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A full-duplex relay is spectrally more efficient than a half-duplex relay because

it uses the full band of available frequencies to receive and transmit signals

simultaneously. However, the loop interference arriving at the receiver of the

relay due to its own transmission is a major hindrance that must be overcome

before the idea of full-duplex relaying can be put to practice. The simple

technique of subtractive cancellation alone, in theory, could eliminate the loop

interference completely from the received signal. In practice, however, the

nonidealities inherent in the actual components within the relay transceivers

create less than ideal conditions for the cancellation to work perfectly.

This thesis studies the effect of such nonidealities on the performance of a

single-input-single-output (SISO) full-duplex relay. The primary focus is on

formulating an analytical framework that helps evaluate the feasibility of such

a relay. The outcome illustrates that a number of factors determine whether

the idea of a full-duplex relay with subtractive loop interference cancellation

can be implemented in practice. As expected, it is necessary to have an analog-

to-digital converter (ADC) with a large dynamic range at the receiver to ensure

that the incoming signal can be digitized with sufficient accuracy. Another im-

portant requirement is to have an excellent transmitter with a very small error

vector magnitude (EVM) because the contribution of the unknown random er-

ror in the transmitted signal to the loop interference cannot be canceled no

matter how accurately the incoming signal is digitized. Moreover, the physi-

cal design of the relay must, by itself, be able to provide a certain amount of

natural isolation between the transmitting and receiving antennas; otherwise,

the part of the loop interference resulting from the transmitter error alone can

be sufficient to drown the useful signal beyond recovery.

Keywords: full-duplex relay, loop interference cancellation, transceiver non-

idealities, analog-to-digital conversion, quantization, dynamic

range, error vector magnitude, OFDM
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Chapter 1

Introduction

Relaying, in communication systems, refers to the idea of using an intermediate

node positioned somewhere between primary communicating nodes (the source

and the destination) to facilitate the transfer of message-carrying signals between

them. The intermediate node is referred to as the relay node, and its job is to

receive incoming signals from the source node, do the necessary processing, and

retransmit them so that the communication between the primary nodes, which

might have otherwise failed, becomes successful.

In the context of wireless communications, the term relaying, more often

than not, refers to half-duplex relaying, which means that the relay node, at a

given time, either receives from the source node or transmits to the destination

node using the full band of frequencies available (and quite possibly a single

omnidirectional antenna), but does not do both simultaneously1 so as to avoid

interference.

As good as it may seem, half-duplex relaying suffers from two major draw-

backs, both of which arise from the need for allocating distinct time slots for

reception and transmission by the relay. First, there is a significant loss of

throughput compared to that which would be possible if the relay were not

required at all. Second, proper scheduling and time-synchronizing have to be

enforced among all the three communicating entities involved, which adds sig-

nificant complexity to the overall system.

Full-duplex relaying, which is a relatively new idea in the wireless context, is

one promising approach that aims at mitigating the drawbacks associated with

half-duplex relaying, especially the one concerning the loss of throughput since

it also translates to loss of spectral efficiency. Basically, a full-duplex relay refers

to the kind of relay which uses the full bandwidth to receive and transmit signals

simultaneously, thereby causing no loss in throughput.

However, the benefit offered by full-duplex relaying does not come free of

cost. Since the relay both receives from the source node and transmits to the

destination node using the same band of frequencies (but separate antennas) at

the same time, the interference caused by the relay’s transmission on its own

1More generally, half-duplex relaying also includes schemes in which the relay receives and

transmits simultaneously using different frequencies.
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received signal could easily disrupt the communication between the primary

nodes. This self-interference, commonly referred to as the loop interference, is

the major setback to the appeal of full-duplex relaying.

Signal processing theory, nevertheless, provides a simple yet elegant solution

to the problem of loop interference: since it is entirely possible for the relay to

store the signal that it has transmitted, it can compute a reasonable estimate

of the loop interference reaching its receiving antenna and subtract it from the

total received signal in order to have a close replica of just the desired signal

arriving from the source node.

1.1 Motivation

The solution just described is merely one way of suppressing the effect of loop

interference; nevertheless, it is probably the simplest one around and has an

additional advantage that it works entirely in the time domain. In theory, this

method allows a perfect cancellation of the loop interference no matter how

strong the interference is and hence offers the possibility of infinite isolation

between the transmitting and the receiving antennas in the relay. In practice,

however, perfect cancellation of the loop interference is next to impossible be-

cause the actual components that make the receiver and the transmitter in the

relay create less than ideal conditions for the subtractive cancellation technique

to work perfectly.

The first nonideality that comes into play is the finite word-length of the

quantizer within the analog-to-digital converter at the receiver in the relay. Since

any practical quantizer can provide only a finite number of quantization levels, it

cannot support an unlimited dynamic range that allows accurate representation

of all the signal components, possibly with large power differences, superimposed

within the arriving signal. And because the loop interference can be much

stronger than the useful signal coming from the source node, the limited dynamic

range featured by the quantizer might cause the useful signal to be drowned (in

the quantization noise) beyond recovery, which, in turn, leads to complete failure

of the subtractive cancellation technique (or any other cancellation technique for

that matter).

Even when the useful signal does not get drowned completely, the loss of

information due to quantization alone causes the estimate of the channel between

the transmitting and the receiving antennas of the relay to be less than perfect.

This, in turn, causes the estimate of the loop interference to be imperfect and the

subtractive cancellation becomes imperfect as well. This is further aggravated

by the fact that the various nonidealities present in the transmitter side add

unknown random errors to the signal supposed to be transmitted by the relay,

thereby causing the channel estimation error to increase and the effectiveness of

subtractive cancellation to decrease.

The motivation for this thesis comes from the lack of studies that sufficiently

consider the effect of the various nonidealities inherent in all practical systems on
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the performance of full-duplex relays with loop interference cancellation. Most

of the literature available on full-duplex relaying, while being of tremendous

help in pointing out interesting theoretical ideas applicable to mitigating the

effect of loop interference, simply fail to address the aforementioned issues of

limited dynamic range and imperfect channel estimation. The research in this

thesis aims to help bridge these gaps to some extent while trying to answer

the question of practicability – whether or not can the idea of loop interference

cancellation, which is essential for the functioning of full-duplex relays, be put

to actual practice.

1.2 Brief Survey on Full-Duplex Relaying

The theoretical basis for full-duplex relaying has been long established by studies

centered on the information-theoretic aspects (such as capacity bounds) of the

classic three-node relay channel [1,2]. While these early studies did not consider

specific transmission mediums, their results have later been extended for the

three-node wireless relay channel in [3] and for a full-fledged wireless network

with multiple relay nodes having full-duplex capability in [4]. Such studies do

illustrate the theoretical advantage of full-duplex relaying over half-duplex relay-

ing in terms of spectral efficiency; however they tend to assume ideal conditions

of operation and do not give due consideration to the issue of loop interference

at the relay receiver.

On a more practical level, studies on full-duplex relaying that are based

on actual measurements of the useful signal and the loop interference at the

receiving antenna of the relay (e.g., [5, 6]) have acknowledged the issue of loop

interference and discussed the difficulty of overcoming its effect. Some other

studies of similar nature (e.g., [7–9]) have considered the benefits as well as the

challenges of deploying full-duplex relays (for coverage extension) specifically in

digital television broadcasting (DVB-T/H), which is one of the many application

areas of orthogonal frequency division multiplexing (OFDM).

Then, there have been some analytical studies that fully consider the ef-

fect of loop interference while demonstrating the benefits offered by full-duplex

relays over their half-duplex counterparts. The analysis in [10–12], e.g., demon-

strates the rate-interference trade-off between full-duplex and half-duplex modes

of operation by comparing the two modes in terms of the achievable end-to-end

capacity in a three-node communication system. Furthermore, such studies typ-

ically explore possible ways of mitigating the effect of loop interference: [13],

e.g., introduces the idea of optimized gain control to minimize the effect of loop

interference. The analysis in a more recent study [14] shows that the best strat-

egy (in terms of optimizing the achievable rate) is to switch opportunistically

between the two modes of relaying, an idea which is therein referred to as hybrid

full-duplex/half-duplex relaying.

The advent of multiple-antenna techniques, also known as multiple-input-

multiple-output (MIMO), has been a major driving force for the research in
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full-duplex relaying. While the mitigation of the effect of loop interference in

single-input-single-output (SISO) full-duplex relays is limited mostly to sub-

tractive cancellation (with possible variations in the technique of estimating

the loop interference channel), the additional spatial dimension introduced by

MIMO, in turn, gives rise to a new class of techniques for mitigating the effect

of loop interference – the class of spatial suppression. Because this class encom-

passes several possible techniques, one can find the study of such possibilities

distributed across various research papers: comparative study of time-domain

subtractive cancellation and spatial suppression using, e.g., null-space projection

has been conducted in [15, 16], the possibility of using beamforming techniques

for spatial suppression of loop interference has been explored, e.g., in [17, 18],

and the analysis of a broad range of interference mitigation schemes has been

presented in [19].

1.3 Scope and Contributions of this Thesis

The scope of this thesis is limited to analyzing the effect of practical transceiver

nonidealities on loop interference cancellation in a SISO full-duplex relay in the

context of an OFDM system. The primary focus is on formulating an analytical

framework that, on the basis of a quantifiable performance metric, helps evaluate

the feasibility of a full-duplex relay based on the subtractive technique of loop

interference cancellation.

The novelty of this work lies in the fact that it includes a thorough analy-

sis of the combined effect of limited dynamic range at the relay receiver (due

to finite-resolution quantization of the incoming signal) and other nonideali-

ties in the relay transmitter upon the viability of full-duplex operation. The

primary contribution of this thesis is a closed-form expression for the signal-to-

interference plus noise ratio (SINR) after subtractive loop interference cancella-

tion in a SISO full-duplex relay with transceiver nonidealities. The expression is

based on applying the well-known Bussgang’s theorem (for nonlinearities with

Gaussian inputs) to model the quantizer at the relay receiver as a device that

merely introduces additive noise uncorrelated to the input signal. As a sec-

ondary contribution, a general method for computing the parameters of such a

model for any quantizer with deterministic quantization levels is presented, and

its application is demonstrated in determining the exact values of the signal-to-

quantization noise ratio (SQNR) for the specific cases of uniform and optimum

nonuniform quantizers. Last but not the least, this thesis outlines a systematic

way of applying the aforementioned SINR expression to determine the minimum

conditions that must be fulfilled in order to ensure that a full-duplex relay with

transceiver nonidealities performs satisfactorily in a practical scenario.
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1.4 Thesis Report Organization

The rest of this thesis report is organized as follows.

• Chapter 2 gives a general overview of the full-duplex relaying system which

forms the basis for the analysis presented in the remaining chapters.

• Chapter 3 presents a discussion on the various nonidealities typically present

in the practical components making a full-duplex relay while focusing

mainly on the model for the quantizer element that makes it mathemati-

cally tractable.

• Chapter 4 uses the results from Chapter 3 to develop a full signal model

of the full-duplex relay with transceiver nonidealities and presents the

derivation of the aforementioned expression for the SINR after subtractive

loop interference cancellation in such a relay.

• Chapter 5 verifies the validity of the SINR expression from Chapter 4 and

shows, by means of specific examples, how it can be used to determine the

conditions necessary for the full-duplex relay to perform satisfactorily.

• Finally, Chapter 6 presents the concluding remarks and some directions

for future work.
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Chapter 2

System Overview

This chapter forms the basis on which we develop our analysis in the following

chapters. We begin by choosing a specific scenario that depends on having a

relay node to ensure successful communication between two primary nodes in

the system. We then briefly describe the elements constituting the system while

gradually formulating the signal model along the way. Moreover, we discuss the

significance of loop interference inherent in full-duplex relays and include it in

the signal model of the system under consideration.

2.1 Full-Duplex Relay Link

Let us consider a wireless communication link (see Figure 2.1) operating in a

scenario in which the destination node D (e.g., a mobile terminal) is positioned

so far from the source node S (e.g., a base station) that it is improbable for it to

directly receive, at a useful power level, the signal transmitted by node S. The

relay node R is, therefore, positioned between the two nodes such that it can

receive the signal from node S and retransmit it at a suitable power level making

it possible for node D to receive the relayed signal and successfully decode the

message originally transmitted by node S. The relay node is equipped with

two, physically separated antennas so as to enable reception from the source

and transmission to the destination using the same band of frequencies at the

same time, i.e., full-duplex relaying. The dotted line between nodes S and D

represents the possibility of a weak channel, if any, connecting those two nodes

directly. A similar scenario is analyzed, e.g., in [20].

We base our system on orthogonal frequency division multiplexing (OFDM),

which is one efficient implementation of multicarrier modulation (MCM). The

basic idea in MCM is to divide a data stream (possibly with high informa-

tion rate) into a number of substreams and transmit them over parallel, ideally

orthogonal, subchannels obtained by dividing the available transmission band-

width in frequency. The number of substreams is chosen such that the bandwidth

occupied by each resulting subchannel is less than the coherence bandwidth of

the original channel, thereby ensuring that each subchannel experiences a rel-

atively flat fading and the transmission over each of them undergoes minimal

6



hSR hRD

hSD

hLI

S

R

D

Figure 2.1: A two-hop wireless link with a full-duplex relay. The structures of

nodes S, D, and R are further illustrated in Figure 2.2, Figure 2.3, and Figure

2.4, respectively. Symbols hSR, hRD, hLI , and hSD represent multipath channels

in the time domain.

intersymbol interference (ISI) [21].

