
 

 

 

Junxi Yin 

 

 

 

Mobile Implementation of Floating Content Service 

 

 

Thesis submitted for examination for the degree of Master of 

Science in Technology. 

 

 

 

Espoo, Nov 20, 2012 

 

 

 

Thesis supervisor:                        Prof. Jörg Ott 

 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80706651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

AALTO UNIVERSITY                                                                  ABSTRACT OF THE 

SCHOOL OF ELECTRICAL ENGINEERING                               MASTER’S THESIS 

 

 

Author: Junxi Yin 
 

Title: Implementation of Floating Content Service 
 

Date: Nov 20, 2012                      Language: English                  Number of Pages: 9+68 
 

Department of Communication and Networking 
 

Professorship: Networking Technology 

 

Supervisor: Prof. Jörg Ott 

Traditional Internet technology makes a series of assumptions which may not exist in some 

cases especially in the challenged environments where some or all of those requirements are 

hard to meet. In addition, Internet-based communications face the privacy and data security 

issues simply because the data is essential to be sent to and maintained in a centralized 

infrastructure. 

 

DTN, by contrast, supports frequently interrupted communications by introducing a Store-

and-Forward message switching mechanism: intermediate node keeps the bundle in its 

persistent storage and waits for a better opportunity to forward it at a later time to another 

custody node or directly to the final destination if reachable. Floating Content, as a DTN-

based localized information sharing service exclusively dependent on mobile phones and other 

mobile devices, takes advantage of wireless interfaces such as Bluetooth or WLAN to 

communicate in ad-hoc mode. 

 

We evaluate Floating Content service and finally implement it into mobile platforms in the 

form of mobile application thus benefits the users by providing an opportunistic 

communication mechanism even in an extreme environment, as well, decreases the security 

and privacy worries to a certain extent. 

Keywords: Delay-Tolerant Networking (DTN), Floating Content, Simulations, Android, 

                   Location-based, Opportunistic Communication 



 

 

       Acknowledgements 

 

This thesis would not have been possible without the guidance and the help 

of several individuals.  

First and foremost, I would like to thank Professor Jörg Ott for offering me 

this thesis opportunity, giving me advice and teaching me about life. He is a 

good man, his hard working and serious attitudes toward science have been 

inspiring me and will inspire me for the rest of my life. 

Thank Teemu Kärkkäinen from Comnet of Aalto University, for giving me 

advice and helping me in the process of coding. It is enjoyable to read his 

code and extremely helpful to form a good programming habit. 

Thank all my colleagues in D301, Marcin, Mikeal, and Abu. We had lots of 

interesting discussions together and I sure will miss all the office time and 

coffee breaks.  

Thank all my friends who have encouraged me to move forward. Being away 

from homeland is sometimes hard, but my friends helped me through and we 

had a really good time. 

Thank Dabin Yin and Xianhui Tan for having been doing everything they 

could as great parents. They are always there cheering me up and stood by 

me through the good times and bad. Without them, I am nothing. 

Finally I would like to thank all my families and all the people who have 

helped me for this great opportunity to study in Finland. You made my life. 

                                                                                                     

                                                                                    Espoo, November, 2012 

                                                                                                            Junxi Yin 



 

 

             Abbreviations and Acronyms 

 

 

 

AA                           Application Agent 

 

ADU                        Application Data Unit 

 

API                          Application Programming Interface 

 

BP                            Bundle Protocol 

 

BPA                         Bundle Protocol Agent 

 

BSP                          Bundle Security Protocol 

 

CLA                         Convergence Layer Adapter 

 

DNS                         Domain Name System 

 

DoS                          Denial of Service 

 

DTN                         Delay-Tolerant Networking 

 

DTNRG                    Delay-Tolerant Networking Research Group 

 

EID                           Endpoint ID 

 

FIFO                         First In First Out 

 

GPS                          Global Positioning System 

 

HCS                          Helsinki City Scenario  

 

ID                              Identification 

 

IP                              Internet Protocol 

 

IPN                           Interplanetary 

 

MRG                         Minimum Reception Group 

 

NASA                        National Aeronautics and Space Administration 



 

 

 

ONE                         Opportunistic Networking Environment 

 

OS                            Operation System 

 

PPP                           Point-to-Point Protocol 

 

RND                         RaNDom 

 

RTT                          Round Trip Time 

 

SAF                          Smallest Area First  

 

SQL                          Structured Query Language 

 

STF                          Smallest Total resource consumption First 

 

SVF                          Smallest Volume First 

 

              TCP                          Transmission Control Protocol 

 

              TDD                         Test Driven Development 

  

TTL                          Time-To-Live 

 

UDP                          User Datagram Protocol    

 

URI                           Uniform Resource Identifier 

 

WLAN                      Wireless Local Area Network 

 

XML                         Extensible Markup Language 

 

 

 

 

 

 

 

 

 



 

 

List of Figures 

 

 

2.1 A Simple DTN Scenario ……………………………………………… 08 

2.2 DTN Protocol Architecture …………………………………………… 09 

2.3 Bundle Node ………………………………………………………….. 11 

2.4 Bundle Format ……………………………………………..…………. 15 

2.5 Custody Transfer ……………………………………………………... 16 

2.6 Store-and-Forward Message Switching ……………………………..... 17 

2.7 Security Steps of DTNs Using Public-key Cryptography ……………. 19 

3.1 Anchor Zone of Floating Content Message ………………………….. 23 

3.2 Replication Probability ……………………………………………….. 24 

3.3 Deletion Probability …………………………………………………... 25 

3.4 Helsinki City Scenario ………………………………………………… 30 

3.5 Performance of Floating Content Service without Location Error …….32 

3.6 Performance of Floating Content Service with Location Error ………..32 

3.7 Compared Floating Content Performance as Function of Lifetime …... 33 

 



 

 

4.1 Floating Content Application Scenario ………………………………40 

4.2 System Structure of Floating Content Application …………………...42 

4.3 Message Format of Floating Content Application …………………....44 

4.4 Action Flow of Floating Content Application ………………………..48 

4.5 Floating Content Application Screenshots ………………………..… 53 

5.1 Transfer Speed of Floating Content Service between Two Devices …58 

 

 

  



 

 

      

Contents 
 

 

 

 

Chapter 1 ...................................................................................................................................... 1 

Introduction .............................................................................................................................. 1 

1.1 Problem statement ......................................................................................................... 3 

1.2 Motivation ....................................................................................................................... 4 

1.3 Research Objectives and Scope....................................................................................... 5 

1.4 Structure .......................................................................................................................... 6 

Chapter 2 ...................................................................................................................................... 7 

Delay Tolerant Network ............................................................................................................ 7 

2.1 DTN Architecture ........................................................................................................ 9 

2.2 Bundle Protocol ............................................................................................................. 10 

2.3 Routing in DTN ......................................................................................................... 17 

2.4 Mobility Models ............................................................................................................ 18 

2.5 Security Considerations ................................................................................................. 19 

2.6 Summary ....................................................................................................................... 20 

Chapter 3 .................................................................................................................................... 21 

Floating Content Service ......................................................................................................... 21 

3.1 Service Model ................................................................................................................ 22 

3.2 System Operation .......................................................................................................... 23 

3.3 Floating Content Protocol ............................................................................................. 26 

3.4 Simulations and Evaluations ......................................................................................... 28 

3.5 Application Programming Interface .............................................................................. 34 

3.6 Summary ....................................................................................................................... 38 



 

 

Chapter 4 .................................................................................................................................... 39 

Application Design and Implementation ................................................................................ 39 

4.1 Application System Architecture ................................................................................... 42 

4.2 Message Format ............................................................................................................ 44 

4.3 Application methods ..................................................................................................... 46 

4.4 Action Flow .................................................................................................................... 48 

4.5 User Interface ................................................................................................................ 49 

4.6 Summary ....................................................................................................................... 54 

Chapter 5 .................................................................................................................................... 55 

Test and Evaluation ................................................................................................................. 55 

5.1 Test Environment .......................................................................................................... 56 

5.2 Test Result and Evaluation ............................................................................................ 57 

5.4 Summary ....................................................................................................................... 58 

Chapter 6 .................................................................................................................................... 59 

Conclusion and future work .................................................................................................... 59 

6.1 Conclusion ..................................................................................................................... 59 

6.2 Future Work .................................................................................................................. 61 

 

 

 

 

 



1 

 

  Chapter 1 
 

       Introduction 
 

 

Social networks, such as Facebook, Foursquare, Google+, Flickr, Twitter, 

have greatly changed the manner in which people share opinions, ideas and 

interests with each other across geographic and time borders thus fostering 

relationships. By the end of 2011, 1.2 billion users worldwide – 82% of the 

world’s Internet population over the age 15 – log on to a social networking 

site with roughly every one in five minutes spent on a social network, making 

it the most engaging online activity around the world. [1] 

The tremendous development and expansion speed of social networks has 

brought immeasurable convenience into people’s daily life. It not only makes 

the information much more personalized according to the users’ own interests 

but also saves time spent on searching and waiting for certain information in 

the traditional social activities. Users can merely subscribe to their favorite 

topics or follow the fellows meaningful to them, and pick up the information 

sets whenever it is convenient to them simply in an asynchronous manner. 

This in a way helps to filter news without costing a minute as well takes full 

advantage of the time fragments people would have wasted (e.g. sitting on 

the bus, waiting for a friend in a restaurant, taking a rest during work, or any 

other small piece of time) by doing nothing. 

Meanwhile, stimulated by the rapid development of telecommunication 

technologies, the mobile device industry has also been quickly growing 

with newer and more powerful devices emerged into our life every day. 

Refer to the statistics [2], over 5 billion mobile phones will be activated 



2 

 

worldwide by 2015 and the current increasing trend with a dramatic speed is 

evident. The trend of using mobile phones to connect to Internet makes the 

term “Mobile Internet” [3] a buzzword. Growing popularity of mobile 

internet and applications that run on smart phones and other mobile devices 

makes social networking not just be limited to the Web but also carried out 

in an even easier way to meet the users’ needs of sharing anytime, 

anywhere as long as Internet is available. Among those millions of mobile 

applications, location-aware services such as Google Maps, FourSquare, 

and many other applications with location-aware features integrated are 

widely built around mobile phones and become quite popular for location-

related inquiries as well as context sharing. 

However, they are infrastructure-based, with the nature that data and user 

information must be stored and maintained in a centralized server-like system. 

This characteristic raises users’ concerns about data security, user privacy 

(location privacy, user information, etc.) and content validity range from the 

perspective of both time and space when they are making use of the online 

social networking. In addition to that, the connectivity prerequisite also limits 

the geographic range of users, for example the traveling users will have to 

face the expensive roaming charges or unavailable data services and network 

coverage. Thus, relying on infrastructure-based services may not always be 

the most desirable choice. 

