
 
 

 

 

 

 

                        TANELI TUOMAS KANTOMAA 

MANAGING ITERATIONS IN PRODUCT DEVELOPMENT 

 

 

          Master’s thesis 

          Espoo, October 10, 2012 

 

          Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in 

          engineering, Espoo October 10th 2012. 

 

 

 

 

          Supervisor  Professor Paul Lillrank Dr.Sc. (Tech.) 

 

 

          Instructor  Eero Tihilä M.Sc. (Tech.) 

 

 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

 
 

 

 

 

 

 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

i 
 

Aalto University School of Science  

Department of Industrial Engineering and 
Management 

 

ABSTRACT OF THE MASTER’S THESIS 

Author: Taneli Tuomas Kantomaa 

Title:  Managing Iterations in Product Development 

Title in Finnish: Iterointien hallinta tuotekehityksessä 

Degree Programme: Industrial Engineering and Management  

Major subject:   Industrial Engineering and 

Management 

Minor subject:   Power Electronics 

Chair (code): TU-22 

Supervisor:    

Professor Paul Lillrank, Dr.Sc. (Tech.) 

Instructor:    

Eero Tihilä, M.Sc. (Tech.) 

Harmful iterations increase project lead time and make their scheduling difficult. On the other hand, 

iteration is not always undesired; some iteration is natural to product development and feedback providing 

iteration in the early phases of develoment may increase development speed. In this master’s thesis causes 

for harmful iterations are recognized and classified, their impacts are diagnosed, and means to diminish their 

impacts are developed. Also, an iterative development model aiming at early, feedback providing iterations 

for avoiding later harmful iterations is presented. 

This master’s thesis starts out with a very comprehensive theoretical part covering theory about product 

development in general, Lean Product Development (LPD), process modeling and then moves on to cover 

theory about task level iterations. The theoretical part presents tools for modeling and analyzing the detailed 

design process in product development through a Design Structure Matrix (DSM) representation, network 

analysis or a matrix representation, and presents task overlapping principles. It also presents the concurrent 

engineering model and the spiral development model.  

 

The empirical part analyzes the main causes for iterations in the company through System Dynamics (SD) 

approach. Causes for iteration are identified, elaborated and classified as well as many other areas needing 

improvement. The proposed iterative development framework aims at early feedback providing iterations 

for avoiding later harmful iterations. The process structure should reflect project uncertainties instead of 

forcing single process structure for all projects. 

The achievements of this thesis, besides of classifying the causes of iteration and presenting insights in how 

to manage them, was describing how product development projects in the company proceed from planning 

to sales release, documenting events from present and past projects, and pointing out other issues that need 

addressing. This thesis could serve as a handbook for new project managers for familiarizing them on 

product development in the company as well as serving as a collected lessons learned document. 

Date:   10.10.2012 Language:   English Number of pages:   136+3 

Keywords: iterations in product development, System Dynamics (SD), spiral development model, iterative 

development model, Lean Product Development (LPD), Concurrent Engineering (CE), Design Structure 

Matrix (DSM), Network Analysis (NA) 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

ii 
 

Aalto-yliopisto 

Perustieteiden korkeakoulu 

Tuotantotalouden laitos 

 

DIPLOMITYÖN TIIVISTELMÄ 

Tekijä: Taneli Tuomas Kantomaa 

Työn nimi: Iterointien hallinta tuotekehityksessä 

Title in English: Managing Iterations in Product Development 

Tutkinto-ohjelma: Tuotantotalouden tutkinto-ohjelma 

Pääaine: Tuotantotalous Sivuaine: Tehoelektroniikka 

Opetusyksikön koodi: TU-22 

Työn valvoja:    

Professori Paul Lillrank 

Työn ohjaaja:  

DI Eero Tihilä 

Haitalliset iteroinnit lisäävät projektien läpimenoaikaa ja tekevät niiden aikatauluttamisesta vaikeaa. 

Toisaalta jonkinasteinen iterointi on luontaista tuotekehitykselle ja tuotekehitysprosessin alkuvaiheessa 

tapahtuvat, epävarmuuksia poistavat iteroinnit nopeuttavat tuotekehitystä. Tässä diplomityössä tunnistetaan 

ja luokitellaan erilaiset haitalliset iteroinnit, arvioidaan niiden vaikutuksia ja esitetään keinoja niiden 

vaikutusten vähentämiseksi. Lisäksi tämä diplomityö esittää iteratiivisen kehitysmallin, joka tähtää aikaisiin 

epävarmuuksia poistaviin iterointeihin myöhäisempien haitallisten iterointien välttämiseksi. 

Tämä diplomityö alkaa erittäin kattavalla teoriaosuudella. Teoriaosuus alkaa yleisellä tuotekehitysteorialla, 

kattaa Lean tuotekehityksen, prosessien mallintamisen ja jatkaa sitten tehtävätason iterointien teoreettisella 

tarkastelulla. Teoriaosuus esittää työkaluja yksityiskohtaisen suunnitteluprosessin mallintamiseen ja 

analysointiin Design Structure Matrix:in (DSM) avulla, informaatioverkkoanalyysin avulla tai 

matriisiesityksen avulla, ja esittää tehtävien rinnastuksen periaatteet. Teoriaosuus esittää myös Concurrent 

Engineering (CE)- mallin ja spiraalimallin. 

Empiriaosuudessa iterointien pääsyyt tunnistetaan, niihin syvennytään ja ne luokitellaan 

systeemidynamiikan avulla. Sen lisäksi monia muita kehityskohteita tuodaan esille. Ehdotettu iteratiivinen 

kehitysmalli pyrkii aikaisiin epävarmuuksia poistaviin iterointeihin, joiden tarkoitus on estää myöhempiä 

haitallisia iterointeja. Prosessirakenteen tulisi heijastaa projektin epävarmuustekijöitä sen sijaan, että yksi ja 

sama prosessirakenne pakotetaan jokaiselle tuotekehitysprojektille. 

Edellä mainittujen lisäksi tämän diplomityön saavutuksiin kuuluu tuotekehitysprojektien etenemisen 

kuvaaminen aina suunnitteluvaiheesta tuotteen myyntiin vapauttamiseen, nykyisten ja menneiden 

tuotekehitysprojektien tapahtumien dokumentointi, ja muiden kehityskohteiden tunnistaminen. Tämä 

diplomityö voisi toimia oppaana uusille projektipäälliköille yrityksessä ja tutustuttaa heidät tapaan, jolla 

tuotekehitysprojekteja viedään yrityksessä läpi, sekä toimia yhteenvetona menneiden projektien opeista 

yrityksessä. 

Päivämäärä:   10.10.2012 Kieli:   Englanti Sivumäärä:   136+3 

Avainsanat: iteroinnit tuotekehityksessä, systeemidynamiikka, spiraalimalli, iteratiivinen kehitysmalli, Lean 

tuotekehitys, Concurrent Engineering (CE), Design Structure Matrix (DSM), verkkoanalyysi 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

iii 
 

FOREWORD 
 

First of all, I would like to thank my instructor Eero Tihilä for all the support and guidance that he has given 

me during my master’s thesis. Eero has an honorable ABB work history of more than 40 years and relying 

on this experience he was able to provide valuable information for this master’s thesis. Besides of the 

issues straightly related to my master’s thesis Eero shared with me interesting knowledge about important 

events in the history of ABB and its predecessor Strömberg. This way, as Eero has now retired, he has 

passed on parts of the corporate knowledge to younger generations of ABB workers. 

I would like to thank my supervisor Paul Lillrank who came up with the subject for this master’s thesis. 

Instead of making a study on a subject that has been covered many times before in other master’s thesis, 

the topic of this thesis was a novel one. This added enthusiasm in making this master’s thesis. 

I am also thankful for all the interviewees for their time and valuable comments concerning this master’s 

thesis.  

Most of all I would like to thank my parents. The support from my parents has been overwhelming 

throughout my studies and throughout my life. They have given me feeling of security by making me know 

that in every situation in my life, if needed, I can trust and count in their help. 

 

 

 

 

 

 

 

 

 

Espoo, October 2012 

 

Taneli Kantomaa 

 

 

 

  



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

iv 
 

ABBREVIATIONS 

 

R&D   RESEARCH AND DEVELOPMENT 

NPD   NEW PRODUCT DEVELOPMENT 

PDP   PRODUCT DEVELOPMENT PROCESS 

LPD   LEAN PRODUCT DEVELOPMENT 

CE   CONCURRENT ENGINEERING 

IPD   INTEGRATED PRODUCT DEVELOPMENT 

BPI   BUSINESS PROCESS IMPROVEMENT 

BPR   BUSINESS PROCESS REENGINEERING 

DSM   DESIGN STRUCTURE MATRIX 

QDSM   QUANTIFIED DESIGN STRUCTURE MATRIX 

WTM   WORK TRANSFORMATION MATRIX 

NA   NETWORK ANALYSIS 

CPM   CRITICAL PATH METHOD 

PERT   PROGRAM EVALUATION AND REVIEW TECHNIQUE 

GERT   GRAPHICAL EVALUATION AND REVIEW TECHNIQUE 

CCPM   CRITICAL CHAIN PROJECT MANAGEMENT 

SD   SYSTEM DYNAMICS 

 

 

 

 



1 
 

CONTENTS 
FOREWORD ........................................................................................................................................................ iii 

ABBREVIATIONS ................................................................................................................................................. iv 

1 INTRODUCTION .............................................................................................................................................. 6 

1.1 Background and motivation .................................................................................................................... 9 

1.2 Preliminary study ................................................................................................................................... 10 

1.3 Objectives .............................................................................................................................................. 10 

1.4 Methodology ......................................................................................................................................... 11 

1.4.1 Planned progress of the study ........................................................................................................ 11 

1.4.2 Realized progress of the study ....................................................................................................... 12 

2 PRODUCT DEVELOPMENT ............................................................................................................................ 14 

2.1 A Generic development process ............................................................................................................ 15 

2.2 Concept development ........................................................................................................................... 20 

2.2.1 The activity of concept generation ................................................................................................. 22 

2.3 Prototyping ............................................................................................................................................ 27 

2.4 Product development project types ...................................................................................................... 30 

2.5 Stage-gate® system ............................................................................................................................... 32 

2.6 Lean product development ................................................................................................................... 37 

2.7 Success factors in NPD ........................................................................................................................... 41 

2.7.1 Factors affecting NPD speed........................................................................................................... 41 

2.7.2 Factors affecting new product performance .................................................................................. 43 

3 MODELING THE PRODUCT DEVELOPMENT PROCESS................................................................................... 47 

3.1 Traditional techniques for process modeling and project planning...................................................... 48 

3.2 Design Structure Matrix ......................................................................................................................... 50 

3.3 Network Analysis ................................................................................................................................... 53 

3.3.1 Example of Network Analysis in practice   ...................................................................................... 55 

3.3.2 Limitations of Network Analysis ..................................................................................................... 61 

4 ITERATIONS IN PRODUCT DEVELOPMENT PROJECTS ................................................................................... 62 

4.1 Definition of iteration in product development .................................................................................... 62 

4.2 Concurrent engineering ......................................................................................................................... 64 

4.3 Iterative development process model .................................................................................................. 65 

4.3.1 Spiral development model ............................................................................................................. 65 

4.4 Overlapping activities ............................................................................................................................ 68 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

2 
 

4.4.1 Upstream information evolution .................................................................................................... 69 

4.4.2 Downstream iteration sensitivity ................................................................................................... 70 

4.4.3 Implications of Upstream evolution and downstream sensitivity ................................................. 70 

4.4.4 Coupled design tasks ...................................................................................................................... 73 

4.5 Controlling NPD iterations through matrix representation .................................................................. 74 

4.5.1 Stability of design tasks .................................................................................................................. 75 

4.5.2 Controlling iterations through feedback loop ................................................................................ 75 

5 RESULTS ........................................................................................................................................................ 80 

5.1 Empirical part of the study .................................................................................................................... 80 

5.2 Lean principles ....................................................................................................................................... 80 

5.2.1 Eliminate waste .............................................................................................................................. 81 

5.2.2 Modularity in product development .............................................................................................. 84 

5.2.3 Workload leveling ........................................................................................................................... 85 

5.2.4 Concurrent engineering (CE) .......................................................................................................... 85 

5.2.5 Cross project knowledge transfer/Amplify learning ...................................................................... 85 

5.2.6 Process standardization .................................................................................................................. 86 

5.2.7 Deliver as fast as possible ............................................................................................................... 86 

5.2.8 Empower the team ......................................................................................................................... 86 

5.2.9 Build integrity in ............................................................................................................................. 86 

6 ITERATION IN PRODUCT DEVELOPMENT ..................................................................................................... 87 

6.1 Product development project types in the company ............................................................................ 87 

6.2 From specifications to a product ........................................................................................................... 88 

6.3 Detailed design process ......................................................................................................................... 90 

6.4 System dynamics ................................................................................................................................... 92 

6.4.1 Organizational/ human related factors .......................................................................................... 95 

6.4.2 Process control mechanisms .......................................................................................................... 95 

6.4.3 Design related factors ..................................................................................................................... 97 

6.4.4 External factors ............................................................................................................................... 97 

6.4.5 Adverse dynamics ........................................................................................................................... 98 

6.4.6 ABC-analysis .................................................................................................................................. 103 

7 MANAGING ITERATION IN PRODUCT DEVELOPMENT ............................................................................... 105 

7.1 General insights ................................................................................................................................... 105 

7.2 How to diminish the impact of harmful iterations? ............................................................................ 106 

7.2.1 Production .................................................................................................................................... 107 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

3 
 

7.2.2 Sourcing ........................................................................................................................................ 107 

7.2.3 Deficiencies in product specifications .......................................................................................... 108 

7.2.4 Cost monitoring ............................................................................................................................ 108 

7.2.5 Scheduling .................................................................................................................................... 109 

7.2.6 Deficiencies in thinking over the design entity ............................................................................ 112 

7.2.7 Concept feasibility ........................................................................................................................ 114 

7.3 Framework for iterative development ................................................................................................ 117 

7.3.1 Project uncertainties .................................................................................................................... 117 

7.3.2 Iterative development model ....................................................................................................... 118 

7.3.3 Iterative development model for addressing technical risks ....................................................... 121 

7.3.4 Product offering and positioning .................................................................................................. 124 

7.3.5 Iterative development model for addressing market risks .......................................................... 124 

7.3.6 Set-based approach ...................................................................................................................... 125 

8 CONCLUSIONS............................................................................................................................................. 126 

9 SUMMARY .................................................................................................................................................. 127 

10 REFERENCES .............................................................................................................................................. 129 

 

APPENDICES 

 

LIST OF FIGURES 

Figure 1.1 R&D continuum ................................................................................................................................ 7 

Figure 1.2 Planned progress of the study (Kantomaa, T.T.) ............................................................................ 11 

Figure 2.1 Composition of product development team for an electromechanical product of modest 

complexity ....................................................................................................................................................... 14 

Figure 2.2 Generic product development process .......................................................................................... 16 

Figure 2.3 Summary of variants of generic product development process .................................................... 19 

Figure 2.4 Concept space, feasible area and the examined area (Kantomaa, T.T.) * ..................................... 20 

Figure 2.5 Concept development process ....................................................................................................... 21 

Figure 2.6 Five-step concept generation method ........................................................................................... 23 

Figure 2.7 Classification tree according to energy source concept fragments ............................................... 25 

Figure 2.8 Combination table .......................................................................................................................... 26 

Figure 2.9 Probabilities of success with the conventional and the with the prototyping process ................. 27 

Figure 2.10 Building a prototype may enable more rapid completion of a subsequent step ........................ 28 

Figure 2.11 Use of a prototype to remove a task from the critical path ......................................................... 29 

Figure 2.12 A platform development project creates the architecture of a family of products ..................... 31 

Figure 2.13 Overview of a typical Stage-gate® system  ................................................................................... 33 

Figure 2.14 Time share of different types of activities in product development ............................................ 39 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

4 
 

Figure 2.15 Description of five generations of R&D processes ....................................................................... 46 

Figure 3.1 Traditional techniques for process modeling and project planning; a) flowchart b) PERT c) CPM 

(Kantomaa, T.T.) .............................................................................................................................................. 48 

Figure 3.2 Sequential, parallel, and coupled tasks .......................................................................................... 50 

Figure 3.3 DSM comprised of 14 development tasks ...................................................................................... 51 

Figure 3.4 Design structure matrix illustrating the iterations needed to complete a particular development 

phase ............................................................................................................................................................... 52 

Figure 3.5 Brokerage ....................................................................................................................................... 55 

Figure 3.6 Full DSM of a product development process ................................................................................. 56 

Figure 3.7 Control charts for InDegree Centrality and OutDegree Centrality ................................................. 56 

Figure 3.8 Number of tasks in each cluster where the relative brokerage value is greater than 3  ............... 58 

Figure 3.9 Detected critical task iterations (modified by Kantomaa, T.T.) ...................................................... 59 

Figure 3.10 Network map ................................................................................................................................ 60 

Figure 3.11 Displaying product development process task relationships along key dimensions. .................. 61 

Figure 3.12 Extended Directed Graph (EDG) and Quantified Design Structure Matrix (QDSM) ..................... 61 

Figure 4.1 General spiral process .................................................................................................................... 66 

Figure 4.2 Sequential, parallel and overlapped processes (Kantomaa, T.T.) .................................................. 68 

Figure 4.3 Upstream activity narrows the exchanged parameter to a final value .......................................... 69 

Figure 4.4 Degree of information evolution and sensitivity ............................................................................ 71 

Figure 4.5 Types of overlapping based on evolution and sensitivity (Kantomaa, T.T. modified from)........... 72 

Figure 4.6 Coupled design activities (Kantomaa, T.T.) .................................................................................... 73 

Figure 4.7 WTM ............................................................................................................................................... 74 

Figure 4.8 Stability of a system comprised of coupled tasks ........................................................................... 75 

Figure 4.9 Gain matrix K .................................................................................................................................. 77 

Figure 4.10 WTM of an initially unstable system ............................................................................................ 77 

Figure 4.11 Gain matrix K of an initially unstable system ............................................................................... 78 

Figure 4.12 Natural (unstable) and controlled response of task D ................................................................. 78 

Figure 5.1 Allocated work time in PD (Kantomaa, T.T.) .................................................................................. 82 

Figure 5.2 Flexibility of a design (Kantomaa, T.T.) ........................................................................................... 84 

Figure 6.1 Specifications (Kantomaa, T.T.) ...................................................................................................... 88 

Figure 6.2 Iteration between technical concept and specifications (Hautakorpi, E., Kantomaa, T.T.) ........... 89 

Figure 6.3 Detailed design process (Kantomaa, T.T.) ...................................................................................... 90 

Figure 6.4 Model transformation (Kantomaa, T.T.) ........................................................................................ 93 

Figure 6.5 Rework cycle (Kantomaa, T.T.) ....................................................................................................... 94 

Figure 6.6 Frame of the SD model in the company (Kantomaa, T.T.) ............................................................. 94 

Figure 6.7 Three levels of competitor benchmarking (Kantomaa, T.T.) .......................................................... 97 

Figure 6.8 Relation between delays and iteration (Kantomaa, T.T.) ............................................................... 99 

Figure 6.9 Adverse dynamics resulting from increasing resource availability (Kantomaa, T.T.) ................... 100 

Figure 6.10 Planned and actual staffing  ....................................................................................................... 101 

Figure 6.11 Possible causal chains of events starting from process control mechanisms (Kantomaa, T.T.) 102 

Figure 6.12 Time-Effort Trade-off  ................................................................................................................. 102 

Figure 6.13 Classified causes of iteration (Kantomaa, T.T.) .......................................................................... 104 

Figure 7.1 Detailed schedule which is updated on a continuous basis (Kantomaa, T.T.) ............................. 109 

Figure 7.2 Iteration occurs and the project is rescheduled accordingly (Kantomaa, T.T.) ............................ 111 

Figure 7.3 Concept development process ..................................................................................................... 115 

file:///C:/Users/Tane/Desktop/back-up%20tiedostot/Master's%20Thesis%20final.docx%23_Toc341037401


Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

5 
 

Figure 7.4 Project uncertainties (Kantomaa, T.T.) ......................................................................................... 117 

Figure 7.5 Risk identification and mitigation scheme (Kantomaa, T.T.) ........................................................ 119 

Figure 7.6 Iterative development process ..................................................................................................... 119 

Figure 7.7 Formal and realized development process (Kantomaa, T.T.) ....................................................... 120 

Figure 7.8 The suggested iterative development process (Kantomaa, T.T.) ................................................. 120 

 

LIST OF TABLES 

Table 2.1 Process factors increasing NPD speed (Kantomaa, T.T.) ................................................................. 42 

Table 3.1 Network analysis metrics for evaluating product development process task interactions ............ 54 

Table 3.2 Clustering and measuring density ................................................................................................... 57 

Table 4.1 Two main types of iteration with three possible sub-types (Kantomaa, T.T.) ................................ 62 

Table 4.2 Natural (slowly converging) response of tasks C, D, E and F ........................................................... 76 

Table 4.3 Table of remaining work proportions after each iteration and the additional resources needed . 77 

Table 5.1 Lean principles application in the company (Kantomaa, T.T.) ......................................................... 80 

Table 6.1 Differences between task network models and system dynamics model (Kantomaa, T.T.) ........... 92 

Table 7.1 Properties and implications of the four different categories causing iteration (Kantomaa, T.T.) 106 

Table 7.2 Common dysfunctions exhibited by development teams during concept generation (Kantomaa, 

T.T.) ................................................................................................................................................................ 116 

Table 7.3 Comparison of phase-gate and iterative model (Kantomaa, T.T.) ................................................ 121 

 

  



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

6 
 

1 INTRODUCTION 
 

“Most companies die not because they do the 

wrong things, but because they keep doing 

what used to be the right things for too long” 

-Yves Doz and Mikko Kosonen 

Heightened international competition, demanding markets, and ever accelerating speed of technological 

change have forced companies to continuously examine and streamline the way they do business in order 

to remain competitive. Ever more demanding markets make it more and more important to be able to 

understand the needs of the customers through active interaction and to be able to communicate these 

needs within the company, and to be able to answer these needs in a timeliness fashion. Companies also 

operate with the knowledge that their competitors will inevitably come to the market with a product that 

changes the basis of competition. The ability to answer customer demands and changes of the business 

environment quickly and innovatively is one of the separating factors between successful and unsuccessful 

companies. In technology intensive industries it is the effectiveness and innovativeness of Product 

Development that makes up this ability. The speed of innovation realization and time-based competition 

are critical success factors in many dynamic industries.1 2  

The importance of a short lead time for product development is well illustrated in a study that if a product 

suffers from a 50% over expenditure in product development, the loss of total recoverable profit is 4%. 

However, if the product is late to market by 6 months for a life cycle of 5 years, it can lose one third of its 

profits. The development project is thus required to be on-time and predictable. The underlying design 

activities, however, are often interlinked and quite uncertain. For example iterations of a task or a set of 

tasks may occur when the results of the task(s) fail to meet specified criteria, or when new information is 

introduced (changes in customer demands, technical changes). Uncertain number of iterations and risks 

often introduces major uncertainties on the project’s timeliness completion. 3 4 

Iterations are not always undesired, though. In many cases they are inherent in the design process. An 

iterative process makes it possible to easily accommodate change, to obtain feedback and to factor it into 

the project, to reduce risk early, and to adjust the process dynamically5. Iterations frequently occur during 

product development to improve the product quality for satisfying customer needs6. However, iterations 

may improve the product performance while increasing development lead-time. Therefore, it is important 

to determine a proper process structure and to carefully manage iterations for a complex product 

                                                           
1
 Kessler, Eric H., and Paul E. Bierly. 2000. “Internal vs. external learning in new product development: effects on 

speed, costs and competitive advantage" R&D Management 30, no. 3: 213. 
2
 Paul Trott (2005) Innovation management and New Product Development 3

rd
 ed., Prentice Hall ISBN-10: 0-273-

68643-7 ISBN-13: 978-0-273-68643-9 
3
 Nichols, G., (1990) Getting engineering changes under control Journal of Engineering Design 1 (1) 

4
 Peter B. Luh, Feng Liu, Bryan Moser (1997). Scheduling of design projects with uncertain number of iterations 

European Journal of Operational Research, 113, 575-592 
5
 IBM, Rational method composer – Rational unified process, version 7.1, 2006 

6
 Smith, R.P., Eppinger, S.D. (1997). A Predictive model of sequential iteration in engineering design. Management 

Science, 43(8), 1104-1120  
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development project. Poor process structure leads to futile iterations that may cause critical delays in 

getting products to market and great sales losses. 7 8 

Innovation itself is a very broad concept. Most authors define innovation by suggesting that innovation is 

concerned with the commercial and practical application of invention. Invention, then, is the conception of 

the idea. Thus Innovation is the sum of theoretical conception, technical invention and commercial 

exploitation. Innovation depends on inventions but inventions need to be harnessed to commercial 

activities before they can contribute to the growth of an organization. Thus: 

Innovation is the management of all the activities involved in the process of idea generation, technology 

development, manufacturing, and marketing of a new (or improved) product or manufacturing process or 

equipment.2 

Research and Development (R&D) comprises two terms. To many the term research means the systematic 

approach to the discovery of new knowledge. Universities do not usually develop products. In industry, 

however, research is much more generic term and can involve both new science and the use of old science 

to produce a new product. So R&D is the management of scientific research and the development of new 

products.  Sometimes it is difficult to determine where research ends and development begins. It is 

probably more realistic to view industrial R&D as a continuum with scientific knowledge and concepts at 

one end and physical products at the other. As we move right on this continuum we get closer to product 

development activities and the further we go from research activities, as figure 1.1 depicts.2  

 

Figure 1.1 R&D continuum
2
 

                                                           
7
 Browning, T.R., Eppinger, S.D. (2002). Modeling impacts of process architecture on cost and schedule risk in product 

development. IEEE Transaction on Engineering Management, 49(4), 428-442  
8
 Eppinger, S.D., (2001) Innovation at the speed of information. Harvard Business Review, 79(1), 149-158 
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R&D activities have changed dramatically in the past decades. There are numerous factors that have 

contributed to these changes of which three are of most importance: 

• Technology explosion – most of our technological knowledge has been created during the past decades 

• Shortening of technological life cycle – the technology cycle includes scientific and technological 

developments prior to the traditional product life cycle and these cycles have been continuously 

shortening 

• Globalization of technology – technology transfer in the form of licensing and strategic alliances 

Another major change has been the shift in emphasis within industrial R&D from an internal to an external 

focus. Traditionally R&D management has been management of internal R&D. The focus has shifted making 

external acquisition of technology (sourcing, acquisition of firms with technology), R&D strategic alliances 

(joint ventures, technology cooperation) and external R&D contracts (subcontractors, sponsored research 

at universities) the most important technology management issues in many multi-technology companies.  
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1.1 Background and motivation 
 

The client of this study is a global actor in power and automation technologies. The products that it makes 

are targeted to improve the performance of its customers while lowering their environmental impact. The 

company operates in more than 100 countries and has offices in 87 of them to give its global and local 

customers the support they need in their daily businesses. The company has been seen as one of the 

pioneers in R&D internationalization. Small markets and R&D resources at the home country lead to the 

expansion of activities abroad. The company has a strong presence in Finland.  

As is the case in many other product development environments, the lead times of product development 

projects in the company are hard to predict. The naturally unpredictable nature of product development 

projects is the reason for this. This master’s thesis is concerned with improving the controllability (and 

through that predictability) of product development projects. If these projects could be executed the way 

they were planned without disturbances they could be managed like any other predictable projects. The 

fact that complex product development projects are naturally unpredictable and experience disturbances 

gives them their distinctiveness. Disturbances experienced during the execution of product development 

projects and deficiencies in the process lead to iterations. Iterations can also be natural to development; 

good examples of this are design iterations. In this master’s thesis different kinds of iterations are 

recognized and classified, their impacts are diagnosed, and means to diminish their negative impact are 

developed. So in a way this study is all about risk management. This master’s thesis is a part of a bigger 

development process that is taking place in the company which aims to improve the efficiency of product 

development.  
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1.2 Preliminary study 
 

A study of a related issue was done earlier as a part of a special study course TU-22.1155 at Aalto 

University’s Industrial Engineering and Management department the same year this study was 

commenced. The name of the preliminary study was “Developing the planning of product development 

projects in SAC-profit center”. This previous study explored the current situation of planning and 

management of NPD projects in the company and gave improvement suggestions to those areas. However 

this study was more of a descriptive nature and it was not intended to be very comprehensive. 

Nevertheless, it gave a good basis for further research of NPD projects in the company.9 

 

1.3 Objectives 
 

The main research question and the auxiliary research questions of the study are presented below.  

A number of steps have to be taken in order to be able to answer to these questions. The methodology part 

of this study further explains how the study is to be conducted.  

Main research question:  

 
 How to manage iterations in NPD to diminish their impact on project lead time and resource 

consumption? 
 

 

Auxiliary research questions: 

 
 What different kinds of iterations are there?  

 What causes them? 
 What are their features?  
 Which iterations are beneficial and which iterations are to be avoided? 
 What are their impacts on project lead time and resource consumption? 

 
 Which tasks/phases should be done through iterations and which through the straight forward 

way? 
 

 

Examining how Lean principles are presently applied in the company is also a part of this study.  

 

  

                                                           
9
 Kantomaa, T.T., Halonen, T. Developing the planning of product development projects in SAC-profit center (2011) 
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1.4 Methodology 
 

1.4.1 Planned progress of the study 

 

The planned progress of the study is depicted in figure 1.2. 

 

Figure 1.2 Planned progress of the study (Kantomaa, T.T.) 

The first part of the study includes a preliminary literature review of the topic. Subjects as New Product 

Development (NPD), NPD processes, their evolution and contemporary trends will be covered. Also existing 

literature on iterations in NPD will be gone through although the initial presumption is that such literature 

is scarce. In the literature review only academic publications (books, journals) are to be reviewed. Academic 

publications will be searched in libraries, and with search engines utilizing only academic databases. This 

way the probability, that the material is reliable is enhanced. Also novelty of publications is considered; the 

aim is to review publications mainly from recent years. 

