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Abstract: 

Our living environments are full of various connected computing devices. These environments 
in homes, offices, public spaces, transportation etc. are gaining abilities to acquire and apply 
knowledge about the environment and its users in order to improve users’ experience in that 
environment. However, before smart adaptive solutions can be deployed in critical applications, 
authentication and authorization mechanisms are needed to provide protection against various 
security threats. These mechanisms must be able to interoperate and share information with 
different devices.  

The thesis focuses to questions on how to facilitate the interoperability of authentication and 
authorization solutions and how to enable adaptability and smartness of these solutions. To 
address questions, this thesis explores existing authentication and authorizations solutions. Then 
the thesis builds new reusable, interoperable, and adaptive security solutions.  

The smart space concept, based on semantic web technologies and publish-and-subscribe 
architecture, is recognized as a prominent approach for interoperability. We contribute by 
proposing solutions, which facilitate implementation of smart access control applications. An 
essential enabler for smart spaces is a secure platform for information sharing. This platform 
can be based on various security protocols and frameworks, providing diverse security levels. 
We survey security-levels and feasibility of some key establishment protocols and solutions for 
authentication and authorization. We also study ecosystem and adaptation issues as well as 
design and implement a fine-grained and context-based reusable security model, which enables 
development of self-configuring and adaptive authorization solutions.  
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Tiivistelmä: 

Ympäristöt, joissa elämme, ovat täynnä erilaisia verkkolaitteita. Nämä koteihin, toimistoihin, 
julkisiin tiloihin ja ajoneuvoihin muodostuvat ympäristöt ovat oppimassa hyödyntämään 
ympäriltä saatavilla olevaa tietoa ja sopeuttamaan toimintaansa parantaakseen käyttäjän 
kokemusta näistä ympäristössä. Älykkäiden ja sopeutuvien tilojen käyttöönotto kriittisissä 
sovelluksissa vaatii kuitenkin tunnistautumis- ja käyttöoikeuksien hallintamenetelmiä 
tietoturvauhkien torjumiseksi. Näiden menetelmien pitää pystyä yhteistoimintaan ja 
mahdollistaa tiedonvaihto erilaisten laitteiden kanssa. 

Tämä lisensiaatin tutkimus keskittyy kysymyksiin, kuinka helpottaa tunnistautumis- ja 
käyttöoikeusratkaisujen yhteensopivuutta ja kuinka mahdollistaa näiden ratkaisujen 
sopeutumiskyky ja älykäs toiminta. Tutkimuksessa tarkastellaan olemassa olevia menetelmiä. 
Tämän jälkeen kuvataan toteutuksia uusista tietoturvaratkaisuista, jotka ovat 
uudelleenkäytettäviä, eri laitteiden kanssa yhteensopivia ja eri vaatimuksiin mukautuvia.  

Älytilat, jotka perustuvat semanttisten web teknologioiden ja julkaise-ja-tilaa arkkitehturin 
hyödyntämiseen, tunnistetaan työssä lupaavaksi yhteensopivuuden tuovaksi ratkaisuksi. 
Tutkimus esittää ratkaisuja, jotka helpottavat älykkäiden tunnistautumis- ja käyttöoikeuksien 
hallintaratkaisujen kehitystä. Oleellinen yhteensopivuuden mahdollistaja on tietoturvallinen 
yhteensopivuusalusta. Tämä alusta voi perustua erilaisiin avaintenhallinta ja 
tunnistautumisprotokolliin sekä käyttöoikeuksien hallintakehyksiin. Tutkimuksessa arvioidaan 
joidenkin olemassa olevien ratkaisujen käytettävyyttä ja tietoturvatasoa. Tutkimuksessa myös 
tutkitaan ekosysteemi- ja sopeutumiskysymyksiä sekä toteutetaan hienojakoinen ja kontekstiin 
perustuva uudelleen käytettävä tietoturvamalli, joka mahdollistaa itsesääntyvien ja mukatuvien 
käyttöoikeuksien hallinta sovellusten toteuttamisen. 

Avainsanat: tietoturva, tunnistautuminen, käyttöoikeuksien hallinta, yhteensopivuus, älytila 
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1 Introduction 

1.1 Authentication and Authorization in Networked World 

The amount of different networked devices and services has been rapidly increasing in 

the last decades. In the physical World, where we live in, we have seen networked 

sensors, cameras, video recorders, high definition televisions, PCs, printers, mobile 

phones, navigators, game consoles, and climate control equipment. In the virtual World, 

there is an enormous amount of information and different services available in remote 

servers. This development has also introduced various security threats. To protect us 

from these threats, we need different security technologies, including solutions for 

authentication and authorization.  

  
Figure 1. Core security enablers in the networked digital world  

Authentication is a process of confirming an identity or an origin of a communication 

partner or a piece of information. Authentication makes it possible for an entity to verify 

that it really is interacting with those users and devices and downloading software from 

those servers it believes it is interacting with. Hence, authentication prevents 

misbehaving devices and users from providing bogus information. Authentication is a 

vital part or our everyday life and present, for instance, when making phone calls, when 

using a wireless headset, when watching a pay television, when opening electronic 

locks in an office, or when doing transactions within Internet banks. The cornerstone of 

authentication is the establishment of cryptographic keys between devices. Established 

keys can then be used with cryptographic security protocols to prove the authenticity of 
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information. Different key establishment and management mechanisms as well as 

security protocols can be applied in different environments starting from personal and 

home networks to ubiquitous systems and global Internet. 

Authorization is a process of deciding whether an entity should be allowed to perform a 

particular action. In computer and communication systems, authorization mechanisms 

control and limit the risks caused by misbehaving users, devices or software 

components. A typical motivation for authorization is confidentiality, which is a 

principle ensuring that information is accessible only for authorized parties. 

Technically, authorization can mean a decision to establish a shared cryptographic key 

between devices. It can also mean a definition of detailed and complex security policies, 

specifying how different parties can cooperate in different situations. Authorization can 

be based on authentication in which case the authorization is given for known and 

trusted parties. Authorization is related to accounting, which refers to a process where 

users’ actions are monitored. We make authorization decisions daily, for instance, when 

allowing a paired mobile phone to synchronize with PC’s calendar, when allowing 

downloaded  software  to  access  network  interfaces,  when allowing  an  Internet  bank  to  

transfer our money, or when allowing family members to access photographs in a file 

sharing server.  

Authentication and authorization mechanisms are based on established technologies, 

designed in the past decades [1, 2]. However, even during the last decade new and 

innovative solutions have been developed and emerged into markets, making the 

authentication and authorization more user-friendly, cost-efficient, or secure. 

Authentication based on new biometrics [3], such as kinetics [4], graphics-based 

passwords [5], password-less pairing mechanisms [6, 7], as well as authorizations based 

on contexts [8, 9, 10], trusted computing [11], or reputation [12, 13] are examples of 

recent activities within these areas. 
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1.2 Heterogeneity and Smartness of Information Security 
Solutions 

The amount of solutions and variations for authentication and authorization is large. 

This amount of solutions is explained by the factors illustrated in Figure 2. Firstly, the 

amount of different application and environment specific network technologies is large. 

Technologies for sensors, web, homes, cars, public spaces, for instance, have their own 

characteristics and security requirements, causing that authentication and authorization 

solutions must be specifically crafted for them. Secondly, for one technology there are 

often various alternative security solutions. Typically one solution cannot provide the 

best usability, the best cost-efficiency and the best security level at the same time. 

Instead, alternatives providing different combination and compromises are provided for 

users and developers with different preferences and needs. Thirdly, different developers 

and manufacturers fulfil the requirements of applications and environments in their own 

manner and also provide unique and custom services. Gadgets services designed for 

special purposes and applications may provide unique solutions and utilize security 

solutions in their own ways. Standardisation efforts may ease the interoperability in 

some applications but the standards cannot cover all issues. Fourthly, new security 

solutions and improvements are constantly emerging as new ideas and security 

vulnerabilities are detected. New solutions are adopted but at the same time legacy 

systems continue their life alongside.  

    
    

   V
ari

ab
ilit

y i
n  

    
    

    

    
    

    
a t

ec
hn

olo
gy

  

         Unstandard 

          solutions
Vers

ion
s

Standards & 

technologies

 
Figure 2. Causes of heterogeneity  



11 

 

 

This diversity and variability provides opportunities as well as challenges. Devices 

supporting incompatible authentication mechanisms cannot authenticate with each 

other.  Authorization  systems cannot  be  distributed  and  do  not  scale,  when devices  do  

not share common authorization solutions. In order to support each other devices must 

be equipped with several security mechanisms, which require additional hardware or 

which require software integration work and consume memory.  

On the other hand, when the interoperability challenges can be solved, it is possible to 

select and adjust mechanisms so that the best possible mix between usability, cost 

efficiency and security is achieved in each particular authentication and authorization 

situation. Consequently, authentication and authorization mechanisms can be visualized 

as a part of concepts of smart environments, smart spaces, smart cities, and smart 

homes. In these concepts, the smartness is defined as ability to acquire and apply 

knowledge about the environment and its inhabitants in order to improve their 

experience in that environment [14].  In  this  thesis,  the  smart authentication and 

authorization is defined as an ability of an environment to acquire information and 

select mechanisms to provide authentication or authorization, which are the most 

suitable for a particular situation. The smartness is based on solutions for autonomic 

computing [15] as well as on interoperability between authentication and authorization 

components. Essentially, the smartness comes from the intelligent management of 

authentication and authorization solutions and relevant information in an application or 

use case specific manner. Some examples of smart applications are presented in Section 

6.  

1.3 Interoperability Solutions for Authentication and 
Authorization 

Authentication and authorization solutions can be based on diverse actors and 

components, forming an ecosystem. Particularly, an ecosystem consists of end-users, 

services, and third-party service providers; as well as of hardware and software 

components in the secure interoperability platform.  The  platform  enables  secure  and  

authenticated communication between distributed devices belonging to different actors. 

The platform enables entities to understand each other and provides supportive services. 
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Figure 3 illustrates five strategies that the interoperability platform can utilize to achieve 

or enable interoperability. Depending on the actors and on the components in the 

ecosystem, different kinds of authentication and authorization applications can be set-

up. Some solutions require direct realtime communication between communicating 

parties. In some solutions interoparabilyt and adaptation can be achived by delivering 

information only inderectionally or only in one direction.   

 

Figure 3. Strategies for enabling interoperability in information security systems 

Networked entities can communicate and authenticate with each others when they share 

a common language i.e. when they use common security protocols. In the past, the 

standardization has been very successful in solving interconnectivity issues in 

communication protocols. Particularly, standardization is effective in the lower protocol 

levels, which are layers 1 to 6 (physical, data link, network, transport, session, and 

presentation) in the Open Systems Interconnection (OSI) model [16, 17].  

Consequently, there exists large amount of standards for communication protocols 

suitable for various networks and devices. However, the standardization of the 

application-level interoperability, in OSI layer 7, is more challenging task [18].  

In the application level, the amount of use cases and applications is huge and new 

applications are introduced rapidly. Standardisation takes time and, therefore, is not a 

sufficient answer to every possible need and use case. In the application level, one 

current trend has been the emergence of semantic web technologies [19, 20]. These 

standards are used to present application specific ‘languages’. A language is called an 

ontology and it presents concepts and relationships between concepts. Two parties do 

not  need  to  know  exactly  the  same  language.  Cooperation  is  successful  when  the  
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meanings of those concepts, which are essential for an application, are shared. Hence, 

introduction of new applications and application versions is easier, even though the 

approach does not guarantee interoperability. 

An important part of interoperability is the devices’ ability to adapt their behaviour to 

match to the requirements of their counterpartiers. The security handshake is a standard 

practise in security protocols. In handshakes, devices exchange security interface 

descriptions and other security metadata. This security metadata can contain 

information on the supported protocols, versions, or algorithms. Servers may deliver 

information on their privacy and security practises. The objective of negotiation may be 

to find the most secure or most optimal interoperable solutions. Further, the metadata 

can also contain instructions or policies on how the other party should behave and e.g. 

protect the delivered information. Both interacting devices may share metadata or only 

one may provide (in Figure 3 the fact that only another party needs to share is illustrated 

with one directional arrow). 

Gateways and adapters are network elements, which enable communication between 

devices without shared communication protocol by automatically converting messages 

[21]. Adapters are device specific components enabling particular device to access 

network and gateways are generic components that can be used to enable 

communication between various devices. Adapters can be often considered as trusted 

components and can therefore authenticate peers on behalf of the adapted device. 

Gateways, which are used by many devices, may not be trusted to perform 

authentication actions on behalf of the devices. However, gateways can have a role 

when the converted information is not security critical.  

Information brokers enable indirect collecting, sharing and delivery of information, 

which would not otherwise be available. Brokers can process and deliver information 

for authentication and authorization decisions. Broker can enable one or two directional 

unicast communication as well as multicasting. Brokers enable realtime communication 

and storing of information for later hadling. As brokers are central components they are 

able to control and authorize who can access brokered information and, thus, they are 

also able to enforce authorization policies. An example of a broker is a web reputation 
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service, which can be managed by a security company or community. These trusted 

third-party services collect and provide information on the trustworthiness of web 

services. Brokers have also a central role in the smart space concept. In smart spaces, 

communication between heterogeneous and ubiquitous devices is enabled by brokering 

information, structured according to semantic data presentation formats. Further, 

Certification authorities, the backbone of the internet security, can be also seen as 

brokers as they deliver vouched identity information to clients with certificates. 

1.4 About this Thesis 

1.4.1 Research Questions 

The thesis concentrates on studying the heterogeneity of authentication and 

authorization solutions. The thesis explores both the opportunities as well as the 

challenges caused by the diversity and variability of devices, communication 

technologies, and applications. We will study the interoperability solutions in the 

protocol, platform and application levels. We will also focus on the enablers of smart 

authentication and authorization i.e. on solutions which enable finding, selecting and 

using authentication and authorization mechanisms and information in a manner which 

is the most suitable for each particular situation. Essential questions motivating the 

thesis include the following. 

1. How to facilitate interoperability of authentication and authorization solutions? 

Particularly, how to effectively utilize open standards to make interoperable security 

solutions? What is missing from the standards? This thesis concentrates on some 

standards, which are widely adopted and used typically by non-expert users. In the 

connectivity and network level, the surveyed standards include, e.g., Bluetooth, 

Wireless Fidelity (Wi-Fi), Transmission Layer Security (TLS) and Hypertext Transfer 

Protocol Secure (HTTPS). We will also cover presentation and middleware level 

technologies including Universal Plug and Play (UPnP), Device Interconnect Protocol 

(DIP) and Semantic Web. A particular focus is in the effectiveness of security 

mechanisms in these standards i.e. in the security level they provide. 
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The security levels that variable components can provide are different. In order to 

control this diversity and make sure that the overall security level reaches the minimal 

requirements, we need means to formally measure security levels provided by separate 

components. The thesis will study some metrics for quantifying the security levels of 

security systems. Later on the thesis also studies how to manage different security levels 

and enable systems to automatically select the mechanisms to provide the best suitable 

security level. The research question to be considered is:  

2. How do the solutions managing heterogeneity affect to actual security level and 

to users’ perception of security and privacy?  

Particularly, we will focus on two questions. Firstly, how does the heterogeneity affect 

to strength and applicability of key establishment protocols? Secondly, how to estimate 

the impact that authentication mechanisms have on end-users’ willingness to trust and 

authorize a communicating counterparty?  

Heavy (and slow) standardization is not a viable solution in higly heterogenous and 

rapidly evolving application environments. To address the challenges and requirements 

caused by heterogeneity and complexity of authentication and authorization solutions in 

smart environments, the thesis constructs solutions for secure interoperability platform. 

The  thesis  presents  case  studies  on  how  to  use  adapters,  brokers,  or  semantic  

technologies to achieve smart and interoperable security solutions. The essential 

research question is: 

3. How to build facilities for smart access control applications using a 

combination of brokers and middleware approaches? 

In more detail the thesis studies, how do these solutions increase interoperability and 

security? What kind of building blocks and ecosystems are needed? How to increase the 

reusability, flexibility, and security level of these solutions?  What kind of challenges 

does the deployment of these solutions cause?  

1.4.2 Research Methods 

The research method applied in this thesis can be characterised as literature-based 

constructive research. The thesis builds on literature survey where authentication and 
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authorization solutions are presented, studied, classified, and analysed. The security and 

feasibility analyses over existing mechanisms are mainly qualitative. However, 

quantitative research methods are also used to examine the impact of authentication 

solutions for end-users’ perception of security and privacy. Particularly, the qualitative 

analysis is used to study a correlation between databases containing SSL certificates, 

popularity information of web services, and web reputation information of web services. 

This analysis provides input for constructing solutions and mechanisms. 

The constructive research [22] tests theories and proposes novel solutions to practically 

and theoretically relevant problems. The approach is to build artefacts - such as models, 

methods, and algorithms - to create knowledge on how to solve the problem. In 

constructive research, first an understanding of the problem is gained, then artefacts are 

constructed and demonstrated, and finally the theoretical connections and applicability 

are examined. In this thesis, the focus is in on two new artefacts: OpenHouse and RDF 

Information Base Solution (RIBS). The thesis will describe security approaches for 

these middleware and service platform solutions.  

1.4.3 Publications 

The results presented in this thesis have been previously published and validated in the 

peer reviewed conference and journal articles. The articles have been restructured and 

rewritten to form a backbone for this thesis. The articles are the following: 

I Jani Suomalainen, Jukka Valkonen, N. Asokan. Standards for Security 

Associations in Personal Networks: A Comparative Analysis. International Journal 

of Security and Networks (IJSN). Vol. 4, Nos. 1/2. Pp. 87–100, February 2009. 

Inderscience1. (A preliminary version published in Proceedings of the European 

Workshop on Security and Privacy in Ad-hoc and Sensor Networks (ESAS 2007) 

[23]2.)  

                                                

1 Copyright Inderscience. Excerpts and illustrations reprinted with kind permissions. 
2 Copyrigt Springer Science and Business Media. Excerpts and illustrations reprinted with kind 
permissions. 



17 

 

 

II Jani Suomalainen. Towards Fine-Grained Authorizations in Small Office and 

Home Networks. Proceedings of the Second International Conference on Systems 

and Networks Communications (ICSNC 2007), Cap Esterel, French Riviera, 

France. 25-31 August 2007. IEEE Computer Society3. 

III Jani Suomalainen, Seamus Moloney, Juha Koivisto, Kari Keinänen. OpenHouse: 

a Secure Platform for Distributed Home Services. Proceedings of the Sixth 

Annual Conference on Privacy, Security and Trust (PST 2008). Fredericton, New 

Brunswick, Canada. 1-3 October 2008. Pp. 15-23. IEEE Computer Society3.  

IV Jani Suomalainen, Pasi Hyttinen, Pentti Tarvainen. Secure Information Sharing 

between Heterogeneous Embedded Devices. The First International Workshop on 

Measurability of Security in Software Architectures (MeSSa 2010). Proceedings 

of the Fourth European Conference on Software Architecture: Companion 

Volume. Copenhagen, Denmark. 23 August 2010. Pp. 205-212. ACM4.  

V Jani Suomalainen. Flexible Security Deployment in Smart Spaces. The First 

International Workshop on Self-managing Solutions for Smart Environments (S3E 

2011). Oulu, Finland, 11 May 2011. Proceedings of the 6th International 

Conference on Grid and Pervasive Computing (GPC2011) Workshops. Lecture 

Notes in Computer Science, Vol. 7096. Springer2. 

VI Jani Suomalainen and Pasi Hyttinen. Security Solutions for Smart Spaces. The 

Second International Workshop on Semantic Interoperability for Smart Spaces 

(SISS2011). Proceedings of 2011 IEEE/IPSJ International Symposium on 

Applications and the Internet (SAINT 2011). Munich, Germany. 18-22 July 2011. 

Pp. 297-302. IEEE Computer Society3. 

VII Jani Suomalainen. Quantifying Value of SSL Certification with Web Reputation 

Metrics. Proceedings of the Seventh International Conference on Internet 

                                                

3 Copyright IEEE Computer Society. Excerpts and illustrations reprinted with kind permissions. 
4 Copyright ACM. Excerpts and illustrations reprinted with permissions. 
http://doi.acm.org/10.1145/1842752.1842793. 
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Monitoring and Protection (ICIMP 2012). Stuttgart, Germany. May 27 - June 1, 

2012. Pp. 7-12. XPS5. 

Articles I, II, and III study how authentication and authorization technologies can be 

applied in personal and home networks. Article I describes taxonomy of protocols for 

key establishment between personal devices and analyses use of key establishment 

mechanisms in emerging standards. The author contributed in the survey of standards, 

participated in the security analysis of key establishment mechanisms, and described 

novel man-in-the-middle attacks. Article II describes authorization requirements for 

home network middleware and proposes a conceptual model (‘permission attenuation’) 

for managing authorizations in systems with cooperative components. In Article III, a 

secure service platform and authorization model, which considers whole ecosystem for 

home services and makes security configuration in homes more usable, is presented. 

The  author  was  the  main  designer  and  sole  implementer  of  the  authentication  and  

authorization characteristics for the proposed OpenHouse platform. 

Articles IV, V, and VI address the security issues in smart spaces. Smart space is 

brokered information sharing environment, which facilitate self-adaptability and 

interoperability between ubiquitous devices with semantic web technologies. In Article 

IV, security architecture and a mechanism for controlled information sharing between 

devices with heterogeneous security properties is described. Article V addresses 

security configuration of smart spaces and presents an example of self-configuring 

using role-based access control. The article also shows how smart space brokers can be 

used as mediators of key establishment between heterogeneous devices. Article VI 

describes our security implementations for smart spaces. The article presents security 

requirements in different conceptual layers of semantic web and smart spaces. The 

article provides introduction to the proposed an access control framework for the 

implemented RDF information base solution. The article also gives examples on 

building of self-adaptive and context based security solutions by using rule based 

reasoning. The author of this thesis was the main designer and implementer of security 

functionality for the broker implementation and for supporting communicating libraries. 

                                                

5 Copyright (c) IARIA, 2012. Excerpts and illustrations reprinted with permissions.  
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Article VII provides an example on the use of more rich security information in 

constructing smart authorization solutions. The article concentrates to the authentication 

and authorization in the Internet and World Wide Web. Article VII, which was written 

completely by the author, explores fine-grained reputation information of the security 

characteristics of web services. The paper studies the potential of web reputation as a 

universal security metric for web servers and provides statistical analysis on the 

correlation between reputation and SSL certification.  

1.4.4 Organisation 

The thesis is organized as follows. Section 2 studies the heterogeneity of authentication 

capabilities within different connectivity mechanisms and physical interfaces, available 

for personal devices. Particularly, the section surveys recent standards and key 

establishment mechanisms proposed for personal devices. The section notes how 

different usability, security level, and cost requirements cause variability and proposes 

novel mediator based protocols for easing interoperability.  

Section 3 surveys authentication and authorization solutions for large environments. 

The section focuses on internet security solutions, where additional security data, 

structured according to few common standards, is provided to clients, which are 

connecting to servers. The solutions are SSL certification with extended validation and 

web reputation. Novel contribution in the section is the proposal of reputation 

correlation metric for analysing impacts of security mechanisms. The section studies the 

correlation between SSL certifications and reputations of web servers. 

Section 4 surveys authentication and authorization requirements from the point of view 

of home networks. The section studies what security mechanisms are needed and 

available in existing network frameworks. Further, the section contributes by describing 

experiences with a secure middleware platform implementation, called OpenHouse.  

Section 5 studies how semantic interoperability solutions can be applied to provide an 

interoperable and secure platform for ubiquitous networks. The section will represent 

the concept of smart spaces and survey security requirements within semantic web 

technologies. Then, the section contributes by presenting design and implementations of 

authentication and authorization mechanisms for an interoperability platform. The 
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platform is based on our semantic information broker implementation, called the RDF 

Information Base Solution (RIBS), supporting a reusable, fine-grained and context-

aware access control model. 

Section 6 presents application examples of smart authentication and authorization. The 

section presents smart applications making authorizations in home and ubiquitous 

environments autonomous and self-adaptable. The applications are based on the 

platform presented in Section 5.  

Section 7 discusses on the significance of the results. Particularly, the section answers to 

the reseach questions, which were given in this Introduction section, and presents 

unanswered research questions and areas for the future research.  

Section 8 concludes the paper by listing the key contributions made in this thesis. 
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2 Heterogeneity in Key Establishment Protocols 

Introducing a new device to a network or to another device is one of the most security 

critical  phases  of  communication  in  personal  networks.   It  is  difficult  to  make  this  

process of associating devices easy-to-use, secure and inexpensive at the same time. A 

cornerstone of this process is key establishment. There have been a number of research 

proposals for key establishment in personal networks.  Some of them have been adapted 

by emerging standard specifications. In this section, we first present taxonomy of 

protocols for key establishment in personal networks. Further, we describe and analyze 

specific protocols. We then use this taxonomy in surveying and comparing association 

models proposed in several emerging standards from security, usability, and 

implementation perspectives. 

Subsection 2.1 studies the heterogeneity in key establishment protocols, which are used 

by personal devices. In Subsection 2.1, we will survey and analyze the existing 

mechanisms and standards, namely Bluetooth, Wi-Fi, Wireless USB and HomePlugAV. 

The survey is based on Article I.  

Subsection 2.2 complements the analysis by focusing on interoperability challenge, 

which is caused by these emerging mechanisms, and by presenting a mediator concept 

and protocols for easing interoperability. Mediator devices are advanced devices such as 

mobile phones or PCs, which support several association interfaces. Particularly, the 

subsection proposes a mechanism for extending the Bluetooth Secure Simple Pairing 

standard to support associations through mediators. Essentially, the subsection describes 

how a Bluetooth device supporting any out-of-band association model can be paired 

with a device supporting incompatible out-of-band model, comparison model or 

passkey entry model (described in the following Subsection 2.1). 

2.1 Key Establishment Mechanisms for Personal Devices 

2.1.1 Introduction 

Short-range communication standards have brought a large number of new services to 

the reach of ordinary users. For instance, standards for personal networking 
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technologies such as Bluetooth, Wi-Fi, Wireless Universal Serial Bus (WUSB) and 

HomePlugAV enable users to easily introduce, access, and control services and devices 

both in home and mobile environments.  

The initial process of introducing a new device securely to another device or to a 

network is called, in this section, an association. Association consists of the 

participating devices finding each other and establishing a shared secret key between 

them.   

The part of the association procedure that is visible to the user is called an association 

model Association models in today's personal networks such as those based on Wi-Fi or 

Bluetooth, typically consist of the user scanning the neighborhood from one device, 

selecting the other device or network to associate with, and then typing in a shared 

passkey. These current association procedures have several usability and security 

drawbacks arising primarily from the fact that they are used by ordinary non-expert 

users. First, when there are many devices or networks in the scanned neighborhood, 

users find it difficult to choose the correct one from a, possibly long, list of choices. 

Second, the security of the association protocol depends on the strength of the shared 

passkey. If passkeys are long and hard-to-guess, usability is impaired. Using a short or 

memorable passkey leaves the protocol vulnerable to dictionary attacks, even by passive 

eavesdroppers. Also, over the last few years several other weaknesses have also been 

discovered in the association protocols used in Wi-Fi and Bluetooth [24, 25]. 

To address these concerns, various new ideas have been proposed with the intent of 

providing a secure yet usable association model. For instance, there have been proposals 

for association models utilizing short passwords/checksums [26, 27, 28, 29, 30, 31] or 

various types of out-of-band channels [32, 33, 34, 35, 36]. However, in reality, it is 

impractical to mandate a single model for all kinds of devices because different devices 

have different hardware capabilities. Also, different users and application contexts have 

different usability and security requirements. Because of this, forthcoming standards are 

adopting multiple association models. Although, low-end devices like headsets and 

wireless access points may be limited to one association model, richer devices like 

mobile phones and personal computers will naturally support several.  The security of 
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individual association models has been studied widely. But new kinds of threats may 

emerge when several models are supported in personal devices and several protocols 

and versions of protocols are in use simultaneously. 

In this section, various protocols for key establishment and taxonomy for classifying 

them are presented. Then, association models proposed in different standards are 

comparatively analyzed from a practical point of view. The surveyed standards are 

Bluetooth Secure Simple Pairing [37], Wi-Fi Protected Setup [38], Wireless USB 

Association Models [39], and HomePlugAV security modes [40, 41]. The section 

reveals the similarities between the protocols in different standard specifications by 

relating them to the taxonomy. All of the surveyed standards are targeted for personal 

devices and support multiple association models. 

The rest of this section is organized as follows. Subsection 2.1.2 provides a systematic 

taxonomy of different protocols for key establishment and describes some basic 

protocols. Subsection 2.1.3 look at how different types of secure channels and physical 

interfaces can be used to implement the protocols. Subsection 2.1.4 explains how and 

which key establishment protocols and related association models are used in the 

surveyed standards. Subsection 2.1.5 evaluates and analyzes the security of various key 

establishment models described in the standards. Then, new attacks against the 

methods, published in Article I, are described in Subsection 2.1.6.  

2.1.2 Key Establishment Protocols 

2.1.2.1 Classification of Key Establishment Methods 

All of the association models we will survey in the following Subsection are based on 

one or more protocols for human-mediated establishment of a shared key between two 

devices.  The shared key is typically used to protect subsequent communication over the 

otherwise insecure communication channel and, possibly, in authentication for other 

access control decisions.  We show that the same basic protocols are used in different 

standard specifications, even though the exact instantiations naturally differ. 

The attacker model for key establishment is the following. The two devices involved in 

key establishment are capable of communicating over an insecure communication 
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channel.  The devices themselves are assumed to be secure and trustworthy. The 

attacker has the standard Dolev-Yao capabilities [42] over the insecure channel: the 

attacker can insert, delete, modify or delay messages sent over the insecure channel.  

