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In this thesis, we present techniques to recognize basic algorithms covered in computer 

science education from source code. The techniques use various software metrics, language 
constructs and other characteristics of source code, as well as the concept of schemas and 
beacons from program comprehension models. Schemas are high level programming 
knowledge with detailed knowledge abstracted out. Beacons are statements that imply specific 
structures in a program. Moreover, roles of variables constitute an important part of the 
techniques. Roles are concepts that describe the behavior and usage of variables in a program. 
They have originally been introduced to help novices learn programming. 

We discuss two methods for algorithm recognition. The first one is a classification method  
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1. Introduction

1.1 Motivation

Data structures and algorithms are central topics in programming educa-

tion. Basic programming education requires that students solve a large

number of programming exercises. To help teachers assess students’ work,

especially in large courses, a number of automatic assessment tools are

developed, including Boss [43], CourseMarker [37] and WebCAT [25].

Ala-Mutka [1] listed topics which could be analyzed using the existing

tools. These included 1) functionality, 2) efficiency, 3) testing skills, 4) spe-

cial features like memory management, 5) coding style, 6) programming

errors, 7) software metrics, 8) program design, 9) use of specific language

features, and 10) plagiarism. A more recent survey by Ihantola et al. [38]

shows new activities in the field, such as integration of automatic assess-

ment tools and learning management systems, more sophisticated ways to

evaluate program functionality, and integration of manual and automatic

assessment.

However, in these two comprehensive surveys, no tools have been re-

ported, which could automatically analyze what kind of algorithms stu-

dents use in their programs and how they have implemented them. For

example, an automatic assessment tool verifies the correctness of a sort-

ing algorithm by examining whether the program produces the requested

correct output. However, the tool cannot easily and reliably assess that

student have actually used the requested algorithm or give feedback on

their implementations1. This is the main motivation of the work presented

1A simple approach would be to check some intermediate states, but this is
very cumbersome and unreliable as students may very well implement the basic
algorithm in slightly different ways, for example, by taking the pivot item from
the left or right end in Quicksort.
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in this thesis; developing methods that can automatically recognize differ-

ent types of basic algorithms covered in computer science education. We

call such methods Algorithm Recognition (AR).

Such methods can be applied to many other problems as well. For ex-

ample, all the following problems share the common task of recognizing

algorithms/parts of source code and thus can apply AR methods: source

code optimization [65] (tuning of existing algorithms or replacing them

with more efficient ones), clone recognition [4, 60] (recognizing and remov-

ing clones as an essential part of code refactoring), software maintenance

(especially maintaining large legacy code with insufficient or non-existent

documentation), and program translation via abstraction and reimplemen-

tation [100] (a source to source translation approach, which involves the

abstract understanding of what the target program does).

1.2 Research Questions

Algorithms are well-defined computational procedures that take some

value(s) as input and produce some value(s) as output [16] in a finite

amount of time. Algorithms consist of specific instructions that should

be performed in a specific order to achieve a specific goal. Programming

schemas are high-level programming knowledge on how to solve a par-

ticular problem [21]. Beacons, on the other hand, are highly informative

statements that imply specific structures in a program [10].

This thesis introduces a static method for recognizing algorithms from

Java source code based on the concept of programming schemas (which in

this thesis we also call algorithmic schemas or just schemas) and beacons.

Algorithms have specific functionalities, and in order to achieve these func-

tionalities, a programmer should use specific abstract patterns (schemas)

and elements (beacons) when implementing algorithms. For example,

Roles of Variables (RoV) [85], which we consider as algorithm-specific char-

acteristics and beacons, explicate the ways in which variables are used in

computer programs and provide specific patterns how their values are up-

dated. Roles are concepts that associate variables with their behavior and

purpose in a program. To implement an algorithm, a programmer uses a

set of variables with particular roles to achieve the particular functionality

in question.

In this thesis, we investigate several research questions. The main

research question is:

2



1. How could we automatically recognize basic algorithms and their varia-

tions from source code?

By basic algorithm we mean the algorithms that are commonly intro-

duced in learning resources and data structures and algorithms courses as

solutions to the classical algorithmic problems, such as sorting algorithms,

searching algorithms, graph algorithms, etc.

To address this question, we present different approaches and divide the

main research question into the following related questions. We examine

the applicability of programming schemas and algorithm-specific charac-

teristics and beacons in AR. We investigate whether basic algorithms can

be recognized by analyzing and extracting high-level schemas from the im-

plementation code. Likewise, we examine the usefulness of characteristics

and beacons in AR. Thus, two of our research questions are:

2. Can algorithmic characteristics and beacons be utilized in AR process

and how?

3. Can programming schemas facilitate automatic AR? How can we imple-

ment a method based on schemas?

To answer these questions, we use a set of characteristics containing

various metrics that are selected based on literature overviews. These

characteristics are computed for each given algorithm implementation.

Moreover, by analyzing how algorithms work, we discern a set of beacons

that characterize the function and principle of each algorithm. We utilize

these characteristics and beacons in AR process.

With regard to programming schemas, we develop a method that extracts

schemas from a given algorithm implementation and identifies the imple-

mentation by matching the extracted schemas against a predefined set of

schemas and subschemas stored in a knowledge base. We call this method

a Schema Detection Method and use the abbreviation SDM for it.

Furthermore, we specifically study the usefulness of RoV as beacons in

recognizing basic algorithms. We aim to discover how distinctive factors

RoV are in identifying algorithmic patterns and how valuable they are in

automatic AR process. In this regard, the research question is:

4. How applicable and useful RoV are in recognizing basic algorithms?

3



As discussed above, we analyze basic algorithms to find a set of distinc-

tive and algorithm-specific characteristics and beacons. We then apply

machine learning techniques to examine what characteristics and bea-

cons (including RoV) can better separate implementations of different

algorithms. The research question connected to this is:

5. Can machine learning methods, and in particular the C4.5 algorithm,

be used in AR problem and how accurate it is?

We will use the C4.5 algorithm which is a well-known algorithm for

generating classification trees. The algorithm selects the characteristics

and beacons that can best distinguish between algorithm implementations

and uses them in constructing a classification tree that can guide the AR

process for a new data set. To investigate the suitability of the algorithm

and the accuracy of the classification, we will perform different types of

evaluation using various data sets. We will call this method a Classification

Method and denote it as CLM.

Moreover, we investigate the possibility and advantages of combining

the CLM and SDM. Therefore, the research question here is:

6. How can we combine the SDM and CLM to get more reliable results?

We name this combined method Combination of Schema detection and

Classification and abbreviate it as CSC. Finally, one direction of our re-

search is to give automatic feedback to students on their problematic algo-

rithm implementations and make them rethink their solutions. To do this,

first we need to discover what kind of problematic algorithm variations

students use. We carried out a study focusing on categorizing variations of

student-implemented sorting algorithms and testing how accurately Aari,

the Automatic Algorithm Recognition Instrument that we developed, can

recognize authentic students’ sorting algorithm implementations. Thus,

the final two research questions are:

7. How can we classify students’ implementations of sorting algorithms?

What kind of variations of well-known sorting algorithms students use?

8. How accurately Aari can recognize student-implemented sorting algo-

rithms and their variations?

4



Similar studies need to be done for all the algorithms and their variations

we would like to provide feedback on. The results can be used for developing

a tool that gives useful feedback on students’ implementations.

1.3 Structure of the Thesis

This thesis is structured as follows. Chapter 2 discusses the AR task,

previous work on program comprehension and the other related research

fields. Chapter 3 gives an overview on programming schemas and beacons

which is based on program comprehension models, presents a definition

of RoV along with an example and highlights their connection to program

comprehension. Chapter 4 explains decision tree classifiers in general and

briefly discusses the C4.5 algorithm. The overall process of AR including

the common characteristics of algorithms is presented in Chapter 5, fol-

lowed by a more specific discussion on the schemas and beacons for an

analyzed set of algorithms in Chapter 6. Chapter 7 focuses on the empirical

studies, data sets and results. Finally, Chapter 8 discusses related issues,

summarizes the results of the thesis, outlines some directions for future

work and concludes this thesis with a discussion on validity issues involved

in this research.
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2. Algorithm Recognition and Related
Work

In this chapter, we first present an overview on the algorithm recognition

task. This is followed by a discussion on the related research fields.

2.1 Algorithm Recognition (AR)

The task in AR is to identify algorithms from source code. Recognizing an

algorithm involves discovering its functionality and comprehending the

corresponding program code. The problem in AR is not only to identify and

differentiate between different algorithms with different functionalities,

but also between different algorithms that perform the same functionality.

As an example, in addition to identifying and differentiating between

sorting and searching algorithms, different sorting algorithms should also

be identified and distinguished. AR can be applied in various problems,

such as code optimization, software engineering activities, examining and

grading students’ work, and so on.

AR is a non-trivial task. To perform the same computational task, such as

sorting an array, several different algorithms can be used. For example, the

sorting problem can be solved by using Bubble sort, Quicksort, Mergesort

or Insertion sort, among many others. However, the problem of recognizing

the applied algorithm has several complications. First, while essentially

being the same algorithm, Quicksort, as an example, can be implemented

in several considerably different ways. Each implementation, however,

matches the same basic idea (partition of an array of values followed by

the recursive execution of the algorithm for both partitions), but they

differ in lower level details (such as partitioning, pivot item selection

method, and so forth). Moreover, each of these variants can be coded in

several different ways, for instance, using different loops, initializations,

conditional expressions, and so on. Another aspect of the complexity of the

7



AR task comes from the fact that in real-world programs, algorithms are

not “pure algorithm code” as in textbook examples. They include calls to

other functions, processing of application data and other activities related

to the domain. For a more detailed discussion, see Publication I.

With respect to computational complexity, AR problem can be consid-

ered as similar to detecting semantic clones (clones that have the same

functionality) from source code. As we will discuss in Subsection 2.2.2,

detecting semantic clones is undecidable in general [7]. However, as will

be described in Chapter 5 when discussing the AR process, we approach

the problem by examining schemas and extracting the characteristics and

beacons from algorithm implementations and analyzing the implementa-

tions as characteristic and beacon vectors. Furthermore, we limit the scope

of our work to include a particular group of algorithms. In addition, we

are not looking for an absolute exactness. Even humans make errors, and

cannot always achieve perfect accuracy. Thus, recognizing algorithms in a

reasonable precision is our aim.

2.2 Related Work

We can view AR problem from different perspectives and in connection

with different research fields. We first give an overview on program com-

prehension research and then present other related work, explaining their

relevance to AR.

2.2.1 Program Comprehension

Program Comprehension (PC) has been studied from both theoretical

and practical points of view. Theoretical PC studies have focused on

understanding how programmers comprehend programs. These studies

introduce PC models that explain elements involved in the process of

PC. Practical PC studies have been mainly motivated by finding effective

solutions to be used in software engineering tasks and by developing

automated tools to facilitate understanding programs [94].

The purpose of AR is to determine what algorithm a piece of code imple-

ments. Therefore, algorithm recognition facilitates PC and can be regarded

as a subfield of practical PC.
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Figure 2.1. Key elements of program comprehension models [89]

Theoretical PC

Theoretical PC research deals with PC from psychology of programming

point of view and tries to answer questions related to the process of under-

standing programs, including: what are those strategies used by program-

mers when comprehending programs? Which ones are the most useful?

What kind of cognitive structures programmers build/have when compre-

hending programs? What kind of external representations are more helpful

in the process of understanding?

PC is a process in which a programmer builds his or her own mental

representation of the program. Understanding programs is a process

that involves different elements as shown in Figure 2.1 [89]. External

representation means how the target program is represented to the pro-

grammer. Assimilation process and cognitive structure are internal to the

programmer. Cognitive structures include the programmer’s knowledge

base (his/her prior knowledge and the domain knowledge related to the

target program) and the mental representation he/she has built of the

target program. An assimilation process is the process of building a mental

representation of the target program using the knowledge base and the

given representation of the program. In the assimilation process, top-down,

bottom-up or integrated strategies of building a mental representation may

be used.

In a top-down strategy, the assimilation process starts by utilizing the
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knowledge about the application domain and proceeds to more detailed

levels in the code to verify the hypothesis formed based upon the domain.

In a bottom-up strategy, the assimilation process starts at a lower level of

abstractions with individual code statements and proceeds to a higher level

by grouping these statements. The final mental representation of the target

program is constructed by repeating this process of chunking lower levels

successively to higher levels. In an integrated strategy the programmer

switches between the top-down and bottom-up models whenever he/she

finds it necessary in order to build his/her mental representation effectively.

In PC literature, integrated strategy is also referred to as combined, hybrid,

opportunistic or mixed strategy.

Several PC models have been presented which differ in issues like, what

assimilation strategies they recommend, what is the effect of programming

paradigm on forming program and domain knowledge, etc. For more

information on these models, see, for example, the following reviews on the

topic: [17, 22, 69, 89, 94, 98, 99]. We will get back to some of these models

in Section 3 when discussing the theoretical background of our method.

Practical PC

Practical studies on PC and the techniques and tools they develop have

been influenced by the models introduced by the theoretical studies. Accord-

ing to Storey [94], the characteristics that influence cognitive strategies

used by programmers, influence the requirements for supporting tools

as well. As an example, top-down and bottom-up strategies introduced

in PC models are reflected in a supporting tool so that the tool should

support “browsing from high-level abstractions or concepts to lower level

details, taking advantage of beacons in the code; bottom-up comprehension

requires following control-flow and data-flow links” [94]. By extracting the

knowledge from the given program, PC tools can be applied to different

problems such as teaching novices, generating documentation from code,

restructuring programs and code reuse [74].

Based on their functionality, PC tools can be divided into one of the fol-

lowing categories: extraction, analysis and presentation. Extraction tools

perform the tasks related to parsing and data gathering. Analysis tools

carry out static and/or dynamic analyses to facilitate different activities

including clustering, concept assignment, feature identification, transfor-

mations, domain analysis, slicing and metrics calculations. Presentation

tools comprise code editors, browsers, hypertext, and visualizations. Some
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tools may have multiple functionalities and be capable of carrying out

different tasks from each category [94].

Knowledge-based techniques are widely adopted in practical PC tools.

The basic idea is to store stereotypical pieces of code – which are called

plans, schemas, chunks, clichés or idioms in different studies – in a knowl-

edge base and match the target program against these pieces. Since the

functionalities of the plans in the knowledge base are known, the function-

ality of the target program can be discovered if a match is found between

the target program and the plans.

As with the assimilation process in theoretical PC, there are three main

techniques to perform matching: top-down, bottom-up and hybrid tech-

nique. Top-down techniques use the goal of the program to select the right

plans from the knowledge base. This speeds up the process of selecting the

right plans and makes the matching more effective. However, the main

disadvantage of these techniques is that they need the specification of the

target program, which is not necessarily available in real life, especially

in case of legacy systems. For example, PROUST [41], as a tool that uses

the top-down strategy of analysis, matches functional goals against pieces

of code using programming plans. It gets top-level functional goals as an

input and outlines how the goals are implemented in a program, but can-

not identify these goals for an arbitrary program. Moreover, as top-down

approaches process plans connected to the goal of the target program, they

cannot perform partial plan recognition. The main concern with bottom-

up techniques, on the other hand, is efficiency. As a statement can be

part of several different plans and the same plan can be part of different

bigger plans, the process of matching statements and plans can become

ineffective. This is especially true when the target program is a real life

program with thousands of lines of code. PAT, a Program Analysis Tool [36]

that recognizes concepts based on pattern matching, is an example of a

bottom-up analyzer. It identifies abstract concepts by analyzing semantic

information such as control flow dependencies among sub-concepts. The

technique is based on an Event Base and a Plan Base, where basic events

are generated from code. Plans define the relation between events and

they trigger a new event which corresponds to the intention of the plan.

A plan needs to be defined for each implementation variant and thus the

number of plans grows quickly. Hybrid techniques (e.g., [74], as discussed

below) use the combination of the two techniques. In the following, we

discuss some of knowledge-based techniques in more detail.
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Quilici [74] developed a hybrid top-down, bottom-up technique to find

operations and objects written in C language and to replace them with

C++ code. In order to recognize plans, Quilici defines recognition rules

that list components for each plan and describe constraints for these

components. Organized in a plan library, plans have different relationships

with each other: they are indexed by other plans, they have specialization

relationship with other plans, and they have a list of other plans that

they imply. Using these relationships, a particular program construct can

activate a plan to be investigated against the code under examination.