Solutions have been suggested such as using pseudonyms to communicate 

with servers, adopting local caching mechanism, or simply designing a 

completely server-less system. Delay-tolerant Networking [4] (will be 

abbreviated as DTN in the following paragraphs), as a mature networking 

technology, has provided diverse of infrastructure-less communication by 

making use of the store-and- forward communication mechanism. Some of 

them have already achieved a certain degree of success in the laboratory. 

Floating Content [5] [6] service is one of those candidate approaches and has 

been proved totally feasible in a simulation environment even with modest 



3 

 

number of nodes supporting this service in a typical urban environment. It 

would be even valuable if some of those results can be applied into people’s 

daily life. 

          1.1 Problem statement 
 

DTN technology, as an approach to the heterogeneous networks that may 

lack continuous network connectivity, has already been widely deployed in 

the interplanetary communications and military communications.  However, 

most other of the usages are limited to researches. It is really not usual to 

witness this mature technology applied into people’s daily life.   Floating 

Content service, as one of the DTN-based technologies, faces the same issue 

and somehow it has limited the wide spread of this concept. 

If  we  consider  a  scenario  in  an  extreme  environment,  for  instance  

an earthquake happens and the infrastructures used to support communication 

services are more or less destroyed. The service providers thus cannot 

anymore guarantee the normal delivery of their voice services, neither the 

data services. Many lives could have been rescued if the SOS messages can 

be sent out with location information in such an emergency. 

Consider another situation when you are in a flea market and want to buy a 

commodity. Time can be wasted for searching and comparing items 

scattered in every corner. Not to mention that you have to step back and 

forth. It could be easier to make comparisons. 

Scenarios like these where the traditional internet does not work well are not 

uncommon and bring troubles or even worse results to us that could have 

been avoided.  Floating Content service, as one of the candidate DTN-based 

solutions, has given a clear clue to fix problems happen in those 

environments as mentioned above. 



4 

 

Nevertheless, for the time being, it has achieved an initial success only in the 

laboratory.  Applications of Floating Content service with friendly user 

interface are not available in the market yet, for this reason, we are 

proposing an API and building an application based on it, targeting at 

making it easier for the users to make use of Floating Content service. 

          1.2 Motivation  
 

From the first time the term delay-tolerant networking and the DTN acronym 

was coined by Kevin Fall in 2002, it has already become a mature 

networking technology and has been widely deployed especially in the space 

and military field communications. DTN-based services such as Floating 

Content have also been greatly developed in the lab environment. However, 

it is not yet a civilian technology which can be taken full advantage of by 

people to benefit their daily life. This, to some extent, has limited the wide 

spread and further development of DTN technology. 

Speaking of the reasons, firstly, platform (mainly the software) specially 

used as a carrier of DTN technology is not widely supported yet; Secondly, 

it might be costly to bring this technology from the space all the way 

down to the ground and set up a totally new deployment. 

The open source concept has been frequently mentioned and developed 

in recent years. A wide variety of open-source OS and software tool kits are 

available to grab, for example Linux, Android OS, Web OS and so forth. 

These countless resources make the software development process easier and 

cost much lower than any time before. [7] 

In addition to that, with the development of technologies and 

increasingly fierce competition, mobile devices are becoming cheaper and 

more powerful every day. Developers can even build applications by using 



5 

 

emulators provided by the main stream mobile OS suppliers such as Google, 

Apple and Microsoft and publish them into the app market. [8] 

Deploying opportunistic social networking into mobile devices is of great 

significance. It not only helps expand and ease social networking activities, 

but also provides opportunities for people especially who live in under-

developed countries and areas to also log in to a social network. 

          1.3 Research Objectives and Scope 
 

The main target of this thesis is to evaluate Floating Content, a DTN-based 

opportunistic information sharing service, and finally implement this 

infrastructure-less service into mobile platforms in the form of mobile 

application thus benefits the users by providing an opportunistic 

communication mechanism even in an extreme environment, as well, 

decreases the security and privacy worries to a certain extent. 

Firstly, we re-run simulations to evaluate the feasibility and performances by 

introducing different parameters and models as [5] [6] do. Secondly, we 

introduce the location error issue to further evaluate the effect that location 

error brings to the service performance in a simulation environment. Thirdly, 

the API built upon DTN and used for Floating Content service realization is 

analyzed and studied. Based on those simulation results and the API, real 

implementation is then carried out. Finally, the application is deployed in a 

test environment and tested. 

Considering the open source nature and the absolute largest market share in 

today’s mobile industry, we decide to adopt Android mobile operation 

system as our first test platform for our implementation and further studies. 

       



6 

 

    1.4 Structure  
 

This thesis is structured in five main blocks: In Chapter 1, we make an 

introduction to this thesis, state the problem being analyzed, explain the 

motivation of doing this work, finally the scope and relevant tools and 

methodology deployed to carry out this thesis. In Chapter 2, the Delay-

tolerant Networking is elaborated, including the architecture, bundle protocol, 

routing, mobility models and security issues. Chapter 3 introduces the 

Floating Content service. It is mainly focused on the theoretical analysis 

about the service model, system operations, description of the Floating 

Content protocol. Also importantly, it states the simulation results of the 

service and introduces the API designed by deeply understanding of this 

protocol. Chapter 4 presents the application implementation upon the 

Floating Content API. A detailed description of the design pattern, system 

structure, message format, and the user interface design is provided in this 

section. Chapter 5 tests and evaluates the implementation in a real world 

scenario. It specifies the test results and an analysis. Finally, Chapter 6 

concludes the thesis and discusses the possible future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

         Chapter 2  
 

       Delay Tolerant Network 
 

 

DTN [4] is an overlay sitting on the top of regional networks and is designed 

to deal with extreme conditions caused by intermittent connectivity, long or 

variable delay, asymmetric data rates and high error rates in the 

heterogeneous networks. 

Traditional networks make a series of assumptions such as an end-to-end 

communication path can always be found; the network topology is largely 

static; very short RTT; packet losses are rare etc. However, those crucial pre-

conditions mentioned above may not exist in some cases especially in the 

challenged environments such as military battle field, rural areas and many 

other circumstances where some or all of those requirements are hard to meet. 

In addition, network-based communications face the privacy and data 

security issues simply because the data is essential to be sent to and 

maintained in a centralized infrastructure. [9]  

DTN, by contrast, supports frequently interrupted communications by 

introducing a Store-and-Forward message switching mechanism: 

intermediate node keeps the bundle in its persistent storage and waits for a 

better opportunity to forward it at a later time to another custody node or 

directly to the final destination if reachable. A bundle layer shields the 

region-specific lower layers so that application can communicate across 

multiple regions. Reliable communication is achieved by the mean of custody 

transfer plus a variety of service classes provided for bundle transmission.  



8 

 

Bundle Protocol is the bundle layer protocol. BP implements the essential 

functionalities and services that support the delay-tolerant characteristic. 

Bundle is the basic message unit with arbitrary length in DTN 

communications. BP takes advantages of the native internet protocols, 

fulfilling the capabilities such as custody-based retransmission, ability to 

cope with intermittent connectivity as well as scheduled, predicted, 

opportunistic connectivity, late binding of overlay network endpoint 

identifiers to constituent internet addresses. During those operations, bundles 

are stored in the permanent storage and forwarded to the next opportunistic 

node when another better chance comes. [10]  

                             

 

D

S

 

                                       Figure 2.1 A Simple DTN Scenario 

 

Figure 1shows a simple scenario where Delay-tolerant network is deployed. 

In an infrastructure-less environment, a node tries to send a message to a 

node which is far out of its radio range, the message will be sent to the source 

node’s neighbor node and forward. By keeping doing this, and with the help 

of node mobility, there is a chance that the message will be eventually 

delivered to its destination. 



9 

 

        2.1 DTN Architecture 
 

DTN architecture was originally designed by DTNRG to provide internet-

like services across interplanetary communications. Evolved from the 

architecture which is mainly focused on deep space communication issues, it 

already embraces the general concepts of networks that suffer from frequent 

disruptions, disconnections and high delays. It has also been proved 

applicable in sensor-based networks using scheduled intermittent 

connectivity, satellite networks with moderate delays and periodic 

connectivity, as well underwater acoustic networks with moderate delays and 

frequent interruptions due to environmental factors.  

 

Bundle 
Application

Bundle Protocol

Convergence 
Layer

Transport Layer

Network Layer

Link Layer

Bundle Protocol Bundle Protocol

Bundle 
Application

Bundle Protocol

Transport Layer

Network Layer

Link Layer

Convergence 
Layer

Convergence 
Layer

Transport 
Layer A

Network 
Layer A

Link Layer 
A

Convergence 
Layer

Physical Layer
Physical 
Layer A

Physical Layer

Optional Persistant Storage

Required Persistant Storage

Host HostRouterGateway

Transport 
Layer B

Network 
Layer B

Link Layer 
B

Physical 
Layer B

Transport 
Layer A

Network 
Layer A

Link Layer 
A

Physical 
Layer A

Transport 
Layer A

Network 
Layer A

Link Layer 
A

Physical 
Layer A

Internet  Internet  InternetInternetInternetInternet

Region 1

Region 2

Region-
Specific
Layers

 

                                         Figure 2.2 DTN Protocol Architecture 

 



10 

 

The current DTN architecture provides a common method for 

interconnecting heterogeneous gateways or proxies that employ store-and-

forward message routing to overcome communication disruptions. Figure 2.2 

depicts the DTN architecture model proposed by DTNRG.  

The bundle layer, as an end-to-end message-oriented overlay, is defined 

above the regional layers. It stores and forwards entire or fragment bundles 

between nodes by using a single bundle protocol and the persistent storage, 

thus helping deal with frequent network interruptions that may happen in an 

extreme environment. [11] [12] 

 

        2.2 Bundle Protocol 
 

The bundle protocol (BP) is an experimental DTN protocol designed for 

unstable communication networks. BP groups a series of contiguous data 

blocks into bundles and each of them has enough semantic information to 

enable applications to make further progress. Bundles are generally routed in 

a store-and-forward manner between participating nodes over network 

transport technologies. These layers taking along bundles across local 

networks are called bundle convergence layers.  

Due to the nature of store-and-forward transmission mechanism, application 

layer is responsible to set up the service requirements so that BP can collect 

the application data into bundles and send across heterogeneous network to 

achieve high-level service guarantees. 

The capabilities of BP include: Custody-based retransmission; Late binding 

of overlay network endpoint identifiers to constituent internet addresses; 

Ability to take advantage of scheduled, predicted and opportunistic 

connectivity; Ability to interoperate with intermittent connectivity. [10] 



11 

 

            2.2.1 Bundle Node 
 

The bundle node, as shown in Figure 2.3, is an entity (host, router or gateway) 

that implements BP and can send or receive bundles. Each node is made up 

of three components: bundle protocol agent, application agent, convergence 

layer adapter.                         