We make a reasonable assumption that all channels in our system vary slow

enough in time allowing them to be considered as time-invariant over the dura-

tion of receiving one OFDM symbol. Similar assumption is made in the analysis

of OFDM-based relaying systems in general (see, e.g., [22]). If we then analyze

the operation of the communication link in the time domain on a symbol-to-

symbol basis, we can treat the response of each channel over the OFDM symbol

period to be that of a linear time-invariant system.

Let xS(t) be the continuous-time signal transmitted by the source corre-

sponding to one OFDM symbol, and hSR(t) be the impulse response of the

source-to-relay channel over the symbol duration. Then the signal reaching the

relay, excluding additive noise for the time being, is given by

sR(t) = hSR(t) ∗ xS(t), (2.1)

where ∗ denotes the convolution operation. This signal, after being processed

and retransmitted by the relay, should ideally be

xR(t) = xS(t− τR), (2.2)

where τR is the processing delay incurred by the relay. The signal finally arriving

at the destination via the relay-to-destination channel with impulse response

hRD(t) takes the form

sD(t) = hRD(t) ∗ xR(t). (2.3)

Depending upon its position, the destination node D may also directly re-

ceive, in addition to the signal transmitted by the relay node R, the original

signal from the source node S through the source-to-destination channel hSD(t).

In this case, the signal reaching the destination will be the superposition of the

signals from the source and the relay:

sD(t) = hSD(t) ∗ xS(t) + hRD(t) ∗ xR(t)

= hSD(t) ∗ xS(t) + hRD(t) ∗ xS(t− τR), (2.4)
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where the last step is the result of applying (2.2).

This superposition of two copies of the same signal with different delays

arriving at the receiver through different wireless channels will not pose a threat

to the correct functioning of the receiver as long as the total delay spread of the

so formed composite channel, including the relay processing delay τR, is kept

smaller than the duration of the cyclic prefix used by the OFDM modulator. In

fact, as long as this condition holds true, the signal from the source coming along

the weak channel hSD will appear to the destination receiver to be merely an

additional multipath component of the total incoming signal, thereby allowing

the demodulator to function correctly. In other words, the destination node does

not need to know at all of the existence of two separate transmitting entities in

order to correctly recover the transmitted information from the received signal.

The foregoing analysis takes for granted that the relay is able to regenerate

and transmit a perfect (delayed, but otherwise perfect) replica of the signal xS(t)

originally transmitted by the source. However, such is not always the case in

practice. Owing to the full-duplex operation of the relay, its receiving antenna,

at any given time, receives not only the signal transmitted by the source, but

also a second unwanted signal occupying the same frequency band as the first,

transmitted by the relay itself and meant to be received by the destination. This

amounts to the signal received by the relay being a composite of two signals,

one desired and another undesired, of which the latter may be significantly

stronger because of the physical proximity of the transmitting and the receiving

antennas in the relay. This undesired signal, as mentioned in Chapter 1, is

usually referred to as loop interference, and the channel through which it arrives

is termed accordingly as the loop interference channel. Unless the relay is able

to somehow estimate and cancel out the loop interference component from its

received signal, the relayed signal will not be a close enough replica of the original

signal from the source.

Let hLI(t) be the impulse response of the loop interference channel. Then

the loop interference at the relay receiver will be

iR(t) = hLI(t) ∗ xR(t). (2.5)

Having defined the noiseless versions of all signals arriving at the relay re-

ceiver, the composite signal received by the relay can now be finally written

as the superposition between the desired signal sR(t) given in (2.1), the loop

interference iR(t) in (2.5), and the additive white Gaussian noise wR(t) at the

relay receiver:

yR(t) = sR(t) + iR(t) + wR(t)

= hSR(t) ∗ xS(t) + hLI(t) ∗ xR(t) + wR(t). (2.6)

Before delving into the possibility of approximating and removing the loop

interference iR(t) from the signal yR(t), it is useful to look into the structures

of the communicating nodes in our system (see Figure 2.1). As we move on to

the next section that briefly describes the structure of each of the nodes S, R

8



and D, let us close this section by updating the expression in (2.4) for the signal

received by the destination node to include the additive white Gaussian noise

wD(t) at the destination receiver:

yD(t) = hSD(t) ∗ xS(t) + hRD(t) ∗ xS(t− τR) + wD(t). (2.7)

2.2 Structures of Communicating Nodes

Let us begin this discussion regarding the structures of communicating entities

in our system with the first node, i.e., the source node S. This node, as shown in

Figure 2.2, can be roughly considered to be consisting of three units: the data

stream provider, the OFDM modulator, and the transmitter front-end. The

first unit, as its name suggests, is responsible for providing a continuous stream

of data bits representing whatever information is intended to be communicated

by the source to the destination. For the purpose of this thesis, we need not

consider the details of how the bit stream is formed; mere assumption that a

continuous stream somehow gets there suffices. For the sake of completeness, let

us also include the functionality of forward-error-correction (FEC) coding within

this unit. The OFDM modulator then systematically generates a sequence of

complex symbols from the incoming bit stream. The characteristics of these

OFDM symbols are directly relevant for the purpose of this thesis; therefore, we

will consider, to some extent, the details of OFDM in Section 2.4. The complex

symbols coming from the OFDM modulator are used by the transmitter front-

end to modulate a continuous-time high-frequency carrier signal which is finally

amplified to a suitable power level and transmitted with an antenna.

The destination node (see Figure 2.3) is essentially an inverse structure of the

source node. The receiver front-end takes the radio frequency signal impinging

upon its antenna and recovers, in the ideal case, the exact OFDM symbols that

were used to modulate the carrier signal in the transmitter front-end of the

source node. We will consider the structures of these transceiver front-ends in

Section 2.5. The complex OFDM symbols recovered by the receiver front-end

are then used by the OFDM demodulator (which performs an inverse operation

of that carried out by the OFDM modulator) to produce an exact copy of the bit

data stream

provider

OFDM

modulator

transmitter

front-end

Figure 2.2: Structure of the source node S. The structures of the OFDM mod-

ulator and the transmitter front-end are further illustrated in Figure 2.5 and

Figure 2.7, respectively.
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data stream

consumer

receiver

front-end

OFDM

demodulator

Figure 2.3: Structure of the destination node D. The structures of the OFDM

demodulator and the receiver front-end are further illustrated in Figure 2.6 and

Figure 2.8, respectively.

stream originally supplied by the data stream provider in the source node. The

resulting bit stream is finally fed to the data stream consumer, e.g., the speech

decoder in a mobile telephone set, the details of which we need not consider

in this study. Reciprocal to the case with the data stream provider in the

source node, the data stream consumer is assumed to include the functionality

of necessary FEC decoding.

The relay node (see Figure 2.4), at its receiving and transmitting ends, con-

tains front-end units whose structures and functions are similar to those in the

destination and the source nodes. The receiver front-end in this case recovers the

complex symbols corresponding to the composite signal yR(t) in (2.6), and not

the desired signal sR(t) in (2.1). It is then the responsibility of the loop interfer-

ence canceler to approximate and remove the contribution of the unwanted loop

interference from the symbols recovered by the receiver front-end before passing

them on to the transmitter front-end for retransmission.

The simplest possible approach, at least in the theoretical sense, to removing

the contribution of the loop interference from the received signal is the technique

of subtractive cancellation in the time domain, which can be expressed in our

case as

ŝR[n] = yR[n]− îR[n]

= yR[n]− ĥLI [n] ∗ xR[n], (2.8)

receiver

front-end

transmitter

front-end

loop

interference

canceler

relay

processing

unit

Figure 2.4: Structure of the relay node R. The structures of the transmitter

front-end and the receiver front-end are further illustrated in Figure 2.7 and

Figure 2.8, respectively.
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where ĥLI [n] is an estimate of the loop interference channel hLI [n] obtained from

some channel estimation technique, îR[n] is the approximation of the loop in-

terference computed from the estimate ĥLI [n] and the transmitted signal xR[n]

known perfectly to the interference canceler, and ŝR[n] is the resulting approxi-

mation of the interference-free desired signal sR[n]. It should be noted that we

have expressed all signals here in the discrete-time domain (with n as the time

index) because channel estimation algorithms, as well as other functions to be

performed by the relay, almost invariably require that the signals be processed

digitally. As we will later see in Section 2.5, the conversion of the continuous-

time received signal to the discrete-time domain for digital processing, and the

conversion of a digitally processed signal to the continuous-time domain for

transmission, are accomplished within the receiver and transmitter front-ends,

respectively.

The relay processing unit, which appears before the transmitter front-end

in Figure 2.4, is an entity whose structure and function depend largely upon

the chosen relaying scheme. In the next section, we attempt to give a brief

overview of the possible relaying schemes, along with the functions that the

relay processing unit needs to perform in each case.

2.3 Relaying Schemes

Relaying schemes can be broadly classified into two categories: decode-and-

forward (DF) relaying and amplify-and-forward (AF) relaying. DF relaying, also

known as regenerative relaying, is defined as the relaying operation carried out

by relays which first recover the exact bit stream modulating the OFDM signal

received from the source, then regenerate the corresponding OFDM symbols

again to retransmit them. On the other hand, the definition of AF relaying, or

non-regenerative relaying, encompasses the operation of all relays which simply

amplify and retransmit their received signals, with the possibility of some linear

processing before transmission.

By the definition of DF relaying, the function of the relay processing unit

in DF relays in general1 is at least the aggregate of the functions of the OFDM

demodulator and the OFDM modulator, including also forward-error-correction

(FEC) decoding and encoding in between. The need for symbol demodulation

and modulation causes the relay processing delay to be at least one OFDM sym-

bol. This amounts to the total delay spread of the composite channel, formed

by the direct source-to-destination channel and the indirect source-to-relay-to-

destination channel, being greater than the duration of the cyclic prefix in an

OFDM symbol. Consequently, the signal transmitted by the source that reaches

the destination along the direct channel appears not to be an additional mul-

tipath component of the total received signal, but rather to be an unwanted

interference. As a result, the destination receiver can function reasonably well

only if this interference, i.e., the signal coming along the direct channel, is weak

1A discussion on some specific DF relaying protocols can be found in [23].
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enough. This restriction limits the usability of DF relaying to situations where

the source is sufficiently far away from the destination to avoid significant inter-

ference to the relayed signal arriving at the destination receiver.

AF relays, on the other hand, are less prone to suffer from the aforementioned

drawback because they do not necessarily undertake demodulation and modu-

lation before retransmission and are, therefore, able to keep the relay processing

delay within the OFDM cyclic prefix in most cases. This also implies that the

complexity of the relay processing unit in an AF relay is generally smaller than

that in a DF relay. In the simplest theoretical case, an AF relay essentially does

no more than amplifying and retransmitting whatever it receives; therefore, the

relay processing unit in this case need not exist at all since it is always in the fi-

nal stage of the transmitter front-end where the signal is amplified to the desired

transmit power.

However, in the practical case, an AF relay usually needs to do more than

simply scale and retransmit its received signal. Generally speaking, any relay

that performs linear processing on the received signal without undergoing FEC

decoding and encoding, so as to, e.g., compensate for known channel imperfec-

tions, is categorized under AF relays. Consequently, the actual complexity of the

relay processing unit depends upon the specific processing that is required from

the relay. Depending upon the nature of the specific requirement, one of either

time-domain processing or frequency-domain processing becomes favorable over

the other, even mandatory in some cases.

If frequency-domain processing is required, then the relay processing unit

needs to have an OFDM demodulator in order to separate the incoming signal

into its frequency components, and also an OFDM modulator to combine back

the frequency components after processing. An example of frequency-domain

processing in AF relays can be found in [24], where the relay dynamically allo-

cates non-uniform gains to subcarriers, based on the knowledge of channel state

information, while keeping the total transmit power constant. One can see that

the requirement of demodulating at least one complete OFDM symbol before

processing amounts to the relay processing delay being larger than the OFDM

cyclic prefix, thus bringing into effect the same limitation as with DF relays

described earlier.

Time-domain processing, on the other hand, does not require the received

signal to be demodulated before processing. In most situations, where the com-

plexity of the required signal processing is not very high, this permits the relay

processing delay to be kept smaller than the duration of the OFDM cyclic pre-

fix. In some cases, it is even possible to emulate frequency-domain processing by

implementing time-domain finite impulse response (FIR) filters having a smaller

number of taps than the cyclic prefix length. An example of such can be found

in [25], where the relay is equipped with a filter that performs suitable phase

rotation of the subcarriers in the relayed signal so as to ensure a significant

coherent combining gain with the direct signal from the source also possibly

arriving at the destination.
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2.4 OFDM Modulator and Demodulator

The block diagram of a typical OFDM modulator is shown in Figure 2.5. The

input bit stream from the data stream provider is mapped into a sequence of in-

dependent complex symbols using the quadrature amplitude modulation (QAM)

scheme. The resulting complex symbol stream is then fed to a serial-to-parallel

converter which generates successive sets of N parallel complex symbols, X[k]

for k = 0, 1, . . . , N−1, where N is the number of substreams chosen for transmis-

sion over parallel subcarriers. This also implies that the N symbols represent

the discrete frequency components of the composite OFDM symbol intended

to be eventually transmitted over the available spectrum. The set of these N

complex symbols are then processed by the IDFT block, which, as the name sug-

gests, computes the inverse discrete Fourier transform of the discrete frequency

components to generate N time-domain complex samples:

x[n] =
1√
N

N−1
∑

k=0

X[k]ej2πkn/N , 0 ≤ n ≤ N − 1. (2.9)

This set of N time-domain complex samples obtained from the IDFT oper-

ation is said to constitute one OFDM symbol. The cyclic prefix is then added

to the OFDM symbol and the resulting samples are ordered by the parallel-to-

serial converter to obtain a sequence of N +Ncp time samples, where Ncp is the

length of the cyclic prefix in samples. The sequence of complex samples thus

obtained is then fed to the transmitter front-end for transmission.