In the same way, a detected plan may suggest related indexed plans for

examination. Plan indexing limits the search-space and thus speeds up

finding the right plans. Specialization relationship makes it possible to first

match general plans and then search for specialized version of those plans.

Furthermore, using a list of implied plans, it is possible to realize existence

of other plans by identifying a plan, even though those plans themselves

have not been analyzed yet. Quilici defines plans as lists of attributes that

characterize each plan and are represented by frames. Target programs,

as well as plans are represented by an abstract syntax tree (AST) with

frames as its nodes. Frames represent all types of programming objects

that need to be identified and replaced, including primitive operations

such as addition or more complex structures like loops. Plan recognition

is performed in a depth-first manner based on specialization relationship

between plans.

Kozaczynski et al. [53] developed a method for automatic recognition

of programming concepts, a term they use for programming plans. The

authors define abstract concepts as language-independent ideas of com-

putation and problem solving methods and divide them into the following

three classes: 1) programming concepts include general coding strate-

gies, data structures and algorithms, 2) architectural concepts are related

to architectural components such as databases, networks and operating

systems, and 3) domain concepts are implementations of application or

business logic. Representation of a given program is created by parsing it

into an AST followed by several semantic analyses, including definition-

used chain analysis and control-dependency relation analysis. Abstract

concepts, concept recognition rules (information that describe what the

concepts are and how they can be recognized based on lower-level concepts,

i.e., sub-concepts) and constraints on and among the sub-concepts are

organized in a concept classification hierarchy, called a concept model. The
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recognition is carried out by building abstract concepts on top of the AST

nodes of the target program in a top-down mode. Evaluation of an abstract

concept may be triggered by each AST node. The concept recognition rules

related to the triggered abstract concept is used to compare it to the trig-

gering part of the AST. The user interface makes it possible to browse the

results of the recognition process.

Wills [102] uses the term clichés for commonly used computational

structures. The target code is represented as annotated flow graphs by

GRASPER, the system that implements the technique, and clichés are en-

coded as an attributed graph grammar. The problem of recognizing clichés

is thus transformed into the problem of parsing a flow graph of the given

source code based on the graph grammar, which is NP-complete. The cliché

library used in the approach is manually constructed from textbooks and

other sources. The result of the recognition is a hierarchy of Clichés and

the relationships between them as identified from the analyzed program.

Among others, fuzzy reasoning technique [12, 13] was introduced to im-

prove the performance of the knowledge-based PC techniques and address

their problem of scalability and inefficiency. Instead of matching all the

statements and plans of the target program against the plans in the knowl-

edge base, these approaches first identify candidate chunks in the target

code using data dependency analysis and a set of heuristics, as described

in [11]. These chunks are then abstracted and mapped into higher level

concepts that are used to retrieve a set of similar program plans from

a plan library. The retrieved plans are ranked using a fuzzy reasoning

technique and the plan identified as the most similar to the candidate

chunk is used to perform the costly more detailed matching for automated

program understanding.

Our SDM draws on the concept of schemas, which is central in many

PC models. Another relevance of our method to PC research is that our

method matches the schemas detected from the given program against

the schemas stored in a knowledge base in a bottom-up manner, just like

knowledge-based practical PC methods do. We will get back to this in

Chapter 3.

A number of other techniques and tools are introduced to facilitate PC

in software engineering activities. Many of these techniques deal with

concept location, that is, finding fragments of the code that implement

the domain concept that a programmer is looking for in order to, for ex-

ample, perform a change request. As discussed in [20], concept location
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approaches are broadly divided into dynamic techniques, which are based

on analyzing execution traces and their mapping to source code (see, for

example [24, 26]) and static techniques, which analyze program depen-

dencies and textual information within source code (e.g., [28, 61]). Most

concept location approaches are interactive and iterative [28], where the

process is initiated by the programmer by formulating a domain concept as

a query. Information retrieval methods, such as Latent Semantic Indexing

(LSI) are used to map the query to software components (see, e.g., [61]).

The programmer then evaluates the results of the query and if necessary,

makes more detailed queries. Hybrid approaches use both static and dy-

namic analyses to address the limitations of these techniques by using

static information to filter the execution traces (see, e.g., [59, 72]). For

example, in [72], LSI information retrieval technique is combined with a

dynamic technique (scenario-based probabilistic ranking) to improve the

effectiveness and precision of feature location. Poshyvanyk et al. intro-

duced a method combining formal concept analysis and LSI [71, 73], that is

able to reduce the programmers’ effort by producing more relevant search

results.

2.2.2 Clone Detection

Clones are code duplicates that result from copying and pasting code frag-

ments for code reuse purposes, either directly or with minor modifications.

Cloning is commonly practiced by software developers because it is an

easy way to develop software [54]. Studies suggest that up to 20% of

software systems are implemented as clones [62, 81]. Cloning is also an

endemic problem in large, industrial systems [6, 23]. It makes software

maintenance more complicated and increases maintenance costs: code

duplication may duplicate errors and changes to the original code must

be also performed to the duplicated code [54]. Clones can be a substantial

problem in software development and maintenance because inconsistent

changes (e.g., bug fixes) to clones can lead to unexpected behavior [44].

Clone detection (CD) improves the quality of the source code and elimi-

nates harmful consequences of cloning. In addition, CD has great potential

in the maintenance and re-engineering of legacy systems [62] and can

benefit many other software engineering tasks. CD techniques can be ap-

plied in activities that involve a comparison analysis between two different

versions of a system. For example, they can be applied in origin analysis,

where the problem is to analyze two versions of a system to understand
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where, how and why structural changes have occurred [33]. Furthermore,

CD techniques can be applied in evolution analysis, that is, mapping two

or more different versions of a software for finding a relation between them

in order to understand their evolution behavior [82] (for more information

on application of CD in other domains see [80]). From our point of view,

however, the most relevant application of CD is in program comprehension

field: identifying functionality of a cloned fragment helps us understand

other parts of the software that include the same fragment.

Clones are defined as code fragments that are similar. Here, similarity is

either based on semantic or program text. Detecting semantic similarity

in an undecidable problem in general and therefore most approaches and

surveys have focused on program text similarity [7, 97]. Program text

similarity is defined in terms of text, tokens, syntax, code metric vectors or

data and control dependencies [97]. Different clone taxonomies have been

presented (see, e.g., [3, 45, 46, 62]). Most research literature classify clones

into three types [97]. Tiark et al. [97] present a refined categorization,

as follows: 1) exact clone (type-1) is an exact copy of consecutive code

fragments without modifications (except for whitespace and comments);

2) parameter-substituted clone (type-2) is a copy where only parameters

(identifiers or literals) have been substituted; 3) structure-substituted

clone (type-3) is a copy where program structures (complete subtrees in

the syntax tree) have been substituted. For parameter-substituted clones,

a leaf in the syntax tree can be replaced by another leaf, whereas for

structure-substituted clones, larger subtrees can be substituted; and 4)

modified clone (type-4) is a copy whose modifications go beyond structure

substitutions by added and/or deleted code.

Several techniques for detecting clones have been introduced including:

textual approach (text-based comparison between code fragments, see,

e.g., [23, 60]), lexical approach (the source code is transformed into a se-

quence of tokens and these are compared, see, for example, [2, 5]), metrics-

based approaches (the comparison is based on the metrics collected from

the source code, as, for example, in [51, 62]), tree-based approaches (clones

are found by comparing the subtrees of the abstract syntax tree of a pro-

gram, see, e.g., [6, 104]) and program dependency graphs (the program is

represented as program dependency graphs and isomorphic subgraphs are

reported as clones, as, e.g., in [50, 54]). Roy et al. [81] and Bellon et al. [7]

compare and evaluate a number of different clone detection techniques

and tools in their surveys.
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The problem of AR is close to the CD area. The purpose of AR is to look

for similar patterns of algorithmic code in the source code, in the same way

that CD techniques look for similar code fragments. Some of the techniques

that we use in AR are also used in CD (e.g., analyzing language constructs

and software metrics). Recognizing algorithms from source code can be

compared with and considered as the type-3 and semantic clones, where

according to the recent surveys [7, 97] the current techniques and tools

perform poorly. There are also other similarities between the techniques

we use for AR problem and recent trends in CD. In their recent study on

the state-of-the-art CD tools, Tiark et al. [97] suggest that decision trees

should be used to distinguish real clones from false positives. In particular,

they use several different metrics and apply supervised classification (a

decision tree constructed by the C4.5 algorithm) to identify distinguish-

ing characteristics and the most useful combinations of metrics that can

indicate real type-3 clones.

To summarize, the main difference between AR and CD is that in AR, we

look for the implementations of a predefined set of algorithms whereas in

CD, clones are unknown code fragments. On the other hand, as in CD the

goal is to find similar or almost similar pieces of code, it is not necessary

to know what algorithms the detected clones implement. CD methods

can utilize all kinds of identifiers that can provide any information in the

process. These identifiers may include comments, relation between the

code and other documents, etc. For example, comments may often be cloned

along with the piece of code that programmers copy and paste. We do not

use these types of identifies in AR.

2.2.3 Program Similarity Evaluation Techniques

The problem in program similarity evaluation research is to find the degree

of similarity between computer programs. The main motivation for these

studies is to detect plagiarism and prevent students from copying each

other’s work.

Based on how programs are analyzed, these techniques can be divided

into two categories: attribute-counting techniques (see, for example, [34,

42, 56, 78]) and structure-based techniques (see, e.g., [40, 47, 67, 103]).

Attribute-counting techniques use distinguishing characteristics to find

the similarity between the two programs, whereas structure-based tech-

niques focus on examining the structure of the code. Attribute-counting

methods have been criticized as being sensitive to even textual modifica-
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tion of the code, but structure-based methods are generally regarded more

tolerant to modifications imposed by students to make two programs look

different [67]. Structure-based methods can be further divided into string

matching based systems and tree matching based systems.

Program similarity evaluation techniques widely use software metrics

(such as Halstead’s metrics) as a measure of similarity. The relevance of

these techniques to our method is that, as we will discuss in Chapter 5,

our method also utilizes these metrics.

2.2.4 Reverse Engineering Techniques

Chikofsky and Cross define reverse engineering as the process of creating

higher-level abstractions from source code [15]. This involves analyzing

the target system and identifying its components and interrelationships

between them. More specifically, reverse engineering techniques are used

to understand a system in order to recover its high-level design plans,

create high-level documentation for it, rebuild it, extend its functionality,

fix its faults, enhance its functions and so forth. By extracting the de-

sired information out of complex systems, reverse engineering techniques

provide software maintainers a way to understand these systems, thus

making maintenance tasks easier. Understanding a program in this sense

refers to extracting information about the structure of the program, includ-

ing control and data flow and data structures, rather than understanding

its functionality. Different reports that can be generated by carrying out

these analyses indeed help maintainers gain a better understanding of a

program and enable them to modify the program in a much more efficient

way, but do not provide them with direct and concise information about

what the program does or what algorithm is in question. Reverse engineer-

ing techniques have been criticized for the fact that they are not able to

perform the task of PC and deriving abstract specifications from source

code automatically, but they rather generate documentation that can help

humans to complete these tasks [75].

However, reverse engineering field provides useful techniques and meth-

ods for program analysis. The research fields discussed above use widely

these techniques and in this sense are closely related to reverse engi-

neering. As an example, many studies on concept location discussed in

Section 2.2.1 are actually published in reverse engineering forums (see,

e.g., [61]), as well as several studies on clone detection discussed in Sec-

tion 2.2.2 (see [2, 3, 54]).
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2.2.5 Roles of Variables

Roles of Variables (RoV) is a research field that explores the patterns

how variables are used and their values are updated in programs. We

use RoV as distinguishing factors to recognize algorithms and thus, RoV

research is close to our research. Concerning theoretical PC, studies on

using RoV in elementary programming courses show that roles provide

a conceptual framework for novices that helps them comprehend and

construct programs better [14, 55, 86]. Utilizing roles in teaching also helps

students learn strategies related to deep program structures (“knowledge

concerning data flow and function of the program reflect deep knowledge

which is an indication of a better understanding of the code” [55]) as

opposed to surface knowledge (“program knowledge concerning operations

and control structures reflect surface knowledge, i.e., knowledge that is

readily available by looking at a program” [55]). We will discuss RoV and

their relation to PC and AR in more detail in the next chapter.
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3. Program Comprehension and Roles
of Variables, a Theoretical
Background

In this chapter, we first present a theoretical background based on program

comprehension (PC) models for the algorithmic schemas and beacons part

of our method. In Section 3.2, we discuss the concept of roles of variables

and in Section 3.3, we explain how roles can be utilized as beacons. Beacons

are important elements of PC models and we will discuss how the concept

connects roles of variables with PC.

3.1 Schemas and Beacons

Schemas consist of generic conceptual knowledge that abstract detailed

knowledge of programming structures. Détienne defines schemas as for-

malized knowledge structures [21]. Through programming experience,

programmers create and extend schemas. When dealing with new tasks

with similar schemas, programmers use their stored schemas to under-

stand and solve these tasks that differ in lower level of abstraction and

implementation details. Schemas may contain other schemas in a hier-

archical manner. Schemas and the process of schema creation are the

focus of a number of theoretical PC studies. These studies show that

programmers use schemas when working on programming tasks (see, for

example, [64, 79, 91, 92]). Possession of schemas is a key factor that

turns novices into experts [21, 91]. According to Détienne, the studies

of Soloway and Ehrlich are among the most important reports on the

topic [21]. Soloway and Ehrlich define schemas (which they call plans) as

“generic program fragments that represent stereotypic action sequences

in programming” [91]. To investigate the differences between experts and

novices, they used plan-like and unplan-like programs. A plan-like pro-

gram is a program that uses stereotypical plans and conforms to rules

of programming discourse, unlike an unplan-like program (we will get
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back to this in Section 3.3). Soloway and Ehrlich showed that the novices

perform poorly due to their lack of programming plans and discourse rules.

Moreover, they showed that the experts perform significantly better with

plan-like programs than with unplan-like programs, because plan-like

programs follow the patterns that they have developed and used when

solving the tasks, while unplan-like programs do not.

Beacons are key statements or features that indicate the existence of a

particular structure or operation in code. A particular structure or opera-

tion could have different related beacons that indicate its occurrence more

or less strongly. Moreover, the same beacon may indicate different struc-

tures or operations [10]. While novices do not use beacons heavily, experts

rely on beacons and use them as important elements in understanding pro-

grams [18, 101]. Beacons provides a link between the source code and the

process of verifying the hypotheses driven from the source code and thus

help programmers to accept or reject their hypotheses about the code. As

an example, existence of a swap operation, especially inside a pair of loops,

indicates sorting of array elements [10]. Soloway and Ehrlich’s model [91]

use the term critical lines for the same meaning: the statements that carry

important information about program plans and can be considered as the

key representatives of the plans that help experts recognize them. As can

be noted, the concepts of schema and beacon are closely connected.

The idea of algorithmic schemas and beacons of our method comes from

the corresponding concepts introduced by PC models. Our SDM uses a set

of predefined high-level algorithmic schemas stored in its knowledge base.

In these schemas, all details, such as the type of loops, conditionals, irrele-

vant assignment statements, etc., are abstracted out. These correspond

to schemas that experts have developed. When recognizing an algorithm,

the method extracts the schemas of the same abstract level from the given

program and compares it with those from its knowledge base to find a

match, just like an expert deals with a given program. That is, abstracted

stereotypical implementations of algorithms are used to automatically

recognize new implementation instances that differ in implementation

details.

For each supported algorithm, the knowledge base includes the related

schemas, subschemas and beacons. These consist of, for example, loops,

recursion, specific operations, etc. The method makes the final decision

by putting these separately recognized elements together and examining

their relationships in terms of nesting, execution order, etc., again, just like
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experts do. To give an example, we can repeat the example of Brook [10]

presented above: a swap operation inside a pair of nested loops forms a

schema that indicates sorting of array elements.

Algorithm-specific beacons are utilized to distinguish between the algo-

rithms that have similar algorithmic schemas. For example, the above

example of swap operation within two nested loops can indicate an im-

plementation of Bubble sort, but also an implementation of a variation of

Insertion sort that performs a swap operation (instead of a shift operation)

in the inner loop. In these cases, patterns that implement features specific

to the way each algorithm works are extracted from the source code. These

patterns are utilized as beacons to recognize borderline cases. We will

discuss this in Chapter 5.

3.2 Roles of Variables

Roles of Variables (RoV) constitute an essential part of our method in

Algorithm Recognition (AR). In this section, we first discuss RoV, the

concept, history and original application. In the next section, we explain

the relationship between RoV and PC and outline how RoV can be utilized

as beacons in PC and AR.