The security objective of the participating devices is to establish a common key, which 

is shared only between the associated devices and which is used to protect subsequent 

communication between the devices. The goal of the attacker is to intervene in this 

process so that either it can read subsequent communication between the participating 

devices, or act as an active man-in-the-middle. In the latter case, the attacker can 

generate  or  modify  messages  and  fool  one  or  both  of  the  devices  into  accepting  these  

messages as originating from the peer device.  

Figure 4  presents taxonomy of key establishment protocols that can be used to associate 

personal devices.  At a high level, key establishment may be a simple key transport or 

involve running a key agreement protocol.  In the context of personal networks where 

the devices are likely to be in close proximity, an additional key establishment method 

is key extraction from the common shared environment.  
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Figure 4. Taxonomy of key establishment methods [Article I] 

Key transport: In key transport, one device chooses the key and transmits it directly to 

the second device using an out-of-band (OOB) secure communication channel (P1). 

Typical out-of-band channels used for key transport include a direct USB cable 

connection or the use of removable memory, like flash drives. The security of key 

transport depends on the out-of-band channel being secret and unspoofable: a man-in-

the-middle must not be able to modify the data transmitted out of band between the 

devices. 

Key extraction: Personal devices are often in close proximity to one another and thus 

share a common ambient environment.  This gives rise to an interesting possibility for 

key establishment: measurements of certain environmental parameters, such as the 

signal strengths of radio beacons in the vicinity [43] or ambient noise, may be similar in 

devices that are close to each other but hard to predict from devices that are not in the 

same place at the same time. By measuring such parameters, and using them in a key 

agreement protocol, the devices may be able to extract an authenticated shared secret 

(P12). 
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Key Agreement: Key agreement protocols may be based purely on symmetric key 

cryptography, or may be based on asymmetric key cryptography as well.  In the latter 

case, the typical protocol is the key exchange presented by [44]. Key agreement may be 

unauthenticated or authenticated.  Unauthenticated symmetric key agreement (P3) is 

vulnerable even to passive eavesdroppers.  Unauthenticated asymmetric key agreement 

(P11) is secure against passive eavesdroppers but is vulnerable to active man-in-the-

middle. 

2.1.2.2 Authentication methods 

There  are  a  number  of  ways  to  authenticate  key  agreement.   Key agreement  based  on  

symmetric key cryptography is authenticated by using a sufficiently long pre-shared 

secret (P2). The security of such protocols depends on the length of the pre-shared 

secret.  Authentication of asymmetric key agreement can be performed using some form 

of integrity checking, or by using a pre-shared secret or using a combination of these 

two. Authentication by integrity-checking can be done either by exchanging and 

comparing commitments to public keys, or by exchanging and comparing short integrity 

checksums.   

Authentication by exchanging key commitments:  A simple protocol to authenticate 

the public keys of two devices is to use an auxiliary channel to exchange commitments 

to the public keys (P4) [33]. The auxiliary channel is unspoofable in that it is difficult 

for an attacker to insert, modify or delete messages in the channel without being 

detected.  When the devices exchange public keys via the in-band channel, they can 

validate the authenticity of these keys by using the information exchanged via the 

auxiliary channel. 

The security of the protocols depends on the auxiliary channel being unspoofable and 

on the commitments of public keys being strong enough. There are two ways to realize 

such auxiliary channel. The first is to use a separate, out-of-band, physical channel 

which is resistant to spoofing.  Several such out-of-band channels have been proposed 

in the literature including audio [45], visual [34, 35], infrared [33] and Near-Field 

Communication (NFC).  Both devices involved in the association are assumed to 

support the same type of physical hardware interfaces. The second way is to use the I-
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Codes [46] technique which uses the anti-blocking property inherent in some otherwise 

insecure in-band channels (In such channels the standard Dolev-Yao attacker model is 

too strong) to construct a logical auxiliary channel which is difficult to spoof. 

Commitments to public keys should be strong enough (e.g., a cryptographic hash 

function with at least 80 bits of output) to resist the attacker finding a second pre-image 

to the commitment.   

Authentication by short integrity checksum: The idea of using short checksums to 

authenticate a key agreement was originally proposed in PGPfone [26].  Afterwards 

several researchers have proposed variations and enhancements [29, 30, 31, 47]. In 

these protocols, each device computes a short checksum from the messages exchanged 

during the key agreement protocol. As we shall see in the example protocol below, the 

messages are structured such that if the two checksums are the same, the exchange is 

authenticated. This is sometimes referred to as ``short authenticated string'' (SAS) 

protocols. A basic three round mutual authentication protocol [29] is illustrated, in a 

simplified form, in Figure 5.  

The notations are as follows: in practice, h is a cryptographic hash function like SHA-

256; f is also a hash function, but with a short output mapped to a human-readable string 

of digits. The hat ‘^‘ symbol is used to denote the receiver's view of a value sent in 

protocol message over the insecure in-band channel. 

Device D2Device D1

h1

Creates random value R1
Computes commitment h(R1)

R2

Check that h1 responds 
h(R1) 

Creates random value R2

R1

Calculates 
V2 = f(^PK1, PK2,^R1, R2)

Calculates 
V1 = f(PK1,^PK2,R1,^R2)

PK1

PK2

Check V1 = V2 ?

 

Figure 5. Authentication by short integrity checksum 
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The protocol steps are the following: 

1. Devices D1 and D2 first exchange their public keys PK1 and PK2.   

2. D1 generates a long random value R1, computes commitment h1 = h(R1) and 

sends it to D2 

3. D2 generates a long random value R2 and sends it to D1 

4. D1 sends R1  to D2 

5. D2  checks  if  ^h equals h(^R1). If equality holds, D2 computes V2 =  f(^PK1}, 

PK2,^R1, R2), otherwise it aborts.  

6. D1 computes V1 = f(PK1,^PK2,R1,^R2). 

7. User checks if V1 equals V2 

The check in the last  step can be done in many different ways.  One way is to ask the 

user to do the comparison (P5): Each device ‘shows’ its own string to the user and ask 

whether  it  is  the  same  as  what  the  other  device  is  showing.  ‘Showing’  can  use  any  

applicable user interface: displaying the string on a screen, or having a voice synthesizer 

read out the characters in the string. If the checksum strings are identical, the user 

indicates this to both devices and both devices conclude that the authentication is 

successful. Otherwise, the user indicates a mismatch to both devices and both conclude 

that the authentication did not succeed. An alternative way is to do the check using an 

auxiliary unspoofable channel (P6). The unspoofable channel can be a physical out-of-

band channel, as presented by [35, 36], or an I-Codes channel by [46]. 

To break this protocol, a man-in-the-middle has to choose random numbers R'1, R'2 and 

public keys PK'1, PK'2 so that f(PK'1,PK2,R'1,R2) equals f(PK1,PK'2,R1,R'2). The 

security of the protocol depends on the quality of the functions h and f.  If h is collision-

resistant, the attacker has to choose R'1 without knowing anything about R'2.  If h is one-

way, attacker has to choose R'2 without knowing about R'1.  If  the  output  of  f is  a  

uniformly distributed n-bit value, then the chance of a man-in-the-middle succeeding is 

1/2n.  This success probability does not depend on any additional assumptions about the 

computational capabilities of the attacker beyond that he cannot break h in real time. 

The formal proofs were presented by [48].  
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Authentication by (short) shared secret: Key exchange can also be authenticated 

using a short pre-shared secret passkey. A number of different methods have been 

proposed for password-authenticated key exchange since the idea was introduced by 

[49]. In Figure 6 we describe a variant of the MANA III protocol by [28] originally 

described by [27]. It uses a one-time passkey P to authenticate PK1 and PK2. P is split 

into k pieces, labelled P1 … Pk.  The  steps  in  the  protocol  are  repeated  k times.   The  

figure shows the exchanges in the ith round. 

 

 

Figure 6. Round i of authentication by (short) shared secret 

The protocol steps in each round are the following: 

1. D1  generates a long random value Ri1, computes commitment hi1 = h(1, PK1, 
^PK2, Pi, Ri1) and sends it to D2 

2. D2 generates a long random value Ri2, computes commitment hi2 = h(2, PK2, 
^PK1, Pi, Ri2) and sends it to D1 

3. D1 sends a long random value Ri1 to D2 

4. D2 sends a long random value Ri2 to D1 

5. D2 checks if ^h i1 equals h(1, ^PK1, PK2, Pi, ^Ri1). If it does not hold, it aborts.  
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6. D1 checks if ^h i2 equals h(2, PK1, ^PK2, Pi, ^Ri2). If it does not hold, it aborts. 

In each round, each party demonstrates its knowledge of Pi. A man-in-the-middle can 

learn Pi by sending garbage in message 2, and figuring out Pi by exhaustive search once 

D1 reveals Ri1 in message 3.  However, without knowing Pi, i = 2 … k, the attacker 

cannot successfully complete the protocol run (recall that P is a one-time passkey). With 

n-bit passkey and k rounds the probability for a successful man-in-the-middle attack is 

2-(n-(n/k)). As in the case of short authentication string, the man-in-the-middle success 

probabilities do not depend on additional assumptions about the attacker's 

computational capabilities.  

There are three different ways for arranging for both devices to know the same P. One 

way is to have the user as the intermediary (P7):  one  device  may show a  value  for  P 

which the user is asked to enter into the second device, or the user may choose P and 

enter it into both devices.  Alternatively, P may be transported from one device to 

another using an out-of-band channel providing communication secrecy (P8).  A  third  

possibility is to extract P from the shared environment (P9) [43].  In the latter two 

methods, there is no need for a human to transfer P between the devices. Consequently 

P can be longer, thus making probability for a successful attack smaller.  Note that P is 

still used only to authenticate the key agreement, rather than as the long term secret. 

Hybrid authentication: Hybrid authentication protocols are used to achieve mutual 

authentication when only a one-way out-band-channel is available (P10). The one-way 

channel is used to transmit the shared secret value and a hash of the public key from the 

first device to the second. The second device authenticates the first based on the public 

key hash. The first device authenticates the second based on its knowledge of the shared 

secret. A basic protocol is depicted in Figure 7.  
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Figure 7. Hybrid authentication protocol 

The protocol has the following steps:  

1. D1  picks two long random values R1 and K, computes commitment h to public 

key PK1 as h = h(PK1, R1) and sends h and K using OOB channel 

2. D1 sends its public key and random value using in-band channel. 

3. D2 checks if h equals h(^PK1,^R1) and aborts if it does not hold. Otherwise, D2 

picks its own long random value R2, computes message authentication code 

(MAC) using a key K.  MAC  =  mac(^PK1 |  PK2 |  ^R1 |  R2, K)  and  sends  the  

result to D2 with its own public key and random value.  

4. D1 checks if ^MAC equals mac(PK1 | ^PK2 | R1 | ^R2, K). If it does not hold, it 

aborts. 

The security of the protocol depends on the out-of-band communication being both 

secret and integrity-protected, as well as on strength of the hash function h and the 

message authentication code function c. 

2.1.3 Secure Channels and Physical Interfaces 

In this section, we survey secure out-of-band communication channels and physical 

interfaces and how these channels can be used for key establishment in the various 
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methods we looked at in previous subsection. Out-of-band channels are communication 

channels distinct from the insecure channel over which the devices normally 

communicate.  Using out-of-band channels to aid in association and key establishment 

can greatly improve usability by minimizing user actions.  Therefore, researchers have 

looked for ways of using out-of-band channels in key establishment [32]. Various types 

of out-of-band channels have been considered in the literature including physical 

contact [32], infrared [33], audio channels [36], visual channels [34, 35] and, very short-

range wireless communication channels like Near Field Communications (NFC).  

Different types of channels have different characteristics which affect their applicability 

to the different methods. The characteristics that are relevant for key agreement are the 

following: 

1. Channel security: All useful types out-of-band channels are assumed to provide 

integrity: an attacker is assumed incapable of modifying, inserting or deleting 

messages  sent  via  the  channel.  Some  types  are  assumed  to  provide  secrecy as 

well:  an  attacker  is  assumed  incapable  of  reading  the  information  sent  via  the  

channel. Usually physical connections and NFC channels are assumed to 

provide secrecy; however the validity of these assumptions have been 

questioned [50]. 

2. Directionality: Depending on the hardware available on the devices, the out-of-

band channel may be unidirectional or bidirectional.  

3. Bandwidth:  Bandwidth  of  a  channel  is  the  rate  at  which  it  can  transfer  data.   

The bandwidth of an out-of-band channel is relevant in key establishment 

because it influences the time it   takes to complete the association process. 

Table 1 lists the protocols from Section 2.1.2 that can be implemented using out-of-

band channels.  The table gives also characteristics that these protocols require from 

out-of-band channels.    

Table 1. Requirements that key establishment methods cause for of out-of-band channels [Article I] 
Method  Integrity Secrecy  Directionality Data size 

P1: Key transport    1-way 128-256 
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bits 

P4: Exchange of key commitments    2-way 128-256 

bits 

P6: Short string comparison   1-way 12-20 bits 

P8: Transfer of (short) secret   1-way 12-20 bits 

P10: Transfer of commitment and 

secret 

  1-way 128-256 

bits 

Although the promise of better usability is the motivation for using out-of-band 

channels in key establishment, the downside is the need to have the necessary hardware 

interfaces on both devices.  There is no universal out-of-band channel guaranteed to be 

available on all devices.  The vast majority of personal devices are low-cost commodity 

devices. Therefore adding a new hardware interface simply for the purpose of easing the 

association process is usually not an economically viable option.  Researchers have 

therefore investigated ways to establish associations while maximizing security, 

usability and cost.  One approach is to design the association procedures taking the 

resource asymmetry between the devices involved in the association. Typically one 

device, like a laptop or phone, has greater capabilities, while the other, like an access 

point or headset, is extremely resource constrained and cost-sensitive. Setting up a 

security association using a visual channel is described in [35]: one device is assumed to 

have a video camera while the other device needs to have only a single light source 

(such as a light-emitting diode) and mechanisms for user confirmation (like buttons for 

indicating yes and no). 

Characteristics of in-band communication channels have been utilized by some key 

establishment protocols to strengthen security level. These schemes are based on the 

fact that signal quality is different in different locations. For instance, [40] observed that 

signals on power-line channel must be adapted for each receiver and because of that 

eavesdropper cannot receive good enough signal. Further, they argue that active online 

attacks can be easily detected in a narrowband power-line channel. Generation of shared 

keys from signal envelopes in wireless networks is proposed in [51]. 
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2.1.4 Key Establishment Models in Standards 

This section surveys the secure association models adopted to standards for 

communication with personal devices. The standards are compared by referring to the 

classification presented in Subsection 2.1.2.1. 

2.1.4.1 Bluetooth Secure Simple Pairing 

Bluetooth Secure Simple Pairing (SSP) [37] is intended to provide better usability and 

security than the original Bluetooth pairing mechanism, and is expected to replace it. 

Simple  pairing  consists  of  three  phases.  In  the  first  phase,  the  devices  find  each  other  

and exchange information about their user input/output capabilities and their elliptic 

curve Diffie-Hellman public keys. In the second phase, the public keys are authenticated 

and the Diffie-Hellman key is calculated. The exact authentication protocol, and hence 

the association model, is determined based on the device user-I/O capabilities. SSP 

supports four different association models: Numeric Comparison, Passkey entry, `Just 

Works' and Out-of-band models: 

Numeric comparison model is for end-user’s manual comparison and confirmation 

whether short integrity checksums displayed by both devices are identical (Figure 4: 

P5).  The compared checksum is 6 digits long. The phase 2 protocol is an instantiation 

of the protocol in Figure 5. Passkey entry model is targeted primarily for the case 

where only one device has a display but the other device has a keypad. The first device 

displays the 6-digit secret passkey, and the end-user is required to type it into the second 

device. The passkey is used to authenticate the Diffie-Hellman key agreement (Figure 4: 

P7). The protocol is based on user-assisted authentication by shared secret in Figure 6 

with 20 rounds (k=20). Devices prove knowledge of one bit of the passkey in each 

round. 

1. ‘Just works' model is  targeted for cases where at  least  one of the devices has 

neither a display nor a keypad. Therefore, unauthenticated Diffie-Hellman key 

agreement is used (Figure 4: P11) to protect against passive eavesdroppers but 

not against active man-in-the middle attacks. 

2. Out-of-band model is intended to be used with different out-of-band channels, 

in particular with Near Field Communication technology. Device DA uses  the  
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out-of-band channel to send a 128-bit secret rA and  a  commitment  CA to its 

public key  PKA.  Similarly, DB uses the out-of-band channel to send rB and CB. 

If the OOB channel is bidirectional, mutual authentication is achieved by each 

party verifying that the peer's public key matches the commitment received via 

the out-of-band channel. (Figure 4: P4)  If the OOB channel is only one 

directional, the party receiving the out-of-band message can authenticate the 

public key of its peer. However, the party sending the out-of-band message must 

wait  until  the  third  phase  of  SSP  to  send  a  proof-of-knowledge  of  the  shared  

secret r. (Figure 4: P10)   

In the third phase of simple pairing, the agreed key is confirmed by exchanging message 

authentication codes using the newly computed Diffie-Hellman key. Each device 

includes the random value r received from the peer in the calculation of its message 

authentication code.   

Peer discovery: In original Bluetooth pairing, peer discovery is left to the user: the user 

initiates pairing from one device which constructs a list of all other Bluetooth devices in 

the neighborhood that are publicly discoverable and asks the user to choose the right 

one to pair with. In the out-of-band association model, device addresses are sent via the 

out-of-band channel. This makes it possible to uniquely identify the peer to pair with, 

without requiring user selection. In the other association models, SSP does not contain 

any new mechanisms to make peer discovery easier. Individual implementations could 

use existing Bluetooth modes, like the ‘limited discoverable mode’ and ‘pairable mode’ 

to support user conditioning on the peer device. In user conditioning, user sets 

conditions  (e.g.  a  time  period)  to  control  how  and  when  a  device  can  be  paired.   

However, since such user conditioning is not mandated by the specification, it is quite 

possible that the implementations of SSP may still need to resort to asking the user to 

choose the right peer device from a list.  

Model selection: The association model to be used is uniquely selected during the 

initialization of the session. If the association process is initiated by out-of-band 

interaction, and security-information is sent through the out-of-band channel, then the 

out-of-band model is chosen automatically. Otherwise, in phase 1, the devices exchange 
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their input-output capabilities. The SSP specification describes how these capabilities 

should be used to select the association model. 

2.1.4.2 Wi-Fi Protected Setup 

Wi-Fi Protected Setup (WPS) is Wi-Fi Alliance's specification for secure association of 

wireless LAN devices. Microsoft's Windows Connect Now (WCN) includes a subset of 

association models described in WPS. The objective of WPS is to mutually authenticate 

the enrolling device with the Wi-Fi network and to deliver network access keys to the 

enrolling device. This is done by having the enrolling device interact with a device 

known as the ``registrar'', responsible for controlling the Wi-Fi network. The registrar 

may be, but does not have to be, located in the Wi-Fi access point itself. WPS supports 

three configuration methods: In-band, out-of-band, and push-button configurations.  

In-band configuration enables associations based on a shared secret passkey (Figure 4: 

P7). The user is required to enter a passkey of enrollee to the registrar. This passkey 

may be temporary (and displayed by the enrollee) or static (and printed on a label). 8-

digit passkeys are recommended but 4-digit passkeys are allowed. The passkey is used 

to authenticate the Diffie-Hellman key agreement between the enrollee and the registrar. 

The protocol used is a variation of the modified MANA III protocol in Figure 6 with 

two rounds (k=2). As in MANA III, once a passkey is used in a protocol run, an attacker 

can recover the passkey by dictionary attack (although in this instantiation, the attacker 

needs to be active since the computation of the used commitments includes a key 

derived from the Diffie-Hellman key). 

1. Out-of-band configuration is intended to be used with channels like USB-flash 

drives, NFC-tokens or two-way NFC interfaces. There are three different 

scenarios: 

 Exchange of public key commitments (Figure 4: P4), typically intended 

for  two-way NFC interfaces,  where  the  entire  Diffie-Hellman exchange  

and the delivery of access keys takes place over the out-of-band channel.  



37 

 

 

 Unencrypted key transfer (Figure 4: P1).  An  access  key  is  transmitted  

from a registrar to enrollees in unencrypted form, either using USB-flash 

drives or NFC-tokens. 

 Encrypted key transfer. This is similar to the previous case, except that 

the key is encrypted using a key derived from the (unauthenticated) 

Diffie-Hellman key agreed in-band. From a security perspective, this is 

essentially out-of-band key transfer (Figure 4: P1). 

2. Push button configuration is an optional method that provides an 

unauthenticated key exchange (Figure 4: P11).   The  user  initiates  the  Push  

button configuration by conditioning the enrollee (e.g., by pushing a button), and 

then,  within  120  seconds  the  user  has  to  condition  the  registrar  as  well.   The  

enrollee will start sending out probe requests to all visible access points 

inquiring if they are enabled for push button configuration. Access   points are 

supposed to respond affirmatively only when their registrar has been 

conditioned  by  the  user  for  this  configuration.  If  a  device  or  registrar  sees  

multiple peers ready to start push button method, it is required to abort the 

process and inform the user. 

Peer discovery: Enrollees start association in response to explicit user conditioning. 

They scan the neighborhood for available access points and send Probe Request 

messages. The Probe Response message has a ``SelectedRegistrar'' flag to indicate if the 

user has recently conditioned a registrar of that access point to accept registrations. This 

is mandatory for push button configuration but is optional for other models. Thus it is 

possible that user may have to be asked to select the correct Wi-Fi network from a list 

of available networks. 

Model selection: The model is explicitly negotiated at the beginning of pairing between 

the paired devices. 

2.1.4.3 Wireless USB Association Models 

Wireless USB (WUSB) is a short-range wireless communication technology for high 

speed data transmission.  WUSB Association Models Supplement 1.0 specification 
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from [52] supported two association models (cable and numeric) for creating trust 

relationships between WUSB hosts and devices. The new specification [39] supports 

three models: 

1. Out-of-band model uses OOB key transfer (Figure 4: P1) and utilizes e.g. wired 

USB  connection,  NFC  or  memory  cards  to  associate  devices.  Connecting  two  

WUSB gadgets together is considered as an implicit decision and, hence, the 

standard does not require users to perform additional actions like accept user 

prompts.  

2. Fixed symmetric key association model relies on authenticated symmetric 

crypto key agreement (Figure 4: P2). End user provides USB device’s symmetric 

key to the USB host device.  Device can then connect to host in order to prove 

that both devices know the symmetric key and to agree on device specific secret 

AES key. 

Numeric model (In-band key exchange) relies on the users to authenticate the Diffie-

Hellman key agreement by comparing short integrity checksum values (Figure 4: P5). 

The protocol is an instantiation of the protocol in Figure 5. First DA and DB negotiate 

the length of the checksum to be used. The specification requires that WUSB hosts must 

support 4-digit checksums whereas WUSB devices must support either 2 or 4-digit 

checksums.  

Peer discovery: The association is initialized by implicit or explicit user conditioning. 

Attaching a USB-cable is interpreted as an implicit conditioning. The user pressing a 

button is an example of explicit user conditioning. In the numeric model the user sets a 

USB device to search for hosts and a USB host to accept connections. The host 

advertises its willingness to accept a new association in the control messages it 

transmits  on  the  WUSB  control  channel.  In  case  multiple  devices  are  simultaneously  

advertising their accepting states, the searching device either selects a host randomly or 

ends the association procedure in a failure.  

Model selection: The choice of the association model is based on the type of user 

conditioning done. In case a cable is plugged, the devices exchange information on 
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whether they support OOB association. If so, they use OOB model. If conditioning is 

explicit, they use numeric model or symmetric key depending of the device’s 

capabilities.  

2.1.4.4 HomePlugAV Protection Modes 

HomePlugAV is a power-line communication standard for broadband data transmission 

inside home and building networks. Typically, several apartments share a power-line 

network. In addition to protecting deliberate attacks, association mechanisms are used to 

create logically separate subnetworks by distributing a 128-bit AES network encryption 

key (NEK) for devices in each subnetwork.  As with WPS, each HomePlugAV network 

has a controller device. HomePlugAV supports the following association models [40]: 

1. Simple connect mode uses symmetric crypto based key agreement to agree on a 

shared key. This network membership key (NMK), is used to transport NEK to 

the  new  device.  The  key  agreement  process  is  as  follows.   To  admit  a  new  

device, the user is required to first condition the controller device, and then 

condition the new device, e.g., by turning on its power.  The devices find each 

other and exchange nonces.  A temporary encryption   key (TEK) is formed by 

hashing  the  two  nonces  together.   The  controller  encrypts  the  NMK  using  the  

TEK and sends it to the new device. The model is unauthenticated (Figure 4: P3) 

as no cryptographic authentication mechanisms are used.  

2. Secure mode allows  new  devices  to  have  a  secret  passkey,  of  at  least  12  

alphanumeric characters long, typically printed on a label. The user is required 

to type in this passkey to the controller device.  This is an example of 

authenticated symmetric crypto key agreement (Figure 4: P2).  The controller 

device uses passkey to construct an encryption of NMK and send it to the new 

device. The keys for devices joining in secure mode are different from the keys 

for devices joining in simple connect mode.  

3. Optional modes enable use of alternative models for distributing NMKs or 

NEKs between   devices. These include ``manufacturer keying'' where a group 

of devices have a factory installed shared secret, and external keying, where trust 

is bootstrapped from other methods. 
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Man-in-the-middle attacks can be prevented in simple connect mode by utilizing 

characteristics of powerline medium. Before two nodes can communicate, they must 

negotiate tone maps, which enable devices to compensate disturbances caused by 

powerline channel. This negotiation is done in a reliable, narrow-band broadcast 

channel.   Thus  a  man-in-the-middle  trying  to  negotiate  tone  maps  with  the  legitimate  

endpoints can be detected. 

Passive eavesdropping in the broadband point-to-point channel is difficult since an 

attacker, even with the knowledge of the tone maps used between the legitimate 

endpoints, will not be able to extract the signal from the channel because the signal-to-

noise  ratio  will  be  too  poor  at  different  locations,  particularly,  when  the  attacker  is  

outside a building and the legitimate end points are inside. Also, licensees of 

HomePlugAV technology do not provide devices that can extract signal without 

negotiating tone maps.  Hence, attackers must be able to build expensive devices for 

eavesdropping. 

Peer discovery:  In  simple  connect  mode  the  peer  discovery  is  performed by  the  user  

conditioning the devices into a suitable modes, and the new device scanning the 

network to find a controller that is willing to accept new devices. 

Model selection: The model is selected by user conditioning.  There is no automatic 

negotiation. 

2.1.5 Security Evaluation and Analysis 

In this section, we analyze the association models described in the previous subsection 

from different perspectives and point out some problematic areas. 

2.1.5.1 Comparison of Security Levels 

First we summarize and compare the security levels provided by the different key 

establishment protocols. A comparative summary of models' security characteristics is 

presented in Table 2.  
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Table 2. Comparison of security characteristics of key establishment models in different standards 
[Article I] 

Association 
model 

Offline attacks Online active attacks (MitM) 
Protection Work Protection Success 

probability 
Work 

Bluetooth Secure Simple Pairing 
Numeric 
Comparison 

DH 280 6 digit checksum 2-20 2148 

Just Works DH 280 - 1 0 
Passkey Entry DH 280 6 digit checksum 2-19 2147 
Out-of-band DH 280 OOB security - 2128 
Wi-Fi Protected Setup 
In-band DH 290 8 digit checksum 2-13.2 2141.2 
In-band + OOB DH 290 OOB security 2-128 2196 
OOB OOB 290 OOB security - - 
PushButton DH 290 - 1 0 
WUSB Association Models 
Numeric Model DH 2128 2/4 digit 

checksum 
2-6.6 or 2-13.2 2262.6 or 

2269.2 
OOB model OOB 2128 OOB   
HomePlugAV Protection Modes 
Simple Connect  SNR High traffic monitoring low High 
Secure Mode AES 272 passkey 2-72 272 

2.1.5.1.1 Offline Attacks 

The out-of-band association models rely on the secrecy of out-of-band communication 

to protect against passive attacks against key agreement.  The in-band and hybrid 

models in all of the standards except HomePlugAV use Diffie-Hellman key agreement 

to protect against passive attacks. The level of protection depends on the strength of the 

algorithms and the length of the keys used.  In the ‘Work’ subcolumn under the ‘Offline 

Attacks’ column of Table 2, we use [53, 54], to estimate the amount of work an attacker 

has  to  do  in  order  to  be  successful.  The  figures  correspond  to  approximate  lower  

bounds, and should be treated as rough estimates only. Offline attack protection in 

HomePlugAV relies on the characteristics of the power-line communications: the 

proposal [40] assumes that signal-to-noise ratio (SNR) makes it difficult for an attacker 

to eavesdrop. The HomePlugAV secure mode uses symmetric key encryption as 

protection. 

2.1.5.1.2 Online Active Attacks 
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In online active attacks, a man-in-the-middle attacker must be able to intercept 

transmissions and modify it without causing delays or disturbances, which will cause 

attack to be detected. Hence, several of the models (Bluetooth Just Works, Wi-Fi Push 

Button, and HomePlugAV Simple Connect) trade off protection against man-in-the-

middle attacks, in return for increased ease-of-use.  

Other in-band association models rely on authentication as the means to protect against 

online active attacks.  The probability of success for an online active attack depends on 

the  length  of  the  key  as  well  as  the  protocol.  The  Bluetooth  SSP numeric  comparison  

model uses 6-digit checksums leading to a success probability of 1/1000000. The 

WUSB numeric model allows a success probability of 1/100 when two digit checksum 

is used, and 1/10000 when four digit checksum is used.  These probabilities do not rely 

on any assumptions about the computational capabilities of the man-in-the-middle.   