Figure 2.6 shows the block diagram of an OFDM demodulator, which essen-

tially performs the inverse operation of the OFDM modulator just described.

From the incoming stream of complex samples provided by the receiver front-

end (to be discussed in Section 2.5), the first block in the OFDM demodulator

groups the samples into sequences of length N + Ncp, then removes from each

group the firstNcp samples representing the cyclic prefix, and provides in parallel

the resulting N complex numbers constituting one OFDM symbol to the DFT

block. The DFT block computes the discrete Fourier transform of the input set

of complex numbers to generate the discrete frequency components present in

QAM

modulator

serial-to-

parallel

converter

X[0]

X[1]

X[N − 1]

IDFT

x[0]

x[1]

x[N − 1]

cyclic

prefix

adder

and

parallel-

to-serial

converter

x[n]
.

.

.

.

.

.

Figure 2.5: OFDM modulator.
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Figure 2.6: OFDM demodulator.

the OFDM symbol. Since each subchannel in OFDM is a flat fading channel as

explained earlier in the beginning of this chapter, the discrete frequency com-

ponents computed by the DFT are merely scaled (and noise-added) versions of

the original discrete frequency components generated at the OFDM modulator.

The outputs from the DFT block are then converted from parallel to serial and

fed to the QAM demodulator which recovers the original data stream.

From (2.9), one can see that each time sample x[n] in an OFDM symbol

is the result of phase-rotating and adding N independent complex numbers

X[k], k = 0, 1, . . . , N − 1. For sufficiently large values of N , the central limit

theorem holds [26, §7.3], and each x[n] converges to a zero-mean, complex-valued

Gaussian random variable. This Gaussian approximation is fairly accurate for

practical OFDM systems having N ≥ 128. In fact, it has been shown in [27]

that the asymptotic convergence of OFDM samples to Gaussianity holds not

only for uncoded OFDM systems, but also for many coded OFDM systems and

those with unequal power allocation across subcarriers. The significance of this

special property of OFDM samples in the time domain will be further explored

in the next chapter.

2.5 Transmitter and Receiver Front-ends

The block digram of a typical direct-conversion transmitter front-end is shown in

Figure 2.7. The incoming sequence of complex time samples obtained from the

OFDM modulator is first broken down into two sequences, one carrying the real

part of each sample and the other carrying the imaginary part. These sequences

are converted by digital-to-analog converters (DACs) to two continuous-time

signals, which are then individually passed through pulse-shaping transmit fil-

ters to obtain signals xI(t) and xQ(t), referred to as the in-phase component

and the quadrature component of the signal to be transmitted, respectively.

These signals are then mixed with high frequency carrier signals cos(2πfct) and

sin(2πfct), where fc is the carrier frequency, and the results are combined as

shown in the diagram. The single continuous-time signal x(t) thus obtained is

amplified by a power amplifier and eventually transmitted by a suitable antenna.
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Figure 2.7: Direct-conversion transmitter front-end.
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The transmitted signal x(t) can be written as

x(t) = xI(t)cos(2πfct)− xQ(t)sin(2πfct)

= Re{x̃(t)ej2πfct}, (2.10)

where x̃(t) = xI(t) + jxQ(t) is referred to as the complex envelope of the trans-

mitted signal x(t). Whereas x(t) is a real band-pass signal, x̃(t) is a complex

low-pass signal and is said to be the equivalent base-band representation of

x(t) [28].

The block diagram of the direct-conversion receiver front-end is shown in

Figure 2.8. The continuous-time band-pass signal y(t) received by the antenna

is first amplified with a low-noise amplifier to bring its amplitude up to the

level required for further processing. It is then separated into the in-phase and

quadrature components by mixing it with local oscillator signals 2cos(2πfct) and

−2sin(2πfct), and individually passing the resulting signals first through low-

pass filters, then through receive filters, as shown in the diagram. The receive

filters2 are designed such that they complement the action of the pulse-shaping

transmit filters used in the transmitter so as to maximize the received signal-to-

noise ratio (SNR). The continuous-time signals yI(t) and yQ(t) thus obtained are

then converted into discrete-time signals by separate analog-to-digital converters

(ADCs) and the results combined to obtain a single sequence y[n] of complex

numbers, to be processed by the OFDM demodulator in the destination node

(or by the interference canceler in the relay node).

2We do not include the effects of the transmit filter and the receive filter on the signal

model because they do not modify the fundamental assumption on which our analysis in the

upcoming chapter is based – the assumption that each OFDM symbol transmitted or received

by the relay has a Gaussian distribution.
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Chapter 3

Transceiver Nonidealities

This chapter deals with the analytical characterization of nonidealities that are

inherent in the practical components building the transceiver front-ends in the

full-duplex relaying system presented in Chapter 2. We consider those nonideal-

ities in particular that directly affect the performance limits of loop interference

cancellation carried out by the relay node. On the receiver side, we focus our

attention solely on quantization since it is inextricably tied to our study of the

impact of limited dynamic range offered by practical analog-to-digital converters

(ADCs) on the limits of loop interference cancellation. We begin by analyzing

the signal distortion due to quantization in general and then demonstrate the

applicability of the analysis by comparing the degree of distortion among two

well-known quantization schemes. Finally, we also consider the effect of various

nonidealities in the transmitter side and attempt to quantify it as a combined

error vector magnitude (EVM).

Our analysis of the quantization process is based on the observation detailed

in Section 2.4 that each time-domain sample from an OFDM signal is a complex-

valued Gaussian random variable. It follows from the observation that either of

the two real-valued sequences obtained by sampling the in-phase and quadra-

ture components of the continuous-time OFDM signal is a real-valued Gaussian

process that can safely be considered as independent of the other. To keep our

analysis simple, we begin with the scalar quantization of samples from a single

real-valued Gaussian process, and later show how the results can be applied in a

straightforward manner to a complex-valued process formed by the combination

of two such processes.

3.1 Analog-to-Digital Conversion at the Receiver

Analog-to-digital conversion is a two-step process that involves sampling an ana-

log signal at discrete time instants followed by assigning finite-precision values

to the samples so that they can be processed with a digital processor. The sec-

ond step of this process, referred to as quantization, deserves special attention

in the study of loop interference cancellation in full-duplex relays because it is

precisely what enforces a limited dynamic range to the relay input.
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Quantization is the process of mapping an infinite number of values falling

in a subset of real numbers in the continuous domain to a finite number of

values from a smaller subset of real numbers in the discrete domain. It is an

irreversible process and it inevitably leads to loss of information. It is also a

nonlinear transformation which makes it difficult to express analytically in the

general case. However, when the input values come from a stationary Gaussian

process, it is possible to define the input-output relation of the scalar quantizer,

like any memoryless nonlinearity, with a compact, closed-form expression [29]

z[n] = T(y[n]) = αy[n] + d[n], (3.1)

where T(·) is the memoryless nonlinear transformation characterizing the quan-

tizer, y[n] and z[n] are its input and output, respectively, and d[n] is a signal

uncorrelated with y[n], i.e., E{y[n+m]d[n]} = 0, with E(·) being the statistical

expectation operator. The scaling factor α is a constant given by

α =
E{yz}
E{y2} =

1

σ2
y

∞
∫

−∞

yzfY (y)dy, (3.2)

where1 σ2
y is the variance of the zero-mean Gaussian random variable y[n] and

hence its average power as well, and fY (·) is the probability density function of

the same [26, Eq. (4.47)]:

fY (y) =
1

√

2πσ2
y

e
− y2

2σ2
y , −∞ < y < ∞, σy > 0. (3.3)

This representation of the quantization nonlinearity, which is based on Buss-

gang’s theorem [30], allows the output z[n] to be treated as a superposition of the

input y[n] (scaled by a constant α but otherwise unmodified) and a new signal

d[n] quantifying the unwanted distortion arising from quantization. Further-

more, the fact that d[n] is uncorrelated with y[n] allows us to equate the average

power of the output z[n] to the sum of the average powers of its constituents,

i.e.,

E{z2} = α2
E{y2}+ E{d2}. (3.4)

The expression above allows us to compute the average power of the distor-

tion d[n] generated by the quantizer once we have obtained the average powers

of the input y[n] and the output z[n]. To make things simpler, let us introduce

a constant β, defined to be the power gain of the nonlinearity, i.e., the ratio

between the average output power and the average input power:

β =
E{z2}
E{y2} =

1

σ2
y

∞
∫

−∞

z2fY (y)dy. (3.5)

1For convenience of notation, we choose to drop the time index n from signals when they

appear within statistical expectations as in (3.2), (3.4), and (3.5) since our analysis of the

quantizer is based on the assumption that the input (and by extension, the output as well)

comes from a stationary process whose statistical properties do not vary with time.
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Using this definition of β and rearranging (3.4), we get

E{d2} = E{z2} − α2
E{y2} = (β − α2)E{y2}. (3.6)

Having expressed the average distortion power in terms of the average input

power, we can now conveniently formulate the signal-to-quantization noise ratio

(SQNR) for the quantizer nonlinearity, in the same way as done in, e.g., [31]

and [32], as

γQ =
E{(αy)2}
E{d2} =

α2
E{y2}

(β − α2)E{y2} =
1

β
α2 − 1

· (3.7)

Let us now proceed to find the analytical expressions for the constants α and

β starting from (3.2) and (3.5). If a quantizer is said to have a resolution of

b bits, it features a maximum of L = 2b quantization levels, i.e., it maps each

input value to one among the L quantization levels. In order to do so, it divides

the entire range of the possible input values into L fixed intervals (quantization

bins) and assigns, to each interval, a single output value (quantization level) for

all input values within that interval.

In the general case, let us assume that the lth (l = 1, 2, 3, . . . , L) quantization

bin is bounded by (yl, yl+1) and the corresponding quantization level for that bin

is zl. To be precise, the quantizer output z becomes zl whenever the input y

falls within the interval (yl, yl+1). Since the L quantization bins are supposed to

cover the entire range of input values, we can rewrite (3.2) as

α =
1

σ2
y

L
∑

l=1

(

zl

y
l+1
∫

y
l

yfY (y)dy

)

=
1

σ2
y

L
∑

l=1

(

zl

y
l+1
∫

y
l

y
1

√

2πσ2
y

e
− y2

2σ2
y dy

)

, (3.8)

where the last step is the result of substituting fY (y) from (3.3). We can simplify

the integral appearing in each term of the sum by changing the integration

variable from y to ξ = y2

2σ2
y
. Then, the limits of integration yl and yl+1 get

transformed into
y2
l

2σ2
y
and

y2
l+1

2σ2
y
, respectively, the differential dy becomes

σ2
y

y
dξ,

and we get

y
l+1
∫

y
l

y
1

√

2πσ2
y

e
− y2

2σ2
y dy =

y2
l+1

2σ2
y

∫

y2
l

2σ2
y

σy√
2π

e−ξdξ

= −
σy√
2π

e−ξ

∣

∣

∣

∣

∣

y2
l+1

2σ2
y

y2
l

2σ2
y

=
σy√
2π

(

e
−

y2
l

2σ2
y − e

−
y2
l+1

2σ2
y

)

.
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Using this result in (3.8), we get

α =
1

√

2πσ2
y

L
∑

l=1

zl

(

e
−

y2
l

2σ2
y − e

−
y2
l+1

2σ2
y

)

. (3.9)

Likewise, the expression for β in (3.5) becomes

β =
1

σ2
y

L
∑

l=1

(

z2l

y
l+1
∫

y
l

1
√

2πσ2
y

e
− y2

2σ2
y dy

)

, (3.10)

where the integral within the sum can be simplified, as done previously, by

changing the integration variable from y to ζ = y
σy
. Then, dy = σydζ, and we

get

y
l+1
∫

y
l

1
√

2πσ2
y

e
− y2

2σ2
y dy =

1√
2π

y
l+1
σy
∫

y
l

σy

e−
ζ2

2 dζ

=
1√
2π

(

∞
∫

y
l

σy

e−
ζ2

2 dζ −
∞
∫

y
l+1
σy

e−
ζ2

2 dζ

)

= Q
(

yl
σy

)

−Q
(

yl+1

σy

)

, (3.11)

where

Q(y) =
1√
2π

∞
∫

y

e−
ζ2

2 dζ (3.12)

is the Gaussian Q-function [26, Eq. (4.52)], a compact expression for the com-

plement of the cumulative distribution function of a standard (zero mean, unit

variance) Gaussian random variable. Using the result from (3.11) in (3.10), we

get

β =
1

σ2
y

L
∑

l=1

z2l

(

Q
(

yl
σy

)

−Q
(

yl+1

σy

)

)

. (3.13)

It should be noted that the results in (3.9) and (3.13) are general enough to

hold for any quantization scheme with L quantization levels as long as the input

samples have the Gaussian distribution. As an example of a specific case, let us

find out what these results look like when uniform quantization is applied.

3.1.1 Uniform Quantization

In uniform quantization, all quantization bins have equal width and the quan-

tization level for each bin is chosen to be a certain fixed point within the bin’s
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Figure 3.1: Uniform quantization.

interval, preferably the centroid of all possible input values falling within that

interval. For the sake of simplicity, we consider the scheme (see Figure 3.1)

where successive quantization levels coincide with the mid-points of the corre-

sponding quantization bins. As the quantization bins have uniform width, the

quantization levels in this scheme get uniformly spaced as well.