The concept of RoV was first introduced by Sajaniemi [85]. The idea

behind RoV is that each variable used in a program plays a particular role

that is related to the way it is used. RoV are specific patterns how variables

are used in source code and how their values are updated. For example, a

variable that is used for storing a value in a program for a short period of

time can be assigned a temporary role. As Sajaniemi and Navarro argue,

RoV are a part of programming knowledge that have remained tacit [84].

Experts and experienced programmers have always been aware of existing

variable roles and have used them, although the concept has never been

articulated. Giving an explicit meaning to the concept makes it a valuable

tool that can be used in teaching programming to novices by showing

the different ways how variables can be used in a program. Although

RoV were originally introduced to help students learn programming, the

concept can offer an effective and unique tool to analyze a program for

different purposes. In this thesis, we have extended the application of RoV

by applying them in the problem of AR.

Roles are cognitive concepts [8, 30], implying that human inspectors may

have a different interpretation of the role of a single variable. However,
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Role Description
Stepper A variable that systematically goes through a succession of values.

Temporary A variable that holds a value for a short period of time.

Most-wanted holder A variable that holds the most desirable value that is found so far.

Most-recent holder A variable that holds the latest value from a set of values that is
being gone through, and a variable that holds the latest input value.

Fixed value A variable that keeps its value throughout the program.

One-way flag A variable that can have only two values and once its value has
been changed, it cannot get its previous value back again.

Follower A variable that always gets its value from another variable, that is,
its new values are determined by the old values of another variable.

Gatherer A variable that collects the values of other variables. A typical
example is a variable that holds the sum of other variables in a
loop, and thus its value changes after each execution of the loop.

Organizer A data structure holding values that can be rearranged is a typical
example of the organizer role. For example, an array to be sorted
in sorting algorithms has an organizer role.

Container A data structure into which elements can be added or from which
elements can be removed.

Walker Is used for going through or traversing a data structure.

Table 3.1. The roles of variables and their descriptions

as Bishop and Johnson [9] and Gerdt [31] describe, roles can be analyzed

automatically using data flow analysis and machine learning techniques.

As reported in [85], Sajaniemi identified nine roles that cover 99% of

all variables used in 109 novice-level procedural programs. Currently,

based on a study on applying the roles in object-oriented, procedural and

functional programming [87], a total of 11 roles are recognized. These roles

are presented in Table 3.11. Note that the three last roles shown in the

table are related to data structures.

3.2.1 An Example

Figure 3.1 shows a typical implementation of Selection sort in Java. There

are five variables in the code with the following roles. A loop counter, that

is, a variable of an integer type used to control the iterations of a loop is

a typical example of a stepper. In the figure, variables i and j have the

stepper role. Variable min stores the position of the smallest element found

1See the RoV Home Page (http://www.cs.joensuu.fi/~saja/var_roles/) for a
more comprehensive information on roles.
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Figure 3.1. An example of stepper, temporary, organizer and most-wanted holder roles in
a typical implementation of Selection sort

so far from the array and thus has the most-wanted holder role. A typical

example of the temporary role is a variable used in a swap operation.

Variable temp in the figure demonstrates the temporary role. Finally, data

structure numbers is an array that has the organizer role.

3.3 The Link Between RoV and PC

RoV were introduced as a concept to help novices learn programming. Al-

though some work on RoV has been linked to theoretical PC research (e.g.,

Kuittinen and Sajaniemi’s study [55] draws on Pennington’s work [70]),

the author is not aware of any studies about further explicit connection

between the two, nor further application of RoV to theoretical PC. Auto-

matic role detection tools, such as [9], [29] and [31] can correspondingly

be considered as related to practical PC research field. In this section, we

discuss how RoV can serve as beacons in PC.

In the previous section, we presented the definition of critical lines and

plan-like/unplan-like programs as introduced by Soloway and Ehrlich [91].

Figure 3.2 shows the two programs in Algol language which Soloway and

Ehrlich used in their study on PC [91]. The two programs are essentially

identical except for lines 5 and 9. The Alpha program (on the left side

of the figure) is a maximum search plan and the Beta program (on the

right side) is a minimum search plan. In the study, these programs were

shown to expert programmers (41 subjects) three times (each time for 20

seconds). On the first trial, the programmers were asked to recall the

program lines verbatim as much as they could. On the second and third
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Figure 3.2. Plan-like and unplan-like programs used in Soloway and Ehrlich PC study [91]

trials, the programmers were asked to correct or complete their recall of

the previous trial. The corrections/additions were made using different

color pencil each time which made it possible to track the changes carried

out on each trial. The programmers were expected to recall the Alpha

program earlier, since it is a plan-like program. In the Beta program, the

variable name (max) does not reflect its function, which is a minimum

search function. Therefore, the program violates the discourse rule of

using proper variables names and thus is considered as an unplan-like

program. In their study, Soloway and Ehrlich focused on lines 5 and 9,

as they are the critical lines of these programs. The results showed that

the programmers recalled significantly more critical lines earlier from the

Alpha program than the Beta program. The conclusion was that plan-like

programs help programmers in the PC task and that critical lines are

important in the process.

Roughly speaking, line 9 in Figure 3.2 and lines 4 and 5 in Figure 3.1

are identical. They both make a comparison between the currently encoun-

tered number and the minimum/maximum value of an array of numbers

encountered so far. They then store the value of the current number into

the variable holding the minimum/maximum value, if it is smaller/larger

than the current value of that variable. As illustrated in Figure 3.1, vari-

able min in line 5 has the most-wanted holder role. Therefore, since line

9 in Figure 3.2 is a critical line, most-wanted holder role can also be con-

sidered as a critical line (or a beacon) in a search plan. In addition, as

discussed above, Brooks [10] regards the presence of a swap operation as a

beacon in sorting functions. Swap operations typically include a temporary

role and thus this role can be regarded as part of the beacon in the example

of Figure 3.1. As we will discuss in this thesis, RoV have an important

part in our method in automatic recognition of algorithms. Specifically, for

example, the presence of the most-wanted holder role is a strong indicator
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(i.e., beacon) in recognizing Selection sort algorithm implementations.

As discussed in Chapter 2, in a study on effects of teaching RoV in

elementary programming courses Kuittinen and Sajaniemi [55] found

that “the teaching of roles seems to assist in the adoption of programming

strategies related to deep program structures, i.e., use of variables”. This

is a clear indication of applicability of RoV in PC. Furthermore, since 11

roles can cover all variables in novice-level programs [85], as a tool to be

used in PC, RoV are inclusive and comprehensive as well.

From the above discussion, we hypothesize that RoV can be used in PC

tasks as beacons. In the case of AR, we will show it in this thesis. As

RoV should first be learned before they can be utilized as beacons, one can

argue that roles may place a burden on programmers in PC tasks instead

of helping them. However, as Sajaniemi and Navarro argue [84], RoV are

tacit knowledge of experts. Thus, for experts, roles are somehow already

familiar and do not require a huge effort to be learned. In case of novices,

it can be logically concluded from the Sajaniemi’s and Navarro’s argument,

that novices will (tacitly) adopt RoV, just like other programming skills, as

they gain more experience in programming and become experts. It should

be noted that, as discussed above, the exact same difference between

experts and novices applies with regard to other elements of PC models

as well, such as schemas, beacons, general programming knowledge and

other elements of programmers’ knowledge base.
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4. Decision Tree Classifiers and the
C4.5 Algorithm

In this chapter, we first discuss the important issues about decision tree

classifiers in general. This is followed by a brief discussion on the C4.5

decision tree classifier algorithm [77]. The issues discussed in this chap-

ter are intended to help the reader understand how decision trees work.

Readers who are familiar with these topics may skip this chapter.

4.1 Decision Tree Classifiers in General

Decision tree classifiers, also called classification trees or simply decision

trees, are used to classify different instances of a data set into appropriate

classes. Decision trees belong to supervised machine learning classification

methods [52]. In these methods, first a set of known instances, called a

training set, is introduced to the system. The system classifies each in-

stance of the set, associates each class with the attributes of each instance

and learns to what class each instance belongs. Based on what the trained

system has learned in the learning phase, it is able to classify instances of

a previously unseen set (i.e., the testing or evaluating set) in the testing or

evaluating phase [96].

Unsupervised machine learning methods use unlabeled instances. Unsu-

pervised algorithms, for example, clustering algorithms, examine a given

data set to find regularities between the instances and to group them into

meaningful clusters [39].

In a training set used to build a decision tree classifier, each instance

consists of a group of attributes that describe that instance. One of the

attributes is the class of the instance. In the learning phase, the task is to

find a function that maps from other attributes to the class attribute. In

the testing phase, the task is to assign a correct class to each instance of

the testing set. The mapping function found in the learning phase is used
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to carry out the task in the testing phase.

A decision tree consists of internal nodes (including the root node) and

leaves. Each internal node contains a test that results in splitting the

data set into subsets based on the outcome of the test. Decision trees are

constructed using the divide and conquer principle. Starting from the root

node, based on the selected attribute, the instances of a training set are

divided into two branches. This is repeated recursively for each internal

node only for those instances that have reached that node. Each leaf is

labeled with the corresponding class. The outcome of each test at each

internal node is shown on each arc from that internal node to its children.

If the internal nodes of a decision tree use a single attribute of the input

instance to determine which child to visit next, the tree is called univariate

tree. In multivariate tree, more than one attribute is tested in internal

nodes [68].

When a new instance of a set is given to a decision tree, each of its

attributes is tested at the corresponding internal nodes, starting from

the root. Depending on the outcome of the test in each internal node,

the appropriate child node of that internal node is visited next. This

is continued until a leaf is encountered and a class is assigned to the

instance. There are different issues associated with decision trees and

their performance. In what follows, we present an overview on some of

these issues.

Finding the best attribute. Different attributes of an instance have

different values in how well they are able to split the data. In tree induction

(the process of constructing a tree from the training set [68]), it is important

to select attributes that can discriminate between different classes of data

in the best possible way. The attribute that best distinguishes between

the samples of the training data will be located in the root of the tree [52].

This selection process is then repeated to select the best distinguishing

attribute for the internal nodes in a recursive manner. In the literature,

this is often referred to as finding the best split [68]. The best split improves

the accuracy of the decision tree and helps to keep its size right. To find

such an attribute, all the attributes are examined using some goodness

measure. These goodness measures are basically statistical tests and

include information gain, distance measures and Gini index, to name a

few [52, 68]. The explanation of all these measures is out of the scope of

this thesis, but information gain is discussed in more detail in relation to

the C4.5 algorithm in Appendix A.
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Finding the right size. After being built, decision trees need to be sim-

plified as they are often unnecessarily complex. Complexity is associated

with overfitting, which in turn causes generalization problem. Overfitted

trees adopt the structure of the learning data in such a detailed level that

they become very specific to that data and cannot classify instances of an

unseen data well.

It has been claimed that the quality of a decision tree depends more

on the right size than the right split [68]. There can be many different

sizes of a decision tree that are correct over the same training set, but

the smaller size is preferred. A simpler decision tree is more likely to

correctly recognize more instances of a testing set, because it can capture

the structure of the problem and the relationship between the class of

an instance and its attributes more effectively [76]. In addition to higher

accuracy, smaller trees are more comprehensible as well [49]. Choosing the

best discriminating attributes helps keep the size of a tree small. Because

the problem of finding the smallest decision tree that is consistent with

the training set is NP-complete [52, 77], selecting the right tests is very

important in generating near-optimal trees.

In his survey on automatic construction of decision trees, Murthy [68]

lists several methods for obtaining right sized trees. The most widely used

method is pruning. In pruning, first the complete tree is built. Here, the

complete tree means the tree where no splitting will improve the accuracy

of the tree on the training data. In the next step, those subtrees with

only little impact on the accuracy of the tree are removed. There are

many variations of pruning methods, and it has been shown in different

studies that there is no single best pruning method that is superior to the

others [52, 68]. Another method is called stopping or prepruning, where

the instances of the data set are not subdivided any further at some point.

An interesting approach to pruning is to combine the tree building phase

and the pruning phase. In this approach, if it appears that a node will

be removed in the pruning phase, it will not be expanded in the building

phase in the first place. This will result in saving a noticeable amount of

time [52].

There are several other issues related to decision trees, such as how

to deal with missing attributes, how to measure the quality of decision

trees, etc., that are out of the scope of this thesis. To sum up, decision

trees are powerful, simple and easily interpretable classifiers. Because of

these properties decision trees are used in many different fields, including
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statistics, pattern recognition, decision theory, signal processing, machine

learning and artificial neural networks [68].

4.2 The C4.5 Decision Tree Classifier

We chose the C4.5 algorithm [77] to build the decision tree, because it

is a widely used and the most well-known algorithm for doing so, and

has a good combination of error rate and speed [58]. The C4.5 algorithm

preserves the advantages of its predecessor, the ID3 algorithm [76], but is

further developed in many regards. It provides an accurate, readable and

comprehensible model about the structure of data and the relationship

between the attributes and this structure. More details on how the C4.5

algorithm deals with the important issues related to building decision

trees presented in the previous section can be found in Appendix A.
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5. Overall Process and Common
Characteristics

We developed two different methods for recognizing algorithms: the schema

detection (SDM) and the classification (CLM). Moreover, we developed

a method that uses a combination of these two. This section gives an

overview of these methods and describes the processes that are commonly

used for recognizing different algorithms in general, including detecting al-

gorithmic schemas, evaluating the estimated accuracy of the classification,

constructing a decision tree classifier and using the constructed decision

tree in recognizing previously unseen instances. This discussion is generic

and does not detail how these processes work for particular algorithms.

This is the topic of the next chapter. Instead, the common characteristics

that are used for all types of algorithms are listed in detail.

5.1 Overall Process

Constructing a decision tree for classifying previously unknown instances

typically consists of three main phases: constructing a tree using a set of

training data instances, evaluating the estimated accuracy of the classifi-

cation and using the tree to classify the instances of an unseen data set.

These phases are illustrated in Figures 5.1 and 5.2: the first two phases

in 5.1 (Steps 3 and 4), and the third phase in 5.2 (Step 3). These figures

show the combination of SDM and CLM, which we abbreviate as CSC.

Figure 5.1 includes four steps represented by rectangles with white

background. The process starts with detecting schemas and the related

beacons from an input program. This step identifies algorithmic schemas

and extracts the code that implements the target algorithm from the given

program so that only this code is further processed and the irrelevant

application data processing code is left out of the process. In order to

identify schemas, we compute the schema-related beacons in this step as
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well (we will get back to this in Chapter 6). If this step detects the schemas

successfully, its output is the implementation part of the algorithm from

the original program, otherwise the same original input program.

Next, the characteristics and other beacons are computed and stored

in a database as a vector representation of the analyzed program. These

vectors are labeled by their correct type (denoted by the dashed arrow

in the figure) and given to the C4.5 algorithm as learning data, based

on which a decision tree is constructed (Step 3). In the final step, the

estimated accuracy of the classification is evaluated using leave-one-out

cross-validation technique.

It should be noted that Steps 3 and 4 in Figure 5.1 are independent from

each other. This means that before we build a classification tree, we can

evaluate the estimated accuracy of the classification. Note also that Steps

1 and 2 of the figure are executed as many times as there are instances in

the data set, whereas Steps 3 and 4 only once.

Figure 5.2 shows how the constructed decision tree is used to classify

the instances of a previously unseen data set. The steps with white back-

ground are identical with those with the same name in Figure 5.1, with

the differences pertaining to the steps represented by gray rectangles. The

step denoted by 0 starts the process. It is a preprocessing step performed

as a part of input data validation, where input programs are automatically

tested using an automatic assessment system that gives feedback about

the correctness of the program in terms of black-box testing. If a program

does not pass the tests in this step, it will not be further analyzed. Cor-

rectly working implementations are further processed in order to detect

their schemas and extract and store their characteristics and beacons as

discussed above.

Step 3, “Recognize unseen instances”, gets the classification tree con-

structed in Figure 5.1 and the unlabeled vector representations as an

input. It assigns a type to each instance by traversing the classification

tree according to the characteristics and beacons of that instance.