Association models based on numeric comparison use cryptographic hash functions as 

the commitment function.  In principle, a man-in-the-middle, who can break the hiding 

property of the hash commitment function during the key agreement process, can also 

succeed by figuring out the nonce used in the commitment.  ‘Online Active Attacks – 

Work’ column in Table 2 shows the amount of on-line work (exhaustive search) the 

attacker has to perform in order to succeed with probability 1. If the hash function is 

strong, and requires exhaustive search to find the correct pre-image, the work factor 

depends on the size of the nonce and the size of the checksum. Bluetooth SSP uses 128-

bit nonces and 20-bit checksum; therefore, the attacker must make 2148 quesses. WUSB 

numeric model uses the Diffie-Hellman public value as the hidden nonce, which is 

based on a 256-bit long private value. It uses 2- or 4-digit checksums. Hence, work 

factor figures of 2262.6 or 2269.2 are used. These figures correspond to the amount of on-

line work required for the attacker to succeed with probability 1. 

Association models based on passkeys also use cryptographic hash functions as the 

commitment function. An attacker who can break the hiding property of the hash 

function can figure out the nonce and the passkey component used in a given round. 

The  work  factor  depends  on  the  size  of  the  nonce  plus  the  size  of  the  passkey  

component. For Bluetooth SSP the work factor is 2147 (128-bit nonce and 19-bit passkey 
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component),  whereas  for  WPS  in-band  model  the  work  factor  is  2141.2 (128-bit nonce 

and 4-digit passkey component). Alternatively, an attacker who can break the binding 

property of the hash function can send a randomly chosen value as hi2 in Step 2 of the 

protocol in Figure 6, learn the passkey after receiving message 3 and then calculate a 

suitable R i2 that matches the alleged commitment sent earlier in Step 2. The work factor 

depends on the size of the commitment. Bluetooth SSP uses 128-bit commitments, 

leading to a work factor of 2128. WPS uses 256-bit commitments leading to larger work 

factor for breaking the binding property than breaking the hiding property. Therefore, 

the 2141.2 work factor needed for breaking the hiding property is used. 

Recall  from  Subsection  2.1.2  that  with  n bit passkeys and k rounds the success 

probability for an online active attack against the passkey protocols is 2-(n-(n/k)).  

Bluetooth SSP passkey entry model uses 6-digit (n  20) one-time passwords in k=20 

rounds. This leads to approximately 1/1000000 success probability. WPS network uses 

essentially the same protocol, but in two rounds only. This leads to success probabilities 

of 1/100 when 4-digit passkeys are used, and 1/10000 when 8-digit passkeys are used. 

In both cases, the passkey must be single-use. If the passkey is re-used, the success 

probability of man-in-the-middle rises dramatically, reaching 1 after the kth re-use, 

where k is the number of rounds in the original protocol. In other words, if the same 

fixed passkey in WPS network model is re-used even once, the man-in-the-middle can 

succeed in the next attempt with certainty. As before, we can estimate the on-line work 

effort the attacker has to do to break the hash commitments.   

HomePlugAV secure mode uses a 12 character passkey which is used to generate a key 

for AES encryption, leading to a probability of 2-72 and  the  amount  of  on-line  work  

effort is 272. Attack probability against HomePlugAV simple connect mode is assumed 

to be small as attackers can be detected by monitoring communication on narrowband 

channel [40]. However, the security level has not been formally proven. 

In the Wi-Fi hybrid model, the random secret, transferred through one-directional out-

of-band channel, is 128 bits long leading to a computational security of 2-128. 
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2.1.5.2 Associations with Wrong Peers 

Unauthenticated association models face the risk of a device being associated with a 

wrong peer. For instance, in WPS push button model, the user may condition first the 

enrollee to search for registrars before conditioning the registrar. If the attacker sets a 

bogus registrar to accept connections before the users does it with the legitimate 

registrar, the enrollee associates with the attacker's registrar. Only in the case when both 

registrars, the bogus and the legitimate one, are simultaneously accepting connections, 

is the procedure aborted. 

In  HomePlugAV  Simple  Connect  mode,  the  user  sets  the  control  device  to  accept  

connections before starting the joining device up. This could be used to reduce the 

probability for an attacker to successfully masquerading as a bogus control device 

because since, if the new device sees multiple control points, it can abort association. 

However, the mode is potentially vulnerable for fatal errors where the user is slow to 

switch power to the new device. In this case an attacker may connect to user's control 

point and get the network encryption key. The longer walking distance there is between 

power-line devices, the more likely this attack is to succeed.  

2.1.6 Challenges with Devices Implementing Multiple Key 
Establishment Models 

The previous section presented straightforward attacks against individual key 

establishment models and how naive implementations of user interaction could increase 

the likelihood of fatal errors. This section presents novel attacks arising out of the fact 

that the standards invariably support multiple association models simultaneously. 

Consider specifications that support an unauthenticated association model as well as 

user-assisted comparison of integrity checksums.  An example is a Bluetooth device that 

supports the numeric association model and the unauthenticated ‘Just Works’ model. 

Figure 8 illustrates a man-in-the-middle attacker who can intercept messages 

exchanged during an association. The first associated device has a display and the 

second may or may not have a display. The attacker changes device capability 

information so that the first device will be using the numeric comparison model and that 

the second device will be using unauthenticated ‘Just Works’ model. This leads to a 
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situation where the first device shows a 6-digit checksum and the second device, using 

‘Just Works’ model, does not display a checksum, even if it would have a display. The 

user may have been educated to detect a mismatch in checksums. But now, when only 

one device displays a checksum, the user is likely to be confused and may just go ahead 

and accept the association.  

     

Figure 8. Man-in-the-middle between different association models [Article I] 

To get an idea about whether such user confusion is likely, a laboratory usabilility test 

study, presented in [55], tested the attack.  Out of 40 test users, 6 accepted the pairing 

on both devices, 11 noticed the problem and rejected the pairing on both devices, and 

the rest rejected pairing on Device 1 but accepted it on Device 2.  

This attack has two implications.  

1. When the second device has a display, it is a bidding down attack against this 

device. The second device will know that the association is unauthenticated. 

However, the user may still allow the association to happen.  

2. It is a bidding up attack against the first device since it ‘believes’ that the 

association is made using a secure protocol resistant to man-in-the-middle 

attacks. Consequently, the first device may choose to trust this security 

association  more  than  it  would  trust  a  ‘Just  Works’  security  association.  For  

instance, it may have a policy rule, which allows more trustworthy devices to 

initiate connections without run-time confirmation from the user. 
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A scenario related to the attack on the figure arises with devices that are willing to 

participate in setting up a security association without immediate user conditioning.  

Public printers and access points are examples of devices that may be permanently 

conditioned for association. Suppose a user starts associating Device 1 with Device 2 

using an association model that does not require any user dialog (e.g., WUSB cable 

model, or HomePlugAV Simple Connect mode) and that Device 2 is permanently 

conditioned to accept incoming association requests. If an attacker now initiates 

association with Device 2, say using Bluetooth SSP numeric comparison, a user dialog 

will pop up on Device 2. Since the user is in the middle of associating Device 1 and 

Device  2,  he  might  answer  the  dialog  thinking  that  it  is  a  query  about  Device  1.  

Depending on the nature of the dialog, the attacker may end up gaining unintended 

privileges on Device 2. 

Wi-Fi and Bluetooth have legacy association models. They use symmetric algorithms 

with pre-shared key or personal identification number (PIN). If a device supports both 

the improved and the legacy association models, it is vulnerable to bidding down attack. 

This  attack  is  difficult  to  detect  as  the  user  is  required  to  be  aware  that  both  devices  

support particular association models and then enforces that this models is actually 

used.  

2.1.6.1 Strengthening Devices 

The attacks against standardized mechanisms, identified above, can be addressed with 

implementation decisions.  When a security association is stored persistently, 

information about its level of security should be stored as well. HomePlugAV already 

does this indirectly by using different keys with different association models. 

Furthermore, this security-level information should be used in deciding what the peer 

device is authorized to do. For instance, devices associated using Bluetooth SSP `Just 

Works' or HomePlugAV Simple Connect models should not be allowed to install or 

configure software, at least, without explicit authorization from the user. This 

precaution would help to mitigate the consequences of bidding down attacks. The man-

in-the-middle attack between numeric comparison and unauthenticated protocols 

(Figure 8) could be addressed with two alternative strategies: 
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1. Bidding down the second device from using numeric comparison to   the ‘Just 

Works' model could be addressed by requiring that devices believing to be in 

‘Just Works’ association would anyway show the checksum if they are able to 

do so. However, this solution does not prevent the bidding up attack against the 

first device.  

2. Bidding down and bidding up attacks can both be countered by querying the 

user appropriately to confirm the I/O capabilities of the peer device. For 

instance, if the capability negotiation messages indicate that the peer device has 

no display, a device could ask the user if the peer device does indeed have a 

display. If the user gives answers affirmatively, it is an indication of a man-in-

the-middle. However, such an additional dialogue is likely to have negative 

effects to usability. 

2.2 A Mediator for Key Establishment 

The protocols presented in the previous subsection enable secret keys to be established 

for different kinds of devices. However, in practice end-users may end up to a situation 

were devices have incompatible physical interfaces making secure key establishment 

impossible. This subsection addresses these concerns and studies how the mediator 

concept can be utilized to solve these interoperability problems. Particularly, this 

subsection contributes by proposing protocols for mediating pairing for cases where 

devices have different types of secure interfaces available. The contributed protocols 

and mechanisms are targeted for extending devices, which support the Bluetooth Secure 

Simple Pairing standard, to support mediators. Subsection 2.2.1 defines the problem. 

Subsection 2.2.2 proposes pairing protocols for different types of OOB channels and 

also presents challenges and questions for further studies needed clarification before the 

mediator concept can be realized in universal manner.  

2.2.1 The Interoperability Challenge Caused by Use of Diverse Key 
Establishment Mechanisms 

The emerging key establishment mechanisms and association models provide several 

usability, cost and security advantages but also cause new challenges. Support for 
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multiple mechanisms will cause interoperability problems since, even if some devices 

may support many mechanisms, every device do not support every available option. 

Two devices, which do not have compatible interfaces for key establishment, cannot be 

associated. This problem emerges when several different association models and out-of-

band interfaces are adopted to personal devices. For instance, the new Bluetooth Secure 

Simple Pairing standard, which we presented in Subsection 2.1.4.1, enables devices to 

be paired using OOB channels like NFC or by comparing values displayed by paired 

devices. If one device has only NFC interface but no display or keyboard and another 

device  has  only  display  and  keyboard  but  no  NFC  interface,  these  devices  cannot  be  

paired securely. Alternatively, if both devices have only low-cost passive NFC tags, 

they cannot be paired securely. 

2.2.2 A Mediator for Bluetooth Secure Simple Pairing 

The interoperability challenge, of pairing devices with incompatible pairing interfaces, 

can be addressed with a mediator concept. Mediators are devices, which support several 

association interfaces. For instance, a mediator could be mobile phone, tablet, or 

personal computer etc. The mediator is a trusted device, which must be available during 

the pairing process. After the pairing, associated devices can communicate directly with 

each other without the help of the mediator.  

Mediating has been used in key establishment in several occasions. For instance, Touch 

mediated Association Protocol (TAP) [56] is a solution where the end-user touches two 

devices with a third one in order to pair them. Tapping is based on transmitting secrets 

through a short range wireless channel. The solution assumes that both paired devices 

support this channel. Also, WLAN access points can in some sense be considered as 

mediating devices. However, WLAN security methods control only which devices can 

join a network. They do not provide fine-grained control over device to device 

communication. 

Figure 9 illustrates generic components needed in the scheme. In the figure, 

components, which are new and must be added to enable use of mediators, are 

emphasized with darker blue. The secure channel, in the figure, may be either an 

authenticated Bluetooth channel or an OOB channel depending of the scenario.  
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Figure 9. Components in the mediator-based pairing 

The main motivation to mediator comes from the interoperability. Use cases for 

mediator include e.g. a pairing between a television (with a display and Bluetooth) and 

cheap speakers (with NFC interface and Bluetooth). Clearly, these devices could not be 

paired securely (without the risk of active man-in-the-middle attack) if there would not 

be a mediator device. However, the interoperability is not the only reason to use 

mediators. Two devices may have compatible OOB interfaces but it still may be more 

usable to use mediator instead of direct OOB connection. For instance, consider a case 

where there are NFC and Bluetooth enabled television and NFC and Bluetooth enabled 

air-conditioning system, which starts to blow when a storm is displayed in television. 

These devices may be located so that they cannot be connected with NFC. Due to their 

weight, they cannot be moved and associated. In these cases, a mobile phone acting as a 

mediator provides an easy alternative for making the pairing. 

The mediator-based pairing enables manufacturing of devices with lower costs and 

lower power consumption. This is because it is possible to select cheaper hardware 

interfaces alternatives to devices. Manufacturers do not have to implement expensive 

two-directional interfaces to their devices. For instance, it is enough that devices have 

passive NFC tags, which can only send data. Alternatively, when considering 

associations through optical channel, devices can have only cheap transmitters like 

LEDs. Only the mediator devices must have more capable interfaces like NFC reader or 

camera. 
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The mediation between two OOB devices scenario may have a positive side effect to the 

usability. Firstly, as emphasized in TAP [56], a mediator provides natural way to show 

which devices must be paired. There is no need for an additional (e.g. broadcast based) 

device discovery or selecting devices from a long list in UI. Secondly, a mediator can 

provide easy interface to manage pairings between devices which itself do not have 

displays or have smaller displays. The mediator provides also always a consistent user 

interface as well as dialogs and thus minimizes fatal user errors. Thirdly, a mediator 

does  not  have  to  make  the  transfer  of  pairing  information  at  once.  It  may  be  used  to  

store this information potentially for very long periods of time. For instance, when a 

new device is brought to home, the user pairs it with the mediator. Consequently, the 

new device will receive information from every device (and make pairing with these 

devices), which has provided its information to mediator. Also, the device will leave its 

pairing  info  to  the  mediator  so  that  newer  devices  will  also  be  able  to  make  the  

association. 

2.2.2.1 Mediator-based Association Models 

The mediator-based pairing may be initiated in different ways. The user may utilize 

either mediator device's user interface (display) to select devices to be paired. 

Alternatively, the end-user may use user interface of Device D1 to search other devices 

to be paired. Also, the user may perform pairing simply by first touching a mediator 

device with one device and then with another. 

The end-user can trigger secure pairing and select paired devices by using a mediator, 

which scans Bluetooth network and displays identities of pairable devices (the user 

must  have  conditioned  paired  devices  so  that  they  are  visible  e.g.  they  have  a  special  

button for this). The user then selects those which should be paired. After this the user is 

asked to first pair another device with a mediator and secondly another device with a 

mediator e.g. by touching a new device with a mediator. 

The second alternative is that the user uses Device D1,  which has a display,  to search 

for a pairable device. If this device detects devices with incompatible pairing interface, 

it scans network using Bluetooth service discovery mechanism to detect a mediator 

service, which would support mediation between these devices. 
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In the third alternative, the end-user indicates devices to be paired in a physical manner 

for instance by moving a device to close of mediator or by connecting mediator to 

device with a cable. Additionally, the user may have to condition the mediator and 

devices into a mode where pairing may happen. 

2.2.2.2 Pairing Protocol for Direct Mediator-based Association  

The protocols for pairing depend on the hardware capabilities of the paired devices. In 

this subsection, we will consider three cases, which are different in a sense that the 

directionality of channels is different.  

The  simplest  mediator-based  pairing  case  is  when the  one  device  is  able  to  send  data  

through a secure (e.g. OOB) channel and another device is able to receive data through 

a secure channel.  

The protocol for this case is described in Figure 10. Mediator's role can be considered 

to be a one directional OOB channel where a mediator is used to forward a secret and a 

commitment. Afterwards devices can finalize the pairing through the unsecured 

Bluetooth channel. In the figure, messages which are transmitted though out-of-band 

channel are illustrated with arrows in rectangles. 

 
Figure 10. A protocol for pairing a device, which has an outbound secure channel, and a 

device, which has an inbound secure channel 

The protocol has the following steps: 

1. Devices change public keys PK through BT channel 



52 

 

 

2. D1 computes commitment to public keys PK h1 = h(PK1) and sends it and 128-

bit secret R1 to M (The end-user may be required to make a pairing between M 

and D1 before this can be done securely) 

3. M forwards commitment and secret to D2 using OOB channel 

4. Normal Secure Simple Pairing Protocol continues (D2 checks that commitment 

h1 responds to public key PK1 and uses secret R1 to authenticate itself to D1) 

Devices to be paired perform input/output capability exchange. In Simple Pairing, this 

enables devices to select correct association algorithm. However, when interfaces are 

incompatible as in our case, this may cause the pairing process to stop. Consequently, 

Device D1, which sends commitment and secret, must receive information that Device 

D2 has compatible I/O capabilities. This can be achieved in two ways: either Device D2 

is compatible with our protocol and, hence, able to advertise that it has compatible 

interface even if it does not have, or the mediator is able to intercept and modify 

capability negotiation messages. 

2.2.2.3 Pairing Protocol for Devices with Only Outbound OOB Interfaces 

It may not be always possible that a secret and a commitment can be transmitted from 

one device to mediator and received in another from mediator. Instead, both devices 

may be only able to send OOB data. For instance, both devices may have passive NFC 

tags but no NFC readers. A mediator-based protocol for pairing two devices, which can 

only send association data is presented in Figure 11. In the figure secure messages, 

which are secured using established Bluetooth secure connection, are illustrated with 

bolder arrows. 
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Figure 11. A protocol for pairing two devices, which have only outbound OOB channels 

The protocol has the following steps: 

1. Mediator M changes public keys PK through BT channel with D1 

2. Device D1 computes a commitment to public key PK h1 = h(PK1) and sends it 

and 128-bit secret R1 to M via OOB channel 

3. M  uses  commitments,  public  keys  and  secrets  to  make  Secure  Simple  Pairing  

with D1 

4. Devices D1 and D2 change public keys PK through BT channel 

5. D2 computes a commitment to public key PK h2 = h(PK2) and sends it and 128-

bit secret R2 to M via OOB channel 

6. M forwards secret and commitment to D1 using secure channel 

7. Normal Secure Simple Pairing Protocol continues (D1 checks that commitment 

h2 responds to public key PK2 and uses secret R2 to authenticate itself to D2) 

2.2.2.4 Pairing Protocol for Devices with Only Inbound OOB Interfaces 

If both devices can only receive secure data, a mediator must first be paired with both 

devices. The pairings between a mediator and devices is created so that mediator sends 

secure association data to both devices to create pairings between them. The mediator 
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then transmits association information through secure channels, which it has established 

with both pairable devices. For instance, a mediator with an NFC reader may be paired 

with two devices with NFC transmitters. Then, this mediator may transport association 

information from one device to another. The solution requires both devices to support 

pairing through a mediator. The protocol is illustrated in Figure 12. 

hM, RM

PK1

Computes commitments h(PK)
Creates 128 bit secret RM

PKM

hM, RM

Device D2Device D1 Mediator

PK2
PKM

Auth(PK2,RM)Auth(PK1,RM)
PK1

PK2

Computes commitment h(PK1)
Creates 128 bit secret R1

h1, R1

h1, R1

Authenticate(PK2,R1)

Check h1 responds to PK1

Use R1 to authenticate 

 
Figure 12. A protocol for pairing two devices, which have only inbound OOB channels 

The protocol has the following steps: 

1. Mediator (M) changes public keys PK through BT channel with both device 

2. M computes commitments to public keys PK: h = h(PK) and sends them and 

128-bit secret RM to devices via OOB channel 

3. Devices use commitments, public keys and secrets to make Secure Simple 

pairings with M 

4. Devices D1 and D2 change public keys PK through BT channel 

5. D1 computes a commitment to public key PK h1 =  h(PK1) and sends it and 

128-bit secret R1 to M 

6. M forwards secret and commitment to D2 
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7. Normal  Secure  Simple  Pairing  Protocol  continues  (D2 cheks that commitment 

h1 responds to public key PK1 and uses secret R1 to authenticate itself to D1) 

2.2.2.5 Towards a Universal Mediator 

The described protocols are specific for the Bluetooth Secure Simple Pairing standard. 

Ideally, mediator-based pairing could be utilized also with other devices with 

incompatible security association interfaces. However, in practice achieving a universal 

mediator solution, which would solve all pairing related problems in the connectivity 

layer, is challenging: 

 The proposed model is suitable only for devices supporting particular protocols 

and association models. However, for instance, in Bluetooth Secure Simple 

Pairing, I/O capability negotiation occurs directly between devices. If the 

devices believe to have incompatible interfaces they do not continue the pairing 

procedure.  Consequently,  at  least  one  (depending  of  the  directionality  of  OOB 

channels) device must be compatible with the scheme and able to advertise 

appropriate capabilities. The standards, which support versatile association 

models, could also include support for mediator based association. However, 

achieving standard level interoperability is not an easy task.  

 It is difficult to maintain the control over security levels. When using a mediator, 

an associated peer believes that the peer has mediator’s security capabilities and, 

hence, may give the peer device undeserved privileges.  

 Devices may support various connectivity mechanisms; say Bluetooth and Wi-

Fi. These protocols are incompatible and have e.g. different security concepts 

and  credential  formats.  Consequently,  the  user  is  ofter  required  to  assist  in  

security pairing several times by using different user interfaces. 

Hence, this thesis promotes the idea that higher-level solutions are needed for 

establishing secure associations between heterogenous devices. The forthcoming 

sections will present security platforms and middleware solutions. In Section 5.2, 

controlled and connectivity-independent key establishment is achieved with a brokered 

middleware solution. 
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3 Certification and Reputation based Security 

The previous section focused on technologies where the end-user controls devices and 

introduces devices to each other. However, there are large amount of network 

applications where devices are not in the control of the user. Instead, the user must 

identify and trust devices belonging to others. The security model of the Internet is 

based on the trusted third-parties, who provide certifications and security reputation 

information. This security model is scalable and suitable for heterogenous services, as 

clients can authenticate servers and resolve relevant security information using a 

uniformly presented data structures. This section surveys these security solutions. The 

section focuses on SSL/TLS protocols, certification, and reputation management. 

Particular focus is on possibility to use these mechanisms to provide more detailed and 

rich information, which can be used in smart authorization solutions.  

The section contributes by providing a large-scale empirical analysis on the correlation 

of SSL certification and crowd-based reputation evaluations. The study, first presented 

in Article VII, has two implications. Firstly, it introduces a novel metric that can be 

used when analysing impacts and visibility of web security solutions. Secondly, 

correlation information is used to get some indications of the benefits that web services 

gain from SSL certification, extended validation, and selection of more reputable 

certification authorities. 

3.1 SSL/TLS 

Secure Socket Layer (SSL) and, IETF’s standardized version, Transmission Layer 

Security (TLS) [57] protocol have been designed to secure and mutually authenticate 

applications on top of the Internet Protocol (IP). However, the protocol can be used also 

on top of other protocols. TLS has been widely accepted defacto standard for different 

IP based applications starting from WWW. It provides a scalable and flexible 

mechanism by supporting various security algorithms. There are several protocol stack 

implementations available and the protocol is mature and high-secure. 
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Key establishment of TLS falls into authenticated exchange of commitments via 

unspoofable channel category (Figure 4:P4). The key commitments are certificates and 

the unspoofable channel is public key infrastructure. Trusted third parties (certification 

authorities) verify identities of public key holders and sign matching public keys. The 

signing is done using root signing keys that other devices can verify to belong to trusted 

authorities by checking them against root certificates installed to these devices. Devices 

connecting to each other use certificates to negotiate a session key during a three way 

handshake. The TLS protocol supports different asymmetric algorithms for key 

establishment handshake and also various symmetric crypto algorithms for securing 

communication session. 

Feasibility and costs caused by TLS in Internet applications has been analyzed in 

several papers including [58, 59]. Experiences of TLS’s performance indicate that the 

main penalty is related to the handshake phase. For instance, Du et al. described [60] 

measurements for their SNMP implementation where latency for the first TLS secured 

packet in a session was over 8 times larger than the first unsecured UDP packet and 

12.5 times larger than the later TLS packets in the same session. In the following 

packets, the performance penalty was only around ten to twenty percent. 

3.2 SSL Certification in WWW 

Authentication and confidentiality of communication in the World Wide Web (WWW) 

is based on HTTPS (Hypertext Transfer Protocol Secure) [61], where communication is 

protected with SSL (Secure Sockets Layer) [57] protocols, as well as X.509 public key 

certificates [62, 63], which vouch the identities of services. The authentication model is 

scalable and capable of preventing most masquerading attacks when used properly. The 

model has, however, been criticized due to large amount of equally trusted certification 

authorities (CAs) and loose certification processes, which make acquiring of phishing 

certificates possible for attackers. Extended validation [64] certificates and additional 

visual trust indicators in browsers have been proposed as a more secure certification 

alternative. However, there have not been large scale studies on the benefits that the 

service providers gain from SSL certification in general and from extended validation. 
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Authentication of web servers is based on X.509 certificates, which have been granted 

to servers by a trusted CA. In typical browsers (including Mozilla Firefox, Internet 

Explorer, Google Chrome etc.) the amount of accepted root certificates is large. The 

acceptance criteria depend on the trustworthiness of CA but also on business and 

politics. If one of these CAs has been compromised and certifies bogus servers, the end-

users’ web transactions are in jeopardy. Browser’s security identifiers will not warn on 

bogus servers certified by trusted CA even if it would have been a different CA that 

actually had signed the victim service. Attacks demonstrating the weaknesses of CAs 

have already been reported, including the recent DigiNotar and Comodo incidents [65, 

66]. 

Large scale studies on how the certificates are used has been performed by Eckersley et 

al. [67], who scanned public Internet for certificates and reported several vulnerabilities. 

Vratonjic et al. [68] analyzed certificates with the million most popular web sites and 

reported that most HTTPS servers do not use certificates properly. Typical problems are 

domain mismatch, certificate expiration and untrusted (self-signed) certificates.  

Dhamija et al. [69] studied users’ ability to distinguish real web sites from spoofed sites 

using SSL warnings. They found that 23% of participants did not check browser’s 

passive security indicators at all when evaluating the trustworthiness of the site. 

Sunshine et al. [70] performed a survey and a laboratory test to examine users’ reactions 

to different active SSL warnings. They noted that users’ behaviour depends on the 

actual message as well as on the service type. Tests revealed that more than the half of 

the hundred participants ignored the warnings of the main stream browsers and 

proceeded to the web sites anyhow. A bit more moderate results were gained by 

Egelman et al. [71] who found that 21% of sixty study participants ignored active 

warnings and fell to phishing attacks. When the security indicators and warnings are 

ignored, the credibility of a web site depends on various other factors. These factors 

were studied by Fogg et al. [72]. Their study, made with 1400 participants, reveals that 

real-world feel, ease of use and expertise are the most important categories affecting to 

credibility. 
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SSL certificates are assigned to service providers through diverse certification 

processes. Typically, it is enough that the requester has an access to email, which has 

been registered for the domain name holder. This makes acquirement of phishing 

certificates possible for attackers. Some certification authorities may have more 

trustworthy processes in use but the large amount of equally trusted authorities means 

that end-users do not have practical means to separate real and trustworthy certifications 

from bogus certification received from a compromised or careless authority.  

3.2.1.1 Extended Validation 

Extended Validation Certificates [64] and additional visual trust indicators in browsers 

have been proposed as a more secure certification alternative. EV certificates are given 

for  servers,  which  have  gone  through  stricter  authentication  processes.  Browsers  

identify servers with EV certificates as more trusted by displaying additional trust 

indicators, notably green address bar. See Figure 13 and Figure 14 for  examples  of  

address bar in Mozilla Firefox 8 and Internet Explorer 8 looks when browser connects 

to services with either  unsecure HTTP, (ignored) invalid certificate on HTTPS server, 

valid regular certificate on HTTPS server, or EV certificate on HTTPS server. EV trust 

indicators have been supported for a couple of years in the main stream browsers 

including Microsoft Internet Explorer (since version 7, released October 2006), Mozilla 

Firefox (version 3, June 2008), Opera (version 9.5, June 2008), Google Chrome 

(September 2008) and Safari (version 3.2, November 2008). 

 

Figure 13. Security indicators in address bar of Mozilla Firefox 8 (from top to bottom: 
unsecured HTTP, ignored certificate error, regular certificate, extended validation 

certificate) [Article VII] 
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Figure 14. Security indicators in address bar of Internet Explorer 8 [Article VII] 

The question whether the extended validation increase the security and trustworthiness 

has been considered by few researchers. Sobey et al. [73] studied whether users notice 

the additional trust indicators by tracking eye movements of 28 untrained test 

participants who were making online shopping decisions. They concluded that the 

validation indicators in Mozilla Firefox 3’s address bar went unnoticed for all 

participants and proposed, as an alternative, more visible and obtrusive trust indicators. 

Similar results were gained by Jackson et al. [74] studied whether extended validation 

would help users to detect phishing attacks more easily with a test group of 27 

participants and whether security trained users, who had read a help file, are capable to 

use these indicators. They noted that the trained users did not outperform the untrained 

users as extended validation did not help users to detect control attacks. 

3.2.1.2 Limiting Certificate Issuers’ Authority 

Some researchers have addressed the problems of weak certification by proposing 

means to determine certificates’ trustworthiness and to limit certificate issuers’ 

authorities. Marlinspike  presented [75] a solution called Converge for turning off all 

untrusted CAs in a browser. The idea includes a trust management scheme, where other 

users’ views and consensus on particular CAs can be queried from notaries. Another 

solution called CertLock, presented by Soghoian and Stamm [76], tries to detect 

suspicious CA changes in certificates. They focus particularly on CA’s country of origin 

and in the prevention of governmental attacks. CertLock uses browsers history 

information on certificates and warns end-users if CA’s country of origin has been 

changed. In Perspectives [77], presented by Wendlandt et al., a trusted party collects 

issuer identity information frequently from TLS servers. The browser plugin may then 

query whether the issuer has been changed and warn end-user accordingly. A related 

certificate transparency proposal was made by Laurie and Langley [78]. They proposed 
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that end-users would accept only those certificates, which are available from trusted and 

public source. The approach would prevent long-life attacks, as service providers could 

to monitor this public source and suppress fake certificates, claiming their domain 

names.  

