of size 3× 500. 100 runs of FastICA
were computed, searching for 3 independent components in each run and using
a bootstrap sampling with 400 (80% out of 500) samples in each run. Figure 6.1
depicts an example of the mixed signals.

Figure 6.1. Example of mixture signals used in the simulated data.

Following Algorithm 2, the estimations were then clustered using a correlation
threshold of 0.99 and taking into account only direct links between estimations.
Figure 6.2 shows the resulting three independent components. Only a portion of
the periodic signals is shown. For each component, light gray lines correspond
to the 100 estimation (ŵ∗

n) after the sign correction, and the solid line depicts the
mean of the estimations. In each case, the estimation errors were found to be
normally distributed, with p-values of 0.87, 0.93 and 0.41 respectively. Note that
we always correct the signs.
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Figure 6.2. Results with simulated data. For each of the three independent components, the 100
bootstrap estimations in light gray overlaid with their average as a solid line. In each
case, the estimation errors were found to be normally distributed, with p-values equal
0.87, 0.93 and 0.41 respectively.

6.4.2 fMRI data analysis

Further experiments were done with functional magnetic resonance imaging
(fMRI) data from an auditory experiment. A series of whole-head recordings of
a single subject were used. In the fMRI study, subjects listened to safety instruc-
tions in 30s intervals, interleaved with 30s resting periods. All the data were
acquired at the Advanced Magnetic Imaging Centre of Aalto University, using
a 3.0 Tesla MRI scanner (Signa EXCITE 3.0T; GE Healthcare, Chalfont St. Giles,
UK) with a quadrature birdcage head coil, and using Gradient Echo (GRE) Echo
Planar Imaging (EPI) (TR 3s, TE 32ms, 96x96 matrix, FOV 20cm, slice thickness
3mm, 37 axial slices, 80 time points (excl. 4 first ones), flip angle 90◦). For further
details on the data set, see (Ylipaavalniemi and Vigário, 2008).
We performed data preprocessing including realignment, normalization, smooth-

ing and masking off areas outside the brain. The resulting data-matrix has a size
of 80× 263361. 500 runs of ICA were performed, searching for 15 components
from awhitened spacewith 30 dimensions, and using a bootstrap samplingwith
138944 (52.76% out of 263361) samples in each run. The estimations were clus-
tered using correlations between the component time-courses, with a threshold
of 0.97.
The fMRI data, similar to any real-world measurement, may violate at least

some of the strict assumptions in FastICA, or in the derivations in this chapter.
Therefore, the comparison of the bootstrap estimations is not as straightforward
as in the simulated case. One difficulty is that the whitening step of FastICA
can produce different results for each bootstrap set. For example, whitening
step can flip the signs of individual dimensions among the bootstrap rounds.
So, we re-clustered the estimations using cosine similarity with a suitably high
threshold.
A subset of 39 independent components were identified from the bootstrap

FastICA. Figure 6.3 depicts 5 found independent components. The average esti-
mate and variations are also provided.
In Figure 6.3, the first component has small variability, whereas the other four

components show significant variations. Only 43 estimations of the fifth compo-
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nent were found during the 500 bootstrap rounds, implying that this component
is hard to estimate with FastICA. The first component represents activation of
the primary auditory cortices, whereas the other components split activity along
the cingulate gyrus in four different parts. Note, that in some cases the temporal
variability is higher around some time points than in others, and also the spatial
variance is focused on certain regions. It is speculated in (Ylipaavalniemi and
Vigário, 2008) that the last four components belong to a subspace.

 12 N=487 

 6 N=412  9 N=413 

 27 N=87  28 N=43 

Figure 6.3. Examples of independent components estimatedwith bootstrapped FastICA. For each
of the 5 components, on the left: the index of the component, the temporal average,
and the temporal quantiles as light shades of gray, are overlaid on the stimulus block
reference. On the right side of each panel: the three slices on top show the spatial
mean overlaid on a structural reference brain; and similarly on the bottom, the spatial
variance, overlaid on the same reference. The bootstrap was performed 500 times and
N shows how many estimations of each component were found.