The CSC, as illustrated in Figure 5.1, is described in more detail in

Publication VI and Publication VII. Publication II discusses the CLM, that

is, Steps 2, 3 and 4 of the figure in more detail without the SDM. A more

detailed description of the SDM can be found in Publication V. Finally,

Publication IV discusses the process depicted in Figure 5.2 in more detail

without the SDM.
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Numerical characteristics Description
N1 Total number of operators.
N2 Total number of operands.
n1 Number of unique operators.
n2 Number of unique operands.
N Program length (N = N1 + N2).
n Program vocabulary (n = n1 + n2).
NAS Number of assignment statements.
MCC Cyclomatic complexity (i.e., McCabe complexity) [63].
LoC Lines of code.
NoV Number of variables.
NoL Number of loops.
NoNL Number of nested loops.
NoB Number of blocks.
Truth value characteristics
Recursive Whether the algorithm uses recursion.
Tail recursive Whether the algorithm is tail recursive.
Roles of variables Roles of the variables in the program.
Auxiliary array Does the algorithm use an auxiliary array (for the

algorithms that use arrays in their implementation).
Structural characteristics
Block/loop information Information about blocks and loops, their starting and

ending lines, length and interconnection between them
(how they are positioned in relation to each other).

Loop counter information Information about initializing and updating the value
of loop counters. This allows us to determine, as an
example, incrementing and decrementing loops.

Dependency information Direct and indirect dependencies between variables

Table 5.1. The numerical, truth value and structural characteristics

5.2 Common Characteristics

We define characteristics as the shared features of all algorithm implemen-

tations. Beacons, on the other hand, are algorithm-specific features that

distinguish a particular algorithm from others.

Table 5.1 shows the characteristics that we compute from given programs.

We divided the characteristics into three groups: numerical characteristics,

truth value characteristics and structural characteristics1. The numerical

characteristics are commonly used software metrics that denote features

of the code expressed as positive integers. The first six characteristics

shown in the table are Halstead’s metrics [35]. Structural characteristics

allow us to identify language constructs and different patterns as well as

algorithm-specific beacons.

The characteristics of Table 5.1 were selected based on manual analyses

of many different types of sorting algorithms in the early stages of our work,

and as a result of literature reviews especially on program similarity eval-

uation techniques discussed in Chapter 2. These characteristics include

1In Publication I and Publication II, the last two groups are named as “descriptive
characteristics” and “other characteristics”.
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various metrics, such as size metrics, control-flow metrics (the cyclomatic

complexity) and data-flow metrics (roles of variables), and thus represent

different program aspects. We posited a hypothesis that these character-

istics, along with the algorithm-specific beacons (that will be discussed

in Chapter 6) would be sufficient to recognize different sorting algorithm

implementations. As we developed our method further to cover variations

of sorting algorithms as well as other fields of algorithms, we discerned

several other useful beacons that, in addition to these characteristics, are

computed from the given code and used in the process.

We implemented a tool named Aari (an Automatic Algorithm Recog-

nition Instrument) that computes all the schemas, characteristics and

beacons for programs written in Java. The characteristics and related

beacons are stored in a database and thus, each algorithm is represented

by an n-dimensional vector in the database where n is the number of char-

acteristics and beacons. We call these characteristic and beacon vector

representations the technical definitions of the corresponding algorithm

implementations.

In our method, roles of variables can be considered as both characteristics

and beacons. Roles are characteristics, because they are detected for all

variables in all given programs and in this sense, are common features of

all algorithms. Roles are also beacons in the sense that, as we will discuss

in Chapter 6, existence of particular roles in implementations of particular

types of algorithms is investigated as algorithm-specific features to distin-

guish these algorithms from others. It should also be noted that we use

roles as truth value characteristics, as we are interested to know whether

or not a particular role appears in a given algorithm implementation. Roles

may also be used as numerical characteristics (e.g., how many variables

have a particular role in an input program). This would provide us an

additional distinguishing feature when differentiating between algorithm

implementations that use different numbers of a particular role.

5.2.1 Computing Characteristics

In this subsection, we explain how some numerical characteristics are

computed.

Salt [88] and Miller et al. [66] discuss strategies for calculation of Hal-

stead’s metrics for Pascal and Ada programs. We compute operators as

consisting of all arithmetic, relational and logical operators as well as

keywords and method calls. Likewise, identifiers (variables and all other
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identifiers other than keywords), constants, literals and type specifiers are

computed as operands. These are computed by scanning source code.

The cyclomatic complexity [63] is a measure of how many paths there are

through a program. It is defined with reference to the control flow graph

of the program and is calculated as CC = E −N + P , where E represents

the number of edges of the graph, N is the number of nodes of the graph,

and P the number of connected components. As a software metric, the

cyclomatic complexity can be computed as CC = “The number of decision

points (i.e., if statements or conditional loops)” + 1 [63].

We use the following strategy for computing dependency information

between variables. Variable i is directly dependent on variable j, if i

gets its value directly from j. If there is a third variable k on which j is

directly or indirectly dependent, i also becomes indirectly dependent on k.

A variable can be both directly and indirectly dependent on another one.

The way how the other characteristics of Table 5.1 can be computed is

straightforward. We will discuss in the next section, how roles of variables

are detected from a program.

5.3 The Tool for Detecting Roles of Variables

A tool developed by Bishop and Johnson for automatic detection of roles of

variables [9] is integrated into Aari. The tool detects roles using program

analysis techniques, particularly program slicing and data flow analysis.

A set of example programs was used to analyze how each role can be

defined in terms of the way a variable is assigned and used. Based on

comparison of these assignments and usage conditions with the roles, a

set of conditions, as shown in Table 5.2, were identified based on which

role assignments can be checked. To detect roles, all occurrences of each

variable in the program are captured first. The outcome of this analysis is

the program slice for each variable. This is followed by data flow analysis

for each program slice. The tool then compares the assignments and usage

conditions of each variable of the target program with those predefined

conditions. If the user has provided a role for a variable, the tool checks

whether the corresponding conditions for the provided role are met by

the corresponding variable. If so, the tool confirms that the role provided

by the user is correct. Otherwise, the tool prints the role it believes to

be correct and justifies its decision by giving an appropriate message. If

there is no role suggested by the user, the tool simply prints the role it
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Rule Description
A Variable is assigned in a loop.
B Variable is used in its assignment loop.
C Variable is used conditionally in its assignment loop.
D Variable is used directly for its assigning loop condition.
E Variable is used indirectly for its assigning loop condition.
F Variable is assigned in “for” loop statement.
G Variable is used directly in the program.
H Variable is assigned in a branch for which it is part of the condition.
I Variable appears directly on both sides of assignment statement.
J Variable appears indirectly on both sides of assignment statement.
K Variable is directly toggled within a loop.
L Variable is indirectly toggled within loop.
M Variable is incremented/decremented within a loop.
N Variable is used outside of loop in which it is assigned.
O Variable is assigned in loop before it is used in that loop.
P Variable is used conditionally for a loop outside of its assignment loop.
Q Variable appears in array organizing type statement.
R Variable is of type array.
S Variable is assigned within a loop with a combination of other

variables, values and operators.
T Variable is assigned with the output from a method call.
U Variable is assigned with a value resulting from instantiation of

a new object or directly with boolean value.

Table 5.2. The rules based on which roles of variables are detected. See [9]

considers the most appropriate for the variable in question. For details on

the assignments, usage conditions and how the role detector works see [9].

Bishop and Johnson developed their role detector for educational pur-

poses. Therefore, the tool allows users to provide a role for a variable

and check if the tool agrees with them. Although providing a role for a

variable is optional, special tags along with the name of the variable must

be provided for each variable in a program, otherwise the tool will not

consider the variable. During our project, we improved the tool in this and

other regards to make the process of detecting roles fully automatic and

make it more suitable for our purpose.

In addition, we tuned the tool up in order to improve its performance.

For example, in some implementations that used a Do-While loop, the tool

did not detect the conditions for a one-way flag role correctly. We fixed

the code so that the role was recognized correctly in these situations. As

another example, a temporary role typically appears in swap operations,

which in turn is commonly used in sorting algorithms. In programs where

a swap operation was performed in a separate method, the temporary role

was sometimes falsely recognized as a fixed value by the role detector. To

solve the problem, we automatically removed the method calls to swap

operations in a preprocessing step, and inlined the corresponding swap

method body in the target programs. As the result, temporary roles were

38



detected much more accurately. We developed a way to provide the afore-

mentioned required special tags automatically and we improved the tool

in many ways in order to get detected roles directly out from the tool for

further processing. We also carried out several minor detail modifications.
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6. Schemas and Beacons for an
Analyzed Set of Algorithms

To show the performance of our method, we applied the method to var-

ious algorithms, including sorting, searching, heap, basic tree traversal

and graph algorithms. We analyzed a set of implementations of these

algorithms to identify their algorithmic schemas (which we also call pro-

gramming schemas or just schemas) and discern their algorithm-specific

beacons. To make it easier to follow the discussion, the pseudo-code exam-

ples for these algorithms are presented in Appendix B. These schemas and

beacons are the topics of this chapter. We will discuss the data sets and

empirical studies in Chapter 7.

6.1 Algorithmic Schemas

6.1.1 Schemas for Sorting Algorithms

We present the schemas for Bubble sort, Insertion sort, Selection sort,

Quicksort and Mergesort algorithms. These algorithms form two clearly

different groups, the first group consisting of Bubble sort, Insertion sort

and Selection sort, and the second one of Quicksort and Mergesort. From

these, especially the first group has very similar internal structures. This

similarity indicates that we should be able to differentiate between closely

related algorithms. To complicate the matter further, we discuss the

schemas of two student-implemented variations: Insertion sort WS (Inser-

tion With Swap is a variation of Insertion sort where instead of shifting

the elements in the inner loop, they are swapped) and Selection sort WILS

(Selection With Inner Loop Swap, a variation of Selection sort that swaps

each element that is in a wrong position compared to the element pointed

by the loop counter of the outer loop, instead of storing its position and

swapping it once in the outer loop. See Figure 6.1 for this difference). We
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will get back to these variations in Chapter 7.

�����������
�� � � � � � �����������
������� �
��������� ���!���	�
"�
����� ��##$%� � � ��������� ���!���	�
"�
����� ��##$%�
� ���������#� ���!���	�
"�
��� ��##$%� ������� �
� ������	�
)�*�!���	�
)�*$%� ���������#� ���!���	�
"�
��� ��##$%
� �
�������	�
)�* � �����	�
)�*�!���	�
)���*$%�
� ��	�
)�*�����	�
)�* � ������� �
� ��	�
)�*����
�� � -�
� -� � -�
� -� �
�������	�
)���* �
-� ��	�
)���*�����	�
)�* �
� ��	�
)�*����
�� �
� � � � � � � -�
� 1�"�,"��$�� � � � � � 1�"�,"�	$�

Figure 6.1. Fig. 6.1a shows a typical implementation of Selection sort WILS that uses
swap in the inner loop instead of the outer loop. Fig. 6.1b illustrates a typical
implementation of a standard Selection sort

We defined the schemas illustrated in Figures 6.2 and 6.3 for the non-

recursive (Bubble sort, Insertion sort, Selection sort, Insertion sort WS

and Selection sort WILS) and recursive (Quicksort and Mergesort) sorting

algorithms respectively1. The nesting relationship between the loops and

blocks are depicted by the indentations.

We define an implementational definition of an algorithm as the abstrac-

tion of its implementation, which reflects the functionality and structure

of the algorithm. Implementational definitions do not include implemen-

tation details, such as the type of loops or variables, but only high level

structural and functional features of algorithms. In Publication III, we

have discussed the implementational definitions for these sorting algo-

rithms. For example, implementations of Bubble sort include two nested

loops and a swap operation performed in the inner loop. Moreover, the two

elements compared in each pass are adjacent. The schemas illustrated in

Figures 6.2 and 6.3 further abstract these implementational definitions.

As Figure 6.2 shows, the schemas of Bubble sort, Insertion sort WS

and Selection sort WILS are similar. We use algorithm-specific beacons

to differentiate between them. Implementations of Insertion sort WS

are distinguished using the following beacons: the outer loop of the two

nested loops used in these implementations is incrementing and the inner

loop decrementing (this is the way Insertion sort algorithms and their

variations are commonly implemented). Moreover, the inner loop counter

is initialized to the value of the outer loop counter. The beacon that

differentiates between implementations of Bubble sort and Selection sort

WILS is that, as discussed above, in Bubble sort implementations, the two

compared elements in the inner loop in each pass are adjacent, whereas

1Although it is feasible to write, as an example, a recursive Bubble sort or non-
recursive Quicksort, it is not a common practice and did not occur in our data.
Moreover, it can be argued that whether, for example, a non-recursive Quicksort
is essentially the same algorithm as the commonly known recursive Quicksort.
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this is not the case in Selection sort WILS implementations. We will

discuss beacons for sorting algorithms in Subsection 6.2.1.

For more details on the schemas of these sorting algorithms see Publica-

tion V and Publication VI.
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Figure 6.2. Algorithmic schemas for the non-recursive analyzed sorting algorithms
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Figure 6.3. Algorithmic schemas for Quicksort and Mergesort. The three dots shown in
the Mergesort schemas indicate that merging may have other schemas as well

6.1.2 Schemas for Searching, Heap, Basic Tree Traversal and
Graph Algorithms

In a different study, we analyzed implementations of several other algo-

rithms including searching, heap, basic tree traversal and graph algo-

rithms for their schemas. These schemas are illustrated in Figure 6.4.

Many of the algorithms shown in Figure 6.4 have well-established recur-

sive as well as non-recursive versions. For these algorithms, the analyzed

version is indicated in the parentheses after their name. Furthermore, in-
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Figure 6.4. The schemas for the analyzed algorithms

dentations indicate the nesting relationship between the loops and blocks.

Also note that the schemas of Figure 6.4 show abstract typical implemen-

tations of the algorithms and that slightly different implementations are

also possible. For example, some implementations of non-recursive heap

remove algorithm might perform LEFT_CHILD_INDEX_SEARCH op-

eration once before the loop and again at the end of the loop. As another

example, some implementations of Dijkstra’s algorithm might have more

than one loop within the outer loop. We have not shown these details in

the schemas of Figure 6.4, but considered them in the implementation of

Aari system. These schemas and the way they are computed are discussed

in more detail in Publication VII.

6.1.3 Detecting Schemas

The schemas of Figures 6.2, 6.3 and 6.4 are stored in the knowledge base

of the system as illustrated in the figures. The target program is analyzed

to find the schemas of the same abstract level. Schemas and subschemas

are examined and their elements, including loops, recursion, specific op-

erations, etc., are analyzed. Execution order and nesting relationships
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between these elements are also investigated. When searching for the

schemas and subschemas, details such as type of loops or irrelevant as-

signments are not taken into consideration. For example, when searching

for loops, While loops and For loops are treated the same. As another

example, when a swap operation is searched, three consecutive assignment

statements that usually constitute a swap operation are examined, ignor-

ing possible assignment statements that may appear before or after these

statements. After scanning the program and detecting the schemas and

subschemas, they are matched against those from the knowledge base to

identify the algorithm in question.

When two or more algorithms have similar schemas at the abstract

level illustrated in Figures 6.2, 6.3 and 6.4, we need to investigate these

similar schemas at lower level to be able to distinguish between them.

Our technique to do so is to examine beacons. For example, as discussed

above, the schemas of Bubble sort, Insertion sort WS and Selection sort

WILS, which are similar as shown in Figure 6.2, are identified using the

following algorithm-specific beacons: in implementations of Insertion sort

WS, the outer loop of the two nested loops used in these implementations

is incrementing and the inner loop decrementing. Moreover, the inner loop

counter is initialized to the value of the outer loop counter. Likewise, in

Bubble sort implementations, the two compared elements in the inner loop

in each pass are adjacent, whereas this is not the case in Selection sort

WILS implementations. These beacons are recognized by examining how

the loop counter variables of the outer and inner loop are initialized, how

their values are changed and how the elements of an array are compared

within the inner loop. Algorithm-specific beacons are discussed in the next

section.

6.2 Beacons

6.2.1 Beacons for Sorting Algorithms

We discerned a set of beacons specific to the sorting algorithms listed in

Subsection 6.1.1. These beacons can be utilized to separate implementa-

tions of these algorithms from each other, as well as to distinguish between

implementations of these algorithms and implementations of algorithms

from other fields. They help both in the schema detection process as well as
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in building a classification tree along with the characteristics discussed in

the previous chapter. In the following, we present a list of the beacons that

are selected by the C4.5 algorithm for constructing a classification tree

for recognizing the sorting algorithms and their variations. Furthermore,

the algorithm that each beacon primarily indicates is presented, along

with a brief explanation on how each beacon is detected from source code.

