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This thesis studies the performance evaluation and optimization of full-duplex
multiple-input multiple-output (MIMO) relaying systems in single-input single-
output (SISO) link, based on signal-to-interference-plus-noise ratio (SINR). Re-
lays are transceivers which can improve the throughput of a system by cover-
age extension in a power-efficient manner, whereas full-duplex (FD) systems are
point-to-point communication systems, in which transmission and reception oc-
curs simultaneously on a single frequency band. Deploying relaying systems in the
full-duplex mode, however, causes self-interference, because the signal transmitted
from the transmitter side of the relay couples at its receiver side. This interference
causes performance degradation in these systems. In this thesis, a one-way SISO
communication link with a MIMO relay connecting the source and the destination
nodes is studied. The relay is considered to be implementing either amplify-and-
forward (AF) or decode-and-forward (DF) protocol. First, the end-to-end SINR of
the system is derived. With the knowledge of SINR, numerical evaluation is made
via computer simulations. The numerical results are reached by introducing dif-
ferent assumptions to the general system, as well as by keeping the system intact.
Although the numerical solutions provide high performance, they require much
time and computational power. Hence, this thesis offers some computationally ef-
ficient analytical solutions to the problem. For example, after setting the transmit
filter of the relay, minimum mean square error (MMSE) method is applied on the
first hop to optimize the system; or by assuming the relay self-interference channel
is a rank-one matrix, a closed-form solution for the transmitter and receiver relay
filters eliminating the self-interference is derived. Then, the performance of these
methods are compared and discussed in different aspects; such as high SINR and
computational requirement. The results indicate that each scheme has certain
benefits over the others depending on the system design requirements.
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Chapter 1

Introduction

1.1 Background

Communication has always been a fundamental necessity through the course of hu-
man history. Because we are living in a society, contributing to society, sharing
within the society, communication is a natural part of who we are. The efforts to
make communication a better experience have always been with us. The limitations
of communication have been continuously reduced by the technology. For instance,
one of the early improvements to make the communication a better experience was
the invention of smoke signal. It extended the maximum distance to communicate.
It ameliorated the life of mankind.

Different requirements of communication systems have come into play as we pro-
gressed. The extent of security, speed, accuracy, distance has put the challenge
into different fields, compelling us to invent different forms of communication. Yet,
there has always been one goal which is common for all forms of communication
systems: achieving higher data rate. Because we are living in a world in which the
frequency spectrum is scarce, and in which the population has been increasing faster
than ever, the challenge that of the next-generation communication systems being
able to provide improved throughput and coverage to increasing number of users is
becoming more and more difficult.

Relays are transceivers, which receive the signal on one end, and transmit it from
the other end. They may involve either a power amplification or decoding/re-
encoding process, depending on the implemented protocol, amplify-and-forward
(AF) or decode-and-forward (DF), respectively. The use of relays in wireless com-
munication systems brings some benefits. For instance, relays improve the system
coverage by repeating the signal towards farther distances. Relays lead to higher
system throughput, and more efficient power consumption.

Full-duplex (FD) systems are point-to-point communication systems, which allow
simultaneous two-way communication on the same frequency band. FD communi-
cation systems provide higher capacity compared to half-duplex (HD) systems due
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to the fact that FD systems utilize spectrum reuse, which is an efficient way to com-
bat the problem of spectrum scarcity. For these reasons, utilizing the concepts of
relaying and full-duplex communication within the same system, in theory, results
in better performance in various aspects.

However, full-duplex relay systems suffer from self-interference signal, which de-
creases the overall system signal-to-interference-plus-noise ratio (SINR). The self-
interference occurs as a result of the coupling of the transmitted signal to the re-
ceived signal at the relay. Even though full-duplex relay, theoretically, is a promising
topic in terms of capacity, in practice, extreme amounts of self-interference some-
times make it not so much feasible to implement. Therefore, most of the academic
research on wireless relay systems has been based on half-duplex implementation,
with the exception of some recent works.

The full-duplex relaying systems can provide effectively higher SINR performance
than the half-duplex systems if the problem of self-interference is solved and the
rate loss factor is taken into account. For instance, having multiple-input multiple-
output (MIMO) relay enables the system to make self-interference suppression in
spatial domain. By selecting an appropriate set of beamforming vectors both for the
transmitter and receiver sides of the relay, the effects of the self-interference signal
can be mitigated, leading to higher end-to-end SINR performance so as to optimize
the system.

1.2 Research Problem

As described above, full-duplex MIMO relay systems have great theoretical potential
to offer higher performance than conventional half-duplex relays, if the adverse effect
of the self-interference is, somehow, mitigated. This thesis aims to optimize the
full-duplex relay systems in terms of overall SINR performance by developing new
schemes using beamforming filters and transmit power allocation to combat the self-
interference at the relay. The proposed schemes are covering all of the common relay
protocols, which are amplify-and-forward and decode-and-forward. The main scope
is on the systems where the direct source-to-destination link is weak and the relay
extends the coverage area of the main source transmitter.

1.3 Contributions of the Thesis

The main contributions of this thesis can be summarized as follows.

• The search for the optimal implementation of full-duplex MIMO relay systems
is formalized for both amplify-and-forward and decode-and-forward protocols
in a pure mathematical sense as two exclusive optimization problems; one by
aiming for the maximization of overall system SINR, and another by adopting
complete self-interference cancellation approach in spatial domain.
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• The literature survey reviews key recent works offering several theoretical
methods to cope with the interference so as to improve the system perfor-
mance. It is noted that they all fail to reach the global maximum system
capacity, because of the constraints and assumptions defined along the way.
Instead, this thesis takes the problem as a whole and presents the global op-
timization result as an upper limit via numerical analysis.

• An analytical solution reducing the optimization problem down to a single
open parameter is proposed. First, the optimal receiver beamforming filter is
derived by fixing the transmitter beamforming filter and the relay transmit
power. Then, with the knowledge of the optimal receiver beamforming filter,
the optimal relay transmit power given any transmitter beamforming filter is
derived for both amplify-and-forward and decode-and-forward protocols. This
proposed solution not only produces promising performance itself, but also
takes us one step closer to the global analytical solution.

• An iterative scheme which is available in literature is modified to propose
a new solution in a closed form without much sacrificing the resulting SINR
performance. With the assumption of rank-one matrix for the self-interference
channel, the optimal beamforming filters maximizing the overall system per-
formance are derived with the constraint of complete interference suppression.

• Newly proposed schemes are studied based on different system conditions and
their performance is compared to numerical evaluation results, as well as to
some conventional reference schemes. It is shown that a proper combination
of those schemes can promise even more effective solution depending on the
system parameters.

1.4 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, literature survey conducts full-
duplex relay systems, mainly focusing on the mitigation of self-interference. Per-
formance analysis is presented on various mitigation schemes. Chapter 3 presents
a full-duplex relay system model in a SISO link with two hops assuming either AF
or DF protocols at the relay. The end-to-end system SINR is derived for both of
these protocols. In Chapter 4, the system SINR definition is transformed to an
optimization problem. It is shown that given the knowledge of channel responses, a
certain set of directions for the relay receiver and transmitter beams maximizes the
system SINR. Numerical evaluation results supporting this claim are also presented.
In Chapter 5, some analytical schemes are derived and proposed as a substitute for
the numerical solutions due to their comparable performance but yet simpler imple-
mentation. Chapter 6 presents simulation results for the analytical schemes offered
in Chapter 5, as well as the numerical evaluation results. Their performance is com-
pared and discussed in terms of different aspects, e.g., high SINR, computational
requirements, for different test cases. Finally, Chapter 7 concludes the outcomes of
the thesis.



Chapter 2

Literature Survey

This chapter summarizes the work that has been done in earlier literature, mostly
about full-duplex transmission and relaying. In the following sections, firstly, the
definitions of full-duplex and relaying systems are given. Their benefits and draw-
backs are pointed out. Later, the systems combining full-duplex and relay systems
are discussed. The previous efforts and various proposed solutions on those are
presented. The last but not least, their performance in various aspects is discussed.

2.1 Relay Systems

A relay, by its simplest definition, is a wireless transceiver. It has the ability to
receive a wireless signal at its receiver, and transmit it from the other end. Iron-
ically, as opposed to their such simple functionalities, relay-based communication
systems have crucial roles and widespread uses in various applications. Relays can
be employed to divert traffic from congested areas of a cellular system to cells with
lower traffic load [1]. In ad-hoc networks, using greater number of relays leads to
higher network capacity proportional to the logarithm of the number of relays [2, 3].
In addition, relays provide higher mobile cell coverage and indoor coverage [4]. They
extend the edge of the cell by forwarding the data signal to the areas where the signal
coming directly from the source cannot reach. Relays can also increase cell coverage
by filling uncovered territories, particularly in urban areas. Since, by deploying re-
lays, the shadowing effect which is a result of the presence of high buildings can be
eliminated [4, 5]. All in all, relay systems are efficient in power consumption, and
they lead to higher throughput.

The first relay systems were introduced in 1971 by van der Meulen [6]. A single
relay channel between a receiver and a transmitter node is studied for the first time.
Most general strategies for relay networks were developed in 1979 by Cover and
El Gamal later in [7]. Maximum relay channel capacities were extensively studied.
Since then, relay channels have been an interesting subject in an information the-
oretic perspective for a long time. In cellular systems, however, the first practical
applications were studied in [5], [9] and [10]. The authors in [5] give practical exam-
ples, e.g., for deploying cooperative relays to increase capacity through an antenna

4
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array, deploying fixed relay stations to increase the coverage in mobile broadband
systems through clusters of relays. In [9], transmit precoding schemes are suggested
to be deployed in MIMO relay systems since they provide a lower capacity bound.
In [10], the authors discuss the practical advantages and disadvantages of a multi
hop relay system for Worldwide Interoperability for Microwave Access (WiMAX) in
terms of network planning and cost analysis.

Figure 2.1 shows a basic two-hop relay communication model. After the information
is transmitted from the source node, S, it goes through the channel, hSR, between
the source, S, and the relay, R. Then, the received signal is processed in the relay
before it is transmitted towards the destination node, D. Finally, the signal goes
through the channel, hRD, between the relay, R, and the destination, D, and it is
received at the destination, D.

S
R

DxR(t) x̃R(t− td)

hSR
hRD

Figure 2.1: A two-hop SISO relaying (R) system enabling the communication be-
tween the source (S) and the destination (D) nodes, where td is the relay processing
delay

There is a time delay (td), called processing delay, between the reception and re-
transmission of the signal at the relay, occurring as a result of the process the
received signal goes through before being transmitted towards the destination node.
This process, depending on the protocol implemented on the relay, may entail the
process of decoding/re-encoding the signal, or compressing the signal, or merely a
power amplification on the signal.

2.2 Relaying Protocols

There are several relaying protocols. Each of them have advantages and disad-
vantages over the others. Relays with different protocols are utilized in different
applications depending on what is needed. Some of the common relaying protocols
are described below.

Amplify-and-Forward (AF) Relays with AF protocol amplify the received signal
from the source and transmit it towards the destination. The signal does not
go through any decoding/re-encoding process [10]. Therefore, relays imple-
menting AF protocol are known as non-regenerative relays [11]. However, the
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received signal at the relay is generally transmitted with a different gain. As a
result, if the gain is greater than one, the power of the noise signal within the
received signal, as well as the power of the actual useful signal, is increased,
which causes noise amplification [5]. Among all the relay protocols described
below, AF gives the smallest delay. Because, it requires the least computa-
tional power of all. In summary, it is fast and simple. Hence, AF protocol is
widely used in practical systems [12, 13].

Decode-and-Forward (DF) Relays with DF protocol decode the received signal
block by block, and then transmit the re-encoded signal [10]. These relays
are known as regenerative relays. They are also referred as digital repeaters,
bridges, or routers [5]. DF gives good signal-to-noise ratio (SNR) performance.
Yet, it requires high computational power. DF protocol does not work as fast
as AF does [14].

Compress-and-Forward (CF) Relays with CF protocol are also called Estimate-
and-Forward (EF) [7, 10], Observe-and-Forward (OF) [12], or Quantize-and-
Forward (QF) [15]. CF is similar to DF protocol. But, unlike DF, CF goes
beyond the quantization process by applying source coding techniques on the
received signal [16, 17]. Thus, CF protocol can be regarded as a hybrid solution
of DF and AF protocols. The received signal is not decoded at the relay. But,
the signal is quantized and source-coded before it is transmitted. So, the
transmitted signal contains estimation errors. At the destination, the relay
estimation can be used as side information when coding the signal coming
through the direct source-to-destination link [10].

Store-and-Forward (SF) Relays with SF protocol store the received signal, and
transmit it at a later time to the destination. Unlike AF, DF or CF protocols,
which are implemented at the physical layer, SF is a network layer protocol.
Relays with SF protocol are mostly used in multiple hop network systems with
high error rates, or in the systems which require long delays [18].

Among these protocols, AF and DF are the most commonly implemented protocols.
Therefore, only these protocols are considered in the following chapters throughout
the rest of this thesis.

2.3 Full-Duplex Relaying

In this section, first of all, half-duplex and full-duplex systems in general are ex-
plained. They are compared both in general communication system and in relaying
system aspects. Advantages and disadvantages coming with half-duplex and full-
duplex schemes are contrasted. Then, the self-interference1 concept occurring due

1When a signal is transmitted from the relay towards a different node, it is also unintentionally
received at the relay itself, thus interfering with the actual received signal. Therefore, it is called
self-interference. In some literature, self-interference is referred as loop interference, such as [19,
20, 21, 22].
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to the implementation of full-duplex protocol on the relaying systems is explained.
Possible consequences of the presence of self-interference to the system performance
in general are discussed.

2.3.1 Half-Duplex vs. Full-Duplex Systems

Point-to-point communication systems can be separated into two groups based on
their ability to allow simultaneous transmission on different directions.

Half-Duplex Systems (HD) Half-duplex systems are point-to-point communica-
tion systems, in which simultaneous communication is not possible. If different
signals are transmitted from different ends at the same time, the signals in-
terfere with each other. Each node in the system should wait for its turn
to transmit [10]. One way to achieve that is to allocate short time intervals
for each node. By doing that, the communication on each direction looks
practically uninterrupted. This is called time-division duplexing (TDD) [10].