Figure 6.4 shows the estimated demixing vectors for component 12, 6, and 27,
which are selected from Figure 6.3. In (a), apart from the obvious sign flips, the
variations are small on average. Also, the covariance matrix of the variations
is nearly the identity matrix. Five subgroups accounting for different configura-
tions of sign flips were identified. Each of the subgroups was then tested against
the best matching ground truth component. All except one passed the normality
test with p-values of 0.1912, 0.0812, 0.1321 and 0.1615. The group that did not
pass the test could contain outliers, even with a high clustering threshold.
Figure 6.4 (b) is part of a subspace of four components. The covariance matrix

shows clear block structure, for example in neighborhood of coordinates 20 and
27. In this case, there are also five subgroups (due to the sign flip), but they all
pass the normality test with p-values 0.2530, 0.2076, 0.0613, 0.1290 and 0.0512.
For the last component, the number of estimations is too small to allow running
a normality test, but otherwise the situation seems similar to the previous com-
ponents. For the omitted components 9 and 28, the situation is very similar. All
subgroups in component 9 pass the normality test and the covariance shows a
weaker structure than in component 6. Component 28 has a similar covariance
to component 27, and again too few estimations to allow for normality testing.
The normality tests show that the experimental results match the developed

theory, even when the components are considered to belong to a subspace. This
suggests that bootstrap FastICA is able to estimate reliable directions within the
subspace. Although the estimated components passed the normality test, there
should be some further evidence of the subspace covariation.
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Figure 6.4. The estimated demixing vectors and their sample covariance matrices. The groups of
estimated demixing vectors, with different sign configurations are depicted on the left,
and the sample covariance matrix of the estimations on the right for (a) component 12,
(b) component 6, and (c) component 27. The dashed line is the 0-vector.
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Figure 6.5 shows coordinate-wise histograms of the largest subgroup of vec-
tors from component 6. The histogram of most of the dimensions is close to
normal density function. The histogram of estimations of coordinate 27 is sim-
ilar to a bimodal, which might be due to different local minima in FastICA ob-
jective. The histogram Coordinate 27 is close to bimodal in some of the other
subgroups and components belonging to the same subspace, as further experi-
ments revealed.

Figure 6.5. Coordinate-wise histograms of the estimated demixing vectors. The histograms are
calculated from the first subgroup (with respect to sign flip) of vectors in component
6. For reference, a fitted Gaussian probability density function is shown with a solid
curve overlaid on each histogram.

6.5 Discussion

ICA algorithms, and FastICA in particular, have been successfully utilized for
source separation in many applications, e.g. biomedical, audio signal process-
ing, and hyperspectral image analysis (Comon and Jutten, 2010). However,
when applying the algorithm for several times with the same data, with dif-
ferent initializations or data subsamplings, one may encounter variations in the
estimated sources. To address this issue one can run FastICA with a sufficient
number of different sub-samplings and initializations, and select the results that
appearmore frequently. Empirical studies show that global optima can be found
in such a randomized way (Ylipaavalniemi and Vigário, 2008). Multiple runs
with bootstrap samples are able to efficiently explore some hidden structures of
data (Ylipaavalniemi et al., 2009).
Intuitively, the randomization of both initial conditions and the subsampling

improves the likelihood of finding the global optimum by slightly changing the
objective function landscape and the direction of search therein. To the best of
our knowledge, this is the first study on validity of multiple run approach to
FastICA. In Chapter 5 and 6, we derived a probabilistic convergence rate of Fas-
tICA, which depends on the number of samples, the initialization and the con-
centration of sample distributions. Moreover, using empirical process theory,
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we show that FastICA is statistically consistent and its convergence to a true so-
lution is asymptotically normal. We also extend this result to bootstrap FastICA.
These all together justify the use of FastICA in a bootstrapped and randomly
initialized way.
Empirical results on both the synthetic data set and the real data set confirm

the proposed theory. However, there might be difficulties in real data, as the
requirements may not all be fulfilled. In particular, fMRI data may present non-
stationarity, and independency between components is not always guaranteed.
This may result in a lower rate of convergence and therefore the normality may
not be achieved.