In the next phase the Product Development Process (PDP) is modeled in the subject company. Generating a 

process map is essential for analysis purposes and the modeling of an entire NPD project has not yet been 

done in the subject company. There exists process models of different design functions but these are on a 

really rough level (except for mechanical design process) so they won’t be helpful for in-depth analysis. The 

level of detail to be included in the model is yet unknown; the level of detail needed will be clarified as the 

work proceeds. The model is not supposed to be fully declarative meaning that not every task is to be 
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included separately in the model. Tightly connected tasks are represented as entities and the analysis will 

be based on this kind of process model.  

In the process model functions outside the product development unit are also connected to product 

development tasks. These functions include product management, sourcing and manufacturing operations. 

There exists a tight connection between these functions and the product development process. 

In order to get a reliable process model it will be generated with the help of members from every design 

team associated with the model. An attempt is also made to place the associated gates of the stage-gate 

process to the model according to chronological order.  

The goal of modeling a NPD project is to create a process model that 

 Depicts a NPD project on a sufficient level of detail 

 Depicts the interdependencies between tasks 

 Shows the chronological order of the tasks 

 Is reliable 

In the third part interviews are conducted. The interviewees will include at least project managers, line 

managers and designers of different functions. Also people from different units outside product 

development are interviewed, i.e. people from product management, sourcing and production. Before the 

interviews can be conducted enough knowledge of the product development process must be gathered in 

order to be able to ask productive questions. The structure of the interviews will be decided later. 

The fourth part of the study will be to analyze the current situation and find areas of improvement. Here 

not only the iterations are considered but issues that have arisen during the study that should and could be 

improved in the product development unit are manifested.  

In the fifth part the framework for managing iterations is generated and it is verified to see if the changes 

suggested by it could be implemented in practice.  

1.4.2 Realized progress of the study 

The theoretical part starts with general product development theory, covers Lean Product Development 

(LPD), process modeling and then moves on to cover theory about iterations. As was the initial assumption, 

there was no one comprehensive theory to be found on iterations in product development. During the 

theoretical study only academic publications (books, articles) were reviewed. 

Search engines Nelli and Google Scholar were used to search through the following databases: Ebrary, 

EBSCOhost, Ellibs, Emerald Fulltext (Emerald), JSTOR, Knovel, Science Direct (Elsevier) SD, Wiley 

Interscience, Wiley Online Library. Used search words included: Iterations in product development, 

iterative development, System Dynamics (SD), Lean Product Development (LPD), agile product 

development, Graphical Evaluation and Review Technique (GERT), dynamic planning model, Network 

Analysis (NA), set-based approach, product development speed, process improvement etc. 

When the empirical part of the study was commenced it became clear very soon that modeling the detailed 

design process even on a rough level would require so much time and effort that it was out of the reach of 

this study. Another approach was then chosen; System Dynamics (SD) was used for analysis purposes.  
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In the third part interviews were conducted. A total of 37 people were interviewed; 15 designers, 3 main 

designers, 9 project managers, 2 product managers, 1 line manager, 1 program manager, 1 product 

development manager and 5 people from other functions (sourcing, production, manual team). These 

interviews lasted from 1 hour to as long as 5 hours. The average time was somewhere around 2 hours. 

There is no complete interview template in the appendices, since all the interviews were individualized 

according to the work function and personal history of the interviewee. The interviews were semi-

structured, which means the interview themes were known, but not all of the exact questions were known 

in advance of interviews. If all the questions and topics asked in different interview sessions were to be 

listed the list would go on for tens of pages so there is no sense in doing so. Appendix A lists some of the 

topics that were covered in the interviews.  

Also a questionnaire on how designers spend their work time was conducted. A total of 17 designers from 

High Power Drives (4 from each team, except 5 from main circuit design team) responded to the 

questionnaire. The questionnaire form can be found in appendix B. 

Documents found in corporate databases were also studied: specifications, product determination table 

documents, project descriptions, project schedules, project risk identification documents, project steering 

group meeting documents etc. All and all a comprehensive empirical research was made. 

The fourth part of the study was to analyze the current situation and find areas of improvement. 

In the fifth part the framework for managing iterations was developed. The main parts of the framework 

were verified by discussing them through with project managers and seasoned designers, and a document 

containing events from past projects was also made to give examples of situations where the framework 

would have proved to be useful in retrospective investigation. This is a separate document made in Finnish. 

This thesis was based on theoretical, conceptual and qualitative analysis. The next step would be to try to 

quantify different iteration related phenomena. This would allow, for example, cost-worth analysis; what 

improvements would be expected from different development efforts and what would these development 

efforts require. Key Performance Indicators (KPI’s) would reveal the actual improvements. They could then 

be compared to the expected ones to analyze any inconsistencies. 
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2 PRODUCT DEVELOPMENT 
 

Product development is the set of activities beginning with 

 the perception of a market opportunity and ending  

in the production, sale and delivery of a product.10 

 

The above mentioned statement defines product development as a concept ranging broader than just 

design activities, which define the physical form of the product, consisting also from functions like 

marketing and manufacturing.  These latter mentioned functions are actually present already in the design 

phase. When creating a new product the product development project starts with defining the product 

attributes, a process where marketing is strongly present. Broadly defined manufacturing function is 

concerned in designing, operating and/or coordinating the production system and also includes purchasing, 

distribution and installation. The production system design affects the product design and vice versa. The 

sourcing department is responsible for selecting the right suppliers taking into consideration cost, quality 

and availability of the sub-parts and these decisions also affect the design of the product. Trott (2005) 

suggests in his simultaneous coupling model that it is the simultaneous coupling of knowledge within all 

these three main functions that fosters innovation. Furthermore, the point of commencement for 

innovation is not known in advance. Several other functions, including sales and finance are also involved in 

the development of a new product. 2 10  

Project team is the collection of individuals developing the product. This team usually has a single team 

leader; project manager. The team can be seen consisting of a core team and an extended team as figure 

2.1 illustrates. In order to work effectively the core team is kept small enough, while the extended team 

may consist of dozens, hundreds or even thousands of other members. In most cases, a team within the 

firm will be supported by individuals or teams at partner companies, suppliers, and consulting firms.10  

 

Figure 2.1 Composition of product development team for an electromechanical product of modest complexity
10

 

                                                           
10

 Ulrich, K.T., Eppinger, S.D. Product Design and Development (2008) 4
th

 ed. McGraw-Hill ISBN: 978-007-125947-7 
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Product Development is challenging for many reasons. These include: 

Trade-offs: An airplane can be made lighter but this action will probably increase manufacturing costs. To 

maximize the success of a product trade-offs must be recognized, understood, and managed properly.  

Dynamics: Technologies improve, customer preferences evolve, competitors introduce new products, and 

the macroeconomic environment shifts. 

Details: Developing a new product may require thousands of decisions on details of modest complexity. 

Time pressure: Product development decisions must usually be made quickly and without complete 

information. 

Economics: Developing, producing, and marketing a new product requires a large investment. To earn a 

reasonable return on this investment, the resulting product must be both appealing to customers and 

relatively inexpensive to produce.10 

Every product development project is also distinct. It is because of the above mentioned attributes and of 

the uncertainties that distinctiveness implies that product development projects are so unpredictable in 

terms of time, costs and quality. This makes the success rate of NPD projects relatively low and the 

planning of product development activities difficult.  

2.1 A Generic development process 
 

A process is a sequence of steps that transforms a set of inputs into a set of outputs. A product 

development process is the sequence of steps or activities which an enterprise employs to conceive, 

design, and commercialize a product.10  

Many of the steps and activities in the product development process are intellectual and organizational 

rather than physical. Some organizations define and follow a precise and detailed development process, 

while others may not even be able to describe their processes. A well defined development process is 

useful for the following reasons: 

Quality assurance: A development process specifies the phases a development project will pass through 

and the checkpoints along the way. When these phases and checkpoints are chosen wisely, following the 

development process is one way of assuring the quality of the resulting product. 

Coordination: A clearly articulated development process acts as a master plan which defines the roles of 

each of the players on the development team. This plan informs the members of the team when their 

contributions will be needed and with whom they will need to exchange information and materials. 

Planning: A development process contains natural milestones corresponding to the completion of each 

phase. The timing of these milestones anchors the schedule of the overall development project.  

Management: A development process is a benchmark for assessing the performance of an ongoing 

development effort. By comparing the actual events to the established process, a manager can identify 

possible problem areas.  
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Improvement: The careful documentation of an organization’s development process often helps to identify 

opportunities for improvement.10 

The generic product development process consists of six phases as illustrated in figure 2.2. 

 

Figure 2.2 Generic product development process
10

 

The process begins with the planning phase, which is the link to advanced research and technology 

development activities. The output of the planning phase is the project’s mission and statement, which is 

the input required to begin the concept development phase and which serves as a guide to the 
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development team. The conclusion of the product development process is the product launch, at which 

time the product becomes available for the markets.  

One way to think about the development process is as the initial creation of a wide set of alternative 

product concepts and then the subsequent narrowing of alternatives and increasing specification of the 

product until the product can be reliably and repeatedly produced by the production system.  

Another way to think about the development process is as an information-processing system. The process 

begins with inputs such as the corporate objectives and the capabilities of available technologies, product 

platforms, and production systems. Various activities process the development information, formulating 

specifications, concepts, and design details. The process concludes when all the information required to 

support production and sales has been created and communicated. 10 

A third way to think about the development process is as a risk management system. In the early phases of 

product development, various risks are identified and prioritized. As the process progresses, risks are 

reduced as the key uncertainties are eliminated and the functions of the product are validated.  

Figure 2.2 also shows the activities and responsibilities of the different functions of the organization during 

each development phase. Because of the continuous involvement of marketing, design, and manufacturing 

in the product development process their roles are articulated here further.  

0. Planning: This phase begins with corporate strategy and includes assessment of technology 

developments and market objectives. The output of the planning phase is the project mission statement, 

which specifies the target market for the product, business goals, key assumptions, and constraints. 

1. Concept Development: In the concept development phase, the needs of the target market are identified, 

alternative product concepts are generated and evaluated, and one or more concepts are selected for 

further development and testing. A concept is a description of the form, function, and features of a product 

and is usually accompanied by a set of specifications, an analysis of competitive products, and an economic 

justification of the project.  

2. System-level design: The system-level design phase includes the definition of the product architecture 

and the decomposition of the product into subsystems and components. The final assembly scheme for the 

production system is usually defined during this phase. The output of this phase includes a geometric 

layout of the product, a functional specification of each of the product’s subsystems, and a preliminary 

process flow diagram for the final assembly process.  

3. Detail design: The detail design phase includes the complete specification of the geometry, materials, 

and tolerances of all of the unique parts in the product and the identification of all of the standard parts to 

be purchased from suppliers. A process plan is established and tooling is designed for each part to be 

fabricated within the production system. The output of this phase is the control documentation - the 

drawings or computer files describing the geometry of each part and its production tooling, the 

specifications of the purchased parts, and the process plans for the fabrication and assembly of the 

product. Two critical issues addressed in the detail design phase are production cost and robust 

performance.  

4. Testing and refinement: The testing and refinement phase involves the construction and evaluation of 

multiple preproduction versions of the product. Early (alpha) prototypes are usually built with production-
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intent parts – parts with the same geometry and material properties as intended for the production version 

of the product but not necessarily fabricated with the actual processes to be used in the production. Alpha 

prototypes are tested to determine whether the product will work as designed and whether the product 

satisfies the key customer needs. Later (beta) prototypes are usually built with parts supplied by the 

intended production processes but may not be assembled using the intended final assembly process. Beta 

prototypes are extensively evaluated internally and are also typically tested by customers in their own use 

environment. The goal of beta-prototyping is usually to answer questions about performance and reliability 

in order to identify necessary engineering changes for the final product.  

5. Production ramp-up: In the production ramp-up phase, the product is made using the intended 

production system. The purpose of the ramp-up is to train the work force and to work out any remaining 

problems in the production processes. Products produced during the ramp-up are sometimes supplied to 

preferred customers and evaluated carefully to identify any remaining flaws. The transition from 

production ramp-up to ongoing production is usually gradual. At some point the product is launched and 

becomes available for widespread distribution.10 

The general development process described above is most likely to be used in a market-pull situation: a 

firm begins product development with a market opportunity and then uses whatever available technologies 

are required to satisfy the market need. There are other process types as well including: technology-push 

products, platform products, process-intensive products, customized products, high-risk products, quick-

build products and complex systems. Figure 2.3 shows the key features of these process types.  
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Figure 2.3 Summary of variants of generic product development process
10
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2.2 Concept development 
 

In this chapter special attention is paid to the concept development phase because of three reasons; it 

demands more coordination among functions than any other, it represents the front-end process, and it is 

in this phase of the product development process where the orientation of the whole project is made. 

 

Figure 2.4 Concept space, feasible area and the examined area (Kantomaa, T.T.) * 

* It can be thought that the concepts under examination resemble one another on some level, i.e. they form 

a cluster in the concept space. The left side of figure 2.4 represents a situation where the cluster of 

examined concepts overlaps the feasible area only slightly which probably leads to suboptimal solutions. On 

the right examination of concepts has been done properly with enough time and resources and the whole 

feasible solution space has been covered. 

Concept development is the phase of the product development process where the orientation of the whole 

project is made. If this phase is not done properly and with enough time and capable resources, the project 

will not be successful no matter how well the subsequent phases will be done. The project will not be 

successful either in terms of quality (the solutions are probably suboptimal since the examination of the 

concept space hasn’t been done properly), or in respect to cost and timeliness, since if the concept 

development is done poorly in the beginning of the project and the quality aspect is to be achieved then 

the concepts must be revised later on, and this will naturally increase the lead time and costs of the project. 

Figure 2.4 depicts one of the most important parts of concept development: the examination of the 

solution space.  

The front-end process generally contains many interrelated activities, ordered roughly as presented in 

figure 2.5. Rarely does the entire process proceed in purely sequential fashion, completing each activity 

before beginning the next. In practice, the front-end activities may be overlapped in time and iteration is 

often necessary. At almost any stage new information may become available resulting in back-steps and 

repetitions of activities. This repetition of nominally complete activities is known as development iteration.   
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Figure 2.5 Concept development process
10

 

The concept development process includes the following activities: 

Identifying customer needs: The goal of this activity is to identify customer needs and to effectively 

communicate them to the development team. The output of this step is a set of customer need statements 

organized in a hierarchical list, with importance weightings for many or all of the needs.  

Establishing target specifications: Specifications provide a precise description of what a product has to do. 

They are a translation of customer needs into technical terms.  

Concept generation: The goal of concept generation is to thoroughly explore the space of product concepts 

that may address the customer needs. Concept generation includes a mix of external search, creative 

problem solving within the team, and systematic exploration of the various solution fragments the team 

generates. The result of this activity is usually a set of 10 to 20 concepts, each typically represented by a 

sketch and brief descriptive text.  

Concept selection: Concept selection is the activity in which various product concepts are analyzed and 

sequentially eliminated to identify the most promising concept(s). The process usually requires several 

iterations and may initiate additional concept generation and refinement.  

Concept testing: One or more concepts are then tested to verify that the customer needs have been met, 

assess the market potential for the product, and identify any shortcomings which must be remedied during 

further development.  

Setting final specifications: The target specifications set earlier in the process are revisited after a concept 

has been selected and tested and the final specifications are set. Finalizing specifications is difficult because 

of trade-offs - inverse relationships between two specifications that are inherent in the selected product 

concept.  

Project planning: At this stage a detailed development schedule is created, a strategy that minimizes the 

development time is formulated and the resources required to complete the project are identified.  

Economic analysis: The team, often with a help of financial analyst, builds an economic model for the new 

product. This model is used to justify continuation of the overall development program and to resolve 

specific trade-offs among, for example, development costs and production costs.  

Benchmarking competitive products: Understanding competitive products is critical for being able to 

successfully position new products. Benchmarking also provides a rich source of ideas for the product 
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design and production process design. Competitive benchmarking is performed in support of many of the 

front-end activities. 

Modeling and prototyping: Every stage of the concept development process involves various forms of 

models and prototypes. These may include, among others: early “proof-of-concept” models, which help the 

development team to demonstrate feasibility; “form-only” models, which can be shown to customers to 

evaluate ergonomics and style; spreadsheet models of technical trade-offs; and experimental test models, 

which can be used to set design parameters for robust performance. 

2.2.1 The activity of concept generation 

A product concept is an approximate description of the technology, working principles, and form of the 

product. It is a concise description of how the product will satisfy the customer needs. The phase of 

concept generation is very important; a good concept is sometimes poorly implemented in subsequent 

development phases but a poor concept can rarely be manipulated to achieve commercial success. Concept 

generation is relatively cheap and can be done quickly compared to the rest of development process, so 

there is no excuse for lack of diligence and care in executing a sound concept generation method. 

The concept generation process begins with a set of customer needs and target specifications and results in 

a set of product concepts of which typically 10 to 20 are selected for further scrutiny. Each concept is 

typically represented by a sketch and brief descriptive text. Good concept generation leaves the team with 

confidence that the full space of alternatives has been explored. Thorough exploration of alternatives early 

in the development process greatly reduces the likelihood that the team will stumble upon a superior 

concept late in the development process or that a competitor will introduce a product with dramatically 

better performance than the product under development. 

STRUCTURED APPROACHES REDUCE THE LIKELIHOOD OF COSTLY PROBLEMS 

Common dysfunctions exhibited by development teams during concept generation include: 

• Consideration of only one or two alternatives, often proposed by the most assertive members of the 

team. 

• Failure to consider carefully the usefulness of concepts employed by other firms in related and 

unrelated products. 

• Involvement of only one or two people in the process, resulting in lack of confidence and commitment 

by the rest of the team. 

• Ineffective integration of promising partial solutions. 

• Failure to consider entire categories of solutions. 

A way to reduce the incidents of these problems is a structured method approach. This method encourages 

the gathering of information from many disparate information sources, by guiding the team in the 

thorough exploration of alternatives, and by providing a mechanism for integrating partial solutions. 

In figure 2.6 a five-step method is presented. The method breaks a complex problem into simpler sub-

problems. Solution concepts are then identified for the sub-problems by external and internal search 

procedures. Classification trees and concept combination tables are then used to systematically explore the 

space of solution concepts to integrate the sub-problem solutions into a total solution. Finally, the team 

takes a step back to reflect on the validity and applicability of the results, as well as on the process used. 

Although the concept generation is presented as a linear sequence it is in fact almost always iterative.  
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Figure 2.6 Five-step concept generation method
10

 

Step 1: The problem is clarified by developing general understanding and breaking the problem down to 

sub-problems if necessary. Inputs for this step are mission statement for the project, the customer needs 

list, and the preliminary product specifications although these might still be under refinement as the 

concept generation begins.  The problem might be divided into sub-problems according to functionalities, 

sequence of user actions or key customer needs. After the problem is divided into sub-problems the next 

thing to do is to focus on the ones that are critical to the success of the product and that are most likely to 

benefit from novel or creative solutions.  
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Step 2: External search is focused at finding existing solutions to both the overall problem and the sub-

problems identified during the problem clarification step. Implementing an existing solution is usually 

quicker and cheaper than developing a new solution. This lets the development team to focus its creative 

energy on issues for which no satisfactory prior solutions exist. The external search for solutions is 

essentially an information-gathering process. Available time end resources can be optimized by using an 

expand-and-focus strategy; first expand the scope of the search to broad information gathering that might 

be related to the problem and then focus the scope of the search to by exploring the promising directions 

in more detail. Sources of external information include lead users, expert consultants, patents, literature, 

and competitive benchmarking.  The main disadvantage of patent searches it that concepts found in recent 

patents are protected (generally for 20 years), so there may be a royalty involved in using them. However, 

patents are also useful to see what concepts are already protected and must be avoided or licensed. 

Concepts contained in foreign patents without global coverage and expired patents can be used without 

payment of royalties. There are several databases containing the actual text of patents that can be 

searched electronically by key words. Key word searches can be conducted efficiently with only modest 

practice and are effective in finding patents relevant to a particular product. In many instances a 

development team knows the competitors offerings quite well but the benchmarking of existing products 

that have different markets but related functionalities is neglected, just because they might be difficult to 

find. A conventional solution to one sub-problem can frequently be combined with a novel solution to 

another sub-problem to yield a superior overall design. For this reason external search includes detailed 

evaluation not only of directly competitive products but also of technologies used in products with related 

sub-functions. 

Step 3: Internal search is the use of personal and team knowledge and creativity to generate solution 

concepts. The knowledge already exists and is in the possession of the team and it is just a matter of getting 

ideas to emerge from this knowledge base. This activity may be the most open-ended and creative of any in 

New Product Development (NPD). This process of retrieving potentially useful information to the problem 

at hand can be done either by individuals working in isolation or by a group of people working together. 

There are four guidelines for improving internal search: 

1. Suspend judgment: Product concept decisions have consequences reaching out for many years so 

they must not be made hastily. Suspending evaluation for the days or weeks required is critical to 

success. 

2. Generate a lot of ideas: Explore the whole solution space by generating a lot of ideas. When the 

quantity of ideas is large the expectations of quality for any particular idea is lowered, which leads to 

people sharing ideas they would otherwise not view as worth mentioning. Furthermore, each idea acts 

as a stimulus for other ideas. 

3. Welcome ideas that may seem infeasible: Ideas which initially appear infeasible can often be 

improved, “debugged”, or “repaired” by other members of team. In many instances the most creative 

ideas are originally seen as infeasible. 

4. Use graphical and physical media: Text and verbal language are inherently inefficient vehicles for 

describing physical entities so graphical presentations and physical forms should be employed. 

 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

25 
 

Step 4: As a result of the external and internal search activities, the team will have collected tens or 

hundreds of concept fragments – solutions to the sub-problems. Systematic exploration is aimed at 

navigating the space of possibilities by organizing and synthesizing these solution fragments. One 

alternative would be to go through all the combinations of these concept fragments, but little arithmetic 

reveals the impossibility of this idea; if there are three sub-problems each having 15 fragments there are 

3375 (15x15x15) possible combinations. There are two specific tools for managing this complexity and 

organizing the thinking of the team: the concept classification tree and the concept combination table. The 

classification tree divides the possible solutions into independent categories while the combination table 

guides in selectively considering combinations of fragments.   

Figure 2.7 shows a classification tree for a product under development. The branches correspond to 

different energy sources.  

 

Figure 2.7 Classification tree according to energy source concept fragments
10

 

The classification tree provides at least four important benefits: 

1. Pruning of less promising branches – identify solutions that do not appear to have much merit, 

eliminate them and focus on the more promising branches of the tree.  

2. Identification of approaches to the problem – Each branch of the tree is a different approach to 

the problem. Some of these approaches may be almost completely independent of each other. The 

division effort helps in organizing the concept generation activities among individuals or task 

forces.  

3. Exposure of inappropriate emphasis on certain branches – Once the tree is constructed it can be 

seen very quickly whether the effort applied to each branch has been appropriately allocated i.e. 

have all solution branches been thought as well as should have been or has some branch been 

neglected. 

4. Refinement of the problem decomposition for a particular branch – Sometimes problem 

decomposition can be usefully tailored to a particular approach to the problem. Consider the 
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branch of the tree corresponding to electrical energy source. What if none of the proposed 

solutions including wall outlet, battery or fuel cell are applicable (in terms of size, cost, and mass) 

for making enough instantaneous driving power for the product. Then the development team may 

conclude that energy must be accumulated over a substantial period. This analysis leads the team 

to add a sub-function (“accumulate translational energy”) to their function diagram. They chose to 

add the sub-function after the conversion of electrical energy to mechanical energy, but briefly 

considered the possibility of accumulating energy in the electrical domain with a capacitor.  

The classification tree can be constructed with branches corresponding to the solution fragments of any of 

the sub-problems, but in general a good candidate for a classification tree is a sub-problem whose solution 

highly constrains the possible solutions to the remaining sub-problems. 

The concept combination table provides a way to consider combinations of solution fragments 

systematically. Figure 2.8 shows an example of combination table that can be used to consider the 

combinations of fragments for the electrical branch of the classification tree. There are 24 (4x2x3) possible 

combinations. One solution is to use a solenoid to compress a spring which is then released repeatedly to 

produce multiple impacts. 

 

Figure 2.8 Combination table
10

 

Step 5: Although the reflection step is placed here at the end the team should be performing reflection 

throughout the whole process. Questions to ask include: 

• Is the team developing confidence that the solution space has been fully explored? 

• Are there alternative function diagrams? 

• Are there alternative ways to decompose the problem? 

• Have external sources been thoroughly pursued? 

• Have ideas from everyone been accepted and integrated in the process? 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

27 
 

2.3 Prototyping 
 

One definition of prototype is “an approximation of the product along one or more dimensions of interest”. 

According to this definition, any entity exhibiting at least one aspect of the product that is of interest to the 

development team can be viewed as a prototype. This definition deviates from standard usage in that it 

includes such diverse forms of prototypes as concept sketches, mathematical models, simulations, test 

components, and fully functional preproduction versions of the product. Prototyping is the process of 

developing such an approximation of the product. 

Prototypes can usually be classified along two dimensions; the degree to which the prototype is physical as 

opposed to analytical, and the degree to which a prototype is comprehensive as opposed to focused. 

Physical prototypes are tangible artifacts created to approximate the product. Analytical prototypes 

represent the product in a non-tangible, usually mathematical or visual, manner. Comprehensive 

prototypes implement most, if not all, of the attributes of a product. Focused prototypes implement one, 

or a few, of the attributes of a product. 

A PROTOTYPE MAY REDUCE THE RISK OF COSTLY ITERATIONS 

Figure 2.9 illustrates the role of risk and iteration in product development. In many situations the outcome 

of a test may dictate whether a development task will have to be repeated. In figure 2.9 an example of 

injection mold building is given. The probability of building a mold successfully without prototyping is 70%. 

When prototyping is introduced the probability for building a mold successfully has risen to 95%. If building 

and testing a prototype substantially increases the likelihood that the subsequent activities will continue 

without iteration then prototyping is justified. 

 

Figure 2.9 Probabilities of success with the conventional and the with the prototyping process
10
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The anticipated benefits of a prototype in reducing risk must be weighed against the time and money 

required to built and evaluate the prototype. Products that have high risks or uncertainties, because of the 

high costs of failure, new technology, or the revolutionary nature of the product, will benefit from such 

prototypes. On the other hand, products for which failure costs are low and the technology is well known 

do not derive as much risk reduction benefit from prototyping. Most products fall between these two 

extremes.  

Sometimes the addition of a prototype may allow a subsequent activity to be completed more quickly than 

if the prototype were not built as figure 2.10 depicts. 

 

Figure 2.10 Building a prototype may enable more rapid completion of a subsequent step
10

 

A prototype may restructure task dependencies as shown in figure 2.11. Here figure 2.11 illustrates tasks 

that are completed sequentially. It may be possible to complete some of the tasks concurrently by building 

a prototype. For example, a software test may be dependent of a physical circuit. Rather than waiting for 

the production version of the Printed Circuit Board (PCB) to use in a test, the team may built a prototype 

and use it for the test. 
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Figure 2.11 Use of a prototype to remove a task from the critical path
10

 

In the past 20 years two technologies have become ever more important in prototyping activities: three-

dimensional computer modeling (3D CAD) and free-form fabrication. The advantages of computer-aided 

design (CAD) include the ability to easily visualize the three dimensional form of the design. Through the 

use of computer-aided engineering (CAE) tools, 3D CAD models have begun to serve as analytical 

prototypes. In some settings this can eliminate one or more physical prototypes. In 1984 3D systems 

developed a technology used in free-from fabrication called stereolithography. This technology, and other 

technologies that followed it, create physical objects directly from 3D CAD models, and can be thought of 

as “three-dimensional printing”. This collection of technologies is often called rapid prototyping. Most of 

the technologies work by constructing an object, one cross-sectional layer at a time, by depositing material 

or by using a laser to selectively solidify a liquid or powder. The resulting parts are most often made from 

plastics, but other materials are available, including wax, paper, ceramics, and metals. In some cases the 

parts are used directly for visualization or in working prototypes. However, the parts are often used as 

patterns to make molds or patterns from which parts with particular material properties can then be 

molded or cast. When used appropriately, prototypes created using free-from fabrication can reduce 

product development time and/or improve the resulting product quality. 
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2.4 Product development project types 
 

There are four types of product development projects: 

 New product platforms: This type of project involves a major development effort to create a new 

family of products based on a new, common platform. 

 Derivatives of existing product platforms: These projects extend an existing product platform to better 

address familiar markets with one or more new products. 

 Incremental improvements to existing products: These projects may involve adding or modifying some 

features of existing products in order to keep the product line current and competitive. A slight change 

to remedy minor flaws in an existing product would be an example of this type of project.  

 Fundamentally new products: These projects involve radically different product or production 

technologies and may help to address new and unfamiliar markets. Such projects inherently involve 

more risk; however, the long-term success of the enterprise may depend on what is learned through 

these important projects.  

A platform product is built around a preexisting technological subsystem (a technology platform). Product 

Platform has been defined by McGrath (1995) as “a set of subsystems and interfaces that form a common 

structure from which a stream of related products can be efficiently developed and produced”11. By using 

platforms a company can develop a set of differentiated products12. Example of such platform is the Apple 

Macintosh operating system or the tape transport mechanism in the Sony Walkman. Actually Sony 

walkmans 160 variations and four major technical innovations between 1980 and 1990 were all based on 

its initial platform. Huge investments were made in developing these platforms, and therefore every 

attempt is made to incorporate them into several different products. In some sense, platform products are 

very similar to technology-push products in that the team begins the development effort with an 

assumption that the product concept will embody a particular technology. The primary difference is that a 

technology platform has already demonstrated its usefulness in the market place in meeting customer 

demands. The firm can in many cases assume that the technology will also be useful in related markets. 