For any practical quantizer, the amplitudes of the input samples that can be

quantized without clipping need to be restricted within a finite interval. In our

analysis of the uniform quantizer, we consider the non-clipping interval to be

(−R,R) under the assumption that the input samples are known to take both

positive and negative values and have a mean value of zero. Any input sample

having an amplitude falling outside (−R,R) is treated as if its amplitude were,

depending upon its sign, either −R or R, and the quantization level from the

first or the last bin is obtained at the output. In other words, any sample lying

outside the allowed range is first clipped to the maximum allowed amplitude

and then quantized as any other sample lying within the allowed range.

For a non-clipping range of 2R and a total of L quantization levels, the width

of each quantization bin becomes ∆ = 2R
L
. The lower and upper thresholds yl

and yl+1 of the quantization bins, and the corresponding quantization levels zl
(see Figure 3.1) can then be expressed as

y1 → −∞, (3.14a)

y2 = −R+∆ = −R+
2R

L
=

(

2− L

L

)

R, (3.14b)

y3 = −R+ 2∆ = −R+ 2

(

2R

L

)

=

(

4− L

L

)

R, (3.14c)

...

yl = −R+ (l − 1)∆ = −R+ (l − 1)

(

2R

L

)

=

(

2l − 2− L

L

)

R, (3.14d)

...

yL = −R+ (L− 1)∆ = −R+ (L− 1)

(

2R

L

)

=

(

L− 2

L

)

R, (3.14e)

yL+1 → ∞, (3.14f)

and,

z1 = −R+
∆

2
= −R+

1

2

(

2R

L

)

=

(

1− L

L

)

R, (3.15a)

z2 = y2 +
∆

2
=

(

2− L

L

)

R+
1

2

(

2R

L

)

=

(

3− L

L

)

R, (3.15b)

...
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zl = yl +
∆

2
=

(

2l − 2− L

L

)

R+
1

2

(

2R

L

)

=

(

2l − 1− L

L

)

R, (3.15c)

...

zL = yL +
∆

2
=

(

L− 2

L

)

R+
1

2

(

2R

L

)

=

(

L− 1

L

)

R. (3.15d)

Using the expressions from (3.14) and (3.15) in (3.9), we arrive at the final

expression for α for a uniform quantizer:

α =
R

√

2πσ2
y

(

1− L

L

)(

0− e
−

(

2−L
L

)2

R2

2σ2
y

)

+
R

√

2πσ2
y

L−1
∑

l=2

(

2l − 1− L

L

)(

e
−

(

2l−2−L
L

)2

R2

2σ2
y − e

−

(

2l−L
L

)2

R2

2σ2
y

)

+
R

√

2πσ2
y

(

L− 1

L

)(

e
−

(

L−2
L

)2

R2

2σ2
y − 0

)

=
µ√
2π

(

2L− 2

L

)

e−
1
2

(

L−2
L

)2

µ2

+
µ√
2π

L−1
∑

l=2

(

2l − 1− L

L

)(

e−
1
2

(

2l−2−L
L

)2

µ2 − e−
1
2

(

2l−L
L

)2

µ2

)

, (3.16)

where µ is the clipping margin defined as

µ =
R

σy

, (3.17)

i.e., the ratio between the maximum non-clipping input level R and the standard

deviation σy of the zero-mean Gaussian distributed input samples.

Likewise, using the expressions from (3.14) and (3.15) in (3.13), we obtain

the final expression for β for a uniform quantizer:

β =
R2

σ2
y

(

1− L

L

)2
(

1−Q
(

(

2−L
L

)

R

σy

)

)

+
R2

σ2
y

L−1
∑

l=2

(

2l − 1− L

L

)2
(

Q
(

(

2l−2−L
L

)

R

σy

)

−Q
(

(

2l−L
L

)

R

σy

)

)

+
R2

σ2
y

(

L− 1

L

)2
(

Q
(

(

L−2
L

)

R

σy

)

− 0

)

= µ2

(

1− L

L

)2
(

1−Q
(

2− L

L
µ

)

+Q
(

L− 2

L
µ

)

)

+ µ2

L−1
∑

l=2

(

2l − 1− L

L

)2
(

Q
(
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(
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For a given uniform quantizer with L quantization levels (or, equivalently,

that with a resolution of b = log2 L bits), it can be seen from (3.16) and (3.18)

that the values of parameters α and β, and, in turn, from (3.7) that the signal-

to-quantization noise ratio γQ, depend solely upon the clipping margin µ. The

significance of this observation lies in the fact that it makes it possible to optimize

the performance of a given uniform quantizer simply by adjusting the clipping

margin, which merely requires scaling the average power σ2
y of the input samples

to a suitable level since the non-clipping range (−R,R) of the quantizer remains

fixed.

Clipping Margin and Clipping Probability

Before proceeding to the details of the relationship between the clipping margin

and the signal-to-quantization noise, let us first look briefly at a more direct

effect of the clipping margin: the effect on the probability that a clipping event

occurs. It is easy to see that the larger the range of input values supported by

the quantizer without clipping, or the smaller the fluctuation of input samples

around their mean value zero, the lower is the probability that a clipping event

occurs. This observation, combined with the definition of clipping margin from

(3.17), implies that higher values of clipping margin result in lower values of

clipping probability. To verify that this is indeed the case, let us compute the

probability Pc that a clipping event occurs:

Pc = Prob(|y| > R)

= 1−
R
∫

−R

fY (y)dy

= 1− 1
√

2πσ2
y

R
∫

−R

e−
y2

2σ2 dy,

where the last step is the result of substituting fY (y) from (3.3). We can further

simplify the expression above by changing the integration variable from y to

ζ = y
σy
. Doing so transforms the limits of integration −R and R into − R

σy
= −µ

and R
σy

= µ, respectively, and the differential dy into σydζ. Then, the last

equation becomes

Pc = 1− 1√
2π

µ
∫

−µ

e−
ζ2

2 dζ

= 1− 1√
2π

(

∞
∫

−µ

e−
ζ2

2 dζ −
∞
∫

µ

e−
ζ2

2 dζ

)

= 1−
(

Q(−µ)−Q(µ)

)

= 2Q(µ), (3.19)
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Figure 3.2: Effect of the clipping margin on the clipping probability.

where Q(·) is the Gaussian Q-function defined in (3.12), and the last step is the

result of applying the identity Q(y) = 1 − Q(−y) [26, Eq. (4.53)]. The above

relation is illustrated graphically in Figure 3.2, which completes the verification

of our earlier statement that an increase in the clipping margin amounts to a

decrease in the clipping probability.

Clipping Margin and SQNR

We are now in a position that allows us to take a closer look at the relation-

ship between the clipping margin and the signal-to-quantization noise ratio of a

uniform quantizer. To do so, we first compute the signal-to-quantization noise

ratio γQ analytically as a function of the clipping margin µ by using the results

of (3.16) and (3.18) in (3.7). To ascertain that our analytical results are correct,

we then simulate the behavior of the uniform quantizer at a number of closely

spaced values of the clipping margin and compute the signal-to-quantization

ratio from the quantizer’s input and output data.

Figure 3.3 illustrates the results obtained from both approaches for three

different resolutions of the quantizer: 10, 12 and 14 bits. In each case, it can

be seen that increasing the clipping margin, starting from a small initial value,

leads to a steep rise in the signal-to-quantization ratio (SQNR). However, when

the clipping margin reaches a certain value, increasing it further does not lead to

an increase in the SQNR, but instead results in a gradual fall in the SQNR from

its maximum. This can be explained by the fact that increasing the clipping

margin in the beginning leads to a significant decrease in the number of clipping
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Table 3.1: Optimum clipping margin µopt and the corresponding signal-

to-quantization noise ratio γQ,max for various resolutions b of the uniform

quantizer. The column Pc gives the theoretical clipping probability at the

optimum clipping margin µopt, but it could as well be read independent of

the quantizer resolution b.

b µopt γQ,max Pc(µopt) b µopt γQ,max Pc(µopt)

(bits) (dB) (dB) (bits) (dB) (dB)

3 7.40 14.10 1.91× 10−2 12 14.00 62.71 5.32× 10−7

4 8.57 19.33 7.33× 10−3 13 14.42 68.35 1.46× 10−7

5 9.57 24.55 2.61× 10−3 14 14.79 74.01 3.97× 10−8

6 10.45 29.82 8.68× 10−4 15 15.15 79.70 1.07× 10−8

7 11.22 35.17 2.73× 10−4 16 15.47 85.40 2.88× 10−9

8 11.90 40.57 8.23× 10−5 17 15.77 91.13 7.85× 10−10

9 12.51 46.03 2.40× 10−5 18 16.07 96.88 2.04× 10−10

10 13.06 51.55 6.85× 10−6 19 16.34 102.65 5.30× 10−11

11 13.55 57.11 1.92× 10−6 20 16.60 108.47 1.39× 10−11
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events, thereby resulting in a steep rise in the SQNR. When the clipping margin

reaches its optimum value, however, the clipping probability will already have

become so small (see Table 3.1) that attempting to reduce it further will not

improve the SQNR but rather degrade it because then it will become more likely

that the input samples fall mostly within the inner quantization bins, thereby

wasting a significant portion of the dynamic range offered by the quantizer.

We can infer from the foregoing analysis that the average noise power due

to a quantizer is in fact the combined effect of two distinct phenomena, namely,

clipping and quantization, and that the optimum value of the clipping margin is

one which rightly balances the interplay between those two phenomena. When

the quantizer operates in the region where the clipping margin is too low, the

major source of distortion is the occurrence of clipping events, whereas when it

operates in the region where the clipping margin is too high, quantization is the

primary if not the only source of distortion. The large difference between the

slopes of the SQNR curve in the two regions separated by the optimum clipping

margin (see Figure 3.3) implies that the impact of clipping on the SQNR is

far more detrimental than that of quantization. It is, therefore, useful to avoid

clipping even at the cost of having less dynamic range for quantization.

Having said that there exists an optimum value of the clipping margin that

results in the SQNR being maximized, we must also emphasize that it is not pos-

sible to derive a closed-form expression for the optimum clipping margin. This is

because the expression for the SQNR as a function of the clipping margin, which

can be obtained by combining results from (3.7), (3.16) and (3.18), is such that

the zero of its derivative does not have an explicit, closed-form solution. We

must, therefore, resort to numerical maximization of the SQNR expression to

compute the optimum clipping margin. Table 3.1 lists the results of such numer-

ical maximization (obtained using MatlabTM) for quantizers having resolutions

of 3 to 20 bits.

3.1.2 Optimum Nonuniform Quantization

Owing to the bell-shaped probability density curve of the Gaussian distribution,

it is more probable that the value taken by a stationary Gaussian process at

a given time instant is closer to the mean of the random process than that it

is farther from the mean. This implies that if the process is fed to a scalar

quantizer, the incoming samples tend to fall far more frequently among the

inner quantization bins than the outer ones. It then follows by intuition that

a quantizer with uniformly spaced quantization levels, no matter how optimum

its clipping margin is, can most certainly not quantize the incoming Gaussian

process such that the overall quantization error becomes as small as possible.

It also follows that there has to be a different form of quantization scheme that

utilizes the knowledge of the nonuniform probability density of the incoming

random process in order to minimize the overall quantization error.

In their classic papers, Max [33] and Lloyd [34] have independently addressed

the issue of devising a practical quantizer that is optimum in the sense of min-
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imizing the mean-squared quantization error given that the probability density

of the incoming random process is known. For a quantizer with a given number

of finite quantization levels, both works have produced identical sets of sufficient

conditions that minimize the mean-squared quantization error. In literature, the

quantizer satisfying these conditions is commonly referred to as the Lloyd-Max

quantizer.

The conditions essential to the Lloyd-Max quantizer can be expressed in the

form of simultaneous equations as [33]

y
l+1
∫

y
l

(y − zl)fY (y)dy = 0, l = 1, 2, . . . , L (3.20)

and,

yl+1 =
1

2
(zl + zl+1), l = 1, 2, . . . , L− 1 (3.21)

where the symbols carry their usual meanings, i.e., L is the number of quan-

tization levels, yl and yl+1 are the lower and the upper thresholds of the lth

quantization bin, zl is the corresponding output value for that bin, and fY (y) is

the probability density function of the input. Also, by definition, y1 → −∞ and

yL+1 → ∞, which are the same as in uniform quantization. Equations (3.20)

and (3.21) tell us that the optimum output level for each quantization bin is

the centroid of the area under the curve of the probability density function of

the input between the thresholds of that bin and that the border separating two

successive bins lies exactly half-way between their output levels.

The problem of finding the exact thresholds and the output levels for the

quantization bins of an optimum quantizer is then limited to solving the 2L− 1

simultaneous equations in (3.20) and (3.21) for all yl and zl. However, one

can see that these simultaneous equations do not typically form a set simple

enough to provide closed-form solutions for all yl and zl. In fact, if fY (y) is the

Gaussian probability density function as in our case, then closed-form solutions

do not exist whenever L > 2 and we must rely on iterative numerical techniques

to solve those equations.

In order to iteratively solve (3.20) and (3.21), Max [33] has suggested that we

begin by choosing a value for z1 and, with y1 → −∞, compute y2 from (3.20) by

using a numerical root-finding procedure on a digital computer. Using the newly

found value of y2 and the original value of z1, we can then determine the value

of z2 from (3.21). With y2 and z2, we can repeat the same two-step procedure

of solving (3.20) followed by (3.21) to find y3 and z3, then y4 and z4, and so

on until we have found yL and zL. The final step then is to use these values of

yL and zL, and that of yL+1, which is ∞ by definition, to evaluate the left side

of (3.20) and check whether the result is really zero as it should be. If that is

not the case, we adjust the current value of z1 with an appropriate increment

or decrement depending upon the result of the last evaluation and then repeat

the whole process as many times as required for the result of the final step to be
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reasonably close to zero. The values for all yl and zl that we have at this point

will be the optimum ones.