Full-Duplex Systems (FD) Full-duplex systems are point-to-point communica-
tion systems, in which simultaneous communication works. This can be pos-
sible if the channel for the relay operation consists of two ideally orthogonal
subchannels [10]. It can be achieved by allocating different spectrums for each
node to transmit on. Since the transmitted signals are carried over differ-
ent frequency bands, they do not interfere with each other. This is called
frequency-division duplexing (FDD) [10].

The word duplex refers to two-way point-to-point communication systems. How-
ever, the relaying systems with only one-way communication can also be considered
to be HD or FD systems. We can say that the reason for that lies on the fact that
at the relay, both reception and transmission occur2. And the choice of handling
these two processes at the same time or letting them wait for each other draws the
line between HD and FD characteristics of the relay systems3.

In HD relaying systems, the same frequency band is used on both of the hops from
the source to the relay and from the relay to the destination. However, different time
slots are occupied by each hop [23]. Thus, the received and the transmitted signals
at the relay do not interfere with each other. However, the time to send a symbol
or to receive a symbol becomes two-fold compared to FD. Due to this spectral ef-
ficiency loss [24], half of the time spent on the communication process is wasted in
HD systems. Therefore, FD systems are more efficient than HD systems in terms of
system capacity. Theoretically, FD systems provide twice as much capacity as HD
systems do [25, 26]. The HD mode may only be preferred over the FD mode for the

2In other words, relay is a transceiver.
3However, this thesis understands full-duplex arrays as transmission on a single band without

TDD or FDD.
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systems of which the overall capacity is not too important, due to their much easier
implementation [27, 28, 29].

Relay nodes operating in the FD mode can receive and transmit simultaneously
on the same frequency [4]. Thus, relaying systems working on the FD mode are
spectrally more efficient [30]. Yet, the FD mode causes a disadvantage. The trans-
mitted signal from the relay to the destination is also received at the receiver side
of the relay itself. In other words, self-interference occurs at the relay. Because of
such drawback, FD relaying systems conventionally are not deployed as widely as
HD relays are, as discussed in [4].

2.3.2 Self-Interference in Full-Duplex Relays

Full-duplex relays allow simultaneous reception and transmission. The signal trans-
mitted towards the relay is received by the receiver antennas of the MIMO relay,
while the signal received at the relay in some previous time slot is being retrans-
mitted from the transmitter antennas after being processed. In the next time slot,
the signal transmitted from the transmitter antennas of the relay unintentionally
interferes with the signal received by the receiver antennas of the relay. Assuming
zero or low correlation between the signals received in different time slots, this self-
interference signal coming from the transmitter side of the relay degrades the system
SINR performance.

2.4 Self-Interference Mitigation

This section introduces some terms and concepts about self-interference mitigation
schemes, which are used or referred throughout this thesis.

The main motivation behind using the FD mode instead of the HD mode in re-
laying systems is to achieve higher capacity. Because reception and transmission
happens at the same time on the same channel, the FD mode brings higher data
rate to the system. Yet, the FD mode comes with self-interference, which should
be cancelled or, at least, mitigated. Needless to say, the simplest way to avoid
self-interference is to use the HD mode, which is widely adopted in several articles
[16, 31, 32]. Having said these, if, however, FD relaying is to be used, there are
several techniques to combat self-interference. With these mitigation techniques,
the FD mode can supersede the HD mode in terms of data rate.

It may, possibly, be confusing for some to use the terms interference mitigation
and throughput maximization interchangeably. Because, the ultimate goal is sup-
posed to be maximizing the system capacity, not minimizing the interference, which
is only a step towards that goal. It cannot be denied that, theoretically speaking,
there is not always a monotonic relation between the system capacity and the self-
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interference level. However, in practical systems, since the self-interference is much
stronger than the desired signal, the system capacity converges to its upper limit,
as the self-interference is fully cancelled out at the relay [33].

An important parameter for the efficiency of those signal processing methods in
improving the system capacity is the degrees of freedom of the system. Degrees of
freedom refers to the dimension of the system. For a relay communication system
(i.e. that shown in Fig. 2.1), the degrees of freedom increase as the number of an-
tennas at the receiver and transmitter sides of the relay, together with the number
of antennas at the source, S, or at the destination, D, increases [34, 35]. However,
throughout this thesis, only SISO links will be taken into consideration. In other
words, there is only one degree of freedom at the source and the destination nodes.

Having more degrees of freedom leads to better optimization4. More specifically,
increasing the number of antennas at the receiver and transmitter sides of the relay
in the system given in Fig. 2.1 will possibly result in higher upper limit for the
end-to-end SINR. Following the same logic, it can be considered that having only
a single antenna both at the receiver side and at the transmitter side of the relay
would mean having only one degree of freedom in the system.

After having compared the HD and FD modes, it can be argued that HD relay-
ing system is a fair choice for a practical system implementation, since HD relaying
systems are easy to deploy and do not suffer from self-interference [16, 31, 32]. How-
ever, the optimal choice between the HD and FD modes depends on the system
parameters changing incessantly in mobile systems [37]. Hence, an adaptive system
switching on real time between the HD and FD modes depending on the channel
conditions can result in higher spectral efficiency [36].

There are different methods to reduce the self-interference present in FD relaying
systems. The most straightforward and intuitive way to mitigate the self-interference
might be to estimate it at the relay, possibly by using a training signal5, and then
subtract the estimation from the received signal. But, the self-interference is easy
to estimate only in fixed relay systems, of which the transmitter and the receiver
are not mobile, and possibly, there is line-of-sight between them. This simple way
of removing the self-interference does not work well in mobile systems, due to the
difficulties in channel estimation. Because, in mobile systems, the distance between
the receiver and the transmitter varies, and an obstacle may temporarily block the
line-of-sight.

4 ”Better optimization” implies whatever the optimization problem is aiming at. For our case,
it is higher system capacity/SINR.

5Prior to the actual data transmission, if the source node is kept silent, and if an array of
training bits is transmitted from the transmitter side of the relay, it is fair to expect only the
self-interference signal at the receiver side of the relay, which is nothing but the weighted training
signal with time delay.
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In the following, some interference mitigation techniques are covered. For the ease of
understanding, they are presented in three groups; physical isolation, time-domain
cancellation, spatial suppression; as they are grouped in [30].

2.4.1 Physical Isolation

Physical isolation, or antenna isolation, refers to any means of interference miti-
gation due to physical deployment characteristics of any on-frequency repeaters in
general. On-frequency repeaters are the repeaters which receive and transmit sig-
nals on identical frequencies. Their implementations are cost-effective. Yet, they
are effective only with sufficient physical isolation between the receive and transmit
antennas [38]. In case of insufficient physical isolation, excessive feedback from the
transmitter side to the receiver side reduces system SINR. It may even cause the
repeater to go into oscillation. Therefore, the transmit power of the repeater should
be less than the physical isolation by a certain factor known as gain margin for
reliable transmission [39]. For the relays with separated antennas, greater distance
between the receive and the transmit antennas results in less interaction between
the receiver and transmitter sides of the relay, which produces less self-interference.
Using directional antennas on each side of the relay and placing them towards op-
posite directions reduces the interference [39]. The environment in which the relay
is deployed is also significant in determining the physical isolation, e.g., having a
physical obstacle between the receive and the transmit antennas may substantially
reduce the self-interference [39].

2.4.2 Time-Domain Cancellation

The self-interference signal at the receiver side of a relay can be considered the re-
sponse of the self-interference channel6 to the signal transmitted from the relay in
some previous time slot. In other words, all it takes to determine the self-interference
signal is to have the knowledge of the transmit signal of the relay, and the self-
interference channel response. Once the self-interference signal is determined, it can
be cancelled out at the instant the signal is received at the receiver side, since the
knowledge of the transmit signal is already available at the relay [40]. However,
the self-interference channel should be estimated, which is a critical task. Since
cancellation is done at the receiver by subtraction, in case of large channel estima-
tion errors, time-domain cancellation may cause even more interference instead of
mitigating it[30].

2.4.3 Spatial Suppression

Self-interference at the relay can be also mitigated by using beamforming filters on
the relay. The signal transmitted from the relay, firstly, goes through the transmitter
filter, then after traveling through the self-interference channel, the receiver filter of

6In some literature, self-interference channel is called leakage channel, i.e. [38, 39].
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the relay is applied on the signal. The idea behind interference mitigation lies on
the possibility that these beamforming filters can be adaptively modified in such a
way that the information stored in the useful signal is preserved as much as possible,
while the adverse effect of the interfering signal to the overall system performance
is reduced [30].

Spatial suppression can be applied by utilizing different methods. Some of them
are introduced below.

By selecting only one of the antennas, instead of using both of them at the re-
ceiver and transmitter sides, the self-interference mitigation can be obtained [30].
With antenna selection method, the best combination of the number of antennas
for each side producing the lowest interference is selected.

The self-interference channel transfer function of a MIMO relay can be regarded
as a matrix which can be written in singular value decomposition (SVD) form. Fol-
lowing the steps of (20), (21), (22) in [30], the set of singular values resulting in the
lowest interference can be selected. This method is called beam selection [30].

Unlike the methods mentioned above, null-space projection aims to eliminate the
interference completely, instead of mitigating it to some extent. Similar to the time-
domain cancellation method, the self-interference signal goes through the receiver
and transmitter filters of the relay, as well as the self-interference channel. But, in-
stead of estimating the self-interference and subtracting it from the received signal
at the receiver side, the self-interference can be directly set to be zero by choosing
a proper pair of relay filters [20, 33]. Obviously, there is no control over the self-
interference channel. Yet, the receiver and transmitter filters of the relay are system
design parameters, which can be set to adaptively fit to the system in case of self-
interference channel variations. For any given transmitter (or receiver) filter, the set
of receiver (or transmitter) filters which cancels the self-interference can be obtained
due to vector orthogonality. Then, among all those filters, the one producing the
highest end-to-end performance can be chosen. Even without the knowledge of any
of the relay filters, an iterative approach can be adopted [33, 41].

Instead of trying to mitigate the self-interference at the relay, the system can be
considered as a single optimization problem. Using minimum mean square error
(MMSE) method, the interference-plus-noise of the system can be mitigated [30].
This method is elaborated more in Section 5.2.

2.5 Survey on Performance Analysis

In this section, current literature on the performance optimization of FD relay-
ing systems is summarized. Various techniques based on different assumptions to
maximize SINR or capacity are explained. For most of the cases, the key to obtain
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higher SINR can be regarded as reducing the interference as much as possible. Some
of the literature concentrates on self-interference mitigation, whereas others try to
maximize the end-to-end SINR7 to achieve the optimal system. The techniques are
reviewed below in a rather chronological order.

Due to the simultaneous occurrence of reception and transmission, FD relays suf-
fer from self-interference, which causes a decrease in system capacity. In the ideal
interference-free case, full-duplex systems promise twice the capacity of half-duplex
systems. However, the presence of self-interference within the relay degrades the
capacity. Therefore, capacity improvement of full-duplex relays over the half-duplex
relays depends upon the level of the self-interference. In [37], the authors discuss
the feasibility of full-duplex SISO relay systems by comparing them to conventional
half-duplex relays. After considering several power allocation schemes, they con-
clude that if the self-interference is below a certain level, the full-duplex mode can
be preferable over the conventional half-duplex mode. Similarly, the authors in [42]
study the feasibility of the full-duplex mode MIMO relay systems with amplify-
and-forward protocol. They compare the average capacity for the full-duplex and
half-duplex modes. And they derive a condition for the full-duplex mode to outper-
form the half-duplex mode in terms of capacity.

However, in practical systems, it is not always the case to make an estimation
about the self-interference level prior to the system design. Therefore, making the
choice in advance between the full-duplex and half-duplex modes for system design
may not be possible. Instead, an adaptive system switching the full-duplex mode
on/off can achieve higher capacity. In [36], the authors propose a hybrid technique
that switches between the full-duplex and half-duplex modes, and that uses transmit
power adaptation. The authors show that their proposed technique works better in
optimizing both instantaneous and long-term spectral efficiency.

In practice, self-interference mitigation techniques cannot completely eliminate the
self-interference due to imperfect channel estimation. Therefore, the authors in [43]
propose relay transmit power control schemes, which can adaptively set the relay
transmit power to combat the residual self-interference. High self-interference de-
grades the first hop channel SINR. Since the end-to-end SINR is limited by the
lower hop SINR, the relay transmit power can be reduced to boost the first hop
SINR at the expense of second hop SNR. Or inversely, low self-interference results
in high first hop channel SINR. So, the relay transmit power is increased to favor
the lower second hop SNR while sacrificing the first hop SINR. The authors in [44]
present a transmit power control scheme for MIMO full-duplex decode-and-forward
relay systems minimizing the residual self-interference. They compare their scheme
to the half-duplex mode, and conclude that it is not only more power efficient, but
also results in higher capacity.

7In the following chapters of this thesis, focusing on reducing the self-interference is referred
as null-space projection, a method forcing the self-interference to be zero, and maximizing the
end-to-end SINR is referred as global optimization problem.
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Self-interference mitigation in full-duplex MIMO relays is crucial for higher capacity.
The suppression of self-interference can be achieved via time-domain subtraction,
as well as via multi-antenna techniques in spatial domain. In [45], the authors pro-
pose null-space projection and MMSE filtering schemes to mitigate self-interference
in full-duplex relaying systems in MIMO link. With null-space projection, self-
interference is forced to be zero. With MMSE filtering scheme, optimal relay re-
ceiver filter is derived with the knowledge of relay transmitter filter. In [33], the
authors propose an algorithm which searches for the optimal beamforming vectors
in a full-duplex relay canceling the self-interference via null-space projection. The
proposed algorithm uses an iterative approach to optimize the system. The authors
in [41] propose a new spatial-domain method to eliminate self-interference both
in amplify-and-forward and decode-and-forward full-duplex relays. Their proposed
method uses an iterative algorithm. The authors conclude that their method re-
sults in better performance than the conventional SVD-based method. In [30], the
authors propose schemes for spatial-domain interference suppression in full-duplex
MIMO relays. They conclude that the proposed schemes succeed in mitigating the
self-interference to a tolerable level.