3.3 Web Reputation 

SSL certification provides mechanisms for checking that web servers belong to the 

legitimate entities. However, it does not address whether the server acts in appropriate 

and expected manner and thus whether the site can be trusted. Trust in WWW is based 

on users’ perception on the trustworthiness of web sites as well as on reputation of 

services  and  service  providers.  To  ease  users  to  decide  whether  to  trust  a  site  or  not,  

reputation services have emerged. These services enable clients to show visual warnings 

or block communication when connected to parties having a poor reputation.  

The reputation is a measure determined by monitoring the behaviour and content of 

servers. Reputation provides a universal metric that can be used to assess 

trustworthiness of heterogenous and variable web servers. Reputation can be based on 

automated analysis or on ratings shared by users. Examples of systems where servers 

are evaluated using automated means include Google Safe Browsing [79], McAfee’s 

SiteAdvisor [80] and Norton’s Safe Web [81]. End-user based rating systems include 

peer-to-peer incentive systems (e.g. [82, 83, 84, 85, 86]) and web server rating services 

(such as PhishTank [87] and Web of Trust (WOT) [88]).  

Untrustworthy web sites can be avoided by using blacklists, containing sites with bad 

reputation, and whitelists, containing sites with good reputation. Black- and whitelisting 

can be based either on automated techniques, where server’s content is checked against 

malware fingerprints, or manual techniques, where users evaluate sites’ trustworthiness. 

Human-based evaluation can be extensive only when a large number of people, a 

community or a crowd, are participating.  

One of the crowd based reputation information providers is WOT. It is a company, 

which collects information from the open community of volunteers. These volunteers 

evaluate the web sites they visit by using browser add-ons, which are available for 
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Firefox, IE, Chrome, Safari, and Opera. The WOT company was founded July 2006.  In 

November 2011 they reported that their database contains ratings from over 33 million 

servers.  

The strength of WOT is in the detail of information. Evaluation is based on collecting 

users’ subjective ratings, which vary from very poor (numeric values 0-19), poor (20-

39), unsatisfactory (40-59) and good (60-79) to excellent (80-100). Ratings are given to 

four different categories: 

1. Trustworthiness – whether the site is safe to use and free of malware and 

phishing attacks 

2. Vendor dependability – whether the commercial actor (e.g., a web shop) behind 

the server can be trusted and provides good shopping experience 

3. Privacy – whether the server is trusted to protect users’ information appropriately 

and does not collect private information for vague purposes 

4. Child safety – whether the server contains material such as adult content, 

violence or hateful language, not suitable for the children 

In addition to the ratings, WOT provides confidence information for each rating. 

Confidence is presented by using six different categories and numeric value from 0 to 

100.  A rating is more credible when large amount of contributors have given similar 

ratings and when these contributors themselves have high individual confidence rating. 

Individual confidence ratings grow among time when users contribute. WOT does not 

reveal how the confidence ratings and reputation ratings are exactly calculated to make 

misuse harder. 

Reputation systems are vulnerable for manipulating attacks as discussed by Moore et al. 

[12] who analyzed a phishing focused service called PhishTank [87]. They noted that 

the service is dominated by most active users and there is a risk of manipulation by 

small number of people. The accuracy, completeness and vulnerabilities of the WOT 

metrics  have  been  analysed  by  Chia  et  al.  [13].  They  found  that  WOT  was  more  

comprehensive than the compared automated services (Google’s Safe Browsing, 

McAfee’s SiteAdvisor and Norton’s Safe Web) in detecting malicious domains. They 

also argued that WOT may be resistant against manipulation attacks due to advanced 
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statistical analysis on the contributors’ behaviour but that it is still vulnerable for 

determined malicious gamers. However, as manipulation is likely to affect only 

restricted amount of servers, it is not likely to distort large scale statistical studies.  

Accuracy of crowd-based reputation systems and black lists has been enhanced by 

combining results from various heterogeneous sources. For instance, WOT utilizes 

blacklisting information from PhishTank. Use of quantitative web traffic information 

was proposed by Sharifi et al. [89], who automated information collection from various 

web services, including traffic ranking and search engine hits, and analysed how well 

this information supports scam detection. 

3.4 Correlation between Certification and Reputation 

Servers’ support for SSL correlates with servers’ security related reputation. SSL makes 

phishing and other masquerading attacks as well as confidentiality breaches harder. 

Therefore, it should increase reputation of servers when considering trustworthiness and 

privacy. The correlation and the causal relation between reputation and SSL are not 

straightforward or direct. In addition to SSL, other factors affect to the users perception 

of trust. A service provider that invests to security may also invest to other factors 

increasing the reputation. Nevertheless, the correlation can be used as  one metric when 

evaluating the usefulness of SSL certification. 

This  subsection  provides  a  large-scale  empirical  analysis  on  the  correlation  of  SSL  

certification and community-based reputation evaluations. By using publicly available 

global certificate and reputation databases, the section studies how availability of SSL 

support and properties of certificates correlate to users’ perception of trust, 

dependability, and privacy. The section proposes a metric for revealing the benefits that 

service providers gain from SSL certification in general, from authority selection, and 

from extended validation. The proposed reputation metric could provide a mean to 

quantify  the  users’  valuation  of  security  measures.  Hence,  it  can  be  utilized  when  

selecting and designing new web security mechanisms. 

Existing work studying effectiveness of SSL certification and warnings in browsers has 

concentrated  on  experiments  with  restricted  amount  of  participants.  In  this  study,  real  
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world data is analysed in much larger scale. In our study, the data comes from real 

deployments and thus cannot be distorted due to laboratory arrangements. The study has 

two implications. Firstly, we introduce a metric that can be used when analysing 

impacts and visibility of web security solutions. Secondly, correlation information is 

used  to  get  some  indications  of  the  benefits  that  web  services  gain  from  SSL  

certification, extended validation, and selection of more reputable certification 

authorities. 

3.4.1 Combining SSL Certificate, Web Reputation and Web Rank 
Data 

We collected, combined, and analyzed data from three different repositories as 

illustrated in Figure 15. First we received SSL certificate database collected in SSL 

observatory project of Electronic Frontier Foundation (EFF). Secondly, information on 

web server’s popularity was received in form of a list of top million servers produced by 

Alexa. Then, for the these valid certificates and for these top servers, we requested Web 

reputation ratings from WOT.  

 
Figure 15. Composition of analysis data [Article VII] 

SSL certificates available in the public Internet have been collected in EFF’s SSL 

observatory project [67, 90]. The database contains almost 4 million certificates, 

including both ‘regular’ certificates as well as extended validation certificates. These 

certificates are certified by different certification authorities. We used those certificates, 

which were collected in December 2010 and classified as valid by EFF. For the analysis 

we resolved and selected those HTTPS servers, which had complete domain name 

(certificates with wild cards in domain names were ignored), were active and fully 
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working in November 2011. Services were classified as active if the request (to the root 

directory of the SSL (443) port) resulted a reply larger than 1kB. This limit filtered most 

servers were HTTPS port is used only for redirection to HTTP port or for some other 

limited purpose.  

Information on the most popular web servers were received from Alexa, which is a web 

service providing a list of top million web services [91]. The list was used to get domain 

names of servers, which are really used and frequently visited. This enables comparison 

between  HTTP  only  servers  and  servers  with  HTTPS  support.  For  each  server  in  the  

list, we collected HTTPS status information indicating whether the HTTPS port was 

open and whether the connection succeeded without warnings.   

WOT reputation metrics were collected for all HTTPS sites as well as for HTTP only 

sites among top million servers in order to enable comparisons. In our analysis, 

described later, we used only those ratings with reasonable confidence value (12 or 

higher).The confidence limit does not affect substantially to counted averages but it 

filters  out  some  suspicious  ratings.  Data  was  collected  and  analyzed  with  Linux  shell  

and  Perl  scripts.  SSL status  queries  and  certificate  verifications  were  done  on  a  client  

based on OpenSSL. Certificates of contacted servers were verified against root 

certificate list used by Mozilla. MySQL was used as database software. For EFF dataset 

we found 201,099 active and reputed HTTPS servers and for Alexa dataset we found 

reputation  information for 132,533 HTTP only servers, for 68,961 HTTPS servers, and 

for 34,985 broken HTTPS servers (showing security warnings when connected). 

3.4.2 Correlation Results 

3.4.2.1 Does HTTPS Support Increase Reputation? 

The effect of HTTPS support to reputation rankings was studied by calculating average 

and distribution of reputation values from the Alexa dataset, which contained 

information from top million servers. The results for trustworthiness and privacy 

reputation are given in Table 3 and Table 4, respectively. For both metrics the rating for 

errorless HTTPS support gives around six additional per cents. Similarly, the amount of 

poor and very poor rates drops from around 9% to 4% when HTTPS was supported. 

Additionally we studied how the security warnings, such as domain mismatch or self-
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signed certificate, affects the ratings. We noted that HTTPS increases trustworthiness 

only when used correctly. However, even misused SSL based cryptography increases 

privacy ratings with one point. 

TABLE 3. TRUSTWORTHINESS REPUTATION OF SERVERS WITH AND WITHOUT SSL SUPPORT AND WITH BROKEN SSL SUPPORT 
SHOWING WARNINGS [ARTICLE VII] 

Server type / count Average Distribution (%) 

Excellent Good Unsatisf. Poor Very 
Poor 

HTTPS / 13,497 84,7 84,5 9,5 1,8 1,0 3,1 

Broken HTTPS / 9,483 78,7 73,1 13,4 4,1 2,5 7,0 

HTTP only / 41,250 78,6 72,1 13,8 5,0 2,5 6,5 

 

TABLE 4. PRIVACY REPUTATION OF SERVERS WITH AND WITHOUT SSL SUPPORT AND WITH BROKEN SSL SUPPORT SHOWING 
WARNINGS [ARTICLE VII] 

Server type / count Average Distribution (%) 

Excellent Good Unsatisf. Poor Very 
Poor 

HTTPS / 13,001 84,9 86,0 8,1 2,0 1,1 2,8 

Broken HTTPS / 8,776 80,0 73,7  13,1 4,9 2,4 5,8 

HTTP only / 37,197 78,9 73,4 13,0 6,6 2,8 6,2 

 

The servers in HTTPS category may have also the HTTP port open. Hence, we cannot 

say  whether  the  user  evaluations  were  done  in  the  HTTPS secured  connection  or  not.  

From  the  larger  EFF  dataset,  we  found  servers  that  had  only  HTTPS  port  active.  For  

431  servers  the  average  trust  value  was  86,6  (when  the  average  value  for  all  HTTPS  

servers in ‘EFF dataset’ was 85,8). The privacy ratings for 371 servers were 87,9 (and 

87,1 for all). This small sample indicates that reputation of servers supporting only 

HTTPS would be even larger. 

We studied also how trustworthiness and privacy reputations correlate with the 

popularity of server. Sliding averages presented in Figure 16 illustrate that the better 

ranking in Alexa increases trustworthiness and privacy value. The difference of 

reputation between secured and unsecured is visible despite the popularity, though the 

difference is smaller with more popular servers. 
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Figure 16. Dependency between reputations and popularity [Article VII] 

3.4.2.2 Differences between CAs 

There are clear differences between the reputation of servers certified by different CAs. 

Table 5 presents results of CAs, which all had more than thousand valid certificates 

used by active and trustworthiness ranking with reliability at least 12 points servers 

within ‘EFF dataset’. The results show a difference of over 10 points between the 

averages of the best and the worse CAs. The differences between CAs are illustrated in 

Figure 17. 
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Figure 17. Trustworthiness ratings among servers with certificates from different 
providers 

The difference is even significant when looking at the ratio of poor and very poor sites: 

increase from close zero to 7,4%. Different CA brands provided by one company have 

not been combined in the table. E.g., Comodo is also the provider of The Usertrust 

Network and Terena certificates, Symantec is the owner of Verisign and Thawte. 

TABLE 5. TRUSTWORTHINESS REPUTATION OF SERVERS CERTIFIED BY DIFFERENT CAS [ARTICLE VII] 

CA / certificate count  Average Distribution (%) 

Excellent Good Unsatisf. Poor Very Poor 

Cybertrust / 1061 89,3 96,6 3,0  0,2  0,0  0,2  

Verisign / 9993 88,7 92,1 6,0  0,8 0,4  0,7  

Terena / 1410 88,6 95,7 4,3  0,0  0,0  0,0  

Entrust / 1747 88,1 92,8 4,6  1,4  1,0  0,2  

Thawte / 5506 85,9 85,3 10,7  1,6  1,0  1,3  

Usertrust N. / 1994 83,9 77,4 18,7  1,0  1,0  2,0 

Equifax / 4828 82,0 74,0 19,0  1,9  1,3  3,8  

Comodo / 1557 81,9 75,8 16,2  2,1  0,7  5,3  

GoDaddy / 2973 79,0 67,5 22,7  2,5  1,8  5,6  

Total / 39482 85,8 84,6 11,6  1,2  0,8  1,8  
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3.4.2.3 The Value of Extended Validation Certificates 

Extended validation provides only small or no increase of reputation at all. Table 6 

compares average trustworthiness and privacy values of EV certificates to non-EV 

certificates within the EFF dataset. Diagrams in Figure 18 illustrate how the ratings are 

distributed. Trustworthiness average is 0,7% higher and privacy value is 0,5% smaller.  

TABLE 6. TRUSTWORTHINESS AND PRIVACY REPUTATION OF SERVERS WITH REGULAR OR EXTENDED VALIDATION CERTIFICATES 
[ARTICLE VII] 

CA / certificate count  Count  Average 

Trustworthiness 

Regular  36297 85,7 

EV  3185 86,4 

Privacy 

Regular  32166 87,1 

EV  2839 86,6 

 

       

Figure 18. Distributions of trustworthiness ratings (left diagram) and privacy ratings 
(right diagram) the in each category the left (blue) bars indicates servers with regular 

certificates and the right (red) bars servers with EV certificates 

Table 7 describes CA specific trustworthiness ratings for CAs with more than 100 EV 

certificates. When comparing to CA specific numbers to generic CA results in Table 5, 

there is a small increase of reputation all CAs except for the largest EV provider. For 
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instance,  For  Verisign  the  EV  rate  is  0,7%  smaller  than  the  rate  for  all  Verisign  

certificates.  

TABLE 7. TRUSTWORTHINESS REPUTATION OF EV CERTIFIED SERVERS BY PARTICULAR CAS [ARTICLE VII] 

CA / certificate count  Average Distribution (%) 

Excellent Good Unsatisf. Poor Very 
Poor 

Cybertrust / 255 89,9    100 0 0 0 0 

Verisign/ 1688 88,0    91,0 5,3 1,9 3,5 0,9 

Thawte/ 183 86,2    85,2 8,7 3,3 33,9 0,0 

Comodo / 226 83,2    81,0 11,5 0,9 6,6 4,9 

Globalsign/ 366 83,1    70,2 25,7 1,9 2,2 1,1 

 

The results presented in this Section are discussed in Section 7.1. However, it is worth 

to emphasize that correlation does not imply causal relationship.Trustworthy sites 

typically utilize stonger security mechanisms and use of strong security mechanism may 

make site to be more trusted. However, these statistics shows a snapshot of the current 

status in other words the results show what is the correlation between reputation and use 

of SSL and certificates in autumn 2011. 
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4 Platforms and Ecosystem for Secure Interoperable 
Home Environments 

This section studies what authentication and authorization mechanisms are needed and 

available in existing network platforms and frameworks, which facilitate the 

interoperability and ease service development. The section focuses on security 

requirements from the point of view of home networks with various cooperating devices 

and software components. The section also studies the ecosystems for home security by 

presenting roles that different parties from developers to standardizers and from 

operators to end-users may have. The requirement survey extends a study presented in 

Article II. The section contributes by proposing taxonomy for authorization solutions 

and by describing experiences with a secure middleware platform implementation, 

called OpenHouse. The OpenHouse approach, initially presented in Article III, 

illustrates the need for adapters to enable interoperability and also promotes 

authorization model based on third-party certification for achieving easy-to-use but fine-

grained security control. 

4.1 Security Needs in Home Networks  

4.1.1 Networked Homes 

Home networks have in the recent years become common. The first motivations for 

home networks were the sharing of printers, data storage, and broadband internet 

connectivity between different computers of home residents. Recently, more versatile 

networked devices and services have emerged. For instance, we have seen networked 

cameras, video recorders, high definition televisions, mobile phones, game consoles, 

sensors,  robots,  exercise  devices,  toys,  climate  control  equipment,  and  energy  

production systems. Local services, provided by these devices, and remote services, 

provided by different services providers, organizations, and enterprises, have become 

available for different kinds of user terminals in homes. Some examples of networked 

devices for homes are listed in Figure 19. In the future, more and more advanced 

services and applications are expected to emerge. These devices are becoming more 

autonomous and they will cooperate over networks without any user interactions.  
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Figure 19. Networked homes consist of various heterogeneous devices 

The trend of networking homes has been enabled by the development of different 

networking technologies and service gateways, enabling communication between 

heterogeneous devices and device types. The use of open networking standards as well 

as open hardware and software based service platforms have made introduction of new 

home services and devices easy for manufacturers and software developers. 

Consequently, new kinds of applications and services using large amount of cooperative 

devices can be introduced rapidly for the consumers. 

4.1.2 Motivations for Authentication and Authorization 

The new technological advantages in homes have also introduced new challenges, 

which must be addressed before the potential of networked home devices can be 

achieved. Particularly, questions related to security and privacy and also to reliability, 

safety, and usability remain partly unsolved. Security issues in home networks are 

emphasized as homes contain large amount of safety and privacy critical assets. 



73 

 

 

In open multi-user home network environments, we have several motivations for 

introducing fine-grained authentication and authorization mechanisms. One motivation 

is ability to withstand malicious attacks. Home networks consist of programs and 

devices, which come from different sources.  Every program and device cannot be 

completely  trusted  to  behave  correctly.  With  fine-grained  control,  it  is  possible  to  

neutralize threats, which malicious programs pose towards services inside homes. 

Different components and communicating technologies provide different security 

levels.  Consequently,  some  components  are  less  able  to  withstand  security  attacks.  

Remote attackers may easily gain an access to home networks, since many programs 

inside home communicate directly or through firewalls with counterparties locating in 

the Internet. Alternatively, attackers may be in the close proximity of home network and 

utilize e.g. weaknesses of wireless devices. Attackers with access to an already 

compromised  device  may  try  to  gain  control  over  other  home  devices.  Hence,  multi-

level protection is needed to prevent single security breach to jeopardize whole home 

network. 

The management and upkeep of home network infrastructure has attracted interest from 

the  research  community.  In  [92]  Grinter  et  al.  studied  the  effort  required  to  setup  and  

maintain such networks over a longer period of time and found that they are 

surprisingly complex and their upkeep can involve contacting multiple external parties 

such as ISPs and cable operators. Unintentional modifications of the settings of a home 

router for instance, can easily lead to the whole network becoming unusable for a long 

time. Rodden and Benford [93] point to the fact that the burden of creating a networked 

home often falls on the shoulders of non-technical inhabitants. This can be a very time 

consuming process. In a paper which outlined security requirements for a widely used 

home networking standard, Universal Plug and Play (UPnP), Ellison [94] motivates the 

need for different granularities of security in a home in order to prevent such unintended 

modifications and emphasizes that the social structure of the household will have 

implications for how access to resources on the home network needs to be controllable. 

In many situations, social control and good manners are not enough to restrict that every 

device is used in appropriate manner. Homes with children, siblings and quests are clear 

examples where usable fine-grained authorizations are needed.  
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Protection is needed for various types of interactions. In some cases it is necessary to 

protect interfaces or particular pieces of information. Information on the availability of 

services is also important in home environment. Services should be visible only for 

those services and users who are able to use them. This measure prevents 

reconnaissance, protects privacy, and may improve usability as inaccessible services are 

hidden from lists. Maintaining privacy of homes is important to secure our social 

relationships but also to keep homes uninviting for burglars.  

Access control is usually thought of as a mechanism for keeping named, server-side, 

resources private and confidential from clients but it can also have other positive 

implications for users. Brush and Inkpen [95] examined the shared use of technology in 

households and identified that profiles on devices such as PCs are often used to 

distinguish between family members. In their study of 15 U.S. households, they found 

that such access control was used to personalize the user experience of  the  PC rather  

than to keep content private within the family. So from the point of view of a networked 

device manufacturer, supporting some level of access control can have two major 

benefits. In addition to being able to prevent damage to the device (by limiting who can 

change critical settings), knowing who it is that wishes to use the device can be an 

important way to personalize the user experience – for instance a video recorder, 

supporting user profiles, would know which programs to recommend based on the taste 

of the current user.   

4.2 Authentication and Authorization in Network Middleware 
for Homes  

In home networks, middleware solutions have been seen as  one approach to solve 

interoperability, connectivity and security issues caused by the complexity and 

heterogeneity. Middleware is a broad term, which can refer to common protocols on top 

of connectivity mechanisms (i.e. protocols in OSI layers four to six) as well as services 

facilitating the interoperability. Middleware solutions have been proposed e.g. to ease in 

service discovery as well as to make communicating programs independent of the 

platforms and communication protocols. Figure 20 illustrates a typical home 

architecture with services and client software components, different network interfaces, 
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common middleware solutions, an execution platform and a gateway enabling 

interoperability.  

 
Figure 20. A gateway and middleware-based architecture for SOHO services [Article II] 

Authentication and authorization solutions in home networks are typically based on the 

communication protocols with cryptographic and key establishment mechanisms such 

as the ones described in Section 2. However, these security mechanisms may not be 

enough to secure interactions based on middleware. Hence, different security 

mechanisms have been introduced also for middleware approaches. Alas, in the context 

of home networks, there is currently no single best approach for authentication and 

authorization. Also, there is no universal solution for handling complexity caused by 

heterogeneity of devices. In homes, security needs can be very fine-grained and there is 

a need to consider various parameters, which may depend on the contexts, environments 

and technologies in use. Due to usability and costs, the current solutions have typically 

confined themselves to limited use cases or to coarse-grained access control.  

This  Section  4.2  surveys  how  four  prominent  Small  Office  Home  Office  (SOHO)  

technologies, namely OSGi, Windows Networks, UPnP, and WPWS, fulfill 

authentication and authorization requirements. Further, the section underlines some 

potential gaps and needs for future solutions. 

4.2.1 Classification of Authorization Solutions 

Authorization can be based on different architectural solutions. The main design 

question is where are the authorization decisions made and where are the authorization 

policies store (or particularly how much authorization information do client devices 

store and how much do service devices store). Figure 21 illustrates taxonomy, which can 



76 

 

 

be used to classify different authorization solutions. Taxonomy is divided into three 

main categories. In trusted-authorizer based decision making category, the 

authorization decision and policies are made by a trusted party or parties such as 

centralized access control components. The servers are only required to perform simple 

operations when enforcing access control. In distributed authorization models, the 

access control decision is the responsibility of individual devices providing services or 

gateway devices controlling access to these devices. In these models, centralized 

component does not have to be involved in any manner. The hybrid-models category 

requires some involvement from a trusted component as well as some non-trivial 

decision making from servers or gateways. Practical implementations of all of these 

categories may be linked to distributed or centralized means to configure and provide 

user input and centralized decision.  

Figure 21. Taxonomy of Authorization Solutions for Network Architectures 

Distributed models have been divided to two categories according to the requirement for 

end-users’ involvement. The authorization may be explicitly queried (A1) from end-

users with sufficient permissions, when a particular action is performed and permissions 

are needed. The authorization may also be configured beforehand using access control 

lists (ACLs). In the ACL based alternatives, client devices provide information proving 

their own identities. All policy information is kept on the server side, i.e. inside the 

devices being controlled. The context in context-based ACL (A2)  can  refer  to  any  

security relevant attribute relate to the client or operation. For instance, environmental 

context  (time  of  date  or  location  of  client)  or  trust-related  context  (reputation  of  the  

client or software the client is using) can be used when making authorization decisions. 
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Identity is a special case of context. In identity-based ACL (A3) user’s identity is tied to 

access permission. 

Trusted-authorizer based models are divided into two categories. A trusted authorizer 

may maintain a large ACL (A6), which contains authorization information for each 

service and device. Devices may then query this authorizer when a particular action 

must be authorized. Trusted authorizer may also authorize actions on specific assets 

(A5) by providing authorization or attribute certificates to clients. These certificates are 

cryptographically protected tokens, which authorize clients to perform particular action 

on particular services. The trusted authorizer may be a centralized administrator or a 

peer device delegating it own permissions. 

Hybrid models combine characteristics of distributed ACLs and authorization 

certificates. In ACL based on certified attributes (A4) model, a client is given a 

certificate proving that a client has a particular authorizing attribute. Distributed devices 

and services then enforce and check from ACL whether that attribute authorizes a 

particular action on a particular asset. 

Table 8 compares the feasibility of the alternatives by listing pros and cons and by 

analyzing  actions  which  occur  when  new  users  and  terminals  are  coming  to  home  or  

when security policies change. In the table alternatives are compared by characterizing 

how expensive typical operations are. 

Table 8.  PROS AND CONS WITH ALTERNATIVE AUTHORIZATION SOLUTIONS 

A1: Explicit user-query 

+ Deployment  of  new  devices  and  services  is  easy  as  all  authorization  related  
decisions must be done when devices are used 

 This approach does not scale well as the number of devices and services increases in 
the home. The amount of user queries will start to affect the user experience. 

+ Suitable for security sensitive operations occurring seldomly. 
 Is not suitable for autonomous solutions. A user with capabilities to authorize 

actions must be present when an action occurs. 
A2 and A3: Distributed identity-based ACL 

 Updating authorization policies is costly as information must be pushed to each 
relevant service (these services must be accessible during this operation) 

+ Deploying new services is cheap (only relevant security policies and a list of 
authorized users must be pushed to a device, which is hosting the service) 
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A4: ACL based on certified attributes  

+ Adding new users and assigning roles is easy (as only one client device must be 
delivered information) 

+ Deploying new services is easy (only relevant security policies must be pushed to a 
device, which is hosting the service) 

 Revoking role assignments is difficult: Revocation lists must be pushed to every 
relevant device. Alternatively, authentication information may be valid only for 
short period of time (services must have up-to-date clock and there must be a server 
for updating role authentication certificates) 

 Changing policy information is costly (as each relevant device must be updated) 
A5: Attribute certificates authorizing access to specific asset  

+ Adding new users and giving permissions is easy (as only one client device must be 
delivered information) 

 Deploying new services is costly (information must be pushed to each relevant client 
device) 

 Revoking permissions is difficult (as revocation lists must be delivered to each 
relevant device or as there must be available certificate server). Consequently, life 
time of certificates is typically limited, which causes requirements (up-to-date clocks 
and services for certificate renewal).  

A6: Large centralized ACL  

+ Adding new users and services is straightforward as only one device must be 
connected  

+ Giving and revoking permissions is easy as only one device must be connected 
 Centralized element typically requires a significant investment  
 The required central element makes home network dependent on centralized 

elements, which must have sufficient resources, which must be available and 
dependable, and which, for instance, must have powered all the time 

4.2.2 Existing Frameworks and Middleware 

This section describes authorization solutions in few frameworks for applications and 

devices in home networks. The list is not comprehensive. Instead, the purpose is to 

illustrate the current status in the prominent commercial-off-the-self products. 

4.2.2.1 OSGi Security 

Open Service Gateway initiative (OSGi) [96] is a platform for executing and deploying 

Java services and interoperability gateways. It provides solutions both for software 

authorization as well as for user and remote device authorization. Software 

authorization features of the OSGi are based on the Java security model. Particularly, 

OSGi enables authentication of downloaded software components by checking package 

signatures when installing programs. Further, OSGi specifies Framework Security 
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Manager, which can be used to enforce that programs, performing critical actions, have 

required permissions. 

For authentication and authorization of users and remote devices, OSGi specifies User 

Admin Service. This service stores credential information enabling authenticators to 

authenticate users and devices. Furthermore, the service provides authorization objects, 

which are appended to service requests so that software bundles, providing services, can 

check if requests are authorized. The authorization model of User Admin Service is 

based on role-based access control (RBAC) [97]. Authenticators can be components 

delivered with a gateway implementation like a HTTP(S) server or custom components 

such as Session Initiation Protocol (SIP) service. For instance, in [98] the thesis author 

incoperation with coauthors described architecture and a prototype for controlling home 

lighting appliances remotely with Session Initiation Protocol (SIP) extension. The 

remote SIP communication can be secured with TLS.  

Authorizations of service accesses may also require that the user is interactively queried 

for acceptance, that access control query is send to a remote device, or that particular 

contextual condition is met. To enable dynamic condition checks, OSGi provides 

Conditional Permission Admin service. This framework enables service developers to 

program custom security checks, which will be executed when service objects are 

accessed.  

Security solutions provided by OSGi have configuration demands, which are often too 

laborious and difficult for common users. Also, even when security solutions are in use, 

there are many remaining risks including:  

 An attacker with access to the underlying operating system or hardware can 

circumvent all security mechanisms.  

 Malicious software may be installed and given large privileges e.g. because 

software verifying signatures does not give understandable warnings or because 

the user ignores risks.  

 Complexity of configuration may yield security holes. For instance, if only users 

are authorized and not software, untrustworthy software may misuse users’ 



80 

 

 

privileges. Also, OSGi authorizes only a client making request. If an attacker 

requests the client to access a service on its behalf, an intrusion may succeed. 

 Critical services may not protect their assets carefully e.g. due to weak 

implementation or design.  