                                                           

                  

           

Administrative 
Element

Bundle Protocol Agent(BPA)

Convergence Layer Adapter(CLA)

Application-specific 
Element

Private Control 
Interface

Bundle Service 
Interface

Control Flow

Data Flow

                                         

                                             

                                             Figure 2.3 Bundle Node 

 

A. Bundle Protocol Agent 

The bundle protocol agent (BPA) of a node is the node component that offers 

the BP services and executes the procedures of the bundle protocol.  The 

manner in which it does so is wholly an implementation matter.  For example, 

BPA functionality might be coded into each node individually; it might be 

implemented as a shared library that is used in common by a number of 

bundle nodes on a single computer; it might be implemented as a daemon 



12 

 

whose services are invoked via inter-process or network communication by 

any number of bundle nodes on one or more computers; it might be 

implemented in hardware.  

 

B. Application Agent 

The application agent (AA) of a node utilizes the BP services so that it can 

take advantage of DTN technology to communication. It is mainly made up 

of two parts, administrative element and application-specific element. 

The application-specific element of an AA constructs, requests transmission 

of, accepts delivery of, and processes application-specific application data 

units; the only interface between the BPA and the application-specific 

element of the AA is the BP service interface. The administrative element of 

an AA constructs and requests transmission of administrative records (status 

reports and custody signals), and it accepts delivery of and process any 

custody signals that the node receives; in addition to the BP service interface, 

there is a (conceptual) private protocol interface between the BPA and the 

administrative element of the AA that enables each to direct the other to take 

action under specific circumstances. 

 

C. Convergence Layer Adapter 

A convergence layer adapter (CLA) sends and receives bundles on behalf of 

the BPA, utilizing the services of some native internet protocol that is 

supported in one of the internets within which the node is functionally 

located.  The manner in which a CLA sends and receives bundles is wholly 

an implementation matter, exactly as described for the BPA.  

 

 



13 

 

            2.2.2 Bundle Endpoint 

 

As introduced in 2.2.1, a bundle node is an implementation of BP. A bundle 

endpoint, simply named as endpoint, is a set of (zero or more) bundle nodes. 

Each node is identified by a single text string named “endpoint ID”, shortly 

denoted as EID (details in 2.2.3).  A bundle is considered as successfully 

delivered as long as some minimum subset of nodes in the endpoint has 

received the bundle without error. This subset is called Minimum Reception 

Group (MRG) of the endpoint. 

A Singleton, as a special case of an endpoint that contains at most one node, 

is the most familiar sort of endpoint. Each node must be a member of at least 

one singleton endpoint.  However, in general, the endpoint notion is meant to 

be broader. For instance, in the sensor network, a group of nodes might 

register with a common EID so that they can receive specific bundles as a 

single bundle endpoint. Besides, each node can register with multiple 

different EIDs and identify itself as a member of multiple bundle endpoints.  

 

            2.2.3 EID 

 

EID is a name expressed using the general syntax of Uniform Resource 

Identifier to identify a bundle endpoint and is conveyed in the bundle block. 

The format is as follows, 

                   < scheme name > : < scheme-specific part, or "SSP" >  

Depending on the construction of the EID being used, there may be a 

provision for wildcarding some portion of an EID, which is often useful for 

diagnostic and routing purposes. 

 



14 

 

A node can determine the MRG of the DTN endpoint by EID. And each node 

is required to register at least one EID that uniquely identifies it. Applications 

send ADUs destined for an EID. The action that an application is willing to 

receive ADUs destined for a particular EID is called a “registration” and is 

maintained persistently by a DTN node. [13] 

 

            2.2.4 Bundle 

 

Bundle is the basic protocol data unit used in the DTN communications. Each 

bundle is of arbitrary length and is consist of three main parts: a bundle 

header, the user data, and the control information describing the procedure of 

bundle process. Bundles can be fragmented, and the fragmentation will be 

reassembled at the final destination.     [10] 

A. Bundle format 

Each bundle shall be a serial sequence of at least two block structures: 

primary bundle block and additional bundle block.  

The first block in the sequence must be a primary bundle block, and only one 

primary bundle block is allowed in one bundle.  

Additional bundle protocol blocks of other types may follow the primary 

block to support extensions to the bundle protocol, such as the BSP (Bundle 

Security Protocol). No more than one of the blocks in the sequence may be a 

payload block. The last block in the sequence must have the "last block" flag 

(in its block processing control flags) set to 1; for every other block in the 

bundle after the primary block, this flag must be set to zero. 

 

 



15 

 

 

 

Primary 
Bundle Block

Bundle 
Payload Block

1st 
Extension 

Block 

Last 
Extension 

Block 
…...

Extension Blocks

LastBlockFlag=1LastBlockFlag=0

                                       Figure 2.4 Bundle Format 

 

 

B.  Bundle services 

A variety of services are provided by different parts of the bundle layer. 

The bundle protocol agent of each node is expected to provide a series of 

services to the node’s application agent as follows: commencing a 

registration (registering a node in an endpoint); terminating a registration; 

switching a registration between Active and Passive states; transmitting a 

bundle to an identified bundle endpoint; canceling a transmission; polling a 

registration that is in the passive state; delivering a received bundle. 

For the convergence layer adapter, services include sending a bundle to all 

bundle nodes in the minimum reception set of the endpoint identified by a 

specific EID that are reachable via the convergence layer protocol, and 

delivering to the bundle protocol agent a bundle that was sent by a remote 

bundle node via the convergence layer protocol. 



16 

 

           2.2.5 Custody Transfer 

 

BP incorporates custody transfer [14] in order to provide a reliable node-to-

node transmission to the final destination. Store-and-forward mechanism is 

used to transmit bundles thus the responsibility of reliable transfer is passed 

to the next hop one by one all the way towards the final destination.  

A node accepts custody transfer is called custodian. When the current 

custodian sends a bundle to its neighboring hop, the neighboring node shall 

reply with an acknowledgement or a refusal signal in a specific evaluation 

time interval. In case that no reply is returned before the evaluation time 

expires, a timer will trigger the retransmission mechanism.  

 

      

Source Node X Node X+1 Destination

Acknowdgement

Bundle Delivery

CT CT CT CT

CT                    Custody Transfer

 

                                   Figure 2.5 Custody Transfer 

 

If the custody acceptance acknowledgement is sent back from the node, it 

becomes a custodian and is obligated to store the bundle to its local storage 

until another node accepts custody transfer, or the bundle TTL expires. 

Hence at one time, only one custodian exists in a bundle transmission process. 



17 

 

        2.3 Routing in DTN 

 

As all the other communication networks, DTN is able to select routing paths 

and transport data from a source to a destination. Differently, DTN also have 

to overcome the problems associated with intermittent connectivity, long or 

variable delay, asymmetric data rates, and high error rates by using a store-

and-forward message switching mechanism. Figure 2.5 simply shows how 

this approach works. 

 

       

Source 
Node

Custodian A
Destination 

Node
Custodian B

Persistent 
Storage

Forward Forward Forward

Persistent 
Storage

                                    

                             

                                  Figure 2.6 Store-and-Forward Message Switching  

 

Store-and-Forward method is also used in today’s email and voicemail 

systems. By adopting such a routing technique, data is stored throughout the 

network and forwarded when a better chance comes in hopes that it will 

eventually reach its destination. The local storage can keep messages 

indefinitely if there is enough storage space. When a communication link to 

the next hop may not be available for a long time, or when retransmission is 

needed if an error happens, adopting Store-and-Forward message switching 

mechanism can maximize the probability of successful transfer. [15] 



18 

 

        2.4 Mobility Models 

 

In a DTN-based scenario, most of the participants are mobile nodes. Very 

often, the research work needs to be carried out before it becomes totally 

successful. However, a real-world test bed for research purpose is quite hard 

and impractical to achieve, not only because of the difficulty of deployment, 

but also the unpredictable cost according to various project scales. Therefore, 

other approaches are needed to make this easier.  

Mobility model [16] emulates the real-world movement pattern by extracting 

the characteristics out from the real life performance of mobile users and 

different objects. It plays a very important role in evaluating the protocol 

performances and makes some research work possible to be launched. 

There are several categories of mobility models including Random Models, 

Models with Spatial Dependency, Models with Temporal Dependency, 

Models with Geographic Restriction. Choosing appropriate underlying 

mobility model is crucial to reflect the real life scenes in a reasonable way.  

Therefore, there is a real need for a deep understanding of mobility models 

and their impact on the protocol performance before the choice is made for 

simulation. Understanding some of the basic mobility models, for example 

Random Waypoint Model, Random Walk Model, Random Direction Model 

[16] etc. is quite helpful to make the comprehensive decision when 

conducting the simulations. 

Unlike Internet, DTN has very limited resources deployed at present. It 

makes real-world mobility even not scalable enough for researches and 

studies. Relying on the mobility model in a simulation environment makes it 

flexible to command, also mirrors reality especially when the scale grows. 

 



19 

 

       2.5 Security Considerations 

 

Because of the high mobility and infrequent connectivity of entities in DTNs, 

the node density is relatively low. Thus with scarce network resource in an 

extreme circumstance, it is not acceptable if some unauthorized users flood 

the network with spam traffic easily and occupy the modest resource. That’s 

why security service plays a crucial role and is always needed in a DTN 

communication. The specific security requirements and implementations vary 

depending on the corresponding environments and applications.  

 

 

 

Source

Ajacent 
Router 

Or
 Gateway

Router 
or 

Gateway
Destination

User
Certificates

Router 
Certificates

Router 
Certificates

Bundle

Sender’s 
Signature

Bundle

Sender’s 
Signature

Router’s 
Signature 

Sender’s 
Signature

Bundle

Replaced 
Router’s 

Signature 

 

 

                     Figure 2.7 Security Steps of DTNs Using Public-key Cryptography 

    

 

In most security mechanisms in the traditional networks, only user identities 

and the integrity of message are authenticated. In addition to that, routers and 

gateways are also authenticated in DTNs. Sender information is authenticated 



20 

 

by these forwarding nodes so that network resources can be conserved by 

preventing the carriage of prohibited traffic at the earliest opportunity. [4] 

        2.6 Summary 

 

The background and principle of DTN technology are introduced in this 

chapter. As an overlay designed especially to deal with communication issues 

in extreme environments, the DTN architecture is constructed in a very 

different way from the traditional network. Instead of making assumptions 

like rare packet losses, continuously existing communication path, 

interruptions and delays are tolerant by introducing Store-and-Forward 

mechanism. The bundle layer, as the core of DTN architecture, makes use of 

BP to communicate. Functionalities and working processes of different BP 

elements are addressed. Based on the fundamental concepts, routing 

mechanism is introduced with illustration of the difference compared with the 

traditional networks. Mobility models, required for the simulations, are also 

briefly presented together with the motivation why they are needed. Finally, 

we have discussed the security issues as it is quite different from the Internet-

like networks. In next chapter, we will introduce Floating Content, the DTN-

based information sharing service. The service model, system operation, 

protocol will be discussed. In addition to that, the simulations will be run and 

the API specially designed for Floating Content service will be analyzed.  