Conventional full-duplex relays use antennas separately at the receiver and at the
transmitter. The authors in [25] suggest that the efficiency of antenna resources
can be improved if each antenna at the relay transmits and receives simultaneously
on the same frequency band to obtain higher capacity. They propose a method for
full-duplex relaying system which relies on antenna sharing between the receiver and
transmitter sides of the relay. They claim that their proposed method outperforms
the conventional full-duplex relaying systems. However, it remains questionable
whether single-array full-duplex transceiver can be implemented in practice.

One of the main motives of deploying relay systems is to extend the indoor cov-
erage by mirroring the outdoor signal to indoor. For this application, full-duplex
relays can clearly promise higher capacity than half-duplex relays. However, one
of the fundamental challenges of indoor full-duplex relays, as opposed to those of
outdoor, is that using directional antennas and increasing the physical distance be-
tween the antennas is not a viable solution to suppress the self-interference. In [46],
the authors conduct experiments and present self-interference measurement results
for outdoor-to-indoor full-duplex relays. The authors claim that indoor full-duplex
relaying systems are feasible in practice.

The system performance can be improved more by maximizing the end-to-end SINR
instead of eliminating the self-interference at the relay. The authors in [47] propose
an algorithm to mitigate the self-interference in full-duplex amplify-and-forward re-
laying systems by considering the system as a whole, instead of using zero forcing
schemes on the self-interference signal. In the proposed algorithm, the receiver and
transmitter relay filters optimizing the system are searched. The authors conclude
that their algorithm outperforms any null-space projection scheme. However, they
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neglect the processing delay at the relay, which tends to give more optimistic system
performance in the simulations.

More literature related to wireless relaying systems can be found in [9, 12, 16, 31,
32, 35, 48, 49, 50, 51, 52, 53, 54].

Accurate channel estimation is crucial to the validity of any optimization technique,
even though it is not a focal point in this thesis. Therefore, throughout the thesis,
the channels are always assumed to be perfectly estimated without any justification.
For the readers in interest, some literature related to channel estimation on relay
systems can be found in [40, 55, 56, 57, 58, 59, 60].



Chapter 3

System Model

In this chapter, firstly, a system model is defined for a two-hop SISO communication
link with a single MIMO relay connecting those two hops. Then, the system pa-
rameters are explained, and the symbols used for those parameters are introduced.
Later, some approximations and constraints to the system are given. Finally, the
derivation of system SINR is presented for both AF and DF protocols.

3.1 MIMO Relay in SISO Link

We are considering a two-hop communication system with a full-duplex relay, R,
between a source, S, and a destination, D. The source, S, and the destination,
D, are single-antenna nodes. The relay may have multiple receiver and transmitter
antennas, with the number of antennas represented by Nrx for the receiver side, and
Ntx for the transmitter side. The illustration of this model is given in Fig. 3.1.

S

R

D

hSR

HRR

hRD

hSD

grx gtxxS

yR xR

yD

Figure 3.1: System model of a two-hop communication system with a full-duplex
MIMO relay

Having multiple antennas at the relay results in multiple subchannels. There are,
apparently, Nrx subchannels between the source, S, and the relay, R, nodes. Simi-
larly, there are Ntx subchannels between the relay, R, and the destination, D, nodes.
And there are Nrx×Ntx subchannels within the relay as the self-interference channel.

15
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Hence, the channel transfer functions are considered as matrix and vectors. The
channel responses presented in Fig. 3.1 represent the corresponding channels given
below.

hSR ∈ CNrx×1 the channel between the source, S, and the relay, R

hRD ∈ C1×Ntx the channel between the relay, R, and the destination, D

HRR ∈ CNrx×Ntx the self-interference channel within the relay, R

hSD ∈ C the channel between the source, S, and the destination, D

For any channel in the system model, additive white Gaussian noise (AWGN) is
assumed to be present. The additive noise terms at the relay and at the destination
are represented as

nR ∈ CNrx×1 vector of independent AWGN terms at the relay, R

nD ∈ C AWGN term at the destination, D

The relay has multiple antennas both at the receiver and at the transmitter. This is
useful for combating self-interference, although spatial multiplexing is not possible
with SISO relays [36]. The beamforming vectors at the transmitter and at the
receiver are represented in Fig. 3.1 as given below.

grx ∈ C1×Nrx the beamforming filter at the receiver side

gtx ∈ CNtx×1 the beamforming filter at the transmitter side

For a communication system which has multiple antennas at the receiver, the same
signal is received multiple times, each copy being slightly different, as a result of
multipath scattering, having different angles and different distances to different an-
tennas at the receiver. In other words, the same copies of the signal that is sent from
the transmitter go through slightly different channels before they reach the receiver.
The similar logic can be carried on for a communication system which has multiple
antennas at the transmitter. The same copies of the transmitted signal go through
slightly different channels before they are received at the receiver.

Hence, by applying beamforming filters, useful information over the multiple copies
can be combined. This way, the maximum useful signal power at the receiver is
attained, while keeping the noise and interference signal powers low. As a result,
higher SINR performance is achieved. As more antennas are used at the transmitter
or at the receiver side of the relay, degrees of freedom of the system increases, thus
leading to higher SINR [34, 35].
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Since grxnR ∼ CN (0, σ2
R) and nD ∼ CN (0, σ2

D), the noise powers can be cal-
culated as given below. Note that noise signal at the relay, nR, is affected by the
receiver beamforming filter, grx, for which we assume ‖grx‖2 = 1.

σ2
R = E

{|grxnR|2
}

(3.1)

σ2
D = E

{|nD|2
}

(3.2)

The average power of the input signal transmitted from the source, pS, and the
average power of the signal transmitted from the relay, pR, are defined as

pS = E
{|xS|2

}
(3.3)

pR = E
{|xR|2

}
(3.4)

In this system model, two of the relaying protocols introduced in Section 2.2 are
considered separately. These are AF and DF protocols.

• With amplify-and-forward (AF) protocol, the relay amplifies the received sig-
nal, yR, in every time slot, k, to obtain the relay transmitted signal, xR. The
relationship between the relay input, yR, and the relay output, xR, can be
given [12] as

xR[k] = β yR[k − kAF
D ] (3.5)

where β is the relay processing gain, and kAF
D is the processing delay. Because

the relay processing gain, β, is simply the gain of the signal in amplitude, it
can be calculated by taking the square root of the power gain, which is the
ratio of the output signal power to the input signal power of the relay.

• With decode-and-forward (DF) protocol, the relay decodes a block of the re-
ceived signal, yR, and re-encodes it before transmission. In this decoding/re-
encoding process, the same coding schemes are used. Therefore, the signal is
regenerated as it was at the source, S. For the ideal case in which there is no
decoding error, the signal transmitted from the relay is exactly the equivalent
of the signal transmitted from the source, S, but with a delay and power nor-
malization to relay transmit power, pR. Therefore, in the ideal case, the signal
at the relay transmitter is written [12] as

xR[k] =

√
pR
pS

xS[k − kDF
D ] (3.6)

where kDF
D is the relay processing delay.

Note that DF requires more computational power, and causes longer delay than AF
does. Yet, DF results in higher SINR performance [14, 49].
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3.2 Signal Transmission

The input signal, xS, is transmitted from the source, S, to the destination, D,
through two independent paths. It is received both after going through the relaying
system and directly through the source-to-destination channel, hSD. For the direct
source-to-destination transmission path, the input signal, xS, travels through the
channel, hSD, before it is directly received at the destination, D, node.

For the relay transmission path, the input signal, xS, is transmitted through the
relay link channel, hSR [10]. Multiple copies of this information are received at the
receiver side of the relay together with the interference signal coming from the trans-
mitter side of the relay. This combined signal, yR, is processed at the relay according
to either AF or DF protocol. For AF protocol, the signal goes through a power am-
plification process. For DF protocol, the signal goes through a decoding/re-encoding
process. The output signal, xR, of either of these relay processes is transmitted via
multiple antennas at the transmitter side of the relay. This signal is received both
at the receiver side of the relay and at the destination, D, node of the system. It
goes through the self-interference channel, HRR, before being received at the receiver
side of the relay as the self-interference signal [26, 37]. And it also goes through the
access link channel, hRD, before it is received at the destination, D [10].

The signal coming through the relay link and the signal coming directly from the
source, S, node have different delays, mostly because of the relay processing and
the different physical distances of the channels. So, when they are received at the
destination, D, they interfere with each other. However, the system model is con-
sidered for the cases in which the direct transmission from the source, S, to the
destination, D, does not perform satisfactorily. Mainly for that reason, a relaying
system, enabling a better indirect connection is in use. Based on this motivation, it
is a valid and acceptable assumption that the direct link channel between the source
and the destination, hSD, is too weak to be considered an interference signal for the
relay link. Thus, the channel, hSD, will be assumed to be non-existent throughout
this thesis due to acute path loss as discussed in [61, 62, 63], i.e.,

hSD ≈ 0 (3.7)

3.3 System Constraints

The beamforming filters at the receiver of the relay, grx, and at the transmitter of
the relay, gtx, are assumed to have unit Euclidean norms.

‖grx‖2 = 1 ‖gtx‖2 = 1 (3.8)

Therefore, the power of the signal going through either of these filters is preserved



19

on average1. With this assumption, the relay transmit power can be extracted from
beamforming vectors, and considered as a separate system parameter.

In practice, the transmit power of a signal is set based on several criteria, e.g.,
channel conditions, the availability of a power source around the transmitter, etc.
Since these practical conditions are not easy to be estimated in theory, it is better
to define a theoretical bound for the transmit power, and take those practical con-
ditions into account by setting the channel SNRs based on real-life measurements.
Due to the simplicity it brings to the calculations, the transmit powers at the source,
pS, and at the relay, pR, are normalized to be upper bounded by 1. Since the power
of a signal is always non-negative, the constraints on the transmit powers, pS and
pR, can be written as

0 ≤ pS ≤ 1 (3.9)

0 ≤ pR ≤ 1 (3.10)

The effect of pS can only be observed at the first hop of the system (source-to-relay).
Since the direct link is assumed to be too weak, as given in (3.7), higher pS results
in higher end-to-end SINR performance. Therefore, it is straightforward to conclude
that the end-to-end system optimization is achieved when

pS = 1 (3.11)

However, if the direct source-to-destination link were not weak enough to be ne-
glected, then, the optimal pS would not necessarily be one, due to the fact that the
signals arriving at the destination, D, through different links would interfere with
each other.

Changing the relay transmit power, pR, however, affects both the relay-to-destination
link and the amount of self-interference simultaneously. Thus, there is a trade-off
between obtaining low self-interference and achieving high relay-to-destination chan-
nel SNR in terms of pR. The optimal pR maximizing the end-to-end SINR depends
upon the set of channel realizations.

3.4 Signal to Interference plus Noise Ratio (SINR)

The received signal at the relay, yR, and the received signal at the destination, yD,
can be written as

yR = grx (hSRxS +HRRgtxxR) + grxnR

= grxhSRxS + grxHRRgtxxR + grxnR (3.12)

1It is impossible to preserve the signal power for each realization of the received signal with unit
filter norm. However, average power of the signal at the relay over many independent realizations
should converge to input signal power.
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yD = hRDgtxxR + hSDxS + nD (3.13)

The average power of the received signal for each hop of the system is

E
{|yR|2} = E

{|grxhSRxS + grxHRRgtxxR + grxnR|2
}

(3.14)

E
{|yD|2} = E

{|hRDgtxxR + hSDxS + nD|2
}

(3.15)

We assume that the samples of input signal, xS, transmitted from the source, S,
over time are independent of each other. Thus, due to the processing delay, the
signals xS and xR are also considered to be uncorrelated, i.e., E

{
xSxR

} ≈ 0. Then,
the power terms can be simplified as

E
{|yR|2} = E

{|grxhSRxS|2
}
+ E

{|grxHRRgtxxR|2
}
+ E

{|grxnR|2
}

(3.16)

E
{|yD|2} = E

{|hRDgtxxR|2
}
+ E

{|hSDxS|2
}
+ E

{|nD|2
}

(3.17)

On the right-hand side of (3.16) and (3.17), the first terms are the useful signal
powers, the second terms are the self-interference signal powers, whereas the third
terms are the additive noise powers. Thus, SINR values for the first hop, γR, and
for the second hop, γD, can be written as

γR =
E
{|grxhSRxS|2

}
E
{|grxHRRgtxxR|2

}
+ E

{|grxnR|2
} (3.18)

γD =
E
{|hRDgtxxR|2

}
E
{|hSDxS|2

}
+ E

{|nD|2
} (3.19)

After the constant terms are taken out of the expectations, SINR values, γR and
γD, become

γR =
|grxhSR|2E

{|xS|2
}

|grxHRRgtx|2E
{|xR|2

}
+ E

{|grxnR|2
} (3.20)

γD =
|hRDgtx|2E

{|xR|2
}

E
{|hSDxS|2

}
+ E

{|nD|2
} (3.21)

Because the direct source-to-destination link is assumed to be weak, its channel
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response, hSR, is approximated to be zero as given in (3.7). Then, the interference
term in the denominator of (3.21) is cancelled out as

E
{|hSDxS|2

} ≈ 0 (3.22)

Then, γR and γD are simplified as

γR =
|grxhSR|2pS

|grxHRRgtx|2pR + σ2
R

(3.23)

γD =
|hRDgtx|2pR

σ2
D

(3.24)

since
pS = E{|xS|2} (3.25)

pR = E{|xR|2} (3.26)

σ2
R = E{|grxnR|2} (3.27)

σ2
D = E{|nD|2} (3.28)

Let us denote the channel SNRs of the system as

γSR =
|grxhSR|2

σ2
R

(3.29)

γRR =
|grxHRRgtx|2

σ2
R

(3.30)

γRD =
|hRDgtx|2

σ2
D

(3.31)

By substituting (3.29), (3.30) and (3.31) into (3.23) and (3.24), SINR of each hop
of the system can be represented in terms of channel SNRs as

γR =
pSγSR

pRγRR + 1
(3.32)

γD = pRγRD (3.33)
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3.4.1 SINR with Amplify-and-Forward Protocol

An important parameter for the system performance optimization is the end-to-
end SINR. For the end-to-end system with AF protocol, the received signal at the
destination node, D, is derived using (3.5), (3.12) and (3.13). After (3.5) and (3.12)
are substituted into (3.5), the signal at the destination, D, is found as

yD,e2e = hRDgtxβ
(
grxhSRxS + grxHRRgtxxR + grxnR

)
+ hSDxS + nD (3.34)

After substituting (3.7) and (3.28) into the mean square of (3.34), we obtain

E
[|yD,e2e|2

]
= |hRDgtx|2β2|grxhSR|2E

[|xS|2
]
+|hRDgtx|2β2|grxHRRgtx|2E

[|xR|2
]

+|hRDgtx|2β2E
[|grxnR|2

]
+ σ2

D (3.35)

The first term on the right-hand side of (3.35) is the useful signal power, whereas the
second and the third terms are the interference signal and noise powers, respectively.