Products built on technology platforms are much simpler to develop than if the technology were developed 

from scratch. For this reason, and because of the possible sharing of costs across several products, a firm 

may be able to offer a platform product in markets that could not justify the development of a unique 

technology. 2 10 

 

 

 

 

 

                                                           
11

 McGrath, M.E. Product Strategy for High-Technology Companies, New York, Irwin Professional Publishing 
12

 Wheelwright, S.C. and Clark, K.B. (1992) Revolutionizing Product Development: quantum leaps in speed, efficiency 
and quality, Free Press, New York  
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HOW APPLE DEVELOPS PRODUCTS 
 
Apple has released many new products over the last decade over which only a few have been the start 
of a new platform. The rest were iterations. Apple develops its products through continuous iterative 
improvement. Good examples of these are the iPhone, iPod and one of Apple’s oldest products Mac OS 
X. The iPhone debuted 2007 with no third-party apps, no 3G networking, and a maximum storage 
capacity of 8GB. One year later, Apple had doubled storage, added 3G and GPS, and opened the App 
Store. The year after that, it swapped in a faster processor, added a compass and an improved camera, 
and doubled storage again. The pattern repeats. There are never any major changes, but small 
changes that occur on a constant basis. 13 

 

This example of Apple’s incremental development approach represents one component of Integrated 

Product Development (IPD).  

An effective platform can allow a variety of derivative products to be created more rapidly and easily, with 

each product providing the features and functions desired by a particular market segment. Since platform 

development projects can take from 2 to 10 times as much time and money as derivative product 

development projects, a firm cannot afford to make every project a new platform. Figure 2.12 illustrates 

the leverage of an effective product platform. The critical strategic decision is whether the firm decides to 

develop a derivative product from an existing platform or develop an entirely new platform. 

 

Figure 2.12 A platform development project creates the architecture of a family of products
10

 

One technique for coordinating technology development with product planning is the technology roadmap. 

It presents the expected availability and future use of various technologies relevant to the product being 

considered. This method is especially useful in situations where the critical functional elements of products 

are well known in advance. The technological roadmap can be augmented with the timing of projects that 

would utilize these technological developments. The result is a product-technology roadmap. 

 

                                                           
13

 John Gruber Apple’s constant iterations Macworld Apr2010, Vol. 27 Issue 4, p100-100 ISSN: 07418647 
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2.5 Stage-gate® system 
 

There has been a variety of studies examining the relationship between formalization and innovation. 

There is some evidence of an inverse relationship between formalization and innovation, meaning that an 

increase in formalization may decrease innovative activity.  It is unclear, however, whether a decrease in 

procedures and rules would lead to an increase in innovation. More over organizational planning and 

routines are necessary for achieving efficiencies. 2  

Using a formal process for product development has previously been demonstrated as increasing the 

probability that a product will be successful in the market place. Formal processes have also been 

discovered to reduce cycle times once the physical design of the product begins and reduces it even more 

for more complex products. As products grow more complex, with more functions designed into the 

product and designed to work together, the task of organizing the interfaces and interactions between 

different functions may grow geometrically or exponentially rather than linearly, thereby increasing the 

need for formal process. Processes do not help projects proceed efficiently through the fuzzy front-end of 

product development. 14 

Also, comparative studies of process performance indicate that having a formal new product process does 

not in itself guarantee performance, rather that it is the quality of this process in respect of several key 

activities which counts15.  

Stage-Gate® System was developed by Robert G. Cooper in 1988, and it is a widely used system by 

companies developing new products16. It is a conceptual and operational road map for moving a new-

product project from idea to launch. Stage-Gate® divides the effort into distinct stages separated by 

management decision gates (gate-keeping). In each stage, a variety of activities (i.e. marketing, technical, 

and financial) are undertaken concurrently. The primary purpose of the stages is to solve problems and to 

generate information that will facilitate decision making about the new product (e.g., Is there a market for 

this new product? How should we design and produce it? Is it financially viable to produce this product?). A 

typical stage-gate® system is depicted in figure 2.13. 17 18 

                                                           
14

 Abbie Griffin,  The Effect of Project and Process Characteristics on Product Development Cycle, Time Journal of 
Marketing Research, Vol XXXIV (February 1997), 24-35 
15

 S. Minderhoud, P. Fraser, “Shifting paradigms of product development in fast and dynamic markets”, Reliability 
Engineering & System Safety, 88 (2005) 127-135 doi: 10.1016/j.ress.2004.07.002 
16

 New Product Dynamics website http://www.europa.com/~preston/stage_gate.htm  cited 9.1.2012 and 10.1.2012 
17

 Robert G. Cooper, Perspective: The Stage-gate® Idea-To-Launch Process – Update, What’s new, and NexGen 
Systems, Product Innovation Management 2008;25;213-232 
18

 Jeffrey B. Schmidt, Kumar R. Sarangee, and Mitzi M.Montoya, “Exploring New Product Development Project Review 
Practices”, J Prod Innov Manag 2009;26;520-535 ©PDMA 
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Figure 2.13 Overview of a typical Stage-gate® system 
17

 

The key stages are: 

Stage 0 Discovery: Activities designed to discover opportunities and to generate new product ideas. After a 

decade of development focused on product extensions and quick hits, the quest for the super-idea – the 

“home-run”, breakthrough idea or major innovation – has become a vital management issue. What some 

companies are doing is replacing the traditional ideation stage with a much more proactive “Discovery 

stage”.19 

Stage 1 Scoping: A quick and inexpensive assessment of the technical merits of the project and its market 

prospects. 

Stage 2 Build Business Case: This is the critical homework stage - the one that makes or breaks the project. 

Technical, marketing and business feasibility are accessed resulting in a business case which has three main 

components:  

 product and project definition 

 project justification 

 project plan 

Stage 3 Development: Plans are translated into concrete deliverables. The actual design and development 

of the new product occurs, the manufacturing or operations plan is mapped out, the marketing launch and 

operating plans are developed, and the test plans for the next stage are defined. 

Stage 4 Testing and Validation: The purpose of this stage is to validate the entire project:  

 the product itself 

 production/manufacturing process 
                                                           
19

 Dr. Robert G. Cooper, Dr. Scott J. Edgett, Dr. E.J Kleinschmidt, Optimizing the Stage-gate® process: What Best 
Practice Companies Are Doing, Part 1, Working paper No. 14 ©2006 The Product Development Institute 
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 customer acceptance 

 economics of the project 

Stage 5 Launch: Full commercialization of the product - the beginning of full production and commercial 

launch. 20 

At each gate go/kill decisions are made by a steering committee either to continue to invest in the project 

or to kill the project.  Gate meetings include going through must-meet criteria (checklist) designed to weed 

misfit projects quickly, and should-meet criteria that are scored and added (a point-count system), which 

are used to prioritize projects17. These include strategic, technical, market, financial and operational 

criterion. 

According to Robert G. Cooper (the developer of the system) Stage-gate system brings the following 

benefits for companies using it: Reduced time-to-market (by about 30 percent), improved product success 

rates, improved discipline over a complex and potentially chaotic process, and reduced re-work efforts21.  

The stage-gate® system is not a functional process nor is it a project control mechanism. It is a business 

process and a set of formal procedures for ensuring no critical steps are omitted in project execution. 17 

 

DEFICIENCIES AND CRITICISM ABOUT THE STAGE-GATE SYSTEM 

A lot of criticism has been made in the contemporary literature concerning the rigidity of stage-gate 

system. Stages-and-gates break work up into sequential phases, thus preventing parallel, overlapping 

activities, when they cross the decision points. Such processes do not encourage completing tasks in earlier 

phases to keep them off of the critical path. 16 

At some instances the Stage-gate system has also been accused of being too bureaucratic, which 

encourages a lot of non-value adding activity. The Stage-gate system has become an end itself in some 

businesses, as teams go great lengths preparing for gate meetings. In other situations there are too many 

gates, and too many stages; more than the necessary ones and so the bureaucracy sets in. 22 

Another shortcoming of stages-and-gates processes is that they inherently force fundamental project 

decisions to be made earlier than necessary, thereby restricting your flexibility to respond to change and 

raising your cost of change. If change in markets, customer desires, technology, or management direction is 

characteristic of your development projects, more flexible development techniques should be considered, 

rather than phased approaches. 16 

 

 

 

                                                           
20

 Product Development Institute, website http://www.prod-dev.com/stage-gate.php cited 9.1.2012 
21

 Dr. Robert G. Cooper, Doing it Right: Winning with New Products, working paper No. 10, The Product Development 
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22

 Cooper, R.G., “The invisible success factors in product innovation”, Journal of Product Innovation Management, 16, 
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abstract of an article published by Don Reinertsen in June 2002 

 
Don’t ask, don’t tell 

 
Among the traditional rituals of product development, one of the strangest is the checkpoint review. 
The stated purpose of this review is to determine whether a project is ready to pass into the next 
phase. The checkpoint is manned by management, playing the role of astute border guards with 
unlimited power… Travelers, played by project team members, produce colorful documents for the 
border police. If they are worthy they are permitted to cross the border. 
 
Officially, the checkpoint stops unworthy projects from entering the next phase. In practice, in most 
companies, all travelers eventually cross the border, but some are delayed more than others. Or at 
least they appear to be delayed. The secret of this ritual is that work almost always begins on the next 
phase before the checkpoint review is completed. Team members pretend to wait for the approval of 
management. Management pretends not to notice that work has already begun on the next phase. The 
border guards threaten to stop unworthy projects, but never use this power. The travelers pretend to 
wait at the border, but actually do not. 
 
What is really going on? It is important to understand the real purpose of the ritual. It has nothing to 
do with decision-making and everything to do with power. The ritual is designed to reinforce the 
belief that management is in control. Travelers respect the border guards. As long as everyone follows 
the unwritten rules, out-of-phase activity is tolerated.   
 
What are the benefits of this ritual? My surveys of product developers suggest that at least 75 percent 
of the companies that claim to work in one phase at a time actually permit out-of-phase work. They do 
so for good reason. When time-to-market is valuable, the benefit of overlapping phases far exceeds its 
cost.   
 
Is this ritual simply a harmless fantasy, or does it have a dark side? I believe it is dangerous for two 
reasons. When actual behavior in an organization differs from its rules, people are confused about the 
importance of following the rules. New members of the organization become productive slowly, since 
they must de-code which rules count and which can be safely ignored. They tread this minefield with 
care, assuming there are more mines than there really are. This undermines initiative, which is so 
vital to success in product development.  
 
Second, any distortion of reality is dysfunctional. If we attribute product development success to the 
wrong cause, we may optimize the wrong thing… If we believe that management makes all important 
decisions, it follows that only management needs access to quality information. If we recognize that 
all team members make important decisions on when to engage in out-of-phase activity, it follows 
that they need the right decision support information to make these decisions. Out-of-phase activity 
works when team members understand what is on the critical path, and when it makes economic 
sense to move forward.  They must be able to quantify the costs and benefits of out-of-phase activity. 
Unfortunately, in many organizations low-level team members have no knowledge of these 
economics… You need to put the information where the decision-making is and if you delude yourself 
as to who makes decisions you will inevitably put the information in the wrong place… Ask yourself 
whether this path (invisible path around the checkpoint) should remain dangerously unmarked or 
whether it should be legitimized as one more tool in our toolkit. 23 
 
Don Reinertsen, President of Reinertsen & Associates, co-author in “Developing Products in Half the 
Time: New Rules, New Tools” and author of Managing the Design Factory.    
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NEXGEN STAGE-GATE® SYSTEM FOR COUNTERING THE EMERGED DEFICIENCIES 

Robert G. Cooper has introduced the NexGen Stage-gate® system for countering the deficiencies that have 

emerged from practice. The typical proficient new product Stage-gate® system contains about four or five 

stages and gates (not counting for the ideation stage and post launch review). According to Cooper the 

Stage-gate system must be modified according to project attributes. Projects that contain less risk deserve 

a system that has less stages (stages collapsed and gates combined) and has detours designed to speed up 

the process. This way the Stage-gate® system becomes scalable. According to Cooper, flexibility is obtained 

by allowing the project team considerable latitude in deciding what actions are really needed and what 

deliverables are appropriate for each gate. Cooper also encourages overlapping stages to employ 

simultaneous execution: not waiting for a completion of a previous step and perfect information before 

moving ahead. 22 24 25  
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2.6 Lean product development 
 

Applying lean to product development environment results in a different set of guiding principles with 

respect to the original lean manufacturing principles. Product development is different from 

manufacturing. Here, value may be defined differently and the value stream consists of flows of 

information and knowledge that are less easily tracked than the material flows of a factory. In 

manufacturing the ability to mass customize means building the product out of modules which can be 

combined in different ways to achieve differentiation. In product development by using a platform 

approach, a company can develop a set of differentiated products12. Instead of physical modules, 

modularity can also mean knowledge modules. Through the reuse of knowledge modules efficiency and 

increased NPD speed can be achieved. The basic idea is to capture and re-use the engineering intent during 

a product development process. Using modularity in architecture is one example. Product architecture is 

the arrangement of functional elements of a product into physical blocks. The purpose of product 

architecture is to define the basic physical building blocks of the product in terms of both what they do and 

what their interfaces are with the rest of the devices. At one extreme, modular product architecture allows 

each functional change independently by changing one component. At the other extreme, a fully integrated 

product requires change in all components to bring a desired change on functional element.26 Design teams 

reunite the modules to set the plans for the next iteration of the product. It is critical to designate a 

creative manager to orchestrate this part of the process, and ensure that all contingencies are being 

discussed. The most innovative companies such as Apple and Google, assign this role to their most talented 

product managers and system experts.27 

Literature provides many different sets of guiding principles for Lean product development. This study 

combines principles from different sources28 29 30 31 32 33 to come out with the following set of 9 guiding 

principles of Lean Product Development (LPD): 

 Eliminate waste: waste is anything that does not add value to the product, value perceived by the 

customer, excluding necessary but non-value adding activities.  

 Modularity: this incorporates platform approach as well as other kind of modularity in design; 

designing the product to be flexible to changes. This flexibility may be useful during the PD project 

or it may become useful for making later changes to the product when it has already been 

introduced to markets and the need for changes arise in the form of quality or cost issues. This kind 

of flexibility in design might raise the initial cost of the product, but in longer run it might prove to 

be a profitable way of designing products. 

 Workload leveling: different product development projects with timely overlap compete for the 

same financial, technical, and human resources. When trying to maximize the overall product 
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development performance of an enterprise it is of major importance that their resources are 

planned on a cross-project basis, a methodology referred to as multi-project management30.  

 Concurrent engineering (CE): Concurrent Engineering offers potential to significantly reduce lead-

time of the product development.  CE is elaborated later in this study.  

 Cross-project knowledge transfer/Amplify learning: it has been shown that even highly innovative 

products strongly depend and build upon knowledge of older products. This knowledge, if not 

appropriately captured, has to be continuously regenerated. 31 32 This incorporates the 

aforementioned knowledge modules. 

 Process standardization: while product development projects naturally differ from case to case, it 

has been found that many tasks required for planning and executing product development are 

quite consistent across different projects31 3331. To increase product development performance, it is 

widely recommended to identify these reoccurring tasks and standardize them. Standardization: 

•  reduces variability 

•  increases efficiency 

•  minimizes errors 

•  helps to capture and manage knowledge 

•  serves as a basis for continuous improvement 31 34 35 

 Deliver as fast as possible: Rapid development has many advantages. Speed assures the customer 

gets what they need now, not what they wanted yesterday.  

 Empower the team: Top-notch execution lies in getting the details right, and no one understands 

the details better than the people who actually do the work. When equipped with necessary 

expertise and guided by a leader, they will make better technical decisions and better process 

decisions than anyone can make for them. 

 Build integrity in: A system is perceived to have integrity when a user thinks – “Yes” That is exactly 

what I want”. Market share is a rough measure of perceived integrity for products, because it 

measures customer perception over time36. Conceptual integrity means that the system’s central 

concepts work together as a smooth, cohesive whole, and it is a critical factor in creating perceived 

integrity37.  

Activities in product development can be categorized as either value creating, necessary but non-value-

creating (e.g.. performing a necessary hand-over), or waste. Waste in LPD includes the following: 

 overproducing information 

• two different groups creating the same deliverable 

 over-processing information 
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• over-engineering components and systems 

• working on different IT systems, converting data back and forth 

• re-inventing processes/solutions/components/products when simple modifications of the 

already existing would suffice 

 miscommunication of information 

• unnecessary hand-offs 

• multitasking 

• structural barriers of communication 

• knowledge barriers 

 generating defective information 

 correcting information 

 waiting of people 

 unnecessary movement of people38 

As can be seen from figure 2.14 in product development projects core project activities are often idle, as 

engineers are waiting for necessary input, according to research from Lean Advancement Initiative (LAI) at 

MIT. 

 

Figure 2.14 Time share of different types of activities in product development
38

 

The central value-creating engineering tasks are idle for 62% of the time, on average. Only 12% of the time 

during the execution of a project are spend on value adding activities, 11% on necessary, but ultimately 

non-value adding activities, and 77% of the time is wasted (the project either being idle, or the engineers 

working on waste). 38 39 40  

Value stream mapping (VSM) is a Lean technique which aims at identifying waste in a given process. This 

technique places value adding and non-value adding activities on a process flowchart. After this, measures 

are taken to eliminate identified sources of waste. 
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Combining agile with lean in product development27 
 

The traditional gated product design process is rigid and linear, locking in customer preferences, 
potential risks, and other features at the beginning of the process. The gated model is a carefully 
choreographed approach that assumes almost perfect information and analysis at the beginning of 
the process. All too often, however, by the time the product is introduced, customer needs have 
evolved (or it becomes clear that they weren’t fully understood in the first place). Further, when 
design and technology decisions are made early, so much complexity and risk may be introduced that 
turning back and reworking aspects of development triggers substantial cost overruns and delays in 
the final stages. Orderly but frequently ineffective, the gated approach has lost some of its luster in 
recent years.  
 
Many companies have replaced it with lean product development techniques which focus on 
eliminating waste and improving speed-to-market. Companies applying lean techniques add 
continuous touch points with customers so they can test product concepts, prototypes, and features 
along the development and launch cycle. In so doing, they have reduced cycle time as much as 30 
percent compared to the gated approach, as well as lowered development costs by as much as 40 
percent and achieved dramatic gains in first-time quality. 
 
But lean techniques fall short at the front end of the process. The enhanced efficiency of lean product 
development is (like the gated model) still highly dependent on early stabilization of requirements, 
rather than iterating, optimizing, and trading off requirements to get to winning product design. As a 
result, whatever innovation there is in this approach tends to be based on safeguarding the status quo 
rather than being creative – leaving companies exposed to disruptive changes in the market later on. 
 
A next generation approach has been presented: one that applies agile product development 
techniques at the front end and lean approaches at the back end. An agile front end of product 
development system that is capable of addressing frequent iterations of multiple design options early 
in the process, based on continuous testing and highly sophisticated customer-driven design changes. 
This method, which both encourages flexibility and recognizes the unpredictability of the early stages 
of product development ensures that the latter part of the cycle is much less uncertain, enabling 
companies to bring more popular products to market at lower cost, and with fewer delays. Software 
companies have been the earliest adopters of this process, because they must routinely iterate 
numerous versions of their programs, and must assess them against customer needs and preferences 
well before the software is ready for mass release. 
 
The goal of agile product development is to achieve rapid and frequent iterations with multiple design 
options up front – driven by continuous testing and granular customer analyses – in order to 
optimize, balance, and prioritize requirements and identify risks earlier. This early stage of the 
process has four characteristics:  
 

 Rapid, iterative development model employing concurrent engineering 
 modular architecture 
 early risk identification 
 intensive stakeholder and supplier involvement 
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2.7 Success factors in NPD 
 

In this chapter the findings of different studies about NPD speed and new product performance are 

presented. In overall these two attributes are positively correlated, but there are individual factors that 

affect them adversely; for example, Marketing-Manufacturing Integration (MMI) in NPD have been shown 

to slightly increase time-to-market, but on the other hand having strong positive effect on product 

performance41. Two terms relate to these presented attributes; efficiently means doing the things right, 

whereas effectively means doing the right things. 

The studies presented are cross-industrial. Factors affecting both speed and product performance appear 

to be contextually based, and thus cannot be perfectly generalized. Another thing to keep in mind is that 

these studies have been made using regression analysis. Regression analysis is used when the set of 

explaining factors is made up of multiple independent variables. The results are highly dependent on the 

way which the analysis is made and so different analysis approaches can reveal different results from the 

same sample.  

2.7.1 Factors affecting NPD speed 

Eisenhardt and Tabrizi (1995)42 developed two alternative models of NPD speed; compression and 

experiential. Whereas the compression model relies on rational and overlapping development processes 

and is more suitable in stable environment, the experiential model relies on iteration, testing, and flexibility 

and thus is more suitable in uncertain environments. Eisenhardt and Tabrizi (1995) and Terwiesch and Loch 

(1999)43 found that process overlap or concurrency, the key element of the compression model is 

significantly related to development speed under low rather than high environmental uncertainty. 

Eisenhardt and Tabrizi (1995) also found that iteration has a significant association with development speed 

under conditions of high rather than low uncertainty.  

Recent research from Chen et al. (2010)44, based on a large sample of empirical studies reporting 

associations between NPD speed and its antecedents, concluded that four process factors significantly 

increase NPD speed; process formalization, process concurrency, team experience, and iteration. These 

factors were significant in a broad range of NPD projects. Meta-analysis combining results from different 

studies by Gerwin and Barrowman (2002)45 stated that overlapping and/or interaction and using formal 

methods appears to be very efficacious character in relation to NPD speed in a broad range of situations. 

Another study from Menon et. al (2001)46 using published research findings and business experiences to 

determine factors related to NPD speed concluded that amongst others team-based incentive systems, 
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empowerment, risk-tolerant culture, non-bureaucratic organizations, and flat organizational structure 

layers correlate with increasing NPD speed.  

A study from 1999 of 75 NPD projects from ten large firms in USA  in several industries reported that (a) 

clear time-goals, longer tenure among team members and parallel development increased NPD speed, 

whereas (b) design for manufacturability, frequent product testing, and CAD systems decreased NPD speed. 

However, when incremental and radical projects were sorted, different factors were found to influence 

time-to-market. For radical projects it is in most cases faster to co-locate teams, test products frequently 

and clearly specify the product concept and for incremental projects it is faster to spread out teams, limit 

testing and allow some vagueness in the product concept.47  

This latter study reported decreased NPD speed as a result of more frequent testing and over-relying on 

CAD systems, both of which were not expected in the hypothesis part of this study. The conductors of this 

study give one potential explanation to why more frequent testing may result in reducing speed; speed is 

replaced with quality. Members of a project team may become overly concerned with the quality of their 

product and less so with speed. They go on by stating that using Simon’s48 concept of “satisfactory”, 

whereby the product is brought to market when it is seen as “good enough” rather than when it is seen as 

“perfect”, might able to reduce the number of design-build-test iterations and innovate faster when design 

improvements are carried out in the marketplace as successive generations rather than in the laboratory as 

successive iterations49. The way Apple develops products is a prime example of this, as was pointed out 

earlier in this study (pp. 31). Using CAD systems may result in decreased speed when libraries of 

accumulated knowledge/data don’t exist or are not employed in a productive manner in the design and/or 

simulation of a product, but in occasions where this accumulated knowledge has been gathered and put to 

use properly, using CAD and simulations are expected to reduce prototyping and lead to increased NPD 

speed. Simulation solutions are being increasingly integrated with CAD, CAM, CAE etc. solutions and 

processes. 

The aforementioned studies specify factors that affect NPD speed and some of the studies report slightly 

contrary results. As mentioned earlier this can be the result of different regression analysis approaches but 

these findings also support contingency theory. Contingency theory argues that there is not one “best 

answer” to a particular problem; instead, some of the factors affecting NPD speed are context specific and 

cannot be generalized. 

Table 2.1 summarizes process factors that have been observed in increasing speed in NPD. 

Table 2.1 Process factors increasing NPD speed (Kantomaa, T.T.) 

PROCESS FACTOR CLARIFICATION 
formalized process any type of formalization (not necessarily stage-gate) 
team experience longer tenure among team members 
concurrent engineering increases NPD speed, especially when technical uncertainty is low 
intentional iteration increases NPD speed, especially when technical uncertainty is high 
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2.7.2 Factors affecting new product performance 

A study18 exploring the NPD project review practices of 425 Product Development & Management 

Association (PDMA) members revealed that: 

 Only review proficiency is significantly associated with product performance (not the number of review 

points, the number of review criteria, the number of review team size etc.) 

• Furthermore, only the coefficient for proficiently using marketing criteria was significantly related 

to new product performance (proficiently using technical or financial criteria has no significant 

association with performance) 

• Finally, only the coefficient for proficiency at the first review point (i.e., the initial screen) is 

significant  

 More review points are used for radical NPD projects than incremental ones, and this is related to a 

relatively lower rate of survival for radical projects 

Key characteristics of effective processes are found to include an emphasis on upfront homework, tough 

go/kill decision points, sharp early product definition and flexibility15.  

A research using meta-analysis of relating literature conducted by Pattikawa et. al (2006)50 reported the 

following variables having sizable relationship with new product project performance. In order of 

importance these factors are: 

 the degree of organizational interaction – coordination and cooperation within the firm and 

between firms (cross-functionality) 

 R&D and marketing interface 

 general product development proficiency 

 product advantage 

 financial/business analysis 

 technical proficiency 

 management skill 

 marketing proficiency 

 market orientation - generation of market intelligence and dissemination of that intelligence 

across departments 

 technology synergy - fit between the needs of the project and the firm’s R&D or product 

development, engineering, and production resources and skills 

 project manager competency 

 launch activities 

Another meta-analysis of new product performance literature made by Henard and Szymanski (2001)51 

stated that there are five factors that have the most significant impact on new product performance. These 

are: 

 product advantage 

 market potential 
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 meeting customer needs 

 predevelopment task proficiencies 

 dedicated resources 

According to Cooper there are eight critical success factors for new product development projects: 

1. Up-front homework pays off – Too many projects move straight from the idea stage into 

development with little or no up-front homework. More time and resources must be devoted to 

the activities that precede the design and development of the product. Up-front homework means 

undertaking thorough market and competitive analyses, research on the customer’s needs and 

wants, concept testing, and technical and operations feasibility assessments. 

2. Build in the voice of the customer – New product projects that feature high-quality marketing 

actions are blessed with more than double the success rates and 70-percent higher market shares 

than those projects with poor marketing actions52.  In many cases the lack of marketing resources is 

the reason for inadequate marketing activities in NPD projects. For example, one study conducted 

in the U.S found that market research was not done at all in about 75 percent of NPD projects53. 

3. Seek differentiated, superior products – Superior products, with differentiation and unique 

customer benefits and value to the user, have five times the success rate, over four times the 

market share, and four times the profitability as products lacking in this ingredient54. In many 

instances the preoccupation with cycle time reduction and the tendency to favor simple, 

inexpensive projects penalize projects that lead to product superiority55. The lack of “game-

changers” can also be devoted to shortage of resources and thinking profitability in the short-term.  

4. Demand sharp, stable and early product definition – A failure to define the product – its target 

market; the concept, benefits and positioning; and its requirements, features and specs – before 

development begins is a major cause of both new product failure and serious delays in time-to-

market54 56 57. 

5. Plan and resource the launch… early in the game! – A strong market launch underlies successful 

products. The need for a quality launch – well planned, properly resourced, and well executed – 

should be obvious. For example, new product winners devote more than twice as many person-

days and dollars to the launch as do failure teams. 

6. Build tough go/kill decision points into your process – a funnel, not a tunnel – In many companies, 

projects move far into development without serious scrutiny; once a project begins there is very 

little chance that it will ever be killed. The result is many marginal projects approved, and a 

misallocation of scarce resources. 
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7. Organize around true cross-functional project teams – “Rip apart a badly developed project and 

you will unfailingly  find 75 percent of slippage attributable to (1) ‘siloing’ or sending memos up and 

down vertical organizational ‘silos’ or ‘stovepipes’ for decisions, and (2) sequential problem 

solving”, according to Peters58. Numerous studies concur; good organizational design is strongly 

linked with success57. Good organizational design means projects that are organized as a cross-

functional team, led by a strong project leader, accountable for the entire project from beginning 

to end, dedicated and focused (as opposed to spread over many projects), and where top 

management is committed to the project. 

8. Build an international orientation into your new product process – New products aimed at 

international markets (as opposed to domestic) and with international requirements built in from 

the outset fare better54. The result is either a global product (one version for the entire world) or 

glocal product (one product concept, one development effort, but perhaps several variants to 

satisfy different international markets). An international orientation also means adopting a 

transnational new product process, utilizing cross-functional teams with members from different 

countries, and gathering market information from multiple international markets as input to the 

new product’s design. 21 59 

The turn of the century witnessed the dismantling of many corporate central research laboratories. In many 

businesses fundamental research was no longer fashionable. The results were predictable; the research 

shifted to a much shorter term focus, and industry leaders complained that there were nothing great 

coming down the pipe.19  

One study60 reported that the perspective on managing R&D has changed over the years, moving from 

technology-centered model to a more interaction-focused view. Figure 2.15 depicts the five generations of 

R&D according to this study. 
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Figure 2.15 Description of five generations of R&D processes
60

 

Worth noticing is that these five models of R&D generations, though presented on a time scale, hold 

components or ideas still valid or sought for by many companies, and hence do not represent a map of 

where companies today are to be placed. 

THE SIXTH GENERATION OF R&D 

The sixth generation of R&D is re-focusing on the research part, having ever increasing product and 

technology complexity connecting to loosely-tied multi-technology research networks. The bases for this 

new set of approaches are a broader multi-technology base for high-tech products and more distributed 

technology-sourcing structure. The Bluetooth case is a good example of the roots and ideas of the 6th 

generation of R&D. Originating from Ericsson, it represents a joint cross-industrial, open intellectual 

property-based effort in developing and bringing a new technology to the market by utilizing the resources 

from more than one thousand companies. This shift towards the 6th generations of R&D is predicted to 

return to the roots, i.e. back to the purpose of the first generations corporate research labs, one pursuing 

more radical innovations. One could see this as a re-focus on the research part of the research and 

development. The corporate research labs as such are not predicted to resurface, instead the re-focus is 

taking on other approaches. Much of the breakthrough research will not be a result of one company’s lab 

efforts, instead breakthroughs will be based on joint efforts from loosely tied networks of smaller players 

driven more of pure interest than profits.60 
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3 MODELING THE PRODUCT DEVELOPMENT PROCESS 
 

Over the past years a number of various ways to improve business performance have been highlighted: 

time-based competition, matrix structure, lean principles, concurrent engineering and Business Process 

Reengineering (BPR) to name a few recent “management innovations”. Central to many performance 

improvement efforts is an emphasis on processes61. This reflects well the contemporary trend of 

encouraging companies to think in processes instead of functions and procedures62. Improving business 

processes was “number one priority” among the top ten business priorities in 2009 in a Gartner survey 

covering more than 1,526 CIO’s63.  