 OSGi and Java security model are vulnerable to threats, which are related to 

availability of resources. Once access to a resource is granted, a program can use 

it extensively.  

4.2.2.2 Kerberos  

Kerberos [99] is a client-server based approach for mutual authentication as well as for 

authorization. Kerberos is based on symmetric key cryptography and requires a trusted 

server. The basic steps of the protocol are the following. First, a client authenticates to 

an authentication server once using a long-term shared secret (a password). The key 

establishment can be classified as authenticated symmetric crypto key agreement – see 

Figure 4:P2. A client sends a one-way hash from a password to the server. Then, as a 

reply the client receives a Ticket Granting Ticket from the server. Later, when the client 

wants to contact some service, it can (re)use this Ticket Granting Ticket to get service 

tickets (with short life time) from authorizing server (ticket granting server). The latter 

tickets can be used to prove authentication and authorization to the service. Kerberos 

supports different cryptographic protocols. The used algorithm is negotiated 

automatically between the client and servers.  

4.2.2.3 Windows Network Security 

Microsoft’s Windows operating system provides authorization features, which are 

usable for controlling users and programs behavior inside personal computers. For 

networked homes, Microsoft has incorporated mechanisms for authenticating users and 

devices. Further, there are proposals for extending control of programs behavior to 

networked systems.    

Authentication and authorization in Windows Networks is based on Active Directory 

[100], which is a centralized configuration, authentication, and authorization service for 

Windows networks. The active directory (AD) is based on Kerberos, which was 

presented Subsection 4.2.2.2. AD is used for authenticating the end-users and devices 
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and to control access to resources and files. Windows operating system provides also an 

access control solution [101], which authorizes programs access to files and resources 

with the computer. The access control mechanism enables fine granularity access 

control over different types of operating system components. The same access control 

mechanism is used by all system components including the file system, kernel objects 

as well as user interface objects. Every object requiring protection is assigned a security 

descriptor, which stores owner, group, ACL, and auditing information. ACLs are 

containers for access control entries (ACEs). ACEs determine which access rights are 

granted for particular users. ACEs contain 16 bit long access mask specifying the access 

rights, such as list directory, add file, and read attributes for directories. However, this 

control is only within those devices that are hosting the programs. Windows designers 

have also proposed [101] a mechanism for extending programs’ authorizations to 

remote devices. The mechanism utilizes Kerberos protocols field, authorization-data, to 

limit clients’ authority in the remote Windows devices. When a process with restricted 

context authenticates to a remote device, the Kerberos stores programs restrictions, i.e. 

restricted context, to a Kerberos ticket. The remote party then extracts this information 

before the remote server process is allowed to act on behalf of the user.  

The main disadvantage of Centralized authentication and authorization solutions such as 

Kerberos  is  that  the  security  server  must  be  dependable  and  always  available.  The  

advantages of Kerberos include reliance only on symmetric cryptography making it 

computationally less expensive than solutions relying on asymmetric authentication 

mechanisms. 

In addition to Kerberos based access control, Windows 7 introduced more lightweight 

HomeGroup [102, 103] concept for easily configuring permissions for different 

Windows devices within home networks and for sharing services with devices outside 

the Kerberos domain. Home group is a virtual private network where users within 

particular group can access devices, files and services shared in that group. HomeGroup 

devices authenticate using Microsoft’s Public Key Cryptography User-to-User 

(PKU2U) protocol [104]. The access to home group is based on group specific random 

password generated by Windows. 
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4.2.2.4 UPnP Security 

UPnP v1.0 is a network architecture and interface specification enabling interoperability 

between various UPnP compatible devices. It provides security mechanisms [94, 105] 

for protecting communication between UPnP devices as well as for authenticating and 

authorizing service accesses.  

The specification secures control messages by proposing use of XML Signatures to 

achieve integrity; symmetric encryption algorithm (AES) to protect confidentiality; and 

sequence numbers to prevent replay attacks. Authentication between devices is based on 

security ID, which is a (SHA-1) cryptographic hash from device's public (RSA) key. 

Proposed association model for adding new devices to the network requires the user to 

manually ensure that the ID, which was delivered with the new device e.g. in a printed 

form, is made correctly available for the network.  

There are two alternatives proposed to enable authorization: access control lists (ACLs), 

which locate in devices; and authorization certificates, which clients (UPnP control 

points using services) must acquire. Authorization for control points to access services 

is given by a security console, which edits ACLs or grants authorization certificates. 

Each device has also a secret password, which must be known to a security console 

before it can take the ownership of a device and modify device’s ACL. This password 

should be device specific, should be able to withstand guessing attacks and may be e.g. 

on a label in a device or displayed by a device. 

4.2.2.5 DPWS security 

Device Profile for Web Services (DPWS) [106] is a Web Services specifications based 

alternative or replacement for UPnP. DPWS specification proposes that X.509 

certificates and TLS protocol are used to authenticate and secure communication 

between DPWS devices. To secure authenticity of service discovery XML Integrity 

signatures as specified in OASIS Web Services Security (WSS) specification can be 

used. This limits attackers' potential to perform DoS attacks, as unsigned messages are 

not processed. Also, authentication of services, before communication sessions are 

created, minimize the threat of bogus services. How servers are given credentials (e.g. 

certifications from a trusted party), proving that they are permitted to advertise 
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particular services, is not specified. Confidentiality of discovery messages is not 

addressed.  

The issue of authorization, i.e. controlling what authenticated devices are able to do, or 

associating new devices with a network are not in the scope of the specification. 

Authorization solutions available for TLS are potential also for DPWS. For instance, 

TLS may utilize attribute certificates, specified in X.509 Internet Attribute Certificate 

Profile for Authorization [107]. 

4.2.3 Authorization Requirements for Home Middleware 

This subsection identifies access control needs not answered by the existing middleware 

approaches, which were presented in the previous subsections. Essentially, this 

subsection presents requirements and research approaches for making authorization 

mechanisms in home environments more easy-to-use and autonomous.  

4.2.3.1 Management of Heterogeneity and Security Levels 

Many home networks consist of several networking technologies and security solutions. 

These technologies have different kinds of security properties and hence, variable 

security levels, which means strength and resistance against different security threats. 

There is a need to enable use of different technologies but at the same time control that  

assets are not compromised due to simultaneous use of weaker devices and protocols. 

The management over heterogeneity requires that there are means to compare and 

valuate the security strength of different mechanisms. Consequently, there is a need for 

systematized means to quantify the security levels. For example, Table 2  in Section 2 

presents some metrics which can be used to compare security strength of key 

establishment protocols. Those measurements describe protocols strength against active 

and passive exhaustive search attacks. Other metrics are needed to measure and 

compare other security relevant characteristics. Surveys and taxonomies related to 

security metrics include e.g. [108, 109]. 

The security level information is utilized in mechanisms and architectures, which 

control how different devices may cooperate. Several security middleware solutions, 

which monitor and consider peers’ security capabilities and requirements and are able to 
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dynamically adapt their behavior accordingly, have been proposed. These middleware 

solutions either utilize and complement or replace transportation layer specific security 

protocols. Zhuge et al. [110] studied what security mechanisms are needed and available 

for wireless home networks. They proposed centralized (Kerberos-based) architecture, 

which addressed devices’ heterogeneity and different security needs by supporting 

different security levels. They also proposed that low capacity devices could delegate 

security functions to other devices. In addition to solutions where authorization decision 

is made by trusted authority, security enforcement based on security levels can be easily 

used to distributed ACL based models including ‘publish and subscribe’ architectures. 

For example, the Genetic Messaging Oriented Middleware (GEMOM) project has 

proposed [111] middleware and mechanisms for adapting security according to peers’ 

requirements. Secure Middleware for Embedded Peer-to-Peer Systems (SMEPP) [112] 

has focused on the secure cooperation between embedded devices. SMEPP is able to 

adapt security levels according to devices’ capabilities and needs. In Subsection 5.2.4, 

we present a security-level based authorization solution, which supports semantic web 

technologies.  

4.2.3.2 Intuitive Configuration of Policies 

It would of course be possible to design very fine-grained control of which service 

actions each device and user would be allowed to make, for instance which family 

members would be allowed to tune a television. However, due to the large amount of 

services and users, this leads to complexity, which is difficult for ordinary non-expert 

users to manage. Therefore, in a system with a large amount of access control subjects 

and objects, fine-grained policy configuration will be a challenge, which affects 

usability. Simple solutions where users are required to configure user names and 

passwords do not scale well as the number of devices increases in houses.  

One possibility to ease configuration work is to classify users, devices, and programs 

into groups, which give them different permissions e.g. to advertise or access services. 

Also, services or devices can be classified to groups, which require particular 

permissions before they can be accessed. For instance, in Linux systems a file may be 

executable for a particular user or for every user belonging to the same group as the file. 

A prominent more general and flexible classification scheme is the role-based access 
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control (RBAC) [97, 113]. In RBAC, grouping is done by giving access control 

subjects into roles, which can be defined so that they are meaningful and intuitive for 

typical users. Roles may form hierarchies to simplify configuration. There may be roles 

for users and for programs. The user roles are targeted for restricting users' access to 

particular services; whereas, program roles can be used for protecting the integrity of 

system software and for sandboxing untrustworthy programs.  

Similarly to access control subjects, also access control objects (i.e. the accessed 

resources and assets) can be classified. Examples of operating system level models 

where device’s resources or interfaces are grouped into a handful of static categories to 

which permissions are tied include Posix capabilities for Linux systems [114] and 

capabilities in Symbian operating system [115]. Domain and type enforcement (DTE) 

[116, 117] is an access control model where subjects (e.g. processes executing 

programs) can be more flexibly grouped into domains and objects (e.g. files) types. 

Network-level DTE [118] extends this software authorization paradigm from operating 

systems environment into networks. DTE treats network packets as objects. Only 

processes belonging to particular domain can send and receive packets. Each packet 

carries a label, providing information of sender’s domain and packet’s type. Unlabeled 

packets coming from nodes, which are not DTE compatible, must be labeled in the 

receiving end e.g. according to sender’s address.  

Authorization policies may be challenging to configure before hand and they may not 

cover all potential access situations. Therefore, run-time policy configuration 

mechanisms are typically needed to handle cases where an unauthorized client accesses 

a protected service for the first time. Ka-Ping Yee [119] instructed that authorization 

should be implicitly derived from end-users actions. Implicit authorization means that 

the  program  gains  access  permission  to  particular  asset  only  when  the  user  explicitly  

uses that program to access the asset. 

The behaviour of security solutions can be controlled based on the context i.e. on 

temporal  situation  or  environment.  Existing  research  efforts  on  context-aware  security  

include context-dependent access control models. Covington et al. [8] extended the 

role-based access control model by representing contexts with a new type of role called 
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environment role. Environment roles capture relevant environmental conditions that are 

used for restricting user privileges. Permissions are assigned to roles (both traditional 

and environmental ones) and role activation/deactivation mechanisms regulate the 

access to resources. Toninelli et al. [10] presented a context-aware policy model where 

context is any characterizing information about controlled system entities and about 

their surrounding world relevant for enabling entities to operate on resources. Intuitive 

location-inspired access control models include a concept of virtual walls, proposed by 

Kapadia et al. [120]. Virtual walls enable users in pervasive environments to protect and 

control their digital privacy by protecting their virtual assets using concepts familiar 

from the physical world. 

4.2.3.3 Trust Management based on Past Behavior and Contribution Tracking 

Trust management solutions provide potential mechanisms for a system to learn 

authorization policies without requiring them to be explicitly configured. In trust 

management solutions, peers previous behavior is tracked or monitored and based on 

the collected trust information devices are able to autonomously decide whether 

cooperation with the peer or server should be allowed.  Similar concepts have been used 

as incentive mechanisms in peer-to-peer networks. In incentive solutions, e.g. [82, 83, 

84, 85, 86], information on peers contribution is collected in distributed or centralized 

manner and peers receive services from other peers according to their previous 

contributions.  

In home environments, behavior monitoring has been mainly used only in networks, 

which are managed by skilled administrators. However, in these cases the monitoring 

has been a reactive tool enabling detection of ongoing intrusions and attacks. As the 

home networks become more complex, there is a need for authorization solutions, 

which grant permissions according to past behavior and reputation of device or software 

(either a particular software instance within a particular device or a multiplication of a 

particular software product).  

4.2.3.4 Context-awareness 

The term of  context-aware  computing  was  introduced  by  Schilit  et  al.  [121].  Context-

aware  behaviour  can  be  used  to  make  security  both  easier  to  use  as  well  as  stronger.  
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Covington et al. [8] defined a generalized role based access control model. The model 

enhanced role-based access control (RBAC) by defining a concept of environment role. 

Environment roles are activated in particular situations. They define which user 

(subject) roles can access particular resources (objects) at that situation. For instance, 

there may be roles called ‘high CPU load’, ‘Monday afternoons’ and ‘downstairs’. 

Zhang et al. [122] extended RBAC model so that contextual role assignments and 

permission assignments of particular user are adjusted dynamically. Ko et al. [9] 

proposed an approach for presenting context-aware access control policies with 

semantic information. An access is allowed if the request context is semantically 

equivalent  to  the  context  specified  in  the  policy  rule.  Toninelli  et  al.  [10]  presented  a  

context-aware policy model where context is any characterizing information about 

controlled system entities and about their surrounding world relevant for enabling 

entities to operate on resources.  

An example of context aware authorization is the case where any user in a living room 

is allowed to control home theatre equipment without authentication, whereas a remote 

user may be required strong authentication and permissions before allowed to access the 

same equipment. In addition to context of users (i.e. subjects of access control), also the 

context of services (objects of access control) may change. The user, who is in a phone 

or watching a movie, may want to be unavailable for other communication requests and 

that a tracking service does not reveal location information to everybody. 

4.2.3.5 End-to-end Authorization 

The authentication and authorization solutions in existing protocols and frameworks 

control how two devices or a user and a device can interact. Situations where a service 

is accessed through other devices are controlled only by requiring and trusting these 

middle devices to control access accordingly. However, for an individual device it is 

difficult to know what it is allowed to do on behalf of another device. Therefore, there is 

a need for solutions where authorization and authentication for the whole end-to-end 

interaction is managed and controlled.  

The permission attenuation concept can be used to model how cooperation should 

affect to authorization permission. It provides a unifying model for managing 
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credentials of all affected participants, not just one particular participant such as end-

user or user’s device. The concept is independent of the implementation or decision 

making architecture i.e. the model can be implemented in distributed or centralized 

manner.  

Services  may  operate  on  the  behalf  of  users  or  other  services.  Also,  the  users  or  

programs may access services using different devices, which provide different security 

levels.  Therefore,  it  is  not enough to authorize just  devices or programs, which makes 

service requests, or users, who initiate use of services. Instead, all entities participating 

to service request must be trusted and have authorizations to use services.  

Permissions, which are available for an access control subject, depend on the session the 

subject is on. When using intermediate services or mechanisms, which are fully trusted, 

only a subset of permissions is available for the subject. Actual permissions are the 

cross section between the permissions groups that individual participants have.  

Permissions achieved or permission limitations due to contextual situation should be 

considered separately for each participant. In ideal case all authorization credentials for 

all kinds of elements (including users, programs and devices) would be defined in the 

same consistent way, the likehood of configuration errors and, thus, security holes is 

mitigated. 

4.3 OpenHouse – Secure Platform for Home Services 

This subsection contributes by proposing of lightweight, non-centralized access control 

system for networked home devices. The proposed platform, originally presented in 

Article III, is called OpenHouse. The subsection focuses on the use of existing widely 

adopted open communication protocols and on the integration of legacy equipment with 

home networks. The proposed platform enhances widely used standard for home 

networking, Universal  Plug and Play (UPnP),  with TLS authentication as well  as with 

role and domain based authorization. This makes it possible for any networked home 

device to really know who is trying to access and control it without requiring the end-

user  neither  to  log  in  with  user  name  and  password  nor  to  make  complicated  

configurations. The subsection investigates how to minimize the impact of adopting this 
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approach for both the end-users and developers and suggest areas in which further 

standardization or guidelines would help. Finally, in order to verify the feasibility of the 

access control system, the proposed system has been implemented to small embedded 

devices and its performance has been measured. 

4.3.1 Access Control based on User Roles and Certified Service 
Domains 

This subsection describes the design of the access control solution in OpenHouse. First, 

we describe two enabling building blocks, namely the authorization model and the 

authentication mechanism. Then, we discuss what is the user impact i.e. what 

configuration is required from the end-users. 

4.3.1.1 Fine-Grained Authorization Model 

To ease the management of access control, OpenHouse adopts an approach where users 

and resources are grouped in a security relevant manner. The selected grouping scheme 

is the role-based access control model (RBAC), presented by Ferraiolo et al. in [97], 

which has been extended with domain-based resource classification, utilized in domain 

and type enforcement (DTE) model [116, 117]. An advantage of RBAC is that new 

users can be given already defined, preferably intuitively named, roles and, hence, all 

security policies for a new user can be specified with a single operation. 

Correspondingly, resources, which are similar, can be grouped and particular users can 

be given access to grouped resources with one operation. It is practical to do this 

grouping of users when the amount of users is large. Similarly, it is feasible to group the 

resources, when there are a large amount of similar resources.  

The authorization model, which we adopted, is illustrated in Figure 1. Access control 

subjects - either end-users, programs or devices - are given roles according to the RBAC 

model. Similarly, access control objects - services, devices, or data entities - and actions 

related to them are classified to domains and domain actions. 
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Figure 22. Role and domain based authorization model [Article III] 

Examples of roles and domains are given in Table 1. Domain actions are generalized 

actions available for particular domains. They may describe capabilities e.g. to modify, 

add, remove, or query object. Subjects’ permission to perform actions on objects are 

defined with authorization policies. Policies link also roles to domain actions and 

particular actions. These policies specify which actions and service domains are 

available for which particular users and roles. A typical policy entry for instance would 

be to say that only users with the role of parent are allowed access to services or 

sections of services marked with the domain “parental control”. 

Table 1. Examples of roles and service domains 

Role examples  Service domain examples 
Parent Personal 
Guest Private 
Child Parental control  
Administrative device Security / safety sensitive 
Service provider Digital rights management 
Shared device Shared service 

 

4.3.1.2 Security Certification Ecosystem 

The presented access control model assumes that users, devices, programs, and services 

are classified in security relevant manner. However, this kind of classification may be 

difficult for typical residents. Therefore, we propose an alternative model where part of 

the categorization can be done by trusted external parties. This certification-based 

security approach is similar to the certification systems, where programs or devices are 
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checked and certified by a trusted third-party before delivering for the consumers; such 

as Apple AppStore, Microsoft MarketPlace, or Symbian Signed.   

Potential actors and the phases involved in the certification and access control of 

networked home environments, and the relationships between them, are illustrated in 

Figure 23. Service developers are responsible for classifying services using some 

standardized approach. Different standards including e.g. UPnP and Bluetooth provide 

already now service classes, interfaces or profiles, which could be utilized when making 

authorization decisions. However, existing service classifications have not been made 

from a point of view of security. UPnP forum could be a potential standardization body 

for defining security relevant domains, which the service developers must use at the 

service development phase. However, in practice getting security classification to an 

established standard like UPnP might be challenging. The more realistic scenario might 

be  that  there  would  be  a  third-party  classifier.  The  third-party  could  be  a  commercial  

service provider or an open community, which the user trusts. This approach requires 

that homes are able to identify services in trustworthy manner. This identity information 

can then be mapped to service classifications, which are available from the third-party. 

As an alternative, end-users could classify services, in the service deployment phase.  

   

Figure 23. Phases and security tasks in service development and deployment [Article III] 
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End-users are responsible only for making role assignments as well as for providing 

security policies, when introducing new users or devices in the network deployment 

phase. A third-party service provider such as their broadband provider may provide 

default policies for homes so that end-users are not required to define them. After these 

classifications the access control is operational. The residents are required to make 

simple authorization related operations only when introducing or removing users, 

devices, or software or when changing high-level policies (see Subsection 4.3.1.4 for 

discussion on end-users role and experience). 

4.3.1.3 Authorization Architecture based on Certified Roles and Domains and 

ACLs 

The general model proposed above can be enforced with different kinds of security 

architectures. For OpenHouse, we adopted a solution which uses both ACL and 

certified attributes (A4 class in Figure 21). The solution was named as role 

authentication. This approach was suitable for homes where new services and devices 

are deployed quite regularly. The solution does not require any centralized authorizer 

component to be always available. Also, in this approach, adding new users and 

assigning new roles to them is easy and adds very little extra complexity to the out-of-

box experience. The approach was designed and implemented using TLS client 

authentication and X.509 certificates. 

TLS enables authentication and enforcement of authorizations. Devices on the home 

network can mutually authenticate each other by using public keys contained in X.509 

certificates. TLS provides several advantages: it is high secure and mature and 

distributed (there is no need for a centralized server to be available whenever services 

are  used).  TLS  can  be  used  with  different  network  mechanisms  providing  TCP/IP  

including Ethernet, WLANs and power-line protocols. Also, authentication can be 

extended to users and services outside the home network, i.e. on the Internet, as long as 

issues related to middleboxes between Internet and the home, such as addressing, are 

managed. 
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Each security aware device in OpenHouse has up-to-date information on domains and 

policies. When clients make service requests, a TLS handshake gets executed and TLS 

client authentication happens. The client presents an X.509 certificate which contains 

role information provided as an extended attribute. When an UPnP service receives such 

an action request, it queries an authorization module, if a client with the role specified in 

the certificate is allowed to access the service. The authorization module is a logical 

element which serves to interpret the policy files and could in principle be embedded 

into the services themselves or be placed running on any device in the home. 

TLS and authorization enforcement can be implemented at the system level. This would 

remove the need from service developers to implement authentication, confidentiality or 

other security mechanisms. It is enough that they classify their services and make 

queries to the authorization module when service requests are made. Application 

protocol stacks in consumer electronics devices must support TLS, which is used to 

authenticate mutually client and service as well as client’s role. From the 

implementation  point  of  view  this  means  that  TLS  sockets  are  used  instead  of  TCP  

sockets.  

The main challenge for TLS client authentication is how to keep the policy and 

authorization information up-to-date in the different devices on the home network. 

Basically, there are two approaches. Certificates may have short validity times and, 

thus, be required to be frequently updated. This solution has the disadvantage that it 

requires a certificate server to be always available. Also, many devices may not have 

accurate time information available, so the validity period check may be hard to realize. 

Alternatively, certificates can be revoked and devices’ policy databases updated 

individually, which may be a manual process. However, to assist users, there needs to 

be some kind of administrative device, which knows the different devices’ security 

policies and makes updating easier. These devices must be able to create certificates and 

have sufficient UI capabilities to enable the steps in Figure 24 and Figure 25 to be 

executed. They must also have access to default security policies. We envisage that the 

administrative device could be for example a home PC or a smart phone. New devices 

may be added and certificates provisioned using different association and authentication 
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methods, which depend e.g. on the hardware capabilities and protocols available in 

these devices. 

When a service request with a revoked certificate occurs, the request is rejected and the 

client needs to interact with the administrative device to get a new certificate. Such 

updates are unlikely to be frequent as access control policies in homes are typically 

quite static.  

The solution for provisioning X.509 certificates (or shared keys) at the same time as the 

new devices are admitted to the WLAN and securely receive the WPA key of the home 

network was outlined by Kostiainen et al. [123]. The mechanism takes advantage of the 

fact that the now widely supported new standard for WLAN setup, Wi-Fi Protected 

Setup (WPS), has placeholders for certificate delivery. It also allows certain devices to 

be nominated by users as administrative devices (referred to as registrars) and this fits 

well with our model of administrative devices, which can issue certificates containing 

role information. WPS is essentially an association method and may also be run after 

the WPA key has been delivered, making it usable also for the case where a device had 

a certificate revoked and needs to request a new certificate from one of the 

administrative devices. 

The authorization model can be used to control software component’s access to assets 

inside homes. This is possible when devices are able to control that each software 

component, hosted in that device, is able to use only its own certificates. Also, services 

must know how trustworthy each device is i.e. what roles its software components may 

have. Consequently, the architecture can be used to neutralize attacks of malicious 

software. 

4.3.1.4 User Experience 

A key design goal with the OpenHouse solution was to minimize configuration tasks, 

which the end-user is required to perform. However, some tasks seem to be inevitable. 

Essentially, there are three situations where configuration may be needed: when adding 

new devices or users, when deploying services, and when changing policies.  
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Introducing new controlling devices (e.g. a new smart phone) to the home causes some 

configuration tasks, which are illustrated with blue trapezoids in Figure 24.  The end-

user making the configuration may be either the owner of the control device or an 

administrator, who must specify the owners of the new control device. If the owners are 

known  to  the  system,  the  device  inherits  roles  assigned  earlier  to  those  users.  If  the  

owner is new or when introducing a new user to the network, roles must be assigned for 

this user. The system may make some additional authorization check when trying to 

assign roles (such as administrator), which provide access to critical assets. 

 

Figure 24. Phases and user actions occurring when adding new terminals/control 
devices 

Introducing new devices, which are hosting services (e.g. a new UPnP based media 

server), to the home may not require any additional configuration for authorization. If 

the service developer has classified the service or if any unclassified services are 

automatically recognized to be part of some particular domain (e.g. like private) no 

configuration tasks are needed. All  that  the user must do is to pair  the device with the 
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home network using some device specific key establishment mechanism. If the service 

is not classified and the home is enforcing strict security policies (which prevent 

automatic classifications), some configuration tasks, illustrated in Figure 25 will be 

required.  Also, some services may belong to domains, which require additional 

configuration. For instance, services which are personal in nature may require that the 

identities  of  each  user  who  is  authorized  to  access  that  service  are  specified.  This  

configuration can be done by selecting authorized users from preconfigured list. 

 

Figure 25. Phases and user actions occurring when adding new services to a home that 
enforces strict fine-grained security policies 
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4.3.2 TLS based Security Adapter Implementation for Legacy 
Devices 

This section describes experiences from a prototype implementation. The goal of the 

prototype implementation was to investigate whether TLS client authentication using 

certificates would be a suitable technology for the fine-grained authorization model: that 

it does what we need, and that it is not too slow on the low-end hardware typically used 

to network legacy home devices. Another goal was to optimize the ease with which the 

model can be taken into use for developers. 

4.3.2.1 Prototype 

The prototype implements OpenSSL [124] based authentication layer, CyberLinkC 

[125] based UPnP stack and a fine-grained authorization module, which UPnP service 

developers can utilize with minimal effort. The UPnP stack was running on both a 

Nokia N800 Internet tablet and a small embedded module with Linux and 400MHz 

processor, called Gumstix.  

The service platform was demonstrated by running UPnP thermometer and camera 

services on the Gumstix platform. We selected Gumstix for this purpose because it is a 

flexible, low cost platform which can easily connect legacy home devices to network 

and  represent  them  as  UPnP  devices  and  as  such  is  a  realistic  representation  of  a  

consumer electronics device’s typical hardware capabilities. The camera was used to 

take pictures of a legacy digital thermometer. These pictures were analyzed on the 

Gumstix  device  with  optical  character  recognition  (OCR)  software  and  the  resulting  

temperature reading was sent over Wi-Fi to N800 device’s user interface. Pictures were 

available directly for the N800 device belonging to a parent (i.e. presenting a certificate 

with parent’s role) but not for a user with the guest’s role.  The demonstration setup is 

illustrated in Figure 26.  
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Figure 26. The prototype where pictures from a legacy thermometer are analyzed with a 
low-end Linux hardware and the temperature results are delivered to Internet tablet 

device using TLS secured UPnP [Article III] 

The client software on the N800 device authenticated itself with X.509 certificates. The 

client’s role, either parent or guest, was carried in the certificate’s extended attribute. 

The Gumstix UPnP device hosted a policy database containing information about which 

domains the services belong to. Typically, pictures from every camera inside home may 

contain privacy critical material. Therefore the fetching of camera images was classified 

as a private service. Sensed information, like temperature, is not typically privacy 

critical and can be made available for outsiders who are monitoring the home. 

Therefore, getting thermometer information was classified to be a shared service. 

The Gumstix device also maintained applicable access control policies, stating which 

actions are allowed for which users and roles:  parents were given access to all  classes 

whereas guests were given authorization only for shared services. Service developers 

must add a function call, illustrated in Figure 27 to their source code to enable 

authorization module to make an access control check.  
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Figure 27. Function call, which must be added to UPnP services, for authorization check  
[Article III] 

The above approach required service developers to implement a call to the authorization 

module. As an alternative, authorization checks could be done completely in the system 

level. For instance, UPnP protocol stack could resolve target service and action and then 

make the check. The problem with system level authorization check is that the 

granularity of the access control suffers as services cannot make data specific checks, 

which require more understanding of the service than the protocol stack has. However, 

this system level approach might make the proposal more easily acceptable for service 

providers and also compatible with legacy services. 

4.3.2.2 Performance Evaluation 

The feasibility of this usage of TLS authentication was analyzed by measuring the 

latency between sending a ‘get image’ request to the camera service and receiving a 

single packet with a picture. The performance was measured with the UPnP stack 

without any security features; and with RSA based authentication with or without fine-

grained authorization.  Further, we studied how the size of the transmitted picture 

affects performance.  

Operation variations were performed 100 times and average values for round time 

measurements are given in Table 2. In addition to the security protocol, payload size 

and UPnP messaging, other issues like operating system scheduling, affect the measured 

performance. 

if ( authorization_check (    
     get_current_certificate(),  
     POLICYFILE, SERVICE_NAME, actionName)   
     == AUTHORIZATION_FAILURE )  
{ 
   error_message("Unauthorized request"); 
   return FALSE; 
} 
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Table 2. Performance measurements of the prototype [Article III] 

                                    Message size (bytes) 
Protection 

1B 1kB 10kB 

Unsecured 138ms 187ms 270ms 

TLS (RSA)  440ms 504ms 558ms 

TLS (RSA) & fine-grained authorization 449ms 522ms 601ms 

Experiments show that for individual small UPnP actions TLS authentication causes 

significant performance penalties. This is because of the heavy TLS handshake 

protocol: keys as well as message authentication codes must be computed for each call. 