6.6 Proofs and further details

For the rest of this section, let us define fw(z) = zg(w	z), Gw(z) = G(w	z)
and hw(z) := zz	g′(w	z).

Proposition 6.6.1. Let us assume that z has all the moments up to the fourth, and
G : R → R, g : R → R, and g′ : R → R are Lipschitz and differentiable. We further
assume z has zero mean with identity covariance. For fixed p < ∞, the function classes

FG :=
{

Gw : w ∈ S p−1, z ∈ Rp},
Fg :=

{
fw : w ∈ S p−1, z ∈ Rp},

and
Fg(δ) :=

{
fw − fw◦ : ‖w−w◦‖ ≤ δ,w ∈ S p−1, z ∈ Rp},

are coordinate-wise P-Donsker and P-Glivenko-Cantelli.

Proof (Proposition 6.6.1). Suppose w1,w2 ∈ S p−1 for finite integer p. For the
class FG we have∣∣∣G(w	

2 z)− G(w	
1 z)
∣∣∣ ≤ (|G|L‖z‖)‖w2 −w1‖.

By Remark 2.3.7, we should check that the term inside parenthesis in the right
hand side of the above inequality has bounded second moment:

E|G|2L‖z‖2 = |G|2LE‖z‖22 = |G|2L
p

∑
j=1

Ez2j = p|G|2L,

where we used the assumption that the second moment of zi, i = 1, . . . , p is
equal to one. Therefore, E|G|2L‖z‖2 < ∞, and the class FG has finite bracketing
integral and is a P-Donsker class.
For the class Fg and ∀i, 1 ≤ i ≤ p, we have∣∣∣e	i z

(
g(w	

2 z)− g(w	
1 z)
)∣∣∣ ≤ (∣∣∣e	i z

∣∣∣ |g|L ‖z‖
)
‖w2 −w1‖ .

As before, we check that the term in parenthesis in the right hand side of pre-
ceding inequality has bounded second norm. Indeed, we have

|g|2LE‖z‖22
∣∣∣e	i z

∣∣∣2 = |g|2L(E

p

∑
j=1
j �=i

z2j + Ez4i
)
= |g|2L

(
p− 1+ Ez41

)
,

which is bounded by the assumptions on |g|L and the fourth moment of z.
Thus, the bracketing integral is finite and class Fg is P-Donsker and P-Glivenko-
Cantelli. Similarly, Fg(δ) is P-Donsker and P-Glivenko-Cantelli.
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6.6.1 Proof of Theorem 6.3.1

Here, we show that the requirements for the consistency and asymptotic normal-
ity of M-estimators hold for FastICA. Note that the consistency of the estimator
is required for the proof of the asymptotic normality.

-Consistency

To check the consistency of FastICA, we need to check conditions (I) and (II) of
Theorem 6.2.2, for the class FG:

(I) Lemma 6.6.1 implies that the function class

FG =
{

Gw : w ∈ S p−1
}
,

is P-Glivenko-Cantelli. Therefore, by definition we have

sup
w∈S p−1

|(Pn − P)Gw| → 0, P-almost surely

which implies that the condition I in Theorem 6.2.2 holds.

(II) This condition is also called well-separated condition in statistics literature.
For 0 < ‖w−w◦‖ ≤ δ, δ > 0 small, and w,w◦ ∈ S p−1, let us assume that

w	z =
p

∑
i=1

αisi,

for some αi ∈ R, such that at least two αi are non-zero. Then, w	z is at least a
mixture of two different independent source signals and should not attain the
maximum non-Gaussianity. This implies that Gw◦ is well separated. Further-
more, we can expand fw around w◦, assuming that the second order derivative
of the function G is bounded. Then,

P fw = P fw◦ + (w−w◦)	Phw◦

= 0+ (w−w◦)AEss	g′(s◦)A	

= (w−w◦)AKp A	,

where Kp is a diagonal matrix with entries Eg′(s◦), i �= ◦ and Es2◦g′(s◦), where
“◦" is the index of source signal corresponding to w◦. The norm of AKp A	 is
non-zero by the assumption. Thus, P fw is non-zero for ‖w−w◦‖ �= 0, which
implies that the condition II holds. Note that in the above computations terms
with smaller orders are omitted.