A complete list of all the computed beacons and their description can be

found in Publication VI.

• MVH (Most-Wanted Holder): whether the implementation of the algo-

rithm includes a variable appearing in MWH role. MWHmainly indicates

the implementations of Selection sort. Existence of a MWH role in code

is examined by going through all the roles detected by the role analyzer.

• One_way_flag: whether the implementation includes a variable appear-

ing in one-way flag role. This mainly indicates the implementations

of Bubble sort WF (Bubble sort With Flag, an optimized version which

terminates if no swap is performed in the inner loop). Like for MWH,

we can examine the existence of a one_way_flag role from all the roles

detected by the role analyzer.

• Swap_inner_loop: whether a swap operation is performed in the inner

loop of the two nested loops. This mainly indicates the implementations of

Bubble sort, Bubble sort WF, Insertion sort WS and Selection sort WILS.

This beacon is analyzed by detecting a swap operation and examining

that it is located within the inner loop.

• OIID (Outer loop Incrementing Inner Decrementing): whether from the

two nested loops, the outer loop is incrementing and the inner decrement-

ing. This mainly indicates the implementations of Insertion sort and

Insertion sort WS. We can investigate the existence of this beacon using

the structural characteristic “Loop counter information”, as described in

Table 5.1.

• IITO (Inner loop counter Initialized To Outer loop counter): whether from

the two nested loops, the inner loop counter is initialized to the value

of the outer loop counter. This mainly indicates the implementations of

Insertion sort and Insertion sort WS. Existence of this beacon is examined
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using the structural characteristic “Dependency information” between

variables, as described in Table 5.1.

• Shift_inner_loop: whether a shift operation is used in the inner loop

of the two nested loops. This mainly indicates the implementations of

Insertion sort. In order to detect this beacon, we look for a shift operation

(i.e., moving the elements of an array to the right until the insertion

point is reached) that takes place within the inner loop.

• Efficient_pivot: whether the implementation includes efficient pivot

selection. This mainly indicates the implementations of Quicksort EP

(Quicksort with Efficient Pivot selection, which uses more efficient pivot

selection strategy than simply from the left or right end of the given

array). This beacon is analyzed by examining that the right-hand side

of the pivot’s assignment statement includes investigating the middle

index or the median of the first, last and middle items of the given array.

6.2.2 Beacons for Searching, Heap, Basic Tree Traversal and
Graph Algorithms

For the analyzed searching, heap, basic tree traversal and graph algorithms

we found the following set of beacons that are used by the corresponding

classification trees to identify implementations of these algorithms. For a

list of all the computed beacons see Publication VII.

• MPSL (MidPoint Search in a Loop): whether the implementation of

the algorithm includes searching midpoint of an array within a loop.

This mainly indicates implementations of non-recursive binary search

algorithm. To examine this beacon we analyze the right-hand side of

the assignment statement within a loop to make sure that it includes

searching for the midpoint of an array, for example, mid = (low+high)/2.

• MPBR (MidPoint Before Recursion): whether the implementation in-

cludes searching midpoint before two recursive calls. This mainly in-

dicates implementations of recursive binary search algorithm. This is

investigated like for the MPSL beacon, but looking for it to occur before

two recursive calls rather than within a loop.
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• TSRC (Two Sequential Recursive Calls): whether the implementation

includes two sequential recursive calls. This mainly indicates implemen-

tations of preorder and postorder tree traversal algorithms and separates

these implementations from implementations of inorder traversal algo-

rithm. We examine that the two recursive calls occur one after the other;

in inorder traversal algorithm, there exist an statement between the two

recursive calls.

• TPNI (Two Parent Nodes Index search): whether the implementation

includes searching the indexes of two parent nodes before and after a

loop. This mainly indicates implementations of heap insertion algorithm.

Detecting this beacon includes identifying computing the index of the

parent of a given node with index i, which is i/2.

• LRCI (Left and Right Child node Index search): whether the implementa-

tion includes searching the indexes of the left and right child nodes within

a loop. This mainly indicates implementations of heap remove algorithm.

This beacon is detected by analyzing LEFT_CHILD_INDEX_SEARCH

and RIGHT_CHILD_INDEX_SEARCH, which for a node with index

i are 2i and 2i+ 1, correspondingly. Some implementations compute the

index of the right child of a node by simply incrementing the index of its

left child by one, instead of computing it using the index of the node2.

• DUTHL (Distance Update within THree nested Loops): whether the im-

plementation includes distance updating performed within three nested

loops. This mainly indicates implementations of Floyd’s algorithm. Exis-

tence of this beacon is examined by analyzing the occurrence of the oper-

ation DISTANCE_UPDATING within three nested loops. More specif-

ically, we investigate whether the given implementation includes the

following statements in the nested loops: if v.d > u.d+w(u, v) then v.d =

u.d + w(u, v). That is, the process of DISTANCE_UPDATING for an

edge (u, v) involves examining whether the so far found shortest path to

the vertex v can be improved by going through the vertex u, and updating

the shortest path to v if this is the case.

Some of these beacons may seem generic and likely to occur in implemen-

2If the tree root is at index 0, the parent, left child and right child of each node
is located in (i − 1)/2, 2i + 1 and 2i + 2. We have considered these cases in the
implementation for detecting the beacon and the corresponding schema as well.
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tations of the other algorithms as well. For example, one could say that

searching midpoint of an array (in the MPSL and MPBR beacons found

in non-recursive and recursive binary search algorithms) may also exist

in implementations of Mergesort (in the code for dividing the array into

two halves) and Quicksort (for selecting the middle index of the array as a

pivot). Likewise, it could be argued that “two sequential recursive calls”

(the beacon TSRC found in preorder and postorder traversal algorithms)

are also present in Mergesort and Quicksort implementations. However,

it should be noted that these beacons are closely related to the schemas

illustrated in Figure 6.4 and their values are set to true only when these

schemas are detected. On the other hand, these schemas depict implemen-

tations of the corresponding algorithms at a very high-level of abstraction

and do not show the code related to the details that could be utilized to

detect them. In the implementation of Aari system, various checks have

been done to prevent the values of the aforementioned beacons to be falsely

set to true in the case of the other algorithms. These checks are essential

in order to identify true value of those beacons that may seem to be shared

by several algorithms, as discussed above. For example, in the case of

the MPSL beacon, we examine that the algorithm is not recursive and

that the midpoint search occurs within a loop. For the MPBR beacon, the

relationship between the block of the midpoint search and the block of the

recursive call is checked. Similarly, for the TSRC beacon, by investigating

the code fragment before and after the recursive calls, we make sure that

the schemas of Mergesort and Quicksort (as shown in Figure 6.3) are not

in question before setting the value of this beacon to true.
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7. Empirical studies and Results

In this chapter, we summarize the empirical studies conducted to evaluate

the performance of our methods throughout their development processes.

For each empirical study, we only present brief highlights of the results,

referring the reader to the publication where the results are published.

We first present an overview of the data sets used in the empirical studies,

as well as a brief description of the objectives and contributions of the

empirical studies and the way they are related to each other.

The layout of the tables that are used for presenting the results of the

empirical studies in this chapter are not necessarily identical to those

that present the same results in the publications. We have changed the

appearance of some tables in order to make them consistent and give a

logical and understandable summary here.

7.1 An Overview of the Data Sets and Empirical studies

7.1.1 The Data Sets

We collected three different data sets for our empirical studies (MS, SUB,

and MIX). These data sets are shown in the second column of Table 7.1.

The first data set was collected from various learning resources including

textbooks and the Web, and a few instances were from students’ sub-

missions. It mainly consists of the implementations of five basis sorting

algorithms, as indicated in Table 7.1. The category “Others” includes the

implementations of other sorting algorithms, such as Heapsort, Shellsort

and the hybrid implementations of, for example, Quicksort-Insertion sort,

as well as the implementations of algorithms from other fields, such as bi-

nary search, etc. The second data set was collected from genuine students’

sorting algorithm implementations in a first year data structures and algo-
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First data set
Algorithm MS MS1 MS2 MS3

Bubble sort 41 41 41 Bubble: 26
Bubble WF: 15

Insertion sort 52 52 Insertion: 43 Insertion: 43
Insertion WS: 9 Insertion WS: 9

Selection sort 43 43 Selection: 43 Selection: 43
Selection WILS: 0 Selection WILS: 0

Mergesort 34 34 34 34
Quicksort 39 39 39 Quicksort: 22

Quicksort EP: 17
Others 78 - -
Total 287 209 209 209
Second data set
Algorithm SUB SUB1 SUB2

Bubble sort 29 29 Bubble: 14
Bubble WF: 15

Insertion sort 17 17 17
Insertion WS 10 10 10
Selection sort 36 36 36
Selection WILS 13 13 13
Mergesort 20 20 20
Quicksort 34 34 Quicksort: 15

Quicksort EP: 19
Others 33 - -
Total 192 159 159
Third data set
Algorithm MIX Abbreviation
Non-recu. BinSearch 36 NBS
Recursive BinSearch 13 RBS
Depth First Search 15 DFS
Inorder Traversal 23 InT
Preorder Traversal 24 PreT
Postorder Traversal 22 PostT
Heap Insertion 22 HeapI
Heap Remove 21 HeapR
Dijkstra’s algorithm 23 Dijkstra
Floyd’s algorithm 23 Floyd
Total 222

Table 7.1. The data sets and their subsets used in different empirical studies. In the
third data set, depth first search algorithm is recursive and heap insertion
and remove are non-recursive. Insertion WS: Insertion With Swap, Selection
sort WILS: Selection With Inner Loop Swap, Bubble sort WF: Bubble sort
With Flag, Quicksort EP: Quicksort with Efficient Pivot selection. MS: Multi-
Source algorithm implementations (collected from textbooks and websites),
MS1: Multi-Source sorting algorithm implementations collected from MS,
MS2: Multi-Source sorting algorithm implementations including Insertion WS
and Selection WILS variations collected from MS1, MS3: Multi-Source sorting
algorithm implementations including Insertion WS, Selection WILS, Bubble WF
and Quicksort EP variations collected from MS2, SUB: Submissions (authentic
students’ submissions), SUB1: Submissions sorting algorithm implementations
collected from SUB, SUB2: Submissions sorting algorithm implementations
including Bubble WF and Quicksort EP variations collected from SUB1, MIX:
algorithms from different fields (collected from textbooks and websites)

rithms course. “Others” consists of the implementations of other standard

algorithms (Shellsort and Heapsort), the implementations of less-known

inefficient sorting algorithms (such as Bozo sort, Bogosort and Gnome

sort) and the implementations of student-made inefficient algorithms (see

Publication III for more details on these variations). Finally, we collected
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the third data set from textbooks and websites.

Table 7.1 also shows several subsets of these data sets we used in differ-

ent empirical studies (the third, fourth and fifth columns). These subsets

are formed by further analyzing their corresponding main data sets. There

are two reasons for using these subsets: first, to select a group of algo-

rithms we want to examine, for example, MS1 (for the abbreviations, see

the caption of the table) selects only the implementations of the five sorting

algorithms from the data set MS; second, to differentiate between the

variations of the algorithms that we need to analyze. These variations

are Insertion WS (Insertion With Swap, is a variation of Insertion sort

that swaps the elements in the inner loop, instead of shifting them) and

Selection sort WILS (Selection With Inner Loop Swap, a variation of Se-

lection sort that swaps each element that is in a wrong position compared

to the element pointed by the loop counter of the outer loop, instead of

storing its position and swapping it once in the outer loop). In addition,

we distinguish between two optimized sorting algorithms and their basic

versions: Quicksort EP (Quicksort with Efficient Pivot selection, which

uses more efficient pivot than simply from the left or right end of the

given array) and Bubble sort WF (Bubble sort With Flag, an optimized

version which uses a boolean value to indicate whether a swap operation is

performed in the inner loop, and terminates if not). The aim is to identify

these variations and versions in students’ work and give useful feedback

on them. For more details, see Publication VI. As an example, the subset

MS3 further distinguishes these variations and optimized versions from

the data set MS, as Table 7.1 illustrates.

We gathered these three main data sets and formed the related subsets

presented in Table 7.1 during our research in order to evaluate the perfor-

mance of our methods, since no data set exists or is publicly available for

this purpose.

More details on the first, second and third data sets can be found in

Publication I, Publication III and Publication VII respectively.

7.1.2 The Publications and Empirical studies

Table 7.2 outlines the topic of the publications and summarizes the related

empirical studies. For each empirical study, the data set and the main

contribution is presented. In the following sections, we present the main

results of each empirical study and explain how it improves the previous

one (where applicable). The results of the empirical study discussed in
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Pub. Data Description
I MS Analysis of sorting algorithm implementations and manual

selection of the best characteristics and beacons. Developing
a method to recognize implementations of a testing set
based on the selected characteristics and beacons. Using a
hold-out method to evaluate the performance of the method.

II MS1 Using the C4.5 algorithm to automatically select the best
characteristics and beacons and build a decision tree to
classify sorting algorithms. Evaluating the estimated
accuracy of the classification by leave-one-out cross-validation.

III SUB Categorizing student-implemented sorting algorithms and
identifying their inefficient variations in order to develop a
tool that can automatically recognize these variations and
give feedback to students on their problematic solutions.

IV MS1+ Using the data set MS1 to construct a classification tree
SUB (as described in Publication II) and recognizing students’

implementations of sorting algorithms (SUB) by the tree.

V MS2+ Developing a method to recognize algorithms by detecting
SUB1 algorithmic schemas from source code. Applying the method

to sorting algorithms and their variations and evaluating
the performance of the method using a combined data set.
Using “Others” from MS and SUB data sets to test how the
method performs on the other algorithm implementations.

VI MS3+ Combining the SDM and CLM to enhance the reliability
SUB2 and performance. Developing techniques to identify the

optimized versions of the sorting algorithms in addition
to their variations, in order to give useful feedback.
Evaluating the estimated accuracy of the classification
using leave-one-out cross-validation.

VII MIX Extending the SDM and CLM to searching, tree traversal,
heap and graph algorithms. Defining a set of schemas
and beacons for recognizing these algorithms and
evaluating the performance of the SDM and CLM.

UP MIX+ Using a combined learning data (MIX+MS1) to construct
MS1+ a classification tree, evaluating its performance using
SUB leave-one-out cross-validation technique and recognizing

previously unseen students’ sorting implementations in
SUB data set using the tree (like in Publication IV).

Table 7.2. A summary of the publications and the related empirical studies, their objec-
tives/contributions, the data set(s) they use and the way they are related to
each other. UP: unpublished

Publication VII are not reported in detail in that paper due to the space

limitation. We discuss them at the end of Section 7.5. Moreover, the

final empirical study denoted by UP in Table 7.2 is not included in the

publications and thus will be discussed in more detail in Section 7.6.

To evaluate the classification performance, we use the following widely

used metrics: True Positive (TP, implementations that are correctly as-

signed to a class), False Positive (FP, implementations that are incorrectly
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assigned to a class) and False Negative (FN, implementations that belong

to a class but not assigned to it). Moreover, based on these metrics, we

discuss the results in terms of precision (proportion of correctly recognized

positive case implementations from all implementations recognized as

positive cases, i.e., precision = TP/(TP+FP)), recall or true positive rate

(proportion of correctly recognized positive case implementations from all

implementations that should have been recognized as positive cases, i.e.,

recall = TP/(TP+FN)) and False Negative Rate (proportion of incorrectly

rejected implementations from all implementations that should have been

recognized as positive cases, i.e., FNR = FN/(TP+FN).

True Negative (TN) cases are instances that are correctly rejected for

each algorithm class. Thus, the proportion of TN cases compared to TP,

FP and FN cases is excessively large. This is considered as a problematic

situation in literature [95]. Moreover, in some applications of classification,

the number of TN cases may remain unknown (e.g., when identifying web

documents based on queries provided to a web search engine) [95]. Instead,

for example, precision and recall are widely used since their values, as

discussed above, do not depend on TN cases. In the results presented

in this chapter, TN cases are not as informative as the aforementioned

metrics and therefore we do not discuss them here.

In addition, we use the confusion matrix to discuss the incorrectly identi-

fied implementations in more detail. The confusion matrix is an N × N

matrix, where each instance Iij indicates the instance that belongs to class

Ii, but is classified as class Ij [96]. The instances located on the diagonal

are classified correctly.

For the explanations of the abbreviations of the beacons discussed in this

chapter see Section 6.2.