The activity of improving business processes relates to many terms; business process improvement (BPI), 

business process redesign, business process reengineering (BPR), core process redesign, business 

restructuring, continuous improvement processes, Six Sigma, to name the prominent ones. 

A contrast to the incremental ideas of Business Process Improvement (BPI) is that of the radical break-

through approaches of business process re-engineering (BPR). The technique is a blend of a number of 

ideas found within operations (process flow-charting, network management), and the need for customer 

focus. These were brought together to define BPR as: 

The fundamental rethinking and radical redesign of business processes 

 to achieve dramatic improvements in critical, contemporary measures 

 of performance, such as cost, quality, service and speed64 

The IDEF9 Business Constraint Discovery method was designed to assist in the discovery and analysis of 

constraints in a business system. A primary motivation driving the development of IDEF9 was the 

realization that the collection of constraints that forge an enterprise system is generally poorly defined. 

That, is to say, the knowledge of what constraints exist and how those constrains interact is at best 

incomplete, disjoint, distributed, and often times completely unknown. If the desire exists to modify the 

business to improve its performance, then knowledge of these constraints is critical. Knowledge about 

business constraints can help efforts like BPR, Total Quality Management (TQM), and so forth. 65 

These above mentioned business improvement approaches have been criticized for concentrating in many 

instances on what needs to be done before and after the improvement act, but the act of improving itself 

seems to be a black box66. Sharp and McDermott compare the mysterious step from the as-is to the to-be 

with the famous, And Then, A Miracle Occurs procedure67. These approaches don’t precisely state how the 
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changes needed are to be accomplished and the act of business process improvement seems to be rather 

art than science.  66 

A method is goal oriented and provides a systematic approach68. This means that a method specifies how 

to achieve defined goals. A technique is a procedure that performs a development activity69. For that 

reason a technique is an essential part of a method. Techniques can be supported by tools (for example 

software), which are the means for creating the results70.66 

Improving processes begins with mapping the present situation (the AS-IS), and by defining what is wanted 

from the change (the TO-BE). The main purpose behind business process mapping is to assist organizations 

in attaining full understanding of all the steps of the process, and through interviews to understand how 

the process is actually done, not just how it is defined to be done. After that an analysis can be made 

utilizing techniques and tools to make the process run more effectively. 

 

3.1 Traditional techniques for process modeling and project planning 
 

Graph based techniques, such as CPM and PERT, and flowcharts, and matrix based techniques, such as 

DSM, have been in wide use to capture the relationships between the tasks in product development 

process and in scheduling these tasks.71 However, all of these techniques have deficiencies in some aspect. 

Figure 3.1 illustrates some of these techniques. 

 

Figure 3.1 Traditional techniques for process modeling and project planning; a) flowchart b) PERT c) CPM (Kantomaa, T.T.) 
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Figure 3.1 (a) illustrates a flow chart. Data flows are not typically represented in a flowchart; rather, they 

are implied by the sequencing of tasks. Flow charts are good for visualizing a process, but they do not 

contain necessary information for complex analysis and planning purposes.   

The Project Evaluation and review technique (PERT) (figure 3.1 (b)) and critical path method (CPM) (figure 

3.1 (c)) have long been established in industry as tools for planning and managing projects. Both of these, 

however, have shortcomings in their rigid analysis and specification for the project structure. CPM predicts 

the time required to complete a project and identifies the critical path. For less routine projects there is 

more uncertainty in the completion times, and this uncertainty limits the usefulness of the deterministic 

CPM model. An alternative to CPM is the PERT project planning model, which uses probabilistic task 

durations.  Many studies have been conducted on extending the classical concept of PERT to deal with 

more complex problems, but they still cannot represent complex interaction patterns (i.e. iterations) 

among activities involved in the product development projects.72 In Pert analysis tasks that are coupled 

would be collapsed into one task but this is approach hides the real design problems and forbids any 

opportunity to further improve the design procedure by applying other techniques73. 

Another downfall of PERT and CPM are that they do not take into account the resources used to accomplish 

tasks, i.e. they do not consider resource constraints (although leveled CPM does). Critical Chain Project 

Management (CCPM) is a method based on Theory of Constraints (TOC) - thinking. It is a method and a tool 

(software) that can be applied in multi-project environment to schedule projects optimally according to 

constraints. CCPM scheduling includes safety buffers, but is still deterministic in the way that it does not 

take into consideration other dynamics in product development that lead to iterations, and may not cope 

well in an unpredictable and complex environment. One case study showed how CCPM can become very 

heavy to maintain in a complex product development environment leading to constant rescheduling74. 

However, the same study reported a benefit of increased visibility between interdependent projects in the 

multi-project environment in the case company. There has not been a comprehensive case research on the 

successfulness of implementing CCPM in complex product development environments. 

Graphical Evaluation Review Technique (GERT) is an extension of PERT. It is one of the network-based tools 

proposed to deal with iterations under uncertain conditions. GERT is a procedure for stochastic network 

analysis in which activities have a probability of occurrence and their duration is treated as a random 

variable. GERT supports serial, parallel, and iterative structures. 75 76 77 

This technique has not gained compelling acceptance in the NPD management and community. 75 Given 

that GERT requires an up-front definition of the process structure for its analysis, it may not be convenient 

in exploring process structure alternatives7.  
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3.2 Design Structure Matrix 
 

Product development projects include the completion of hundreds or even thousands of tasks. These tasks 

can be either sequential, parallel or coupled tasks. Figure 3.2 presents these three different schemes. 

 

Figure 3.2 Sequential, parallel, and coupled tasks
10

 

 

The representation in figure 3.2 is information-processing view or data-driven perspective of product 

development since most of the dependencies involve the transfer of information (data) between the tasks. 

Task B is dependent on task A if an output of task A is required to complete task B. This dependency is 

denoted by an arrow from task A to task B. In figure 3.2 (a) tasks are in sequential order because the 

dependencies impose it.  Figure (b) shows four development tasks of which middle two tasks are 

dependent on the output from the one in the left but these two tasks are not dependent on each other and 

can be performed in parallel. The task on the right depends on the middle two tasks.  Figure (c) shows five 

development tasks, three of which are coupled. Coupled tasks are mutually dependent; each task requires 

the result of the other tasks in order to be completed. Coupled tasks either must be executed 

simultaneously with continual exchanges of information or must be carried out in an iterative fashion. 

When coupled tasks are completed iteratively, the tasks are performed either sequentially or 

simultaneously with the understanding that the results are tentative and that each task will most likely be 

repeated one or more times until the team converges on a solution.10  

A useful tool for representing and analyzing task dependencies is the Design Structure Matrix (DSM). In a 

DSM model, a project task is assigned to a row and a corresponding column. The rows and columns are 

named and ordered identically, although generally only the rows list the names of the tasks completely. 

Each task is defined by a row in the matrix. Reading across a row reveals the tasks whose output is required 

to perform the task corresponding to the row. Reading down a column reveals which tasks receive 
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information from the task corresponding to the column. The diagonal cells are usually filled with dots 

simply to separate the upper and lower triangles of the matrix and to facilitate tracing dependencies.  

The collected data in a DSM captures the structure of interactions, interdependencies, interfaces between 

system elements and information flow between project tasks. There are two main categories of DSM’s; 

static and time-based. Static DSM analysis uses clustering algorithms to identify groups of coupled tasks to 

place in subsystem of frequently interacting tasks. In time-based DSMs, the ordering of the rows and 

columns indicates a flow through time. A mark above the diagonal has special significance; it indicates that 

an earlier task is dependent on a later task. This can mean that two sequential tasks are ordered backwards 

and that the sequence of tasks should be changed, or that the tasks are coupled. Terms like “feedforward” 

and “feedback” become meaningful when referring to interfaces. Time-based DSM analysis uses 

partitioning algorithms that optimally sequence project tasks to minimize the impact of rework and 

unexpected feedback. 10 84 

Changing task orders is called sequencing (static) or partitioning (time-based) the DSM, and there are 

simple algorithms for this use. The structure of the DSM reveals which tasks are sequential, parallel, and 

coupled as figure 3.3 shows. 

 

 

Figure 3.3 DSM comprised of 14 development tasks
10

 

Coupled tasks lead to iterations. Project lead time can be diminished through: 

 Performing iterations more quickly 

 decoupling tasks to avoid iterations 

 Considering sets of solutions 

Much of the delay in completing coupled tasks is in passing information from one person to another and in 

waiting for a response. The way to perform the iterations more quickly is to form multi-functional teams 

where team members work closely together; the mechanical engineer, electrical engineer and testing 

personnel work closely together and exchange information rapidly. Another way is to decouple tasks where 

possible. For example, by clearly defining an interface between two interacting components early in the 

design process, the subsequent design of the two components can proceed independently and in parallel. A 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

52 
 

third way to reduce project lead time is to consider sets of solutions instead of point-value estimates of 

design parameters. In some cases the use of sets or ranges may facilitate faster convergence of coupled 

tasks. Figure 3.4 illustrates a DSM where iterations have been indicated. 

 

 

Figure 3.4 Design structure matrix illustrating the iterations needed to complete a particular development phase
71

 

Smith end Eppinger extended DSM representation with repetition probabilities and task duration and 

developed a stochastic model to predict the expected duration of iterative development process. They also 

developed a Work Transformation Matrix (WTM) model based on DSM to predict slow and rapid 

convergence of parallel iterations. 6  

Criticism of DSM generally includes the fact that it doesn’t support stochastic modeling (excluding the 

extended DSM representation from Smith and Eppinger) and assumes that all activities in the matrix must 

be undertaken7. Furthermore, overlapping activities cannot be explicitly visualized78 79.  

Others criticize the fact that in using DSM the task interaction matrix assumes that feedback to earlier tasks 

is undesirable. Sometimes iterations are intentional. An alternative approach is to cluster the DSM into task 

subsets that are mutually exclusive or minimally interacting. Static DSM uses this approach for data that 

typically don’t contain time-dependent information; by doing this clusters of intentionally iterative or 

concurrently scheduled tasks can be identified. A weakness of this approach for rigorous understanding of 

information flow is that DSM techniques do not include methods to evaluate the within and between 
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cluster task relationships once clusters are identified. However, a number of diagnostics measures are 

available from Network Analysis (NA). 84 

 

3.3 Network Analysis 
 

In product development each development activity is responsible for generating the required product or 

process knowledge based on the received input information from other activities. The information 

evolution of a development activity is considered to as a gradual refinement of the product or process 

knowledge from its preliminary form to a final form over the period of activity execution. Faster evolution 

represents an early resolution of technical uncertainty.80 

It has been noted that information flows in organizations are essential indicators for the quality of 

development processes81. Also, according to Amabile (1998), managers often destroy creativity in project 

business by failing to make appropriate connections between actors and activities. It is important to 

identify the interdependencies between particular actors and specific activities, and to identify the 

resources they require to perform their tasks. However, it is often difficult to determine the “appropriate” 

connections.82  

Using Network Analysis (NA) metrics to measure properties of information flow (such as degree centrality, 

influence, and brokerage) helps to identify important product development tasks and interactions that 

constrain product development process execution. NA aims at demonstrating several insights to manage 

the product development process both as a second (i.e., effectively executing) and third order (i.e., 

highlighting underlying premises and assumptions) form of organizational control83. Project managers can 

use these data to structure team integration mechanisms or to identify coordinating mechanisms for 

groups of concurrently scheduled tasks. From mapping and analyzing information flows an evaluation of 

tasks like stage-gates and design reviews can be made; are they acting as effective information flow 

regulators in the product development process. NA integrates quantitative, qualitative, and graphical data, 

thus allowing more thorough and in-depth analysis. 84 

Network Analysis 
 
Using Network Analysis (NA) is an important analytical shift from viewing a task as having 
individually-determined characteristics (as is the case with the traditional tools) to viewing it as 
representing emergent properties – emerging from patterns of information flows between tasks84.  
Network analysis has its roots on social sciences. 
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Network analysis has been used in various situations, mostly in social sciences. One research made in the 

University of Vaasa used NA in the client company (ABB) to analyze agile supply-demand networks 

(ASDN’s)85. This research concluded that a network-based framework provided a solid basis for a rich 

description and analysis of a multi-actor project business, as well as assisting in understanding important 

interpersonal relationship factors that affect project success; such as trust, commitment and adaption. The 

University of Vaasa developed agile supply-demand network (ASDN) analysis software for ABB. This 

software could be useful for analyzing product development processes. 

The basic element of NA is an adjacency matrix that defines relationships between each row and column 

element. For a matrix of product development tasks collected in DSM format, directed data indicates the 

input/output flow of information between each task. This matrix is derived, for example from self-reporting 

questionnaires distributed to actors in the network asking about relationships with other actors. Personal 

interviews can be conducted after this to validate the results from the questionnaires and to get additional 

data difficult to access through impersonal surveys.  

Once the data is collected in a matrix form, NA methods contain a variety of analytic techniques. Network 

position analysis looks at attributes emerging of ties between nodes. Network categories are thus 

inherently relational roles rather than individual categories. Table 3.1 summarizes a set of key NA metrics 

for evaluating interacting product development tasks. 

Table 3.1 Network analysis metrics for evaluating product development process task interactions86 

 

InDegree Centrality measures the number of inputs a task has. This defines the information collection load 

of a task. OutDegree Centrality measures the number of outputs that each task has. This defines the 

information dissemination load a task has.  

                                                           
85

 Maqsood Sandhu and Petri Helo, A Network approach to project business analysis, Logistics systems research group, 
university of Vaasa, Vaasa, Finland 
86

 Wasserman, S., Faust, K. (1999), Social network analysis methods and applications, Cambridge University Press, 
Cambridge 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

55 
 

Influence measures the degree of connectedness between each task and every other task in the product 

development process. Tasks with high influence have information that is important to the entire product 

development process, even if they do not appear on the critical path. Tasks with low influence have 

information that is not important to the entire product development process. 

Betweenness centrality measures the number of times a particular task is on the shortest path (geodesic 

distance) between two other tasks. Like standard critical path identification, tasks with high betweenness 

centrality have a high schedule impact on the product development process if they are not completed in 

time. It should be noted here that the DSM is constructed to present inputs which are critical to the 

completion of tasks, not on the commencement of tasks. So the shortest path (geodesic distance) between 

tasks can provide the quickest information route between two tasks and might define when the 

information receiving task can be commenced (the earliest possible time). As a measure of shortest 

information flow, betweenness centrality also identifies which tasks have the greatest control of 

information in product development process. Measuring betweenness centrality provides a way to 

measure whether tasks that are expected to be critical for product development process execution actually 

control information flow in task input/ output relationships.  

Figure 3.5 illustrates the last metrics, brokerage. In this example B is a broker, because it passes the 

information from A to C. Brokerage indicates the individual position of a task. Task B can be a coordinator 

(if three tasks are all in the same group), a gatekeeper (A is in different group than B and C) or a 

representative (if C is in different group than A and B).  

 

Figure 3.5 Brokerage
84

 

Brokerage identifies tasks that have critical information sharing roles within and between task clusters. 

Expected brokerage calculates the number of times each task in a cluster would be expected to play each 

brokerage role based in the number of clusters and size of each cluster. Relative brokerage indicates the 

actual number of roles each task plays against the expected number of roles. High relative brokerage 

indicates a task is playing a particular role more than expected, and low relative brokerage indicates the 

task is playing a role less than expected. 

3.3.1 Example of Network Analysis in practice 83 84 

A company that used a common stage-gate model, having 5 gates (from 0 to 4), investigated matrix based 

project management tools during a quality improvement initiative to streamline its product development. 

This resulted in their product development process being captured and evaluated using traditional time 

based DSM, as shown in Figure 3.6. The lower left half of the matrix denotes feed-forward relationships, 

while the upper right half denotes feedback relationships. 1 denotes weak task dependency, while 2 

denotes strong task dependency. 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

56 
 

 

Figure 3.6 Full DSM of a product development process
84

 

INDEGREE CENTRALITY AND OUTDEGREE CENTRALITY 

An analysis of this DSM was made based on the metrics presented in table 3.1. Figure 3.7 shows control 

charts for InDegree Centrality and OutDegree Centrality on a number of tasks. The upper and lower control 

limits (UCL, LCL) are drawn based on the two-sigma point around the average value. 

 

Figure 3.7 Control charts for InDegree Centrality and OutDegree Centrality
84

 

From these control charts the company identified tasks that needed corrections. There is a task P105 

“review lessons learned database”, for example, which shows on the control chart as having low InDegree 

Centrality (few information inputs). There now existed a need to increase ties from P105 so that lessons 
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learned reviews are better integrated with the other design activities. There were also tasks which actually 

had too many inputs; this leads to large information collection burden. 

The next level of analysis was identifying groups of tasks that interact more with each other than with other 

tasks. Clustering identifies groups of tasks that are strongly connected to each other as a basis for 

scheduling concurrent activity. Density measures the number of actual and potential ties within a cluster, 

and between clusters. Table 3.2 presents the results of using a special algorithm for these purposes. 

Table 3.2 Clustering and measuring density84 

 

The algorithm used above maximizes within cluster task-interaction and minimizes between-cluster task 

interaction. The diagonal values of table 3.2 measure the density of ties within the cluster. The off-diagonal 

values measures the density of ties between clusters. For example there are 41% of the potential 

connections within the System Definition phase and 3% of the potential connections between System 

Definition outputs to Preliminary Functional Integration inputs. Several tasks conducted early in the 

product development process execution are placed to the Validation cluster based on loose ties to the rest 

of the product development process. This placement shows that the relationship of these tasks to other 

System Definition tasks was not well defined. The low off-diagonal density values in table 3.2 show that the 

clustering intent, which was to identify groups of iterative or concurrent tasks that are independent of the 

rest of the tasks, was mostly successful. The primary exceptions are the ties between Preliminary 

Functional Integration and Preliminary Mechanical Integration phases which have 18% and 11% density 

values between them. Project planning could take this into consideration and define a single set of 

activities called Preliminary Integration, which would need coordination mechanisms to manage the 

interdependencies between these two sets of concurrent activities. 

BETWEENNESS CENTRALITY 

In the case of the example company gates 2 and 3 do not score high on betweenness centrality, meaning 

that their importance may have been overrated. 
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INFLUENCE 

The most influential steps are P251E (detailed heat and mass balance) and P120B (design point definition). 

This makes intuitively sense, since steady state model and design points are concept level activities which 

contain information that constrain shapes of execution for the rest of the product development process. 

BROKERAGE 

Figure 3.8 shows the number of tasks in each cluster where the relative brokerage value is greater than 3. 

High coordination roles in all five task clusters identify tasks that manage design iteration in each phase. 

The coordination is especially high in the System Definition cluster, which is natural since this is the phase 

when the concept is taking shape. This attention to the required coordination within product development 

process phase is expected based on the case company’s desire to define clusters of concurrently scheduled 

or iterative tasks. The coordination burden decreases from System Definition to Functional Integration, 

with an increase during Detailed Design and decrease during Validation. This shows a cyclical pattern of 

formal iteration as the design progresses through the product development process. The increasing 

Representative values from System Definition through Mechanical Integration shows a larger number of 

tasks involved in passing information to another phase. The increasing Gatekeeper values show a larger 

number of tasks involved in receiving information from another phase. 

Brokerage roles are a standard set of NA metrics that can be used to facilitate discussions about the risk 

management, design iteration, and configuration control required to coordinate information transfer 

between these teams.  

 

Figure 3.8 Number of tasks in each cluster where the relative brokerage value is greater than 3 
84

 

Figure 3.9 depicts the critical task iterations detected according to Simmelian ties. A Simmelian tie is a 

reciprocal relationship between three nodes. Brokerage analysis revealed iterative relationships that the 

process architectures believed should be taking place, but which didn’t necessarily occur in practice. Two 

sets involving reliability analysis were poorly executed. The same was the situation for electrical 

architecture which deals with coordinating design with electrical and mechanical engineering architectures. 

These were coordination themes that should exist, but which hadn’t been successfully implemented.  
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Figure 3.9 Detected critical task iterations
83

 (modified by Kantomaa, T.T.) 

A final benefit of NA techniques it the ability to visually display large systems of interaction captured in 

matrix form. Visualization is done here by displaying tasks sequentially (based on expected flow of project 

execution), and based on key NA metrics. Figure 3.10 presents the network map of the process on this 

example. 
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Figure 3.10 Network map
84

 

Overlaying the business gate process with the network map reveals that the gates are not acting as the 

checkpoints they are supposed to. It seems the project is not controlled properly between gates 1 and 4. In 

the example several managers of the case company actually stated:”We don’t really understand the 

purpose of Business Gates 2 and 3.” The visual display confirms the finding from Betweenness centrality 

section, where it was stated that their importance may have been overrated. Now management has two 

alternatives. First, redesign the product development process to increase the information control authority 

of these tasks. Second, use the brokerage analysis to find the tasks that are acting as gatekeepers between 

phases, and focus energy on making sure those steps are robust. 

Figure 3.11 shows a redrawn network map from figure 3.10. It has two dimensions: on the x-axis the 

influence and on the y-axis the betweenness centrality. The uniqueness of these tasks would not be 

immediately obvious using a swimlane, value stream map, or even normal network map. Filtering a small 

list of tasks from the entire product development process enables more effective examination of them. 

Where are the steps we claim are critical, like technical and business reviews? Should they be showing up 

with high values on key analytical dimensions? For the relationships on figure 3.11, there would be two 

questions. First, what tasks should have high control over information flow (betweenness centrality)? 

Second, what tasks should have the ability to reach the entire product development process with important 

design information (influence)? 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

61 
 

 

Figure 3.11 Displaying product development process task relationships along key dimensions.
84

 

In this example, figure 3.11 was a valuable starting point for discussions with a group of engineering 

managers in the case company. It validated earlier experience about costly rework resulting from poor 

design point definition (task 120B that shows on the upper-right corner on figure 3.11).  

3.3.2 Limitations of Network Analysis 

There is constant development going on relating to the use of NA in product development processes. 

Current obvious limitations include for example the pointing out of critical iterations only through 

Simmelian ties. This implies that only iterations consisting of three nodes (not two or four etc.) are 

considered, although the other critical iterations can be spotted through manual examination. Cluster 

iteration activity is identified automatically. The adjacent matrix, in this case DSM, is created by using 

numbers 1 (to show weak relationship) and 2 (to show strong relationship) to indicate relationship. This is 

inadequate in describing the diversity of task relationship strengths. Here a quantified DSM (QDSM) could 

be implemented, but it is unknown to the author how the NA tools could cope with this. QDSM defines the 

relationships on a scale of 0-1 having decimal values as figure 3.12 depicts. 

 

Figure 3.12 Extended Directed Graph (EDG) and Quantified Design Structure Matrix (QDSM)
87
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4 ITERATIONS IN PRODUCT DEVELOPMENT PROJECTS 
 

4.1 Definition of iteration in product development 
 

In this study iteration refers to reworking or repeating product development activities. Rework results from 

errors during development, whereas repetitions result from generation or incorporation of new 

information. Repetition means doing the same activity again, but at a different level of abstraction; the 

information content has changed. The source of new information can be 

1) internal, for example, design-build-test cycle may reveal new information 

2) external, for example, changing customer demands can result in specification changes 

There are two main types of iterations: 

 Intentional iteration is included in the process and is expected to happen. Intentional iterations 

allow interdependent activities to exchange knowledge and converge to a desirable solution.  

 Unintentional (unplanned) iteration is the result of errors during development and unexpected 

arrival of new information which diverges the design. This information alters assumptions and 

causes upstream activities to do rework. Causes of unintentional iteration can be divided into 

internal (design flaws, poor communication etc.) and external (changes in customer preferences, 

competitor actions etc.) to the design process. 88 89 90  

Unintentional iterations increase NPD project lead-time while intentional iterations in the beginning of a 

project can reduce uncertainty related to the NPD project and the number of unwanted iterations later on 

in the project, leading to reduced project lead time. Intentional iterations can also decrease the length of 

individual design tasks. Instead of progressing in a sequential order, short iteration cycles between design 

tasks done concurrently may be used to get the design to converge to a desirable solution faster. Table 4.1 

depicts these two main types of iteration with three possible sub-types. 

Table 4.1 Two main types of iteration with three possible sub-types (Kantomaa, T.T.) 
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For example, a design-build-test cycle may reveal the need for extra designing. If the need is based on new 

information gained from the test the iteration can be seen as intentional iteration resulting from new 

information generation. The more complex the design is, the more repetitions are expected. On the other 

hand, if the need is based on correcting errors then the iteration can be seen as unintentional iteration. For 

example, poor communication in the product development unit leads to unexpected design errors and 

rework. Changes in the markets lead to new information incorporating unintentional iterations, which lead 

to repetitions. 

There are also special occasions.  When entering new application areas or introducing radical new products, 

the customer requirements may not be fully known in advance of development. These requirements get 

clearer as the development proceeds and more information is gained through customer feedback. The 

source of new information resulting in feedback incorporating iteration is external, but the iteration can 

still not be termed unintentional; in the case of new application area or a radical new product when the 

customer requirements are not fully known in advance of development customer feedback incorporating 

iterations are thought as intentional. 

The discovery of the need for iteration may come from many events. For example, simulation, testing and 

information exchange between design areas in coupled design tasks may reveal the need for redesign. 

The delay in discovering the need for iteration affects the impact of the iteration in respect to resource 

consumption and development lead time. If the need to repeat a design activity due to new information is 

discovered swiftly, thus avoiding a later harmful iteration, the following iteration can be termed natural to 

product development. Design iteration is natural, short cycled iteration that occurs between design 

activities which are dependent on the outcomes of each other, i.e. they are coupled. Design iteration 

means doing the same design activity again, but at a different level of abstraction; the designer now has 

less uncertain information content to work on89. 

But consider, for example, a test made at a later phase of development, which reveals the need for 

redesigning. If the test had been made earlier the redesign need would have been spotted earlier, there 

would have been less work to be repeated and thus less resources and time would have been consumed. 

Now, although the cause of the iteration is internal and no actual design errors have been made, this 

iteration can no longer be considered natural iteration. It is termed harmful. 

Harmful iteration occurs when the need for iteration is realized late and has more severe consequences, 

than it would have had if its need had been realized on time. Unintentional iterations are always harmful, 

even if the need for the iteration is discovered swiftly. 

Harmful iteration includes: 
  

1) iteration causing rework 
2) iteration causing repetition, when then the need for iteration occurs late in the process 

and has more severe consequences, than it would have had if the need for iteration had 
been realized on time 

3) iteration caused by external factors (excluding the special cases of new application 
areas or radical new products when the customer requirements are not fully known in 
advance of development and customer feedback incorporating iteration is used in early 
phases of development) 
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4.2 Concurrent engineering 
 

Concurrent engineering (CE), also sometimes called Integrated Product Development (IPD) - although some 

regard CE as a constituent part of IPD - is an approach where cross-functional teams and parallelization 

(performing tasks concurrently) of tasks are used in order to increase NPD speed, quality and cost, taking 

into account user requirements and all elements of the product life cycle. CE aims at discovering errors and 

the need for redesigns early in the design process, trying to avoid situations where the need for redesign is 

realized in later stages of the project resulting in large iterations, which lead to schedule and cost overruns. 

Elements of CE include: 

• Cross-functional teams: all the functions needed in developing a new product are integrated. 

• Concurrent activities: tasks are performed in parallel to increase NPD speed. 

• Constant information sharing: information sharing between project members is done in a 

continuous basis. 

• Iterative development in the early phases to ensure smooth back end execution: the iterative 

design process is cyclic and major iterations that do occur will occur before the design becomes 

final. 

The traditional sequential model of product development has been changed into an iterative and 

evolutionary mode. Traditionally, CE has been adopted in single or closely partnered companies. Since CE 

requires overlapping tasks and increased integration, the need to coordinate activities also increases. This 

results in integrated technical tools.45 In effectively implementing knowledge embedment and modular 

information support within many computer aided systems, such as CAD, CAM, CAPP applications, 

software’s role becomes much more significant as the engineer's design models must be able to “talk” to 

each other91 92.  
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4.3 Iterative development process model 
 

A further enhancement of concurrent engineering is iterative product development25. This product 

development approach is currently being used for rapid software product development. Key to iterative 

product development is a modular product architecture, in which modules can be inserted or replaced 

without major impact on the design.15 Every module should represent an entity that can be tested for 

functionality. Although iterative development models are mostly used in rapid software development, 

because the nature of SW development allows modularity, some of the features of iterative development 

could also be applied more widely.  

The building blocks of an iterative development process are an active and early exploration of possible 

failures and corrective measures. The opportunity that the iterative model gives is the possibility to learn 

early in the process. This will considerably speed up the learning process and by doing this, also speed up 

the development process itself. Early iterations enhance the effectiveness of product development when 

dealing both with high technology and the market uncertainties.15  

4.3.1 Spiral development model 

The biggest competitors to traditional staged models are the variants of more flexible spiral processes that 

have been adopted from software development (Cooper and Edgett 200893). Spiral development is a family 

of (software) development processes characterized by repeatedly iterating a set of elemental development 

processes and managing risk so that it is actively being reduced. Spiral model can be used for a more cost-

effective incremental commitment of funds.  

Spiral model features include: 

 cyclic concurrent engineering  

 risk driven determination of process and product 

 growing a system through risk-driven experimentation and elaboration 

 lowering development cost by early elimination of nonviable alternatives 

As a result of planning and risk analysis, different projects – or sometimes even individual spiral cycles 

inside a project - may choose different processes. That is, the spiral model is actually a risk-driven process 

model generator, in which different risk patterns can lead to choosing one of the following process models: 

 incremental 

 waterfall (the staged process is called waterfall process by some practitioners94) 

 evolutionary prototyping 

 other subsets of the process elements relating to the spiral model 

Evolutionary prototyping focuses in gaining fast feedback from early prototypes. This can be advantageous 

when initial specifications are vague and would benefit from experimentation, but the process has no 

clearly defined end.96 A process model answers two main questions: what should be done next and how 

long should it continue? Under the spiral model the answer to these questions are driven by risk 
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considerations and vary from project to project and sometimes from one spiral cycle to the next. Each 

choice of answers generates a different process model. 95 

Product development unit using solely sequences of incremental waterfall developments is not using a 

spiral process. Waterfall model has the underlying assumptions: 

 the requirements are known in advance of implementation 

 the requirements have no unresolved, high-risk implications 

 the requirements will not change very much during development 

 the right architecture for implementing the requirements is well understood 

If all the above assumptions are met, the waterfall model becomes a special case of the spiral model. It 

becomes one possible process type in the arsenal of different process types in spiral development. The 

traditional idea of complete, consistent, testable requirements specification is not a good idea for certain 

product components. At some instances, the risk of locking in precise specifications in advance of 

development involves a high probability of locking incorrect specifications into the development contract, 

while the risk of not making precise specifications could be low. At other instances, risk patterns make it 

very important to have precise specifications early on. 