Now, for the FastICA both condition I and II holds. Therefore by Theorem 6.2.2
sample FastICA is a consistent estimator of separating directions, i.e.

ŵn
P−→ w◦.

-Asymptotic Normality

The asymptotic normality of the solution ŵn can be established by checking
conditions (III) to (V) in Lemma 6.2.3:

(III) This condition requires Gw to be smooth with bounded derivatives, which
is the case by the assumptions.
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(IV) This condition holds if we show that the Taylor expansion around w◦ is
bounded, and that P(Gw − Gw◦) can be represented up to the second order,
when ‖w−w◦‖ ≤ δ for small δ > 0. Note, that for ‖w−w◦‖ ≤ δ, we have

P (Gw − Gw◦) =P
(
Gw◦ + (w−w◦)	 fw◦

)
+

1
2
(w−w◦)	Phw◦(w−w◦)− PGw◦

+ o(‖w−w◦‖2)
=
1
2
(w−w◦)	Phw◦(w−w◦) + o(‖w−w◦‖2).

In the last line we used the fact that P fw◦ = 0, which is due to optimality
condition, see (5.3). Comparing the quadratic representation to the notation of
Lemma 6.2.3, we have

Vw◦ = Phw◦

= Ezz	g′(w	◦ z)

= AEss	g′(s◦)A	

= Adiag[Eg′(s◦), . . . ,Es2◦g′(s◦), . . . ,Eg′(s◦)]A	. (6.9)

The argument of diag in the right hand side of (6.9) contains only one entry
with Es2◦g′(s◦) and the rest are Eg′(s◦). By assumption, g′ is nonsingular and
both Eg′(s◦) and Es2◦g′(s◦) exist and are nonzero and therefore, both Vw◦ and
V−1w◦ are well defined.

(V) This condition is equivalent to P-Donsker condition for the class FG, which
is shown in Lemma 6.6.1.

The matrix Uw◦ in Lemma 6.2.3 can be computed as follows:

Uw◦ = P (∇Gw|w◦) (∇Gw|w◦)
	

= Ezz	g2(w	◦ z)

= AEss	g2(s◦)A	

= Adiag[Eg2(s◦), . . . ,Es2◦g2(s◦), . . . ,Eg2(s◦)]A	. (6.10)

By assumption, we have Eg2(s◦) �= 0, and Es2◦g2(s◦) �= 0, and all are bounded,
which implies Uw◦ is bounded and non-singular.
Therefore, all necessary conditions in Lemma 6.2.3 hold for FastICA, implying

that it is asymptotically normal, i.e.

√
n(ŵn −w◦)� N

(
0,V−1w◦ Uw◦

(
V−1w◦

)	)
= N (0,Σ). (6.11)

The covariance above can be computed as

Σ = Adiag
[

Eg2(s◦)
(Eg′(s◦))2

, . . . ,
Es2◦g2(s◦)

(Es2◦g′(s◦))2
, . . . ,

Eg2(s◦)
(Eg′(s◦))2

]
A	.

6.6.2 Proof of the Proposition 6.3.3

Wefirst bring two lemmaswhich are useful tools to show requirements in asymp-
totic normality of bootstrap Z-estimators. Also we bring a consistency lemma
for Z-estimators.
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Lemma 6.6.2 ((Van der Vaart and Wellner, 1996)-Lemma 3.3.5). Suppose the class
of functions

{ψθ − ψθ0 : ‖θ − θ0‖ ≤ δ}
is P-Donsker for some δ > 0, and that

P(ψθ − ψθ◦)
2 → 0, as θ → θ◦. (6.12)

If θ̂n converges in probability to θ◦, we then have,

‖√n(Pn − P)(ψθ̂n
− ψθ◦)‖ = oP(1+

√
n‖θ̂n − θ◦‖).