7.2 Manual Analysis and the Classification Tree Constructed by the
C4.5 Algorithm

7.2.1 Manual Analysis

We analyzed the implementations of 70 sorting algorithms of the MS data

set for Bubble sort, Insertion sort, Selection sort, Quicksort and Mergesort,

as shown in Table 7.1. We discerned a set of characteristics and beacons

(see Section 5.2) and based on our judgment, decided how to use them
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to help us distinguish between implementations of these algorithms. We

used the numerical characteristics to filter out the implementations of the

testing set that have greater or smaller values of these characteristics than

those of the analyzed 70 implementations. Moreover, we used the beacons

to differentiate between those implementations that pass this filter. We

implemented a tool that automatically computed all the characteristics

and beacons and assigned a type for a given implementation based on the

logic discussed above. We tested the performance of the method using 217

implementations of sorting and other algorithms (see Section 7.1). 86%

of the implementations of the testing set were recognized correctly. More

details on this study can be found in Publication I.

7.2.2 The Classification Tree Constructed by the C4.5 Algorithm

It is very difficult to manually select the best distinguishing factors, even

in a seemingly simple task of classifying the five sorting algorithms. This is

illustrated by our next study explained in Publication II. In this empirical

study, we automatized the process of constructing a classification tree

using the C4.5 algorithm1. Since our objective was to examine what kind of

classification tree the C4.5 algorithm builds for the five sorting algorithms

and how accurately this tree performs, as our learning data we used

MS1 data set that includes only the implementations of these algorithms.

The C4.5 algorithm selects the best splits and builds a more optimal and

understandable classification tree, shown is Figure 7.1.

Evaluated by leave-one-out cross-validation method, the performance

estimate of the classification is 98,1% (i.e., 205 implementations of all

the total 209 implementations of the data set are classified correctly). In

Publication II, we defined FP as the cases where an algorithm implemen-

tation not belonging to the members of the target set of the five sorting

algorithms, is incorrectly recognized as one of them. As the result of this

definition, since all the implementations of the data set belong to one of

the five sorting algorithms, FP cases did not occur in the empirical study

(see Table 7.3 from Publication II, where false positives are shown as

FP´ to signify this definition). However, if we use the definition of FP cases

discussed in Subsection 7.1.2, that is, if we consider as FP cases also those

implementations of the target set that are falsely recognized as another

1In our empirical studies, we used J48, which is an open source Java implementa-
tion of the C4.5 algorithm in the Weka data mining software, developed at the
University of Waikato. URL: http://www.cs.waikato.ac.nz/~ml/weka/
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Figure 7.1. The classification tree constructed by the C4.5 algorithm for recognizing
sorting algorithm implementations

class of the target set, then the value of FP cases would be 4, since four

Insertion sort implementations are falsely recognized as Bubble sort. Thus,

the results presented by the commonly used performance measures would

be as shown in Table 7.4. Moreover, as Table 7.3 shows, in Publication II,

we defined a TN case as correctly rejecting an implementation which does

not belong to any member of the target set. This definition resulted in the

value of the TN cases to be zero in the empirical study as well (shown as

TN´ in Table 7.3). For more details, see Publication II.

Note that the materials used for evaluating the accuracy of the classifica-

tion presented in this section and Section 7.2.1 (reported in Publication I)

are different. In Publication II, we have presented a comparison between

the accuracy of these classifications achieved by using the same material.

7.3 Students’ Sorting Algorithm Implementations, a Categorization
and Automatic Recognition

We collected the authentic students’ sorting algorithm implementations in

a first year data structures and algorithms course (the data set denoted

by SUB in Table 7.1). We used it for two purposes: 1) examining what
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Algorithm TP FP´ FN TN´ FNR Recall TNR FPR Total
Bubble 41 0 0 0 0 1 0 0 41
Insertion 48 0 4 0 0.077 0.923 0 0 52
Selection 43 0 0 0 0 1.0 0 0 43
Merge 34 0 0 0 0 1 0 0 34
Quick 39 0 0 0 0 1 0 0 39
Total 205 0 4 0 - - - - 209

Table 7.3. The value of different metrics indicating the estimated classification accuracy
using leave-one-out cross-validation (from Publication II). TNR = TN´ / (TN´ +
FP´ ), FPR = FP´ / (TN´ + FP´ ). See the text for the definition of FP´ and TN´

Algorithm TP FP FN FNR Recall Precision Total
Bubble 41 4 0 0 1 0.911 41
Insertion 48 0 4 0.077 0.923 1 52
Selection 43 0 0 0 1 1 43
Merge 34 0 0 0 1 1 34
Quick 39 0 0 0 1 1 39
Total 205 4 4 - - - 209

Table 7.4. Different metrics used for evaluating the estimated performance of the classifi-
cation using leave-one-out cross-validation

variations of sorting algorithms students implement in order to discover

their problematic solutions and insufficient understandings. This helps us

further develop our method to detect these variations and give automatic

feedback on them, and 2) testing Aari system that uses the classification

tree of Figure 7.1 with a previously unseen data set.

7.3.1 Categorizing the Variations

Manual categorization of students’ submissions revealed that they imple-

ment many inefficient variations. Two of these variations are Insertion

sort WS and Selection sort WILS. We explained these variations in Subsec-

tion 7.1.1. Based on these results, we developed techniques to recognize

these variations (both with the SDM, as well as the CLM). The submis-

sions were collected in two rounds: at the beginning of the course before

the students received any instruction on sorting algorithms, and after

taking a lecture on sorting algorithms. Table 7.5 summarizes the types of

the submissions analyzed manually separately for the first round, second

round and in total. More details on this study, such as what types of

algorithms the category “Others” includes, can be found in Publication

III. The main contribution of this article is manual analysis of students’

sorting algorithm implementations in order to identify and categorize their

problematic solutions.
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Algorithm Round 1 (%) Round 2 (%) Total (%)
Bubble sort 25 (22) 4 (5) 29 (15)
Insertion sort 8 (7) 9 (11) 17 (9)
Selection sort 30 (27) 6 (8) 36 (19)
Mergesort 4 (4) 16 (20) 20 (10)
Quicksort 2 (2) 32 (40) 34 (18)
Inefficient variations 20 (18) 3 (4) 23 (12)
Others 23 (21) 10 (13) 33 (17)
Total 112 80 192

Table 7.5. Sorting algorithms implemented by the students in the first and second round.
The values are computed manually. The percentages show the results with
respect to the number of total submitted implementations in the corresponding
round. For example, there are 25 implementations of Bubble sort algorithm in
the first round, that is, 22% of all the implementations in this round (which is
112)

Algorithm Round 1 Correct (%) Round 2 Correct (%) Total Correct (%) False (%)
Bubble sort 25 24 (96) 4 4 (100) 29 28 (97) 1 (3)
Insertion sort 8 8 (100) 9 8 (89) 17 16 (94) 1 (6)
Selection sort 30 30 (100) 6 6 (100) 36 36 (100) 0 (0)
Mergesort 4 1 (25) 16 11 (69) 20 12 (60) 8 (40)
Quicksort 2 2 (100) 32 32 (100) 34 34 (100) 0 (0)
Inefficient var. 20 11 (55) 3 2 (67) 23 13 (57) 10 (43)
Others 23 3 (13) 10 2 (20) 33 5 (15) 28 (85)
Total 112 79 (71) 80 65 (81) 192 144 (75) 48 (25)

Table 7.6. Students’ sorting algorithm implementations (a new unseen data set) rec-
ognized automatically by Aari system. For the first and second round, the
percentages show the results with respect to the number of the implementa-
tions of each algorithm in the corresponding round. For example, the number
of the implementations of Bubble sort algorithm in the first round is 25, from
which 24 implementations are correctly recognized, that is, 96 percent of the 25
implementations

7.3.2 Automatic Recognition

We tested Aari system that used the classification tree illustrated in Fig-

ure 7.1, with student’s sorting algorithm implementations as a previously

unseen data set (i.e., a data set that have not been used in constructing the

classification tree). The results of this automatic recognition, summarized

in Table 7.6, show that Aari performs very good with implementations

of those types of sorting algorithms that it has been trained to recognize.

The implementations of these algorithms are recognized with an average

accuracy of about 90%. When considering all the implementations, Aari

achieved an overall accuracy of 71% and 81% for the first and second round

respectively. Note that in Table 7.6, the implementations of inefficient

variations are considered as recognized correctly if they are recognized

as the standard corresponding algorithms, that is, as Selection sort and

Insertion sort. For further details, see Publication IV.
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Algorithm Detected(%) Not detected(%) Total
Bubble sort 63 (90,0) 7 (10,0) 70
Insertion sort 55 (91,7) 5 (8,3) 60
Insertion sort WS 17 (89,5) 2 (10,5) 19
Selection sort 68 (86,1) 11 (13,9) 79
Selection sort WILS 13 (100) 0 (0) 13
Mergesort 41 (75,9) 13 (24,1) 54
Quicksort 68 (93,2) 5 (6,8) 73
Total 325 (88,3) 43 (11,7) 368

Table 7.7. The results of detecting algorithmic schemas for sorting algorithms and their
variations

7.4 Using the SDM and CLM for Recognizing Sorting Algorithms
and Their Variations

7.4.1 The SDM

We developed another method for algorithm recognition that is based on the

concept of algorithmic schemas. The theoretical background of the method

is discussed in Chapter 3. The CLM considers the whole of the given

program as the algorithmic code and computes the characteristics from

the whole program. The aim of the SDM is to search for the fragments of

code that implement the algorithm in question and select them for further

analysis, leaving the irrelevant code out of the process.

We applied the method to the five basic sorting algorithm implementa-

tions discussed above and their two variations that we found by analyzing

the students’ implementations, namely Insertion WS and Selection WILS.

The schemas for these algorithms are presented in Subsection 6.1.1, Fig-

ures 6.2 and 6.3, and the beacons in Subsection 6.2.1. To differentiate

between the algorithms and variations with the same schemas, we use

algorithm-specific beacons. We used the data sets MS2 and SUB1 (see

Table 7.1) to evaluate the performance of the method. Table 7.7 sum-

marizes the results. In addition, we used the implementations of other

algorithms from MS and SUB data sets (denoted by “Others” in Table 7.1)

to test how many implementations would be falsely recognized as one of

the sorting algorithms. From the 111 implementations of other algorithms

(78 implementations from MS data set and 33 from SUB data set) 10

implementations (i.e., 9 percent) were falsely detected as including one of

the specified algorithmic schemas.

More details on this study, such as schemas and results, can be found in

Publication V.
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Algorithm TP FP FN FNR Recall Precision Total
Bubble sort 38 4 2 0.050 0.950 0.905 40
Insertion sort 60 0 0 0 1 1 60
Selection sort 79 0 0 0 1 1 79
Mergesort 52 1 2 0.037 0.963 0.981 54
Quicksort 35 1 2 0.054 0.946 0.972 37
Insertion WS 15 1 4 0.211 0.789 0.938 19
Selection WILS 12 2 1 0.077 0.923 0.857 13
Bubble sort WF 30 1 0 0 1 0.968 30
Quicksort EP 36 1 0 0 1 0.973 36
Total 357 11 11 - - - 368

Table 7.8. The estimated classification accuracy achieved by leave-one-out cross-validation
method for recognizing sorting algorithms and their variations using the CSC

7.4.2 The CSC

In our next study, we combined the SDM and CLM and developed a method

that first detects the algorithmic schemas from the given program and

then computes the characteristics and beacons only from the code related

to these schemas, rather than from the whole program. Because the

irrelevant code is not considered for further analysis, this improves the

reliability of the CLM. A discussion on how the CSC works is presented in

Chapter 5 and particularly Section 5.1.

We applied this CSC to the five sorting algorithms and their variations.

In addition, we developed techniques for detecting optimized versions of

two sorting algorithms, Bubble WF and Quicksort EP (see Subsection 7.1.1

for the explanation), and considered these versions in our empirical study

as well. This would allow to provide useful feedback to students on their

implementations. For this empirical study, we used the data sets MS3

and SUB2. We evaluated the performance estimate of the classification

using leave-one-out cross-validation method. The estimated classification

accuracy is 97.0%, that is, from the 368 instances of the data sets, the num-

ber of correctly classified instances is 357 and the number of incorrectly

classified instances is 11 (i.e., 3.0%). Table 7.8 summarizes the results.

For more details, especially the constructed classification tree, see Publi-

cation VI.

7.5 Using the CSC for Recognizing Algorithms from Other Fields

Having good results from applying the CSC to sorting algorithms and their

variations, we extended the methods to cover algorithms from other fields:

searching, heap, basic tree traversal and graph algorithms. We collected
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Algorithm NBS RBS DFS InT PreT PostT HeapI HeapR Dijkstra Floyd
NBS 35 0 0 1 0 0 0 0 0 0
RBS 0 13 0 0 0 0 0 0 0 0
DFS 0 0 14 0 0 0 0 0 1 0
InT 0 0 0 23 0 0 0 0 0 0
PreT 0 0 0 1 23 0 0 0 0 0
PostT 0 0 0 0 0 22 0 0 0 0
HeapI 0 0 1 0 0 0 21 0 0 0
HeapR 0 0 0 0 0 0 0 21 0 0
Dijkstra 0 0 1 0 0 0 0 0 22 0
Floyd 0 0 0 0 0 0 0 0 1 22

Table 7.9. The confusion matrix that shows how each implementation is recognized using
leave-one-out cross-validation; the row headings indicate the actual type of
each algorithm and the column headings indicate what type it was recognized
as. See MIX data set in Table 7.1 for the explanations of the abbreviations

222 implementations of 10 different algorithms (the data set denoted by

MIX in Table 7.1). We defined the schemas and beacons related to these

algorithms. These are discussed in Subsections 6.1.2 and Subsection 6.2.2

respectively.

We evaluated both the performance of the SDM and CLM. The schemas

were detected with an average accuracy of 94,1%. The estimated accuracy

of the classification measured by leave-one-out cross-validation method

was 97,3%. Figures 7.2 shows how accurately the implementations of the

data set are recognized by the SDM. Figures 7.3 illustrates the results for

the CLM. Details, including the corresponding decision tree, can be found

in Publication VII.

In addition to these, we present the confusion matrix of Table 7.9 to

discuss the correctly and falsely classified implementations in more detail.

In the table, the implementations positioned on the diagonal are recognized

correctly. As an example, all the implementations of recursive binary

search (RBS) are recognize correctly, while one implementation of non-

recursive binary search (NBS) is falsely recognized as inorder tree traversal

algorithm (InT).

Finally, we use the performance evaluation measures shown in Table 7.10

to discuss the results in further details. As can be seen from the table,

larger numbers of false positive and false negative cases indicate the

poorer value of precision and recall. For the definition of these evaluation

measures, see Subsection 7.1.2.

The results presented in this section suggest that the proposed method

for algorithm recognition can be extended to other fields of algorithm with

high accuracy.
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Figure 7.2. The results of detecting the algorithmic schemas for the implementations of
the data set MIX (see Table 7.1)
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Figure 7.3. Correctly identified implementations of the data set MIX resulted from
evaluating the performance estimate of the classification by leave-one-out
cross-validation

Algorithm TP FP FN FNR Recall Precision Total
Non-recursive BinSearch 35 0 1 0.028 0.972 1 36
Recursive BinSearch 13 0 0 0 1 1 13
Depth first search 14 2 1 0.067 0.933 0.875 15
Inorder tree traversal 23 2 0 0 1 0.920 23
Preorder tree traversal 23 0 1 0.042 0.958 1 24
Postorder tree traversal 22 0 0 0 1 1 22
Heap insertion 21 0 1 0.045 0.955 1 22
Heap remove 21 0 0 0 1 1 21
Dijkstra’s algorithm 22 2 1 0.043 0.957 0.917 23
Floyd’s algorithm 22 0 1 0.043 0.957 1 23
Total 216 6 6 - - - 222

Table 7.10. The value of the performance evaluation measures for classifying the instances
of the MIX data set evaluated by leave-one-out cross-validation method
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7.6 Building a Classification Tree of Sorting and Other Algorithms
for Recognizing Students’ Sorting Algorithm Implementations

In this section, we describe an empirical study on using the implementa-

tions of sorting, searching, heap, tree traversal and graph algorithms (i.e.,

the combined data set MIX + MS1) to build a classification tree and eval-

uating the performance estimate of this classification using leave-one-out

cross-validation method. This would further show the generalizability of

the method within the domain of basic algorithms covered in computer

science education. Moreover, in our final empirical study, we used the

classification tree to recognize the authentic students’ sorting algorithm

implementations (the data set SUB). A similar empirical study is carried

out and reported in Publication IV with a simpler classification tree con-

structed only by the implementations of the five sorting algorithms (see

Subsection 7.3.2). The purpose of this empirical study is to examine how

accurately the student implementations will be recognized with a more

complex classification tree. This would also show the ability of the method

to be extended. This empirical study is not reported in the publications

and thus the results will be covered in a greater detail.