 

 

 

 

 

 

 

 



21 

 

        Chapter 3 

       Floating Content Service 

 

Floating Content is a DTN-based localized information sharing service 

exclusively dependent on mobile phones and other mobile devices. It takes 

advantage of wireless interfaces such as Bluetooth or WLAN to communicate 

in ad-hoc mode. 

The content items can be created with customized parameters including an 

anchor zone, comprising geographic origin and validity radius, within which 

content is meaningful, and also a TTL. Other users who are interested in the 

content will receive a copy and further replicate within the anchor zone of 

this item. During the validity time, the actual lifetime and spreading of 

information depends on the number of interested nodes. As long as there are 

enough mobile nodes within the anchor zone willing to replicate and store a 

copy of the content, it floats. It’s also possible that information disappears if 

there is not enough nodes around accept to take a copy or the content creator 

steps out of the anchor zone. In addition, once the TTL of a message expires, 

all the copies in other nodes will be deleted together with the original 

message. 

The mobile devices implementing Floating Content service need to be 

location-aware such as adopting GPS which is built as one of the most basic 

functionalities in today’s most mobile phones. However, because of its 

opportunistic nature, there are no strict limits on the error range and accuracy 

of the returned position data. Sufficient storage capacity is required to be 

available, and this is quite easy to achieve for normal mobile phones by 

simply setting aside a fraction of its built-in storage or expanded memory 



22 

 

card capacity. Roughly synchronized clocks are needed to determine the 

status of the message, available or time-out. 

It has been proved theoretically that Floating Content service can effectively 

solve the privacy and security related problems existing in traditional 

networks. Also practical simulations have confirmed the feasibility in urban 

environments even with modest number of mobile nodes supporting this 

application. [5] [6]        

 

        3.1 Service Model 

 

All the users are assumed mobile nodes, and according to the nature of DTN,     

no infrastructure is provided to support this system. Mobile phones with 

wireless interfaces (Bluetooth or WLAN) and certain amount of storage 

space are used to as communication entities.  Every single node may be able 

to get a copy of a specific message item which interests them. 

Each message item has a defined anchor zone, a real world area within which 

the item is available. The users who create information items within a defined 

anchor zone and TTL must reside inside the anchor zone until they finish the 

message sending task. The anchor zone is a circular area defined by 

specifying a center point and a radius. Figure 3.1 shows an example of an 

anchor zone and nodes. 

As the above figure shows, a node generates an information item and 

interested nodes keep copies floating around in the anchor zone by 

opportunistic communications when they meet. There is no guarantee that the 

items will not disappear, instead, it is explicitly allowed either when the node 

density is too low or when the item creator leaves the anchor zone. In 

addition, the information item is attached with a life time TTL and will be 



23 

 

discarded when it expires. The mobile nodes need to be able to determine 

their position, e.g. by using GPS, cellular base stations, triangulation-based 

methods using WLAN access points, or any other approaches providing 

reasonable location results, thus making judges related to the anchor zone. 

 

                    

ar

Node with a message

Node without a message

 

 

 

                                     Figure 3.1 Anchor Zone of Floating Content Message 

 

 

        3.2 System Operation 

 

 

A node creates an content item I of size SI with a certain lifetime (TTL) 

and specifies an anchor zone by defining its center P and two radiuses, a 

and r, as shown in Figure 3.1:  a represents the availability range within 



24 

 

which the information item is kept alive with limited probability, no copies 

of the item can exist outside of a; r denotes the replication range within 

which nodes can replicate the item to others when they encounter. When two 

roaming nodes N1 and N2 meet in the anchor zone of an item I, assume N1 

has I while N2 does not, then N1 will replicate item I to N2.  The  

replication  mechanism  is completely based on the location of nodes, thus in 

the simplest situation, all the nodes  in  the  anchor  zone  should  have  a  

copy  of  the  item.  Nodes are unrestrained to delete their copy of the item 

if they are outside of the anchor zone. 

In practice, the replication and deletion process takes place as follows. 

Assume that node N1 having the item I, with an anchor zone defined by 

center point C and radius r and a. The distance between current location of 

node N1 and C is denoted by d. When node N1 meets node N2, N1 will 

replicate item   I to N2 with a replication probability p. 

 

                 

r a

1

0

p

d

 

 

             Figure 3.2 Replication Probability According to Distance from Message Center 

 

The  replication  probability  Pr belongs  to  [0,  1],  and  is  some  

(decreasing) function that gives the probability of replication outside the 

replication range but within the availability range. 



25 

 

The deletion probability Pd is defined in a similar way and Pd belongs to [0, 

1] as well. 

                            

r a

1

0

p

d

 

 

                               Figure 3.3 Deletion Probability 

 

 

The deletion function protects buffers from filling up by using early 

prioritization mechanism; it is evaluated every time when a node is 

encountered. The oldest messages will be discarded if there is still a need to 

free the storage space. This definition introduces an area outside the 

replication range but within the availability range of the anchor zone as a 

buffer zone. It provides protection against items disappearing by offering 

transitional reduction of availability over distance especially when nodes 

move outside the replication range of the anchor zone for a brief moment and 

then return.  

However, the probability is not applied for all the circumstances. One special 

case is when r = a, Pr and Pd do not make sense any longer since the 

“middle area” does not exist at all. [17] 

Once the node steps out of the the availability area (see Figure 3.1), copies 

are deleted (immediately or upon encountering the next node, depending on 

the specific implementation). 



26 

 

       3.3 Floating Content Protocol 

 

Floating Content protocol as an application-layer protocol, defines the 

message formats and rules for exchanging Floating Content messages among 

the mobile nodes. A Floating Content message m is identified by a unique 

message id IDm and carries its anchor zone parameters including Pm, rm, am 

for an anchor point, its lifetime Tm in its headers, and the size Sm of content 

item Im is in the message body.  

Floating Content protocol specifies 4 phases to be followed when 

communicating as follows: 

 

1) Nodes integrated with Floating Content service keep sending discovery 

beacons to their neighbors to discover peers. 

 

2) Once a peer is found, summary message will be sent back from the 

discovered node. Each summary message is made up of a vector of 

available content items that can be replicated. For every single message 

item Im in the vector, information of IDm, Sm, (Pm, rm, am) and Tm is 

included. The summary may be limited to what fits into one MTU size 

packet. If more content needs to be shared, the list of content will be 

spread across multiple summary messages in a round-robin fashion.   

 

3) When the summary reaches a node, it knows what the neighbor has and 

can send a request for one or a subset of the content items. There is 

possibility that the node prioritize the replication order of messages 

according to certain replication policy, for example the message with the 

largest TTL will be replicated at first, or firstly copying the nearest 

message, etc. The actual replication order is decided by the specific 

implementations. Five policies are defined in [6]: FIFO keeps the 



27 

 

message order in which the messages were created/received, RND 

randomizes the message orders, and three further algorithms use 

ascending order by anchor zone, floating volume, and the product of 

volume and TTL. These algorithms are named as Smallest Area First 

(SAF), Smallest Volume First (SVF), and Smallest Total resource 

consumption First (STF). 

 

With the defined replication order, messages are then exchanged as long as 

the connection is still on. If the nodes lose contact, the receiver will have to 

discard all the incomplete messages. Or if the batch is completed, the service 

will return to phase 2). 

Message exchanges take place bidirectional and simultaneously. Protocol 

itself allows message exchanges with multiple nodes at one time. However, 

some link layer technologies may have restrictions for this. When the 

message exchange is happening, nodes still keep sending discovering 

beacons so that new reached nodes are also able to be discovered for message 

exchange. Nodes are allowed to append messages which they received just 

now to the summary list, offering to other nodes those are exchanging 

messages with them. The messages are deleted according to the deletion 

policies. With D(h) = 0, no messages will be deleted within the anchor zone 

a. Outside a, deletion approach depends on the mechanism adopted. For 

immediate deletion, messages are discarded once the nodes leave a. For 

upon-encounter deletion, the message deletion only happens when the next 

node is encountered, and nodes are allowed to wander out of a and back in a 

while with the message still kept. From an implementation perspective, the 

upon-encounter deletion policy is more sensible as it is triggered by an 

external event. 

 



28 

 

        3.4 Simulations and Evaluations 

 

All the simulations have been carried out by using ONE simulator [18] for 

feasibility in a static and idealized mobility settings as well as availability by 

introducing more sophisticated Helsinki City Scenario (HCS) based upon a 

city map (4500 m ×3400 m) of downtown Helsinki for evaluation. HCS 

models two types of nodes: most roam the city area following streets and 

walkways when moving to randomly chosen points on the map following a 

shortest path using pedestrian (0:5 -1:5 m/s) or car (10 - 50 km/h) speeds; 

some follow a set of three predefined routes as trams with their own 

characteristic speed (25 - 35 km/h). In addition, the location error is 

introduced in the sophisticated scenario for evaluate the effect it gives to the 

overall performances of Floating Content service in a simulation environment. 

           3.4.1 Feasibility Validation 

 

By using a 2000 by 2000 m size map with certain amount of mobile nodes 

which are initially placed at random positions, the simulations are launched 

to evaluate the general feasibility of Floating Content system. Nodes move 

according to a random waypoint model in varied speed. Once two nodes meet, 

they are able to transfer Floating Content items from one node to another. 

Routing module is built upon the Active Router which provides message 

generation and logging functions. 

As a crucial parameter, the node number (both static and dynamic nodes) 

might affect the feasibility a lot. If the required node density is too high, the 

condition is not likely to be encountered in a real life scenario. Simulations 

have shown that the node density required for 80% availability (availability is 

the ratio of nodes in the anchor zone with the item to the total number of 

nodes in the anchor zone) is around 1 node per 50 square meters, which is 

very easy to achieve in most typical urban environments. [5] 



29 

 

Mobility helps most especially in those cases when only quite limited number 

of nodes exist for communications. As the number of nodes increases, the 

fraction of mobile nodes becomes less important, even a small fraction of 

mobile nodes is sufficient for good availability. With certain configurations, 

the mixing mobile and stationary nodes can even give the better availability 

than having only mobile nodes. 