Since SINR is defined as the ratio of the useful signal power to the interference
signal and noise powers, the end-to-end SINR value can be written as

γSRD =
|hRDgtx|2β2|grxhSR|2E

[|xS|2
]

|hRDgtx|2β2|grxHRRgtx|2E
[|xR|2

]
+ |hRDgtx|2β2E

[|grxnR|2
]
+ σ2

D

(3.36)

After substituting (3.25), (3.26) and (3.27), the SINR of the end-to-end system
is calculated as

γSRD =
|hRDgtx|2β2|grxhSR|2pS

|hRDgtx|2β2|grxHRRgtx|2pR + |hRDgtx|2β2σ2
R + σ2

D

(3.37)

For the AF protocol, the signal is not regenerated at the relay. Instead, the process
is a power amplification. The gain factor, β, normalizes the relay transmit power to
pR. Therefore, it can be represented as a function of the power ratio between the
relay output signal and the relay input signals. Hence, by using (3.5), (3.16), (3.27),
(3.25) and (3.26), the processing gain, β, can be defined as

β =

√
pR

|grxhSR|2pS + |grxHRRgtx|2pR + σ2
R

(3.38)

After substituting the processing gain, β, in (3.38) into the end-to-end SINR (3.37),
γSRD is obtained as

γSRD =
|hRDgtx|2pR|grxhSR|2pS

|hRDgtx|2|grxHRRgtx|2p2R + |hRDgtx|2pRσ2
R + · · · (3.39)
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· · ·σ2
D|grxhSR|2pS + σ2

D|grxHRRgtx|2pR + σ2
Dσ

2
R

The channel SNRs in (3.29), (3.30) and (3.31) are substituted into the end-to-end
SINR (3.39). Then, γSRD becomes

γSRD =
pRγRDσ

2
DγSRσ

2
RpS

γRDσ2
DγRRσ2

Rp
2
R + γRDσ2

DpRσ
2
R + σ2

DγSRσ
2
RpS + · · · (3.40)

. . . σ2
DγRRσ

2
RpR + σ2

Dσ
2
R

After dividing both the nominator and the denominator of (3.40) by the term
(σ2

Rσ
2
D)

[
γRRpR + 1

]
, we obtain

γSRD =
pRγRDpSγSR/

[
γRRpR + 1

]
pRγRD + γSRpS/

[
γRRpR + 1

]
+ 1

(3.41)

The first hop SINR in (3.32) and the second hop SINR in (3.33) are substituted
into the end-to-end SINR in (3.41). Then, the overall system SINR, γSRD, for
amplify-and-forward (AF) protocol is found as

γSRD =
γRγD

γR + γD + 1
(3.42)

3.4.2 SINR with Decode-and-Forward Protocol

For the end-to-end system with DF protocol, the received signal at the destination
node, D, depends upon the particular coding and modulation choices. The maxi-
mum average mutual information for repetition-coded DF full-duplex relay can be
found in [12] as

ISRD = min{log2(1 + γR), log2(1 + γD)} (3.43)

Because the system capacity is equal to the maximum mutual information and there
is no direct link, capacity for DF is defined as

CSRD = min{log2(1 + γR), log2(1 + γD)} (3.44)

We know that SINR values are always non-negative by definition.

γR ≥ 0, γD ≥ 0 (3.45)
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We also know that logarithm functions are strictly monotonically increasing func-
tions for non-negative real numbers. Thus, the system capacity in (3.44) can be
written as

CSRD = log2(1 + min{γR, γD}) (3.46)

According to Shannon limit [64], the relation between the capacity of a communi-
cation system and its SINR value is defined for a single-hop system as

CSRD = log2{1 + γSRD} (3.47)

Therefore, comparing (3.46) and (3.47), the end-to-end SINR for decode-and-forward
(DF) protocol can be defined as

γSRD = min{γR, γD} (3.48)

Note that the SINR expression derived for DF in (3.48) is an effective SINR value.
The nonlinear decoding/re-encoding process makes it difficult to measure or even
define the real end-to-end SINR.



Chapter 4

Optimization Problems

In this chapter, the system model stated in the previous chapter is transformed
to a global optimization problem, and various constraints are introduced to obtain
subproblems which will enable us to derive closed-form solutions. At the end of the
chapter, global numerical solutions to these problems are given.

4.1 Suboptimal Solutions

The idea behind optimizing the system is to maximize the performance in the source-
to-relay and relay-to-destination links, while minimizing the negative effect of the
self-interference channel, HRR. Apparently, it is impossible1 to perfectly achieve
these three criteria at the same time.

Therefore, the fundamental trade-off in this optimization problem can be argued
as finding a set of beamforming vectors, {grx, gtx}, which are keeping the first and
second hop SINRs as high as possible, as well as keeping the self-interference as
low as possible to achieve the highest possible end-to-end system SINR. It can be
easily observed that there are some suboptimal solutions to the problem, such as
neglecting the self-interference by maximizing the channel SNR of each hop. In that
case, the beamforming vectors become

grx = argmax
grx

{‖grxhSR‖2} (4.1)

gtx = argmax
gtx

{‖hRDgtx‖2} (4.2)

Due to Cauchy-Schwarz inequality, we know that

‖v1v2‖2 ≤ ‖v1‖2‖v2‖2 for any vectors v1, v2 (4.3)

1Theoretically, however, it is possible to have a set of channel responses such that a single pair
of {grx, gtx} may optimize each of those three criteria mentioned above, just by chance. Yet, it is
safe to say impossible in practice.
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Because of the unit norm constraint, the optimal beamforming vectors, grx, gtx,
maximizing (4.1) and (4.2) by satisfying equality in (4.3) are the normalized her-
mitian transposes of the channel responses corresponding to them as given below.
They are called the matched filter solutions.

grx =
hH
SR

‖hSR‖ (4.4)

gtx =
hH
RD

‖hRD‖ (4.5)

Another possible suboptimal solution is to take the self-interference mitigation as
the primary design criterion. Based on the assumption that the self-interference is
always zero, an iterative approach to find an optimal set of beamforming vectors to
maximize SINR can be adopted [33, 41].

The overall relaying system now is considered to be applied in the cases where
the direct source-to-destination link cannot provide high performance due to poor
channel conditions. As this claim suggests, the subsolution to the general prob-
lem with the zero self-interference assumption can be thought to be a fairly close
estimate to the global solution.

4.2 Global Optimization

The global optimization problem can be stated as maximizing the end-to-end SINR,
γSRD given in (3.42) and (3.48), while preserving the transmit power limits, given
in (3.9) and (3.10), and unit beamforming vector norm constraints, given in (3.8),
with the design parameters grx, gtx, and pR. So, it is defined as

maximizing γSRD, (3.42 & 3.48), with the constraints

0 ≤ pR ≤ 1,
‖grx‖2 = 1,
‖gtx‖2 = 1

However, the vector norm operations in (3.42) and (3.48) introduce nonlinearity to
the problem. That makes the analytical analysis cumbersome. Hence, the global
optimization is only considered as a numerical problem, which is solved on a com-
puter simulation. The performance results of this numerical analysis are used as an
upper limit for comparison to the analytical solutions of the subproblems defined
with some special assumptions and/or constraints.
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4.3 Optimization with Null-Space Projection

The SINR of the first hop of the system is given in (3.23). The denominator of
this equation consists of additive noise and self-interference. A set of beamforming
vectors, {grx, gtx}, can be chosen in such a way that the self-interference becomes
zero [20, 33] as

grxHRRgtx = 0 (4.6)

By following the same idea, but in opposite direction, (4.6) can be set as a design
criterion. Null-space projection does not consume all degrees freedom. Thus, the
signal of interest can be also improved. With this zero self-interference constraint
at the relaying system, a subsolution to the global optimization problem can be
obtained.

Because the self-interference is completely eliminated, SINR for the first hop be-
comes

γR =
|grxhSR|2pS

σ2
R

(4.7)

Note that the optimal relay transmit power, pR, becomes one, independent of the
channel responses, due to the fact that increasing pR does not increase the self-
interference term in the first hop SINR, simply because there is no self-interference
at all.

Then, the optimization problem is simplified to be

maximizing γSRD, (3.42 & 3.48), with constraints
‖grx‖2 = 1,
‖gtx‖2 = 1,
grxHRRgtx = 0

4.4 Numerical Evaluations

Numerical evaluation results for various cases regarding the general unconstrained
problem and the null-space projection problem are presented in this section. These
results are obtained using the function fmincon of the nonlinear optimization tool-
box on MATLABR© platform.

The system setup can be described as follows. The receiver and transmitter anten-
nas of the relay are varied from 1 to 5, while always being kept equal to each other.
Source-to-relay, relay-to-destination and self-interference channels are assumed to
experience Rayleigh fading. The channels are also assumed to have independent
identically distributed elements. The self-interference channel is modeled as a full-
rank matrix. The noise variances at the relay and at the destination are assumed to
be 1. The average power gain per each subchannel for the source-to-relay, φSR, and
relay-to-destination, φRD, links are set to be 12 dB, whereas for the self-interference
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subchannels, φRR is set to be 0 dB as given below.

φSR =
E
{‖hSR‖22

}
Nrx

= 12 dB (4.8)

φRD =
E
{‖hRD‖22

}
Ntx

= 12 dB (4.9)

φRR =
E
{‖HRR‖2F

}
NrxNtx

= 0 dB (4.10)

The unconstrained global problem is defined as

γSRD =
γRγD

γR + γD + 1
for amplify-and-forward (4.11)

γSRD = min{γR, γD} for decode-and-forward (4.12)

Null-space projection constraint, though, introduces an additional constraint (4.6)
to the global problem. The beamforming filters are generated to produce zero self-
interference.

In Fig. 4.1, the results for the general optimization problem are given. In the eval-
uation, four different cases are considered for DF and AF protocols each. First, the
general problem is taken as it is. The beamforming vectors, grx and gtx, and the
relay transmit power, pR, are assumed to be the optimization parameters. Second,
receiver beamforming filter, grx, is assumed to be matched to the channel between
the source and the relay as in (4.4), while transmitter beamforming vector, gtx, and
the relay transmit power, pR, are taken as the optimization parameters. Third,
transmitter beamforming vector, gtx, is assumed to be matched to the channel be-
tween the relay and the destination as in (4.5), while receiver beamforming vector,
grx, and the relay transmit power, pR, are taken as the optimization parameters.
Fourth, both the receiver beamforming vector, grx, and the transmitter beamform-
ing vector, gtx, are assumed to be matched to the channel between the source and the
relay, and to the channel between the relay and the destination, respectively as in
(4.4), and (4.5), while the relay transmit power, pR, is taken as the only optimization
parameter. For each case above, the evaluation is run over a sufficient number of
channel realizations for different number of antennas cases, and the resulting SINR
values are averaged over those realizations. The number of antennas are considered
to be equal on receiver and transmitter sides of the relay2. Then, the final SINR
values for each case are shown in Fig. 4.1.

2The effect of number of antenna variations on the SINR performance is investigated more
deeply in Section 6.4
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Figure 4.1: Numerical evaluation results of the global optimization problem for the
general and the matched filter solutions

The second, third, and fourth cases, which utilize the matched filter concept, re-
sult in suboptimal solutions to the global problem. Yet, they are computationally
faster than the general problem, since they reduce the uncertainty within the non-
linear optimization algorithm by introducing some constraints. The idea behind
these constraints is, simply, to maximize channel SNR of one or both of the hops
of the system by matching the beamforming filters to the channel by neglecting the
self-interference. Then, the other system parameters are obtained through numeri-
cal analysis.

As the number of antennas increases, SINR performance for each case improves.
However, the additional SINR gain for each antenna decreases as the number of an-
tennas increases. Global solution gives the highest SINR values, which are, in fact,
the theoretical upper limits. The case in which the receiver beamforming vector,
grx, is matched and the case in which the transmitter beamforming vector, gtx, is
matched produce almost identical SINR performance, whereas the case which sets
both of the beamforming vectors, grx and gtx, as matched filters results in slightly
lower SINR values. An important observation that can be made out of Fig. 4.1 is
that setting only one of the beamforming vectors as matched filter does not cause
much SINR loss in practice, especially as compared to the case in which both of the
beamforming vectors are set to be matched filters. In the next chapter, this obser-
vation is taken into account to find an effective analytical solution by focusing on
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deriving the closed-form for one of the beamforming vectors after fixing the other.

Figure 4.2: Numerical evaluation results of the optimization problem with the null-
space projection constraint for the general and the matched filter solutions

In Fig. 4.2, the same system conditions for those in Fig. 4.1 are repeated. For this
setup, however, null-space projection constraint (4.6) is applied to the evaluation.
Since the interference is eliminated, the relay transmit power, pR, is set to its up-
per limit. Thus, the case in which both of the beamforming vectors are set to be
matched filters is excluded from the evaluation. The results for the other three cases
are given for both DF and AF protocols using different number of antennas in Fig.
4.2.

The SINR performance results of numerical evaluation given in Fig. 4.2 and Fig. 4.1
do not substantially differ from each other. When the number of antennas is small,
there is a slight difference. Yet, especially, when the number of antennas is higher,
the performance gap between the general case and the null-space projection case
disappears. This is because greater number of antennas provides more degrees of
freedom, which enable the system to be optimized more accurately. This observation
can be used to support the conjecture that the null-space projection assumption is
a good subsolution for the general problem.