Lemma 6.6.3 (Multiplier Glivenko-Cantelli (Van der Vaart and Wellner, 1996),
Lemma 3.6.16). Let F be a Glivenko-Cantelli class of measurable functions. For each
n, let (Dn1, . . . ,Dnn) be a set of exchangeable nonnegative random variables that are
independent to {xi}i≥1. Furthermore, assume that

n

∑
i=1

Dni = 1, and max
1≤i≤n

Dni
PD−→ 0.

Then, for every ε > 0, as n → ∞, we have

PD

{
sup
f∈F

∣∣∣∣∣ n

∑
i=1

Di(δxi − P) f

∣∣∣∣∣ > ε

}
→ 0.

Theorem 6.6.4 (Consistency of Z-estimator (Van der Vaart, 1998), Theorem 5.9).
Let us consider θn, that is defined in (6.4), be random vector-valued functions and θ,
defined in (6.3) be a fixed vector-valued function such that for every ε > 0

sup
θ∈Θ

‖Pnψθ − Pψθ‖ P−→ 0,

inf
‖θ−θ◦‖≥ε

‖Pψθ‖ > 0 = Pψθ◦ .

Then any sequence of estimators θ̂n such that Pnψθn = oP(1) converges in probability
to θ◦.

Now, we begin to prove Proposition 6.3.3 by checking the conditions VI—X
required in Theorem 6.2.6. We denote the derivative of g : R → R by g′ : R →
R.
Condition (VI) follows directly from the assumptions. Also we assume that

the random weights in the bootstrapping satisfy condition (X).

(VII) To show that the condition (VII) holds for FastICA estimator, we use Lemma
6.6.2. This lemma requires that the function set

F :=
{

fw − fw◦ : ‖w−w◦‖ ≤ δn,w ∈ S p−1},
is P-Donsker, which is shown in Proposition 6.6.1. In addition, we should
show that

P
∥∥ fw − fw◦

∥∥2 → 0 as ‖w−w◦‖ → 0. (6.13)

By Taylor expansion, we have

P
∥∥ fw − fw◦

∥∥2 =P
∥∥hw◦(w−w◦)

∥∥2
=(w−w◦)	Phw◦hw◦(w−w◦).
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The terms with smaller order are omitted in above. So, to show (6.13) we can
check if the entries of the matrix Ph2w◦ are bounded. Note, that

Ph2w◦ = Ess	ss	g′2(s◦)

= E
(

g′2(s◦)ss	
p

∑
i=1

s2i
)
.

Thus, the entries of Ph2w◦ are bounded if Es2◦g′2(s◦), Es◦g′2(s◦), Es4◦g′2(s◦) are
bounded. In addition, we need that all random variables si, ∀1 ≤ i ≤ p have
moments up to the forth moment. Also Eg

′2(s◦) should be bounded. These
conditions hold by the assumption.

(VIII) There are two different approaches to show the requirement (VIII). We
can either show that the envelope function Fn(x), defined in (6.8), is uniformly
bounded, i.e.

lim sup
n→∞

Fn(x) ≤ M < ∞, ∀x ∈ X ,

or check themoments condition, i.e. lim supn→∞ E[(Fn(X1))
2+δ] < ∞, for some

δ > 0. For the mapping fw, we have

Fn(z) = sup
‖w−w◦‖≤δn

∣∣e	i ( fw − fw◦)
∣∣

1+
√

n‖w−w◦‖

≤ sup
‖w−w◦‖≤δn

∣∣∣e	i hw◦(w−w◦)
∣∣∣+ ∣∣∣e	i z

∣∣∣o(‖w−w◦‖2)
1+

√
n‖w−w◦‖

≤ sup
‖w−w◦‖≤δn

‖hw◦‖‖w−w◦‖+
∣∣∣e	i z

∣∣∣o(‖w−w◦‖2)
1+

√
n‖w−w◦‖

≤ sup
‖w−w◦‖≤δn

‖hw◦‖δn

1+
√

nδn
+
‖z‖o(δ2n)
1+

√
nδn

.