The penalties caused by the authorization call are relatively small. Furthermore, 

communication inside the home may not typically consist of individual operations but 

rather of longer sessions such as frequent fetching of images or media streaming. 

Hence, TLS handshakes are not needed frequently and the security overhead is smaller. 
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5 Secure Semantic Technologies for Ubiquitous 
Network Applications 

Semantic web technologies, initially proposed by Berners-Lee [19] and specified by 

W3C [126], have been seen [127, 128] as a prominent enabler of application level 

interoperability. This section describes approaches for securing ubiquitous network 

applications, which are based on the semantic web technologies. The section will 

reintroduce the vision of smart spaces, where semantic technologies are utilized to 

enable interoperability in different ubiquitous applications. Then the section will survey 

security requirements within semantic technologies and smart spaces. After that, the 

section contributes by describing security architecture and authorization model for smart 

spaces. The proposed authorization model provides a reusable and interoperable 

mechanism for fine-grained and context-based access control. The section is based on 

results implemented in the Sofia project [129, 130] and initially presented in Articles 

IV, V, and VI. 

5.1 The Vision of Smart Spaces  

Smart spaces, as illustrated in [131, 132], are physical spaces where information on the 

environment is collected, shared, and utilized in a context-aware manner. A smart space 

may be established in different physical environments including, e.g., homes, buildings, 

vehicles,  offices  etc.  Smart  spaces  consist  of  cooperative  devices,  which  are  

autonomous and able to adapt their behaviour in dynamic manner. The smart spaces are 

based on context-aware and autonomous computing paradigms as well as semantic web 

technologies and brokered communication paradigm. 

5.1.1 Ubiquitous and Autonomous Computing 

Availability of different networked devices, sensors, actuators, and gadgets, have 

created visions of ubiquitous and pervasive computing. In these visions, described e.g. 

by Weiser [133, 134] and Satyanarayanan [135], all kinds of computing devices and 

services become invisible and transparent part of our physical environments. Devices, 
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which are integrated to buildings, clothing, vehicles, and infrastructure, communicate 

with each other in order to assist users in everyday living without being noticed. 

The transparency of devices is possible only when the devices become autonomous i.e. 

when devices become able to self-adapt their behaviour without intervention from the 

end-users. Kephert [15] defined autonomic computing as systems that can manage 

themselves given the high-level goals from the administrators. They divided the concept 

of self-management into four functional areas: self-configuration for automatic 

configuration and introduction of components, self healing for automatic discovery and 

correction of faults, self-optimisation for automatic monitoring and control over 

resources for optimal behaviour, and proactive self-protection  from security attacks. 

Autonomous elements are able to monitor their operational context. They adapt their 

behaviour  according  to  high-level  goals  and  constraints  set  by  administrators.  The  

adaptation is done by processing observed context by using reasoning logic and 

available reasoning knowledge, which maps the observed information to logic and high-

level goals. The adaptation can be based, e.g., on users’ or environments’ situations i.e. 

context, such as location or time of day. The principles and potential of context-

awareness in computing and authorization were surveyed in Subsection 4.2.3.4. 

5.1.2 Realization of Smart Spaces through Semantic Information 
Brokers and Communication Middleware 

Ability for devices to communicate and understand each other is a major challenge for 

ubiquitous computing and for smart spaces. Particularly, it is difficult to enable 

interoperability between devices designed for different applications or for different 

physical spaces. For instance, devices following the users in the pocket or in the car 

should be able to communicate with sensors and gadgets in homes, public 

transportation, road infrastructure, shops, hospitals, or parks.  

Smart space interoperability has been addressed in the Sofia project [129, 131, 132]. 

The architecture was selected so that each device is not required to cooperate in the low 

connectivity level. Instead, the project proposed middleware, where devices 

communicate through information brokers according to the publish-and-subscribe [136] 

paradigm. In the publish-and-subscribe paradigm, the devices first store information to 
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an intermediate broker. Target of the information is not specified by the source. Instead, 

devices interested of particular knowledge may request or subscribe information. The 

intermediate broker will notify subscribed parties when updates emerge. Solution makes 

architecture suitable for ubiquitous spaces with dynamically appearing and disappearing 

devices and resources. Secondly, the application level interoperability was facilitated by 

adopting technologies for semantic web [126], making application level communication 

protocols faster to develop and reusable. 

The smart space architecture in the Sofia project [129] consists of two kinds of dynamic 

architectural components. Semantic Information Brokers (SIB) provide the access to 

smart spaces as well as information storage, retrieval and subscription services. 

Knowledge Processors (KP) join to the smart space and publish and consume 

information in it. Existing SIB implementations include Smart-M3 [131, 137], ADK 

[138] and RIBS (RDF Information Base Solution), which was initially introduced in 

Article IV. KPs are essentially software agents i.e. programs that autonomously 

cooperate on behalf of the user or another program. Their development is facilitated 

with middleware layer, which can be implemented in the KP-side as software libraries 

and which hides the complexity of smart space communication from the application 

logic. Figure 28 illustrates the connections in smart spaces and how smart spaces can 

be deployed to different physical spaces consisting of heterogeneous devices.  
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Figure 28. Smart spaces consists of information brokers and application agents, 
deployed in different physical spaces [139] 



104 

 

 

Smart spaces have no preference for connectivity mechanism. Any existing 

communication protocol including Bluetooth (BT), Wireless Fidelity (WiFi) and 

Internet  Protocol  (IP)  can  be  utilized.  To  hide  the  connectivity  specific  differences  

middlelayer communication mechanisms can be utilized. For instance, Device 

Interconnect Protocol (DIP) [140], which is a key building block of Network over 

Terminal Architecture (NoTA) , has been utilized in smart space implementations (in 

Smart-M3 [137] and RIBS [Article IV]). On top of connectivity there is a protocol 

implementing smart space specific primitives. For instance, the Sofia project [129] has 

defined Smart Space Access Protocol (SSAP), which defines join, query, update, 

remove and leave messages and their presentation formats. The SSAP messages are 

structured using either pure XML or, more compact proprietary, world aligned XML 

format. 

The application-level information is presented and processed using semantic 

interoperability solutions. The utilized standards include eXtensible Markup Language 

(XML) [141] for data encoding and Resource Description Framework (RDF) [142, 143] 

for knowledge representation. To ease information sharing, ontology description 

languages such as RDF Schema [144], and Web Ontology Language (OWL) [145] are 

used to define semantic meaning for data, i.e. to define the concepts, properties, and 

their relations, for different domains. These standards enable applications to use any 

kind of data models and extend them easily at run time. 

On top of the semantic interoperability solutions it is then possible to build smart 

inference applications, which extract new knowledge from existing information. 

Inference solutions can be based on various reasoning technologies and application 

programming models. For instance, answer set programming (ASP) paradigm [146] 

tackles the heterogeneity related to inference rules in several ways and is a promising 

approach for reasoning [147, 148].  
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5.2 Secure Platform for Smart Spaces  

5.2.1 Security Requirements in Semantic Web 

The technologies for semantic web can be presented using layered models. Berners-Lee 

[19] presented architecture where Unicode and Uniform Resource Identifiers (URIs) 

formed the base layer. On top of Unicode and URIs there were layers for XML and 

xmlschema, for RDF and rdfschema, for ontology vocabulary, for logic, for proof, and, 

finally, for trust. The left side Figure 29 illustrates a version where the layered model is 

adapted for smart spaces. The Unicode layer is replaced with inter-device connectivity 

and  the  logic  layer  is  replaced  with  an  inference  layer.  The  proof  and  trust  levels  are  

combined into a single trust layer. There exists a large amount of research, 

standardization work, and implementations of security mechanisms, which can be 

utilized in smart spaces. The right side of the figure lists the essential security elements, 

which must be considered when securing smart spaces, and illustrates how these levels 

map to the levels of the semantic web.  

 

Figure 29.  ‘Security cake’ for smart spaces - Layers of Semantic Web (left; adapted from 
[19]) and essential security elements (right) [Article VI] 

In the following subsections, the security requirements related to these layers are 

studied in more detail. The subsections also present different scenarios and survey 

existing solutions. 
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5.2.1.1 Inter-Device Security 

Cryptography, key establishment, key management solutions, as well as security 

protocols for protecting authenticity and confidentiality of communication and 

information can be used in the different levels of communication. Security may be in 

the Smart Space Access Protocol, which KPs use e.g. to join, update, query and 

subscribe information. Security may be in the connectivity layer, under SSAP. Security 

may be applied also in the application layer, in which case applications are required to 

protect data itself.  

The use of existing security mechanism to secure smart spaces is not straightforward. 

As smart spaces are heterogeneous, we cannot assume availability of any particular 

connectivity-level security mechanism. Security mechanism specified for different 

communication  protocols  are  not  interoperable.  These  solutions  must  be  able  to  cope  

with ‘publish-and-subscribe’ architecture, resource restrictions and complexity due to 

dynamic nature of communication. The following paragraphs present essential security 

challenges, which the developers must consider when designing platforms for smart 

spaces, namely the heterogeneity and dynamicy. 

Security functions are dependent on secure key establishment and deployment 

mechanisms. Devices must acquire keys and credentials, which enable them to prove 

their trustworthiness and authorizations for other peers and verify trustworthiness of 

others. When a smart space supports various security protocols, we need to deliver 

different kinds of credentials. Also, as physical spaces are heterogeneous it is not likely 

that single credential deployment model is sufficient. The following scenarios illustrate 

the different requirements.   

Scenario A – Shared secret for public key certificates.  Devices  or  KPs,  with  more  

processing capacity, may establish session keys using certificates and private keys. 

These certificates can be requested from certifier, which all parties trust. One approach 

to control that keys are delivered to correct parties is to protect certificate requests and 

deliveries with pre-shared secret. This is straightforward approach with some usability 

and security constrains related to delivery and length of the unique secret. 
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Scenario B – Out-of-band models for symmetric credentials and low cost security. Low 

resource devices may not be able to secure communication with private – public key 

pairs. One approach is to deliver symmetric network keys using trusted out of band 

channels  such  as  Near  Field  Communication  (NFC)  or  Universal  Serial  Bus  (USB).  

Some out-of-band models are bi-directional and some one-directional, which will 

further complicate the deployment. In smart spaces, trusted brokers may forward device 

specific keys to other devices. The key exchange may need to be controlled by security 

authorities and forwarding needs to be controlled by users. Further, when forwarding 

credentials to other devices, we need to consider trust issues. However, devices without 

direct security relationships may not know how trustworthy mechanisms have been used 

when keys where initially deployed to the broker. 

Scenario C – End-user specific secrets for access from shared devices.  End-users may 

use shared or borrowed devices to access data. In these cases we cannot assume 

availability of existing credentials in devices. It should be possible for users to use e.g. 

passwords, biometrics or security tokens to access data.  

Smart spaces are dynamic. Users, devices and brokers may join and leave at any time. 

Therefore, spaces should not assume availability of any component. Further, in some 

smart spaces there may be multiple distrusting authorities. These authorities may 

control  same  SIBs  and  want  to  ensure  that  only  those  devices,  which  are  certified  by  

them, can access shared information. For example, buildings may have devices, which 

are shared by several families, and malls may have devices used to serve different 

shops. Therefore, smart space platforms should provide solutions for adding new 

authorities. Since also authorities may emerge any time, these mechanisms should be 

dynamic and preferably not involve actions from SIB provider. Mechanisms should also 

be provided to enable users to determine trustworthiness of authorities. 

5.2.1.2 XML Security and Robustness 

Vulnerabilities in software implementations, particularly in those which are processing 

and parsing input and XML documents, have been a major source of security problems 

in Internet. In smart spaces with embedded devices this issue is even more critical as 

these devices may not have direct Internet access, which could be used for security 
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updates. Hence, robustness of software implementations must be in the focus from the 

start of development. Robustness against malformed content can be achieved with 

careful coding practices as well as mature and security tested interfaces.  

In the XML level, there are solutions for protecting integrity [149] and confidentiality 

[150]  of  XML  documents.  There  are  also  solutions  for  defining  access  restrictions  to  

elements  of  XML  documents.  There  is  a  prominent  standard  from  W3C,  XML  based  

eXtensible Access Control Markup Language (XACML) [151]. XACML standardizes 

XML notations to describe the authorization policies.  

5.2.1.3 RDF Access Control 

Smart spaces are vulnerable to various confidentiality and privacy related threats, which 

must be addressed with access control solutions. To illustrate the requirements, consider 

a scenario where the user makes a physician appointment with mobile phone and gets a 

confirmation with time and address as a text message. This information is then used in 

smart spaces at the home, at a car, at the hospital by different applications including 

calendar, navigator or elevator controller. The information must be protected so that 

details of appointment are available only for the user itself. Time and destination may 

be available for the family and navigator. For elevator, which is in public smart space, 

only the destination floor is revealed. Therefore, we need solutions for protecting 

authenticity  and  confidentiality  of  communication  as  well  as  for  controlling  access  to  

information. These solutions should fulfil smart space specific requirements when 

considering security level, complexity, required implementation efforts, maintenance 

work and performance. Solutions should be applicable for embedded devices with 

limited communication, processing, memory and battery capacities. Also, solutions 

should work in dynamic environments where new devices may join, store and subscribe 

information and leave at any time. 

Information in smart spaces is stored in RDF format. RDF is a data modelling approach 

where statements are made of resources. Statements are made using subject-predicate-

object triplets. Collections of triplets form directed graphs. The subject and object refer 

to resources (nodes in graphs) while the predicate refers to the aspect of a subject and 

defines a relationships between two resources (edges in graphs). Object resource may be 
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either a literal or Uniform Resource Identifier (URI) and subject resource is either a URI 

or unnamed empty branch.  

SIB is responsible of authorize access to every RDF resource. Different strategies to 

store access control information to RDF database are possible. A straightforward 

approach is to tie authorization policy directly to each RDF resource under protection. 

An example of RDF resource specific policies is illustrated in Figure 30. RDF does not 

enable direct links to be added to literal nodes. Therefore, Policy3 in the figure cannot 

be presented with RDF. This means that we must have some alternative mechanisms to 

protect specifically literals or that we accept this limitation in the granularity of 

protection (and protect all literals under particular RDF branch using the same policy). 

 

Figure 30. Example of RDF graph and alternatives for embedding access control policies 
[Article VI] 

To control access to shared semantic information, various fine-grained authorization 

models have been introduced for RDF. These approaches include approaches were 

access control is implemented as an additional layer on top of the RDF repository, as in 

[152], and approaches where access control information has also been integrated into 

RDF repositories. In the triple-level access control [153] RDF resources are protected 

with access restriction properties. Essentially, these properties are links to RDF access 

policy graphs that specify the owner of RDF resource as well as those predicates that 

this protection applies. Permission assignment mechanisms in smart spaces must be 

self-managing as devices or users may join or leave smart spaces at any time. Since new 

users should be able to access existing data, they must be provided sufficient credentials 
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at any time. Models where end-users define access control policies explicitly for each 

RDF resource become infeasible when the amount of information and devices increases. 

Therefore, some researchers have proposed models where RDF-level access control 

decisions are implicitly derived from existing higher-level policies and context 

information. In [154] a policy-based access control model is presented enabling 

metadata to be used when defining permit or prohibit conditions. Also in [155] a RDF 

class hierarchy is utilized to manage and derive access control policies. [156] proposes a 

high-level policy specification language for annotation RDF triples with access control 

information. Moreover, approaches for access control reasoning based on concepts and 

their relations represented by ontologies have been introduced by [157] and [158].   

However, semantic reasoning for real time security control is a challenging task when 

the size of ontologies and information grows [159, 160]. Consequently, to enable real-

time security enforcement with expressive and complex ontologies, efficient and 

scalable solutions are needed. [161] addressed scalability issue by limiting the 

granularity of the access control. Their model, targeted for clouds, used RDF graph 

elements as user permission tokens. In Subsection 5.3.2, a simple RDF resource level 

access control model for optimized RDF information broker solution is presented.  

5.2.1.4 Ontologies and Security 

Ontology can be defined [162] as a shared knowledge standard or knowledge model, 

which defines primitive concepts, relations, rules and their instances. Hence, ontologies 

can be used to define concepts for security data, policies and security relationships. This 

information can then be used in smart spaces to select appropriate protection for 

different types of information. Ontologies are needed because it is not always feasible 

for  KPs  to  explicitly  store  security  data  and  policies,  which  is  the  case  e.g.  when  

information is generated within inference layer. 

Some general ontologies, which are targeted for smart spaces, such as Standard 

Ontology for Ubiquitous and Pervasive Applications (SOUPA) [163], have adopted 

elements for defining access control policies. Further, other ontologies used within 

smart spaces may be extended with ontologies defining security concepts or access 

control rules. Ontologies, which define information security concepts, include e.g. 
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Ontology of Information Security (OIS) presented by Herzog et al. [164]. This ontology 

was extended in Information Security Measuring Ontology (ISMO) by Evesti et al. 

[165] with intergrated metric related concepts for classifying and quantifying security 

levels of security solutions. 

5.2.1.5 Security Monitoring and Adaptation 

In a smart space, several KPs may insert and remove information. A KP can subscribe 

information changes and when the information changes the KP can make further 

changes as well as other activities. These other activities form the base of the physical 

smart space behavior that is experienced by people and sensing KPs. In order to avoid 

chaos in smart space, activities behind physical behavior need to be aligned. Action 

level interoperability may require a higher level plan for smart space as well as a 

mechanism for detecting and eliminating the effect of misbehaving KPs.  

Inference techniques may be used to infer security information from existing knowledge 

(i.e. RDF data presented in a form of ontologies). This new information can then be 

utilized to adjust or adapt systems security behaviour. For instance, RDF level access 

control can be adapted according to infererred information. Inference can also be used 

as to detect inconsistencies within data. The correct actions in various information 

security situations are application dependent. Inferencing can be based on different 

reasoning engines and programming or rule languages. Existing solutions have been 

surveyed in different benchmarking studies, such as [159, 160]. 

In smart spaces, semantic reasoning has been used to resolve different application 

specific questions. For instance, Answer Set Programming (ASP) paradigm has been 

used to solve resource allocation and deadlock activities [166]. In addition to 

application specific security situations, there are some generic information which can be 

monitored. Particularly, it is possible to monitor information producers, i.e. KPs 

authoring information, and consumers, who form an audience for the information. A 

broad audience may indicate the importance of the information. Also the smart space 

information is useless if it does not have any consumers or producers.   
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5.2.1.6 Trust Management 

Trust in and for smart space gradually increases when it operates according to a plan 

and when deviations from plans do not cause negative effects. 

Trust in smart spaces can be considered in three basic levels. The first level is the trust 

towards technical robustness and reliability between KP and SIB cooperation and 

security mechanisms. All layers below trust layer in Figure 29 build this trust. 

Mechanisms and methods used in each layer need to guarantee both correct operation 

and  robustness  in  case  of  misuse  and  exceptions.  The  security  aspects  need  to  be  

considered and embedded into each layer. The second level is the trust between KP and 

SIB  as  well  as  the  trust  between  the  end  user  and  SIB  provider.  This  level  addresses  

question what information SIB is trusted to guard and which users are trusted to access 

smart space. The third level of trust emerge between different KPs and end users in the 

smart space.  

Trust for correctness of the information is based on trust to the origin of information. 

Different smart space users and devices may be trusted to perform different actions. 

This trust may be based on directly monitored behaviour or on certification by a trusted 

party. Trust information describing whether peers handle data according to expectations 

and  trust  that  peer  does  not  behave  maliciously  should  be  stored  in  SIB.  This  

information should also be delivered for smart space devices so that they can adapt their 

cooperation according to peers’ trustworthiness.  

5.2.2 Security Architecture for Smart Spaces 

This subsection proposes security architecture for smart spaces, presented initially in 

[Article IV]. The architecture integrates solutions for protecting confidentiality and 

authenticity of information exchange. Furthermore, the architecture enables remote 

monitoring and control of systems security state as well as fine-grained authorizations 

over smart space and information access.  

The proposed architecture is illustrated in Figure 31. The key component in the 

architecture is Semantic Information Broker (SIB). SIB brokers and protects 

information produced by knowledge processors (KP). The figure illustrates two separate 

roles for KPs: information producer and information consumer. Additionally, there are 
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specialized software entities (KP roles) for administrating and for monitoring security. 

In the figure, security relationships between different actors in smart space are 

illustrated with light blue arrows. Blue arrows illustrate actual information flow. Green 

ovals illustrate the key security information, which is exchanged between devices and 

discussed more closely later (C=credentials, SP=security policies, TD= trust data, and 

KP_ID=identity of information producer).  

 

Figure 31. Smart space security architecture [Article IV] 

Security requirements between KPs are the following. The producer KP needs to control 

which consumer KPs can access the information it produces and consumer KPs need to 

authenticate the source of information. Smart spaces may also have administrators, e.g. 

person owning the SIB device, which may set some particular requirements on who can 

access smart space and how information in smart space can be shared.  

Authorization related requirements are enforced in SIB, which controls who can access 

which piece of information. This control is done according to security police directives 

(SPs in the figure) coming form the administrator. The illustrated architecture is logical. 



114 

 

 

Typically, security administrator’s role may be divided to several devices and KPs. For 

instance, KPs may independently control who can access the information they produce.   

To enable authentication between SIB and KPs, authentication credentials (C in the 

figure) must be distributed among smart space participants. Administrators may also 

distribute additional trust information for controlling security and trust issues within 

smart spaces.  

There is no built-in end-to-end authentication protocol. Authentication between KPs is 

based on trusting SIB to keep track of identities of information publishers and to 

provide this information for consumers (KP_ID in the figure).  

The proposed credential deployment architecture utilizes RDF information sharing 

mechanisms available in smart spaces. The architecture consists of three components: 

KPs (or device or end-user, wishing to access smart space), SIBs (relaying credential 

information), and security administrators (SAs). The solution enables that credentials 

are deployed through a SIB or directly from an SA to a KP. The direct communication 

paradigm does not follow the principles of brokered smart spaces communication but 

may be practical in some situations due to security, usability or cost reasons as 

explained in Section 2. Hence, in some devices KP functionality is extended with 

software enabling it to communicate directly with SA devices.  The main steps of the 

proposed protocol are given in Figure 32. 

1 SA and KP establish a shared secret. SA may also deliver credentials (e.g. X.509 root 

certificates) which enable KP to verify SIBs trustworthiness. Shared secret can be established 

using various mechanisms (see Section 2 for some standardized examples). Some end-user 

contribution is required. The communication may happen directly between KP and SA devices or 

through SIB. 

2 KP registers itself to SIB  

2.1 KP creates requests for each technology specific credential it requires. The request is encrypted 

with the shared secret and contains identity information. E.g. in case X.509 certificates are 

requested, certificate’s name and public key is stored to SIB. In case of username-password pair, 

KP stores either the username or the pair. In case of symmetric encryption, only device ID needs 

to be stored.  

2.2 KP stores credential request (e.g. certificate requests) to SIB. SIB notifies those SAs, which have 

subscribed information on new credential requests.  
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3 SA provides credentials for KP through SIB and sets access control policies 

3.1 SA decrypts requests and generates credentials. Information on how shared secret was 

established as well as optional trust information is stored to credentials (e.g. to X.509 certificate’s 

subject name or alternative name fields). SA encrypts credentials with shared secret and stores 

them to SIB. KP is notified.  

3.2 SA modifies KP’s information in SIB so that KP gains appropriate access permissions in SIB. For 

instance, KP may be added to particular groups or given particular roles. Permission assignment 

is based on information, which can be collected in step 1 (e.g. by SA querying end-user what 

roles are given for KP). User information is made accessible only for the KP and SA. See 5.2.4.1 

for examples of this information. 

3.3 KP downloads credentials from SIB and decrypts them 

3.4 KP may upload credentials enabling other KPs to interoperate with it directly. These credentials 

are protected by setting appropriate access control policies. 

Figure 32. Credential deployment protocol 

An example of architecture with multiple authorities is illustrated in Figure 33. In the 

figure blue arrow (1) illustrates key establishment, red arrow (2) KP registration and 

black arrows (3) credential delivery. 
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Figure 33. Smart space architecture example with brokers (SIB), knowledge processors 
(KPs) and multiple security authoritys (SAs) [Article V] 

The advantage of this indirect credential establishment model is that SIB can distribute 

any kind of credentials. Hence, if we have e.g. created security session with Bluetooth, 

the end-user is not required to perform any more actions in order to use also TLS or 

wireless local area network security within the same space.  Also, a KP can get 

credentials, which enable device to directly contact other devices in smart space. 
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Further, KPs may use this same approach to renew existing credentials. Of course, it is 

possible to deliver credentials and some permissions, directly at step 1, without the 

overhead of step 3.  However,  when SA sets KP’s security attributes directly to SIB it  

can more flexibly control KP’s permissions. E.g. by modifying role assignment it can 

add and revoke some permissions without revoking the whole credential. 

The secret established in the step 1 is used for protection against man-in-the-middle 

attacks. Security administrator may use phase 1 also  to inject trust information within 

smart space devices. Trust information refers to any additional attribute information that 

describes KP’s trustworthiness. For instance, the strength of this established secret 

depends  on  the  method  that  was  used  to  establish  it.  If  possible,  the  credentials  will  

contain information identifying the credential delivery method. This trust information is 

later on used when making authorization decisions. For example, if Bluetooth pairing 

mechanism is considered to be weak, the KP cannot use the TLS session to gain access 

to critical information. In more general, any static trust information may be embedded 

to credentials. This provides an efficient way to control which users can be allowed to 

access critical information. For instance, we may define access control policies, which 

restrict data access from users with particular security level.  

The model provides flexibility as it enables that SA does not need to be available when 

KP registers to SIB, SIBs do not need to be available when KP and SA make 

connection, and KP does not have to be available when credentials have been created. 

Access to SIB is gained when it becomes available. More permissions for KP are gained 

when also SA joins the smart space.  

SIBs can enforce policies coming from devices, which have been certified by different 

SAs, this is needed to keep certification process lighter (as one authority does not need 

to  do  all  operations),  and  more  secure  (as  authorities  do  not  need  to  trust  each  other).  

Before the credential deployment is possible, an SA and a SIB must have established a 

trust relation. In this phase, the SA delivers credentials (e.g. X.509 root certificates or 

shared secrets), enabling SIB to verify KPs, which will be certified by this SA. 
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5.2.3 Secure Smart Space Communication 

This section describes our security implementations for a smart space platform. The 

security has been implemented to several components in RIBS communication software 

stack and to security KPs as illustrated in Figure 34. Dark green components in the top 

right  illustrate  security  components  for  KPs  and  three  components  in  the  opposite  left  

provide access control enforcement for RIBS. 

 

Figure 34. RIBS communication software stack and security components [Article V] 

The lowest layer of the figure contains connectivity alternatives, which include TCP/IP 

protocols as well as e.g. Bluetooth. These connectivities may have own security 

protocols but they are not assumed to be secure. Connectivity alternatives are used by 

Smart Space Access Protocol (SSAP) directly or through Device Interconnect Protocol 

(DIP). Communication security is achieved with Smart Space Access Protocol with 

Transmission  Layer  Security  (TLS),  Device  Interconnect  Protocol  with  TLS  

(DIP/LdTLS) or with connectivity (such as Bluetooth) specific mechanisms. There is 

also a end-user authentication solution in the SSAP layer. Security leveler and 

authorizer components are used to control, which users are allowed to access RDF store. 

Additionally, we need programs for controlling access control policies and for 

credential management.  

The basic security operations within RIBS occur as follows. When a KP joins smart 

space, by sending a join request to RIBS, credentials and information on security 

parameters (communication protocol, ciphers, credential deployment mechanisms etc.) 
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are passed for the security leveler and authorizer components. The leveler normalizes 

security parameters so that authorizer may use information from different security 

components when controlling access to RDF store. Authorizer makes fine-grained 

access control decisions on the RDF node level. For each node, it is possible to define 

different security policies, stating e.g. which users are allowed to read data or who is the 

authority. Additionally, it is possible to set requirements for the security strength level 

or trustworthiness of the KP or communication session.  

Security policies are stored by any user, who has sufficient permissions to do so. For 

storing policies and for introducing users, there reference implementation for creating 

policies and for managing users credentials. As policies are sent as RDF triplets RIBS, 

no security specific mechanism for policy delivery or storage is needed. Policies can be 

set explicitly for each node or they can be implicitly derived using ontologies as 

described in the following sections. 

5.2.3.1 TLS Adaptation for Device Interconnect Protocol 

Device Interconnect Protocol (DIP) [140] is a middleware communication solution. DIP 

provides consistent socket API for application developers and hides protocol details 

such as addresses. DIP implementations provide adapters for different transport 

protocols such as TCP/IP and Bluetooth. 

The security has been implemented as a new TLS adapter (named LdTLS), which 

provides a security solution for connection oriented communication. LdTLS uses 

OpenSSL library’s TLS/SSL protocol implementation to encrypt and authenticate 

TCP/IP communication. The implementation is an extension to LdTCP module. In 

LdTLS,  TCP  operations  have  been  replaced  with  TLS  operations.  When  there  are  

several adapters build to the stack, LdTLS is selected by setting priorities. Deployment 

of  credentials  and  TLS  specific  parameters  from  the  applications  to  the  LdTLS  and  

other adapters through the DIP stack was enabled by extending the address structure 

with credentials and by providing a socket option call for delivering security 

information to adapters.  
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5.2.3.2 TLS Reference Security for Smart Space Access Protocol  

The Smart Space Access Protocol (SSAP) [137] is the protocol for join, leave, update, 

query and subscribe messages used in RIBS. When a KP joins to smart space, TLS 

sessions are negotiated and then all communication is routed to TLS sockets. Security 

based on the connectivity-level solution brings some advantages when considering 

development efforts, reliability and resource consumption. The TLS protocol can be 

considered robust due to its wide acceptance and availability. 