7.6.1 The Decision Tree and Classification Accuracy

Figure 7.4 shows the constructed classification tree, with the results of

evaluating the accuracy of the classification presented in Table 7.11. The

last column of the table indicates the algorithms as which the falsely

classified implementations are recognized. Table 7.12 shows more detailed

results presented by commonly used performance evaluation measures,

including recall and precision. As can be seen, the classification accuracy

remains high, even though a number of algorithms from different fields

are covered.

7.6.2 Recognizing the Students’ Implementations

Finally, we used the classification tree of Figure 7.4 to recognize the au-

thentic student-implemented sorting algorithms (the data set denoted by

SUB in Table 7.1). We performed the evaluation for each round separately.

The process in this empirical study corresponds to the steps illustrated in

Figure 5.2.

Table 7.13 summarizes the results for each round and in total. For the
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Algorithm Correct (%) False (%) Total Falsely recognized as
Bubble sort 41 (100) 0 (0) 41 -
Insertion sort 51 (98,1) 1 (1,9) 52 Bubble sort
Selection sort 42 (97,7) 1 (2,3) 43 Bubble sort
Mergesort 34 (100) 0 (0) 34 -
Quicksort 38 (97,4) 1 (2,6) 39 Depth first search
Non-recursive BinSearch 36 (100) 0 (0) 36 -
Recursive BinSearch 13 (100) 0 (0) 13 -
Depth first search 14 (93,3) 1 (6,7) 15 Mergesort
Inorder tree traversal 23 (100) 0 (0) 23 -
Preorder tree traversal 23 (95,8) 1 (4,2) 24 Inorder tree traversal
Postorder tree traversal 22 (100) 0 (0) 22 -
Heap insertion 21 (95,5) 1 (4,5) 22 Depth first search
Heap remove 19 (90,5) 2 (9,5) 21 Heap insertion
Dijkstra’s algorithm 21 (91,3) 2 (8,7) 23 Bubble, Selection
Floyd’s algorithm 22 (95,7) 1 (4,3) 23 Dijkstra’s algorithm
Total 420 (97,4) 11 (2,6) 431 -

Table 7.11. The results of evaluating the estimated classification accuracy. The last col-
umn indicates the algorithms as which the falsely classified implementations
are recognized

Algorithm TP FP FN FNR Recall Precision Total
Bubble sort 41 3 0 0 1 0.932 41
Insertion sort 51 0 1 0.019 0.981 1 52
Selection sort 42 1 1 0.023 0.977 0.977 43
Mergesort 34 1 0 0 1 0.971 34
Quicksort 38 0 1 0.026 0.974 1 39
Non-recursive BinSearch 36 0 0 0 1 1 36
Recursive BinSearch 13 0 0 0 1 1 13
Depth first search 14 2 1 0.067 0.933 0.875 15
Inorder tree traversal 23 1 0 0 1 0.958 23
Preorder tree traversal 23 0 1 0.042 0.958 1 24
Postorder tree traversal 22 0 0 0 1 1 22
Heap insertion 21 2 1 0.045 0.955 0.913 22
Heap remove 19 0 2 0.095 0.905 1 21
Dijkstra’s algorithm 21 1 2 0.087 0.913 0.955 23
Floyd’s algorithm 22 0 1 0.043 0.957 1 23
Total 420 11 11 - - - 431

Table 7.12. Different measures used for evaluating the estimated performance of the
classification using leave-one-out cross-validation

Algorithm Round 1 Correct (%) Round 2 Correct (%) Total Correct (%) False (%)
Bubble sort 25 24 (96) 4 4 (100) 29 28 (97) 1 (3)
Insertion sort 8 7 (88) 9 9 (100) 17 16 (94) 1 (6)
Selection sort 30 30 (100) 6 6 (100) 36 36 (100) 0 (0)
Mergesort 4 1 (25) 16 14 (88) 20 15 (75) 5 (25)
Quicksort 2 2 (100) 32 32 (100) 34 34 (100) 0 (0)
Inefficient var. 20 10 (50) 3 2 (67) 23 12 (52) 11 (48)
Others 23 4 (17) 10 2 (20) 33 6 (18) 27 (82)
Total 112 78 (70) 80 69 (86) 192 147 (77) 45 (23)

Table 7.13. The results of recognizing the student-implemented sorting algorithms (as a
new unseen data set)
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first and second round, the percentages show the results with respect

to the number of the implementations of each algorithm in the corre-

sponding round. As an example, the number of the implementations of

Insertion sort in the first round is 8, from which 7 implementations are

correctly recognized, that is, 88 percent of the 8 implementations. Again,

a comparison between these results and the results shown in Table 7.6

(reported in Publication IV) shows that although in this empirical study,

the classification tree is much more complex and is constructed using the

implementations from various fields of algorithms, the estimated accuracy

of the classification remains practically the same.

It should be noted that since the system is not trained to recognize the

algorithms of the category “Others”, these algorithms cannot be identified.

If “Others” includes algorithms that should be classified by the system as

belonging to a class but are not, they would be considered as false negative

cases. Similarly, if some algorithms from “Others” are falsely recognized

as belonging to a class, they would be false positive cases.

67



68



8. Discussion and Conclusions

This chapter first discusses the issues related to the proposed method, such

as its applications. This is followed by a summary of what has been done

in terms of the research questions posed in Section 1.2 and directions for

future work. A brief discussion on validity issues concludes this thesis.

8.1 Discussion

This thesis introduces techniques developed for recognizing basic algo-

rithms and their variations within the scope of computer science educa-

tion. Several techniques are developed and evaluated including 1) manual

analysis of the implementations of a learning data in order to identify a

set of characteristics and beacons to differentiate between algorithms, 2)

applying machine learning methods to select the best discriminators to

distinguish between the algorithms and build an automatic classification

method, and evaluating the estimated performance of the classification, 3)

analyzing authentic student-implemented algorithms in order to discern

the variations students implement (for sorting algorithms), 4) developing a

method based on schemas for identifying the sorting algorithms and their

variations, 5) developing a method that combines the SDM and CLM in

order to achieve a more reliable performance, and 6) extending the meth-

ods and developing the similar techniques for other fields of algorithms in

order to demonstrate their potential.

8.1.1 Applications of the Method

The proposed method could support a teacher in assessing students’ sub-

missions by examining whether students have implemented the required

algorithm. Although the results are not 100% accurate - due to the statis-

tical nature of the method - assessing a major part of the submissions is
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of a great help in the burden of marking students’ assignments especially

in large courses. This would allow the teacher to focus only on the solu-

tions which do not conform to the specification, rather than assessing all

the submissions. In this context, false positive cases are more difficult to

track and thus more serious problems. If an implementation is incorrectly

classified as, for example, a Quicksort (a false positive case), this will not

be discovered since the teacher accepts the positive cases and does not in-

spect them. However, when there are a large number of submissions to be

assessed, even teachers make errors and cannot assess all the submissions

with 100% accuracy. Moreover, a teacher can take random samples from

the positive cases and evaluate the accuracy of the system with regard to

the false positive cases within a certain period of time. This will give an

indication of the benefit of the system (as saving a teacher’s time) compared

to the accepted incorrect cases. This application of the method would allow

the teacher to give better personal comments to the students and pick up

interesting examples to discuss with them.

On the other hand, students could use the informative feedback that

Aari system can provide on their implementations to gain a better under-

standing of their code. We have shown that students make problematic

implementation choices in the case of sorting algorithms and we have

developed and discussed techniques that can identify these kind of imple-

mentation choices. We can thus give automatic feedback on problematic

solutions and reasonably assume that these types of feedback could be

justified and beneficial. However, in order to use Aari to give feedback on a

comprehensive set of algorithms, we need to do similar studies to examine

student-implemented variations in other fields of algorithms. Moreover, we

need to evaluate our method in an educational setting and investigate how

students use the system and how useful they find it. A big concern remains

the accuracy of the system. For the algorithms that Aari has been train to

recognize, it performs well (as reported in Publication IV). However, for an

open task of implementing sorting algorithms, Aari achieved the average

accuracy of 75%. Therefore, since making a summative assessment on

whether something is right or wrong might have a negative effect, we

should give feedback in form of suggesting something that the student

should look at. In short, before using Aari as a feedback providing system,

we need to situate it in the educational setting and assess how it could

improve education.

The method has potential to be extended to be applied in software engi-
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neering related tasks as well. As an example, the task in clone detection

is to identify similar pieces of code. This is what our method, with the

appropriate further developments, would be capable of performing for the

implementations that are stored in its knowledge base. However, since

these activities involve dealing with large-scale software (unlike imple-

mentations in computer science education), the performance of the method

in this context should be evaluated with empirical tests.

8.1.2 Our Methods and Other Research Fields

The methods introduced in this thesis for algorithm recognition (AR), which

is considered as a subfield of practical program comprehension (PC), draw

on some techniques and concepts used in other research fields discussed in

Chapter 2. For example, the methods use software metrics that are also

used in program similarity evaluation techniques, or they use the concept

of programming schemas introduced by studies on theoretical PC. We could

benefit from other experiences and results of the related studies as well.

As an example, concept and feature location approaches of PC field have

achieved good results by combining dynamic and static techniques. These

hybrid techniques use program dependencies and textual information

gained by static analysis of source code to filter the execution traces, which

are often very large and contain a lot of noise [59]. In order to increase

the accuracy (i.e., decrease false positive and false negative cases) this

possibility should be explored in AR as well. Moreover, we can examine the

applicability of control flow and data flow metrics used in metrics-based

clone detection approaches (e.g., [62]) to see whether they provide useful

information for AR.

Our SDM applies the results from theoretical PC in practical PC. Our

CLM, on the other hand, utilized machine learning techniques to recognize

unseen algorithm implementations. A number of PC tools use plans in

their knowledge base to facilitate the process of comprehension. These

tools, however, do not use supervised machine learning widely. Our method

brings supervised learning into the process of PC. The method teaches a

supervised learner (i.e., a classifier) with a set of learning data instances,

how to identify each algorithm based on its features. The learner is then

able to apply this knowledge to recognize new and previously unseen

instances. This concept of using learning in PC tools is also discussed

by Gerdt and Sajaniemi in the context of developing a role detection tool

based on machine learning techniques [32]. Moreover, by applying the
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concept of beacons from theoretical PC, we have introduced features that

can be utilized to characterize and detect source code fragments in, for

example, clone detection tools. An important part of these beacons are

roles of variables, for which we have introduced a new application area in

this thesis.

8.2 Research Questions Revisited and Future Work

We posed eight questions in Section 1.2, from which the first one was:

1. How could we automatically recognize basic algorithms and their varia-

tions from source code?

We have answered this question throughout this thesis by presenting the

CLM and SDM, as well as the characteristics and beacons. With respect to

this question, we conclude that our method works with high accuracy for

the algorithms that it has been trained to recognize. However, the accuracy

of the method decreases with previously unknown algorithms that the

method has no mechanism to deal with. For example, implementations

of Shell sort might be falsely recognized as, say Bubble sort. To tackle

this, we need to add the appropriate mechanism to the method so that it

can deal with other algorithms that are covered in data structures and

algorithms courses.

The second and third questions concerned the algorithmic characteristics,

beacons and schemas as follows:

2. Can algorithmic characteristics and beacons be utilized in AR process

and how?

3. Can programming schemas facilitate automatic AR? How can we imple-

ment a method based on schemas?

To answer these questions, we introduced a set of characteristics and

beacons, and developed schemas for a number of algorithms, as discussed

in Chapters 5 and 6. In Chapter 7, we presented the evaluation results

of the SDM showing that the method performs with high accuracy. With

respect to the schemas, an important question is the level of abstraction

they are defined at. If the level of abstraction is too high, there exists a
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threat that in programs with a bigger size, false implementations would

be identified as acceptable (i.e., false positive cases increase). On the

other hand, a too low level of abstraction may result in identifying correct

implementations as not acceptable (false negative cases).

The research question with regard to RoV was:

4. How applicable and useful RoV are in recognizing basic algorithms?

The usefulness of RoV in introductory programming education has been

investigated in many studies and the results show that using RoV can

increase students’ skills in comprehending and constructing programs (see,

e.g., [14, 86], as well as [93] for information from a teacher’s point of view).

According to our empirical studies, RoV are very useful beacons in the AR

task as well. As an example, the most-wanted holder role distinguishes

the implementations of Selection sort from the implementations of other

sorting algorithms that we analyzed.

In our empirical studies, we used the tool developed by Bishop and John-

son [9] for detecting RoV. The tool detected the roles in the empirical

studies on sorting algorithms very accurately. However, when analyzing

searching, heap, basic tree traversal and graph algorithms, the tool did not

detect the roles of the variables in the implementations of these algorithms

accurately enough. Perhaps with a more accurate tool, RoV could have

played a distinguishing role as beacons for these algorithms as well. As

an example, the low index in a binary search (e.g., low = middle+ 1) has a

follower role ([83]) that could be a useful beacon for differentiating between

the implementations of binary search algorithm from other implementa-

tions. Developing a role detection tool that performs with high precision

is a challenging task, but as Gerdt and Sajaniemi describe in [31], good

results are achieved by using data flow analysis and applying machine

learning techniques to determine data flow characteristics for roles. Unfor-

tunately, we did not get access to this tool. One interesting idea would be

to go to a lower-level of abstraction and use directly the data flow charac-

teristics that define the roles, instead of the roles themselves, and evaluate

which one would characterize the functionality of an algorithm better.

With respect to the applicability of machine learning techniques, we

posed the following research question:

5. Can machine learning methods, and in particular the C4.5 algorithm,
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be used in AR problem and how accurate it is?

Converting implementations of algorithms to characteristic and beacon

vectors and using these vectors as technical definitions of algorithms allows

us to utilize machine learning techniques. Using the C4.5 decision tree

classifier in our CLM and the estimated performance of the classification

illustrate the applicability of the C4.5 algorithm as a supervised machine

learning classification technique. Quality of learning and testing data

sets impacts the performance of machine learning methods. In order to

have representative and unbiased data sets, we have collected them from

different sources, including textbooks, the Web resources and students’

implementations.

The sixth question concerned the CSC:

6. How can we combine the SDM and CLM to get more reliable results?

The CSC was discussed in Chapters 5 and its performance evaluation

results were presented in Chapter 7. By selecting the code fragment

that implements the algorithm in question for further analysis, the CSC

achieves more reliable performance, as the irrelevant code does not affect

the value of the computed characteristics and beacons.

The seventh and eight research questions were the following:

7. How can we classify students’ implementations of sorting algorithms?

What kind of variations of well-known sorting algorithms students use?

8. How accurately Aari can recognize student-implemented sorting algo-

rithms and their variations?

The results of categorizing sorting algorithms are presented in Subsec-

tion 7.3.1. The purpose of the categorization is to discover what types

of problematic solutions students use and to develop a method to auto-

matically identify these solutions. This allows to give useful feedback

that make students rethink their solutions (which remains for future

work). We found that students have many misconceptions related to sort-

ing algorithms. They include unnecessary swaps in their Insertion and

Selection sort implementations which makes the code more complicated

and inefficient. In this context, the term misconception is used to indi-
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cate problematic understandings or failure to fully understand the basic

principles behind some well-known algorithms. Similar studies should

be done for other fields of algorithms as well. Moreover, to get a better

insight into students’ misconceptions, we need to ask them about how they

describe their own code and what they think about their solutions. We

discussed the schemas and beacons developed to recognize these variations

in Subsections 6.1.1 and 6.2.1.

Finally, Subsection 7.3.2 discusses the performance of Aari system on

students’ implementations. In this respect, we conclude that Aari per-

forms accurately with the algorithms that it has been trained to recognize.

However, as expected, if implementations of algorithms that Aari has no

mechanism to deal with are involved, the accuracy decreases. As also dis-

cussed above, covering other fields of algorithms will address this problem.

In addition, Aari needs to be further evaluated with authentic students’

implementations from other algorithm fields as well.

In this thesis, we have examined the application of the presented tech-

niques on programs written in Java. As, for example, length of a program

in terms of lines of code varies from a programming language to another, a

direction for future work could be to examine the techniques on materials

written in other languages and compare the results.