Spiral development has two main features: cyclic approach for incrementally growing a system’s degree of 

definition and implementation while decreasing its degree of risk and anchor point milestones for ensuring 

stakeholder commitment to feasible and mutually satisfactory system solutions. Anchor point milestones 

drive the spiral to progress toward completion and offer a means to compare progress between one spiral 

project and another. Figure 4.1 depicts a general spiral process. 

 

Figure 4.1 General spiral process
96
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As figure 4.1 depicts a single spiral sequence doesn’t necessarily contain all the phases in spiral 

development. Further, the elements of the spiral development don’t need to be visited in a precise order.95 

The spiral process also has disadvantages. First, its complexity requires significant management attention. 

Second, the lack of rigid specifications can potentially lead to delays in developing complex subsystems97.  
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4.4 Overlapping activities 

 
Overlapping product development activities can help firms develop products faster98. Overlapping 

development activities may save time, but it may also increase iterations or reworking for the downstream 

activities and increase resource usage. Project managers should be careful in deciding whether two 

activities can be overlapped and how much they should be overlapped.99 

Studies of the structures of many industrial product development processes suggest that the flow of 

information and the process execution in practice is largely sequential, with information being generated 

and finalized by the upstream activities before being absorbed by the downstream development 

activities98. Figure 4.2 (a) illustrates such a sequential process where a downstream activity (such as 

product prototyping) receives and utilizes design information only after it is finalized by the upstream 

activity (such as concept development). One approach to accelerating such a process involves removing the 

dependency between the activities, as shown in Figure 4.2 (b), thereby enabling the two activities to be 

executed in parallel. However, such an action generally requires a fundamental redefinition of the 

development activities and/or the product architecture, which may be undesirable or difficult at best. 98 

One approach to remove task dependencies is to clearly define an interface between two interacting 

components early in the design process, so that the subsequent design of the two components can proceed 

independently and in parallel. Another way to reduce project lead time is to consider sets of solutions (set-

based approach) instead of point-value estimates of design parameters. In some cases the use of sets or 

ranges may facilitate faster convergence of coupled tasks.  This means the downstream activity would start 

its development activities with a set of possible outcomes regarding the upstream activity and come up 

with a number of solutions, each one applying to one of the possible outcomes. This approach is only 

suitable in some situations. 

An alternative approach to acceleration is to overlap the activities through more frequent exchange of 

preliminary information (see Figure 4.2 (c)). In contrast to the one-time transfer of finalized information in a 

sequential process, frequent exchange of design information enables the concurrent execution of 

dependent activities in an overlapped process. In the sequential process of figure 4.2 (a), the downstream 

activity doesn’t begin until finalized information (shown using a black arrows) is available at the completion 

of the upstream activity. In the overlapped process, the downstream activity begins earlier by using 

preliminary information (shown using hollow arrows). 

 

Figure 4.2 Sequential, parallel and overlapped processes (Kantomaa, T.T.) 
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In order to overlap nominally sequential activities, the pattern of information exchange between them 

needs to be altered. This may involve disaggregating the exchanged information into parts. Other parts of 

information are exchanged multiple times in a preliminary form and other parts only once but in a finalized 

form at the completion or before the completion of the upstream activity. The question now is which parts 

should be utilized by the downstream activity only in finalized form, and which parts may be used in 

preliminary form? 

THE RISKS UNDERLYING OVERLAPPING 

The reduction in lead time in overlapping activities doesn’t always equal the overlap period. This is because 

the duration of the downstream activity may be altered in converting the sequential process into an 

overlapped process.  When preliminary upstream information is utilized by the downstream activity too 

early, then the future changes have to be incorporated in time consuming iterations, resulting in an 

increase in the downstream duration and resource consumption.  

Krishnan et al suggest that the overlapping of activities should be done according to two properties of the 

design process; information evolution and sensitivity.98 

4.4.1 Upstream information evolution 

In product development each development activity is responsible for generating the required product or 

process knowledge based on the received input information from other activities. The information 

evolution of a development activity is considered to as a gradual refinement of the product or process 

knowledge from its preliminary form to a final form over the period of activity execution. Faster evolution 

represents an early resolution of technical uncertainty.80 Figure 4.3 depicts how an upstream task’s 

information evolution narrows the exchanged parameter to a final value. 

Overlapping may be facilitated when realizing that the upstream activity may continually narrow and refine 

the generated information. Here, preliminary upstream design information is presented as an interval 

value.  

 

Figure 4.3 Upstream activity narrows the exchanged parameter to a final value
98
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In the preliminary stages, the exact value of parameter X at ti, Xi is unknown, but an interval {ai, bi} is known 

such that ai ≤ Xi ≤ bi. At the beginning of the upstream activity, let this interval be {ain, bin}. It is also called 

the initial interval. During the course of the upstream activity, as product development is carried out, and 

as external inputs are received, the parameter X is gradually narrowed to its final value Xf, a point within 

the initial interval. The interval within which the parameter is known changes continuously until when the 

parameter attains its final value at tAf. 

The degree of information evolution (Є) measures how close the incomplete design parameter is to its final 

value. The smaller the interval width is, the closer the parameter is to its final value. The degree of 

information evolution at ti is expressed by the formula: 

     
     

       
                                                                                        (1) 

For simplicity, the degree of evolution is defined to be a linear function of the width of the design interval. 

The evolution is said to be monotonic when for t j> ti, the interval {aj, b}j lies within {ai, bi}.   

A plot of information evolution is called the evolution function. The evolution function indicates how (at 

which rate) the upstream activity narrows the width of the parameter interval to zero. With the evolution 

function and the initial interval as input, it is possible to determine the interval width at various points in 

time during the design process, but not the exact interval endpoints of the parameter X. 98 

4.4.2 Downstream iteration sensitivity 

In the overlapped process, the upstream activity shares preliminary upstream information available in the 

form of interval endpoints with the downstream activity. In many practical situations, however, the 

downstream activities (such as prototyping) require a point value of the parameter X to perform 

development activities. It is assumed that, when the downstream activity begins to perform a development 

activity at time ti (<tAf), it uses the expected value, xi, of the exchanged information Xi. Further, downstream 

iterations in the overlapped process are used to accommodate the changes in the upstream information in 

the downstream development. 

Downstream sensitivity means the relationship between the duration of downstream iteration and the 

magnitude of change in the upstream information value. The function relating to downstream iteration 

duration, di, and the magnitude of change in the upstream activity, Δx, is called the sensitivity function, 

φ(Δx). Except for a few special cases, the sensitivity function for product development processes is non-

decreasing, i.e., larger changes in the value of the exchanged information require longer iterations to 

process those changes.  

4.4.3 Implications of Upstream evolution and downstream sensitivity 

Understanding upstream evolution and downstream sensitivity has several implications for managing the 

design process. If the evolution of the upstream information is such that large changes were to happen 

near the completion of the upstream activity, it would be difficult to reduce the lead time by overlapping – 

as the subsequent design iterations would be of significantly large duration. However, if the evolution of 

the design information is such that major changes occur during the initial period of the upstream activity, 

and only minor changes happen during the final period of the upstream activity, then overlapping is more 

likely to help reduce lead time. 
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If the design information evolves such that as the upstream activity progresses the increase in the degree of 

evolution during a given interval of time gets progressively smaller, then the amount of change decrease as 

the upstream activity progresses. This is termed fast evolution, since major changes happen early in the 

design process. When the increase in the degree of evolution gets progressively larger as the upstream 

activity progresses, the change in the exchanged information also increases as the upstream activity 

progresses, and the evolution is said to be slow. This happens especially when: 

 the activity has interfaces with several other change-prone activities 

 information is required from an extraneous factor, and it is not available until late in the process 

 the activity involves solving a complex technical problem 

In these cases finalizing upstream information early in the upstream process would either be impossible or 

impractical. 

Downstream sensitivity is said to be low when substantial changes in the exchanged information value used 

by the downstream activity can be accommodated with ease. Downstream sensitivity is said to be high 

when even small changes require design iterations of large magnitude. Figure 4.4 depicts these functions. 

 

Figure 4.4 Degree of information evolution and sensitivity
98

 

Figure 4.5 shows four special cases of these two functions; when the upstream evolution is fast or slow 

combined with when the downstream sensitivity is high or low. The mechanism used for overlapping differs 

for each combination. 
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Figure 4.5 Types of overlapping based on evolution and sensitivity (Kantomaa, T.T. modified from
98

) 

Case 1: When the sensitivity is low, it is possible to commit downstream resources based on preliminary 

upstream information. In this case, even if the changes in the exchanged information are large, their effects 

on the downstream activity are not. Further, when the upstream evolution is slow – major changes happen 

until late into the upstream process before which information cannot be finalized – then the overlapping is 

said to be highly iterative. In this case, the activities are overlapped by beginning downstream activity with 

preliminary information, and incorporating design changes in subsequent downstream iterations. The 

design information is not finalized until the nominal completion of the upstream activity. 

Case 2: When both the upstream information evolves rapidly and the downstream sensitivity is low, it is 

possible to both start downstream activity with advance information and to preempt late changes in the 

exchanged upstream information. This overlapping is also iterative, but there are only few (or none) 

iterations. 

Case 3: Downstream sensitivity is high, but the upstream information evolution is fast (information can be 

finalized early in the upstream activity). In this case activities are preemptively overlapped, meaning the 

exchanged information is to be preempted by taking its final value at an early point in time. There are no 

subsequent downstream iterations. 

Case 4: The last scenario occurs when downstream sensitivity is high and the upstream information 

evolution is slow. In such a case, activities are done in sequential order. 

 

Often the evolution and sensitivity of the components may be different from the aggregated information99. 

In such a case, the exchanged information is disaggregated into components to see if some information 
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evolves more quickly or is of use to a downstream activity in preliminary form (since some part in the 

downstream activity has low sensitivity). The overlapping scheme might be changed for these components. 

It is noteworthy that the different types of overlapping result in different tradeoffs among the performance 

parameters. In iterative development for instance, more downstream resource consumption is needed for 

reduced lead time.98 

The presented four situations were special cases. There is continuity between these extreme cases. 

Managerial discretion should be used in defining where to use overlapping and to what extent. 

4.4.4 Coupled design tasks 

So far we have contemplated situations where a task is dependent on another task, but not the other way 

around. Coupled tasks are mutually dependent, i.e., each task requires the result of the other tasks in order 

to be completed. Coupled tasks either must be executed simultaneously with continual exchanges of 

information or must be carried out in an iterative fashion. When coupled tasks are completed iteratively, 

the tasks are performed either sequentially or simultaneously with the understanding that the results are 

tentative and that each task will most likely be repeated one or more times until the team converges on a 

solution. Figure 4.6 depicts these task alignments. 

 

Figure 4.6 Coupled design activities (Kantomaa, T.T.) 

If decoupling of activities is not possible, then the way to perform the iterations more quickly is to form 

multi-functional teams where team members work closely together; the mechanical engineer, electrical 

engineer and testing personnel work closely together and exchange information rapidly.  

The scheme to schedule coupled tasks differs from scheduling non-coupled tasks. Now managers have to 

take into consideration the order in which to perform the tasks (unless executed in parallel). The order of 

tasks affects the speed of convergence (different tasks have different information evolution) and the 

resource consumption of the individual activities. The task that starts the sequence has relatively more 

work than if it would not be the sequence initiating task, since the initiating task has more uncertain 

information available.  

Managerial discretion is used to consider information evolution, activity sensitivity, and resource 

availability of different activities simultaneously to sequence the tasks according to the desired trade-off 

between speed and resource consumption.  
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4.5 Controlling NPD iterations through matrix representation 
 

In this chapter mathematical methods for controlling iterations are presented. These presentations may be 

somewhat too complex to be implemented in practice, but nevertheless they show, by means of 

mathematics, the basic principles of controlling iterations. Understanding these principles help managers in 

controlling iterations just by the means of common sense.  

The interdependencies among design tasks give rise to complex information flows as the execution of a 

design task may create additional information or conditions that affect other independent tasks. As all the 

coupled tasks are executed concurrently, design decisions made using incomplete or imperfect information 

are revisited through design iteration. 100 

Concurrent design iteration can be expressed by the state equation: 

                                                                                      (2) 

where k, a discrete variable, represents a finite number of iterations, x(k) is the task state vector where 

each variable xi represents the fraction of the initial work remaining of that task after kth iteration. A is the 

DSM, or actually a transformation of it called Work Transformation Matrix (WTM). WTM shows how 

working on a specific task creates rework for other dependent tasks. B is a matrix representing shared 

resources between tasks and u(k) is a matrix representing the additional resources required by tasks, 

resulting from external disturbances, in order for the entire design project to arrive at the desired states. 

The control input of a task    may be the additional resources required by a design task to cope with or to 

reduce the amount of rework. In figure 4.7 a WTM of four coupled tasks is presented. The rework created 

from completing a task can be seen from this matrix. For example if task D is completely worked on in a 

certain stage of iteration, then 10% of the work of task C, 30% of task E and 10% of task F must be redone 

in the subsequent stage of iteration (every column corresponds to a task’s completion effects on other 

tasks).   

 

Figure 4.7 WTM
100

 

The open-loop state-space representation of equation (2) incorporating the influence of external 

disturbances is termed non-homogenous state-space system (NHSS).  

A homogenous state-space system (HSS) does not consider external disturbances: 

                                                                                                 (3) 

There are three assumptions before linear algebraic analysis can be done:  

• All tasks are executed concurrently 
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• The quantum of rework of a task is a linear function of the work done by other coupled tasks in the 

preceding stage of iteration 

• The parameters do not vary with time. 

The second and third assumptions are difficult to justify empirically, although it has been observed that the 

time per iteration does decrease as the design tasks progress 101. Nevertheless, this presentation serves our 

purposes well in illustrating the basic mechanism in how iterations can be managed. 

4.5.1 Stability of design tasks 

The stability of a system may be derived from the eigenvalues of the WTM matrix A. The WTM can have 

many eigenvalues and the critical eigenvalue is the one that has the largest real value. Analogy to the 

stability of an electrical system can be found here as figure 4.8 illustrates 

 

 If λ> 1, the amount of remaining work 

increases with time, i.e. the entire design project is 

running out of control. The tasks become more laborious 

as the number of iterations increases. In real life, this 

scenario may be attributed to ill-defined tasks or 

unrealistic specifications. 

 If λ= 1, the amount of remaining work is 

constant, i.e. despite the infusion of resources, the 

amount of work associated with each task remains the 

same. In real life, this situation could be due to ill-defined 

objectives or incomplete information. 

 If 0< λ< 1, the amount of remaining work 

will be monotonically decreasing, i.e. the entire design 

project will converge to its completion. 

 

System representation of task interdependencies involves no imaginary numbers, so positioning the 

eigenvalue in the unit circle is done only in one dimension, along the x-axis. 

The next chapter shows that even divergent systems can be made to converge through feedback control. 

4.5.2 Controlling iterations through feedback loop 

If the system is initially divergent or if the system is stable, but the convergence rate of design tasks is 

slower than expected, state feedback control (SFC) can be employed. 

As discussed in the previous chapter the stability of a system depends on the eigenvalues of the WTM 

matrix. In order to achieve the desired stability, an appropriate state feedback gain matrix, K, is defined. In 

the case of concurrent design iteration, the K matrix encompasses the degree of control exerted by one 

task on others. The control input of an open-loop system shown in equation (2) is assumed to be a vector: 
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Figure 4.8 Stability of a system comprised of coupled tasks
100
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                                                                                          (4) 

where K is the state feedback gain matrix. 

By substituting equation (4) into equation (2) and assuming that resources are not shared among various 

tasks (i.e. the B matrix is an identity matrix), the closed-loop state feedback equation becomes 

                                  (5) 

                          

where          , I is an identity matrix. 

The stability of the closed-loop state feedback depends on the eigenvalues of the A*matrix, notably on the 

gain matrix K. 

The state of the system at the (k+1)th stage of iteration, x(k+1), is now the summation of the homogenous 

state Ax(k) and the control input u(k), which is a function of the preceding state x(k) and the gain matrix K. 

When the state of the previous stage k deviates from its expected value because of some disturbance, the 

control input u(k) and the gain matrix K can be revised to cope with the deviation.  

EXAMPLE OF NATURALLY CONVERGING SYSTEM 

From the stability analysis the system which has a WTM as depicted earlier in figure 4.7 is stable since the 

largest eigenvalue of A is 0,674. Table 4.2 presents the natural response of tasks C, D, E and F. These values 

are derived from the WTM matrix A in figure 4.7.  

Table 4.2 Natural (slowly converging) response of tasks C, D, E and F100 

 

The slowest converging task is D since it takes at least 7 iterations before the percentage of remaining work 

is 10% of the original (a task is considered to be finished when less than 10% of the original work is 

remaining).  However, consider if it was wanted that task D was completed after only four iterations. Now 

the state feedback control is employed. By setting xD(4)=0,1, the desired eigenvalue and eigenvector 

matrices are obtained (using a specific eigenstructure algorithm) and the gain matrix K is computed as 

figure 4.9 depicts. The elements of gain matrix denote the degree of influence of other tasks on the 

resource usage of a task. For instance, 0.1741 in the second row denotes that when the work of task C at 

stage k is 100%, then task D needs an extra 17,4% of its original resources to do the additional work. 

Negative elements in the same row imply that fewer additional resources and less additional work are 

needed by tasks D and F. This is intuitively true as working on a task helps to reduce its own rework. Hence, 
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all the diagonal values of K are negative.  The design manager can identify the tasks that cause other tasks 

to save or consume resources by inspecting the elements of the K matrix.  

 

Figure 4.9 Gain matrix K
100

 

It can be seen from table 4.3 (a) that in order that the amount of work remaining for task D at the fourth 

stage of iteration is 10%, the amount of resources allocated to task D, uD, at the beginning should be 20,5% 

more. At iteration stage k=1 the amount of remaining work for task D is 69,5% and an additional 10,4% of 

resources are needed to achieve the target of 4 iterations. The negative sign of elements of the control 

input u(k) implies that extra work  or resources are needed. 

Table 4.3 Table of remaining work proportions after each iteration and the additional resources needed100 

 

EXAMPLE OF INITIALLY UNSTABLE SYSTEM 

Let us consider a situation where we have a design task system that has a WTM of figure 4.10. 

 

Figure 4.10 WTM of an initially unstable system
100

 

The critical eigenvalues of the system, λ1 is 1,4081 which indicates the system is initially unstable. To attain 

the same desired status, i.e. xD(4)=0,1, the gain matrix K is computed as figure 4.11 shows. Through state 

feedback control, task D converges to 10% of its initial work after only four iterations. It can be seen from 

table 4.3 (b) that in order for the amount of work remaining in task D to be 10% at the fourth stage of 

iteration (k=4), at the initial stage (i.e. k=0) the amount of resources allocated to task D, uD, should be 124% 

more than planned. At iteration stage k=1 the amount of remaining work in task D is 65,7%. At stage k=1, 

additional 57,4% of resources for task D must be allocated and so on. It can be seen that the amount of 

additional resources required to stabilize an initially unstable task is much greater than the amount of 
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additional resources required to expedite the task if it is stable initially. This is because more work is 

needed to rectify the causes of instability of an unstable design task. Figure 4.12 shows the natural 

(unstable) and controlled response of task D. 

 

Figure 4.11 Gain matrix K of an initially unstable system
100

 

 

Figure 4.12 Natural (unstable) and controlled response of task D
100

 

 

KEEPING ITERATIONS CONSTANT IN THE FACE OF DISTURBANCES 

If the response of a system is initially within the desired response, at every stage of iteration k, the state of 

the following stage may be predicted by substituting the state of the current stage x(k) into the 

homogenous state equation (shown already earlier):  

                                                                                         (2) 

If the response lies outside the desired response, then state feedback control can bring it back within the 

desired response. The way this is done is exactly the same as presented in the previous examples. This way 

the design team can dynamically counter disturbances in the tasks to keep the number of iterations 

constant. 
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PRACTICAL NOTIFICATIONS 

The above presented mathematical presentation assumed linearity although non-linear concurrent design 

tasks are often the case in real life. 

Another thing to consider is the fact that it is not always desirable to make the number of iterations as 

small as possible. Browning and Eppinger (2002) account for activity overlapping and show that minimal 

iteration is not optimal when tasks of long length can be moved off the critical path through iterative 

development 102. Then consider threshold iterations; the minimum number of iterations that must be made 

to accomplish a set of tasks. The number of iterations cannot fall below the number of threshold iterations 

relating to coupled tasks. 

Negatively correlated workloads 
 

Negatively correlated workloads appear in situations of coupled tasks where the amount of work can 
be shifted from work function to another. Consider for example main circuit design and mechanical 
design. If mechanical design and thermal simulations are done accurately from the very beginning of 
the design process, it will help the convergence of main circuit design. On the other hand, if main 
circuit design were let to evolve further before mechanical design would be made accurately this 
would diminish mechanical resource consumption, but consume more main circuit design resources, 
since main circuit design would be based on less accurate information in the beginning of the design 
process. This way workload can be shifted from a function to another. 

 

Negatively correlated workloads appear in situations of coupled tasks where the amount of work can be 

shifted from work function to another. The effect of negative correlation between workloads was also 

neglected in the mathematical processing of iterations, i.e. the amount of work generated to other tasks 

from working on a specific task was always presented by a positive sign. Taking into account negatively 

correlated workloads the situation might be that after a certain point, working more on a specific task 

would actually diminish another tasks remaining work. 
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5 RESULTS 
 

5.1 Empirical part of the study 
 

The empirical part of the study was commenced after the theoretical study. The main source of information 

for the empirical part was the elaborate interviews. A total of 37 people were interviewed; 15 designers, 3 

main designers, 9 project managers, 2 product managers, 1 line manager, program manager, 1 product 

development manager and 5 people from other functions (sourcing, production, manual team). These 

interviews lasted from 1 hour to as long as 5 hours. The average time was somewhere around 2 hours.  

There is no interview template in the appendices, since all the interviews were individualized according to 

the function and personal history of the interviewee. If all the questions and topics asked in different 

interview sessions were to be listed the list would go on for tens of pages so there is no sense in doing so. 

Documents found in corporate databases were also studied: specifications, product determination table 

documents, project descriptions, project schedules, project risk identification documents, project steering 

group meeting documents etc. All and all a comprehensive empirical research was made to gain 

understanding about the practicalities and constraints of the present situation in the company’s product 

development environment. 

Product development in four profit centers was examined in the study. These profit centers include High 

Power Drives (HPD), Low Power AC (LAC), Wind AC (WAC) and Solar inverters. The main attention was in 

HPD profit center, LAC profit center was also examined, whereas Wind AC and Solar inverter profit centers 

were left on less attention. However, these two previously mentioned profit centers affect HPD projects, 

since they have common base-projects, and their effect on these projects was examined. 

5.2 Lean principles 
 

A set of 9 guiding lean principles was formed earlier in this study. Although lean principles were not among 

the main research topics of this study, the way these 9 lean principles are presently utilized in the company 

were briefly examined in this study. Table 5.1 summarizes the way Lean principles are presently applied in 

the company. 

Table 5.1 Lean principles application in the company (Kantomaa, T.T.) 
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Some of the lean principles’ applications in table 5.1 have been labeled as “subjective”. This is because the 

“correct” application of these principles is highly dependent on the assessor. Table 5.1 shows that lean 

principles are not fully adhered to in the company, which can be accounted for by the complexity of the 

product development environment in the company. Monetary considerations also explain why, for 

example, modularity in design is not fully applied in the company. Modularity in design incorporates 

platform approach and design flexibility for being able to adapt to design changes more easily (designing 

excess capacity, making more spacious designs etc). The former has bidirectional effects on the end 

products costs case by case, but the latter will inevitably increase the costs of the end product. Therefore, it 

is not explicit that the set of guiding lean principles even should be fully applied. The following chapters go 

through each of the principles one by one. 

5.2.1 Eliminate waste 

In the theoretical part of this study, activities in PD were divided to value adding work, necessary waste and 

waste. In this section activities in PD are classified in a slightly different way for better applicability. Here 

activities in product development are categorized as: 

 Actual design work - this category also includes building prototypes, participating in tests, working 

with suppliers in the case of customized components etc. 

 Abstract design work - not actual design work, but aiding in design work, i.e. meetings and 

conversations with colleagues about work related issues. 

 Work done primarily to support other functions - not actual design work, not aiding in design 

work, but work that needs to be done, primarily to support other functions, i.e. production, sales, 

service etc. This category includes BOM’s, manuals, brochures, aiding in service plans, aiding in 

making training materials etc. 

 Clear waste – this category includes coffee breaks, waiting in projects, using work time on own 

agenda etc. 

Noteworthy is that categories (A) to (C) also include waste. For example, multitasking, generating defective 

information and overproducing information are all forms of waste, but they are included in actual design 

work in this categorization. The designers practically always have something to do in different projects so 

category “Clear waste” primarily includes breaks and using work time on own agenda; when idle time in 

some project or sub-project occurs, the designer proceeds to work on another project.  

The reason for this kind of categorization was that a questionnaire for the designers was made concerning 

how they spend their work time. It would have been extremely difficult for the designers to estimate their 

time spent on value creating activities and time spent on waste since the boundary between value adding 

and non-value adding work in PD is a bit unclear, to say the least. Further, it depends on the point of view. 

Think about a situation where one design option is at later phase realized to be unfeasible. Has the work so 

far made by the design engineer been waste, or has it been value adding since by doing this trial-and-error 

cycle the design team has learned something that will help them in the next design round. Making 

estimations on time spent on different activities becomes much easier when the activities are divided into 

the four categories presented above. 

A total of 17 designers from one profit center (High Power Drives, 4 from each team, except 5 from main 

circuit design team) responded to the questionnaire. Designers were asked to estimate their time spent on 

these four different categories but estimations on category “Clear waste” were not considered; only the 

ratios between the three other categories were considered. This was done because people tend to 
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underestimate their idle time. Category’s “Clear waste” percent share was an estimation made by the 

author based on 3 years of experience of working in the PD environment in question. The ratios of the 

other three categories were compared to their aggregated sum, and the resulting percentages (totaling 

100%) were then multiplied by a factor of 0,8 to form a “Clear Waste” section of 20%. This is how the 

percentages were calculated and the designer’s estimation of their own idle time omitted. 

Designers were also asked to make the estimations based on a long time average, not incorporating just the 

latest periods. To form a sample that would be representative to reality, experienced designers along with 

less experienced designers were incorporated in the questionnaire with a right distribution. 

The results of the questionnaire are presented in figure 5.1. The questionnaire form can be found from 

appendix B. 

 

Figure 5.1 Allocated work time in PD (Kantomaa, T.T.) 

The way designers allocate their time seems to be quite similar across teams. Noteworthy is perhaps the 

fact that main circuit designers spend the most time on activities that support other functions, and thus 

time spent on actual design work is the least from all of the design teams.  

The list of activities done primarily to support other functions includes, among other things: 

Bill of materials (BOM) and entering related material codes in ERP system, secondary sourcing activities, 

manuals, working on marketing/trade show models, creating rating database (RDB), inbound logistics 

related activities, aiding in service plans, assisting in making training material, assisting sales, assisting 

Product Engineering (PE), assisting service, brochures.  

Including BOM in category (C) is debatable, since making BOM is an essential part of the design work, 

whereas many of the other activities listed above are activities done in an assistive role. Including sourcing 

activities in category (C) is also debatable, since most of the time spent on sourcing activities should not be 

stated as work done to support other functions. These activities need to be done by the designers 

themselves, as they require detailed technical information about the requirements of the components to 

be selected. These sourcing activities are termed primary sourcing activities. Nevertheless, there is some 

part in the activities that could be separated and done by a “component engineer”. This would be someone 
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who would act in the boundary between sourcing and PD and aid designers in their sourcing activities. This 

person would need detailed technical knowledge about the components and their application. Although 

designers were asked to separate the share from total time spent on sourcing activities which could be 

performed by a component engineer, i.e. secondary sourcing activities,  and include only that part in the 

questionnaire as “work done primarily to support other functions”, some designers have clearly included 

sourcing activities altogether in category (C) in the questionnaire. This is why discretion is advised when 

contemplating on the share of secondary sourcing activities in category (C). Designers estimated that 

sourcing activities take a total of 9% of working time, and that 4% of the total working time is spent 

conducting secondary sourcing activities. 

There should be a person from sourcing in every PD project who is truly interested about the progress of 

the project and committed to it. This component engineer has knowledge and necessary skills required to 

make a preliminary scan on the supplier field when designers provide specifications for different 

components. After making the preliminary scan on the suppliers the component engineer provides the 

designer with a list of preferred suppliers, from which the designer, after having correspondence with the 

suppliers, makes the ultimate choice. The component engineer makes the procurement initiatives and also 

follows them through. 

Designers were asked to specify which activities done to support other functions take the most time by 

making a list of 5 most time consuming activities. The first one on the list is given 5 points and the last one 

1 point. The results state that the configurable BOM and the SAP code world behind it (46 points), sourcing 

activities (20 points), manuals (14 points), making marketing/trade show models (13 points) and supporting 

sales (12 points) are the most time consuming activities. The three first mentioned are quite consistent for 

every team. Only main circuit designers and mechanical designers spend notable time in making 

marketing/trade show models and assisting sales, according to the respondents. A lot of main circuit 

designer time is also consumed by creating a RDB (12 points). 