Chapter 5

Analytical Schemes

In this chapter, some assumptions will be introduced to simplify the general opti-
mization problem1, of which the numerical evaluation is presented in the previous
chapter, so that a suboptimal analytical solution, hopefully close to the global op-
timum point, can be derived. In the following sections, three different analytical
schemes are presented. Firstly, by assuming that both of the beamforming vectors,
grx, gtx, are known, an equation giving the optimal relay transmit power, pR, for
DF and AF protocols is presented. Secondly, if the second hop of the system is
fixed, the optimal receiver beamforming vector, grx, optimizing the first hop SINR
is derived in terms of relay transmit power, pR, and transmitter beamforming vector,
gtx, using minimum mean square error (MMSE) method. Then, using that optimal
receiver beamforming vector, grx, the relay transmit power, pR, is optimized for both
AF and DF protocols. Thirdly, the null-space projection method is forced on the
system. Then, if one of the beamforming vectors is known, the other beamform-
ing vector eliminating the self-interference is calculated. When the self-interference
channel is assumed to be a rank-one matrix, an analytical solution giving the optimal
pair of beamforming vectors, {grx, gtx}, under the null-space projection constraint
is derived.

5.1 Optimal Relay Transmit Power for Fixed Beam-

forming Filters

For any given pair of beamforming vectors, grx and gtx, the optimal pR value maxi-
mizing the end-to-end SINR can be found using (3.42) or (3.48) as shown in [36, 44].

For AF protocol, the optimal pR can be derived by straightforwardly taking the
derivative of the end-to-end SINR expression (3.42) with respect to pR and setting
it to zero. After the calculations, the optimal relay transmit power, pR, for AF can

1Finding an analytical solution to the general global problem seems too difficult, if not impos-
sible.
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be obtained as

pR =

√
γSR + 1

γRDγRR

(5.1)

For DF protocol, the end-to-end SINR expression (3.48) is maximized when its
arguments, which are the first hop and the second hop channel SINRs, γR and γD,
are equal to each other. The optimal relay transmit power, pR, for DF can be derived
as

pR =
1

2γRR

(√4γSRγRR

γRD

+ 1− 1
)

(5.2)

With the relay transmit power constraint, 0 ≤ pR ≤ 1, the optimal pR can be stated
as

pR =

⎧⎨
⎩
min

[
1,
√

γSR+1

γRDγRR

]
, for AF

min
[
1, 1

2γRR

(√
4γSRγRR

γRD
+ 1− 1

)]
, for DF

(5.3)

5.2 Optimal Receive Beamforming Filter and Re-

lay Transmit Power for Fixed Transmit Beam-

forming Filter

If we assume pR and gtx are known, the SNR of the second hop can be directly
calculated. Fixing pR and gtx also fixes the direction from where the interference is
arriving at the first hop. As it is pointed out in Section 4.1, maximizing the end-to-
end SINR is the same as maximizing SINR of source-to-relay channel and SNR of
relay-to-destination channel while minimizing the self-interference at the relay. Since
the relay-to-destination channel SNR is fixed, the optimization problem can be in-
terpreted as maximizing the source-to-relay channel SINR alone while keeping the
self-interference as low as possible. In other words, with a fixed relay-to-destination
channel SNR, maximizing first hop SINR maximizes also the overall end-to-end
SINR. To achieve this goal, minimum mean square error (MMSE) method is used
on the received signal at the relay node (3.12). After the optimal receiver beam-
forming vector, grx, is obtained in terms of the relay transmit power, pR, the same
logic explained in the previous section is applied to find the optimal relay transmit
power, pR, given only a fixed transmitter beamforming vector, gtx, both for AF and
DF separately.

Apparently, we do not expect to reach the performance of global solution, which
is the theoretical upper limit. But, since the idea is to get close to it as much as
possible, we prefer to choose the value of gtx wisely, since the whole optimization
problem is based on the trade-off between maximizing the source-to-relay, relay-to-
destination SINRs and minimizing the self-interference power.
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The derivation of optimal grx with the MMSE method is given step by step be-
low.

Without the unit norm constraint on grx as given in (3.8), the ideal signal received
at the relay after beamforming should be

yR,ideal = xS (5.4)

The error signal for MMSE is the difference between what we have and what we
expect to have at the receiver. It can be defined as

e = yR − yR,ideal (5.5)

After substituting the ideal signal to be received (5.4) into the error signal (5.5), the
error signal becomes

e = yR − xS (5.6)

When yR, given in (3.12), is substituted, the error signal, e, becomes

e = (grxhSR − 1)xS + grxHRRgtxxR + grxnR (5.7)

The absolute square value of the error signal to be minimized is calculated as

|e|2 = ∣∣(grxhSR − 1)xS + grxHRRgtxxR + grxnR

∣∣2 (5.8)

The expectation of (5.8) is calculated, i.e., the mean square error (MSE) is written
as

E
[|e|2] = E

[∣∣(grxhSR − 1)xS + grxHRRgtxxR + grxnR

∣∣2] (5.9)

After some calculations, the mean square error is found as

E
[|e|2] = E

[∣∣(grxhSR−1)xS

∣∣2]+E
[∣∣grxHRRgtxxR

∣∣2]+E
[∣∣grxnR

∣∣2]

+E
[
(grxhSR − 1)xS (grxHRRgtxxR)

H + (grxHRRgtxxR)
(
(grxhSR − 1)xS

)H
+ (grxhSR − 1)xS (grxnR)

H + (grxnR)
(
(grxhSR − 1)xS

)H
+ (grxHRRgtxxR)(grxnR)

H + (grxnR)
(
grxHRRgtxxR

)H]
(5.10)

Since the signals transmitted from the source, xS, and the relay, xR, have zero
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means, and are uncorrelated due to processing delay,

E[xRxS ] = E[xR]E[xS ] = 0 (5.11)

Since grx and nR are uncorrelated, and nR is zero-mean noise,

E[grxnR] = grxE[nR] = 0 (5.12)

Hence, the mean square error is simplified by setting the cross terms to zero as

E
[|e|2] = E

[|grxhSR−1|2|xS|2
]
+E

[|grxHRRgtx|2|xR|2
]
+E

[|grxnR|2
]

=
(
1−grxhSR −(grxhSR)

H+ grxhSR (grxhSR)
H
)
E
[|xS|2

]
+(grxHRRgtx)(grxHRRgtx)

HE
[|xR|2

]
+ E

[|grxnR|2
]

(5.13)

The autocorrelations of the signals, xS and xR, are equal to their powers. Then, we
can substitute them in (5.13) with the power terms as defined in (3.3) and (3.4).

E
[|xS|2

]
= pS, and E

[|xR|2
]
= pR (5.14)

Since the unit-norm constraint on grx is not momentarily preserved, its norm can
be taken out of the expectation as

E
[|grxnR|2

]
= ‖grx‖2E

[∣∣∣ grx
‖grx‖nR

∣∣∣2] (5.15)

Using the definition given in (3.1), we can write

E
[|grxnR|2

]
= ‖grx‖2σ2

R (5.16)

Then, mean square error in (5.13) becomes

E
[|e|2] = grxg

H
rxσ

2
R + pS − grxhSR pS − hH

SRg
H
rx pS + grxhSR hH

SRg
H
rx pS

+grxHRRgtx gHtxH
H
RRg

H
rx pR (5.17)

Identity matrix, INrx
, is inserted into the first term on the right-hand side of (5.17).

After taking some of the terms in (5.17) into common multipliers, mean square error
can be written as

E
[|e|2] = pS − grxhSR pS − hH

SRg
H
rx pS
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+ grx

(
hSR hH

SR pS +HRRgtx gHtxH
H
RR pR + σ2

R INrx

)
gHrx (5.18)

Let R be defined as the covariance matrix of the relay input before the receiver
beamforming filter.

R = hSR hH
SR pS +HRRgtx gHtxH

H
RR pR + σ2

R INrx
(5.19)

Note that the covariance matrix, R, is a hermitian matrix. Then, (hH
SRR

−1hSR p2S)
is added to and subtracted from the mean square error in (5.18).

E
[|e|2] = pS − grxhSRpS − hH

SRg
H
rxpS + grxRgHrx

+(hH
SRR

−1hSR p2S − hH
SRR

−1hSR p2S) (5.20)

After reorganizing some of the terms in (5.20), the mean square error becomes

E
[|e|2] = pS − hH

SRR
−1hSR p2S + grxR gHrx − grxhSR pS

−hH
SRg

H
rx pS + hH

SRR
−1hSR p2S (5.21)

Identity matrix, INrx
= R R−1, can be inserted into some terms in (5.21), just for

the ease of calculation. After these modifications,

E
[|e|2] = pS − hH

SRR
−1hSR p2S + grxR gHrx − grxR R−1hSR pS

−hH
SRR

−1R gHrx pS + hH
SRR

−1R R−1hSR p2S (5.22)

The last four terms on the right-hand side of (5.22) can be written as one term after
being taken into the parenthesis of common multipliers and common multiplicands.
Then, the mean square error becomes

E
[|e|2] = pS − hH

SRR
−1hSR p2S +

(
grx − hH

SRR
−1 pS

)
R

(
grx − hH

SRR
−1 pS

)H
(5.23)

The first two terms on the right-hand side of (5.23) are independent of grx. Thus,
the mean square error is minimized when the last term is minimized.

Because the matrix R is positive semi-definite, all its eigenvalues are non-negative.
In particular, let the eigenvalues of R be λ0, λ1, . . . , λNrx−1. Then, R can be
defined as

R = UNrx×Nrx
ΣNrx×Nrx

UH
Nrx×Nrx

(5.24)
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where U is a unitary matrix consisting of its eigenvectors, and Σ is a diagonal matrix
with the eigenvalues {λ0, λ1, . . . , λNrx−1} as the diagonal terms.

Let the vector v1×Nrx
be defined as

v =
(
grx − hH

SRR
−1 pS

)
(5.25)

Then, the last term on the right-hand side of (5.23) can be written as(
grx − hH

SRR
−1 pS

)
R

(
grx − hH

SRR
−1 pS

)H
= (vU) Σ (vU)H (5.26)

Because Σ is a diagonal matrix, the right-hand side of (5.26) can be written as

(vU) Σ (vU)H =

Nrx−1∑
j=0

λj |vuj|2 (5.27)

where uj is the (j + 1)th column vector of matrix U .

By combining (5.25), (5.26), and (5.27), it can be seen that the last term on the
right-hand side of (5.23) is non-negative for any grx as shown below.(

grx − hH
SRR

−1 pS
)
R

(
grx − hH

SRR
−1 pS

)H ≥ 0 for ∀ grx ∈ C
1×Nrx (5.28)

Therefore, the global minimum of the term in (5.28) is reached when(
grx − hH

SRR
−1 pS

)
= 0 (5.29)

Hence, grx minimizing MSE is found as

grx = hH
SRR

−1 pS (5.30)

Now, we need to see that the beamforming vector, grx, in (5.30), which minimizes
the mean square error, is also the optimal solution maximizing SINR. The justifica-
tion is given below.

The first hop SINR (3.23) can be written as

γR =
(grxhSR)(grxhSR)

H pS
(grxHRRgtx)(grxHRRgtx)H pR + E[|(grxnR)(grxnR)H |2] (5.31)

After multiplications, the SINR expression becomes

γR =
grx(hSRh

H
SR)g

H
rx pS

grx(HRRgtxgHtxH
H
RR)g

H
rx pR + grx(σ2

RINrx
)gHrx

(5.32)
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The denominator of (5.32) is taken into common multipliers. Then, the first hop
SINR, γR, becomes

γR =
grx(hSRh

H
SR)g

H
rx pS

grx
[
HRRgtxg

H
txH

H
RR pR + σ2

RINrx

]
gHrx

(5.33)

After adding and subtracting 1, (5.33) becomes

γR =
grx(hSRh

H
SR)g

H
rx pS

grx
[
HRRgtxgHtxH

H
RR pR + σ2

RINrx

]
gHrx

+ 1− 1

=
grx

[
hSRh

H
SR pS +HRRgtxg

H
txH

H
RR pR + σ2

RINrx

]
gHrx

grx
[
HRRgtxgHtxH

H
RR pR + σ2

RINrx

]
gHrx

− 1 (5.34)

By substituting (5.19) into (5.34), we obtain γR as

γR =
grx R gHrx

grx
[
R− hSRhH

SR pS
]
gHrx

− 1

=
grxRgHrx

grxRgHrx − grxhSRhH
SRg

H
rx pS

− 1 (5.35)

The optimal grx minimizing MSE given in (5.30) is then substituted and γR becomes

γR =
(hH

SRR
−1 pS)R(R−1hSR pS)

(hH
SRR

−1 pS)R(R−1hSR pS)− (hH
SRR

−1 pS)hSRhH
SR(R

−1hSR pS) pS
−1 (5.36)

After some multiplications, some of the terms are cancelled out. Then, we obtain

γR =
hH
SRR

−1hSR p2S
hH
SRR

−1hSR p2S − hH
SRR

−1hSRhH
SRR

−1hSR p3S
− 1 (5.37)

After dividing both the nominator and denominator of (5.37) by hH
SRR

−1hSR p2S, the
first hop SINR, γR, becomes

γR =
1

1− hH
SRR

−1hSR pS
− 1 (5.38)

Minimum mean square error can be found by inserting the optimal receiver beam-
forming vector, grx, in (5.30) into the mean square error term in (5.23).

min{E[|e|2]} = pS − hH
SRR

−1hSR p2S + 0

= pS
[
hH
SRR

−1hSR pS
]

(5.39)
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Using the first hop SINR obtained in (5.38) and the minimum mean square error in
(5.39), it can be shown that

pS

min{E[|e|2]} = 1 + γR (5.40)

Equation (5.40) shows that there is an inverse relation between MMSE and SINR.
As MMSE decreases, SINR increases. When MMSE becomes infinitesimal, SINR
goes to infinity. In other words, maximum SINR is achieved when minimum possible
MMSE is attained. Therefore, we can conclude that since the beamforming vector,
grx, in (5.30) is minimizing MMSE, it is also maximizing SINR.