TLS provides solutions to most identified needs except for non repudiatable KP-to-KP 

authentication. TLS provides mutual authentication between KP and RIBS. As security 

connections are only between KP and brokers, consuming KPs must trust brokers to 

authenticate sources of information. TLS handshake is sufficient for authenticating the 

KP for the SIB and the SIB for the KP. TLS authenticates that the peer is owner of the 

certificate. In case we have devices, where single certificate is shared by many users or 

programs, X.509 certificate based TLS authentication may not be sufficient. Certificate 

based authentication may also be unfeasible for low-resource devices, which need either 

lighter authentication mechanisms. Therefore, RIBS may also authenticate end-users 

using credentials, e.g. username – password combination, which are send in the 

credential field in the SSAP join messages. TLS is used as a source of trust for end user 

authentication if authentication procedures are done within TLS session. 

TLS implementation supports both GnuTLS [168] and OpenSSL [124] libraries.  

Security sessions are kept alive as long as possible i.e. until a KP leaves the smart space 

or unsubscribes smart space information updates. This connection oriented messaging 

minimizes the amount of heavy handshake procedures. 

5.2.4 Level-based Authorization for Controlled Information Sharing 
over Heterogeneous Connectivity 

Different security characteristics within smart space devices cause an interoperability 

challenge. Even though the first smart space security solutions, introduced above, were 

based on TLS, the security approach is not limited to any specific security mechanism. 

Hence, any key management scheme, pairing model, security protocol, or encryption 
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algorithm could be integrated to the system. In the presented implementation TLS was 

integrated to the middleware layer as the availability of security in the connectivity 

layer cannot be assumed. Smart space deployments may utilize this layer or may opt to 

use some another customized security solution.  

When a KP joins to a smart space or subscribes to particular information, it negotiates a 

security session with RIBS. During this handshake both parties verify that the peer has 

valid smart space credentials. RIBS resolves also security context information related to 

the security sessions and incorporated to credential information. This security context 

information is then utilized to enforce that the communication session fulfils the 

minimum security level requirements set for the smart space as well as to authorize 

access requests to particular information pieces. Security properties and state resolved 

from KP during smart space join operation can also be stored and published for 

monitoring applications. These features may also be disabled in order to protect privacy 

of publishers.  

The security level is a measurement describing the strength of different security 

attributes. RIBS derives security level information from TLS session and X.509 

certificates. Factors, which are measured, include used security protocol, algorithms and 

their parameters such as key lengths. Also, X.509 certificates may include attributes 

such as the strength of (pairing) mechanism used to deliver smart space credentials and 

platform trustworthiness information.  

To illustrate the idea Figure 35 describes how the strength of security protocol can 

affect to the information flow in smart spaces. In the figure, Device A publishes 

information and sets a policy that published information must not leak to devices with 

weaker protection. RIBS evaluates security levels to the joined smart space devices to 

be 3, 3, and 1, based on their security mechanisms (TLS with AES encryption, 

Bluetooth security version 2.1, and WPA with unauthenticated pairing, respectively). 

Consequently, RIBS allows only Device B, with security level 3, to access information. 
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Figure 35. Simple example of security-level based authorization 

5.2.4.1 Profiling Security Levels 

RIBS collects information of various methods and algorithms that KPs are using and 

how they use them. KP specific measurements can be made from following categories: 

1. Pairing method – i.e. device’s smart space deployment information (i.e. information 

on what pairing mechanism was used when the device was associated to the smart 

space and certified). This information is given for KP during smart space association 

and carried e.g. in X.509 certificates.  

2. Authentication – i.e. mechanisms for user and device identification for protecting 

the authenticity of communication. This mechanism is negotiated during security 

protocol’s handshake. 

3. Keying – i.e. the used protocol for changing of the network keys. This mechanism is 

negotiated during security protocol’s handshake. 

4. Cipher – i.e. mechanisms for encrypting communication. This mechanism is 

negotiated during security protocol’s handshake. 

5. Platforms trust parameters - RIBS may resolve run-time trust information (e.g. OS 

version,  protocol  implementations,  state  of  antivirus  software  etc.)  from  the  

requesting KP device. For instance, RIBS may query this information directly from 

the KP using e.g. Trusted Network Connect protocol. Trust information, which is 

static in its nature, can be integrated to credentials (e.g. to X.509 certificates) when 

KPs are first introduced to a smart space by security administrator. 

RIBS uses these security measurements to determine security levels for each 

communication session. The security level can be defined in numeric manner. For 

example, security properties can be profiled to four levels e.g. ‘No-Low-Medium-High’ 

as described in Table 9. Derived final security level, used in authorization, is a ‘join’ 
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operation for the security levels of each separate category so that the “the weakest link” 

will be the final security level.  

Evaluating the strength of a particular security mechanism is not straightforward as 

different kinds of attacks are applicable against different mechanisms and because we 

cannot predict what attacks are feasible in arbitrary smart space. Therefore, the 

evaluations are somewhat subjective. They can be, however, adjusted both in time and 

for each smart space. When new algorithms and implementations are evaluated, existing 

(e.g. cryptological) analyses and information from vulnerability databases may be 

utilized. 

Table 9. An example of security level classification 

Security 

Level 
Description  Matching Security Standards 

No Security is not provided at all  

Low 

Pairing methods without 

authentication, authentication 

algorithm 

BT v2.1 just-connect pairing, 

Medium 

Authenticated pairing, authentica-

tion & encryption based on asym-

metrical cryptography 

BT v2.0 pairing (PIN based),  

TLS-DES 

High 

Authenticated trusted pairing, au-

thentication and encryption (that 

shall endure two years, e.g.) 

WUSB numeric association, 

BT v2.1. out-of-band pairing, 

TLS, RSA, AES 

For example, consider a case where a device is first paired with security control device 

using Bluetooth v2.0 pairing with 4-digit PINs (personal identification numbers). The 

device gets smart space credentials from this control device and can then connect to 

information broker. The connection to information broker occurs over WiFi and TLS. 

TLS utilizes RSA (Rivest-Shamir-Adleman) and AES (Advanced Encryption Standard) 

or 3DES (Triple-Data Encryption Standard) algorithms with key lengths 2048 and 128 

or 168 bits, respectively. Optional platform trustworthiness checks are not made as they 

are not required in this smart space. The security level is considered to be medium as 

the weakest link was Bluetooth pairing with the medium level. If, however, pairing had 
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utilized more secure WPS (WiFi Protected Setup) in-band model or numeric association 

of WUSB (Wireless Universal Serial Bus), the final security level would had been high. 

The presented coarse and one-dimensional security level example (‘No-Low-Medium-

High’) provides sufficient control over security but is also usable enough for end-users 

to  understand.  However,  it  is  possible  to  define  different  security  levels  for  different  

smart spaces. For instance, in a smart space that has no needs for typical end-users to 

control security, we may have multi-dimensional security levels (e.g. dimensions for 

strength of authenticity and confidentiality). In the future, it might also be possible to 

define  security levels as a part of a security ontology.  

Run-time changes to the security level provide some challenges. When the RIBS wishes 

to  tighten  up  the  security  level,  it  sends  the  leave  indication  to  KPs.  After  that  a  KP  

must join to the RIBS again. If changes are allowed, a KP querying data cannot know if 

that data has been inserted by a trusted KP. Also a KP inserting data should be able to 

know how data is protected and that there won’t be changes to the protection level. 

Therefore, in these cases, RIBS is required to keep track of which information has been 

stored with a particular security level and protect information accordingly. 

5.3 Access Control for Smart Spaces  

This section presents flexible and reusable RDF access control model, enabling policies 

to be based on any context information. First, the section presents a conceptual 

overview on how RDF level security policies can be generated dynamically at run-time. 

Then, the security model for RDF and our RIBS based implementation are presented. A 

short presentation of RDF and its security requirements as well as surveys related access 

control solutions were provided in Subsection 5.2.1.3.  

5.3.1 Dynamic Policy Generation 

This subsection presents high-level approach for deriving fine-grained authorization 

information from available security and context information and high-level user 

policies. The approach consists of three essential elements, illustrated in Figure 36: 

knowledge, reasoning applications, and RDF-level authorization policies. The approach 
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proposes use of high-level policy and context knowledge from the smart space. Smart 

space applications utilize this knowledge to infer low-level policies to fulfil RDF-level 

access control matrices. 

Acti
on

s 

Figure 36. A conceptual model for mapping security knowledge to low-level RDF access 
control matrices with application specific security inference [Article V] 

Smart space applications need to control which users in which context can perform 

which actions to which pieces of information. Access control enforcer can perform this 

fine-grained control if the authorization information is available in the access control 

matrices. Access control matrices [169] characterize the rights of each subject with 

respect to every object in the system. In smart spaces, this control can be done in the 

RDF level and be enforced by SIBs. Access control matrices can be presented as a cube, 

which is a large data structure with information pieces in one dimension, users and 

context  rules  in  one  dimension  and  actions  such  as  read  or  write  in  one  dimension.  

Truth values in matrices then indicate whether action is allowed or denied. In larger 

environments with multiple users and large amount of data, the size of access control 

matrices may become large. The management of matrices is challenging if a policy for 

each RDF resource must be set explicitly. 

To ease this configuration, the smart space applications should be more autonomous and 

able to automatically configure access control matrices. This configuration can be done 

using available security relevant contextual information and high-level rules. The 

knowledge is presented using semantic ontologies so that it is easily accessible for KPs 

in smart space. Security relevant knowledge and their presentations can be based on 

models, which already exist in the security field. For instance, we can utilize ontologies, 

presented in Subsection 5.2.1.4. Context information can come from various sensors 
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and monitoring components, which are available in the smart space. For instance, 

security level information, presented in Subsection 5.2.4, can be utilized.  

RDF-level policies are generated by knowledge processors by inferring policies from 

the security relevant knowledge. These solutions find whether there are authorizing 

semantic relationships between the subjects and objects in the RDF access matrices. 

These applications may utilize  programming models and semantic reasoners, as 

presented in 5.2.1.5. A simple reasoning example could be a user, who has family roles 

and work assignments. These roles and assignments are related to particular 

information, which must be available for the user. By scanning existing data rule the 

solver would notice that there are users with these relations and information whose 

access is authorized by these relations. The solver can also check that trust rating given 

for the user fulfils security requirements, which the author of the information has set. 

Based on this reasoning, the solver can add new entries to access control matrices. The 

proposed reasoning can be done at the time when information is accessed. Alternatively, 

to optimize check times reasoning can be done before hand, particularly, when new 

users are added or when information related to policies is changed (e.g. a security 

relations related to information is changed).  

5.3.2 Reusable Context-based Model for RDF Access Control 

Security knowledge presented with ontologies provides means to present security 

policies, which control behavior of smart space devices and applications. However, 

analysing and planning access control decisions at runtime, when information is queried 

and modified, can be computationally costly. In smart spaces the information is shared 

using SIBs, which are unaware of applications’ conceptual policies and hence unable to 

enforce these policies. SIBs can be assumed to be aware only of minimal set of standard 

security primitives, which are associated to information elements instead of the meaning 

of this information. Also, as smart space devices may have limited computing 

capabilities, solutions based on cryptography are often unfeasible. Therefore, efficient 

solutions are needed to protect information sharing and to control information access in 

a fine-grained manner at the level of semantic data.  
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This subsection generalizes and formalizes the RDF access control approach into a 

conceptual security model. The model has been verified with RDF but it can be applied 

to any information presentation system which is based on subject-predicate-object 

triples. It specifies how access control policies and security control information over 

resources are structured and presented. Runtime costs are minimized by requiring that 

each policy is presented with a single information triple. The model is based on context 

and security measurement concepts, which are used to authorize actions. Hence, the 

model can be applied efficiently and flexibly in various dynamic security control 

situations.  

Figure 37 depicts the security relationships in the security model. The model has a 

relation to three software components, presented in the top right corner of the figure. 

Smart space applications insert, query, modify or subscribe information resources. The 

access control component authorizes and controls these operations. Application specific 

security adaptation components administer the behaviour of the access control 

component. This administering is done by controlling relationships between resources 

as specified by the security model. 

RDF Security Model

Control 
context

RDF 
information

Context Security 
measurement

      ’hasActive’ Access control 

Smart Space 
Application

Insert, query, 
modify, subscribe

Security 
adaptation

<security 
predicate>

define

 
Figure 37. Context based runtime security control model for RDF information [1] 

Each piece of information, i.e. each RDF information resource, can have a relationship 

with  one  or  with  several  context and security measurement resources. Each relation 

presents one access control statement and is described using RDF triplets in a form: 
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<Information, SecurityPredicate, Context/Measurement>. Security predicates are RDF 

properties defining authorizing or accounting relations for the security control. 

Predicates that are to be used when authorizing RDF transactions are presented in Table 

10. Predicates for accounting can be found from Table 11. Context/measurement refers 

to any RDF resource, which the security adaptation component selects based on 

ontologies and policy information from the conceptual level.  

When an application queries or modifies information, only some contexts and 

measurements are active. The access control component uses only those resources, 

which are active for the application in a current run-time situation. Active resources are 

found through the control context concept, which can be realized as an RDF resource. 

Security adaptation components define which measurement and context resources are 

active  with  RDF  triplets:  <ControlContext,  ‘hasActive’, Context/Measurement>. 

Determination of what resources are active is a dynamic and constantly running process, 

which may involve different security adaptation applications. ControlContext resources 

are fixed in a sense that the access control and security adaption components must know 

them. For instance, each smart space application, which has connected to a SIB and has 

an open communication socket, may have a dedicated ControlContext resource. In this 

case the active resources could be URIs representing end-users’ identity or security 

level. These URIs can be resolved and activated by security adaptation component in 

monitor and analyze phases when the user authenticates.  

5.3.2.1 Authorization Predicates 

An important use case for the model is authorization over resource access. Policy 

predicates enabling authorization are defined in Table 10. The granularity of the model 

protects individual RDF resources but also semantic relationships as it is possible to 

control how properties of an RDF resource can be accessed. The model allows use of 

both  allow  and  disallow  policies.  Different  policies  can  be  used  in  conjunction  to  set  

conditions to the authorizations (e.g. a user can access information but only if 

contextual requirement is met). To prevent contradicting behavior due to simultaneous 

use of allow and disallow policies, the proposed approach is that ‘disable’ policies 

override allow policies.  
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Table 10 Authorization policy predicates [1] 

Predicate Description 
GetAllowedFor Authorizes reading URI or literal value 
SetAllowedFor Authorizes modifying URI or literal value 
PropertyCreationAllowedFor Authorizes adding new URI or literal node 

under URI node 
PropertyRemovalAllowedFor Authorizes removal of URI or literal node from 

URI node 
UseAsPropertyAllowedFor Authorizes  use  of  this  node  under  other  URI  

nodes 
GetDisabledFor Prevents reading URI or literal value 
SetDisabledFor Prevents modifying URI or literal value 
PropertyCreationDisabledFor Prevents adding new URI or literal node under 

URI node 
PropertyRemovalDisabledFor Prevents removal of URI or literal node from 

URI node 
UseAsPropertyDisabledFor Prevents  use  of  this  node  under  other  URI  

nodes 
IsAuthorizedBy Sets node under access control and specifies 

authority. There may be several authorities in 
one broker. 

 

The model enables efficient run-time access control. An access control component does 

not need to do heavy reasoning at the time applications are querying or modifying 

information. Instead, security adaptation analysis and planning phases can be done in 

advance when events, triggering adaptation, occur. An access control component needs 

only  locate  the  relevant  security  relationships,  presented  with  simple  RDF  triples,  

between context or measurement resources and a target sources. When a smart space 

application queries or modifies RDF information, the access control component checks 

whether there are active policies allowing or denying the action. 

The inference where authorization relation is found is based on founding an authorizing 

(semantic) relation from the knowledge presented as RDF graphs. The authorization to 

perform particular operation can be formalized using the following notation: 
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where Pallow is an allow predicate, action is the performed action, and rdf is a truth query 

from RDF database (whether the given RDF triple is found or not). Authorizing relation 

is found, if there is an active Context which is active and which has an authorizing 

relationships to requested information.  

When the amount of active and authorizing context and measurement resources is n, the 

access control component must do at most 2n truth queries (‘is there allow or deny 

relation between active resource and accessed resource’) from the database to resolve 

the authorization of a transaction on a target. The access control component must also 

find active resources for each used control context resource. Implementations may 

further speed up this by keeping the list of control context specific active resources in 

cached memory. 

5.3.2.2 Accounting Predicates 

In  addition  to  authorization,  the  model  supports  other  real-time  security  control  

situations. Table 11 presents predicate definitions for access accounting activities, 

which are needed to determine authenticity or trustworthiness of information. The table 

defines relations for accounting predicates, which are used to log access requests, both 

successful and unsuccessful ones. This information is needed, e.g., when trying to detect 

malicious or harmful modifications and intrusions and when reasoning on which nodes 

may have been potentially compromised due to harmful information. The table also lists 

IsSignedWith and HasSecurityContext predicates,  which  the  users  can  use  to  verify  

authenticity and trustworthiness of information. Trustworthiness may depend on context 

or measurement, which was active when information was stored . 

Table 11 Predicates for access control accounting [1] 

Predicate Description 
HasBeenAuthoredBy Identifies resource’s author 
HasAddedPredicate Identifies authors who have added predicates under the 

resource 
IsSignedWith Link  to  a  signature  proving  authenticity  and  origin  of  

resource 
HasSecurityContext Link to any security measurement or context resource 

which was active when the data was stored (needed to 
verify e.g. trustworthiness of data ) 

IsAuthorizedBy Specifies the authority that controls security. If such 
relation to a known security authority is missing, access 
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can be directly authorized without any other checks. 
CanBeMonitored Allows or disallows logging (e.g. due to performance or 

privacy)  
HasBeenReadBy Identifies  contexts  (users)  where  data  has  been  

successfully queried 
HadInvalidReadAttemptBy Identifies contexts (users) with rejected read requests   
HadInvalidWriteAttemptBy Identifies  contexts  (users)  who have  made  rejected  write  

requests   
 

5.3.3 RIBS - A Secure Semantic Information Broker Implementation  

RDF Information Bases Solution (RIBS) is a SIB, which implements the proposed RDF 

resource level access control solution. Communication between the RIBS and smart 

space agents is secured with the TLS protocol as described in Subsection 5.2.3. RIBS is 

able to resolve various contextual security metrics from the communications sessions. 

These metrics, described in Subsection 5.2.4, include information of protocol and 

algorithm in the current TLS session as well as information of key establishment 

mechanism from the certificate extension. In RIBS, TLS based end-user and certificate 

authentications are mapped to context resources in the RDF security model. Metered 

security strength information is analyzed and mapped directly to security measurement 

resources in the RDF security model. Further, RIBS monitors users and authors of 

particular information according to the presented security model. 

The RIBS has been optimised to provide fast and low-power consuming information 

access. The implementation indexes all incoming RDF resources and thus enables RDF 

URIs as well as literals to be directly addressed. Relation information is stored to a to a 

bit cube. Bit cube has three dimensions of arrays: one dimension for subjects, one for 

predicates and one for objects. Figure 38 illustrates how security policies are stored to 

the bitcube as object-predicate plane. As security policies are presented with single bit, 

which  is  either  on  or  off,  they  can  be  quickly  checked  and  the  amount  of  required  

memory won’t increase even when the security configuration becomes more complex. 

Object dimension stores information on users as well as context and trust related 

resources. Predicate dimensions stores fixed policy relations presented in Table 10 and 

Table 11.  
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Figure 38. Security plane in RIBS subject-predicate-object bit cube [Article VI] 

For each client that has joined smart space, RIBS stores the indexes of the few active 

rows in the object dimension. For each subject, there may be several policies i.e. object-

predicate pairs active. Then when making access control checks, authorizer component 

of RIBS needs only to check whether the active nodes in object dimension are among 

active policies. For instance, when performing read action on particular subject the 

authorizer first checks whether this RDF resource is under access control by checking if 

there is ‘IsAuthorizedBy’ relation between the resource and any authority object. Then 

we check that we have at least one ‘ReadAllowedFor’ relation between the subject and 

any active object row for the current user. Also, we need to check that there are no 

‘ReadDisallowedFor’ relations.  

In RIBS, all information including security policies are presented in RDF format. This 

enables that access control can be remotely controlled and active access control policies 

as  well  as  author  usage  logs  can  be  queried.  The  access  control  ontology  terminology 

presented in the previous subsection must be known by KPs providing policies.  RDF 

resources are accessible remotely through URI but also through internal RIBS index 

values. Consequently, other devices can efficiently query or add new information, 

including access control policies, to existing URIs, bnodes, and literal nodes. Figure 39 
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gives a simple example on how temperature information and access control policies are 

presented with RDF triples 

<thermometerURI, hasvalue, 20>  

<thermometerURI, SetAllowedFor, user:a> 

<thermometerURI, GetAllowedFor, securityLevel3URI> 

<thermometerURI, isAuthorizedby,securityAuthorityURI> 

<temperatureURN, SetAllowedFor, securityLevel4URI> 

<temperatureURN, GetAllowedFor, securityLevel3URI> 

<temperatureURN, isAuthorizedby,securityAuthorityURI> 

Figure 39. An example with information triplet and access control triplets  

Due to inherent restrictions of RDF, literals do not have own unique URIs and, hence, it 

would be possible to add policies only to URIs (i.e. branches in RDF graphs). RIBS 

circumvents this limitation. Each literal has an internal address, which can be used in 

policies.  This  URN  is  returned  for  KPs  when  they  insert  RDF  data  to  RIBS.  A  third  

party managing policies must first query URNs from RIBS or other KPs or assign 

policies only to branch nodes.  

The  RIBS  has  a  rich  set  of  security  predicates  that  can  be  used  for  accounting  users  

behaviour (See table Table 11). Bitcube enables efficient use context monitoring for 

smart space by attaching usage triples for RDF nodes. For instance, there are 

‘HasBeenAuthoredBy’ and  ‘HadInvalidWriteAttemptBy’ predicates, which is used to 

keep track of the resource accesses. To protect privacy, access to user information can 

be controlled so that unauthorized users cannot link monitored information to user 

names or certificates. Also, information specific logs are available only for those users 

with  permission  to  access  that  particular  information.  Further,  it  is  possible  to  define  

privacy policies which deny or allow logging. For instance, users may be linked with 

'hasPrivacyPolicy' predicate to 'denyAuthorLogging' policy.  

The trust for integrity and quality of the information is controlled with 

‘HasBeenAuthoredBy’  and  ‘IsSignedWith’ predicates. The authors and the users may 

have  requirements  for  each  other.  E.g.  the  author  may  require  that  the  user  of  the  

information has a certain capabilities for handling the information or belong to known 

trusted user group. Also, users may require that the author is either known or belongs to 
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a trusted group. The user may also require that authors have had sufficient security level 

when storing the information and hence check that predicate ‘HasSecurityContext’ gives 

sufficient value. Consequently, consumers of information are able to resolve identities 

and properties of authoring nodes and make trust decisions based on that information.  

5.3.3.1 Feasibility Evaluation of the Implementation 

The performance of TLS based security layer was studied with two different open 

source TLS libraries, namely OpenSSL and GnuTLS. The performance was studied in 

two different platforms, particularly Windows XP (running on two processor Intel 

2.40GHz laptop) and Linux/Ubuntu 9.04 (running on VMware on two processor 

Windows XP laptop). Latest (unoptimized and default) versions of libraries were used 

(OpenSSL 0.9.8 for Ubuntu and 1.0 for Windows; GnuTLS 2.6). The following 

mechanisms were used: TLSv1.0, RSA2048, AES-256-CBC and SHA1. For other 

configurations results may be different. Tests were executed in single machine with KP 

and RIBS processes, which were annotated to measure performance. Each test was 

executed ten times and average values are reported. 

The performance on typical smart space operations was studied. The test case contained 

test triples for insert, update and query scenarios. For each unique subject, two fixed 

access control policy triples was generated. Typical smart space communication 

consists of large amount of small triplets, which may be send in larger packages. In the 

test set up, the insert test set consist of 425 triples, which were send in 43 SSAP 

packages. 

Table 12 gives throughput times for the different test sets in different configurations. 

Additionally, some key security operations that have fixed time are listed. These include 

TLS handshake time, TLS library initialization time and average time of single RIBS 

access control check.  
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TABLE 12. TEST SET THROUGHPUT TIMES (MS) AND TIMES FOR SOME SECURITY OPERATIONS WITH DIFFERENT CONFIGURATIONS 

 OpenSSL  
Windows 

GnuTLS. 
Windows 

OpenSSL 
Linux 

GnuTLS. 
Linux 

Insert test 46,7 119,8 91,0 128,6 
Update test  32,2 106,1 153,7 152,4 
Query test 48,3 239,6 93,6 142,4 
Handshake 23,33 36,51 84,1 90,1 

TLS init 169 157 16,2 3,80 
Single AC check 0,00182 0, 00182 0, 00108 0,00108 

The TLS layer causes overhead. For instance, running insert test with unsecured TCP 

took 19 ms in Windows and 31 ms on Linux. One reason for penalties are the heavy 

handshakes and library initializations. When the amount of messages increases, also the 

relative penalty of TLS decreases. Therefore, RIBS implementation tries to keep 

connections alive as long as possible. At best (with OpenSSL implementation) the 

penalty was between 30-35%. 

Implemented access control causes also overhead and consumes memory. However, the 

performance penalties due to access control check are relatively small (AC check in 

Table 12 for a time of one check). The access control check must be done few times for 

each triple. Also, access control system requires additional RDF triples to represent 

policies. The penalty depends on the operations performed by KP: 

1. SSAP Join message and authentication, which are done only once in a session, 

require most work. RIBS must determine, which security context objects are 

active. This requires e.g. looking and comparing user identifier and verification 

data from repository. The more users and potential context properties are 

available the more time is consumed. 

2. Query and subscribe operations require that RIBS checks read permissions. 

Policies are directly linked with RDF predicates to RDF nodes. This means that 

RIBS checks the following truth values from the bitcube: the first check reveals 

whether access control is applied or not, the consecutive checks reveal whether 

any of the active contexts has authorization and final checks if there are deny or 

allow rule for active contexts. Checks must be done for each queried or 

subscribed triplet. However, they are fast as indexes to bitcube are resolved 

before hand i.e. during initialization and  authentication. 
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3. Insert and update operations may require KPs to send additional RDF triples, 

which describe policies that protect these triples. For access controlled triples, 

the  amount  of  additional  triples  is  at  least  two.  RIBS  also  checks  that  KP  has  

write permissions.  

4. Subscribed information is delivered when information is updated. For each 

subscribed KP, read permissions to the updated information are checked.  

The average access control check time on Linux implementation was 1,08µs. In our test 

case, where 425 triples were inserted and 850 checks made, this means penalty of 

around one percent. 

RIBS is optimized for environments with only few relatively static applications. 

Indexing all incoming RDF resources into three dimensional array consumes memory. 

Therefore, large scale deployments are enabled by deploying multiple brokers.  
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6 Towards Smart Authorization Applications  

This section describes examples of access control solutions, where information from 

heterogenous sources can be used for authorizing access to particular resources. The 

section describes how secure semantic interoperability platform, presented in the 

previous section, can be utilized to build security applications for ubiquitous 

environments. Two approaches to authorization, namely role-based and popularity-

based access control, will be presented to illustrate how reasoning rules can be defined 

for  a  reusable  platform.  Then,  a  piloted  real-world  use  case,  a  smart  door,  will  be  

described to illustrate how different components cooperate to provide smart 

authentication and authorization. The section is based on reasoning examples presented 

in Articles V and VI as well as prototyped smart door pilot implemented within the 

Sofia project [129]. 

6.1 Security Adaptation based on User Roles and Popularity of 
Information 

The role-based access control approach (RBAC) has been recognized as a prominent 

model for making configuration of authorization policies usable for common users. 

RBAC classifies users of information according to users’ roles. This access control 

model can be combined with models that classify the information that is accessed. Role 

and domain based access control issues were discussed further in Subsection 4.3.1. 

The popularity-based access control protects resources according to dynamically 

collected information on the usage of these resources. The information on the amount of 

users who have either modified or accessed an RDF resource is used to classify each 

RDF resource into one of the nine popularity classes listed in Table 13. Information, 

which  has  several  consumers  or  producers,  is  said  to  be  popular.  Information  that  has  

both consumers and producers can be said to be hot and remaining information as cold. 

This popularity information can be used for detecting security relevant activities. Node 

popularity is a dynamic measure and changes from e.g. cold to hot and from hot to cold 
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pose  different  threat  situations  in  the  smart  space.  The  former  change  can  be  used  to  

tighten security monitoring and access control and the latter to relieve them. 

TABLE 13. RIBS NODE POPULARITY CATEGORIES [ARTICLE VI]  

 No 
Authors  

Single  
Author 

Many 
Authors 

No  
Audience 

Passive Potential 
Single 

Publisher 

Potential 
Multi 

Publisher 
Single 

Consumer 
Potential Single 

Consumer 
Point to Point 

Active 
Multipoint toPoint 

Active 

Wide 
Audience 

 Potential 
Multi 

Consumer 

Point to 
Multipoint 

Active 

Multipoint to Multipoint 
Active 

 

The knowledge (on users’ role, the popularity of information and the policies, 

authorizing roles for particular resources or controlling use of particular information) is 

mapped to low-level access control decisions with the reasoning rules. In the following, 

example rules for Answer Set Programming (ASP) [146] solver are used for deriving 

authorization decisions and for identifying the security threat situations. The examples 

illustrate that by gradually applying new rules it is possible to make a system more 

adaptive and self-managing to different particular situations. 