Activities done to support other functions should be synchronized correctly with development, so that the 

right information is at the right place at the right time. This reduces the need for doing the same things 

over and over again, i.e. reduces futile iterations.  

Along with other design activities, it is activities done to support other functions that count for 

multitasking; it’s not about how many projects you are on, designers are multitasking already within one 

project. There are occasions where a designer has had a presumption that his day would start with actual 

design activities, when other things suddenly require attention. May they be assisting sales by making a 

design sizing case or having to provide the manual team with design information, but nevertheless after 

having handled these issues it is late in the afternoon when the actual design activities can be started. 

Finally main circuit design is contemplated here further because it has the largest share of activities done to 

support other functions. Main circuit designers spent on average only 34% of their time doing actual design 

work and 23% in supporting other functions. Out of the activities done to primarily support other functions 

making BOM and entering related material codes to ERP system is the most time consuming, which is 

followed by generating a RDB, assisting marketing and sales, and conducting sourcing activities (primary 

and secondary). 

Main circuit designers also estimated that on average 23% of the work categorized as actual design work 

could be performed by someone else, rather than a competent designer. These tasks include mainly 
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manual, repetitive work. By letting someone else do them the designers could focus more on the actual 

design work. Multitasking would also be diminished this way.  

These percentages imply that the absolute time spent by main circuit designers on actual design work could 

be increased greatly either by increasing the proportion of the actual design work compared to other 

categories, or by streamlining the actual design work by concentrating all manual, repetitive work to a 

handyman recruited in that design team.  

As a final note on this section it must be stated that the designers in the PD environment are already 

working as hard as they can. Designers have their hands filled with work and are struggling to get 

everything done as it is. The total time spent by designers on work related issues cannot be increased, but 

it can be streamlined.  

5.2.2 Modularity in product development 

Modularity in PD means completely different thing than it does in production, service, or sales. In these 

areas modularity means how quickly and easily products are assembled (just click-click), serviced, or 

customized. In product development modularity can be achieved through platform approach and by design 

flexibility. The degree of design flexibility is determined by how changes in one part of the design affect the 

total design, i.e., how modular or integrated the design is. The design can be modular to full extent, it can 

be integrated to full extend, or in reality it is something between these two extremes. Modularity can also 

mean knowledge modules, i.e. the captured design intent behind the design.  

Platform approach is used in the company’s product development. This has been extended in recent years 

to cover also software development.  

The flexibility of the design can be divided into three dimensions: mechanical, electrical and thermal. 

Spacious design increases flexibility for making changes to the design and also helps assembly and 

installation. Trying to avoid restricting electrical component choices and using extra capacity in some 

components increase flexibility in the design. Not dimensioning components to the verge of thermal limits 

also increase flexibility. These dimensions are in many cases interdependent; change in one of them affects 

the others. For example, mechanical dimensioning affects cooling of components, which further affects the 

performance of electrical components. Figure 5.2 depicts the flexibility of a design. The area of the triangle 

represents the degree of flexibility.  

 

Figure 5.2 Flexibility of a design (Kantomaa, T.T.) 
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Increasing design flexibility might be useful during the PD project for being able to adapt to design changes 

more easily or it might become useful when making later changes to the product when it has already been 

introduced to markets, but increasing flexibility in design would raise the cost of the end product. 

5.2.3 Workload leveling 

Resource consumption is not planned on an accurate level and on a cross-project basis. The unpredictable 

nature of task durations, and hence, project schedules makes it difficult to plan resource consumption on a 

detailed level for long periods ahead. Planning the utilization of testing facilities also has deficiencies. 

Although resource consumption is not planned on a detailed level on a cross-project basis, idle time for 

designers is avoided through assigning designers to more than one project or sub-project at a time. This 

way if there exists a waiting period in the primary project or sub-project there is always the secondary 

project to work on. However, resource pikes are not leveled in any way. Resource pikes mean occasions 

when the designer must work on more than one project on a day to day basis because of simultaneous 

urgencies within different projects. 

5.2.4 Concurrent engineering (CE) 

CE is applied, and orchestrated through a Stage-gate® model in the company. The Stage-gate® model 

synchronizes different functions in the product development process. 

Concurrent engineering encourages iterative development in the beginning of projects to avoid harmful 

iterations later on. Assembly friendliness of products is frequently inspected in meetings between product 

development and production, and these meetings are held already from the beginning of PD projects. 

Sourcing is involved from early on as well. Some say sourcing is involved even too early and too 

enthusiastically, since sourcing activities can slow down development activities. The procurement initiatives 

for ordering customized parts for prototypes go through sourcing department. Designers would want these 

components to be delivered as fast as possible from nearby. Sourcing wants to reach economies of scale 

and incorporate suppliers which are able to supply globally and with volume, and with a cheaper price than 

nearby suppliers. In many cases low cost countries (LCC) are emphasized, which naturally leads to longer 

delivery times. Compromises between development and sourcing department are in many occasions 

needed when balancing between speed of component deliveries and making deliveries from LLC countries. 

Stage-gate® model is used to synchronize the development efforts within a project. There have been some 

deficiencies in synchronizing development between projects in recent years. For projects that have 

interdependencies, this issue needs scrutinizing. 

5.2.5 Cross project knowledge transfer/Amplify learning 

There is much improvement to be done in this area. Profit centers are unaware of other profit centers’ past 

project experiences and of their own profit center’s past projects, especially if they date back several years. 

The inevitable consequence is that the same mistakes are made again and again and the solutions to these 

problems are invented again and again. The fault lays both in the way projects are documented and in the 

way these documents are utilized; both need to be scrutinized.  

It has been said by the project managers that they do know what happens in other profit centers’ projects 

as long as they have personal contacts there. On these occasions project managers exchange information 

with other project managers or designers located at a different profit center through informal 

conversations. As soon as these contacts cease to exist the connection is lost.  
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5.2.6 Process standardization 

Instead of physical modules, modularity can also mean knowledge modules. Through the reuse of 

knowledge modules efficiency and increased NPD speed can be achieved. The basic idea is to capture and 

re-use the engineering intent during a product development process. There is ongoing development in 

capturing design information in different design areas through process standardization and building 

libraries of design information. The aim is to create process standards and databases that would condition 

designing and capture the design information. When capturing design information, besides capturing the 

actual design, it is equally important to capture the engineering intent behind the design; why it was 

designed this way. 

5.2.7 Deliver as fast as possible 

The development projects under examination develop products having long life cycles. This means the 

quality of the product outweighs the speed of development. Nevertheless, short time-to-market could 

provide a competitive advantage. Since the products have long life cycles, risk taking is minimized. This 

means no unverified technology is to be used in the products and risks are mitigated. This master’s thesis is 

basically about using product development resources more efficiently. When resources can be used more 

efficiently, project lead times are decreased and new projects can be started more frequently.  

5.2.8 Empower the team 

There is a conception that the developers of products are not empowered, or listened enough when it 

comes to making decisions in product development projects. The belief is that money rules, and this belief 

is being shared by many designers, especially amongst seasoned designers. It is said that many technically 

capable solutions are rejected or not developed to full extend if the monetary benefits cannot be stated 

clearly from the very beginning of a possible development initiative. On the other hand, outside of product 

development the mood is that PD actually has too much power in decision making. This is a prime example 

of how different departments perceive things differently in organizations.  

5.2.9 Build integrity in 

A system is perceived to have integrity when a user thinks – “Yes” That is exactly what I want”. The markets 

and the preferences of the customers are said to be well known. Still some designers say they are missing 

information on how detailed technical solutions are perceived by end customers. For example, electrical 

designers state that they do their design the way they have done it in the past without knowing if it is the 

right way of doing things; they don’t receive feedback from end users so they don’t know if what they have 

designed is appreciated by them and whether it should be done differently.  
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6 ITERATION IN PRODUCT DEVELOPMENT 

6.1 Product development project types in the company 
 

Platform projects create common platforms (panels, software, fieldbus modules etc.). Base projects, which 

can be shared between profit centers, create end products, modules for the end products, or in some cases 

both; a module can be an end product and a building block to a cabinet-built product. Modules can also be 

sold to external system integrators (SI’s). Cabinet projects (Variant projects) utilize platforms and modules 

to generate products. Order-based engineering can be done to customize the products according to 

customer preferences. 

Projects, that create end products, have different starting points according to the type of project and 

according to whether a technology project has preceded the PD project. Basically there are 4 different 

kinds of projects for creating end products:  

 next generation project 

 new technology or new application area project 

 quality improvement or cost reduction project 

 continuous improvement project 

Next generation projects may have a technology project that has preceded them. In this technology project 

new technologies and new partial concepts that are to be used in the PD project should be tested and 

verified. There are bad experiences about technology projects where concepts have been created, but 

nothing has been tested. This undoubtedly leaves technological uncertainties for the PD project. The 

purpose of the technology project should be to verify the technologies used in the PD project. In many 

instances the prerequisite for the technology project to be successful is that main parts of specifications 

and application areas are clear before the project commences. However, the technology project should not 

perhaps go too deep into the applicability issues; rather this should be left for the PD project where the 

experiences of the application areas reside. There are experiences from past projects where technology 

department’s involvement has gone too far resulting in unprofessional solutions.  

With products that have radical new technology and/or new application area PD projects must be preceded 

by a strong technological ground work. It is said that in these technology projects much time should be 

devoted to evolutionary development using trial-and-error methods; the developers should be given 

enough freedom to try out different kinds of things, without locking in precise solutions too early in the 

process. It has also been said that more innovative solutions should be formulated in these projects. The 

feeling is that even if the developers strongly believe new kind of technological solution would have great 

benefits technologically and in monetary terms, the development effort can be buried if the developers 

cannot clearly state already from the beginning of development the monetary benefits of the new 

technological solution. 

Quality improvement or cost reduction projects begin from a totally different starting point compared to 

the other previous two project types. The main physical design already exists, and the constraining factors 

are prevalent and defined by the flexibility of the design. The product cannot be changed much if the 

design is inflexible. Only slight modifications can be done, or if really big quality issues arise, then the 

situation becomes troublesome. Product Engineering (PE) can do slight modifications to existing products, 
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but when large scale changes are needed the competence of PE is no longer enough, and it is PD that needs 

to start a project concerning the matter at hand. 

Continuous improvement projects use project wide iteration cycles to refine the design of a product family, 

on a continuous basis. The groundwork for this kind of development is laid by a mother project, where the 

basic solutions are decided, but the detailed design for each product in that product family is left undone. 

When a specific customer order arrives (larger customer order or a customer order potentially leading to 

larger orders in the future), which cannot be fulfilled with existing products from earlier daughter projects, 

a new daughter project is launched in which the basic solutions laid by the mother project accompanied 

with customized detailed design are used to create a product. During these daughter projects more optimal 

design solutions may be found, compared to previous daughter projects of that product family. This way 

each project represents an iterative development cycle, leading to more and more optimal solutions. These 

cycles may result in changes to previously designed products as they are ordered again. In some occasions a 

customer may want to order exactly the same kind of product it had previously ordered. This results in 

generating alternatives of the same product; the old design for the customer who has previously ordered 

the same kind of products and the new design for new customer orders. This kind of project wide iterative 

development gives flexibility to development; design solutions may be changed later on and new ideas can 

be executed.  

6.2 From specifications to a product 
 

Requirements include descriptions of customer needs and in some cases elaboration about main features, 

performance levels, constraints on the system’s operation, regulations, standards etc. Specification can be 

thought as a collection of requirements to be implemented. Specifications also include the application 

areas of the product, power ratings, operating conditions, as well as cost and size targets, usually compared 

to previous generation product. For example, cost reduction target can be set to -40%, and size target can 

be set to be less or equal compared to the previous generation product. Each profit center is responsible 

for bringing up their requirements for a PD project if the output of that project is to be utilized across 

different profit centers. Specifications can also specify some sub-concepts like I/O connections and option 

modules. Figure 6.1 illustrates some of the content in specifications. 

 

Figure 6.1 Specifications (Kantomaa, T.T.) 
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Technical requirements describe the wanted features to be implemented on a more technical level than 

specifications. Technical requirements are meant to describe how the features are meant to be 

implemented whereas specification mostly answers what is to be implemented. Iterating between 

specifications and technical requirements leads to different sets of possible technical concepts. Product 

management, project management and designers are all involved in this iterative process where the 

applicability of initial set of requirements, or preliminary specification, is evaluated on a technical level 

taking into consideration monetary issues. This process transforms preliminary specification into final 

specification, which is meant to be realized by the chosen technical concept. When technical concept is 

nearing finalization design specifications for different design areas should be made. Design specifications 

elaborate on technical requirements taking into consideration the entity and enable the detailed design 

process to commence. The technical concept shapes into its final form during the detailed design process. 

The earlier the technical concept shapes into its final form the less iteration there will be in the detailed 

design process. Figure 6.2 depicts this process. 

 

Figure 6.2 Iteration between technical concept and specifications (Hautakorpi, E., Kantomaa, T.T.) 

 

Technical concept is a construct of sub-concepts of which some are defined already before a New Product 

Development (NPD) project commences in a technology project. The technology project can, for example, 

define the mechanical concept and the main circuit components, although these can be changed in the 

NPD project if a need arises. Sub-concepts include, for example; 
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 main circuit design 

 mechanical concept 

 I/O 

 choke concept (AC/DC, air cooled/liquid cooled) 

 auxiliary power supply 

 charging concept  

 IP-class 

 control (SW and PCBA’s) 

 interface between main circuit and control board 

 option modules 

 panels 

 

6.3 Detailed design process 
 

Detailed design process, including prototyping, is the phase where most of the iteration occurs during PD 

projects. Many designers state, that it seems they do their designing many times over and over again 

during projects. This iteration, though, is mainly natural and cannot be avoided. Figure 6.3 depicts a sketch 

of the detailed design process. 

 

Figure 6.3 Detailed design process (Kantomaa, T.T.) 

The activities in the design process can be sequenced based on their input and output requirements such 

that the need to send information backwards or upstream in the process and the scope of these feedbacks 

are minimized. Processes not organized on this basis are more likely to experience unintentional iteration 

simply because the right information is not available at the right place at the right time.6 73 103 104 Therefore, 
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activity sequencing quality not only affects the number of unintentional iterations, it also affects the 

number and scope of activities comprising any iterative cycle. 

Also in many instances the sequence between design activities defines resource consumption between 

design areas. Think about main circuit and mechanical design in module projects, for example. If 

mechanical design and thermal design are done accurately from the very beginning of the design process, it 

will help the convergence of main circuit design. On the other hand, if main circuit design were let to evolve 

further before mechanical design would be made accurately this would diminish mechanical resource 

consumption, but consume more main circuit design resources, since main circuit design would be based 

on less accurate information in the beginning of the design process.  If different design teams can transfer 

workloads between them their workloads are said to be “negatively correlated”. The above example of 

main circuit and mechanical design can be augmented, for example, by mechanical and electronics 

designing. These design areas can also exchange workloads between them; will adjustments be made to 

circuit board dimensions or mechanical dimensions in case of conflicts. Usually mechanical design is 

changed since mechanical design can accommodate changes more easily than circuit boards can.  

It is difficult to state how much streamlining there could be in the detailed design process. The detailed 

design process has not been analyzed deeply in the company so there might be a lot of streamlining 

possibilities. Mapping several PD processes from different PD projects might reveal that a standard process 

cannot even be mapped; every project has a unique way of proceeding so an effort to map out one 

“standard process” could be impossible. The standard activities in the process do not occur in the same 

order in every project so even those activities that are fundamental to every PD project have different 

order of appearance in the process. Nevertheless, conditioning fundamental sub-processes within and 

between design areas and using these procedures in every process, even though the process otherwise is 

unique, might streamline the design process. Conditioning would also result in not having to invent the 

wheel over and over again by gathering design information and by making design guidelines.  

To be able to analyze the detailed design process on an accurate level the detailed design process should, 

first of all, be mapped and described. This was realized to take a huge amount of time and as such, was out 

of the reach of this thesis. Another approach was then chosen; system dynamics. 
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6.4 System dynamics 
 

Many process improvement activities require an overview of the design process. However, while 

individuals may have a deep understanding of the aspects of the process in which they participate, 

companies often have few generalists who can claim to understand the process in its entirety.105 

System Dynamics (SD) was pioneered by Forrester in the early 1960s when he applied knowledge about 

systems from his work in electrical engineering to everyday kinds of systems106. When the structure and 

behavior of the design process is neither static nor well understood system dynamics modeling may 

support designers and design teams in improving their understanding of process behavior. Modeling, 

analyzing, and improving the control of dynamic systems is the objective of applying system dynamics in 

many domains. 

Task network model, such as a DSM model, captures the architecture of a specific engineering design 

process. Table 6.1 summarizes the differences between task network models and system dynamics model. 

Table 6.1 Differences between task network models and system dynamics model (Kantomaa, T.T.) 

 

Knowledge about the process architecture ensures that the impact of iteration on the performance of a 

specific process is taken into consideration. The feedback structure of causes and effects, and its impact on 

process behavior can be better explored using a high-level modeling approach, such as System Dynamics107. 

In the SD model typical influencing variables and feedback structures that make up the process 

environment and process control mechanisms are incorporated. Together process architecture, process 

environment and process control mechanisms exert strong influence on process behavior. Figure 6.4 

depicts model transformation. 
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Figure 6.4 Model transformation (Kantomaa, T.T.) 

REWORK CYCLE 

The rework cycle’s recursive nature in which rework generates more rework that generates more rework 

etc., creates problematic behaviors that often stretch out over most of a project’s duration and are the 

source of many project management challenges. In an SD model, a PD process can be represented by work 

packages which flow through a standard “rework cycle”. The rework cycle, depicted in figure 6.5 operates 

as follows. At the beginning, all work packages are in the stock “Original Work to Do”. They are processed 

at a given rate through “Work in Progress” until they reach “Work Done”, where all work packages need to 

arrive to complete the process.108 

However, some work will contain errors which need to be corrected. Also, some work may need to be done 

again, but at a different level of abstraction, i.e. they need to be repeated. Work that needs to be repeated 

is the result of arriving new information during development. The source of new information can be  

1) internal, for example, design-build-test cycle may reveal new information 

2) external, for example, changing customer demands can result in specification changes 

Process concurrency increases repeated work since less work is started with finalized information, and 

changes in design information needs to be incorporated with iteration. 

The delay in discovering the need for iteration affects the impact of the iteration in respect to resource 

consumption and development lead time. The structure of the design process, the process environment 

(organizational and human related factors) and the process control mechanisms dictate the amount of 

rework and repeated work. 

Once work to be corrected or repeated has been discovered, this work goes from “Undiscovered work to 

be corrected/ repeated” to “Work to be corrected/ repeated”. The “Rework/repetition rate” defines how 

much of this work will proceed to “Work in Progress”. The rest is left as “Quality issues”. 
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Figure 6.5 Rework cycle (Kantomaa, T.T.) 

When the rework cycle is complemented with different influencing factors various feedback loops begin to 

appear. When the most obvious effects and causalities are marked to the rework cycle we get the frame of 

the SD model which is depicted in figure 6.6. 

 

Figure 6.6 Frame of the SD model in the company (Kantomaa, T.T.) 



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

95 
 

6.4.1 Organizational/ human related factors  

Organizational/ human related factors are the result of higher level organizational politics or the 

organizational culture and procedures (the way of doing things).  

“Designer responsibility” refers to designers having responsibility over their design areas integration to the 

design entity and doing follow-up. Currently this is up to the designer; some designers are more concerned 

with the integration of the design than others. Designers should also think about the applicability of their 

design; where is it utilized. This is especially important with cross-profit center designs. 

“Other projects” naturally affect individual projects when they have interdependencies. “New processes” 

create delays as it takes time to get accustomed to the new processes/tools. “Communication” refers to 

the natural tendency of designers to communicate with each other in the product development 

environment. If the natural tendency between designers is to communicate proficiently, then less 

coordination from behalf of project management is needed and vice versa. “Lack of team experience” 

results in more design errors. “High employee turnover” can result in “Lack of team experience” and in lack 

of resources (especially efficient resources). “Product specifications” refers to the overall specifications of 

the product to be developed. “Cross-functional considerations” refers to other functions influence on 

product development. The more influence other functions have on product development the more 

repetitions and delays there will be in development. 

6.4.2 Process control mechanisms 

The management of design processes can also be a cause of iteration. Under “Schedule pressure” 

managers often rely on excessive “Process concurrency” based on early release of information109. As a 

consequence, tasks need to be repeated when input information is finalized and the amount of rework may 

vary according to the chosen degree of concurrency110 111. Rework is also likely to occur when deadlines are 

set in a way that available time is not adequate to workloads, causing high work intensity and overtime for 

designers, and resulting in higher chances of flawed work108. Lack of commitment to schedules will also 

occur in situations where the deadlines are made impossible to reach. Another human related aspect is the 

nature of concealing problems and need for rework under schedule pressure, causing even more rework to 

be required later in the design process112.   

System level design defines the architecture of a product. System level definition is a challenging task and 

requires expertise on multiple design areas. In system level designing the outputs of different projects 

(platform projects, module projects from different profit centers), product options and different sub-

concepts are merged into one functional entity. Understanding the system architecture and 

interdependencies between functionalities and product options is very challenging. System level designing 

also extends to inter-project level. There are cross-profit center projects which utilize each other outputs, 

and in these occasions the receiving project should be able to clearly define its technical requirements, 

which together with other requirements comprise the design specifications for the feeding project.  
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Principal designer (“design responsible”) is involved in system level designing and in determining design 

specifications for design areas. Requirements specification doesn’t show what should be done on detailed 

technical level and one of the main tasks of the principal designer is to elaborate the technical 

requirements to the designers for the detailed design process to commence. 

Concept development phase locks-in most of the costs of the end product under development. It has been 

said that about 80% of the costs are decided in the concept development phase which makes it very 

important to make as accurate initial cost structure calculations as possible. But it is in the detailed design 

phase that the critical cost line is either passed underneath or exceeded. That is why “Cost monitoring” 

should be done on a continuous basis. “Concurrent Engineering (CE)” should be applied to facilitate short-

cycled iteration with respect to cross-functional aspects (production, service, product engineering, 

sourcing). “Early iterative development” aims at discovering errors and the need for redesigns early in the 

design process, trying to avoid situations where the need for redesign is realized in later stages of the 

project resulting in large iterations, which lead to schedule and cost overruns. Simulation, concept testing 

and concept prototyping are constituent parts of early iterative development. “Testing” refers to 

component testing and testing partial entities of the design entity. It is important to test partial designs in 

advance of integration. “Prototyping” refers to testing sub-concepts or the whole design entity, and it can 

also include gathering customer feedback on the prototype. “Concept feasibility” refers to the applicability 

of the technological concept. The more proficient the early iterative development is the sooner the concept 

is revised to its final form. The less spontaneous communication there is between designers within and 

between profit centers the more “Coordination” is needed in behalf of project management. 

PROCESS CONCURRENCY 

Process concurrency and Concurrent engineering (CE) means two different concepts in this thesis.  CE 

means cross-functional development where cross-functional considerations are taken into account with 

short-cycled iteration to increase NPD speed. Process concurrency, on the other hand, refers to overlapping 

design activities. Excess process concurrency increases work to be repeated as more work is begun without 

finalized information. 

CORRUPTION 

Rework due to corruption refers to rework or repetition of downstream tasks when a change in an 

upstream task occurs, when the downstream task otherwise would not have needed an iteration. In other 

words, some tasks need to be reworked because they start on incorrect or not finalized information from 

upstream tasks.113 Process concurrency increases corruption. 

Process concurrency on task level: Overlapping development activities may save time, but it may also 

increase iterations or reworking for the downstream activities and increase resource usage. When 

preliminary upstream information is utilized by the downstream activity too early, then the future changes 

have to be incorporated in time consuming iterations, resulting in an increase in the downstream activity 

duration and resource consumption. If the degree of information evolution of an upstream activity is 

thought to be slow and iteration sensitivity of a downstream activity high then these activities should not 

be overlapped too much to avoid futile iterations. Special cases exist, though. If the activities are such that 
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one design area is not aware of other design areas capabilities or constraining factors, then these activities 

need to be done simultaneously and by exchanging information continuously. 

Process concurrency on project level: When a NPD project commences it is usually preferred to have 

platforms ready, and the same applies to other feeding projects as well. On the other hand, overlapping 

interdependent product development projects can speed up the development. Overlapping 

interdependent product development projects can also be useful because a downstream project can give 

feedback to the upstream project while it is still in progress. Modifications can be made in the upstream 

project which will aid development/integration in the downstream project and thus, flexibility is increased.  

When projects are overlapped excessively a delay in an upstream project leads to delays in every 

downstream project. Delays can also lead to iterations. 

6.4.3 Design related factors 

“Technological complexity”, “Technological novelty”, “Application area novelty” and “Integration needs” all 

influence the amount of iteration needed during the product development project. Technological 

complexity results in more iteration as tasks must be revisited to achieve a technical solution. Technological 

novelty refers to new kind of technology being applied, whereas application area novelty refers to existing 

technology applied to new application areas. Similarly, iteration is likely to occur when interface or system 

integration issues are considered because new information may surface or it may become clear that design 

objectives are not met when testing is performed.  

6.4.4 External factors 

Besides of the above mentioned categories there are external factors affecting development. One of the 

most harmful causes for iterations in product development projects is changes in product offering and 

positioning. Changes in product offering and positioning are caused by changing customer demands, 

competitor actions or upper management decisions.  

In HPD competitor benchmarking is utilized to some extent in main circuit design and mechanical design. In 

electrical design competitor benchmarking is not done. Although main circuit design and mechanical design 

utilizes competitor benchmarking it is said this area still needs highlighting. At some point in the 

development process there may be input, for example, from product management about competitor’s 

products and this can lead to iteration. Figure 6.7 depicts three levels of competitor benchmarking. 

 

Figure 6.7 Three levels of competitor benchmarking (Kantomaa, T.T.) 

Competitor benchmarking can be done in three levels. In the first level the competitor’s offering and the 

main features of their products are known on paper. There is a new portal for easy monitoring of 

competitors offerings in the company (Competitor Comparison Portal). In the second level the main 

technicalities concerning competitor’s products are known. In the third level the competitor’s products are 

reverse engineered and every little design detail is examined. 
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There is not a systematic way to benchmark competitor’s products. The competitor’s offerings are known, 

but not always on a detailed technical level, i.e. reverse engineering is not always done. Competitors on the 

other hand have put effort on this area; some competitors systematically buy the company’s products and 

reverse engineer them. It has been said that it can be seen from the competitor’s products that they have 

copied the company’s products.  

There has been the perception that the company is the technological leader in frequency converter 

business, and perhaps this has resulted in not benchmarking competitors; “we don’t need to benchmark 

others, they benchmark us”. Especially in cabinet designs the company’s products are said to be way ahead 

of competitors. Nevertheless, this does not mean that every little design detail is done better compared to 

competitors, and thus, reverse engineering could provide valuable improvement insights. 

Regulatory issues can also cause iterations. Patents cause iterations quite often in mechanical design, 

although these are mainly minor iterations. Patent checks should be carried out with proficiency to avoid 

futile rework due to patent related issues and patents can also be a source of new ideas.  

6.4.5 Adverse dynamics 

Ripple effects: Many well-intentioned project control efforts may have unintended consequences. “Ripple 

effects” is the name commonly used in projects to describe the primary side effects of well-intentioned 

project control efforts. 

Knock-on effects refer to the secondary impacts of project control efforts, i.e., the impacts of ripple effects, 

often caused by processes that produce excessive or detrimental concurrence or human factors that 

amplify the negative effects via channels such as morale. Capturing knock-on effects in project models uses 

the concept of unintended side effects to explain project behavior and performance. 

CAUSAL CHAINS AND REINFORCING LOOPS 

Network of iteration causes and effects involves causal chain loops with reinforcing character. When 

contemplating the SD model frame in figure 6.6 different causal chains can be seen. For instance, when too 

much schedule pressure is exerted to the development team more errors are generated and to gain time 

compression process concurrency is applied. Error generation creates more work to be corrected. Process 

concurrency increases work to be repeated as more work is begun without finalized information. If work to 

be corrected/repeated is not done quality issues may arise. Corrections and repetitions (defined by 

Rework/repetition rate) create delays and take resources away from working with other tasks, which again 

leads to delays. This loop becomes self-enforcing as delays cause more schedule pressure and the loop 

starts again. Figure 6.8 depicts a simplified causal chain of events. 
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Figure 6.8 Relation between delays and iteration (Kantomaa, T.T.) 

When examining factors causing iteration it might not be self-evident that delays are among them. Through 

System dynamics though, the relation of delays and iteration can be seen.  

 

FROM THEORY: CONCEALING REWORK REQUIREMENTS IN CONCURRENT DEVELOPMENT112 
 
The ‘‘90% syndrome’’ is a common concurrent development problem in which a project reaches 
about 90% completion according to the original schedule but then stalls, finally finishing after about 
twice the original project duration has elapsed. 112 
 
Excess process concurrency not only increases the vulnerability of projects to changes and errors 
requiring rework, but also increases the fraction of work released that will require changes. Increased 
concurrency reduces the availability of final information leading to additional rework and iteration. In 
addition, behavioral effects arising from the increased pressure felt by developers to meet schedules 
that do not account for the greater iteration and coordination required by concurrency contribute 
significantly to the poor performance of many such projects.  
 
Concealing known problems can be used to temporarily reduce work. For example, an engineer in a 
leading electronics company reported that design engineers regularly delayed revealing problems 
they discovered to avoid time-consuming document control work required by the organization’s 
engineering change notice process114. The practice of concealing rework requirements is reinforced 
by people’s dislike of bad news and information that contradicts their beliefs. People in authority 
often ‘‘shoot the messenger.’’ 
 
Concealment is often standard practice. At a major defense contractor, weekly meetings of project 
team leaders were known as ‘‘the liars’ club’’ because everyone withheld knowledge that their 
subsystem was behind schedule. Members of the liar’s club hoped someone else would be forced to 
admit problems first, forcing the schedule to slip and letting them escape responsibility for their own 
tardiness. Everyone in the liar’s club knew that everyone was concealing rework requirements and 
everyone knew that those best able to hide their problems could escape responsibility for the project 
failing to meet its targets. 112 
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The behavioral pattern of concealing rework requirements was not seen to occur in the company. But there 

are other behavioral patterns that have the same effects, i.e., the need for rework and repetitive work is 

realized late requiring even more resources to be consumed in the corrective and repetitive tasks. 