The solution in (5.30), however, does not take the unit norm constraint (3.8) into
account. The beamforming vector, grx, in (5.30) will not necessarily have unit norm.
Thus, the result can be normalized as

grx =
hH
SRR

−1 pS
‖hH

SRR
−1 pS‖ (5.41)

Normalized grx may not always give the MMSE solution, even though it still maxi-
mizes SINR. Because for a receiver beamforming vector, g̃rx = Kgrx, where K is any
nonzero constant, the first-hop SINR, γ̃R, is obtained to be equal to the first-hop
SINR, γR, in (3.23) for grx.

γ̃R =
K2|grxhSR|2pS

K2|grxHRRgtx|2pR +K2σ2
R

= γR (5.42)

since the constant K2 can be cancelled out.

In other words, the first hop SINR is independent of the receiver beamforming
vector norm by definition. This fact can be utilized to simplify the result in (5.30)
a step further. The beamforming vector, grx, is found as

grx = hH
SR

[
hSR hH

SR pS +HRRgtx gHtxH
H
RR pR + σ2

R INrx

]−1
pS (5.43)

Woodburry matrix identity [65] given below can be used to simplify the matrix sum
inversion in (5.43).

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (5.44)

Let RZ be defined as the covariance matrix of the interference-plus-noise signal
before the relay beamforming filter.

RZ = HRRgtx gHtxH
H
RR pR + σ2

R INrx
(5.45)
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Then, the parameters A, B, C, D in (5.44) are defined as given below.

A = RZ B = hSR pS C = 1 D = hH
SR (5.46)

Due to (5.44), grx can be written as

grx = hH
SR

[
RZ + hSRpS hH

SR

]−1

pS

= hH
SR

[
R−1

Z −R−1
Z hSR pS

(
1+hH

SRR
−1
Z hSR pS

)−1
hH
SRR

−1
Z

]
pS (5.47)

The term
(
1 + hH

SRR
−1
Z hSR pS

)−1
hH
SRR

−1
Z is factored out on the right-hand side of

(5.47). Then, we obtain

grx =
[(
1 + hH

SRR
−1
Z hSR pS

)− hH
SRR

−1
Z hSR pS

]

×(
1 + hH

SRR
−1
Z hSR pS

)−1
hH
SRR

−1
Z pS (5.48)

The terms in square brackets in (5.48) is equal to 1. So, grx becomes

grx =
(
1 + hH

SRR
−1
Z hSR pS

)−1
hH
SRR

−1
Z pS (5.49)

where
(
1 + hH

SRR
−1
Z hSR pS

)−1
is a constant scalar.

As shown in (5.42), the norm of the receiver beamforming vector, grx, does not
affect SINR. Therefore, the optimal grx maximizing SINR can be restated as

grx = K hH
SRR

−1
Z pS (5.50)

where RZ = HRRgtx gHtxH
H
RR pR + σ2

R INrx
and K is any nonzero constant.

Due to the unit-norm constraint of system setup over the beamforming vectors
given in (3.8), constant K in (5.50) is chosen as

K =
1

‖hH
SRR

−1
Z ‖ pS

(5.51)

Finally, the resulting beamforming vector, grx, becomes

grx =
hH
SRR

−1
Z

‖hH
SRR

−1
Z ‖ (5.52)
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5.2.1 Finding Relay Transmit Power

The optimal direction of the relay receiver beamforming vector, grx, maximizing the
system SINR, given any relay transmit power, pR, and given any relay transmitter
beamforming vector, gtx, is obtained in (5.50). However, that result can be taken
a step further. Preserving the assumption of fixed transmitter beamforming vector,
gtx, the optimal grx result can be used to maximize the end-to-end SINR of the
system. Then, the relay transmit power, pR, resulting in the maximum SINR can
be concluded to be the optimal transmit power.

In the following, first of all, the first hop SINR given in (3.23) is modified into
a different form for the ease of calculation throughout the derivation. Then, DF and
AF protocols are considered separately to find the optimal relay transmit power,
pR, due to the end-to-end SINR definitions given in (3.42) and (3.48) for AF and
for DF, respectively.

The SINR of the first hop, γR, (3.23) is calculated using the optimal beamform-
ing vector, grx, in (5.50) as

γR =
(grxhSR)(grxhSR)

H pS
(grxHRRgtx)(grxHRRgtx)H pR + E[(grxnR)(grxnR)H ]

(5.53)

After the multiplications and factoring out grx, first hop SINR becomes

γR =
grx(hSRh

H
SR)g

H
rx pS

grx(HRRgtxg
H
txH

H
RR)g

H
rx pR + grx(σ

2
RINrx

)gHrx
(5.54)

The denominator of (5.54) is taken into common multipliers. Then, we obtain

γR =
grx(hSRh

H
SR)g

H
rx pS

grx
[
HRRgtxgHtxH

H
RR pR + σ2

RINrx

]
gHrx

(5.55)

After substituting RZ and grx as given in (5.45) and (5.50), respectively, the first
hop SINR can be written as

γR =
(hH

SRR
−1
Z pS)hSRh

H
SR(h

H
SRR

−1
Z pS)

H pS

(hH
SRR

−1
Z pS)RZ(h

H
SRR

−1
Z pS)H

(5.56)

The hermitian transpose of each term in (hH
SRR

−1
Z pS)

H of (5.56) is written. Then,
γR becomes

γR =
hH
SRR

−1
Z hSRh

H
SRR

−1
Z hSR p3S

hH
SRR

−1
Z RZR

−1
Z hSR p2S

(5.57)

After substituting the identity matrix INrx
= RZR

−1
Z at the denominator of (5.57),
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the constant terms hH
SRR

−1
Z hSR p2S at the numerator and at the denominator are

cancelled out. Then, γR is simplified as

γR = hH
SRR

−1
Z hSR pS (5.58)

Woodburry identity (5.44) is applied on (5.58) to extract the transmit power, pR,
within R−1

Z . The parameters for the identity are defined as

A = σ2
RINrx

B = HRRgtx pR C = 1 D = gHtxH
H
RR (5.59)

Then, γR in (5.58) is written as

γR = hH
SR

[ 1

σ2
R

I − 1

σ2
R

HRRgtx pR
(
1+ gHtxH

H
RRHRRgtx

pR
σ2
R

)−1
gHtxH

H
RR

1

σ2
R

]
hSR pS (5.60)

After the multiplications, γR is simplified as

γR =
1

σ2
R

‖hSR‖2 pS − 1

σ2
R

|hH
SRHRRgtx|2 pS

pR
σ2
R + ‖HRRgtx‖2 pR

(5.61)

First, γR is written as a single ratio, and then, the relay transmit power, pR, is
factored out. Then, the first hop SINR, γR, is concluded as

γR =
‖hSR‖2 pS + 1

σ2

R

pS

[
‖hSR‖2‖HRRgtx‖2 − |hH

SRHRRgtx|2
]
pR

σ2
R + ‖HRRgtx‖2 pR

(5.62)

For amplify-and-forward protocol:

If a point is a local extremum, minimum or maximum, of an expression, the first
derivative of that expression at that particular point is equal to zero. Hence, the
end-to-end SINR for AF (3.42) is maximized when

d

dpR

(
γRγD

γR + γD + 1

)
= 0 (5.63)

After substituting the relay-to-destination SINR (3.24) and source-to-relay SINR
(5.62), the equation in (5.63) becomes

d

dpR

[ ‖hSR‖2 pS+
1

σ2

R

pS

[
‖hSR‖2‖HRRgtx‖2−|hH

SR
HRRgtx|2

]
pR

σ2

R
+‖HRRgtx‖2 pR

|hRDgtx|2pR
σ2

D

‖hSR‖2 pS+
1

σ2
R

pS

[
‖hSR‖2‖HRRgtx‖2−|hH

SR
HRRgtx|2

]
pR

σ2

R
+‖HRRgtx‖2 pR

+ |hRDgtx|2pR
σ2

D

+ 1

]
= 0 (5.64)
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Let non-negative constants2 C1, C2, C3, C4 be defined as

C1 = ‖HRRgtx‖2|hRDgtx|2 (5.65)

C2 = σ2
R|hRDgtx|2 (5.66)

C3 =
σ2
D

σ2
R

pS

(
‖hSR‖2‖HRRgtx‖2 − |hH

SRHRRgtx|2
)

(5.67)

C4 = σ2
D‖hSR‖2 pS (5.68)

Then, (5.64) can be written in terms of C1, C2, C3, C4 as

d

dpR

[
p2R

1
σ2

R
σ2

D

C2C3 + pR
1

σ2

R
σ2

D

C2C4

p2RC1 + pR[C2 + σ2
Rσ

2
D

C1

C2

+ C3] + C4 + σ2
Rσ

2
D

]
= 0 (5.69)

After the derivative with respect to pR is calculated, the numerator of the result
is set to zero to find the global maximum point. Then, we obtain[

pR
2

σ2
Rσ

2
D

C2C3 +
1

σ2
Rσ

2
D

C2C4

]
×

[
p2RC1 + pR

[
C2 + σ2

Rσ
2
D

C1

C2

+ C3

]
+ C4 + σ2

Rσ
2
D

]

−
[
pR2C1 +

[
C2 + σ2

Rσ
2
D

C1

C2

+ C3

]]× [
p2R

1

σ2
Rσ

2
D

C2C3 + pR
1

σ2
Rσ

2
D

C2C4

]
= 0 (5.70)

After the multiplications, the equation is simplified as

p2R

[ 1

σ2
Rσ

2
D

C2
2C3 − 1

σ2
Rσ

2
D

C1C2C4 + C1C3 +
1

σ2
Rσ

2
D

C2C
2
3

]

+pR

[ 2

σ2
Rσ

2
D

C2C3C4 + 2C2C3

]
+

1

σ2
Rσ

2
D

C2C
2
4 + C2C4 = 0 (5.71)

Let the non-negative constant C5 be defined as

C5 = pS|hH
SRHRRgtx|2 (5.72)

which can be written in terms of C1, C2, C3, C4 as

C5 =
σ2
R

σ2
D

(C1C4

C2

− C3

)
(5.73)

2One can easily see C3 is also always non-negative due to Cauchy-Schwarz inequality, ‖uv‖2 ≤
‖u‖2‖v‖2 for any vectors u and v.
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After some terms are cancelled out, we obtain

p2R

[
− 1

σ4
R

C2
2C5 + C1C3 +

1

σ2
Rσ

2
D

C2C
2
3

]
+ pR

[ 2

σ2
Rσ

2
D

C2C3C4 + 2C2C3

]

+
[ 1

σ2
Rσ

2
D

C2C
2
4 + C2C4

]
= 0 (5.74)

The roots of the second order polynomial in (5.74) are found as

pR,1,2 =

∓
√(

1
σ2

R
σ2

D

C4 + 1
)[
C2

2C
2
3 +

1
σ4

D

C3
2C4C5 − C1C2C3C4

]
− 1

σ2

R
σ2

D

C2C3C4 − C2C3

− 1
σ4

R

C2
2C5 + C1C3 +

1
σ2

R
σ2

D

C2C2
3

(5.75)

Let the constant ψ be defined as

ψ = − 1

σ4
R

C2
2C5 + C1C3 +

1

σ2
Rσ

2
D

C2C
2
3 (5.76)

Assuming ψ 
= 0, since C1, C2, C3, C4, and C5 are all non-negative constants, there
are two possible cases for the signs of the roots of the polynomial in (5.74).

Case 1:

If ψ > 0, both of the roots are negative. That means, for any non-negative re-
lay transmit power, pR, it is clear that

d

dpR

(
γRγD

γR + γD + 1

)
> 0 , for ∀ pR ≥ 0 (5.77)

Therefore, due to maximum transmit power constraint in (3.10), the optimal relay
transmit power, pR, for AF protocol is chosen as

pR,case1 = 1 (5.78)

Case 2:

If ψ < 0, the roots pR,1 and pR,2 have different signs. Then, the positive root is
chosen as the optimal transmit power. Due to the maximum transmit power con-
straint (3.10), the optimal pR is concluded as

pR,case2 = min
{
1, ξ

}
(5.79)
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where

ξ =

−
√(

1
σ2

R
σ2

D

C4 + 1
)[
C2

2C
2
3 +

1
σ4

D

C3
2C4C5 − C1C2C3C4

]
− 1

σ2

R
σ2

D

C2C3C4 − C2C3

− 1

σ4

R

C2
2C5 + C1C3 +

1

σ2

R
σ2

D

C2C
2
3

(5.80)

After combining these two cases above, the optimal transmit power, pR, for AF
protocol is found as

pAF
R =

{
1, ψ ≥ 0

min
{
1, ξ

}
, ψ < 0

(5.81)

where ψ = − 1
σ4

R

C2
2C5 + C1C3 +

1
σ2

R
σ2

D

C2C
2
3

√
Remark: After substituting the constants C1, C2, C3, and C5 into (5.76), ψ

is found in terms of the system parameters as

ψ = − pS|hRDgtx|4|hH
SRHRRgtx|2

+ pS
σ2
D

σ2
R

|hRDgtx|2‖HRRgtx‖2
(‖hSR‖2‖HRRgtx‖2 − |hH

SRHRRgtx|2
)

+ p2S
σ2
D

σ4
R

|hRDgtx|2
(‖hSR‖2‖HRRgtx‖2 − |hH

SRHRRgtx|2
)

(5.82)

The first term on the right-hand side of (5.82) is always negative, whereas the second
and the third terms are always positive. The term |hH

SRHRRgtx|2 can be regarded as
the self-interference term, due to the direction of optimal grx in (5.50) being similar
to that of hH

SR. By inspection, one can say that when |hH
SRHRRgtx|2 is maximized to

its upper limit, which is ‖hSR‖2‖HRRgtx‖2 due to Cauchy-Schwartz inequality, ψ is
minimized. And minimum ψ, which is negative, minimizes pAF

R . Since the channels
hRD, hSR, and HRR are independent of each other, it is likely that when transmitter
beamforming filter, gtx, is matched to hRD, the self-interference term, |grxHRRgtx|2,
becomes large. At this point, due to the direction of optimal receiver beamforming
filter, grx, in (5.50), the value of ψ is obtained to be quite small, resulting in a
low value of the optimal relay transmit power. If the lower limit of pR is 1 (when
ξ = 1), we can conclude that the global optimal solution for gtx converges to the
matched filter solution. Yet, the lower limit of pR is most likely to be smaller than
1, because of the independent random channels. As the direction of the transmitter
beamforming filter, gtx, is carried over to the vicinity of the orthogonal space of the
vector hH

SRHRR, the self-interference is mitigated, resulting in greater ψ, and thus
higher relay transmit power, pR. In other words, first hop SINR, γR, is increased
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at the expense of second hop SNR, γD. Later, at one point, however, either ψ
becomes zero or ξ becomes 1. After that point, mitigating the self-interference more,
obviously, does not improve the end-to-end SINR. Therefore, the global solution for
gtx can be approached by solving the equation below.

gtx,optimal = argmax
gtx

{
γSRD

∣∣∣
gtx,matched

, γSRD

∣∣∣
ψ=0

, γSRD

∣∣∣
ξ=1

}
(5.83)

Despite of not being a closed-form solution, the significance of (5.83) lies upon
the fact that it only involves equalities. It does not consist of min\max problems,
which make a computational search somewhat unreliable in differentiating the local
and global converging minima\maxima3. It, presumably, works faster in a compu-
tational search.