A basic RBAC scenario where a rule is used to find authorized relations from the given 

knowledge is presented in Figure 40. Knowledge of the example contains few nodes, 

presenting smart space devices, which are classified to asset domains. The example 

contains also few roles and policies, which authorize these roles to access particular 

domains. The example contains also a new triplet for a new user, which is assigned to 

‘guards’ role. Finally, the authorized rule is used to find all authorized user-device pairs. 

The example assumes that all authorizations have been configured by setting 

‘canControl’ policy relations between roles and asset domains. The example can be 

extended to support different ontologies and e.g. hierarchical policy models. 
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% Example RDF data: 

belongs (thermostat,climate).       % Resource and its domain 

belongs (lock,security).            % Resource and its domain 

canControl (guards, security).      % Role-domain policy 

canControl (salespersons, climate). % Role-domain policy 

memberOf (new_guard,guards).        % New user and its role  

 

% Rule for finding authorized relations: 

hasAuthorization (U,N) :-   

                   memberOf(U,G),belongs(N,D),canControl(G,D). 

authorized (U,N) :- has Authorization(U,N). 

Figure 40 Example RDF data and a reasoning rule for resolving authorizing relations.  

In Figure 41, the example is extended by with security level based authorization (see 

Subsection 5.2.4). The example contains now information that the credential 

deployment of a new guard was based on pairing in Bluetooth 2.0. The use of Bluetooth 

means that the security level is 2. The example also introduces a new device, the main 

power switch. A new policy is defined, which requires that users must be in the level 3 

to access the power switch. Finally, the reasoning rule, which finds if the user has 

authorization and check that the user has sufficient security level, can be presented with 

three lines. When an ASP solver checks the knowledge given in example, it won’t find 

any  ‘authorizedTrusted’  relations.  Hence,  the  access  control  enforcer,  which  now  

requires ‘authorizedTrusted’ relation instead of just ‘hasAuthorization’, does not give 

access permissions to anyone. 
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% New knowledge 

belongs (mainPowerSwitch, security). 

requiresSecurity (mainPowerSwitch, level3). 

credentialsDeployedWith(new_guard, bluetoothv20). 

hasSecurityGrade (bluetoothv20, level2). 

 

% New rules: 

hasTrustGrade (U, T) :- credentialsDeployedWith(U,C), 

                        hasSecurityGrade(C,T). 

isTrusted (U, N) :- hasTrustGrade(U,T), requiresSecurity (N,T). 

authorizedTrusted(U,N) :- hasAuthorization(U,N), isTrusted(U,N). 

authorized (U,N) :- authorizedTrusted(U,N) 

Figure 41. RDF data and rule extensions for verifying trust levels required in 
authorization  

With  rules  it  is  possible  to  identify  different  security  risk  situations  and  treat  these  as  

potential problems in smart space. This security adaptation is illustrated with a policy 

that uses the popularity of the RDF resource for setting the required security level. The 

example in Figure 42 assumes that when a multiple author situation happens, there is 

potentially a write conflict. The risk is higher, if the resource is i.e. if several KPs 

depend on its value. When this problem is detected the security level is tightened.  

The figure describes example RDF data and a model where the RDF data is searched for 

hot nodes and for potential conflicts. A situation, where a node has many authors and it 

is used in two directional communication, is declared as a situation where higher 

security is needed. Rules multi_author, conflict, two_directional and 

need_high_security declare these situations respectively. When the need_high_security 

rule fires, the resource is set under access control and write access is only for the 

authors with sufficient security level. 

% Example knowledge 

isAuthorOf (Agent1,temperature1). 

isAuthorOf (Agent2,temperature2). 

isAuthorOf (Agent2,temperature1). 

isUserOf (Agent3, temperature1). 

isUserOf (Agent3, temperature2). 
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% rules for finding potential hot nodes 

multi_author (V) :-       isAuthorOf(A, V), 

                          isAuthorOf(B, V), 

                          A != B. 

two_directional (N) :-    isAuthorOf (A,N), 

                          isUserOf (A,N).                         

conflict(V) :-            multi_author (V).         

need_high_security(V) :-  two_directional (V), 

                          conflict(V). 

 

% application specific default protection rule 

% sets resource under access control and raises securitylevel to 1 

2 { writeAllowedFor (V, securityLev1), 

accessControlled (V,authorityA)} 2 

:-  need_high_security (V).                               

Figure 42. Example of RDF data and inference rules for detecting hot nodes and conflict 
situation (presented in lparse format) [Article VI] 

 

6.2 Smart Door with Adaptive Authentication and Authorization 

The smart space concept as well as adaptable authentication and authorization 

mechanisms, were piloted with a smart door use case. In the piloted case, which can be 

viewed from Youtube [170], a maintenance man behind the door can ring a smart bell to 

reach residents from any location. A smart lock is opened either when a resident is 

behind the door or when a remote resident receives notification from the bell and 

authorizes  the  visitor.  The  case  utilizes  Wi-Fi  for  connectivity,  and  Near  Field  

Communication  (NFC)  tags  for  discovering  smart  space.  In  addition,  NFC  is  used  to  

share temporary credentials for mobile devices that support NFC. Video cameras and 

smart phones are used for providing and getting information. 

The case demonstrates how different phases of adaptation can be distributed to different 

devices and how by adding new adaptation elements, we can both increase the security 

level of applications as well as to make them more self-managing and, hence, user 

friendlier. There are several features needed in smart and context-aware access control. 
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The case demonstrates two kinds of user roles i.e. maintenance personnel and residents. 

Maintenance  personnel  are  allowed  to  control  a  camera  but  not  to  open  the  lock.  

Residents are authorized to open door only when they have been authenticated using 

strong and trusted mechanisms. Residents can however lock the door using weaker 

mechanisms. Residents are authorized to open door only if the authentication has been 

performed recently. When time passes by, a re-authentication is required. When a door 

is opened remotely, the resident is required to use a device which has been authenticated 

as a trusted device.  

Figure 43 presents the physical devices in the case and the deployment of different 

adaptation elements. RIBS, deployed to Wi-Fi access point, is the central node, which is 

used to share and protect information related to the door. All other components connect 

to it. By controlling access to information in RIBS, we control also physical security of 

the home. The lock device is delivered information on whether it is currently allowed to 

open it and whether there are people in front of the door, using this information it can 

adapt its physical state accordingly. Authorization to change lock’s status information 

depends both on user’s identity and role as well as on other context information. RIBS 

enforces that security level of the communication sessions is sufficiently strong and 

adapts authorizations accordingly. Security adaptation is done also in resident’s terminal 

side, which enforces that the end-user is authenticated with appropriate mechanisms. 

The terminal requires users to re-authenticate if the strength of authentication is not 

sufficient. The system is configured with resident’s terminal, which has the authority to 

provide security policies and credentials to RIBS. A camera and a bell provide 

contextual information. 
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Figure 43. Deployment of security adaptation components in the smart door case 

To enable that the case can be realized with devices coming from any manufacturer, we 

need interoperable concept definitions. Particularly, ontologies related to authentication 

mechanisms and their strengths are need. Also, we need ontologies to define contextual 

concepts related particularly for users’ location and time. Necessary definitions for these 

concepts are defined in Information Security Measuring Ontology (ISMO) [165] and 

Context Ontology for Smart Spaces (CO4SS) [171]. Further, we need application 

specific ontologies, which specify door, lock and bell concepts as well as their relations 

to access control and user information, to enable specification of access control policies. 

The security adaptation is performed in mobile phone and in wireless access point. 

Resident’s mobile phone contains an implementation [172, 173] for adaptable 

authentication. It monitors password length and session duration metrics and analyses 

whether the current authentication level is sufficient for the particular information. The 

authentication level is determined from the length of the password and from the time 

passed since the last authentication. The authentication level information is then 

checked against the level requirements of the accessed information. 

The wireless access point (RIBS) monitors metrics related to security mechanisms used 

in the connectivity level. These include used security protocols and their version, 

ciphers, authentication algorithms, and key lengths. Further, mechanisms used to 

establish private keys and deliver certificates as well as the terminal location (whether 

connections are from remote or local networks) are monitored. RIBS incorporates 
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security leveler and authorizer components, which analyze whether the security level of 

the communication session is at an acceptable level. For each session RIBS derives a 

security level value and for each request it analyzes whether the result value matches to 

the security level requirements set in the RDF security model. 

The following simplified query in Figure 44 illustrate some steps of the analyses. The 

query is presented using SPARQL Query Language for RDF [126]. 

ASK ?user ?resource 
WHERE 
  { ?user hasName ‘A’. 
    ?user usesSecurityMechanism ?mechanism. 
    ?mechanism hasSecurityContext ?securitylevel. 
    ?resource readAllowedFor ?securitylevel } 
Figure 44. Query for analyzing if used security mechanism is sufficient for reading some 

resource 

When authorization check results an access denied situation, alternative mechanisms, 

which the devices are known to support and which would yield different results, are 

searched. The query is presented in Figure 45. If no alternatives are found, a reason for 

failure is recorded.  

QUERY ?mechanisms  
WHERE 
  { ?user hasName ‘A’.  
    ?user supportsSecurityMechanism ?mechanism. 
    ?resource hasIdentifier ‘X’. 
    ?resource readAllowedFor ?securitylevel. 
    ?mechanism hasSecurityContext ?securitylevel } 

Figure 45. Query for finding suitable authentication mechanisms to read resource (‘X’) 

When a new user is introduced to the smart space, RIBS must be provided information 

enabling it to authenticate and identify this user. Further, RIBS must be configured to 

allow this user to access particular resources. The resources that the user is authorized to 

access can found by searching with queries, presented in Figure 46 and Figure 47. 

ASK ?user ?role 
WHERE 
  { ?user hasName ‘A’. 
    ?user hasRole ?role } 

Figure 46. Query for analyzing what roles are applicable for added user (‘A’)  
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QUERY ?resource  
WHERE 
  { ?resource readAllowedFor roleY } 
 
QUERY ?resource  
WHERE 
  { ?resource writeAllowedFor roleY } 

Figure 47. Queries for finding authorized resources for the new user with a role Y 

The RIBS enforces that only authenticated and authorized users can insert and modify 

RDF resources. The agents in home owner’s terminal are responsible of administering 

the authorization policies, which are stored in the RIBS for each RDF resource. Some 

authorization policies that the introduction of a new user could cause, according to the 

plan from Figure 47, are illustrated in Figure 48. There is a RDF triple for each policy 

as well as triples for specifying authority and thus setting the access control on for these 

URIs.  

<lock_on_URI, setAllowedFor, residentA_URI> 
<lock_on_URI, getAllowedFor, residentA_URI> 
<lock_off_URI, setAllowedFor, residentA_URI> 
<lock_off_URI, getAllowedFor, residentA_URI> 
<lock_on_URI, setAllowedFor, maintenancePersonnel_URI> 
<camera_URI, getAllowedFor, residentA_URI> 
<camera_URI, setAllowedFor, residentA_URI> 
<camera_URI, getAllowedFor, maintenancePersonnel_URI> 
<camera_URI, setAllowedFor, maintenancePersonnel_URI> 
<camera _URI, isAuthorizedBy, SecurityAuthority> 
<lock_on_URI, isAuthorizedBy, SecurityAuthority> 
<lock_off_URI, isAuthorizedBy, SecurityAuthority> 
Figure 48. Authorizaton policies (RDF triplets), which RIBS needs to enforce security in 

this adaptation example 

Authorization checks in RIBS follow the RDF security model, which was presented in 

Subsection 5.3.2. The mapping between the model and concepts of the example is 

illustrated in Figure 49. When RIBS authenticates a user, appropriate context and 

measurement resources are activated. In the use case, the maintenance man is mapped to 

a visitor context and the home owner is mapped to a resource, which represents owner’s 

identity. Further, all users are mapped to security measurement resources, which 

describe the strength of the authentication. This mapping is done according to 

authentication information received from the client’s terminal.  
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Mantenance 
session
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Light control 
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SetAllowedForSetAllowedFor

Figure 49. Examples of authorizing relations mapped to the RDF security model [1] 

When users  query  or  modify  information,  the  RIBS checks  whether  these  active  RDF 

resources authorize access to requested resources. All authenticated users are given 

access to non-critical information inside home related e.g. to lightning. The home owner 

has basically access to every piece of information. However, the access to most critical 

information requires that the user has a sufficient authentication level (in practise this 

means that the user must have recently been authenticated with a trustworthy terminal). 
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7 Discussion 

This section summarizes and discusses the work presented in the previous section. First, 

the section provides discussion on the significance and meaning of results. Secondly, 

the section presents some potential areas for future studies. The section is based on 

discussions and conclusions presented in Articles I-VII. 

7.1 On Results 

Development of smart applications, which are able to utilize information from various 

sources and autonomously utilize it in a manner which is the best for the current 

situation, has been a hot topic in the research field lately. In this research, one critical 

challenge is the interoperability, i.e. the ability to understand meaning of information 

coming from the heterogeneous network environment. This thesis searched the best 

ways  to  facilitate  this  development  of  smart  applications.  The  research  questions,  

presented in Subsection 1.4.1, were addressed by analyzing and exploring existing 

security solutions and by constructing platforms and access control solutions for secure 

and interoperable information sharing.  

1. How to facilitate interoperability of authentication and authorization solutions? 

In the recent decade, there has been large amount of research and standardization work 

to define establishment models and protocols for different connectivity technologies. 

This work has been aware of the diversity of personal devices. As a consequence, 

different physical characteristics of these devices have been utilized to provide user-

friendly, secure, and cost efficient ways to introduce devices securely to each others. At 

the same time, when new alternative pairing models are being introduced, new 

interoperability issues may emerge. It is not anymore enough that a device supports one 

way to make the key establishment. Instead, to be a securely pairable with user’s every 

device, a personal device should support several key establishment models. 

Unfortunatly, this is not always feasible. The proposed mediator for Bluetooth SSP [37] 

standard reflects this issue by proposing a mediator based model and protocols, which 
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can be used to establish keys between devices even when they would not have 

compatible physical interfaces. 

The thesis investigated what TLS client authentication [57] would mean for the 

different stakeholders in the connected home ecosystem. The TLS protocol provides 

easily exploitable and secure mechanisms to protect communication between different 

devices. As it is widely available and supports flexibly various security algorithms it 

can be used as a common interoperability mechanism for achieving interoperability 

between devices with reasonable processing capabilities. 

However, connectivity or network-level solutions are not enough when considering 

interoperability in the application level and cross-technology cases, where multiple 

connectivity technologies are used. In these levels, new presentation forms and 

architectural solutions, such as middleware protocols and platforms as well as brokers, 

can be used to enable cooperation over open standards. With a middleware based 

approaches it possible to achieve end-to-end authorization of users, software, and 

devices with a single solution. Use of single approach means less configuration burden 

and, hence, less possibilities for critical mistakes. 

The smart space concept [131, 132] is a promising approach for dynamic and 

heterogenous ubiquitous environments. Smart spaces facilitate interoperability and ease 

security development in several ways. Firstly, shared knowledge of security attributes 

enables that it is possible to replace missing mechanisms with alternatives that are 

already available. Secondly, solutions are easier to update and extend as we are using 

open data formats and ontologies. Ontologies enable devices to share security 

knowledge without relying on manufacturer or standardization specific interoperability 

solutions. As devices using ontologies do not need to support all the defined concepts, 

the security adaptation solutions can more easily evolve when time passes by. Thirdly, 

semantic knowledge makes systems more self-configuring. Ubiquitous networks consist 

of large amounts of dynamic things, which emerge and leave at any time. Requiring 

end-users to explicitly configure their security attributes each time the environment 

changes is not feasible. Semantic relations and some high-level rules can be utilized to 

implicitly select suitable protection and select appropriate access control policies. 
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Fourthly, semantic technologies promise to exponentially increase the amount of 

knowledge that can be used in decision making. The key for realizing usable and 

autonomous application specific security solutions is in security and access control 

models, which hide the complexity of heterogeneous and rich information with 

abstraction. 

The interoperability issues caused by the use of legacy devices and technologies can be 

handled with adapters. The thesis illustrated how an adapter, supporting role 

authentication and client authentication of TLS, can be used on low-end hardware to 

enable the integration of legacy devices to the connected home. A common guideline in 

the security field is that security should be part of product and system development 

from the start. However, this thesis proves that a lot can be done also to secure legacy 

systems. The use of TLS based approach also illustrates that implementing own 

middleware level security protocol is not always necessary. Middeware solutions, such 

as smart space access protocol (SSAP) [137] or device interconnect protocol (DIP) 

[140], can rely on existing and established security protocols for achieving the basic 

security priciples i.e. authenticity and confidentiality of communication. Higher-level 

solutions are then needed to enforce that the security requirements and policies set by 

end-users are met in controlled manner with connectivity-level approaches.  

2. How do the solutions managing heterogeneity affect to actual security level and 

to users’ perception of security and privacy? 

The thesis gave a particular focus on measuring security level of authentication and 

certification authorities. These formally measured security levels can be utilized in the 

authorization phase to quarantee that heterogeneity of different components does not 

lead to compromises in the overall security level. 

Security level of Authentication Mechanisms 

The problem of designing ways to set up security authentication and authorization in 

networks of personal devices is a challenging one because it requires a balance between 

usability, security, and cost. The analysis in Section 2, we presented initially in [23] and 

then  in  Article  I,  was  the  first  comparative  analysis  on  the  use  and  strength  of  key  
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establishments in standards. Since then, other researchers have surveyed the emerging 

device pairing methods including Uzun et al. [6], who studied usability properties of the 

pairing methods, and by Kumat et al. [7]. Our analysis reveals that usability 

improvements can be achieved without impairing the security level. New standards for 

Bluetooth, WUSB, and Wi-Fi, which have adopted innovative key establishment 

protocols, can provide effectively the same security level as the solutions based on long-

passwords and symmetric cryptographic functions. Differences are mainly caused by 

different combinations of used physical interfaces and usability properties, however, 

also the protocol design was detected to affect to the achieved security properties.  

The flexibility of these new proposals for smart access control introduces potential for 

new attacks. The novel bidding-up and bidding-down attacks against the key 

establishement, described in Section 2, are examples of such threats. Careful design of 

user dialogs may reduce the likelihood of these attacks. However, how exactly to design 

the user dialogs to preserve security without harming usability remains to be an open 

issue.  

Users’ Perception of Security 

To assists protocol and service developers to construct and select security mechanisms, 

comparisons and metrics enabling systematic evaluation of security levels are needed. 

This thesis focused on studying the effectivity of solutions, which rely on end-user to 

perform additional authentication verifications. Reputation metrics provide researchers 

a statistical mean to quantify users’ perception of trust and privacy and, hence, impact 

and effectiveness of security solutions. Hence, the metrics can be valuable when 

developing new security solutions. Also, the information on the correlation can be used 

by decision makers, when analyzing which security mechanisms are needed and provide 

enough benefits to justify the investments. As a particular example the thesis studied 

correlation between SSL certification, extended validation of certificates and the fine-

grained metrics from Web of Trust community. The results of our-large scale 

HTTPS/SSL  correlation  analysis  reinforce  the  doubts  that  extended  validation  in  SSL  

certification is inefficient. The results seem to indicate that these extra security 

indicators, which can be easily ignored by the end-users, do not have significant impact 
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on authorizations decisions that end-users make. The results also revealed the 

differences between servers certified by different authorities. This could be interpreted 

as a sign that attackers tend to select particular authorizers. In the future, analyses on 

authorities’ certification processes as well as this correlation analysis could be utilized 

as an incentive mechanism to introduce tighter certification practises. 

The intuition was that the support for HTTPS affects to reputation in two manners: 

Visibility of security indicators may increase it and security warning indicators and 

dialogs as well as published security problems will decrease the reputation. However, 

service providers who are willing to invest more on HTTPS are typically also willing to 

invest on other factors increasing reputation. The reputation is not a result of HTTPS 

support. Instead, they are both results of security efforts. However, even though the 

correlation does not imply causality, it indicates possible causes. Future research is 

needed to understand, in more detail, what is the value of SSL certification and what is 

the value of other factors contributing to reputation.  

The initial observations from the correlation study are the following: 

 The results show that there is a clear correlation between HTTPS support and 

Web  reputation.  The  reputation  average  of  working  SSL  certificates  was  

significantly higher than the average of servers with missing or broken 

certificates. Hence, it seems to pay off to have a working HTTPS support.  

 The  difference  of  reputation  average  between  the  best  CA  and  the  worst  CAs  

was significant. Certification authorities are not typically selected from the 

security perspective, instead price, compatibility with browsers and easiness are 

likely  to  be  more  important  factors.  Hence,  the  correlation  may not  be  used  to  

indicate of weak certification procedures but it can be used to characterize 

attackers' probable selections. 

 The difference between regular and extended validation certificates was 

insignificant. Since EV certificates are more expensive it would be likely that 

these service providers would had invested also in other factors contributing 

sites trustworthiness. For that reason we expected the trustworthiness ratings for 
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EV certificates to be higher. Detected correlation seems to indicate that the 

additional trust indicators in browsers (Figure 13 and Figure 14) are 

undetected by the users. This result confirms the previous small scale end-user 

studies that trust indicators are ignored. Hence, according to these results we 

could ask why to pay an extra for extended validation. 

In addition to supporting development of secure solutions, the relation between SSL 

certification and reputation may affect to existing web security solutions. Specially, they 

could be usable in notary based CA selection approaches. For instance, in Convergence 

[75], the browser trusts only those SSL certificates which have been certified by CAs, 

which are accepted by particular notaries. However, it may be difficult for notaries to 

know which CAs to trust. Reputation gives notaries a tool, formal metric, which can be 

used when evaluating CAs’ trustworthiness. This would act as an incentive for CAs to 

verify services more thoroughly, as root certificates with bad trustworthiness averages 

could be considered as untrusted in some browsers. 

3. How to build facilities for smart access control applications using a 

combination of brokers and middleware approaches? 

Networks for homes and other ubiquitous environments are growing in complexity and 

there is a need to increase the security but at the same time ease the effort of 

management they currently demand. In addition, it is becoming more important to tailor 

the user experience of everyday consumer electronic devices to the identity of the 

current user. The thesis concentrates to the view that simple-to-use authentication 

solutions based on open established standards and a possibility for fine-grained 

authorization are the main building blocks towards tackling these needs. Strong security 

mechanisms are difficult to make completely transparent for the end users. However, 

systems that can efficiently collect, share, and utilize information and available services 

provide a ground for building smart applications and, hence, can become more 

autonomous. The key enabler for efficient information sharing in dynamic environments 

is broker-centric store-and-subscribe architecture, which supports various intelligent 

agents controlling systems security behaviour. Therefore, the thesis also advocates the 
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use of smart space type of architectures and mechanisms to enable efficient sharing of 

security-relevant contextual information between devices. 

Reusability is an important requirement when designing smart applications. The 

proposed RDF access controls model is a reusable and application-agnostic solution. 

The model can be used in dynamic smart space environments to provide authorization 

support that different applications can utilize. The model enables the information broker 

to enforce fine-grained access control without requiring the broker to understand and 

interpret end-users’ high-level policies or contextual information. New smart 

authentication and authorization solutions can therefore be introduced to the network at 

any time. With the help of flexible standards for semantic information sharing and 

models for security reasoning, developers may more easily provide application, which 

will work securely in any environment. These applications are able adapt systems 

behaviour using contextual knowledge and rules, which are presented using application 

specific ontologies. Smart application examples, presented in this thesis, were 

constructed using standardized query interfaces and logic languages. 

The thesis described design and implementation of our security solutions for smart 

spaces i.e. RIBS and knowledge processor side libraries. The flexible security 

architecture enables heterogeneous devices to share data in controlled manner and also 

supports policy configuration and credential deployment models, which are feasible and 

usable with different applications and heterogenous devices. The architecture is based 

on the technologies of semantic web and on proposed context-based RDF access control 

solution. RIBS itself also provide features for collecting contextual security information 

from the environment. It monitors security levels of communication sessions and tracks 

RDF information accesses. Consequently, it enables access control system to be adapted 

according to clients’ security levels and popularity of information. The RIBS 

implementation is based on compact data structures i.e. on on bit cube. This design 

decision optimizes the query time that resolving a single RDF level policy requires. 

However, the memory consumption issues of bit cube must be addressed in the future 

work. 
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7.2 Future Research 

The thesis addresses several issues, relevant in developing smart authentication and 

authorization applications. However, the research field is wide and in many areas the 

thesis only scratched the surface.  

Unauthenticated key establishment models, surveyed is Section 2, enable pairing with 

no additional cost  and with optimal usability.  Hence, these models may turn out to be 

more preferred and more widely deployed than authenticated key agreement models. 

However, unauthenticated key agreement will not be sufficient for certain scenarios. 

One example is associating a computing device with input devices (such as keyboard or 

mouse), which when being malicious, can cause significant damage. Another example 

is a pairing of medical devices, or other similar contexts that may be subject to privacy 

regulation. Thus, the need for extremely inexpensive and yet secure and usable 

solutions for this problem remains. In-band integrity channels [46] and extracting 

secrets from the shared environments using existing sensors [43] seem to be promising 

avenues for further research. 

The correlation analysis, presented in Section 3, presents an interesting and novel idea 

for conducting further research. The security field does not have good methods for 

quantifying how a security solution affects to end-users’ security experience and to the 

trust that the end-user has towards the secured object or service. The reputation based 

metric was evaluated against SSL certification. In the future, other security solutions 

may be studied against the metric.  

More studies and analysis is also needed to fully understand the causal relation between 

security mechanisms and end-user’s perception of security. Also, in the the presented 

correlation analysis, between SSL certification and web reputation, needs further 

research to fully understand its causal meaning. Particularly, to understand all the 

contributing factors, it is needed to study e.g. how web service categories, application 

domains, and business sectors affect to servers’ reputation. It may be likely that HTTPS 

and extended validation are typically used in more security critical services, such as 

banks, and that reputation evaluators valuate these services differently or more 
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carefully. In the future, it should be studied how the application field affects to the 

reputation.  

Ecosystem related questions, introduced in Section 4, provide many solutions for 

making the security configuration and authorizations more user-friendly and secure. 

However, the costs and business models provide questions, which are not yet answered. 

Nevertheless, when issues related to interoperability can be solved, ecosystem related 

security services such as whitelisting of software and devices as well as outsourcing of 

home security, may be come more feasible and interesting. As an example, the thesis 

studied the idea of an access control system, which could provide a simple and effective 

combination. The model requires developers to categorize their offerings to 

standardized security domains combined with an approach where administrator users 

categorize the different users to roles. 

There are still remaining questions and challenges related to the smart space concept, 

presented in Sections 5 and 6. One particular issue, related to adaptation and semantic 

technologies, is the computational and performance costs. Often the adaptation must be 

done at run-time and sometimes at real-time. The protection must be in place at once 

when new information emerges before it is used. Leaving resources unprotected or 

unavailable is not a viable option. Performance sets some limitations to the adaptation 

cases, which can be realized. In practice, we must make compromise when selecting 

what must be monitored, what information is needed in analysis and planning and how 

to enforce security. In this thesis, RIBS addressed performance issues with the 

straightforward RDF security model and an optimized broker implementation. 

However, the approach still does not solve the issuses related to reasoning over policy 

assignements. In future, more consideration must be given on how to place adaptation to 

those devices where the security enforcement is the most efficient. Also, more case 

studies are needed to understand what kind of algorithms are feasible in which 

situations. Furthe, the validation of the RDF security model should be done also with 

other broker implementations in addition to RIBS. 

In the future, more large scale validation work is needed. There is a need to study what 

kind of adaptations and security models are feasible in smart space deployments 
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consisting of thousands of nodes. Smart security applications are needed particularly in 

applications where devices are cooperating and autonously adjusting their behaviour. 

For instance, the research related to the Internet of Things provides various application 

examples needing self-adaptation. This research may reveal new concepts included to 

security ontologies as well as new security models for specifying adaptation rules. 
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8 Conclusions 

The development of authentication and authorization systems, which are able to change 

their behaviour according to the information from surrounding environment, requires 

interoperable and adaptable security mechanisms. This thesis explored solutions needed 

for smart interoperable authentication and authorization solutions. The thesis focused 

and contributed on the following distinct problem areas: 

The thesis surveyed key establishment protocols and solutions for authentication and 

authorization. The thesis presented systematic classifications for authorization 

architectures and for protocols for human-mediated establishment of session keys. The 

relationships between different authentication protocols as well as between different 

authorization frameworks were shown using the presented classifications. Further, the 

thesis identified some challenges and new types of attacks, which are caused by the 

heterogenouty of standardized key establishment methods. The thesis also contributed 

by proposing a mediating approach for key establishment between associate 

incompatible devices in secure manner. Particularly, the thesis described novel 

protocols enabling Bluetooth SSP devices, supporting an out-of-band model, to be 

associated with other devices, supporting either other out-of-band or compare models. 

The thesis studied the applicability of the SSL/TLS protocol based solutions in different 

environments i.e. in ecosystems for home and ubiquitous networks and for internet with 

large amount of web services and cooperating devices. To increase developers 

understanding on the effectiveness and impact of authentication mechanisms, the thesis 

proposed a novel metric idea. The proposed metric quantifies the correlation between 

the studied authentication mechanism and security reputation statistics. As a case study, 

the thesis analysed the correlation between SSL certification and web reputation.  

The main focus of the thesis was to construct secure interoperability platforms for smart 

applications. The thesis contributed by presenting a design and implementation of an 

efficient security solution for semantic information broker. The broker is based on a 

novel RDF security model. This context-based model is an essential building block for 

developing fine-grained authorization solutions, which are adaptive and self-
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configuring. The feasibility of the model was demonstrated with few examples of smart 

authorization applications. In the future, more research and larger pilot studies are 

needed to ensure the feasibility of complex and large-scale security adaptation 

applications. The secure interoperability platform is enabled by connectivity level 

solutions for key establishment as well as by authentication frameworks, which hide the 

issues caused by the heterogeneouty of devices and services.  
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