Technical problems are brought up in the company, but some interviewees felt that discovered problems 

are not always resolved to full extent before proceeding further because of schedule pressure. These 

problems are later resolved by unconventional means, if the need arises. Other designers have not let the 

schedule pressure affect them. Instead, they stated they try to resolve all problems to full extent before 

proceeding to next stages. 

Others say platform projects and the fact that things are sliced to many projects may have caused 

irresponsibility in problem solving. Some designers involved in platform projects are just designing partial 

entities and performing tasks; they are not concerned about the integration of the end product. A designer 

might see problems in the integration of the total design, but because it is not his responsibility he might 

not point it out.  

LACK OF RESOURCES 

When faced with the need for more resources, project management basically has four options: slip 

schedules, put pressure on work force to work faster, work overtime or hire more people. If delaying the 

project is not an option then only the latter three come to question. Figure 6.9 depicts the effects these 

measures can have. 

 

Figure 6.9 Adverse dynamics resulting from increasing resource availability (Kantomaa, T.T.) 

If the adverse dynamics of these measures are not understood properly reduced productivity and increased 

rework can lead to the amount of work remaining greater than it would have otherwise been, thereby 

increasing resources needed to finish on time.  
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Ripple effects:  

• Hiring can dilute experience as workers with less skill and/or less familiarity with the project are 

brought on, and because they require experienced developers to divert time to training instead of 

doing development.  

• Less experienced workers generate more errors. 

• Larger workforces can increase congestion and communication difficulties, which increase errors 

and decrease productivity. This is especially true with dispersed resources. 

• Overtime leads to fatigue that also increases errors and decreases productivity.  

• Higher work intensity increases errors. 108 

Knock-on effects: 

• “Haste creates out-of-sequence work”—trying to accomplish more tasks in parallel than physical or 

information constraints allow, whether by adding resources or exerting schedule pressure, can 

cause work to be done out of the desired sequence. This reduces productivity and increases work 

to be repeated. 

• “Corruption”—undiscovered errors in upstream tasks are inherited by downstream tasks.  

•  “Hopelessness”—morale problems can exacerbate the effects—fatigue and rework can create a 

sense of “hopelessness” that reduces productivity and also increases employee turnover. 108 

The process of correcting errors can increase the number of tasks that need to be done in order to fix the 

problem, or can increase the work required because fixing the errors takes more effort than doing the 

original work. This will happen especially if the errors are not noticed until later phases of development. 108 

From theory: staffing 
 

Figure 6.10 illustrates typical possible behaviors for project staffing, according to theory. Planned 
staffing often builds up to a peak, and then gradually declines; actual staffing, however, can deviate 
significantly from the plan. Often the ramp-up of staff is delayed, then overshoots the planned peak 
and remains high longer (sometimes with a second hump). Such projects typically experience both 
schedule and budget overruns, and also deliver projects with reduced scope and lower quality than 
desired or required.  

 
Figure 6.10 Planned and actual staffing 108 

 
The ramp-up of staff is often delayed either because of external conditions such as late finish of other 
projects, but also because management overestimates productivity and underestimates true project 
scope and the delays in getting resources. The “hiding” of undiscovered rework further delays the 
recognition of staffing needs. As the need for additional staff is recognized and controlling actions 
taken, ripple effects and knock-on effects on productivity and quality of managerial responses tend to 
increase effort required and therefore staff needs, causing project staffing and labor hours to peak 
higher and later than planned. Cycling of work through the rework cycle also pushes project 
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completion later in time. 
 
Projects that are underestimated end up costing more because of the adverse ripple effect dynamics 
incurred once the underestimate is discovered; projects that are overestimated also end up costing 
more than they otherwise would because of the tendency to slack off and/or “gold-plate” when there 
is insufficient schedule pressure. 108 

 

Project staffing in projects is in many occasions late in the company because of delays in other projects. 

Also, in many instances the technology project or the early phases of a PD project suffer from lack of early 

iterative development, because of lack of resources or testing facilities. Lack of testing before integration 

has also caused some problems. 

Together schedule pressure, excess process concurrency, lack of early iterative development and lack of 

testing, which are process control mechanisms, can lead to the causal chains depicted in figure 6.11. 

 

Figure 6.11 Possible causal chains of events starting from process control mechanisms (Kantomaa, T.T.) 

Delays and lack of resources are caused by postponing problem solving to later phases, where they will 

have more severe effect on resource consumption and development lead time. 

One simulation revealed the effects of time, effort and process concurrency. In this simulation it was 

assumed that “Overtime/Work intensity” and the resulting “Fatigue” have a negative influence on the 

“Progress rate” (or work productivity). SD models were then applied to execute simulation with different 

degrees of overlapping from 15% to 50% for two scenarios: (1) No resource constraints; and (2) with 

resource constraints and work intensity. Figure 6.12 illustrates these situations. 107 

 

Figure 6.12 Time-Effort Trade-off 
107
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Percentage numbers in the graph indicate the overlapping degrees. The most obvious observation is that 

the resource constraint causes longer process duration. However, more interesting is the observation that 

in a project setting with resource constraints a higher degree of overlapping does not imply shorter process 

duration. In this example, process duration is reduced through higher overlapping degree until the 

overlapping degree reaches 25%. From 25% onwards, a higher overlapping degree brings about the 

opposite effect, i.e. it causes process duration to increase. This tipping point occurs when the time saving 

benefit due to activity overlapping is outweighed by the negative impact of rework iteration arising from it. 

This negative impact results from decreasing productivity due to ever-increasing overtime/work intensity, 

caused by a higher overlapping degree and resulting extra rework. In reality, there are other factors that 

have an equally relevant contribution to work productivity, either in a positive or negative way. For 

managers, it is essential to understand these influences and to be able to estimate this threshold value. 107 

6.4.6 ABC-analysis 

Perhaps even half of the product development resource consumption in the company is caused by 

iterations, mainly from harmful ones, based on the interviews.  

ABC-analysis is used to divide the causes of harmful iterations into three classes. Harmful iteration includes:  

1) iteration causing rework 

2) iteration causing repetition, when the need for iteration occurs late in the process and has more 

severe consequences, than it would have had if the need for iteration had been realized on time 

3) iteration caused by external factors (excluding the special cases of new application areas or radical 

new products when the customer requirements are not fully known in advance of development 

and customer feedback incorporating iteration is used in early phases of development) 

Also factors causing delays are included in harmful iterations. System dynamics approach revealed how 

delays cause iteration, and this was further verified by empirical observations. 

The causes of harmful iterations are classified according to their severity on resource consumption. The 

causes are not prioritized within classes. In class A, the causes of iteration cause severe rework in nearly all 

projects. Mitigating their effect would have a great influence on streamlining resource consumption. Class 

B iterations are also present in nearly all projects, but they cause less rework than Class A iterations. Class C 

represents causes of iteration that have occurred irregularly or are already under control, which means 

they do not cause severe rework.  

In the company causes for iterations in PD projects were examined in HPD and LAC profit centers. WIND, 

SOLAR and platform projects were mainly excluded from this examination. Nevertheless, whenever these 

previously mentioned projects affect HPD and LAC projects, their effect is also included. Other profit 

centers do cause iterations to HPD and LAC projects since some projects are shared between several profit 

centers. Platform projects also cause iterations to base and variant projects. What also must be noted is 

that the causes of iteration are classified by examining projects executed in the 21th century. This means 

not just the latest or ongoing PD projects are incorporated. 

The categories in figure 6.13 were formed based on interviews and corporate documentation. It must be 

noted that the list is an aggregation; a single actor may perceive the severity of causes of iteration 

differently in the PD units under examination based on his/her own experience. 
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Figure 6.13 Classified causes of iteration (Kantomaa, T.T.) 

“Lack of design responsibility”, “Lack of designer responsibility”, “Poor coordination” and “Poor 

communication” together results in “Deficiencies in thinking over the design entity”. “Delays in other 

projects”, “Schedule pressure” and “Process concurrency” are all related to scheduling. 

The next chapter presents solutions on managing the causes of iteration. 
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7 MANAGING ITERATION IN PRODUCT DEVELOPMENT 
 

The previous chapter listed, described and classified the causes for iterations in the company’s product 

development environment. This chapter elaborates more on these issues, provides insights in how to 

manage process behavior taking into consideration the adverse dynamics of process control mechanisms, 

and a framework which aims at early iterative development for avoiding large scale iterations later on in 

the development process. 

7.1 General insights 
 

Causes under management control and influence could be directly mitigated if the cause-and-effect 

relationship is well understood. Project planners find it seductively easy to ignore the adverse dynamics 

created when a project falls behind and actions are taken to bring it back on schedule. Overly aggressive 

plan can actually make the performance of the project worse. 

Actions should be taken to minimize the rework cycles consequences. Specifically, what should be done 

according to theory is to: 

• Improve quality and reduce errors, even if those efforts reduce productivity. Doing work fewer 

times, even at lower productivity, is generally beneficial. One approach is to slow down and do 

work right the first time (i.e., reduce work intensity), even if this might cause some “slacking off”.  

• Recognize the existence of undiscovered rework and avoid its consequences, primarily the “errors 

create more errors” dynamic. Undiscovered rework can be reduced, for example, by prioritizing 

rework detection and correction over starting new work.  

• Early testing made to discover problems rather than testing to pass tests can also reduce rework 

cycle consequences. 

• Avoid the tendency to start downstream work too early and thereby increase unplanned 

concurrency and reallocate “excess” staff that will be needed later when the rework is discovered. 

Companies often overlap development activities to compress total lead time. This can lead to 

increase in the amount of “corrupted” work. 108 

Managers can significantly improve project performance through efforts to manage ripple and knock-on 

effects; how managers respond when the existence of an infeasible initial plan is discovered, or when 

changes or other risks materialize, has a significant impact on project dynamics. The best approach to 

getting the project back on track is not always obvious. From a dynamic systems perspective, this is 

particularly difficult to confirm because the strengths of the feedback loops differ across projects and are 

dynamic during projects. Heuristics for managing project dynamics to improve performance are difficult to 

create. Each project is different, so there is no specific advice such as “use x% overtime while hiring y% 

more staff”. The following guidelines from theory should be considered with discretion:  

 Ease performance targets, such as by slipping the completion or milestone deadlines, increasing the 

budget, reducing the scope, or accepting a higher fraction of flaws in the final product. These 

actions reduce ripple effects by reducing the need to change project management.  

 A moderate amount of schedule pressure is optimal 

 Be aware of the adverse dynamics of increasing personnel, especially less experienced personnel 
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 Sustained overtime does not increase productivity in the long run (longer than 3 months)115 

 Extra time spent during requirements and design result in a higher quality project at lower cost 

 Use of “experts” can significantly improve project performance 

 An appropriate approach to problem solving can help to reduce iteration effort and by doing so 

minimize “unnecessary” iteration. Many authors suggest application of a breadth-first approach to 

explore the possible design space at a higher design level where alternative solutions are 

considered, in order to achieve a more comprehensive evaluation of feasibility and a thorough 

understanding of design interface issues. 107 

 In general, it is agreed that comprehensive exploration and refinement iteration at the early stage 

of the design process will offer “more chances for a hit” and help to cope with uncertainties and 

changing environment. A thorough exploration of design alternatives can help to reduce the cost 

and effort of requirement change implementation at later stages in the design process. 107 

7.2 How to diminish the impact of harmful iterations? 
 

The causes of iteration revealed by the ABC-analysis can be divided into four categories: process control 

mechanisms, organizational/ human related factors, design related factors and external factors. Process 

control mechanisms are under project management control. Organizational/ human related factors are the 

result of higher level organizational politics or the organizational culture and procedures. Changes in the 

organizational culture and procedures would require much effort. In this analysis design related factors will 

be considered as given. The process structure should reflect the degree of technological complexity, degree 

of technological novelty, degree of application area novelty and integration needs of the design. Iterations 

caused by external factors cannot be prevented by process-internal means, but market uncertainties should 

affect the process structure. 

Table 7.1 summarizes the properties and implications of these categories. 

Table 7.1 Properties and implications of the four different categories causing iteration (Kantomaa, T.T.) 
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The classified causes of iteration are now dealt with one by one starting with the least significant. The least 

significant causes are not contemplated far, because their meaning is small compared to the more 

significant causes. External causes of iteration are omitted, unless they should have an effect on the 

process structure. 

7.2.1 Production 
  

There are some examples of harmful iterations caused by assembly problems discovered in late phases of a 

PD project. One example is from a project where the falling frame was discovered to be difficult from the 

assembly point of view. This lead to a harmful iteration since extra design work had to be done. Production 

aspects have also caused some delays by implying conformity (making sure standard screws are used etc.) 

on a too early stage, some say. Also, on some occasions production considerations have not been delivered 

on time, or the representation of production has been missing in review sessions, which have led to slight 

delays. 

Nevertheless, in the past years, no big issues have arisen out of production considerations. Currently the 

assembly point of view is taken into account from the very beginning of PD projects via constant meetings 

where different design options are reviewed together with PD and production personnel, and through 

small iterative cycles the assembly problems are solved.  

7.2.2 Sourcing 
  

Sourcing has caused some iteration due trying to enforce preferred suppliers, which have not been able to 

deliver components with enough quality. These suppliers have then been changed to others, which have 

resulted in extra verification rounds. This has also caused delays, which are the more substantial effects 

sourcing considerations have had on development. 

The procurement initiatives for ordering customized parts for prototypes go through sourcing department. 

Designers would want these components to be delivered as fast as possible from nearby. Sourcing wants to 

reach economies of scale and incorporate suppliers which are able to supply globally and with volume, and 

with a cheaper price than nearby suppliers. In many cases low cost countries (LCC) are emphasized, which 

naturally leads to longer delivery times. Compromises between development and sourcing department are 

in many occasions needed when balancing between speed of component deliveries and making deliveries 

from LCC countries.  

There is ongoing development in behalf of sourcing to streamline PCBA components selection process. The 

goal is to build a single PCBA component library where all components get an individual ID number. This 

will result in synergy, since at the moment designers have their own libraries which overlap with each 

other. Especially newly started designers will benefit from this as the libraries are ready for them. For older 

designers this can slow down the PCBA design process at first when they have to get accustomed to the 

new process, but in the long run it will speed up the design process. Also, applying the new process should 

diminish the amount of different PCBA components in use and improve the quality assurance of the PCBA’s. 

Nevertheless, in overall, if sourcing considerations are kept high in priorities, iterations and delays cannot 

be avoided. This is ok, though, as long as the consequences are understood. High-level organizational 

policies determine the sourcing departments influence on development. 
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7.2.3 Deficiencies in product specifications 

 
There have been deficiencies in product specifications because of five reasons, according to the 

interviewees; 

 Some parts in the specifications cannot be stated accurately in advance. These parts get clearer as 

the development proceeds. These parts of specifications are said to be evolving. 

 Some parts are intentionally left ambiguous for later updating for avoiding locking in specifications 

too early.  

 Making specifications is hard work and making them as accurate as possible and plain for the 

designers would require much more focus. 

 Some issues have been left vague because of wanting to avoid responsibility. 

 Communication problems have occurred. 

Some parts in specifications are said to be vague, conflicting or having non-transparent requirements, and 

other parts omitted completely. More responsibility in elaborating specifications and in some situations 

determination in decision making is longed for. Those parts of specification that are evolving should be 

clarified as soon as it is possible. There are deficiencies in this section, as designers state that it is either 

hard to communicate with people in charge of specifications (because of the complexity of the technical 

issues) or there is unwillingness to make decisions concerning some points in specifications. This can cause 

delays or harmful iterations when designers make their own conclusions about which direction to proceed. 

There have also been some deficiencies in determining cross-project specifications between profit centers. 

Deficiencies in product specifications do not mean the same as changes in product specifications which, as 

mentioned earlier, are mainly the result of changes in the product offering and positioning. Product 

specifications are the result of considerations between upper management, product management, product 

development and sales. Specifications development and requirements engineering could be a topic of a 

completely separate master’s thesis because of the broadness of these subjects, and they are not 

elaborated here further. 

7.2.4 Cost monitoring 
  

Deficiencies in cost monitoring cause problems practically in every project. Poor cost monitoring mostly 

leads to less harmful iterations which are not crucial for the success of the whole project. Still, there are 

some examples of projects which have run into real problems because the cost structure of the end 

product is at some point realized to be much greater than can be accepted.  

The final costs of components and pieces of sheet metal are difficult to estimate during the product 

development project. The costs occurring when ordering parts for prototypes during PD projects are not 

the same as they will be when the product is under production and economies of scale are reached. This 

makes estimating the cost structure of the end product difficult. 

Nevertheless, this area needs more emphasis and effort especially because cost monitoring is a process 

control mechanism, which means it is under management control and influence. Hence, the negative 

effects of poor cost monitoring can be more easily mitigated than the negative effects of some of the other 

iteration causing factors. 
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7.2.5 Scheduling 
  

Deficiencies in scheduling have led to unrealistic schedules and insufficient schedule details, which have led 

to rework and delays. Deficiencies in scheduling also lead to difficulties in planning resource consumption. 

In some cases unrealistic schedules can be the result of lack of references; how long does it take to develop 

platform software to the point where it can be released? But in most cases it is just a question of not 

putting an effort to make detailed schedules, or if they are done in the beginning of projects they are not 

updated during the execution of projects. To be able to sequence activities properly detailed schedule 

information is needed. Poor scheduling and poor communication can lead to asynchronous development; it 

especially involves other functions and global PD projects. Other functions may start their activities before 

they actually should. This leads to later iterations for other functions: manuals, service part lists, production 

etc. 

There is a great need to emphasize detailed scheduling in projects since there have been uncertainties in 

different functions about the readiness of certain projects. In many occasions it is not enough to inform in 

what phase the project is, rather detailed information is needed about what different tasks have or have 

not been done and is the design information final or not. Other functions may intervene with the product 

development project too early, for not wanting to be the last ones to finish. This leads to iterations to PD 

since the information once fed to these functions needs to be refreshed by the designers later on.  

HOW TO IMPROVE SCHEDULING 

Timetables should be done from bottom to top. This means the project manager should make the project 

schedules in detail. By doing detailed schedules the project management gains arguments against 

predetermined sales release date that has been handed from top to bottom. The schedules should also be 

updated during the execution of projects, which is depicted in figure 7.1. 

 

Figure 7.1 Detailed schedule which is updated on a continuous basis (Kantomaa, T.T.) 

Detailed schedules also assist in keeping the process rate constant. Generally speaking, in any kind of 

constant process the best efficiency is achieved by keeping the process rate constant, whereas deviations 

are to be avoided. Many projects face schedule pressure towards the end of the project when it is realized 

how much work still needs to be done. On the other hand, in the beginning of the project there might be 

no sense of urgency. These are the result of not having detailed schedules and clear milestones, and lead to 

possible slacking-off in the early phases and schedule pressure in the later phases of a project.  
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Perhaps the schedules should also be varied. There would be three timetables: optimistic, realistic and 

worst case. The benefits of this kind of scheduling would be to acknowledge the fact that the project might 

not be ready according to the optimistic schedules and prepare stakeholders, especially sales, for delays. 

Graphical Evaluation Review Technique (GERT) is an extension of PERT. It is one of the network-based tools 

proposed to deal with iterations under uncertain conditions. GERT is a procedure for stochastic network 

analysis in which activities have a probability of occurrence and their duration is treated as a random 

variable. 116 117 118 

In GERT the occurrence of major iterations leading to delays and rework in projects are evaluated in the 

beginning of a project. These iterations are given a probability and their effect in the case of realization is 

estimated, i.e., what kind of redesign path would they cause if they were to be realized. When the extra 

work and the probability of different occurrences are taken into consideration a more realistic schedule is 

achieved. If all the iterations are thought to happen with certainty the worst case scenario is reached. The 

benefits of this kind of scheduling would be to acknowledge the fact that the project might not be ready 

according to the optimistic schedules.  

GERT has not gained compelling acceptance in the NPD management. Given that GERT requires an up-front 

definition of the process structure for its analysis, it may not be convenient in exploring process structure 

alternatives. That is why GERT should not perhaps be utilized in the company to its fullest extend taking 

into consideration every possible iteration cycle.  

IN CASE OF ITERATION 

Nevertheless, what would be reasonable is to make new/updated schedules whenever a need for a large 

scale redesign occurs, i.e. to schedule redesign paths. These redesign paths should be communicated to all 

stakeholders, including project sponsor and STECO, for making sure enough resources are committed for 

the project and that unrealistic time pressure is not directed to the project when large scale iterations do 

occur. There are examples where communication has been done poorly in case of realized redesign needs 

which has lead to insufficient resources being at the projects disposal. Making redesign paths and new 

schedules would also reveal delays caused to other design areas besides of those that are concerned with 

redesign, as well as to other functions, and by communicating these issues properly these resources could 

be released to other use. These measures leave enough time for development, hold back sales, increase the 

efficient use of resources, and hold back other functions from intervening with development too early. 

Figure 7.2 depicts a redesign path. 

                                                           
116
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Figure 7.2 Iteration occurs and the project is rescheduled accordingly (Kantomaa, T.T.) 

In case of large scale iteration it is important that: 

 the amount of extra work is understood 

 schedules are updated 

 the need for extra work and new schedules are communicated to STECO and project sponsor to 

ensure sufficient amount of resources and to avoid excess schedule pressure 

 the delays and new schedules are communicated to design areas excluded from the redesign path 

and to other functions to increase efficient resource usage (these resources may be used 

elsewhere) 

These actions guarantee proper activity sequencing, relieve time pressure on the product development 

team which assures quality targets are met, make sure the project has the resources it needs for the 

completion of the project and increase efficient resource usage. 

The amount of extra work is understood when project management, principal designers, and designers 

communicate with each other. If detailed schedules have been made in the beginning of a PD project, 

estimating the total needed extra work gets easier. 

Once the amount of extra work needed is comprehended new schedules should be made. These schedules 

should incorporate the redesign path. The length of the redesign path is not the same as the delay for the 

whole project unless the redesign path is on the critical path. 

The communication of these new schedules becomes very important, especially to sales, STECO and to 

project sponsor. Sales can put a lot of pressure on product development by promising sales release dates. 

By informing STECO and project sponsor it is assured that proper resources are guaranteed until the 

completion of the project and that resulting time pressure from unrealistic schedules is relieved. 
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After the project the progress of the project should be assessed to find out where the most deviations from 

the plans occurred and analyze the causes to those deviations. This would help in the future scheduling and 

process improvement efforts. 

To summarize, project schedules should be scrutinized at three stages during a project:  

1. Upfront, to adjust traditional estimates based on known or expected uncertainties from typical 

projects. 

2. During the project to adjust to any changes that have occurred and to keep the schedules updated. 

3. After the project to assess where the most deviations from the plans occurred and analyze the 

causes to these deviations.  

 

7.2.6 Deficiencies in thinking over the design entity 
  
Many problems and iterations in the company originate from deficiencies in taking into account all design 

related aspects. These problems can be allocated to deficiencies in the following areas: design 

responsibility, designer responsibility, communication and coordination.  

Deficiencies in these areas have led to: 

• not thinking thoroughly the application areas of the design and the following implications  

• not thinking thoroughly the application of a sub-concept in different design configurations  

• late arriving technical requirements  

• lack of integration between design teams 

• integration problems between module and cabinet designs 

• not stating implicit assumptions have caused problems 

Not thinking thoroughly the application areas of a design refers to, for example, not considering all related 

standards for a Marine application, which in turn results in late arriving technical requirements. Not 

thinking thoroughly the application of a sub-concept in different design configurations refers to, for 

example, not considering the cross-profit center application of a circuit board. Lack of integration has 

resulted in, for example, software problems encountered in hardware tests, which have not been resolved 

due to SW personnel not being present. The problem has been omitted simply by rebooting the HW, which 

leads to the SW problem being discovered later. The integration between module and cabinet designs has 

traditionally been a “no man’s land”. Not stating implicit assumptions from behalf of the people in charge 

of product specifications to the executing team has also led to some problems. 

The roles and responsibilities have not always been clear when design details for designers have been 

generated. There have also been design responsibility issues; who looks after the design entity? Also simply 

forgetting to take all things into consideration has lead to deficiencies in design specifications. Designers 

also play a role in this; they have to take responsibility over the design and think thoroughly the application 

of their design. 

Poor communication between designers has caused problems. There are examples where designers who 

are physically located next to each other have different assumptions on design details. At some point this 

information asymmetry is noticed leading to a harmful iteration. Designers not sharing information with 
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each other on a continuous basis will face problems later on. This applies to both designers in the same 

design area and to designers between design areas. This is something that occurs basically in every project.  

Poor communication and coordination has also caused problems concerning specifications. There have 

been some deficiencies in determining cross-project specifications between profit centers. Product 

management communication between profit centers is crucial to avoid these in the future. If a profit center 

commences a project that has interdependencies with another profit center’s project that is intended to be 

commenced much later the gathering of mutual requirements can be difficult. This is because people 

involved in the project which commences later in the other profit center can be occupied with other issues 

at the time when requirements should be gathered. There have also been situations where the people 

responsible for specifications have not been present in cross-profit center meetings where specifications 

have been dealt with.  

The lack of communication between project managers/principal designers in different profit centers leads 

to deficiencies in design specifications. There are examples of designs that are to be utilized in several profit 

centers, but the cross-profit center aspect is not taken into account. The application of that design is not 

communicated properly. In many occasions designers receive information from project management or 

from a principal designer later than needed to avoid iteration.  

Information exchange between project management and the project sponsor needs to be working properly 

for communicating the effect of changes in project pipeline for individual projects. 

Profit centers are also unaware of other profit centers’ past project experiences. Organizational learning 

suffers as a consequence. It has been said by the project managers that they do know what happens in 

other profit centers as long as they have personal contacts there. On these occasions project managers 

exchange information with other project managers or designers located at a different profit center through 

informal conversations. As soon as these contacts cease to exist the connection is lost.  

Communication in the PD environment within and between projects needs to be enhanced. All 

fundamental communication links in the PD environment need to work properly; product management, 

project managers, project sponsor, principal designers and designers need to be connected the right way.  

More integration is needed. In big projects at least, it would be better for people to get to know each other 

well in the beginning of projects. 

In the future more and more designing will be done in virtual teams; teams scattered around the globe. 

This means communication across project teams will gain more importance and managing projects 

becomes more challenging. 

The stage-gate model, which is used to synchronize development efforts within a project, cannot counter 

the problems faced by increasing coordination needs resulting from increasing cross-project 

interdependencies and the distribution of development efforts (platform thinking and globally dispersed 

development). A program management effort has just recently begun in the company for addressing the 

need for more communication and coordination between projects. 

INFORMATION ASYMMETRY 

Actively informing the development team about the reasons for different decisions is important. By making 

sure people understand why some decisions have been made many misunderstandings can be avoided and 
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motivation can be improved. A clear information asymmetry exists between project managers and 

designers. Some designers have accused some sudden changes in past projects for wrong reasons. 

Designers become frustrated if one single actor is constantly thought to be the cause for sudden changes in 

projects. Also, it is good to communicate the state of the project to the development team. For example, if 

the technical concept is still under refinement and changes are expected to happen, informing this to the 

development team diminishes frustration when the changes eventually happen. 

WELL DEFINED DEVELOPMENT PROCESS 

A clearly articulated development process acts as a master plan which defines the roles of each of the 

players on the development team. This plan informs the members of the team when their contributions 

will be needed and with whom they will need to exchange information. 

Network analysis (presented in chapter 3.3) could be used here for analysis purposes.  

For the network analysis, not just task inputs and outputs, but also information inputs and outputs should 

be defined. 

Network analysis would reveal: 

 where most of the iteration occurs 

 whether tasks are done in proper sequence 

 whether an actor or a task is acting as an information collector or as an information distributor 

 what nodes are especially important in the information flow 

A well defined development process also contains natural milestones corresponding to the completion of 

each phase. The timing of these milestones anchors the schedule of the overall development project and 

makes the scheduling of projects easier and timetables more realistic. 

A well defined development process is a benchmark for assessing the performance of an ongoing 

development effort. By comparing the actual events to the established process, a manager can identify 

possible problem areas for improvement. As such, a well defined development process would also help in 

measuring project success. 

 

7.2.7 Concept feasibility 
  

The concept development phase, as can be seen from the ABC-analysis, is one area that needs scrutinizing. 

The concept development phase is part of a slightly broader definition called the front-end process.  

The front-end process generally contains many interrelated activities, ordered roughly as presented in 

figure 7.3. Rarely does the entire process proceed in purely sequential fashion, completing each activity 

before beginning the next. In practice, the front-end activities may be overlapped in time and iteration is 

often necessary.  
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Figure 7.3 Concept development process
10

 

 

The concept development process includes the following activities: 

Identifying customer needs: The goal of this activity is to identify customer needs and to effectively 

communicate them to the development team. The output of this step is a set of customer need statements 

organized in a hierarchical list, with importance weightings for many or all of the needs.  

Establishing target specifications: Specifications provide a precise description of what a product has to do. 

They are a translation of customer needs into technical terms.  

Concept generation: The goal of concept generation is to thoroughly explore the space of product concepts 

that may address the customer needs. Concept generation includes a mix of external search, creative 

problem solving within the team, and systematic exploration of the various solution fragments the team 

generates.  

Concept selection: Concept selection is the activity in which various product concepts are analyzed and 

sequentially eliminated to identify the most promising concept(s). The process usually requires several 

iterations and may initiate additional concept generation and refinement.  

Concept testing: One or more concepts are then tested to verify that the customer needs have been met, 

assess the market potential for the product, and identify any shortcomings which must be remedied during 

further development.  

Setting final specifications: The target specifications set earlier in the process are revisited after a concept 

has been selected and tested and the final specifications are set. Finalizing specifications is difficult because 

of trade-offs - inverse relationships between two specifications that are inherent in the selected product 

concept.  

Project planning: At this stage a detailed development schedule is created, a strategy that minimizes the 

development time is formulated and the resources required to complete the project are identified.  

Economic analysis: The team, often with a help of financial analyst, builds an economic model for the new 

product. This model is used to justify continuation of the overall development program and to resolve 

specific trade-offs among, for example, development costs and production costs.  