For decode-and-forward protocol:

The end-to-end SINR expression for DF (3.48) is a min function with the argu-
ments of the first-hop and the second-hop SINRs. We know that the first-hop SINR
can be increased only at the expense of the second-hop SNR, or vice versa. There-
fore, the end-to-end SINR for DF is maximized when the first-hop SINR is equal to
the second-hop SNR.

γR = γD (5.84)

First, the relay-to-destination SINR in (3.24) and the source-to-relay SINR in (5.62)
are substituted into (5.84). Then, the equality becomes

‖hSR‖2 pS + 1

σ2

R

pS

[
‖hSR‖2‖HRRgtx‖2 − |hH

SRHRRgtx|2
]
pR

σ2
R + ‖HRRgtx‖2 pR

=
|hRDgtx|2pR

σ2
D

(5.85)

After the cross multiplication, we obtain

‖HRRgtx‖2|hRDgtx|2 p2R+
[
σ2
R|hRDgtx|2−σ2

D

σ2
R

pS

(
‖hSR‖2‖HRRgtx‖2−|hH

SRHRRgtx|2
)]

pR

−σ2
D‖hSR‖2 pS = 0 (5.86)

After substituting non-negative constants C1, C2, C3, C4 defined in (5.65), (5.66),
(5.67), (5.68), we obtain

C1 p2R + (C2 − C3) pR − C4 = 0 (5.87)

3A numerical search algorithm for min\max problems starts the iterations with a random ini-
tial guess, and if the iterations converge, a local minimum\maximum is obtained. There is no
systematic way of finding the global minimum\maximum point. The only way is to run sufficient
number of independent trials for local points with different initial guesses.
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Equation (5.87) is a second-order polynomial with one positive and one negative
root. The positive root is the optimal pR maximizing the end-to-end SINR for DF
protocol. It is found as

pR =
−C2 + C3 +

√
(C2 − C3)2 + 4C1C4

2C1

(5.88)

Due to the maximum transmit power constraint (3.10), the optimal relay transmit
power, pR, is concluded as

pDF
R = min

{
1,

−C2 + C3 +
√

(C2 − C3)2 + 4C1C4

2C1

}
(5.89)

5.3 Optimal Beamforming Filters with Null-Space

Projection

The beamforming vectors, grx and gtx, can be chosen in such a way that the self-
interference power can be suppressed to zero. For that case, increasing the relay
transmit power, pR, does not affect the self-interference. So, due to (3.24), the
optimal relay transmit power, pR, maximizing the SINR becomes one, for any chan-
nel realization. Then, the general optimization problem is reduced to finding the
beamforming vectors, grx and gtx.

5.3.1 Full-Rank Interference Channel

Given the constraint of zero self-interference, an iterative approach can be adopted
to find the pair of beamforming vectors achieving the highest possible end-to-end
SINR [20, 33, 41].

For DF protocol, the optimization problem can be defined as in the following.

Finding the pair of vectors, {grx, gtx} maximizing min{‖grxhSR‖2, ‖gtxhRD‖2}
subject to ‖grxHRRgtx‖ = 0 and ‖grx‖ = ‖gtx‖ = 1

The self-interference constraint implies that for any given gtx, the vector grx is
orthogonal to the vector HRRgtx. The orthogonal projection matrix, PT , of HRRgtx
is

PT = INrx
− HRRgtxg

H
txH

H
RR

‖HRRgtx‖2 (5.90)
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Similarly, the orthogonal projection matrix, PR, of grxHRR is

PR = INtx
− grxHRRH

H
RRg

H
rx

‖grxHRR‖2 (5.91)

So, grx satisfying the zero self-interference constraint can be expressed as

grx = g̃rxPT (5.92)

where g̃rx is any vector with unit norm.

Similarly, for any given grx, the vector gtx satisfying the zero self-interference con-
straint is

gtx = PRg̃tx (5.93)

where g̃tx is any vector with unit norm.

Now, since the zero self-interference constraint is satisfied, the first and second
hop SINRs can be maximized with the optimal pair of vectors {g̃rx, g̃tx} using the
matched filter solutions in (4.4), and (4.5) for the effective channels. So, for any
given gtx, the vector g̃rx that maximizes SINR is written as

g̃rx =
gHtxH

H
RRPT

‖gHtxHH
RRPT‖ (5.94)

Similarly, for any given grx, the vector g̃tx that maximizes the SINR is written as

g̃tx =
PRH

H
RRg

H
rx

‖PRHH
RRg

H
rx‖

(5.95)

Apparently, the optimal g̃rx and g̃tx depend on each other. Any pair of the vectors,
g̃rx and g̃tx, optimizes both the first and second hop channel SNRs to some extent.
Two extreme cases for the optimization point is either the case in which grx is set to
be matched as grx = hSR

‖hSR‖
, while gtx is set only to satisfy the zero self-interference

constraint, or vice-versa. Different pairs of vectors, {g̃rx, g̃tx}, can be generated
heuristically by making the convex combinations of these two cases. Therefore, the
vector, g̃rx, of any of those different pairs can be written as

grx =
αgrx,1 + (1− α)grx,2

‖αgrx,1 + (1− α)grx,2‖ (5.96)

where 0 ≤ α ≤ 1, grx,1 =
hSR

‖hSR‖
and grx,2 =

hSRPT

hSRPT
with PT = INrx

− HRRhH

RD
hRDHH

RR

‖HRRhH

RD
‖2

Finally, the value of α, producing the pair of {grx, gtx} which gives the highest
end-to-end SINR of all can be found numerically. However, this does not still give
exactly global solution.
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5.3.2 Rank-One Interference Channel

The method for full-rank interference channel above can be taken a step further
to derive a closed form solution for the beamforming filters by making an addi-
tional assumption. If we assume the environment around the relay is unlikely to be
interacting much with the subchannels between the receiver and transmitter side
antennas, the multipath effects, i.e. scattering, reflections, etc., of wireless signals
are not expected to be observed much within the relay. Therefore, it is reasonable
to think that there is only a line-of-sight channel. In other words, the line-of-sight
channel is much stronger than the other multipath components. So, it is acceptable
to think of the self-interference channel, HRR, as a rank-one matrix.

The derivation for the null-space projection method is given below.

The self-interference channel SNR is

γRR =
| grx HRR gtx |2

σ2
R

(5.97)

The singular value decomposition (SVD) of the matrix HRR is

HRR = UNrx×Nrx
ΣNrx×Ntx

V H
Ntx×Ntx

(5.98)

If HRR is a rank-one matrix, it can be written as the multiplication of its corre-
sponding left-singular and right-singular vectors to its only nonzero singular scaled
by its Frobenius norm as given below.

HRR = u ‖HRR‖F vH (5.99)

where uNrx×1 and vNtx×1 are the left and right-singular vectors, respectively.

Then, the self-interference channel SNR is written as

γRR =

∣∣grxu‖HRR‖FvHgtx
∣∣2

σ2
R

(5.100)

Then, after taking the constant term out and separating the vector multiplications,
γRR becomes

γRR =
‖HRR‖2F |grxu|2 |vHgtx|2

σ2
R

(5.101)

The self-interference can only be eliminated when γRR, as given in (5.101), becomes
zero. Since the beamforming vectors, grx, gtx, are written as the multiplication of
separate terms in (5.101), either of them, independent of the other, can be defined to
make the whole equation zero. Note that after cancelling out the self-interference by
setting one of the beamforming vectors, the other beamforming vector can be used
to maximize the first-hop or second-hop channel SNR. In other words, it is futile
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to use both of the beamforming vectors to remove the self-interference. Therefore,
there are two independent cases that can satisfy the zero self-interference criterion.
Each case is investigated separately below.

Case 1:

Assuming that the second multiplier in the nominator of (5.101) is zero given as

|grxu|2 = 0 (5.102)

The receiver beamforming vector, grx, can be calculated as

grx = wR Pu (5.103)

where Pu = INrx
− u uH

‖u‖2
is a projection matrix, and wR is a row vector.

Among all possible wR row vectors, the one that makes the vector grx maximize
the SNR is chosen.

max |grxhSR|2 = max |wR PuhSR|2 (5.104)

Then, the row vector wR is found as

wR = argmax
wR

|wR PuhSR|2

= hH
SRPu (5.105)

So, after the normalization due to unit-norm constraint (3.8), grx is concluded as

grx,case1 =
hH
SRPu

‖hH
SRPu‖ (5.106)

Since, the zero interference criterion is already satisfied, gtx can be chosen indepen-
dently to maximize the second hop SNR.

gtx = argmax
gtx

|hRDgtx|2 (5.107)

Then, the transmitter beamforming vector, gtx, is concluded as the matched filter
solution in (4.5).

gtx,case1 =
hH
RD

‖hH
RD‖

(5.108)
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Case 2:

Assuming that the multiplicand in the nominator of (5.101) is zero given as

|vHgtx|2 = 0 (5.109)

The transmitter beamforming vector, gtx, can be calculated as

gtx = PvH wC (5.110)

where PvH = INtx
− v vH

‖vH‖2
is a projection matrix and wC is a column vector.

Among all possible wC column vectors, the one that makes the vector gtx maxi-
mize the SNR is chosen.

max |hRDgtx|2 = max |hRD PvH wC |2 (5.111)

Then, the column vector wC is found as

wC = argmax
wC

|hRD PvH wC |2

= PvH hH
RD (5.112)

So, after the normalization due to unit-norm constraint (3.8), gtx is concluded as

gtx,case2 =
PvH hH

RD

‖PvH hH
RD‖

(5.113)

Since, the zero interference criterion is already satisfied, grx can be chosen indepen-
dently to maximize the first hop SNR.

grx = argmax |grxhSR|2 (5.114)

Then, the receiver beamforming vector, grx, is concluded as the matched filter solu-
tion in (4.4).

grx,case2 =
hH
SR

‖hH
SR‖

(5.115)

Each case above gives a pair of beamforming vectors, grx, gtx. The resulting end-
to-end SNRs in (3.42) and (3.48) are compared, and the pair providing the higher
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SNR is chosen as shown below.

(
grx, gtx

)
=

{
(grx,case1, gtx,case1), γSRD,case1 > γSRD,case2

(grx,case2, gtx,case2), otherwise
(5.116)

Even though the self-interference channel is not exactly a rank-one matrix, the
solution above can give an approximated result. If the strongest path within the
self-interference channel is assumed to be the only path, by taking the eigenvector
corresponding to the highest eigenvalue, the same derivation above can be followed.
Since the self-interference channel matrix, in practice, is not expected to be of full
rank, this approximation will still presumably give rather satisfactory results.



Chapter 6

Numerical Results

In this chapter, simulation results for different numerical and analytical methods are
discussed. First, contour plots for AF and DF protocols are presented to observe the
effect of channel SNRs in (3.29) and (3.31). Then, the performance of the analytical
schemes presented in the previous chapter are compared. Those comparison results
are also considered for the presence of higher self-interference. In Section 6.3, the
computational requirements for numerical solutions are compared, and some hybrid
solutions combining the higher SINR performance of numerical solutions with the
faster implementation of analytical solutions are proposed. Then, the number of
antennas on each side of the relay is varied with respect to another, and their SINR
performance is compared.

6.1 SINR Contours

The end-to-end SINR obviously depends upon channel SNRs. The higher channel
SNRs for the first and the second hops of the system lead to higher system per-
formance, as clearly seen in (3.32) and (3.33). The higher channel SNR for the
self-interference channel of the system leads to lower system performance1, as seen
in (3.32). However, it may not be straightforward to see the performance contribu-
tion of each hop to the end-to-end system performance, independent of the other
hop. For this reason, it is worth investigating SINR contour plots of global SINR
expressions. They allow us to study the upper limits for all channel conditions.

In Fig. 6.1, SINR contour plots for AF and DF protocols are given. The channel
SNR of the first hop is given on the horizontal axis, whereas the channel SNR of
the second hop is given on the vertical axis. Each point on any curve represents
a different pair of {γSR, γRD}. And every point on each curve results in the same
end-to-end SINR value in decibels. The relay is assumed to have two antennas both
on the receiver and transmitter sides. The source-to-relay, relay-to-source and self-

1To be literally correct, it is safer to say non-decreasing end-to-end performance for higher
system hop SNRs, and non-increasing end-to-end performance for higher self-interference channel
SNR.
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Figure 6.1: SINR contour plots in dB for global optimization problem (a) with AF
protocol and (b) with DF protocol when the number of antennas at both sides of
the relay is two.
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interference channels are assumed to experience Rayleigh fading. The noise powers
are assumed to be 1. The average power gain per each subchannel for the self-
interference channel, φRR, is set to be 0 dB.