As simple as this algorithm sounds, ensuring that it works as intended can

be quite tricky, especially when the number of quantization levels L is high. Ac-

cording to Bucklew and Gallagher [35], the convergence of the algorithm is highly

dependent on the initial choice of z1. In the same paper, they have suggested

two methods based on a companding technique suggested earlier by Smith [36],

namely, the g-approximation method and the λ-approximation method, both of

which provide a good initial guess for z1 that speeds up the convergence of the

algorithm considerably. Since then, researchers have come up with more efficient

techniques for obtaining the initial guess, as well as those for updating the value

as the algorithm proceeds (see, e.g., [37] and [38]).

In our implementation of Max’s algorithm, we apply the g-approximation

method because of its relative simplicity. In this method, the companding func-

tion g(y) is defined as

g(y) = 1−Q
(

y√
3

)

,

and the initial estimate for the first output level z1 (or any output level zl for

that matter) is obtained by using the inverse of the companding function as

zl = g−1(ẑl),

where the inverse of the companding function is given by

g−1(z) =
√
3Q−1(1− z),

and ẑl is a crude pre-estimate of zl defined as

ẑl =
2l − 1

2L
, l = 1, 2, . . . , L.

Once the implementation of Max’s algorithm is in place, we fix the value of

L (or, equivalently, the quantizer’s resolution b = log2L) and compute the values

of yl for l = 1, 2, . . . , L+ 1 and zl for l = 1, 2, . . . , L. We insert these computed

values in (3.9) and (3.13) to obtain the values for α and β, which we eventually

apply to (3.7) and obtain the value of the signal-to-quantization noise ratio for

the optimum nonuniform quantizer.

Table 3.2 lists the numerical values of the signal-to-quantization noise ratio

thus obtained for the optimum quantizers of various resolutions and compares

them with the maximum values of the signal-to-quantization noise ratio that

uniform quantizers with the same resolutions can provide. Cursory observation

tells us that the gain ∆γ
Q
that an optimum quantizer provides over its uniform

counterpart keeps increasing as the quantizer resolution increases. However, it

would probably be wise to assume that this gain, in practice, can most certainly

not increase beyond some saturation value.
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Table 3.2: Signal-to-quantization noise ratio γQ,opt for various resolutions

b of the optimum nonuniform quantizer. Additional columns γQ,max,ufm

and ∆γ
Q
show the maximum SQNR achievable from a uniform quantizer

of the same resolution as the optimum one and the difference in SQNR

between the two quantization schemes, respectively.

b γQ,opt γQ,max,ufm ∆γ
Q

b γQ,opt γQ,max,ufm ∆γ
Q

(bits) (dB) (dB) (dB) (bits) (dB) (dB) (dB)

3 14.46 14.10 0.36 12 67.90 62.71 5.19

4 20.18 19.33 0.85 13 73.92 68.35 5.57

5 26.00 24.55 1.45 14 79.94 74.01 5.93

6 31.91 29.82 2.09 15 85.96 79.70 6.26

7 37.86 35.17 2.69 16 91.98 85.40 6.58

8 43.85 40.57 3.28 17 98.00 91.13 6.87

9 49.86 46.03 3.83 18 104.03 96.88 7.15

10 55.87 51.55 4.32 19 109.95 102.65 7.30

11 61.88 57.11 4.77 20 115.87 108.47 7.40

3.1.3 Generalization to Complex-Valued Input

So far in the derivation of the signal-to-quantization noise ratio, we have con-

sidered a real-valued stationary Gaussian process at the input of the quantizer.

However, as we shall soon see, the results can be easily generalized to the case

when the input signal is a complex-valued stationary Gaussian process having

independent real and imaginary components.

Let us consider Figure 3.4(a) showing a system that has a complex valued

input process y[n] with independent real and imaginary components yR[n] and

yI [n]. These independent components are processed by separate but identical

quantizer nonlinearities, each characterized by the real-valued transformation

T(·). The parameters α and β for these nonlinearities, as defined in (3.2) and

(3.5), are given by

αR =
E{yRzR}
E{y2R}

=
E{yIzI}
E{y2I}

= αI , (3.22)

and,

βR =
E{z2R}
E{y2R}

=
E{z2I}
E{y2R}

= βI , (3.23)

where the expectations E{·} involving only the real components and the cor-

responding ones involving only the imaginary components are considered to be

equal, assuming identical statistical properties of the real and the imaginary

components of the input y.

Using the same transformation model as in (3.1), we can then express the

outputs of the two quantizers as

zR[n] = T(yR[n]) = αRyR[n] + dR[n], (3.24)

and,

zI [n] = T(yI [n]) = αIyI [n] + dI [n], (3.25)
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Figure 3.4: Quantizers for complex-valued input: (a) a conceptual system with

separate but identical transformations for the real and imaginary components,

(b) a compact representation with a single transformation that is equivalent to

the system in (a).

where dR[n] and dI [n] are the distortions generated by the nonlinearities trans-

forming the real and the imaginary components of the input y[n], respectively.

The final output of the system is obtained by combining the quantities in (3.24)

and (3.25) as

z[n] = zR[n] + jzI [n]

=
(

αRyR[n] + dR[n]
)

+ j
(

αIyI [n] + dI [n]
)

= αR(yR[n] + yI [n]) + (dR[n] + jdI [n]) ∵ αR = αI

= αRy[n] + d[n]. (3.26)

If we consider Figure 3.4(b) to be a system that is equivalent to that in Figure

3.4(a), then Teq(·) represents a nonlinear transformation with a complex-valued

stationary Gaussian process y[n] at its input and a complex-valued stationary

process z[n] at its output. Then, we can write

z[n] = Teq(y[n]) = αeqy[n] + d[n], (3.27)

where d[n] is the complex-valued distortion generated by the nonlinearity Teq(·).
Similar to that in Section 3.1, d[n] is uncorrelated with y[n], and we can write

E{|d|2} = E{|z|2} − α2
eqE{|y|2}

=
(

βeq − α2
eq

)

E{|y|2} (3.28)

where βeq, by definition of the β parameter, is the ratio of the average output
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power to the average input power:

βeq =
E{|z|2}
E{|y|2}

=
E{z2R}+ E{z2I}
E{y2R}+ E{y2I}

=
E{z2R}
E{y2R}

=
E{z2I}
E{y2I}

, (3.29)

where the second and the third steps are the result of applying the assumptions

that the real and the imaginary components of the input are independent of each

other and that they have identical statistical properties. Finally, by comparing

(3.26) and (3.27), we get

αeq = αR = αI , (3.30)

and by comparing (3.23) and (3.29), we get

βeq = βR = βI . (3.31)

Now, the signal-to-quantization noise ratio offered by the equivalent system

in Figure 3.4(b) is given by

γQ =
E{|αeqy|2}
E{|d|2}

=
α2
eqE{|y|2}

(

βeq − α2
eq

)

E{|y|2}

=
1

βeq

α2
eq
− 1

, (3.32)

where (3.28) has been used to substitute for E{|d|2}.
Making use of the observation that this ratio depends only upon the param-

eters α and β, as was the case in (3.7) for the real-valued input process, and the

results αeq = αR = αI and βeq = βR = βI , we can conclude that the expressions

and the numerical values of the signal-to-quantization noise ratio obtained ear-

lier for uniform and non-uniform optimum quantizers with real-valued Gaussian

inputs hold as well for complex-valued Gaussian inputs with independent real

and imaginary components.

3.2 Transmitter Nonidealities and the EVM

Having analyzed the effect of quantization on the received signal, we now turn

our attention to the nonidealities that can affect the performance of the trans-

mitter in our relaying system. This does not mean that the receiver does not

suffer from nonidealities other than quantization; it just means that we are keep-

ing our analysis focused on what interests us the most (i.e., the limited dynamic
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range at the receiver due to quantization) by treating the remaining nonideali-

ties as if they contribute merely to raise the noise level at the receiver. Along

similar lines, we intend to quantify the combined effect of all transmitter nonide-

alities on the overall signal model with a single parameter, the benefit of which

becomes apparent in Chapter 4.

Some of the most commonly studied transmitter nonidealities that impair the

performance of OFDM systems include phase noise, I/Q imbalance, and power

amplifier nonlinearity [39]. Phase noise refers to the mismatch of the fluctuation

of phase between the oscillators in the transmitter and the receiver circuits

and it affects the performance of OFDM systems in two distinct ways [40].

The first effect, known as the common phase error (CPE), causes the entire

constellation of the received symbols to be rotated by a fixed amount with

respect to the ideal constellation for the specific modulation scheme (e.g., PSK or

QAM) used. This effect is not particularly troublesome as it is already addressed

by channel estimation and equalization that invert the phase rotation caused by

the wireless channel. The second effect, known as the intercarrier interference

(ICI), is more severe since it represents the loss of orthogonality among the

subcarriers due to the addition of random errors to the modulated subcarriers.

A more comprehensive study of the effects of phase noise on the performance of

OFDM systems can be found in [41].

For the direct-conversion transmitter (as well as the receiver) described in

Chapter 2 to work perfectly, the complex analog oscillator, i.e., the theoretical

combination of the oscillator and the phase-shifter that generates the carrier

signals to be modulated by the in-phase (I) and the quadrature-phase (Q) com-

ponents of the complex baseband signal, must be able to provide equal amplitude

carriers with a phase difference of exactly 90◦. Such a perfect oscillator cannot

be realized in practice due to the limited accuracy of analog components, and

the mismatch that becomes inevitable between the I and the Q components

constituting the transmitted signal is referred to as I/Q imbalance. The effect

of I/Q imbalance is that it significantly reduces the (infinite) image rejection

capability of the direct-conversion architecture [39], resulting in the formation

of unwanted signal components at frequencies other than those of the actual

subcarriers.

The power amplifier nonlinearity is a major factor that severely limits the

performance of an OFDM transmitter. Because each time-domain OFDM sym-

bol is in fact the superposition of a typically large number of independent com-

plex random variables (refer to Section 2.4 for details), the transmitted signal

has a very large dynamic range. This has a significant impact on the design

of the power amplifier at the transmitter because the amplifier has to have a

large input power backoff (the ratio between the largest input level that keeps

the output linear and the average input level) in order to ensure that its output

remains sufficiently linear. Such a requirement is difficult to fulfill in practice

because it demands a huge waste of power. In order to keep the power efficiency

reasonable while operating the power amplifier in its linear region, it is, there-
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fore, necessary to reduce the peak-to-average power ratio (PAPR) of the signal

prior to amplification. [42] presents an analytical study of the effect of power

amplifier nonlinearity on the performance of an amplify-and-forward (AF) relay

link.

One simple way to reduce the PAPR is to clip an oversampled version of

the baseband OFDM signal and then apply low-pass filtering to the clipped

signal so as to remove the high frequency nonlinear distortion caused by clip-

ping [43]. Despite the relative simplicity of this method, significant reduction

of the PAPR can be achieved through repeated clipping and filtering without

considerably increasing the out-of-band power in the OFDM signal [44]. How-

ever, clipping causes a loss in signal fidelity which cannot be recovered by the

receiver unless a specialized forward-error-coding (FEC) with a high degree of

redundancy (certainly not desirable) is applied to the sequence of symbols prior

to modulation.

The nonidealities discussed above do not constitute the entire set of the

possible sources of imperfections in the transmitter; nevertheless, they make a

strong subset and we leave out the discussion of any other nonideality. In any

case, what we are after is a way of quantifying the combined effect of all the

transmitter nonidealities with a single parameter. One such entity, which is

extensively used as a figure of merit for assessing transmitter performance, is

the error vector magnitude (EVM). A detailed analysis of the effect on the EVM

due to phase noise and I/Q imbalance has been presented in [45] and that due

to clipping in [46].

In the simplest possible terms, the EVM is defined as the magnitude of the

difference between the ideally expected value of a demodulated symbol (in the

complex plane) and the measured value of the actual received symbol, expressed

as a fraction of the magnitude of the expected value. Mathematically,

EVM =
|Sideal − Sactual|

|Sideal|
, (3.33)

where Sideal and Sactual, respectively, represent the ideally expected (i.e., the

same as that meant to be transmitted) and the measured values of the symbol

in question S and the difference between the two (i.e., Sideal−Sactual) is referred

to as the error vector. It should be stressed that both of these complex values

should first be normalized to the same scale.

Since the transmitted signal is composed of a sequence of symbols, each of

which comes from the constellation formed by a specific set of symbols, a more

accurate metric would be the root-mean-squared value of those given by the

expression above for all the possible symbols. Such a metric is referred to as the

RMS EVM and it is given by [47]

ǫ =

√

√

√

√

√

√

√

1
M

M
∑

m=1

|Sideal[m]− Sactual[m]|2

1
M

M
∑

m=1

|Sideal[m]|2
, (3.34)
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where M denotes the constellation size, Sideal[m] and Sactual[m] represent the

normalized versions of the value meant to transmitted and the value that is

measured for the mth symbol, respectively, and ǫ is the notation that we will

use for the RMS EVM.