Benchmarking competitive products: Understanding competitive products is critical for being able to 

successfully position new products. Benchmarking also provides a rich source of ideas for the product 
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design and production process design. Competitive benchmarking is performed in support of many of the 

front-end activities. 

Modeling and prototyping: Every stage of the concept development process involves various forms of 

models and prototypes. These may include, among others: early “proof-of-concept” models, which help the 

development team to demonstrate feasibility; “form-only” models, which can be shown to customers to 

evaluate ergonomics and style; spreadsheet models of technical trade-offs; and experimental test models, 

which can be used to set design parameters for robust performance. 

The phase of concept generation is very important; a good concept is sometimes poorly implemented in 

subsequent development phases but a poor concept can rarely be manipulated to achieve commercial 

success. 

STRUCTURED APPROACHES REDUCE THE LIKELIHOOD OF COSTLY PROBLEMS 

Table 7.2 shows common dysfunctions exhibited by development teams during concept generation 

according to theory, and compares them to practice. 

Table 7.2 Common dysfunctions exhibited by development teams during concept generation (Kantomaa, T.T.) 

 

A way to reduce the incidents of these problems is a structured method approach. This method encourages 

the gathering of information from many disparate information sources, by guiding the team in the 

thorough exploration of alternatives, and by providing a mechanism for integrating partial solutions. 

A structured method approach is presented in the theory part of this thesis in chapter 2.2.1 “The activity of 

concept generation”. More practical insights for improving concept feasibility are presented in chapter 7.3 

“Framework for iterative development”. 
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7.3 Framework for iterative development 
 

The framework presented in this chapter aims at early iterative development to improve concept 

feasibility, early discovery of technical problems to diminish the amount of rework and repeated work, and 

shows how market uncertainties should affect the process structure. Through these measures reduced 

resource consumption and project lead time should be accomplished. 

7.3.1 Project uncertainties 

The previous chapter presented a generic concept development process. Project uncertainties, on the 

other hand, are distinct for every project and should be managed differently from project to project in 

order to diminish their impact. The overall process structure should reflect project uncertainties. Project 

uncertainties that cause schedule risks associated with product development projects can be controlled 

through iterative development. Figure 7.4 depicts uncertainties that should affect the process structure. 

 

Figure 7.4 Project uncertainties (Kantomaa, T.T.) 

In figure 7.4 those uncertainties, which should affect the planned process structure, are presented. There 

are other uncertainties as well, but in most cases they cannot be prepared to. These uncertainties include 

supply problems, resource availability, delays in other dependent projects, regulatory issues, unknown 

uncertainties etc. 

Recognized market uncertainties should affect the planned process structure. Expected dynamics in the 

markets are countered by not freezing specifications too early and by trying to gain market feedback as 

soon as possible. In other instances changes in markets may become as a total surprise, in which case they 

do affect the realized process structure, but not the planned one. 

When there is less uncertainties the process structure can be straightforward, but when uncertainties exist 

iterative development should be employed. 
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7.3.2 Iterative development model 

The staged process is called the “waterfall” process by some practitioners because of its one way nature. 

The mindset in a staged process is straightforward and once a stage is complete, it is generally difficult to 

go back.  

Waterfall model has the underlying assumptions: 

 the requirements are known in advance of implementation 

 the requirements have no unresolved, high-risk implications 

 the requirements will not change very much during development 

 the right architecture for implementing the requirements is well understood 

If all the above assumptions are met, then waterfall model becomes applicable. Complete, consistent, 

testable specification in the beginning of development is not a feasible idea for many product development 

projects, though. Such technical risks may also exist, which need to be addressed already in the early 

phases of development, rather than in the integration and test phase to avoid problems later on. This 

chapter presents a framework for iterative development in the case of PD projects having some degree of 

technical risks along with market risks. 

Iterative development has the following features: 

 Concurrent rather than sequential determination of specifications, technical concept, and to some 

extend detailed design specifications 

 Risk identification and determination of risk mitigation approach: simulation, prototyping, testing, 

market feedback 

 Using risk considerations to determine the level of effort to be devoted to risk mitigation efforts 

 Using risk considerations to determine the degree of detail in design specifications and the way to 

allocate resources 

The risks faced in a specific development project are identified and prioritized. The risk identification is 

based on both past experience and recognized uncertainties. Uncertainties that are recognized help 

identify risks once probabilities of occurrence and potential impacts are assigned to those uncertainties. 

Basically there are two kinds of risks in this framework:  technical risks and market risks. After risks have 

been identified they are then prioritized and each technical risk is assigned to a planned iteration cycle and 

to a design review. Technical risks can be mitigated by means of simulation, prototyping or testing (testing 

partial entities or components). Market risk stems from whether design specifications can meet customer 

needs; if not, a technically successful product could fail in the market. Market risks are addressed by not 

freezing specifications too early. This means specifications can be changed in case of necessity and this is 

communicated to the development team in order to avoid frustration in behalf of designers in case of 

specification changes. If market uncertainties cause high risk of specification changes it may be beneficiary 

to allocate resources to development efforts where the risk of specification changes is low. 

Market risks can be managed by iterations that allow market feedback during the design process. This 

feedback includes elicitation of customer demands and information about competitor actions. High-priority 

risks are assigned to specific planned iteration cycles and reviews. Iteration cycles provide feedback which 

reduces risk in the next round. The result is a product development process that addresses a project’s 

major development risks. 
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Figure 7.5 depicts risk identification and mitigation scheme. 

 

Figure 7.5 Risk identification and mitigation scheme (Kantomaa, T.T.) 

Using risk considerations to determine the level of effort to be devoted to risk mitigation efforts means 

that, there is a point after which risk has been minimized to an acceptable level. Spending significantly 

more time and resources than this is an overkill leading to late market entry and decreased market 

penetration. Spending significantly less time than this is an under kill, leading to premature development 

with significant delays due to unanticipated problems. In some instances while a risk may have a high 

profile it may not be feasible to mitigate it. In case of a technical risk this means that prototyping required 

to mitigate the risk would require so much effort that it is unfeasible to do so. 

Using risk considerations when determining the degree of detail in design specifications refers to the fact 

that, making precise specifications in advance of development involves a high probability of locking in 

wrong specifications, while the risk of not making precise specifications is low. However, sometimes precise 

specifications are needed for the development to proceed. On these instances is must be communicated to 

the designers that the specifications may still change. This way frustration on behalf of designers in case of 

specification changes may be avoided. 

Incremental commitment of resources to the development of the system, rather than fully committing 

resources to different development tasks from early on, is a great benefit that the iterative development 

model also brings. Development efforts can be focused on those parts of the design where the risk of 

design specification changes is low, instead of parts where the risk of design specification changes is high, 

or the resources can be used in another project or sub-project in case the risk of design specification 

changes is high. Figure 7.6 illustrates an iterative development process.  

 

Figure 7.6 Iterative development process
96
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The iterative development process repeats regular steps, including planning, specifications development, 

concept development, detailed design, and integration and testing. The process is flexible; the actual 

number and span of loops can vary. 

Figure 7.7 illustrates a staged process. The company uses this kind of formal process. Figure 7.7 also 

illustrates a functional development process on a rough level. This process description is closer to reality in 

the company. It can be seen that the functional process is actually iterative. The projects are, in almost 

every case, late in respect to the planned schedules in the company. 

 

Figure 7.7 Formal and realized development process (Kantomaa, T.T.) 

 

Figure 7.8 depicts the suggested iterative development process. 

 

 

Figure 7.8 The suggested iterative development process (Kantomaa, T.T.) 

The suggested iterative development process puts emphasis on early iterative development and risk 

mitigation. This may increase the time spent in early phases, but this effort is rewarded in later phases 

where, through risk mitigation, less problems are faced. Risks are identified and risk mitigation approach is 

determined. Risks can be mitigated through simulation, prototyping, testing or from gaining market 

feedback. Iteration cycles are then planned. After reaching the point where risk has been minimized to an 

acceptable level, the development team moves on to the next iteration cycle.  
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Specifications, technical concept, and to some extend detailed design specifications are determined in 

concurrent rather than sequential fashion. This results in faster response time and time compression. Risk 

considerations are used when determining the degree of detail in specifications. However, sometimes 

precise specifications are needed for the development to proceed. On these instances is must be 

communicated to the designers that the specifications may still change. This way frustration on behalf of 

designers in case of specification changes may be avoided. Evolving parts of specifications are to be 

resolved as soon as possible, which means the response time of product management should be short and 

responses should take on a clear stance on the issue at hand. It is easier to take a clear stance on an issue 

when it is realized that the specifications are not frozen and may still be changed later on. 

On the other hand, if there is a high risk of specification changes it may be beneficiary to allocate resources 

to development efforts where the risk of design specification changes is low. 

Table 7.3 compares phase-gate model to iterative model. It is noteworthy, that these two are different 

kinds of models. The phase-gate model is a business process model and the iterative model is a functional 

process model. Applying the iterative model on top of the business model would combine the benefits of 

them both. 

Table 7.3 Comparison of phase-gate and iterative model (Kantomaa, T.T.) 

 

7.3.3 Iterative development model for addressing technical risks 

Technology projects verify technologies for product development projects. However, PD projects are not 

always preceded by a technology project and those PD projects that are will still always have some 

technical uncertainties left to be resolved.  

The risks faced in a specific development project should be identified and prioritized. There are often one 

or two high-probability risks that are likely to cause harmful iterations if they are not addressed. Once risks 

have been identified and prioritized, each risk is then assigned to a planned iteration cycle. The result is a 

product development process that addresses a project’s major development risks early in the process. 

Generally projects proceed to the detailed designing phase too fast and in a too straightforward way with 

concepts that have not been tested properly. Technical uncertainties having high probability of occurrence 

and severe consequences in case of occurrence should be tested in the beginning of PD projects before 

advancing too far in the detailed design process. If technical uncertainties can be solved in the beginning of 

development later iterations are avoided. 
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A lot more attention is required in the concept development phase. The detailed design phase should not 

proceed far until the risks associated with the technical concept have been dealt with. There will always be 

risks left for the actual prototyping (integration) phase, but the risk-level must be attempted to be 

minimized. When the management believes the risks associated with the concept have been diminished to 

an acceptable level, another iteration cycle is not considered to be productive or time and resources don’t 

consent to any more iteration cycles, the project proceeds further to the detailed design phase. The 

opportunity that the iterative model gives is the possibility to learn early in the process, at a point in the PD 

process where design modifications are made much more easily than in later phases of the PD process. This 

will considerably speed up the learning process and by doing this, also speed up the development process 

itself. 

Also smaller technical uncertainties should be resolved if feasible as the detailed design process proceeds. 

Especially technical novelties should be scrutinized. Technical novelties include novel/modified solutions 

from suppliers. In many instances a project enters prototyping phase and faces difficulties since there is a 

technical problem in the prototype that cannot be located (too many uncertainties are being tested at 

once) or has been located, but it takes time to resolve it and tests stand still. These situations can lead to 

futile changes to the design. There are examples of technical problems revealed in the prototyping phase 

where the cause of the problem has not been known. This has lead to multiple concurrent design changes 

for solving the problem, when only one design change might have resolved the problem. These minor 

technical problems will not result in changing the technical concept but they can still cause a lot of extra 

work. The later they are discovered the more extra work they cause. In some cases it would be wise to test 

more before integration tests and enter this phase with fewer uncertainties. The basic principle of agile 

product development is to test whenever it is feasible. Although agile product development is aimed at 

developing software, its basic principle is also applicable here. Some seasoned designers state this is exactly 

what they do – they try to resolve every individual problem they encounter to the fullest extend before 

advancing further to ease later development efforts. Of course, some uncertainties are always left to the 

integration phase, but the fewer uncertainties there are the easier the integration phase is to manage.  

These iteration cycles don’t necessarily solve the technical uncertainty completely – in many occasions it is 

enough to gather approximate information about a certain solution to aid in the development. The same 

applies with simulations. Simulations or virtual prototyping is an essential part of this framework. 

Simulations are used prior to prototyping for gathering approximate information about the behavior of a 

system. Complex simulations cannot be made for the whole system; it is still out of reach of the present 

simulation tools to simulate the behavior of a complex system with many interdependencies (for example, 

Electromagnetic compatibility of a system). Therefore, simulations can only be used to some extent. 

Nevertheless, the use of simulation tools is a good way to get estimates of the behavior of a system to set 

the approximate direction for development. Also, it can be used to compare alternatives against each 

other; even though the individual results of different alternatives are not accurate the best alternative can 

be spotted by comparing the alternatives against each other. This is the case for example, in thermal 

simulation where mechanical concepts are compared with each other. Accurate results can be obtained 

only by physical tests. Partial prototyping reveals some aspects, but the complete behavior of the system 

isn’t uncovered until the integration tests commence. There are ongoing efforts in the company to get 

simulation tools of different design areas integrated and to make simulation more efficient. 
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The ways to mitigate technical risks before full integration include constructing partial prototypes, 

exploiting partially existing products in prototyping, using virtual prototyping (simulation) or by making 

component tests.  

During the development technical uncertainties relating to the integration of the design are tested if 

feasible. Feasibility in this context means weighting the risks associated with a technical uncertainty against 

the efforts needed to resolve the technical uncertainty. Basically, it is said, everything can be tested; it is 

just a question of how accurate information can be gained from the tests and how much effort do the 

testing arrangements require. Nevertheless, the fewer uncertainties there are in the integration phase the 

more smoothly the integration will go.  

RAPID PROTOTYPING 

The purpose of rapid prototyping is to rapidly gain feedback about the feasibility of the technical concept. 

When incorporating new technology into the product technological uncertainties may exist. Rapid 

prototyping is used to detect and counter technical risks as soon as possible. The scheme here differs from 

piloting, since when entering normal piloting phase in PD projects the design is in many cases quite close to 

the final design and many areas in the design have already been very much detail designed. Rapid 

prototyping on the other hand utilizes prototypes that have not been detail designed anymore than needed 

to be able to construct a functional system or a part of it.  The basic scheme in rapid prototyping could be 

to put aside for a while concurrent engineering principles, and concentrate solely on few main technical 

issues. This means the standpoints of production, sourcing, PE and service are thought less, and detailed 

design is applied only to the areas where needed to be able to conduct rapid prototyping. The goal is to 

rapidly encounter main technical uncertainties and mitigate the risks associated with them. 

Rapid prototyping can also be used in situations when there are many concept options to gather 

information which will help in comparing the concept options between each other. 

TESTING IN THE EARLY PHASES OF DEVELOPMENT IN PREVIOUS PROJECTS 

In some occasions projects have not been able to use testing facilities and resources in the early phases of 

development because of other ongoing projects testing needs. 

This might be a reinforcing loop. If early iterative development is not employed enough in the early phases 

technical problems are realized in later phases where they will consume more resources to be resolved 

than in the early phases. This again prevents these resources being used in other projects which are in their 

early phases. 

HOW TO STREAMLINE TESTING? 

Testing in the integration phase in the company is basically 90% prototype testing and 10% verification 

testing. Scheduling prototype testing is very challenging since it is hard to know beforehand what problems 

the tests will reveal. When problems turn up an iterative process between testing personnel and designers 

begins, and the length of this process is in many times unknown.  

Partial entities should be tested as much as feasible to resolve problems before entering full integration 

tests. Much of the partial testing can be done in other places than in the actual high power testing facilities 

and by doing so the time needed to occupy high power testing facilities diminishes.  
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Testing specifications should be clear from the beginning of tests. It is not always so. Time is in many 

occasions wasted in situations where the equipment under test has been installed and the tests could be 

commenced, but there is no clear notion on what exactly should be tested.  

The use of simulation tools is also an area which has promising future prospects. There are ongoing efforts 

in the company to get simulation tools of different design areas integrated and to get simulation more 

streamlined.  

7.3.4 Product offering and positioning 
  

It has been said that one of the most harmful causes for iterations in the company are changes in the 

product offering and positioning. These changes can be caused by competitor actions, changing customer 

demands, upper management decisions, or late requirements from different profit centers.  

This category would be easily deleted from the list of causes of iteration by making a guideline that after 

gate 2 the very general requirements and main features of the product under development cannot be 

changed. Only the evolving parts of specification and some smaller issues would be allowed to be specified 

during the detailed design phase. In some projects this has actually been the case; the specifications have 

been frozen after gate 2 and changes have not been allowed. Nevertheless, it should be kept in mind that 

the products under development have long life cycles so the performance and quality of products is more 

important than the speed of development, even though speed can give a competitive advantage. 

Changes in product positioning can also result from poor initial product positioning, which is later corrected 

by management decisions. Late requirements arriving from different profit centers (especially SOLAR, 

WIND) can cause changes in the product attributes. Late requirements arriving from these profit centers 

are mainly due to lack of cumulative market knowledge and the fact that these profit centers operate in 

more dynamic markets compared to the better known and less dynamic industrial markets.  

7.3.5 Iterative development model for addressing market risks  

Market risk stems from whether design specifications can meet customer needs; if not, a technically 

successful product could fail in the market. Market risks are addressed by not freezing specifications too 

early. This means specifications can be changed in case of necessity and this is communicated to the 

development team in order to avoid frustration in behalf of designers in case of specification changes. 

Market risks can be managed by iterations that allow market feedback during the design process. This 

feedback includes elicitation of customer demands and information about competitor actions. High-priority 

risks are assigned to specific planned iteration cycles and reviews. Iteration cycles provide feedback which 

reduces risk in the next round. The result is a product development process that addresses a project’s 

major development risks. 

There are tradeoffs underlying the point of specification lock-in. The point of specification lock-in should be 

based on market dynamics, the flexibility of the design process, and available time. Also, because the 

competitiveness is based more on the performance of the products rather than the speed of development, 

the actions of competitors in the market should be monitored closely, and thus later specification lock-in 

should be allowed.  

Delaying specification lock-in can improve the product's attractiveness and sales potential. Delaying 

specifications lock-in can also translate into an opportunity cost of lost profits. Delaying the finalization of 
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specifications would leave less time available for integration based on finalized specifications. Since in the 

integration phase product design details are optimized resulting in better quality or lower unit variable 

cost, delaying commitment results in opportunity costs.  

INNOVATION TO COMPLETELY NEW MARKETS 

When innovation is launched into completely new business the innovator must learn quickly about 

segments or customer needs and preferences. Iterative development may encourage and enable rapid 

experimentation and knowledge acquisition to innovate into this uncharted area. When market risk is 

included it is important to get feedback from the markets and customers early on; it’s not just making sure 

the product works correctly in technical perspective, it’s about making sure the right features are 

incorporated, and customer needs and wants are satisfied.  

When satisfying customer needs and wants implicit assumptions may cause problems for new market 

entrants. Implicit assumptions are not stated explicitly when requirements are gathered from customers, 

instead customers make the assumption that the provider of some product naturally takes these things into 

consideration. This is especially common in software development. Some things are excluded in 

requirement statements because assumptions are made that these are naturally included in the software 

code, or when some things are thought to be so fundamental people don’t see the need to elaborate on 

them. Another problem is caused by the IKIWISI syndrome. IKIWISI is an acronym from “I’ll know it when I 

see it”. It means customers are unable to specify their needs, until they get a hold of a physical product. 

When a company enters new markets, it is important to address these issues rapidly. They are addressed 

the easiest way when the customer gets a hold of a physical product and is able to test it in real use 

environment. This is why the need for rapid piloting is highlighted when market risk is present. This is also 

in accordance of lean value adding methods, where you add touch points to the customers to test what 

they actually want. The purpose of rapid piloting is to rapidly gain feedback from the markets about how 

the features of the product satisfy customer needs and to detect any unmet needs. Pilots may also uncover 

implicit requirements within the company. 

7.3.6 Set-based approach  

Critical risks that cannot be mitigated through iterative development and testing in the concept 

development phase can be mitigated through set-based designing. Set-based approach is used to make the 

design flexible for changes by allowing a sub-concept to be changed to another without major design 

modifications if a risk associated with the preliminary sub-concept is realized. If a technical risk is realized in 

a later phase there are other design options that can be used through small changes to the design.  

Set-based approach can also be used for the purpose of gaining a second source for the primary 

component. Although second source strategy is greatly emphasized in the company there are situations 

where two components are compared against each other in terms of quality, cost and applicability and an 

exclusive design choice is made, i.e. the other option is excluded from being a second source. This doesn’t 

have to be the case. The design could be made flexible enough to include the unselected component as a 

second source, if wanted. In some cases this would require mechanical design to allow the use of either 

design option, and thus the design should be a bit more spacious.  

In case of market risk set-based approach can be used for generating multiple concept options. After 

enough market feedback has been gained, one concept is chosen for further development.  



Kantomaa, T.T., Managing iterations in Product Development, Master’s Thesis 

126 
 

8 CONCLUSIONS 
 

This master’s thesis started out with a very comprehensive theoretical background. The theoretical part 

starts with general product development theory, covers Lean Product Development (LPD), process 

modeling and then moves on to cover theory about task level iterations. The theoretical part presents tools 

for modeling and analyzing the detailed design process through a Design Structure Matrix (DSM) 

representation, network analysis or a matrix representation, and presents task overlapping principles. It 

also presents the concurrent engineering model and the spiral development model. Modeling the detailed 

design process even on a rough level would have required so much time and effort that it was out of the 

reach of this study. System dynamics approach was then chosen.  

Main causes for iterations were identified in the empirical part of the study as well as many other areas 

needing improvement. Resolving some of the causes for iterations could be individual topics for other 

master’s thesis, and thus solutions to some of the causes are only slightly covered in this thesis. The 

proposed framework addresses the main causes for iteration in the company. The main parts of the 

framework were verified by discussing them through with project managers and seasoned designers, and a 

document containing events from past projects was also made to give examples of situations where the 

framework would have proved to be useful in retrospective investigation. 

The achievements of this thesis, besides of classifying the causes of iteration and presenting insights in how 

to manage them, was describing how product development projects in the company proceed from planning 

to sales release, documenting events from present and past projects, and pointing out other issues that 

need addressing.  

This thesis was based on theoretical, conceptual and qualitative analysis. The next step would be to try to 

quantify different iteration related phenomena. This would allow, for example, cost-worth analysis; what 

improvements would be expected from different development efforts and what would these development 

efforts require. Key Performance Indicators (KPI’s) would reveal the actual improvements. They could then 

be compared to the expected ones to analyze any inconsistencies. 
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9 SUMMARY 
 

This chapter starts by reflecting back on the research questions made in the beginning of this study. 

Main research question:  

 
 How to manage iterations in NPD to diminish their impact on project lead time and resource 

consumption? 
 

Auxiliary research questions: 

 
 What different kinds of iterations are there?  

 What causes them? 
 What are their features?  
 Which iterations are beneficial and which iterations are to be avoided? 
 What are their impacts on project lead time and resource consumption? 

 
 Which tasks/phases should be done through iterations and which through the straight forward 

way? 
 

 

The main research question has been answered on most parts by the framework. The framework doesn’t 

address all the causes for iterations comprehensively, because many of the causes for iterations and 

solutions to these issues could be individual topics for entire master’s thesis. Nevertheless the main issues 

are addressed.  

Auxiliary research questions “What causes them?” and “What are their features?” have been answered by 

dividing the causes of iteration into four classes (process control mechanisms, organizational/ human 

related factors, design related factors and external factors) and elaborating on all of them. Also their 

impacts on project lead time and resource consumption are addressed by classifying them according to an 

ABC-analysis. The question “Which iterations are beneficial and which iterations are to be avoided?” is 

answered by the iterative development model. It states that large scale iteration occurring late in the 

product development process is to be avoided whereas early short-cycled, feedback providing iteration is 

aimed for.  

The question “Which tasks/phases should be done through iterations and which through the straight 

forward way?” has been answered by stating that the process structure should reflect project 

uncertainties. The more uncertainties a project has the more iterative the process should be. If major 

uncertainties are not included in the project the development can proceed more straightforwardly. 

Topics for future master’s thesis could include  

 Specifications development and requirements engineering 

 Improving communication in the PD environment 

 Modeling the detailed development process 
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Perhaps the most interesting topic from above would be “Modeling the detailed development process”, 

and not to include only task dependencies but also information flows (making a network analysis) in the 

model. Detailed development process including information flows would clarify the roles in the 

development process and it would point out which information sources should give input to which tasks. 

Nevertheless, this cannot be done in a single master’s thesis because it would require so much effort and 

knowledge about the way products are developed, the technical issues and the nature of the product 

development environment in the company. It would simply lack the critical mass required for this kind of 

challenge. This is why this kind of master’s thesis could be a part of a bigger development project which 

would aim at modeling the process, and would be supported by the process development team in the 

company. 

FUTURE CHALLENGES 

To be able to confront its future challenges the mindset in the company has to be proactive instead of 

reactive. That is why these last paragraphs are devoted for predicting future challenges. 

It can be seen that there are three trends in the company’s product development: 

 Growth and increasing product scope 

 Increasing focus on global processes 

 A strong pressure on time to market 

In the past product scope was smaller, the development environment was far less complex, and the 

knowledge resided in fewer hands. Growth and increasing product scope has brought problems to the 

company and forced it to change and develop its processes and information sharing. Product development 

and application engineering knowledge is increasingly been scattered around the globe. Product 

information is also being globalized, and information sharing in this respect is being harmonized. This 

doesn’t mean that products are not localized anymore, though. Global product master data is collected 

after which localization can be commenced in respect to regional demands.  

These before mentioned factors lead to increase in global processes and puts emphasis on communication 

and coordination procedures and information sharing systems. Shortcomings in these areas may mitigate 

knowledge accumulation, and propose problems in respect of quality and reliability. 

Strong pressure on time to market requires a better understanding of the real specifications of a product 

from the perspective of the end-user already in the beginning of the development process. This puts an 

emphasis on requirements engineering and specifications development. Strong pressure on time to market 

also requires fast and efficient feedback methods to ensure product reliability. Fast and efficient feedback 

systems should be developed and used in the design process, especially in the case of strongly innovative 

products. Emphasis should not be solely on gaining feedback fast, but also with greater quality information. 

Early feedback can be enabled in the process by facilitating iterations with respect to performance, quality 

and reliability early in the design process. These iterations may come in the form of prototyping, virtual 

prototyping (simulating), and by confronting end users earlier with rapid piloting. Especially simulation has 

great potential in speeding up development by providing design information early in the design process.  
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APPENDIX A 

Some of the topics and related questions of the interviews are presented in this appendix. 

CAUSES OF ITERATIONS 

What causes harmful iterations? What are the effects and occurrence frequencies of different kinds of 

iterations causes? How could the effects of harmful iterations be diminished?  

DETAILED DESIGN PROCESS 

What are the interdependencies between design areas? What inputs are needed in which point from other 

design areas in the design process? What kind of task sequence changes would help different design areas? 

In which ways could design flexibility be increased? What problems are there in the detailed design 

process? 

CONCEPT GENERATION PHASE 

How are concepts created? Who are involved in this process and is enough time and resources spent in this 

phase? Are there alternative concepts that are pursued?  

SPECIFICATIONS 

How are specifications for product development projects formed? What deficiencies are there in forming 

specifications? What causes specification changes? How does the collaboration between product 

development and product management work? 

KNOWLEDGE ACCUMULATION 

Are there problems in accumulating knowledge in the company? Do project managers and designers know 

the events of past projects and the events from projects in other profit centers? Are there examples of re-

inventing the wheel in different PD projects? 

COMMUNICATION 

Are there communication problems in the company? What causes them? How could these problems be 

avoided in the future? 

PROTOTYPING 

Is more prototyping needed? What could and should be tested more in PD projects? Past examples of 

situations where testing has been neglected which has led to problems later on? 

COLLABORATION BETWEEN PRODUCT DEVELOPMENT AND OTHER FUNCTIONS 

LEAN PRINCIPLES 

EVENTS FROM PAST PROJECTS 
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APPENDIX B  

 

Questionnaire on how designers spend their work time 

Circle your design area 
 

main circuit              mechanics electrical engineering printed circuit boards 
 

Evaluate how much of your work time you spend on (altogether 100%). 
 
1 not work related issues (coffee breaks, waiting in projects…) 
__________(%) 
 
2 concrete designing (besides of actual design work, includes participating in tests, working on test 
equipment, productizing components with suppliers etc.) 
__________(%) 
 
3 abstract designing – not actual design work, but work that enables actual design work (meetings, 
conversations with colleagues about work related issues etc.)  
__________(%) 
 
4 other kinds of work related issues, that are not actual design work nor are they actual design work 
enabling work. These are mainly done to aid other functions (sales, sourcing, logistics, production, 
manuals etc.) These include, for example: 
 

• BOM (configurable BOM to ERP system), entering material codes and the data behind 
them in to the ERP system, going through data sheets of components 

• inbound logistics/purchase – making sure BOM’s work 
• Service Plan (service makes the service plan, but designers are also involved; designers 

have to choose spare parts and define them in kits. This also includes making 
maintenance tables (maintenance period tables)) 

• Technical data table 
• manuals, brochures (to fairs etc.), side stickers 
• Drive-Size sizing tools attributes (sales tool) 
• software rating database 
• working on model equipment (form only equipment for fairs, not actual prototypes) 
• working on training material (training center, product managers own shows) – service 

managers and product managers make the material, but they need information from 
designers 

• Participating in and preparing for gate reviews and design reviews  
• supporting sales (sizing cases) 
• that part of sourcing activities which could be done by some else than the designer itself  
• SOMETHING ELSE, WHAT? 

 
 
 
 
__________(%) 
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What are the five most time consuming activities from part 4 (starting with the most time consuming)? 
 
1 
2 
3 
4 
5 
 
List 3 of the most time consuming activities from part 4, that are in most cases (not always) made 
iteratively. This means information needs to be updated because the initial work is not based on 
finalized design information.  
 
1 
2 
3 
 
 
 

How much of your work is something that could be performed by someone else, rather than a 
competent designer (%)? There could be a handyman in your team who would take care of such work, 
which does not need actual design competence. 
__________(%) 

How much of your total work time do you spend on sourcing activities?  
__________(%) 
How much of this could be performed by sourcing? Meaning that if there was a component engineer, 
who would have enough technical knowledge on components, how much could he lessen your time 
spent on sourcing activities (percentage of time spent on sourcing activities, value between 0-100%)? 
__________(%)  

 

 

 

 

 