Assuming the communication range is a perfect circle, simulation 

environments with the same ratio for anchor zone radius and communication 

range (anchor zone/communication range) behave similarly. However, this 

does not apply to the stationary case. 

In total, the evaluation results have shown that the Floating Content service is 

indeed feasible and the requirements can be easily reached in a typical urban 

environment 

              3.4.2 Performance analysis 

 

With feasibility discussed in 3.4.1, it is worth knowing more about how 

different parameters can affect the performances and figuring out the 

reasonable configuration settings which are the most preferable for real world 

implementation. 

Most of the simulations are conducted with two different anchor zone sizes: a 

= r =200m or 500m. Fixed anchor locations are chosen by dividing the map 

with 200m by 200m squares to evaluation the Floating Content service in 

downtown Helsinki. Thus 352 anchor points are generated in the map shown 

as red crosses in Figure 3.4. 

Each simulation lasts for 24 hours with the TTL set as one hour and a 

corresponding cooldown period of one hour as well. Two main scenarios are 

used for evaluation with mean values informed. The first one is across all 

anchor zones in the entire map, using an average weighted by the number of 



30 

 

messages generated per anchor zone. The second one is restricted into a core 

area of 1.8km by 1.8km, including diverse terrains (including water front) but 

no boundary effects due to simulation area limits are expected. 

                       

        

 

                                  Figure 3.4 Helsinki City Scenario 

 

The evaluation results show that even with very limited number of nodes 

supporting Floating Content service, it still can be feasible in the typical 

urban environments.  

It is the users’ decision what size the Anchor zone should be set. However, 

anchor zone are supposed to be large enough to match the node densities so 

that they together can make the content “floating”. As a result, it is not 

recommended to tightly constraint the anchor zone size unless the node 

density is extremely high. Indicatively, it seems that anchor zones should 

span multiple blocks in a city for sufficient replication, but a systematic 

exploration is for further study.  

Meanwhile, it also demonstrates that Floating Content service has limitations 

in the border areas such as at the waterfront where the nodes are not able to 

move in and out normally. 



31 

 

With the given location, it is possible to estimate the probability that the 

content will float in the simulation model. This makes it possible to know the 

floating expectation with the given input parameters. 

Although there are limitations from synthetic mobility models (and of HCS), 

the macroscopic mobility and social context and interaction patterns may be 

of lesser significance for localized content sharing—unless selective support 

based upon (closed) groups or content channels come in—so the findings 

should also be able to apply for other scenarios. [6] 

           3.4.3 Location Accuracy 

 

As a location-based service, one issue must be taken seriously is the location 

accuracy and location errors which may affect the performances of the whole 

system. Nowadays, GPS is the mostly built-in location system especially in 

mobile phones. Hence taking GPS as an example to study the location error 

has a significant meaning. 

We have seen that the entire system of GPS is dependent on a network of 24 

satellites orbiting the earth. While research and development work is still 

going on to develop more and more accurate systems, it would be a good idea 

to understand what the external sources of error are. Selective avalability, 

Satellite geometry, Satellite orbits, Reflection, Atmospheric effects, Clock 

inaccuracies and rounding errors, these are the main factors that affect the 

location accuracy. 

Those random variables mentioned above that make up the error in a GPS 

position, including errors from multipath, ionosphere, troposphere, thermal 

noise and others. Assume the absolute values of different variances are 

independent and identically distributed, by the Central Limit Theorem [19] 

you might expect that the absolute value of GPS location error ( for the 

following part, we will say only location error instead of the absolute value of 



32 

 

location error) has approximately a Gaussian distribution [20], and indeed 

this is the case. With the error introduced into the ideal scenario, we carry out 

our simulations and make a comparison to see how different it acts in these 

two situations. 

              

Radio range: 50, Nodes: 126, ttl=3600, r=500, a=500, size=minimal, buffer=5M

Mean of all anchor points
Mean of anchor points with n>100 messages

Weighted average

Fr
ac

tio
n 

of
 m

es
sa

ge
s 

av
ai

la
bl

e 
<=

 x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lifetime as fraction of TTL

1

0

 

 

   Figure 3.5 Performance of Floating Content Service without Location Error 

 

 

              

Radio range: 50, Nodes: 126, ttl=3600, r=500, a=500, size=minimal, buffer=5M

Mean of all anchor points
Mean of anchor points with n>100 messages

Weighted average

Fr
ac

tio
n 

of
 m

es
sa

ge
s 

av
ai

la
bl

e 
<=

 x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lifetime as fraction of TTL

1

0

 

     Figure 3.6 Performance of Floating Content Service with Location Error 



33 

 

Our result so far has shown that the location error is Gaussian distributed 

with assumption that all the error source variances are independent and 

identically distributed.  

 

From the simulation results we can see there is barely difference with 

location introduced into the ideal simulation scenario.  

               

Radio range: 50, Nodes: 126, ttl=3600, r=500, a=500, size=minimal, buffer=5M

Mean of all anchor points
Mean of anchor points with n>100 messages

Weighted average

Fr
ac

ti
on

 o
f m

es
sa

ge
s 

av
ai

la
bl

e 
<=

 x

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lifetime as fraction of TTL

-0.1

0.1

                 

             

                                  

                Figure 3.7 Compared Floating Content Performance as Function of Lifetime 

 

With an even closer look at the difference between simulation results of the 

ideal scenario and the location error included scenario, we are more certain 

that the location error has very limited effect to the performance of Floating 

Content application. The reason it not hard to see, that when calculating the 

distance between two nodes, the location errors are basically canceled out. 

Thus no effects are created to determine the location distance when 

publishing a Floating Content message. 



34 

 

         3.5 Application Programming Interface 

 

With proved feasibility and performances according to different parameters 

of Floating Content service in a simulation environment, it is more 

meaningful to take it further into real implementation which can be realized 

in mobile devices such as mobile phones, thus serving for people’s 

convenience. An API, a source code-based specification intended to be used 

as an interface by software components to communicate with each other, is 

used for this purpose so that developers and anyone who is interested in 

Floating Content service can build applications based on it. 

The API is sitting upon a core DTN functionality layer to provide Floating 

Content service to the application developers. It offers access to the store-

and-forward task like all the other DTN-based services. The core part of the 

API is an application engine that can be always running in the background 

once the application is started. Applications adopting this API will be able to 

inherit a series of functionalities including listening, queuing and sending 

Floating Content items that have been realized already. Also, the developers 

can extend these functionalities according to their needs. 

As long as the application has been started, it keeps discovering available 

recipients and listening to the incoming messages simultaneously. Once 

discovered, it will try to get connected with the peer. Through a successful 

connection, a copy of the message can be transferred towards the recipient 

according to the request. If the certain message service is subscribed, the 

message will be delivered to the user for further use, otherwise, it will be 

ignored. This service filtering process is carried out in the background. How 

different parts of message information will be used is decided by the specific 

implementation. 



35 

 

Before a Floating Content message is sent out, the message item is firstly 

encapsulated in a changeable container with several predefined default values 

such as TTL etc. Extra information is allowed to be added into the message 

item according to specific implementations. The message instances are then 

passed to the local application engine and further encapsulated as a task for 

being ordered in the task stack and then wait for its time to be sent out 

through socket. The engine keeps searching for the pending tasks and order 

them according to a priority mechanism that makes a decision about which 

will be sent firstly, which will be discarded when the buffer is full. If there is 

no task needed to be handled at the moment, it will wait until a new one 

comes without interrupting other ongoing operations. 

Considering the nature of opportunistic network, the applications may suffer 

from frequent disconnections. If it happens during the process of message 

transferring, the incomplete message will then be discarded. In another word, 

to ensure successful message transferring, both the recipient and the creator 

will have to be in the anchor zone of the message. 

    

            3.5.1 Primary API Functions 

 

A. subscribe (String service) 

Subscribe to a specific message service so that the application can receive 

the message belonging to the exact service. Each Floating Content 

message is attached with a service. The service set is recommended to be 

predefined. However, there is no strict restriction for using self-defined 

services from the users. User can choose which one(s) to follow. After 

subscribing, if the application engine receives messages from others, the 

messages with subscribed services will be delivered locally to the user. 

 

 



36 

 

B. connected (Application app) 

As long as the application is started, the client will try to connect to 

the server. Once the connection has been successfully set up and the 

client has verified that the server supports the right API version, this 

method is invoked. Normally the application would like to start 

exchanging messages right after the connection is established. 

However, the particular action being taken when this method is called 

is totally decided by the specific implementations. 

 

C. messageReceived (Application app, String service, Message msg) 

Once a coming Floating Content message belonging to a certain service 

category is received, this method should be called. It is required that only 

if the client has subscribed to the message service before. The message 

normally will be stored somewhere (local storage, cache, etc.) in the node 

for later use. However, same as the “connected” method, the particular 

action being taken when this method is called is totally decided by the 

specific implementation. 

 

D. publish (Message msg, String service) 

Publish the Floating Content message to a given service. Publishing a 

message does not mean sending it out right away. Instead, the application 

engine will encapsulate this message as a PublishSenderTask and then 

put it into the task stack. When it becomes the task’s turn in the task 

queue, the message will be sent out. 

 

E. send (OutputStream out) 

One mobile node (client) sends data to another mobile node (server) 

through a given OutputStream. There are several different 

implementations for sending different data types. All the sending tasks 



37 

 

are queued in a task stack and each of them has exclusive ownership of 

the stream for the duration of the send call. Once returned, the task must 

not keep using it anymore. 

 

F. hostDiscovered (Application app, String host, int hopcount, long 

timestamp, double longtitude, double latitude)         

As long as the router finds a new peer nearby, this method should be 

called. By taking advantage of the input parameters, the application is 

able to make a decision whether or not to make a message copy to the 

new peer based on the predefined Floating Content anchor zone concept. 

As the “connected” method and “messageReceived” method, the 

particular actions being taken when this method is called is totally 

decided by the specific implementation. 

 

G. get functions 

There are a series of general methods for all the get-related operations. 

They are located in the message model objects. When handling the 

received Floating Content messages, these methods can be used to 

acquire the metadata encapsulated in them, for example the lifetime, file, 

AppTag, text message content etc. The values can be fetched both 

separately and as a whole package. 

 

H. set functions 

There are also some general methods locating in the Floating Content 

message model objects for all the set-related operations in corresponding 

to the getters. When create a Floating Content message, they are used to 

set up the necessary values for different parameters on one side. Then 

they can be picked up on the other side. This set and get procedure is the 

actual meaning of communications. 



38 

 

          3.6 Summary 
 

 

In this chapter, Floating Content service is introduced in detail from several 

aspects. The concept was firstly introduced, followed by the service model 

which illustrates how this service works in a general way. In addition to 

that, the detailed system operation processes and the protocol principle are 

described. This introduces how this protocol works in an operational level. 