In practice, however, the constellation size M in the expression above is re-

placed by the length M ′(>> M) of the symbol sequence actually transmitted in

order to measure the EVM. Then, by denoting the error signal corresponding to

the sequence of the error vectors (i.e., Sideal[m]−Sactual[m] for m = 1, 2, . . . ,M ′)

as v[n] and the signal corresponding to the sequence of the symbols meant to

be transmitted (i.e., Sideal[m] for m = 1, 2, . . . ,M ′) as x[n], we can rewrite the

ratio above in the form of a statistical measure as

ǫ =

√

E{|v|2}
E{|x|2} , (3.35)

which is how we will express the RMS EVM in the following chapters.
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Chapter 4

Full-Duplex Relay with

Nonidealities

In this chapter, we develop a complete signal model of the full-duplex relay node

in our two-hop wireless link (refer to Figure 2.1) taking also into account the

contributions due to the imperfections discussed in Chapter 3. Moreover, we

discuss the degradation of loop interference cancellation caused by the inability

of estimation algorithms to obtain accurate information on the loop interference

channel when the observed signal is distorted by the aforementioned imperfec-

tions. Finally, we formulate the signal-to-interference plus noise ratio (SINR) in

the relay node after loop interference cancellation.

4.1 Signal Model

Starting with the definition in (2.6) for the signal yR(t) received by the relay and

making use of the representation in (3.1) for the quantizer nonlinearity, we can

express the output from the analog-to-digital converter in the receiver front-end

of the relay as

zR[n] = α

(

√

GQ

(

sR[n] + iR[n] + wR[n]
)

)

+ d[n]

= α yR[n] + d[n], (4.1)

where α is the scaling factor of the quantizer nonlinearity (defined for real-valued

signals in (3.2) and generalized to complex-valued signals in Section 3.1.3); d[n]

is the distortion noise due to the nonlinearity; GQ is the power gain of a low-

noise amplifier with an automatic gain control (AGC) mechanism that scales

the signal prior to quantization to a level suitable for the optimum operation

of the quantizer; sR[n], iR[n], and wR[n] are discrete-time representations of the

desired signal from the source node, the loop interference in the relay node, and

the additive white Gaussian noise at the relay receiver, respectively; and yR[n] is

a compact discrete-time representation of the overall signal at the relay receiver

just before quantization.
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It is useful to recall from Section 3.1 that the distortion d[n] due to the

quantizer is uncorrelated with the input yR[n] and that its average power, as in

(3.28), can be expressed in terms of the average input power and the parameters

α and β as

E{|d|2} =
(

β − α2
)

E{|yR|2}. (4.2)

One should note that the validity of (4.1) and (4.2) depends on an implicit as-

sumption that yR[n] comes from a stationary complex Gaussian process, which,

in turn, requires that the three components of yR[n], namely, sR[n], iR[n], and

wR[n], themselves come from separate complex Gaussian processes that are all

stationary and uncorrelated with one another. Under this assumption, the av-

erage power of yR[n] is given by

E{|yR|2} = GQ

(

E{|sR|2}+ E{|iR|2}+ E{|wR|2}
)

,

and the average distortion power in (4.2) becomes

E{|d|2} = GQ

(

β − α2
)

(

E{|sR|2}+ E{|iR|2}+ E{|wR|2}
)

. (4.3)

4.2 SINR at the Output of the ADC

One can see from (4.1) that sR[n] is the only desired or “signal” component

in zR[n] and that the signals iR[n], wR[n], and d[n] constitute the undesired or

“interference plus noise” component. Because d[n] is uncorrelated with yR[n] =

sR[n] + iR[n] + wR[n] and the components of yR[n] are uncorrelated with one

another, the signal-to-noise plus interference ratio (SINR) at the output of the

analog-to-digital converter (ADC) in the relay is thus given by

γ =
α2 GQE{|sR|2}

α2 GQ

(

E{|iR|2}+ E{|wR|2}
)

+ E{|d|2}

=
α2 GQE{|sR|2}

GQ

(

β − α2
)

E{|sR|2}+ β GQ

(

E{|iR|2}+ E{|wR|2}
)

=
1

(

β
α2 − 1

)

+ β
α2

(

1
SIR

+ 1
SNR

) , (4.4)

where the intermediate step is the result of substituting E{|d|2} from (4.3)

and rearranging the denominator to bring similar terms together, and the last

step is the result of dividing both the numerator and the denominator by

α2 GQE{|sR|2} and replacing
E{|sR|2}

E{|i
R
|2}

and
E{|sR|2}

E{|w
R
|2}

with more common terms

– the signal-to-interference ratio (SIR) and the signal-to-noise ratio (SNR), re-

spectively.
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4.3 Estimation and Cancellation of Loop Interference

Similar to its continuous-time counterpart in (2.5), the discrete-time representa-

tion iR[n] of the loop interference in the relay can be expressed as the response

of the loop interference channel to the signal transmitted by the relay:

iR[n] = hLI [n] ∗
(

xR[n] + vR[n]
)

=
M−1
∑

m=0

xR[n−m]hLI [m] +
M−1
∑

m=0

vR[n−m]hLI [m], (4.5)

where hLI [n] is the discrete-time impulse response of the loop interference chan-

nel assumed to have M taps, xR[n] is the discrete-time representation of the

signal ideally meant to be transmitted by the relay, and the new term vR[n] rep-

resents the error signal due to transmitter imperfections in the relay, as discussed

in Section 3.2. Assuming, for the sake of simplicity, that vR[n] is uncorrelated

with xR[n], the average loop interference power can be expressed as

E{|iR|2} = GLI

(

E{|xR|2}+ E{|vR|2}
)

, (4.6)

where

GLI =
M−1
∑

m=0

|hLI [m]|2 (4.7)

denotes the average power gain of the loop interference channel. Using the

definition of error vector magnitude (EVM) in (3.35), E{|vR|2} may be written

as

E{|vR|2} = ǫ2E{|xR|2}, (4.8)

and (4.6) becomes

E{|iR|2} = GLI

(

1 + ǫ2
)

E{|xR|2}. (4.9)

As discussed in Chapter 2, the loop interference iR[n] is generally much

stronger than the desired signal sR[n] from the source node because the sep-

aration between the transmitting and receiving antennas within the relay is

much smaller than that between the transmitting antenna in the source node

and the receiving antenna in the relay node. This means that the signal-to-

interference ratio (SIR) is typically very small (well below 0 dB), which, in turn,

means that the overall signal-to-interference plus noise ratio (SINR) in the relay

is even smaller since the expression in (4.4) contains the reciprocal of SIR in

its denominator. Therefore, it is necessary to cancel out the effect of the loop

interference iR[n] from the received signal, and doing so requires estimating the

loop interference channel hR[n] as already pointed out in Section 2.2.

Fortunately, the fact that iR[n] is much stronger than sR[n] turns out to be

desirable in this context since it facilitates the estimation of hR[n] by allowing

zR[n] to be modeled simply as an observation of iR[n] perturbed by a much
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weaker additive noise component, which is some linear combination of sR[n],

vR[n], wR[n], and d[n]. Moreover, because xR[n] (from which iR[n] originates)

is known completely to the estimation unit, the entire signal transmitted by

the relay essentially becomes the “pilot” signal, and one can expect hR[n] to be

identified reasonably well.

Substituting iR[n] in (4.1) with the expression in (4.5), we get

zR[n] = α
√

GQ

M−1
∑

m=0

xR[n−m]hLI [m] + uR[n], (4.10)

where

uR[n] = α
√

GQ

(

sR[n] +
M−1
∑

m=0

vR[n−m]hLI [m] + wR[n]

)

+ d[n] (4.11)

is a compact representation for all signal components present in zR[n] except

that corresponding to the output of the M -tap channel hLI [n] due solely to

the input xR[n]. In effect, uR[n], in the context of estimating hLI [n], can be

considered to be the “observation noise” that aggregates all extraneous signal

components present in zR[n] observed at the output of the linear system hLI [n]

in response to the input xR[n].

4.3.1 Channel Estimation

Assuming that the channel estimation unit in the loop interference canceler is

capable of processing N (≥ M) observations at a time and that the channel

hLI [n] is varying slowly with respect to the sampling interval, we can express a

block of N samples of zR[n] from (4.10) compactly as

z
R
= X

R
h
LI

+ u
R
, (4.12)

where

z
R
=
[

zR[0] zR[1] zR[2] · · · zR[N − 1]
]T

,

u
R
=
[

uR[0] uR[1] uR[2] · · · uR[N − 1]
]T

,

h
LI

=
[

hLI [0] hLI [1] hLI [2] · · · hLI [M − 1]
]T

,

and

X
R
= α

√

GQ















xR[0] xR[−1] xR[−2] · · · xR[1−M ]

xR[1] xR[0] xR[−1] · · · xR[2−M ]

xR[2] xR[1] xR[0] · · · xR[3−M ]
...

...
...

...

xR[N − 1] xR[N − 2] xR[N − 3] · · · xR[N −M ]















. (4.13)

The entries in X
R
with negative time indices represent samples towards the end

of the previous processing block, i.e., xR[−1] represents the last sample xR[N−1]
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in the previous block, xR[−2] represents second to the last sample xR[N − 2] in

the previous block, and so on.

Channel estimation then involves determining, from the known vector X
R

and the known matrix z
R
, the value of the unknown vector h

R
such that it

satisfies (4.12) as closely as possible. It should be noted that the elements of u
R

cannot be exactly known: the information available on u
R
, if any, can describe

(some of) its statistical properties at best. In any case, the estimator of h
R

is some vector-valued function of X
R

and z
R
, and the most straightforward

way of obtaining the time-evolving estimate of h
R
is to repeatedly evaluate this

estimator function with continuously updated values of X
R
and z

R
.

In estimation theory, the representation in (4.12) that relates the “obser-

vation vector” z
R

to the unknown “parameter vector” h
R

through the known

matrix X
R
and the “observation noise” u

R
is commonly referred to as the linear

model. For this model, there are quite a few standard estimators available for

obtaining the value of the unknown parameter vector, and the better perfor-

mance of one over others depends upon such factors as the statistical properties

of the measurement noise and whether or not some a priori information on the

parameter vector is available [48]. The details of a number of such estimators,

when applied to channel estimation in OFDM systems, can be found, e.g., in [49].

Apart from the factors mentioned above, the applicability of a standard esti-

mator to channel estimation is also determined by its computational complexity,

especially when the channel is known to have a long impulse response that varies

significantly over time. In such a scenario, it is better – even essential some-

times – to have a recursive implementation that, instead of updating z
R

and

X
R

and evaluating the whole estimator function every time a new sample be-

comes available, somehow computes only the incremental value of the estimator

corresponding to the new sample and then adds it to the previous estimate to

get the new estimate. The good thing about such recursive algorithms is that,

in most cases, they allow the resulting estimators to be implemented directly as

adaptive filters, some examples of which can be found in [50].

Rather than delving into the details of specific estimators, we keep the dis-

cussion in this section general enough to hold good for any estimator that can be

derived from the linear model in (4.12). The reason for doing so becomes appar-

ent in Section 4.4, where we intend to express the SINR in the relay after loop

interference cancellation in a concise closed form that does not contain elements

specific to any estimator but is, nevertheless, sufficiently parameterized to allow

convenient evaluation in case a particular estimator comes into the picture.

Before we close this section, we will take a brief look at the standard notation

in basic estimation theory that is useful for the upcoming sections. It is a

common practice to denote an estimator for an unknown parameter vector θ

(as well as the estimate obtained from this estimator) by the symbol θ̂ and the

corresponding estimation error vector, i.e., the difference between the true value

and the estimated value of the parameter, by θ̃. Then, we have

θ̃ = θ − θ̂. (4.14)
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The estimation error covariance matrix, whose elements give the covariances

among the elements of the estimation error vector θ̃, is usually denoted by C
θ̃

and computed as

C
θ̃
= E{θ̃ θ̃

H}, (4.15)

where the superscript H denotes the Hermitian transpose.

4.3.2 Time-Domain Subtractive Cancellation

Assuming that we have an estimator for the loop interference channel hLI [n], we

are now ready to take a closer look at the details of the time-domain subtractive

technique introduced in Section 2.2 for canceling the loop interference iR[n].

With ĥ
LI

=
[

ĥLI [0] ĥLI [1] · · · ĥLI [M − 1]
]T

as the available estimate of

the loop interference channel, and with the signal xR[n] transmitted by the

relay perfectly known to the canceler, we can obtain an estimate of the loop

interference iR[n] as

îR[n] = ĥLI [n] ∗ xR[n] =
M−1
∑

m=0

xR[n−m] ĥLI [m].

When we have the estimate îR[n], subtractive cancellation of the loop inter-

ference involves nothing more than subtracting an appropriately scaled version of

îR[n] from the signal zR[n] in (4.10). The resulting signal after such cancellation

is given by

ξR[n] = zR[n]− α
√

GQ îR[n]

= α
√

GQ

(

sR[n] +
M−1
∑

m=0

xR[n−m] h̃LI [m]

+
M−1
∑

m=0

vR[n−m]hLI [m] + wR[n]

)

+ d[n]

= α
√

GQ

(

sR[n] + ĩR[n] + eR[n] + wR[n]
)

+ d[n], (4.16)

where h̃LI [m] = hLI [m] − ĥLI [m], for m = 1, 2, . . . ,M − 1, are the elements of

the channel estimation error vector h̃
LI
,

ĩR[n] =
M−1
∑

m=0

xR[n−m] h̃LI [m] = h̃LI [n] ∗ xR[n] (4.17)

is the residual loop interference in ξR[n] attributable to the so-called residual

loop interference channel h̃LI [n] corresponding to the error in the estimation of

hLI [n], and

eR[n] =
M−1
∑

m=0

vR[n−m]hLI [m] = hLI [n] ∗ vR[n] (4.18)
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is the residual loop interference in ξR[n] due to vR[n], the unknown error in the

signal transmitted by the relay.