In above the terms with smaller order are omitted. In our setup z = As, where
s ∈ X . Therefore,

‖hw◦‖ = ‖zz	g′(w	◦ z)‖ ≤ |g′(s◦)|‖Ass	A	‖,
that are bounded by assumption for nonsingular function g′. Alternatively, we
have

Fn(z) = sup
‖w−w◦‖≤δn

∣∣e	i ( fw − fw◦)
∣∣

1+
√

n‖w−w◦‖

≤ sup
‖w−w◦‖≤δn

∣∣e	i z
∣∣‖z‖|g|L‖w−w◦‖

1+
√

n‖w−w◦‖ ,

that is bounded from above by the assumption.
Other parts of (VIII) are shown in the proof of the asymptotic normality of

FastICA.

(IX) The consistency of FastICA, i.e. ‖ŵn−w◦‖ P−→ 0, is shown in Theorem 6.3.1.
To show the consistency of the bootstrap FastICA, we need to show that the
conditions of Theorem 6.6.4 are satisfied, i.e. the objective function is well-
separated and the following holds:

sup
w∈S p−1

∣∣(P∗n − P) fw
∣∣ PXD−−→ 0. (6.14)
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Now, let us assume An = oPD(1). For arbitrary ε, δ > 0, we have

PXD{|An| ≥ ε} =EXPD|X{|An| ≥ ε}
=EX

[
PD|X{|An| ≥ ε}1PD|X{|An|≥ε}≥δ

]
+ EX

[
PD|X{|An| ≥ ε}1PD|X{|An|≥ε}<δ

]
≤EX

[
1PD|X{|An|≥ε}≥δ

]
+ δ

≤PX{PD{|An| ≥ ε} ≥ δ}+ δ.

By the assumption, the above goes to zero and δ is arbitrary, therefore we
obtain limn→∞ PXD{|An| ≥ ε} = 0, for any ε > 0. Therefore,

An = oPD(1)⇒ An = oPXD(1). (6.15)

By Proposition 6.6.1, the classFg is P-Glivenko-Cantelli, therefore, by Lemma
6.6.3, we have

PD

{
sup
f∈Fg

∣∣∣∣∣ n

∑
i=1

Di(δxi − P) f

∣∣∣∣∣ > ε

}
→ 0.

Together with conclusion (6.15) we obtain (6.14). Therefore, by Theorem 6.6.4
we obtain the consistency of the bootstrap FastICA.
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7. Concluding Remarks

In this thesis, we proposed an efficient approximation for kernel learning, able
to cope with large sample sets and large number of kernel bases. Our method
requires lighter memory and computational demand compared to the original
kernel learning methods. The idea comes from realizing that the penalized em-
pirical risk minimizer searches for a vector which has the minimum similarity
to the eigenvectors with small eigenvalues of the kernel matrix. This implies
that approximating the kernel matrix with its top eigenvectors, and with some
additional adjustments, may not change significantly the accuracy of the pre-
diction. On the other hand, most of the large kernel matrices are of low rank.
Thus, for multiple kernel learning (MKL), we suggest constructing a dictionary,
called spectral dictionary, by collecting a few eigenvectors from each kernel ba-
sis. We showed that the MKL over the Gram matrices of the spectral dictionary
can be reduced to an efficient sparse optimization problem. For example, the
MKL with least squares loss in this setting can be reduced to Basis Pursuit or
Lasso regression.
Furthermore, we derived bounds for the Gaussian complexity of the hypothe-

sis set generated by the spectral dictionary. Our bound shows that the complex-
ity depends on the size of the dictionary and on its diameter. This implies that
the complexity does not increase monotonically with the size of spectral class,
whereas the opposite is suggested by previous bounds.
The kernel class which is used in our work is a linear combination of Gram