With the fundamental knowledge, simulations are carried out to validate the 

feasibility, performance and how much the location error can affect it. The 

feasibility and performance simulations yield the similar results as in [5] 

and [6]. This was done mainly to calibrate my simulation system before I 

move on to the error estimation. The results show that the service is totally 

feasible even with a modest number of mobile devices installed this service. 

Performance is decided by several parameters, and with the ideal settings, 

the output is quite good. From the simulation’s perspective, location error 

has very limited effect on the performance of Floating Content service as 

shown in Figure 3.5, thus the users do not need to worry much about it. At 

last, one API designed for Floating Content service is introduced. By 

taking advantage of its interfaces, developers are able to build applications 

easily. In next chapter, we are designing an application on the basis of this 

API and implementing it on Android platform. 

 

      

‘ 

 

 

 

 

 

 

 



39 

 

         Chapter 4 

 

       Application Design and Implementation 

 

Based on the previous simulation results and well implemented Floating 

Content service API, the application is ultimately designed and realized on 

the Android platform [21] [22] to provide an unprecedented opportunistic 

information sharing experience in urban areas.  

The application is implemented based on Android source code version 2.1, 

Android OS older than 2.1 (Eclair) [23] may not be totally supported. Once 

the application is successfully installed in an Android phone, users may 

make use of this application to create and receive Floating Content 

message M at any location L with a predefined TTL and anchor zone by 

specifying its location center P and two radiuses, a and r. In our design, 

we try to avoid the deletion probability concept and make a and r equal 

value. Thus the so called Pr and Pd in Chapter 3 do not make any sense. 

As shown in Figure 4.1: r represents the availability range within which the 

information item is kept alive with limited probability, no copies of the item 

can exist outside of r; r also denotes the replication range within which 

nodes can replicate the item to others once they encounter. Together with 

TTL, they can affect the current status of the Floating Content message. 

Each message has an associated service, S, to support interest-based 

subscription and information filtering. M will be deleted automatically when 

TTL expires or the message holder steps out of the validity range.  Manual 



40 

 

deletion  is  also  allowed  by  the  users  when  they  feel  not interested in 

some messages anymore. 

Nowadays in a mobile phone, especially smart phone, built-in GPS receiver 

is a ubiquitous component. In addition to this, quantities of free and paid 

positioning applications are available in the application market to assist the 

GPS receivers. During the whole process of Floating Content 

communications, GPS is responsible to provide nearly real-time location 

information with certain error. Specific accuracy varies according to different 

manufacturers and costs of the corresponding devices. However, according to 

the simulation results in Chapter 3, positioning error from GPS has quite 

limited effect to the performance of Floating Content service.    

 

         

The Floating Content Message M for Service S

r

r The Valid Range of Floating Content Message M

 

 

                          Figure 4.1 Floating Content Application Scenario 



41 

 

 

Once a Floating Content message is created, all the mobile users within its 

valid range will have a chance to receive a message copy as long as they are 

subscribed to the exact service of the specific message. The application will 

not have the message delivered to the front end but ignored if the recipient is 

not subscribed to the service. All the copies will share the identical 

parameters with the original one, including AppTag, Service, Timestamp, 

TTL, Message Content, and Attachment.  

When the users are reading a message, they can save it to their local storage 

for later use if they find it very useful or feel like further forwarding it to the 

people around. When they find it useless, manual deletion can be executed. 

None of these actions from recipients will do any changes to the original 

message and other message copies. They are discarded only when TTL 

expires or the message holders are out of the valid anchor zone of the 

corresponding message item. Once a message is deleted by its creator, it will 

not be further copied anymore. The existing copies will be dropped when 

TTL expires or the message holders delete them manually. As time goes by 

and as the nodes move around, the “floating” message will “sink” in the end. 

Each Floating Content message is identified by a unique message ID. So 

once the message has been received, it won’t be replicated anymore. This 

more or less helps protect users from spams. However, there is no guarantee 

that someone won’t send the same message for multiple times by recreating 

the messages with a different message ID. Instead, we consider the 

subscription mechanism and location-aware feature has already decreased 

this potential crisis. 

Note: All the applications share the same port number 7744 for setting up 

connections and message transfer, this number is used only for 

prototyping. The specific port number must be decided during the process of 



42 

 

development and make sure it is not a frequent used port number on your 

mobile phone by other applications. 

        4.1 Application System Architecture 
 

 

A service engine keeps running in the background ever since the start of the 

application. The key functionality includes: discovering new peers and 

updating the data information of existing peers; listening to and receiving the 

incoming messages; sending the messages encapsulated and queued in the 

task stack; automatically updating the local database and the user interface 

periodically; accepting subscriptions from the user.  [24] 

 

User Interface

Service Engine

create

save

created data 
repository

received data 
repository

saved data 
repository

Output

Input

get
get

get

subscribe

 

                       Figure 4.2 System Structure of Floating Content Application 



43 

 

Figure 2 illustrates an overall structure of a mobile node. Such a system 

offers reliable communication mechanism: sending message to any mobile 

phones around, and the message content is possible to reach to other users if 

the receiver forwards it within its lifetime. 

The local data center is made up of three individual database tables and 

storage space, separately used to describe and keep created messages, 

received messages and saved messages. Separate data centers work as a 

whole but make the message operations more flexible. Android devices 

normally provide both database and storage support thus making the data 

operations quite convenient and greatly reliable.  

Creating a Floating Content message makes an insertion to the created data 

center. Also the file included in this message will be copied to the created 

storage space. All the created messages share the identical parameters with 

their recipients. Content can be deleted, and it will not affect the messages 

copies in their defined lifetime. However, if a user deletes an own-created 

message, the message will not be replicated anymore. Once the TTL of the 

created message expires, all the copies including the original message will be 

removed from their data centers automatically. 

A Floating Content message acquired from other mobile node will show up 

in the specific part of the data center for received messages if the recipient 

has subscribed to the exact service attached to the received message. They 

can be read by the user from the user interface. If the service is not 

subscribed, the message will neither be inserted into the received data center 

nor be delivered to the front end but simply be discarded. This process is 

carried out in the background and user will not even notice it. 

In addition to that, the received messages can be saved for further use when 

the recipients are reading them. Once saved, TTL will not be able to affect 

the status of the messages in the saved data center anymore. However, this 

will not affect the operations in the received data center. Any message in the 



44 

 

received data center will only be available when the left valid time TTL is a 

positive value. Expiration will lead a deletion of the certain received message 

copies, removals from both database record and the actual attachment file 

from the local storage. Manual deletion is also allowed for received copies. 

However, the action does not affect anyone else except for the copy holder 

itself. 

Users of the application are able to subscribe to certain predefined services 

attached to Floating Content messages. Once subscribed, the application will 

be able to deliver certain messages to the front end. If no service is 

subscribed, the messages attached with default service will be delivered to 

the users. 

 

          4.2 Message Format  

 

The basic format of a message used in the Floating Content Application is 

shown in Figure 3 below. 

                 

AppTag Timestamp TTL

Service Text

Attachement

 

                       

                Figure 4.3 Message Format of Floating Content Application 



45 

 

Each part of the message is a variable of a certain data type. There is no limit 

to the length of any message part. The octets are shown here for convenience 

in representation. 

AppTag is the unique identifier to distinguish Floating Content messages. It 

can be used to refer to the specific messages in the data centers. Each 

message the application receives will have the AppTag checked to avoid 

duplicated messages.  

Timestamp is the system time when the message is created and sent. It can be 

used to uniquely identify the message and as an index for the database 

operations. Timestamp is a “double” type value. 

TTL (Time-To-Live) is the time period length after which the corresponding 

message will become invalid. The bubble color will change along with the 

decrease of TTL. It is an “int” type variable without limit. However, for the 

Floating Content service, the larger TTL will lower the receiving priority of 

messages. 

Service is an interest-based parameter used to subscribe only for interested 

categories of messages, thereby cut down the unnecessary and unwanted 

information. Plus, different bubbles associated with different services will 

show in the window according to the message categories. Service is a 

variable value of String type. 

Attachment and Attachment Name together defines the file-specific part. 

User can attach the files from local storage and send it out together with the 

text message. Currently only image attachments are supported. 

Message is the text message content as typical messengers use. There is no 

limitation to the text length. However, it is not encouraged to make the 

content too lengthy. 

 



46 

 

           4.3 Application methods  

 

Based on the Floating Content API, we make a further development and 

create essential functions to be compatible with the Android environment.  

A. send(Message msg) 

Create a Floating Content message with an expiry time limit and anchor 

zone. Insert the message data it to the created data center. The 

parameters include a unique message ID, data payload comprised with 

text message content, attachment file and information related to the file, 

the lifetime length TTL, and a message service. Right after this method is 

invoked, the application will make a copy to anyone else it meets within 

the anchor zone of this message. 

B. delete(String appTag) 

It is a local operation used to remove messages which are not any longer 

useful to the users from a specific local data center. The deleted 

messages will not be available to view or for further use. Deletion of 

received messages will not affect other message copies as long as the 

messages are in their defined lifetime. However, if a user deletes an own-

created message, the message can not be replicated anymore. 

C. save(Message msg) 

Keep a local copy of any available received message to the saved data 

center for later use. Saved messages will not be removed from the saved 

data center due to TTL expiration or because the creator is stepped out of 

the valid message range but only be deleted manually by the user. 

However, this action does not affect the operations in the received data 

center or any other ongoing operations. 

 



47 

 

D. subscribe(String service) 

Register the given application services in the system for filtering the 

incoming Floating Content messages that only match the corresponding 

subscribed services. There are several predefined services such as sports, 

movie, music, etc. that the users can choose to follow. Self-defined 

category is not supported at present. If no service is specified, the default 

service is assigned to the message. 

E. get functions 

When receiving messages and doing other local operations, getters can 

be used to acquire and display messages as well as message-related 

information when the user feels like looking it over during its valid time. 

Normally this will happen automatically as long as the application is 

running and Floating Content messages come. 

F. set functions 

When creating a message, configure the message parameters when 

creating a Floating Content message. Users can decide what content they 

are going to send and which service a message belongs to by adopting 

some setters. When receiving a message, there are setters mainly used for 

the user interface, value assignment and attachment display. 

G. update 

Refresh the user interface by inquiring the local data center. There are 

two ways of doing update. Automatically update every other certain time 

period. Manual update is also supported by press update button in the 

main user interfaces. 

 

 

 

 



48 

 

4.4 Action Flow        

 

                   

      

Subscribed?

Message 
received

No

Discard

Yes

Data stores in 
received data 

repository

Message 
sent out

TTL expired?