One should note that the degradation in signal quality caused by ĩR[n] de-

pends on how close the estimate ĥLI [n] of the loop interference channel is to its

true value hLI [n] and, therefore, gets smaller as the estimate gets better, whereas

the degradation caused by eR[n] depends on how large the deviation vR[n] of the

signal transmitted by the relay is from its ideal value xR[n], not on the accuracy

of ĥLI [n]. Since vR[n] is unknown, eR[n] cannot be canceled from zR[n] even in

the hypothetical case where hLI [n] has somehow been perfectly identified.

4.4 SINR after Loop Interference Cancellation

By identifying the desired and undesired signal components in (4.16), we can

express the signal-to-interference plus noise ratio (SINR) after loop interference

cancellation as

γ =
α2 GQE{|sR|2}

α2 GQ

(

E{|̃iR|2}+ E{|eR|2}+ E{|wR|2}
)

+ E{|d|2}
, (4.19)

where E{|eR|2} can be obtained from (4.18) by using (4.7), (4.8), and (4.9) as

E{|eR|2} =
M−1
∑

m=0

|hLI [m]|2E{|vR|2}

=
ǫ2

1 + ǫ2
E{|iR|2} (4.20)

and E{|̃iR|2} from (4.17) and (4.9) as

E{|̃iR|2} =
M−1
∑

m=0

|h̃LI [m]|2E{|xR|2}

=
G̃LI

GLI

(

1 + ǫ2
) E{|iR|2}, (4.21)

with

G̃LI =
M−1
∑

m=0

|h̃LI [m]|2 (4.22)

denoting the average power gain of the residual loop interference channel h̃LI [n].

Using the expressions in (4.3), (4.20), and (4.21), we can rewrite the denom-

inator of the ratio in (4.19) in terms of the average powers, E{|sR|2}, E{|iR|2},
and E{|wR|2}, of the three components of the signal yR[n] at the relay receiver

as

dmtr.(γ) = α2 GQ

(

G̃LI

GLI

(

1 + ǫ2
) E{|iR|2}+

ǫ2

1 + ǫ2
E{|iR|2}+ E{|wR|2}

)

+
(

β − α2
)

GQ

(

E{|sR|2}+ E{|iR|2}+ E{|wR|2}
)
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=
(

β − α2
)

GQE{|sR|2}+ β GQE{|wR|2}

+

(

β + α2

(

G̃LI

GLI

(

1 + ǫ2
) +

ǫ2

1 + ǫ2
− 1

)

)

GQE{|iR|2}

=
(

β − α2
)

GQE{|sR|2}+ β GQE{|wR|2}

+

(

β − α2

1 + ǫ2

(

1− G̃LI

GLI

)

)

GQE{|iR|2}.

If we substitute the expression above for the denominator in (4.19), then

divide the numerator as well as the denominator of the result by α2 GQE{|sR|2},
and finally replace

E{|sR|2}

E{|i
R
|2}

by SIR and
E{|sR|2}

E{|w
R
|2}

by SNR, the expression for the

SINR in the relay after loop interference cancellation becomes

γ =
1

(

β
α2 − 1

)

+
(

β
α2 − ρ

)

1
SIR

+ β
α2

1
SNR

, (4.23)

where

ρ =
1

1 + ǫ2

(

1− G̃LI

GLI

)

. (4.24)

Comparison of (4.23) with (4.4) tells us that the subtractive cancellation

of loop interference indeed amounts to an improvement in the SINR as the

coefficient β
α2 of the term 1

SIR
in the denominator of the ratio gets reduced by

the quantity ρ defined in (4.24). The larger the value of ρ, the greater is the

improvement in the SINR.

One can see from (4.24) that the value of ρ and, in turn, the degree of

improvement in the SINR due to loop interference cancellation depends upon

two factors: the accuracy of the chosen channel estimation technique, which is

quantified by the residual loop interference channel gain G̃LI , and the magnitude

of the transmitter side imperfections, which is quantified by the EVM ǫ. What

cannot be seen from (4.24) is the fact that those seemingly distinct factors are

not entirely independent: the EVM has a considerable impact on the accuracy

with which the loop interference channel can be estimated as it contributes to

the “observation noise” in the signal model defined by (4.10) and (4.11). In

the most desirable but unrealistic case where the relay transmitter is perfect

(i.e., ǫ = 0) and the estimate of the loop interference channel is accurate (i.e.,

G̃LI = 0), ρ becomes 1, which is the largest it can be, and the SINR attains its

maximum possible value for the given set of α, β, SIR, and SNR. In all realistic

cases (where ǫ > 0 and G̃LI < 0), however, ρ remains less than 1 and the SINR

remains sub-optimum.

Even in the hypothetical case where ρ is equal to 1, one should note that the

coefficient of the term 1
SIR

in the denominator of the SINR in (4.23) does not

vanish altogether but takes a value given by β
α2 −1, which, by the definitions of α

and β, gets increasingly closer to zero as the quantizer resolution grows but never

reaches zero. This quantity, in a sense, represents the residual loop interference
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Figure 4.1: Effect of the quantizer resolution on the residual loop interference

power expressed as a fraction of the desired signal power in an ideal system.

power expressed as a fraction of the desired signal power and tells us that even

the slightest degradation of signal quality caused by quantization alone in an

otherwise perfect system is sufficient to rule out the possibility of completely

canceling the effect of loop interference. Figure 4.1 plots the exact values of
β
α2 − 1 for a number of quantizer resolutions, and it includes both schemes of

quantization discussed in Chapter 3: uniform and optimum nonuniform. For

the uniform quantizer, the clipping margin is chosen such that the signal-to-

quantization noise ratio gets maximized (refer to Section 3.1.1 for more details).

An Example with the Best Linear Unbiased Estimator

Up to this point in this chapter, we have purposefully kept our discussion re-

garding the estimation and cancellation of the loop interference as general as

possible and accordingly derived an expression for the SINR after cancellation

that holds good regardless of a specific estimation technique. Before we conclude

this chapter, however, we will consider, as an example, a widely applied stan-

dard estimation technique and see how the general SINR expression in (4.23)

turns out for this specific case.

Let us once again consider the representations in (4.10) and (4.12) for the

signal in the relay node prior to loop interference cancellation. If we make a

typical (and reasonable) assumption that the observation noise uR[n] is white,
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then u
R
is a zero-mean random vector with elements that are uncorrelated with

one another, and, with no restriction on the true probability density function of

u
R
, the best linear unbiased estimator1 for the unknown parameter vector h

LI

that satisfies the model in (4.12) is given by [48]

ĥ
LI (BLUE) =

(

XH
R
C−1

u
X

R

)−1

XH
R
C−1

u
z
R
, (4.25)

where C
u
= E{u

R
uH
R
} is the covariance matrix of the zero-mean noise vector

u
R
. For this estimator, the estimation error vector defined in (4.14) becomes

h̃
LI

= h
LI

− ĥ
LI (BLUE),

which is zero on average, and the estimation error covariance matrix defined in

(4.15) becomes [48]

C
h̃
LI

= E{h̃
LI

h̃H
LI
} =

(

XH
R
C−1

u
X

R

)−1

. (4.26)

The diagonal elements of C
h̃
LI

give the estimation error variances for the indi-

vidual channel taps.

Since the elements of u
R
are assumed to be uncorrelated with one another,

C
u
is a diagonal matrix. If we further assume that the elements of u

R
have

identical second-order statistics, the noise covariance matrix takes the formC
u
=

σ2
u IN, where I

N
is an N × N identity matrix and σ2

u is the variance of each

element in the zero-mean noise vector u
R
. Then, (4.25) and (4.26) get reduced

to

ĥ
LI (BLUE) =

(

XH
R
X

R

)−1

XH
R
z
R

(4.27)

and

C
h̃
LI

= σ2
u

(

XH
R
X

R

)−1

, (4.28)

respectively.

Let us now investigate the extent to which the cancellation of loop interfer-

ence is possible if we use ĥ
LI (BLUE) to estimate the loop interference channel.

To do so, we first determine the expression, specific to this case, for the aver-

age residual loop interference gain G̃LI defined in (4.22). We then substitute

the resulting expression for G̃LI in (4.24) and see what ρ becomes. As we dis-

cussed earlier, the closer is the value of ρ to 1, the better is the extent of loop

interference cancellation.

When ĥ
LI

= ĥ
LI (BLUE), the average residual loop interference channel gain

in (4.22) is given by

G̃LI = tr
(

C
h̃
LI

)

, (4.29)

1The best linear unbiased estimator θ̂(BLUE) for an unknown parameter θ is unbiased,

which means that E{θ − θ̂(BLUE)} = 0, and it has the minimum error variance among all

unbiased estimators that can be expressed as linear transformations of the observation vector.
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the trace of the (loop interference channel) estimation error covariance matrix

C
h̃
LI

in (4.28).

According to (4.28), C
h̃
LI

can be obtained by inverting the matrix XH
R
X

R

and scaling the result by σ2
u. Taking into consideration the fact that the samples

of xR[n] should typically be independent of one another, one can see from (4.13)

that XH
R
X

R
is, on average, given by

E

{

XH
R
X

R

}

= N GQ α2
E{|xR|2} IM

=
N GQ α2

E{|iR|2}
GLI

(

1 + ǫ2
) I

M
,

where I
M

is an M ×M identity matrix and the second step is the result of using

(4.9) to write E{|xR|2} in terms of E{|iR|2}. The inverse of XH
R
X

R
is thus given

by

E

{

(

XH
R
X

R

)−1
}

=
GLI

(

1 + ǫ2
)

N GQ α2E{|iR|2}
I
M
. (4.30)

On account of the entities in (4.11), we can write down the variance σ2
u of

each sample from the white noise process uR[n] (again, on average) as

σ2
u = α2 GQ

(

E{|sR|2}+
M−1
∑

m=0

|hLI [m]|2E{|vR|2}+ E{|wR|2}
)

+ E{|d|2},

which, after substituting E{|d|2} from (4.3) and
M−1
∑

m=0

|hLI [m]|2E{|vR|2} using

(4.7), (4.8), and (4.9), becomes

σ2
u = α2 GQ

(

E{|sR|2}+
ǫ2

1 + ǫ2
E{|iR|2}+ E{|wR|2}

)

+
(

β − α2
)

GQ

(

E{|sR|2}+ E{|iR|2}+ E{|wR|2}
)

= β GQE{|sR|2}+
(

β − α2

1 + ǫ2

)

GQE{|iR|2}+ β GQE{|wR|2}. (4.31)

Using the expressions in (4.30) and (4.31) to evaluate C
h̃
LI

in (4.28) and

applying the result to (4.29), we get

G̃LI =
M
(

1 + ǫ2
)

GLI

N

(

β

α2

E{|sR|2}
E{|iR|2}

+

(

β

α2
− 1

1 + ǫ2

)

+
β

α2

E{|wR|2}
E{|iR|2}

)

,

since tr
(

I
M

)

= M . Then, ρ in (4.24) becomes

ρ =
1

1 + ǫ2
− 1

1 + ǫ2
G̃LI

GLI

=
1

1 + ǫ2
− M

N

(

β

α2
− 1

1 + ǫ2
+

β

α2

E{|sR|2}+ E{|wR|2}
E{|iR|2}

)

. (4.32)
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Since β is greater than α2, the quantity within the parentheses in the ex-

pression above is positive and ρ is less than 1
1+ǫ2

. The parameters α and β

remain constant for a given quantizer, and so does the EVM ǫ, more or less,

for a chosen transmitter. The largest that ρ in (4.32) can become, while still

restricted to values smaller than 1
1+ǫ2

, thus depends mainly upon the choice of

two other factors. The first is the ratio between the assumed length M of the

loop interference channel and the number of observation samples N processed

at a time; the second is the sum of the average powers of the desired signal sR[n]

and the additive noise wR[n] at the receiver, relative to the average power of the

loop interference iR[n]. The lower the value of either of these ratios, the greater

is the value of ρ, and the better is the SINR. This is not at all unexpected be-

cause a larger number of samples available for processing at a time or a stronger

loop interference received by the relay should indeed result in a more accurate

estimation and cancellation of the loop interference.
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Chapter 5

Discussion

We begin this chapter by verifying through simulations that our expression in

(4.23) for the signal-to-interference plus noise ratio (SINR) in a full-duplex relay

after subtractive loop interference cancellation holds true. Then, by choosing the

SINR as the metric for evaluating whether the relay performs satisfactorily in a

given scenario, we use the aforementioned expression to numerically determine

the acceptable range for the other parameters of interest such as the error vector

magnitude (EVM) for the transmitter, the signal-to-interference ratio (SIR) and

the signal-to-noise ratio (SNR) at the relay input, and the quantizer resolution

in the receiver, one at a time. This will eventually help us develop a systematic

way of determining the overall criteria that needs to be fulfilled to ensure that

the full-duplex relay operates successfully in a given practical scenario.

5.1 Verification of the SINR Expression

Let us once again consider the expression in (4.23) for the SINR after loop

interference cancellation, repeated here for convenience:

γ =
1

(

β
α2 − 1

)

+
(

β
α2 − ρ

)

1
SIR

+ β
α2

1
SNR

, (5.1)

where

ρ =
1

1 + ǫ2

(

1− G̃LI

GLI

)

. (5.2)

Because the number of parameters upon which the SINR depends is apparently

large, it becomes rather difficult to vary all the parameters of interest, each

over its practical range, within one huge simulation and present all the results

at one place. It is, therefore, preferable that we break this simulation down

into a number of smaller ones and examine the validity of the expression by

varying only one parameter at a time while keeping all the others constant. We

can, nevertheless, choose to group the results from several such simulations into

composite plots if doing so makes the presentation more informative.