φRR =
E
{‖HRR‖2F

}
NrxNtx

= 0 dB (6.1)

According to Fig. 6.1a, as both of the channel SNRs, γSR and γRD, increase, the
end-to-end SINR increases. If only one of the channel SNRs increases, system per-
formance still increases. However, the amount of increase depends on the level of the
fixed channel SNR. If the fixed channel is the one with higher SNR, the proportional
increase in the end-to-end SINR turns out to be greater compared to the case in
which the fixed channel is lower than the other. In other words, lower channel SNR
acts as a limiting factor in the system performance.

In Fig. 6.1b, increasing both γSR and γRD increases the end-to-end SINR. For
unequal channel SNR cases, the smaller channel SNR acts as a limiting factor.
However, unlike that for AF, this limit is much evident, due to min function in the
end-to-end SINR definition (3.48). It is also worth noting that DF protocol is 2.5 -
3 dB superior to AF in terms of end-to-end SINR performance under any channel
condition.

The lower right-hand side of the contour plot in Fig. 6.1b looks rather distorted,
due to the result of averaging over insufficient number of channel realizations in the
simulation. As the simulation is extended to calculate over more channel realiza-
tions, the corners of the contour lines, which are the points where the channel SNRs,
γSR and γRD, are equal, are expected to look closer to being perpendicular.

6.2 Results for Analytical Schemes

Simulations for the analytical schemes defined in the previous chapter are imple-
mented on MATLABR©. More specifically, these are the schemes derived in Sections
5.1, 5.2, and 5.3.

In Fig. 6.2a and Fig. 6.2b, the simulation results of these methods versus different
number of antennas are presented for both AF and DF protocols. Therefore, it is
essential to keep the common parameters equal for a fair performance comparison.
For each scheme, the same number of antennas are used for both of the beamforming
vectors, grx and gtx, which has been varied from Nrx = 1 (and Ntx = 1) to Nrx = 5
(and Ntx = 5). The numerical simulation results of the global optimization problem
for AF and DF protocols are also added to the graph for comparison, since they
represent the theoretical upper limits for SINRs.

Source-to-relay, relay-to-destination, and self-interference channels are assumed to
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Figure 6.2: Simulation results for analytical schemes (a) with full-rank self-
interference channel matrix, and (b) with rank-one self-interference channel matrix,
when φRR = 0 dB
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experience Rayleigh fading with independent identically distributed elements. The
self-interference channel is modeled as a full-rank matrix in Fig. 6.2a, whereas in
Fig. 6.2b, it is modeled as a rank-one matrix. The noise variances at the relay and
at the destination nodes are assumed to be 1. The average power gain per each
subchannel for the source-to-relay, φSR, and relay-to-destination, φRD, links are set
to be 12 dB, whereas for the self-interference channel, φRR, it is set to be 0 dB.

φSR =
E
{‖hSR‖22

}
Nrx

= 12 dB (6.2)

φRD =
E
{‖hRD‖22

}
Ntx

= 12 dB (6.3)

φRR =
E
{‖HRR‖2F

}
NrxNtx

= 0 dB (6.4)

The channels, hSR, hRD, HRR, are generated over 2000 times independently. The
results are averaged over those realizations for each number of antenna case. The
scheme with optimal pR uses the matched filter solutions, (4.4) and (4.5), for both
of the beamforming vectors, grx, gtx, whereas MMSE scheme uses the matched filter
solution (4.5) for the transmitter beamforming vector, gtx.

In Fig. 6.2a, MMSE scheme gives the highest SINR performance among all the
analytical schemes, especially as the number of antennas is increased. Null-space
projection and the scheme optimizing pR, also give quite promising results, not too
far from the global solution. Note that when the number of antennas is one, null-
space projection method fails to give sensible result. Apparently, it relies on the
cancellation of the self-interference term. When the number of antennas is one,
there are not enough degrees of freedom to achieve the cancellation in (5.102) or in
(5.109). Therefore, it fails to produce sensible results when there is a single antenna
at each side of the relay. For that reason, null-space projection simulation results
for one antenna case are omitted. Similarly, MMSE method also does not produce
sensible results when the number of relay antennas is one, because it reaches the
optimal receiver beamforming vector by searching for the optimal direction by ne-
glecting its norm. When there is one antenna on either side of the relay, there is,
simply, no optimal direction for the receiver beamforming vector.

The MMSE scheme, unlike optimal pR scheme, optimizes multiple parameters; the
receive beamfoming vector, grx, and the relay transmit power, pR. Therefore, the
observation that MMSE method is outperforming the optimal pR scheme is not un-
expected. However, null-space projection also optimizes multiple parameters; both
the receiver and transmitter beamforming vectors, grx and gtx. Yet, it underper-
forms optimal pR scheme. The reason for that lies upon the suboptimality of the
null-space projection itself. Without the zero self-interference constraint, the global
problem seeks for the optimal set of parameters, which will produce the highest
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SINR. Moreover, the null-space projection method also makes the assumption of
rank-one self-interference channel response, whereas preserving the maximum relay
transmit power. These are the underlying reasons for the lower SINR performance
of the null-space projection scheme in Fig. 6.2a.

In Fig. 6.2b, the simulation results are presented for the case in which the self-
interference channel is modeled as a rank-one matrix. Since the rank-one self-
interference, compared to the full-rank, can be considered as causing less self-
interference to the system, the global optimization point gets closer to the matched
filter cases. For this reason, MMSE method, which uses the matched filter solution
for the transmitter beamforming vector, and the optimal pR scheme, which uses
the matched filter solutions for both of the beamforming vectors, give better SINR
performance. The SINR difference to global solution gets smaller. Another evident
point in Fig. 6.2b is the relative performance improvement in the null-space pro-
jection method, because its self-interference cancellation scheme works accurately
with the presence of actual rank-one self-interference channel response. Yet, it still
underperforms other schemes, due to the inexistence of high self-interference term
making interference elimination at the expense of much lower first hop and second
hop channel SNRs unnecessary.

6.2.1 High Self-Interference Case

In the simulation results given in Fig. 6.2, the self-interference channels are gen-
erated to have zero mean, unit variance. However, if the self-interference channel
is considered to have more adverse effects on the system than it has with the unit
variance assumption, the relative performance of different schemes to each other will
alter. Therefore, it is important to see the effect of higher self-interference on the
schemes.

The simulations, of which the results are given in Fig. 6.2a and Fig. 6.2b, for the
aforementioned analytical schemes are repeated next when the self-interference is
higher, namely when

φRR =
E
{‖HRR‖2F

}
NrxNtx

= 10 dB (6.5)

In Fig. 6.3a, when higher self-interference is introduced to the system, some schemes
give rather different performance results. The most conspicuous change is the rel-
ative performance decrease in null-space projection method and the optimal pR
scheme. Another evident point is that for AF protocol, MMSE method is hardly
affected by the higher self-interference. Higher self-interference takes the global op-
timization solution closer to the zero self-interference point. In other words, the
global optimization resides closer onto the point of mitigating the self-interference
and further away from the point of increasing the first hop and second hop channel
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Figure 6.3: Simulation results for analytical schemes (a) with full-rank self-
interference channel matrix, and (b) with rank-one self-interference channel matrix,
when φRR = 10 dB
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SNRs. Thus, the idea of focusing on the cancellation of self-interference gives higher
SINR. For these reasons, the optimal pR scheme maximizing the channel SNRs by
neglecting the self-interference results in low performance. The null-space projec-
tion method, unlike those in Fig. 6.2a and Fig. 6.2b, outperforms the optimal
pR scheme. However, it performs worse than MMSE method. The reason for this
lower performance is that the null-space projection scheme makes the assumption
of rank-one self-interference channel response for the mitigation, even though the
self-interference is of full-rank. Since the self-interference is not completely cancelled
out, using maximum transmit power worsens the performance.

In Fig. 6.3b, when the self-interference channel is modeled as a rank-one matrix,
the null-space projection method performs much better, similar to MMSE scheme.
The optimal pR scheme gives a bit better SINR performance, although it still suffers
from the high self-interference.

6.3 Computational Efficiency

Global numerical optimization, as being the theoretical upper limit, always outper-
forms other numerical methods, as well as analytical schemes, in terms of SINR.
However, it is not quite efficient in terms of time and computational requirements.
Introducing some constraints may reduce these inefficiencies while still keeping the
SINR performance high. As seen in Fig. 4.1, introducing matched filter solutions
to only one of the beamforming filters of the relay still keeps the SINR performance
quite close to that of the global solution. However, the efficiency of the comput-
ing time and power also needs to be considered for a fair comparison. Thus, it is
worth investigating the computational gains obtained with the subsolutions. For
this purpose, the average number of iterations is calculated for each simulation, and
regarded as the comparison criterion to measure the computing time, or the com-
puting power. In reality, however, the relation between the number of iterations
and the computing power, or the computing time, is not linear and depends heavily
on the implementation of the optimization code. Based on the observations on the
simulations, it can be still argued that higher number of iterations requires more
and more computational power.

In Fig. 6.4a and Fig. 6.4b, the required number of iterations to achieve a cer-
tain SINR value is given for AF and DF protocols, respectively. Each marker in the
plots is the result of a simulation with different number of relay antennas. For all
the schemes, higher number of antennas requires more iterations. The global opti-
mization requires higher number of iterations than the other methods. Introducing
the optimal pR constraint does not cause any SINR decrease, whereas the required
number of iterations decreases, particularly as the number of antennas are increased.
The schemes with matched beamforming vectors result in slightly lower SINR val-
ues (Fig. 4.1) compared to the global optimization. Yet, their implementation is
computationally faster.
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Figure 6.4: Number of iterations vs. SINR for global optimization (a) with AF
protocol, and (b) with DF protocol
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6.4 Effect of Antenna Variation at Relay

Up to this point, all the simulations have been run with different number of beam-
forming antennas. However, the number of antennas for the receiver beamforming
vector, grx, and the transmitter beamforming vector, gtx, have been kept equal.
Yet, it is interesting to study the effect of the number of antenna variations for each
beamforming vector separately.

In order to fairly compare the results of different number of antenna ratios between
grx and gtx, it is important to keep the total number of antennas constant, since
increase in the number of antennas, obviously, results in higher SINR performance.
Therefore, in this simulation setup, the total number of antennas is assumed to be
six2.

Nrx +Ntx = 6 (6.6)

Figure 6.5: Simulation results of numerical optimization of global and matched filter
solutions with AF and DF for different Nrx and Ntx, given Nrx +Ntx = 6

In Fig. 6.5, for all the schemes, SINR performance is maximized when the number
of antennas for beamforming vectors are kept equal. In horizontal axis, Nrx varies

2For our case, 6 is a convenient choice for analyzing various ratios between Nrx and Ntx, and
still completing the simulations rather fast.
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from 1 to 5, while Ntx varies from 5 to 1, respectively. In other words, on the left-
hand side of the plot,

Ntx > Nrx (6.7)

And on the right-hand side of the plot,

Nrx > Ntx (6.8)

The simulation plots for matched filter constraints are not vertically symmetrical.
A simulation with the matched filter constraint results in higher SINR when the
number of antennas for the matched beamforming vector is smaller, compared to
the case of setting the other beamforming vector as the matched filter, as expected.

Hence, if the matched filter solution is to be used on one side of the relay, the
first step for better end-to-end system performance optimization is to use the same
-or as close as possible- number of antennas for each of the beamforming vectors, grx
and gtx. Then, with a given set of number of antennas for the beamforming vectors
on each side of the relay, assigning the matched filter solution to the beamforming
vector with the smaller number of antennas, and optimizing the other beamforming
vector independently has a higher end-to-end SINR upper limit.



Chapter 7

Conclusions

This thesis considers a one-way two-hop SISO communication link with a full-duplex
relay. It is shown that the end-to-end system SINR depends upon both source-
to-relay and relay-to-destination SINRs, and that the smaller of those acts as a
limiting factor -as a soft or hard limit depending on the relay protocol, AF or DF,
respectively- for the end-to-end SINR. The system is aimed to be optimized by max-
imizing the end-to-end SINR through beamforming at the receiver and transmitter
sides of the relay. For that purpose, several analytical solutions are derived and
their performance results are compared to each other, as well as to the theoretical
upper limits on simulations.

The analytical solutions and the simulation results indicate that the optimization
point relies on the set of channel realizations and the noise power at the relay and the
destination nodes. For rather low self-interference levels comparative to the channel
gains of the first hop and the second hop links, the optimization point gets closer to
the point which optimizes the gain of the useful signal. In other words, the optimal
solution for the beamforming filters converges to the matched filter solutions. In
contrast, in the presence of rather high self-interference, the optimization point be-
comes closer to the null-space solution, which aims to eliminate the self-interference
independent of the channel gains of the useful signal.

The numerical analysis of the system shows that setting only one of the beam-
forming filters as the matched filter, and using the optimal solution for the other
beamforming filter does not degrade the SINR performance much, particularly com-
pared to the case in which both of them are matched. This simple, yet important,
observation encouraged us to aim for the optimization of one of the beamforming
vectors using minimum mean square error (MMSE) method, instead of trying to
find the suboptimal solutions for both of the filters by introducing a constraint to
the system, which may not necessarily work well under any channel conditions.

Two of the proposed new schemes are central to this thesis. First, by fixing the
transmitter beamforming filter, the mean square error of the first hop SINR is con-
structed. The optimal receiver beamforming vector minimizing the mean square
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error is derived, and using this solution, the optimal relay transmit power, in terms
of the transmitter beamforming filter, is obtained. Second, by assuming the self-
interference channel is a rank-one matrix, null-space projection is considered, and an
analytical solution for the set of beamforming filters is derived. In the simulations,
this scheme is proven to give promising results, especially when the self-interference
level of the system is high.

7.1 Future Work

This thesis offers several solutions for optimizing the full-duplex relay system per-
formance, one working better than the other depending on the channel conditions.
However, a single unified closed-form solution producing the optimal beamform-
ing filter directions and the relay transmit power under any condition still stays
undiscovered, even though we have found that solution via numerical search. What
is more, the direct link between the source and the destination nodes, which is ne-
glected in this work, can be taken into consideration. Instead of regarding the signal
coming through the direct link as self-interference, its correlation with the received
signal through the relay link can be combined to obtain higher SNR. Furthermore,
in this thesis, the system model is constrained to be a SISO link. In a later work,
the results of this thesis can be transported into a more generalized MIMO system
setup with spatial multiplexing.
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