Message 
created

Data stores in 
created data 

repository

No

Yes

Delete

TTL expired?
No

Yes

Delete

Data stores in 
saved data 
repository

Application starts

Service 
engine starts

Save

 

 

                   Figure 4.4 Action Flow of Floating Content Application 

 

 

The figure (Figure 4.4) above simply describes the action flow since the start 

of the application. 



49 

 

When the application firstly starts, it will initialize the app engine and try 

to connect the server. Once they are connected, the app engine starts to 

receive messages, according to the subscription list stored in the local 

database, the engine decides whether or not to put the received message into 

the local buffer. The server keeps checking if the message in the buffer is 

expired and executes deletion. If the received message is saved, it means it is 

persisted in the local data repository and will not be deleted because of TTL 

expiration. 

 

When a message is created, while sending it out, it makes a local copy for 

that message and stored in the local data repository. It will be deleted 

according the TTL mechanism as well. However, this is extremely 

convenient for resending a message. 

 

        4.5 User Interface 

 

The importance of creating a good user experience in order to achieve better 

services has grown in prominence over the past years. Essentially, users need 

to find what they want, when they want it, with minimal complexity and to a 

satisfactory quality. Therefore, to achieve a good user experience, one of the 

most important standards is to build a user friendly interface. Apple, as a 

typical example, has been doing a very good job in providing smooth user 

experience thus achieved crucial success in the initial mobile market.  

For DTNs, most research results are limited in a lab environment. Some tries 

were kicked off into the application market and got people’s attention 

through research conferences and workshops, such as GRID [25], a DTN-

based local social application. 



50 

 

The UI design differs a lot depending on the service platform the application 

is running on. For mobile phones, the design can be even harder than any 

other platform like PC or tablet because of its quite small screen size and 

restricted means of expressing.  

The target devices are mobile phones with different screen sizes. On small 

devices, a list of messages make it hard for the users the find what they want 

when they need. For those who have an eye-sight issue, this becomes even 

worse. In addition, considering the characteristics of Floating Content service, 

especially the status changes according to TTL and distance from the 

originating point, the list-pattern UI can affect the expression of Floating 

Content service in a bad way. 

Based on those above, changing the traditional messenger UI into more 

visual emphasized might bring a better and easier user experience for both 

searching and reading Floating Content messages. 

          4.5.1. Design  

 

The main idea and motivation of our user interface design is to make this 

application easy to use, thus introducing DTN technology into people’s daily 

life and making convenience to them. Besides, a creative design theme can 

make the application look good. 

Considering the service name “Floating Content” and convenient way to 

display messages, the whole design is based on “floating bubble” theme. 

Each bubble stands for a Floating Content message. Bubbles differ because 

of their services and message status – the distance between the current 

location and the originating position, the left lifetime of the message. Bubble 

shows and disappears in the main windows so that users can easily access to 

the actual message content by one or two clicks. 

 



51 

 

A. Programming Language 

The programming language used for the design is Java and XML. Java is 

used for the functionalities while XML is used for the interface. Over 

two thousand lines of code are implemented. The mostly used libraries 

include both J2SE library (e.g. List, Map, String, File) and Android 

library (e.g. Activity, Service, SQLiteOpenHelper, AnimationDrawable). 

The specific structure and descriptions for each class of the source code 

are listed in Appendix A. The list and descriptions for the xml files are 

listed in Appendix B. 

B. Different Bubbles 

The bubbles are the main elements in the main tabs. Each bubble is made 

up with a transparent bubble and a colored action picture in the middle of 

the bubble. The purpose is to make the bubble easy to recognize even 

when the users take a quick glance at the interface.  The action in the 

middle is decided by the message service. The color of the action picture 

can be green, red, or blue, according to the message status. This is also 

designed for the user to distinguish the messages in a visual manner. 

C. Bubble Color and Message Status 

Each bubble displaying in the user interface represents a Floating 

Content message. The message status keeps changing according to the 

ratio Tr between the left valid time ttl and the total life time TTL of the 

message. 

                                         Tr = ttl/TTL 

The bubble color changes according to message status when the next 

update is triggered, automatically referring to the update period or 

manually by the user. The initial bubble color is green, and then changes 

into blue after 33% of the time consumed, then red when there is only 



52 

 

33% life time left. Once Tr reaches 0 (which means ttl reaches 0), the 

message is deleted and the corresponding bubble also vanishes from the 

user interface. 

D. Usage 

Creating and editing a Floating Content message is basically similar 

like the typical mobile text messengers originally integrated in the 

mobile phones people normally use. All the technical issues are hidden 

behind the view. Even the users have no idea what DTN is neither what 

Floating Content service is, they can still make use of floating bubble 

application just like using a normal text messengers, without worrying 

about the fact how the messages are transferred. By simply clicking the 

bubble displayed in the main interfaces, the user can get messages they 

have, which is more interesting than the traditional plain text interface. 

As a consequence, users do not need to worry the operation changes at 

all. Instead, it’s easier and more fun to use this application. 

Due to the necessity of location information, before any Floating Content 

messages are received or sent, the user is required to make sure that the 

GPS service on the mobile phone is activated and it must keep running as 

long as the application is running. 

 

4.5.2   Screenshots 

 

Figure 4.5 shows four screenshots of the application. The first and 

second are the main tabs of the application, displaying messages as 

bubbles with animations in the background. The third is the subscription 

page where user can subscribe or unsubscribe to the specific service(s). 

The last one is the message viewer where the message content is 

displayed. 



53 

 

                                                                                                  

 

 

                                           

 

                                        Figure 4.5 Floating Content Application Screenshots 

 



54 

 

        4.6 Summary 
 

In this Chapter, we have presented our application design and implementation 

for Floating Content service. The system architecture is introduced in detail. 

The message is made up with certain message format, and the functionality of 

each part is studied. Some application methods can be used to operate the low 

layer protocols thus making it Floating Content application. We also presented 

the action flow of the application, showing how the application operated in the 

program and the relationships among different methods and operations. In 

addition to that, we have stated the motivation and final design of the user 

interface. We introduced the application specific issues and usage of it. Finally, 

we presented the screenshots of the main user interface. In next chapter, we 

will carry out the test and try to have a deep understanding about Floating 

Content service through a real-life scenario. Also, we are going to find out the 

issues we still need to improve and care about. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

        Chapter 5 

 

      Test and Evaluation 

 

Software test is an essential step to provide the information about the quality of the 

product or service both during and after the development stage. The process includes 

executing a program or application with the intent of finding software bugs. Then the 

developers can fix them before the product is released. Nowadays, there is even a third 

way to do it. Some tests those define code requirements are written before the 

development starts. Passing the tests later on confirms correct behavior as developers 

evolve and refactor the code. The most famous one is TDD [26]. No matter when the 

tests are carried out, they are playing a very crucial role in the whole process of 

software development.    

Before the test started, there should be a set of requirements or expected performance 

ready in mind or in document. Then, the developers are supposed to decide the test 

environment, for example in which scenario, on which platform, which tools to use, etc. 

Once the test environment is set up, the real tests can be started. With the test results, 

developers can evaluate the performance through a series of evaluation processes and 

based on certain standards. 

In our work, the main target is to evaluate the feasibility and performance of Floating 

Content application in a real life environment. By activating the application in two 

mobile phones, we can see how the application is running and how friendly is the user 

experience. However, because of limited resources, the tests are carried out in a limited 

range of area instead of the whole city as it is in the simulation environments. 

 



56 

 

5.1 Test Environment  

 

We adopt two HTC Nexus One [27] phones with Android 2.3 Gingerbread [28] 

operation system installed in as our test bed. In addition, each phone support 

and has originally installed SQLite [29] relational database. 

 

5.1.1 Mobile Platform 

 

Android is a powerful software stack for mobile devices that includes an 

operation system, middleware and key applications. As an open source 

platform, it empowers developers to contribute to its development and build 

applications on the basis of its API to the Android Market as well choose any 

kind of revenue model (freeware, shareware, ad-driven, paid applications, etc.) 

they want. For the manufacturers, no licensing or royalty fee is charged by 

Google, thereby dramatically decreases the R&D and maintenance cost. 

With benefits to the users, developers, manufacturers, Google itself and the 

whole mobile industry, Android has been growing during the past few years 

and become the largest mobile platform all over the world. [30] 

 

           5.1.2 Database 

 

SQLite is a public-domain software library that implements a lightweight 

relational database management system. It does not have a client/server 

architecture which is built in most large-scale database systems. The entire 

database engine is integrated into the application that needs to access a 

database and the database itself is packaged in a single file containing the 



57 

 

layout as well as the actual data in different tables. Besides, from an end-user 

standpoint, SQLite requires nothing to install and configure.  

All these simplicities make SQLite lie deep within nearly every mobile OS to 

store user-defined data records and to process data queries and delete. Android, 

as one of the mainstream mobile OSs, assuredly has a built-in SQLite database. 

[25] 

 

5.2 Test Result and Evaluation 

 

In a Wi-Fi area, two mobile phones with Floating Content service installed are 

used to communicate. After all, this topic is not to deploy a systematic testing 

environment. Therefore, only two phones are used to test the basic performance 

of Floating Content service in a real world environment and the user interface 

operations as well. 

Through the test, we learn that the text messages are fully supported. The 

messages float in the time length of TTL defined in the message. The bubble 

color changes according to the validity time left of the corresponding Floating 

Content message.  Only messages of subscribed services can be received while 

the unsubscribed are filtered.  

Several files are attached in the messages (each message is allowed to carry 

one file) for testing as well. Figure 5.1 shows the data we collected from the 

tests, roughly illustrating the time consumption for transferring files of 

different sizes.  

From the data, we can see that between two devices, the transmission speed 

using Floating Content service is similar with the actual Wi-Fi speed, and in 

this case, it is roughly 1MB/s. (The time recorded is in second-level, so the file 

smaller than 1MB takes still 1 second) 



58 

 

        

Tr
an

sf
er

 T
im

e 
(S

ec
o

n
d

)

0 1 2 3 4 5 6 7 8 9 10

Size of Attachement File (MB)

4

0

1

2

3

9

5

6

7

8

12

10

11

 

    Figure 5.1 Transfer Speed of Floating Content Service between Two Devices 

 

5.4 Summary 

 

In this chapter, our main work is carrying out the tests to prove the feasibility 

of Floating Content service and learn about the user experience through 

practice. Since the target of this thesis is not to build a systematic testing 

environment. Hence we adopted only two mobile phones to evaluate the 

feasibility of Floating Content service in a real world environment, meanwhile, 

testing the operations of the user interface. The test results show that the text 

messages are fully supported and able to float for a certain time according to 

the TTL definition. The user interface is quite easy to use and convey the 

concept of Floating Content. The transfer speed is more or less same as the 

actual Wi-Fi speed while communications only happen between two devices. 