Since the values of the parameters α and β are determined by the resolu-

tion of the quantizer and the chosen quantization scheme, one way of verifying
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the dependence of the SINR upon these parameters is to select a quantization

scheme, preferably the uniform quantization scheme owing to the simplicity of

its use in simulations, and vary the resolution of the quantizer across different

simulation runs. However, since α and β depend also upon the clipping margin µ

in this case (refer to Section 3.1.1 for more details), it is logical that we hold the

clipping margin constant at the value that maximizes the signal-to-quantization

noise ratio (see Table 3.1) during an entire simulation run, and then repeat the

same for different resolutions.

The parameter ρ is a bit trickier to handle because, as (5.2) says, its value

depends further upon the values of two other parameters: the EVM and the

residual loop interference channel gain expressed as a fraction of the original

channel gain before cancellation. For each simulation run, therefore, we fix the

value of the EVM and vary the fractional residual loop interference so as to vary

ρ in effect. We then repeat the same for different values of the EVM to verify

the dependence of the SINR on both of these parameters.

Figure 5.1 shows the results of varying the aforementioned parameters one

at a time while keeping the others constant. It is a composite plot showing the

results of six different simulation runs (represented by dotted trails) compared

with their analytical counterparts (represented by solid lines) given by (5.1). In

each run, the fractional residual interference channel gain (i.e., G̃LI expressed as

a fraction of GLI) is gradually varied from −60 dB to −10 dB and the resulting

SINR is plotted while keeping all the other parameters constant. Across all runs,

the SIR is held constant at−10 dB (indicating stronger loop interference than the

desired signal at the relay input) and the SNR at 30 dB (a reasonable practical

value). The six cases result from setting the EVM at three different levels (1%,

2%, and 5%) one at a time, each repeated for two different resolutions of the

quantizer (8 and 12 bits). In all cases, the overlapping of the solid lines with

the dotted trails indicates that the analytical results agree with those obtained

from the simulations, thereby verifying the validity of the expression in (5.1) at

least partially.

An important observation that is also illustrated by this composite plot is

that the higher the value of the EVM, the lower is the improvement in the SINR

that comes with an increased resolution of the quantizer. This is because the

EVM, which represents the strength of the unknown portion of the loop inter-

ference that cannot be canceled no matter how precise the digital representation

of the incoming signal in the relay is, becomes increasingly dominating. This is

well demonstrated in the figure by how close the two lines corresponding to the

8-bit and 12-bit quantizers get when the EVM is set to 5%.
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Figure 5.1: Effect of the residual loop interference channel gain, the transmitter

EVM, and the quantizer resolution on the signal-to-interference plus noise ratio

after loop interference cancellation. In all cases, the signal-to-interference ratio

is held constant at −10 dB and the signal-to-noise ratio at 30 dB.
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To verify the dependence of the SINR in (5.1) upon the two remaining pa-

rameters, namely, the SIR and the SNR at the relay input, we take a similar

approach as in the previous experiment. This time, we hold the SNR constant

during each simulation run and vary the input SIR over a wide range of values

so as to examine its impact on the SINR after loop interference cancellation.

We then repeat the same for different values of the SNR (30dB and 40dB) and

again for different resolutions of the quantizer (8, 10, and 12 bits); however, we

fix the EVM and the fractional residual loop interference channel gain constant

(at 1% and −60 dB, respectively) throughout all runs in this experiment.

Figure 5.2 illustrates the results obtained from this experiment along with

those obtained analytically from (5.1). This time too, all the solid lines overlap

with the dotted trails, thereby completing the verification of the validity of (5.1)

when viewed together with the results of the previous experiment. And because

the EVM is again the dominating parameter, a quantizer with a higher reso-

lution does not necessarily bring about a significant improvement in the SINR

as demonstrated by the proximity of the lines corresponding to 10 and 12-bit

quantizers. Lastly, Figure 5.2 also demonstrates the well-understood observa-

tion that the received SNR places a limit on the maximum achievable SINR, no

matter how favorable the values of the remaining parameters are.

5.2 Criteria for Successful Relay Operation

Now that the validity of the closed-form SINR expression in (5.1) has been es-

tablished, let us see how it can be applied to determine the criteria necessary for

ensuring that a full-duplex relay with subtractive loop interference cancellation

performs satisfactorily in practical scenarios. This requires, as mentioned in the

beginning of this chapter, choosing the SINR to be the performance metric and

assigning a minimum threshold that the SINR must attain in order to label the

performance as acceptable. Then, all that needs to be done is solving (5.1) for

the parameter of interest by substituting γ with the chosen threshold and the

remaining parameters with values that are appropriate for the given scenario.

Example 1: Maximum Tolerable Relay Transmit Power

Let us consider a scenario in which the distance of the relay from the base station

(i.e., the source node) is such that the average received SNR is, say, 30 dB. This is

the case when, e.g., the transmit power of the base station is 40W (i.e., 46 dBm),

the attenuation due to propagation between the base station and the relay is

120 dB, and the noise level at the relay receiver is −104 dBm. Let us assume

that the physical design of the relay and the surrounding infrastructure offer a

certain amount of isolation between the transmitting and the receiving antennas

of the relay. Let us also assume that the EVM for the relay transmitter is known

to be 0.1% (indicating an excellent transmitter), and that the loop interference

channel can be estimated well enough to keep the value of G̃LI at 60 dB below

that of GLI .
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and the quantizer resolution on the signal-to-interference plus noise ratio after

subtractive loop interference cancellation. In all cases, the transmitter EVM is

held constant at 1% and the fractional residual loop interference channel gain

at −60 dB.
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Then, one might be interested in determining the maximum relay transmit

power that can safely be used for a given amount of isolation existing between

the two antennas of the relay while ensuring that the SINR after subtractive

loop interference cancellation does not fall below, say, 20 dB (which is 10 dB less

than the received SNR). To accomplish this by using (5.1), we first express the

SIR as

SIR =
PS GSR

PR GLI

, (5.3)

where PS is the transmit power of the base station, GSR is the average power

gain of the base station-to-relay channel, PR is the transmit power of the relay,

and GLI is the average power gain of the loop interference channel. Then, by

substituting the expression above in (5.1) and rearranging the terms to isolate

the relay transmit power PR, we get

PR ≤
1 + 1

γ
th

− β
α2

(

1 + 1
SNR

)

(

β
α2 − ρ

)

G
LI

P
S
G

SR

, (5.4)

where γth is the SINR threshold of acceptable performance.

The values of the parameters required for evaluating the expression above

can be obtained as follows.

• α and β should be obtained by evaluating (3.9) and (3.13) for the desired

quantization scheme (and resolution). It should be stressed that the values

of α and β do not depend on the actual signal voltage at the relay receiver

as it is scaled to the value that is optimum for the chosen quantization

scheme by the low-noise amplifier (with automatic gain control) prior to

quantization (refer to Section 4.1 for details on the signal model).

• The average loop interference channel gain GLI is given simply by the re-

ciprocal of the isolation present between the transmitting and the receiving

antennas of the relay.

• The values of the remaining parameters can be derived from the scenario

description given above as

γth = 20 dB = 100,

SNR = 30 dB = 1000,

ρ =
1

1 + ǫ2

(

1− G̃LI

GLI

)

=
1

1 + 0.0012

(

1− 10−6
)

= 0.999998,

PS = 40W, and

GSR = −120 dB = 10−12.
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Figure 5.3: Effect of the amount of isolation present between the relay antennas

and the quantizer resolution upon the maximum transmit power that can be used

while maintaining the SINR threshold of 20 dB. In all cases, the source transmit

power is held constant at 40W, the source-to-relay channel gain at −120 dB, the

transmitter EVM at 0.1%, and the fractional residual loop interference channel

gain at −60 dB.

Figure 5.3 shows the results obtained by evaluating the expression in (5.4)

(with the parameter values as listed above) for the amount of isolation between

the two antennas in the relay ranging from 60 dB to 90 dB. The multiple plots in

the figure represent different resolutions of the uniform quantizer, each operating

at its optimum clipping margin. The plots tell us that the maximum tolerable

relay transmit power increases at a constant rate with an increase in the isolation

between the two antennas in the relay and that this rate of increase is more or less

independent of the quantizer resolution. However, as the quantizer resolution

goes higher and higher, the improvement brought about the increased quantizer

resolution becomes smaller and smaller. This is because, as mentioned earlier,

the part of the transmitted signal that is quantified by the EVM is unknown to

the loop interference canceler within the relay and, therefore, cannot be canceled
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no matter how accurately the incoming signal is digitized.

Example 2: Minimum Isolation Required Between Relay Antennas

As our second example, let us consider a scenario very similar to the one in

the previous example except that, this time, we are interested in determining

the minimum amount of isolation that must exist in between the transmitting

and the receiving antennas of the relay in order to perform satisfactorily for

a given relay transmit power. This might be of interest when, for example,

it has been established that the relay needs to transmit with a certain power

in order to ensure coverage to a certain region and the system designer needs

to determine and enforce the minimum amount of isolation necessary between

the two antennas in the relay so as to keep the SINR after loop interference

cancellation at or above the minimum threshold of acceptable performance.

Following a process similar to that in Example 1, we arrive at the following

expression for the minimum isolation required between the two antennas in the

relay:

1

GLI

≥

(

β
α2 − ρ

)

PR

P
S
G

SR

1 + 1
γ
th

− β
α2

(

1 + 1
SNR

) . (5.5)

Using the same parameters values as in the previous example, (5.5) gives

us the results presented in Figure 5.4. The plots on the figure illustrate one

simple observation that a higher amount of isolation is required between the

transmitting and the receiving antennas of the relay if it has to transmit at a

higher power level. Also, because of the same reason as in the previous example,

having a quantizer of a higher resolution does not always significantly ease the

requirement on the minimum isolation necessary for acceptable performance.

Example 3: Minimum SIR Required at the Relay Input

As our final example, let us consider a scenario where the only known parameter

is the transmit power of the base station, and based on this information, one

has to determine the optimum location and the transmit power of the relay.

The proper choice of both of these parameters is crucial as they jointly define

the coverage of the relay. Besides coverage, the location of the relay also has

a definite impact on the path loss suffered by the useful signal coming from

the base station and hence the received SNR at the relay input. The second

parameter, i.e., the transmit power of the relay, together with the information

provided by the first parameter and the information on the amount of isolation

that can be enforced between the two antennas of the relay, determines the

SIR at the relay input. Then, for ascertaining the optimum location and the

transmit power of the relay, one first needs to determine, as a function of the

received SNR, the minimum SIR at the relay input required to ensure that

the SINR after loop interference cancellation exceeds the minimum threshold of

acceptable performance.

54



30 32 34 36 38 40 42 44 46
65

70

75

80

85

90

95

100

 

 

m
in
im

u
m

is
ol
at
io
n
re
q
u
ir
ed

b
et
w
ee
n
re
la
y
an

te
n
n
as

(d
B
)

relay transmit power (dBm)

8 bits

10 bits

12 bits

14 bits

Figure 5.4: Effect of the relay transmit power and the quantizer resolution

on the amount of minimum isolation required between the relay antennas so

as to maintain the SINR threshold of 20 dB. In all cases, the source transmit

power is held constant at 40W, the source-to-relay channel gain at −120 dB, the

transmitter EVM at 0.1%, and the fractional residual loop interference channel

gain at −60 dB.

Rearranging the terms in (5.1) so as to isolate the SIR, we arrive at

SIR ≥
β
α2 − ρ

1 + 1
γ
th

− β
α2

(

1 + 1
SNR

) . (5.6)

Using the same values for α, β, ρ, and γth as in Example 1, the expression

above gives us the results presented in Figure 5.5. It can be seen from each

plot that the range of the SIR that can be tolerated after loop interference

cancellation improves when the input SNR increases and that this improvement

is the most remarkable for the input SNR values that are close to the minimum

SINR threshold γth (which, in this example, has been set to be 20 dB).
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Figure 5.5: Effect of the received SNR and the quantizer resolution on the

minimum SIR that is required at the relay input in order to maintain the SINR

threshold of 20 dB. In all cases, the transmitter EVM is held constant at 0.1%

and the fractional residual loop interference channel gain at −60 dB.
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Chapter 6

Conclusion

The results presented in this thesis show that the idea of full-duplex relaying in

OFDM systems can indeed be put to practice provided that certain criteria are

fulfilled. As expected, it is necessary to have a quantizer with a good resolution

(and hence a large dynamic range) at the relay receiver so as to ensure that the

incoming signal, which is a superposition of a weak useful signal and a much

stronger loop interference, can be digitized with sufficient accuracy. Another

important requirement is to have the relay equipped with an excellent trans-

mitter characterized with a very small EVM figure. This is because the error

in the transmitted signal is unknown to the processing unit within the relay

and, therefore, its contribution to the loop interference cannot be canceled no

matter how accurate the digital representation of the incoming signal is. More-

over, prior to applying any loop interference cancellation, the physical design

of the relay (along with the surrounding infrastructure) must, by itself, be able

to provide a certain amount of natural isolation between its transmitting and

receiving antennas; otherwise, the part of the loop interference contributed by

the transmitter error alone can be sufficient to drown the useful signal, thereby

rendering any further processing fruitless. With the framework developed in this

thesis, it becomes easy to analyze the connection between all these aspects of

practical system design.

Moving forward, an interesting extension to this work could be a more de-

tailed study of the effects of the most prominent if not all transmitter nonide-

alities on the signal model so as to be able to better parameterize the SINR

expression as opposed to using the single EVM parameter to represent all of

them. Further extension would then be to look for possible ways to compensate

the effect of each nonideality as this would potentially improve the achievable

SINR and make the full-duplex relay even more feasible. Another interesting

area to which this research could be extended is the area of multiple-input-

multiple-output (MIMO) full-duplex relays briefly introduced in Section 1.2 of

this thesis.
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