matrices that are built by the spectral dictionary. We assumed that the coeffi-
cients belong to the �1 simplex. Extending the optimization for �p simplex and
deriving bounds for the complexity of the corresponding hypothesis class is left
for future work. In addition, from empirical and theoretical results we learned
that an adjustment of the kernel matrix may increase the accuracy of the classifi-
cation method. We can further extend this idea to other kernel methods such as
kernel principal component analysis, kernel linear discriminant analysis, or the
other types of MKLmethods such as the method of maximizing the Gaussianity,
which are left as well for future work.
In the latter part of the thesis, we have studied the statistical convergence of

FastICA, as an efficient estimator for independent component analysis. This
was done by applying statistical learning theory to the estimations involved in
the ICA problem. We mainly focused on the statistical convergence, as well as
the numerical convergence of the FastICA algorithm. In particular, we showed
that this estimator converges asymptotically in distribution to a normal random
variable, and that similar results hold for the bootstrap FastICA. This type of

73
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convergence helps to design hypothesis testing, and to see how reliable the esti-
mated directions are in terms of confidence intervals. The results may help the
practitioner to decide whether to use the FastICA for a particular application.
Extending such results to other ICA methods should be considered in future
works.
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Ruszczyński, A. (2006). Nonlinear optimization (Vol. 13). Princeton university
press.

Samarov, A., & Tsybakov, A. (2004). Nonparametric independent component
analysis. Bernoulli, 10(4), 565-582.

Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines,
regularization, optimization, and beyond. MIT press.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1), 1-47.

Shao, J. (1990). Bootstrap estimation of the asymptotic variances of statistical
functionals. Annals of the Institute of Statistical Mathematics, 42(4), 737-752.

Shawe-Taylor, N., & Kandola, A. (2002). On kernel target alignment. In Advances
in Neural Information Processing Systems (NIPS), 14.

Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B. (2006). Large scale mul-
tiple kernel learning. The Journal of Machine Learning Research, 7, 1531-1565.

Srebro, N., & Ben-David, S. (2006). Learning bounds for support vectormachines
with learned kernels. InAnnual Conference On Learning Theory (COLT), 169-183.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multi-
variate normal distribution. In Proceedings of the Third Berkeley symposium on
mathematical statistics and probability, 1(399), 197-206.

Steinwart, I., & Christmann, A. (2008). Support vector machines. Springer.

Sugiyama, M., Kawanabe, M., Blanchard, G., Spokoiny, V., & Muller, K. R.
(2006). Obtaining the best linear unbiased estimator of noisy signals by non-
Gaussian component analysis. In Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International Conference on.

Suzuki, T., & Sugiyama, M. (2011). Least-squares independent component anal-
ysis. Neural Computation, 23(1), 284-301.

Talagrand, M. (2005). The generic chaining: upper and lower bounds of stochastic
processes. Springer.

Talwalkar, A., & Rostamizadeh, A. (2010). Matrix coherence and the Nyström
method. arXiv preprint arXiv:1004.2008.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), 267-288.

Tichavsky, P., Koldovsky, Z., & Oja, E. (2006). Performance analysis of the Fas-
tICA algorithm and Cramér-Rao bounds for linear independent component
analysis. Signal Processing, IEEE Transactions on, 54(4), 1189-1203.

Tomczak-Jaegermann, N. (1989). Banach-Mazur distances and finite-
dimensional operator ideals. Pitman monographs and surveys in pure and
applied mathematics, Longman Scientific & Technical.



BIBLIOGRAPHY 81

Tripathi, S., Srinivas, V. V., & Nanjundiah, R. S. (2006). Downscaling of precipita-
tion for climate change scenarios: A support vector machine approach. Journal
of Hydrology, 330(3), 621-640.

Trujillo-Ortiz, A., Hernandez-Walls, R., Barba-Rojo, K., & Cupul-Magana., L.
(2007). URL http://www.mathworks.com/matlabcentral/fileexchange/
loadFile.do?objectId=17931.

Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). Cambridge university
press.

Van der Vaart, A., & Wellner, J. (1996). Weak convergence and empirical processes:
with applications to statistics. Springer.

Vapnik, V. (1999). The nature of statistical learning theory. Springer.

Vapnik, V., & Chapelle, O. (2000). Bounds on error expectation for support vector
machines. Neural computation, 12(9), 2013-2036.

Varma, M., & Ray, D. (2007). Learning the discriminative power-invariance
trade-off. In Computer Vision, 2007 (ICCV 2007), 11th IEEE International Con-
ference on, 1-8.

Vempala, S. S. (2012). Modeling high-dimensional data: technical perspective.
Communications of the ACM, 55(2), 112-112.

Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010). High-dimensional pattern
regression using machine learning: From medical images to continuous clini-
cal variables. Neuroimage, 50(4), 1519-1535.

Wellner, J.A., & Zhan, Y. (1996). Bootstrapping Z-estimators. Technical Report, 38,
University of Washington Department of Statistics.

Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). Aca-
demic press.

Xu, Z., Jin, R., King, I., & Lyu, M. R. (2009). An extended level method for effi-
cient multiple kernel learning. In Advances in neural information processing sys-
tems (NIPS), 21, 1825-1832.

Ylipaavalniemi, J., & Vigário, R. (2008). Analyzing consistency of independent
components: An fMRI illustration. NeuroImage, 39(1), 169-180.

Ylipaavalniemi, J., & Soppela, J. (2009). Arabica: robust ICA in a pipeline. In
Independent Component Analysis and Signal Separation, 379-386.

Ylipaavalniemi, J., Savia, E., Malinen, S., Hari, R., Vigário, R., & Kaski, S. (2009).
Dependencies between stimuli and spatially independent fMRI sources: To-
wards brain correlates of natural stimuli. NeuroImage, 48(1), 176-185.

Ylipaavalniemi, J., Reyhani, N., & Vigário, R. (2012). Distributional convergence
of subspace estimates in FastICA: a bootstrap study. In Latent Variable Analysis
and Signal Separation, 123-130.

Zhang, T. (2001). Convergence of Large Margin Separable Linear. In Advances in
Neural Information Processing Systems (NIPS), 13.



82 BIBLIOGRAPHY

Zien, A., & Ong, C. S. (2007, June). Multiclass multiple kernel learning. In Pro-
ceedings of the 24th international conference on Machine learning (ICML), ACM,
1191-1198.





DISSERTATIONS IN INFORMATION AND COMPUTER SCIENCE

Aalto-DD45/2012 Viitaniemi, Ville
Visual Category Detection: an Experimental Perspective. 2012.

Aalto-DD51/2012 Hanhjärvi, Sami
Multiple Hypothesis Testing in Data Mining. 2012.

Aalto-DD56/2012 Ramkumar, Pavan
Advances in Modeling and Characterization of Human Neuromagnetic Oscillations.
2012.

Aalto-DD97/2012 Turunen, Ville T.
Morph-Based Speech Retrieval: Indexing Methods and Evaluations of Unsupervised
Morphological Analysis. 2012.

Aalto-DD117/2012 Vierinen, Juha
On statistical theory of radar measurements. 2012.

Aalto-DD137/2012 Huopaniemi, Ilkka
Multivariate Multi-Way Modeling of Multiple High-Dimensional Data Sources. 2012.

Aalto-DD137/2012 Paukkeri, Mari-Sanna
Language-and domain independent text mining. 2012.

Aalto-DD133/2012 Ahlroth, Lauri
Online Algorithms in Resource Management and Constraint Satisfaction. 2012.

Aalto-DD158/2012 Virpioja, Sami
Learning Constructions of Natural Language: Statistical Models and Evaluations. 2012

Aalto-DD20/2013 Pajarinen, Joni
Planning under uncertainty for large-scale problems with applications to wireless net-
working. 2013.





9HSTFMG*afahee+ 