 



59 

 

         Chapter 6 

 

       Conclusion and future work 

 

6.1 Conclusion 

 

In this thesis, we have mainly analyzed Floating Content, a DTN-based 

localized information sharing service exclusively dependent on mobile phones 

and other mobile devices. A user friendly mobile application with Floating 

Content service integrated is the main contribution that can benefits the users 

by providing an opportunistic communication mechanism even in an extreme 

environment, as well, decreases the security and privacy worries to the lowest. 

Based on the test results from various real life scenarios, the proposed floating 

bubble application based on Android platform appears to be user friendly and 

useful for information sharing especially in urban areas. 

Before the application is implemented and tested, preliminary work is carried 

out to provide a theoretical support and fundamental conditions. Initial 

theoretical demonstrations help us have a certain understanding of DTN 

technology, an overlay designed to deal with frequent disconnections. With 

different assumptions from traditional Internet, DTN has a different 

architecture that makes the working mechanism quite different. BP, the core 

protocol used in DTN communications, is introduced along with different 

routing mechanism and security considerations. 

Floating Content service, as the key concept of our application, is built on the 

basis of DTN technology. Based on the service model, we analyzed the system 

operations and studied Floating Content protocol, which defines the message 



60 

 

format and rules for exchanging Floating Content messages among mobile 

nodes. 

After the theoretical studies, we start evaluation and implementation. It takes us 

4 major steps in total to make sure the application is feasible and user friendly.  

Firstly, we run several simulations with ONE simulator [18] to evaluate the 

feasibility and performances by introducing different parameters and models. 

In addition, the location error is introduced to evaluate the effect it brings to the 

performance. The results show that Floating Content service is totally feasible 

with the easily reachable requirements in typical urban environment and the 

location error has very limited influence to the overall performance of Floating 

Content application.  

Secondly, the API built upon DTN and used for Floating Content service 

realization is studied. With the API, we are able to further develop it to make it 

more suitable for our application.  

Thirdly, the implementation is carried out based on the simulation results and 

API. The application is designed to make it easy to use and user friendly. It is 

implemented on Android platform because of its open source nature and 

absolute largest market sharing which makes it possible to popularize this 

application and Floating Content service.  

Finally, the application is deployed in a test environment and tested. From the 

testing results, we can see that the Floating Content service is feasible in a 

simple real world environment. It is able to make use of wireless network to 

achieve a basic communication. The transfer speed between two nodes is 

similar with the Wi-Fi speed. The user interface is easy to use and able to 

convey the concept of Floating Content. 

 

 



61 

 

6.2 Future Work 

 

This application is focused only on the implementation of Floating Content, an 

infrastructure-less DTN service. Infrastructure-based network is totally ignored 

in our case. However, taking advantage of existing Internet service would also 

be needed in some scenarios. Integration Floating Content service together with 

traditional Internet messaging functionalities can make this application even 

more useful. Thus users can switch between these two modes easily according 

to their needs in certain scenarios. Hence this would be a direction to look at in 

the future. 

The test is carried out only between two devices in this thesis to illustrate the 

feasibility of Floating Content service in a real world scenario. However, this is 

not enough to find out the performance details. In the future work, deploying  a 

systematic testing environment in the urban area is valuable to find out more 

about Floating Content service and make improvements. 

In addition, this application is developed on Android OS, it would be nice if it 

can be implemented also on other platforms, for instance, Apple iOS, Windows 

Mobile OS, etc. As long as Floating Content service is implemented in 

different mobile platforms, even more complicated direction would be making 

it cross-platform. Then users are able to communicate with Floating Content 

service regardless of the platform issues.  

 

 

 

 

 



 

 

Bibliography 

 

[1] John Lovett, “Beyond Surface-Level Social Media, Using Analytical Assets 

for Generation-Next Marketing, March 2012.  

 

[2] Alcatel-Lecent, “Alcatel-Lucent Eco-Substainable Wireless Solutions, 

Leveraging the value of green”, 2009. 

 

[3] Abbas Jamalipour, “An Introduction to Wireless Mobile Internet”, in The 

Wireless Mobile Internet: Architectures, Protocols, and Services, 2003.  

 

[4] Forrest Warthman, “Delay-Tolerant Networks (DTNs), A Tutorial”, May 

2003. 

 

[5] J. Kangasharju, J. Ott, and O. Karkilahti, “Floating Content: Information 

Availability in Urban Environments,” in Proc. of IEEE Percom 2010, Work in 

Progress session, March 2010. 

 

[6] J. Ott, E. Hyytiä, P. Lassila, T. Vaegs, and J. Kangasharju, “Floating 

Content: Information Sharing in Urban Areas,” in IEEE Percom 2011. 

 

[7] Chris DiBona, Sam Ockman, “Open Source, Voice from the Open Source 

Revolution”, O’Reilly Media, January 1999. 

 

[8] Adrian Holzer, Jan Ondrus, “Trends in Mobile Application Development”, 

Mobile Wireless Middleware, Operating Systems, and Applications - 

Workshop, Springer Berlin Heidelberg, 2009. 



 

 

[9] Martin W. Murhammer, Orcun Atakan, Stefan Bretz, Larry R. Pugh, 

Kazunari Suzuki, David H. Wood, “TCP/IP Tutorial and Technical Overview”, 

October 1998. 

 

[10]  K. Scott, S. Burleigh, “Bundle Protocol Specification”, 2007. 

 

[11] Internet Research Task Force, “Delay-Tolerant Networking Architecture”, 

April 2007. 

 

[12] Kevin Fall, “A Delay-Tolerant Network Architecture for Challenged 

Internets”,  Proc. SIGCOMM 2003, August 2003. 

 

[13] Loren Clare, Scott Burleigh, Keith Scott, “Endpoint Naming for Space 

Delay / Disruption Tolerant Networking”, in Aerospace Conference, 2010 

IEEE, March 2010. 

 

[14] Kevin Fall, Wei Hong, Samuel Madden, “Custody Transfer for Reliable 

Delivery in Delay Tolerant Networks”, Technical Report IRB-TR-03-030, Intel 

Research Berkeley, 2003. 

 

[15] Jian Shen, Sangman Moh, Ilyong Chung, “Routing Protocols in Delay 

Tolerant Networks: A Comparative Survey”, in The 23
rd

 International 

Technical Conference on Circuits/Systems, Computers and Communications, 

July 2008. 

 

[16] Tracy Camp, Jeff Boleng, Vanessa Davies, “A Survey of Mobility Models for Ad 

Hoc Network Research”, Wireless Communication & Mobile Computing (WCMC): 

Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, vol. 2, 

no. 5, pp. 483-502, 2002. 

 



 

 

[17] E. Hyytiä, J. Virtamo, P. Lassila, J. Kangasharju, and J. Ott, “When does 

content float? characterizing availability of anchored information in 

opportunistic content sharing”, in IEEE INFOCOM, Shanghai, China, April 

2011. 

 

[18] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN 

Protocol Evaluation”, in SIMUTools ’09:Proceedings of the 2
nd

 International 

Conference on Simulation Tools and Techniques, NewYork, NY, USA: ICST, 

2009. 

 

[19] Sheldon Ross, “Probability and Statistics for Engineers and Scientists 

Fourth Edition”, USA, 2009, pp.206-223. 

 

[20] K. Krishnamoorthy, “Handbook of Statistical Distributions with Applications”, 

Chapman & Hall/CRC, Boca Raton, 2006. 

 

[21] Ed Burnette, “Hello Android, Introducing Google’s Mobile Development 

Platform”, May 2008. 

 

[22]  J.F. DiMarzio, “Android, A Programmer’s Guide”, USA, 2008.  

 

[23]Boost Mobile, “Android OS 2.1 Éclair”, September 2011.  

 

[24] J. Ott and J. Kangasharju, Opportunistic Content Sharing Applications, in ACM 

MobiHoc NOM workshop, June 2012. 

 

[25] Karthik Budigere, Binoy Chemmagate, Junxi Yin, Eero Martela, Markus Nurminen, 

Ankit Kumar, Richa Khera, Nutan Sawant, “GRID: A DTN based Localized Social 

Networking and Messaging Application”, In Proceedings of the 6th ACM workshop on 

Challenged networks (CHANTS '11) at Las Vegas, USA, 73-74. 



 

 

[26] David Janzen, Hossein Saiedian, “Test-Driven Development: Concepts, 

Taxonomy, and Future Direction”, IEEE Computer Society, September 2005. 

 

[27]Google, “Nexus One, User’s Guide”, March 2010. 

 

[28]Motorola Mobilty, User Guide-Android 2.3(Gingerbread), 2011. 

 

[29]  Jay A. Kreibich, “Using SQLite”, USA, 2010. 

 

[30]Adrian Holzer, Jan Ondrus, “Mobile Application Market: A Developer’s 

Perspective”, Telematics & Informatics, Feb 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix A 

 
 

           Source Code structure and Descriptions 

 
 

fi.tkk.netlab.dtn.floatingcontent.db

-Database.java

Handling the data storage for subscription list

fi.tkk.netlab.dtn.floatingcontent.util

-BubbletUtils.java

    Handling bubbles, for example bubble color changes

-FileUtils.java

    Local file operation tool kit

fi.tkk.netlab.dtn.floatingcontent.ui

-FloatingContentApplicationMain.java

    The main class to run when the application starts, it is used to do some initializations

-BackgroundService.java

    The main service class implements the Floating Content features

 



 

 

-MessageViwer.java

    Abstract class used to be inherited for different message views

-ReceivedTab.java

    The tab displays the received message bubbles

-ReceivedMessageViewer.java

    The sub class of MessageView.java and shows the received message content

-CreatedTab.java

    The tab displays the created message bubbles

-CreatedMessageViewer.java

    The sub class of MessageView.java and shows the created message content

-SavedTab.java

The tab displays the saved message bubbles

-SavedMessageViewer.java

    The sub class of MessageView.java and shows the saved message content

-SubcriptionTab.java

The tab displays the available subscription services with checkboxes

 

 

 

 

 



 

 

Appendix B 
 

 

XML File List and Descriptions 
 

 

-main.xml

    The main ui container which contains the three tabs

-received_tab.xml

    The tab for displaying the received message bubbles

-own_tab.xml

    The tab is made up of 2 sub tabs, created_tab and 

saved_tab

-created_tab.xml

    The tab for displaying the created message bubbles

-saved_tab.xml

    The tab for displaying the saved message bubbles

-subscription_tab.xml

     The tab ui is made up of a list of checkboxes

-checkbox.xml

    The stylesheet for each checkbox

-single_bubble.xml

    The stylesheet for each bubble

-message.xml

    The stylesheet for the message content

 