8.3 Validity

In this section we discuss possible issues with internal and external validity

involved in our research. We reflect on the possible related threats and

discuss how we have addressed them.

8.3.1 Internal Validity

As roles of variables play an important role in our method, it is important

to use a tool that detects roles accurately. Poor performance of such tool is

a threat to the internal validity of our research. To eliminate this threat,

we used the most accurate role detector available to us. We did several

improvements to the tool to improve its accuracy (see Section 5.3). As the

result, for those roles that are used in recognizing sorting algorithms, the

tool worked very accurately. As discussed above, for other algorithms, the

tool did not perform accurately enough. A more accurate role detector is

needed in order to utilize the roles in recognizing other fields of algorithms.
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Another potential threat is the manual categorization of the students’ im-

plementations of sorting algorithms reported in Publication III. According

to Knuth, “the classification of sorting methods into various families such

as “insertion,” “exchange,” “selection,” etc., is not always clear-cut.” [48].

When it is about novices’ implementations, the categorization is even more

difficult. In addition to the implementations of standard sorting algo-

rithms, there were many other types of implementations in the data such

as inefficient variations, which we categorized as selection sort with inner

loop swap and insertion sort with swap (discussed in Subsection 7.1.1).

Therefore, it is possible that some implementations have been categorized

wrongly. Parts of the results of our research as well as parts of the tech-

niques developed in Aari system are based on this categorization, and

thus internal validity may be threatened by the incorrectly categorized

algorithm implementations. To rule out or reduce this threat, the catego-

rization and especially the unclear and borderline cases were iteratively

reconsidered and discussed by three researchers as follows. In the begin-

ning, one of the researchers analyzed the implementations and tentatively

classified them into the appropriate categories. After this, he and another

researcher reviewed and discussed the categories and reconsidered espe-

cially the implementations with no obvious and clear category. As a result

of this discussion, the categorization was specified and the borderline cases

were reclassified if necessary. All the researchers discussed the resulted

categorization and unclear implementations one more time and agreed

on the final categorization. The researchers reached a consensus on the

problematic cases. The implementations gathered from textbooks and

Websites were naturally much more clear and reliable and thus do not

pose a serious threat.

It should also be emphasized that we selected the metrics used in the

techniques presented in this thesis based on literature review. Before se-

lecting them, we could not find any empirical evidence on their application

to algorithm recognition problem, although several of them are widely

applied and evaluated in program similarity evaluation techniques. It

is possible that there exist other metrics that can be applied to the prob-

lem with good results. The applicability of different metrics in terms of

accuracy could be an interesting direction of future work.

In addition, there always exists a potential risk that a program may have

bugs that produce incorrect results and cause the program to perform in

an unexpected way. Aari system is no exception. By doing different tests
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and comparing the results, we have tried to reduce this risk and improve

the quality of the system.

8.3.2 External Validity

External validity is related to the extent to which the results of a study are

generalizable. In our study, this refers to whether the proposed methods

can be applied to different fields of algorithms with the same accuracy. In

the beginning of our research, we demonstrated our methods and their

performance in the case of basic sorting algorithms. We then extended

our methods to the variations of these sorting algorithms as well as to

searching, heap, basic tree traversal and graph algorithms with practi-

cally the same results. This indicates that the methods and results are

generalizable.

In addition, we collected the implementations of our data sets randomly,

that is, with no preferences (to, e.g., a particular source or alike). This

makes the implementations representative and implies that, for each

analyzed algorithm field, the methods are highly probable to be generalized

to other implementations of that algorithm field with the same results.
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A. The C4.5 Decision Tree
Classifier

The C4.5 algorithm is a widely used and the most well-known algorithm

for building decision trees [58]. In the following, we explain how the C4.5

algorithm deals with the important issues related to building decision

trees, such as finding the best attributes to construct a decision tee and

finding the right size for a tree. The discussion in this section is based on

the book about the C4.5 algorithm written by its inventor [77].

A.1 Finding the Best Attribute

The earlier version of the C4.5 algorithm used information gain to evaluate

the tests and find the best split. As described below, a more accurate

criterion called information gain ratio was adopted later.

Information gain (also called mutual information) is based on entropy,

a measure used in information theory. Entropy indicates the average

information needed to identify instances of a set. Let S be a set of instances,

c be the number of different classes in S and ni be the number of instances

in S that belong to class i. Entropy can be defined as follows:

(1) entropy(S) = −
c∑

i=1

ni × log2 ni

The information gain is the difference between the entropy of the set S

before the split and the entropy of the set S after the split that follows some

test T . Therefore, the information gain can be computed by the following

formula:

(2) gain(T ) = entropy(S)−
k∑

j=1

|Sj |
|S| × entropy(Sj)

Here, k is the number of outcomes of the test T (i.e., the set of values of

the attribute T ), and Sj indicates the number of instances in S, where T

has value j. gain(T ) measures the information gained by splitting the set

S according to the test T . To perform the split, the C4.5 algorithm, like its
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predecessor ID3, selects the test that gives the maximum information gain.

Thus, the decision tree is generated so that those internal nodes that give

the largest information gain are expanded.

Although the information gain was used as the criterion in the ID3

for many years with good results, Quinlan, the inventor of the ID3 and

C4.5 algorithms developed a criterion called information gain ratio to fix

the deficiency of information gain: information gain favors the tests that

result in many outcomes. This causes problems when the outcomes of this

kind of tests have no value with regard to the classification, for example,

because of the small number of instances associated with each outcome.

His solution to correct the issue is to adjust the gain of these kinds of

tests. The information gain ratio is the ratio of the information gain to the

split information. It gives the information that is obtained by the ratio of

the information relevant to the classification produced by the split, to the

information that is provided by the split itself. Thus, the information gain

ratio can be formally defined as

(3) gain ratio(T ) = gain(T )/split entropy(T )

split entropy(T ) is computed by the following formula:

(4) split entropy(T ) = −
k∑

j=1

|Sj |
|S| × log2

|Sj |
|S|

The denominator in Formula 3 grows rapidly if a test results in many

outcomes. However, if the test is trivial (for example, each outcome of the

split contains only one instance), the numerator would be small. Thus the

overall information gain ratio would remain small. This will eliminate the

chances of these kinds of tests to become selected.

In the case of unknown attribute values, information gain is computed

as follows. Let p1 denote the probability that the value of the attribute A

tested in test T is known. Correspondingly, let p2 denote the probability

that the value of the same attribute in the same test is unknown. The

information gain is

(5) gain(T ) = p1 × (entropy(S)−
k∑

j=1

|Sj |
|S| × entropy(Sj)) + p2 × 0

The value of zero in the end of Formula 5 reflects the fact that if the

value of the attribute is missing, clearly no information can be gained for

the corresponding instance from the split in question. If we suppose that

the value of A is known in fraction F of the instances in the set S, we get

the following simpler formula for computing information gain for unknown

attribute values:

(6) gain(T ) = F × (entropy(S)−
k∑

j=1

|Sj |
|S| × entropy(Sj))
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Formula 6 is the same as Formula 2 multiplied by the fraction of the

instances that have the value of the corresponding attribute available. The

effect of missing attribute values in computing the information gain ratio

can be taken into consideration in the similar way, using Formula 4.

A.2 Finding the Right Size

The issue of finding the right size in the C4.5 algorithm is handled by

pruning the tree after it has been constructed. The tree is built using the

divide and conquer principle without evaluating any split at the building

phase. This results in an overfitted tree, which is then pruned to become

simpler: those parts of the tree that are not important in terms of the

accuracy are removed. This approach includes an extra computation for

building the parts of the tree that will be eliminated later in the pruning

phase. However, this is well justified by the more accurate and reliable

final result [77].

In the C4.5 algorithm, pruning includes either replacing subtrees with

leaves or with one of its branches. Pruning is error-based, that is, the

replacement is carried out if it results in a lower predicted error rate. The

process starts from the bottom of the tree and proceeds by investigating

each non-leaf subtree. To predict the error rate, the C4.5 algorithm uses

a sophisticated pruning heuristic which is based on computing the prob-

ability of appearance of misclassified instances in a leaf relative to all

instances covered by that leaf.
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B. Pseudo-Code for Sorting,
Searching, Heap, Basic Tree

Traversal and Graph Algorithms

The pseudo-code examples for the algorithms discussed in this thesis are

listed below.

B.1 Sorting Algorithms

Bubble Sort

Bubble sort (algorithm 1) is adapted from [16].

Algorithm 1 BUBBLE-SORT(A)
for i = 1 to A.length− 1 do

for j = A.length downto i+ 1 do
if A[j] < A[j − 1] then
swap A[j] and A[j − 1]

end if
end for

end for

Insertion Sort

Insertion sort (algorithm 2) is adapted from [57].

Algorithm 2 INSERTION-SORT(A)
for i = 1 to A.length− 1 do
key = A[i]
j = i− 1
while j ≥ 0 and A[j] > key do
A[j + 1] = A[j]
j = j − 1

end while
A[j + 1] = key

end for
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Selection Sort

Selection sort (algorithm 3) is adapted from [57].

Algorithm 3 SELECTION-SORT(A)
for i = 0 to A.length− 2 do
min = i
for j = i+ 1 to A.length− 1 do

if A[j] < A[min] then
min = j

end if
end for
swap A[j] and A[min]

end for

Mergesort

Mergesort (algorithms 4 and 5) is adapted from [16].

Algorithm 4 MERGESORT(A, p, r)

if p < r then
q = �(p+ r)/2�
MERGESORT(A, p, q)
MERGESORT(A, q + 1, r)
MERGE(A, p, q, r)

end if

Algorithm 5 MERGE(A, p, q, r)

n1 = q − p+ 1; n2 = r − q
let L[1..n1 + 1] and R[1..n2 + 1] be new arrays
for i = 1 to n1 do
L[i] = A[p+ i− 1]

end for
for j = 1 to n2 do
R[j] = A[q + j]

end for
L[n1 + 1] = ∞; R[n2 + 1] = ∞
i = 1; j = 1
for k = p to r do

if L[i] ≤ R[j] then
A[k] = L[i]
i = i+ 1

else
A[k] = R[i]
j = j + 1

end if
end for

94



Quicksort

Quicksort (algorithms 6 and 7) is adapted from [16].

Algorithm 6 QUICKORT(A, p, r)

if p < r then
q = PARTITION(A, p, r)
QUICKSORT(A, p, q − 1)
QUICKSORT(A, q + 1, r)

end if

Algorithm 7 PARTITION(A, p, r)

x = A[r]
i = p− 1
for j = p to r − 1 do

if A[i] ≤ x then
i = i+ 1
swap A[i] and A[j]

end if
end for
swap A[i+ 1] and A[r]
return i+ 1

B.2 Binary Search Algorithms

Non-recursive Binary Search

Non-recursive binary search (algorithm 8) is adapted from [90].

Algorithm 8 NON-RECURSIVE-BINARY-SEARCH(A, l, r, v)

while r ≥ l do
m = (l + r)/2
if v == A[m] then

return m
end if
if v < A[m] then
r = m− 1

else
l = m+ 1

end if
end while
return −1
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Recursive Binary Search

Recursive binary search (algorithm 9) is adapted from [90].

Algorithm 9 RECURSIVE-BINARY-SEARCH(A, l, r, v)

if l > r then

return null

end if

m = (l + r)/2

if v == A[m] then

return A[m]

end if

if v < A[m] then

return RECURSIVE-BINARY-SEARCH(A, l,m− 1, v)

else

return RECURSIVE-BINARY-SEARCH(A,m+ 1, r, v)

end if

B.3 Depth First Search Algorithm

Depth first search (algorithms 10 and 11) is adapted from [57].

Algorithm 10 DEPTH-FIRST-SEARCH(G)

mark each vertex in V with 0 as a mark of being “unvisited”
count = 0
for each vertex v in V do

if v is marked with 0 then
DFS-VISIT(v)

end if
end for

Algorithm 11 DFS-VISIT(G, u)

count = count+ 1; mark v with count
for each vertex w in V adjacent to v do

if w is marked with 0 then
DFS-VISIT(w)

end if
end for
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B.4 Tree Traversal Algorithms

Preorder Traversal

Preorder traversal (algorithm 12) is adapted from [90].

Algorithm 12 PREORDER-TRAVERSAL(x)
if x == NIL then

return
end if
print(x.key)
PREORDER-TRAVERSAL(x.left)
PREORDER-TRAVERSAL(x.right)

Inorder Traversal

Inorder traversal (algorithm 13) is adapted from [16].

Algorithm 13 INORDER-TRAVERSAL(x)
if x �= NIL then
INORDER-TRAVERSAL(x.left)
print(x.key)
INORDER-TRAVERSAL(x.right)

end if

Postorder Traversal

Postorder traversal (algorithm 14) is adapted from [19].

Algorithm 14 POSTORDER-TRAVERSAL(x)
if x �= NIL then
POSTORDER-TRAVERSAL(x.left)
POSTORDER-TRAVERSAL(x.right)
print(x.key)

end if

B.5 Heap Algorithms

Heap Insertion

Heap insertion (algorithm 15) is adapted from [27].
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Algorithm 15 HEAP-INSERTION(H, last, item)

currPos = last

parentPos = (currPos− 1)/2

while currPos �= 0 do

if item > H[parentPos] then

H[currPos] = H[parentPos]

currPos = parentPos

parentPos = (currPos− 1)/2

end if

end while

H[currPos] = item

Heap Remove

Heap remove (algorithms 16 and 17) is adapted from [27].

Algorithm 16 HEAP-REMOVE(H, last)

temp = H[0]
H[0] = H[last− 1]
H[last− 1] = temp
ADJUST-HEAP(H, 0, last− 1)
return temp

Algorithm 17 ADJUST-HEAP(H, first, last)

currPos = first
target = H[first]
childPos = 2 ∗ currPos+ 1
while childPos < last do

if childPos+ 1 < last and H[childPos+ 1] > H[childPos] then
childPos = childPos+ 1

end if
if H[childPos] > target then
H[currPos] = H[childPos]
currPos = childPos
childPos = 2 ∗ currPos+ 1

end if
end while
H[currPos] = target
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B.6 Graph Algorithms

Dijkstra’s Algorithm

Dijkstra’s algorithm for the single-source shortest-paths problem (algo-

rithm 18) is adapted from [57].

Algorithm 18 DIJKSTRA(G, s)

Initialize(Q) //initialize priority queue to empty

for every vertex v in V do

dv = ∞
pv = null

Insert(Q, v, dv) //initialize vertex priority in the priority queue

end for

ds = 0

Decrease(Q, s, ds) //update priority of s with ds

VT = ∅
for i = 0 to |V | − 1 do

u∗ = DeleteMin(Q) //delete the minimum priority element

VT = VT ∪ {u∗}
for every vertex u in V − VT that is adjacent to u∗ do

if du∗ + w(u∗, u) < du then

du = du∗ + w(u∗, u)

pu = u∗

Decrease(Q, u, du)

end if

end for

end for

Floyd’s Algorithm

Floyd’s algorithm for all-pairs shortest-paths problem (algorithm 19) is

adapted from [57].
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Algorithm 19 FLOYD(W [1..n, 1..n])

D = W

for k = 1 to n do

for i = 1 to n do

for j = 1 to n do

D[i, j] = min{D[i, j], D[i, k], D[k, j]}
end for

end for

end for

return D
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Errata

Publication I

In Subsection 3.2 on page 1055, ‘(the implemented tool that performs the’

should be ‘(the implemented tool that performs the recognition), the first

phase to be performed’.

In Subsection 5.4 on page 1061, ‘is less that’ should be ‘is less than’.

In Subsection 5.4 on page 1062, ‘column in blue’ should be ‘column in light

gray’, ‘column in green’ should be ‘column in medium gray’ and ‘column in

red’ should be ‘column in dark gray’.

In Subsection 5.4 on page 1063, ‘reveals than’ should be ‘reveals that’.

Publication II

In Subsection 1.1 on page 1847, ‘are much more’ should be ‘is much more’.

In Subsection 2.1 on page 1848, ‘sourced code’ should be ‘source code’.

In Subsection 6.3 on page 1858, ‘experience’ should be ‘experiment’.

In Subsection 7, ‘Simple additions’ should be ‘Simple addition’.

Publication III

In the caption of Figure 5, ‘in’ is redundant.

Publication V

In Sections 4, the second-to-last paragraph, ‘This make’ should be ‘This

makes’.
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In Sections 6, ‘111 program’ should be ‘111 programs’.

In Sections 6 and 7, ‘10 percent’ should be ‘9 percent’.
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