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The aim of this research is to model resistive losses in induction motors. The resistive losses 

in the form-wound stator windings of induction motors were modelled by using time-
discretized finite element analysis (FEA) and circuit models. Loss modelling with a high level 
of accuracy by means of FEA can be used in the demanding design of electrical machines, 
typically for high-power and high-speed induction motors in spite of its high computational 
cost. Alternatively, the equivalent circuits served as a cheap computational tool for the rapid 
estimation of the resistive losses of 37-kW and 1250-kW machines for motor drives without 
using the machine data, typically the machine structure and materials. 
 
 
Electromagnetic losses lead to a temperature rise in electrical machines. As a result, 
temperature rise analysis is required to check whether the induction motors that are designed 
fulfill the IEC standard or design constraints. Thermal analysis employs FEA or a thermal 
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Method Magnetics - a public domain code - was used to analyse the temperature rise of the 
form-wound stator windings of a 1250-kW induction motor. The thermal network was used in 
the thermal analysis of a 300-kW high-speed motor using form-wound stator windings. After 
the loss and thermal information have been collected, the losses in the stator form-wound 
windings of the induction motors are minimized in collaboration with temperature rise 
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List of symbols and abbreviations

Symbols

The underlined symbols are complex-valued quantities.
Aew1 end-winding cooling area [m2]

B12, B11 width of a stator slot [m]

bss width of a slot insulation in the random-wound winding [m]

D cross-sectional diameter of a coil [m]

D12 inner diameter of the stator core [m]

Dc cross-sectional diameter of the conductor in the coil [m]

Dwo end-winding outer diameter [m]

H1 height of a stator slot [m]

H13 height of conductor part in a stator slot [m]

h heat transfer coefficient [W/(m2K]

had additional height between two winding layers [m]

hc, hsc height of a conductor bar [m]

hib height of a bar insulation [m]

hsb distance from the top bar to the air gap [m]

iest stator current estimated from the equivalent circuit in Figure 3.8 [A]

ir total rotor current [A]

ikr1 rotor current of the first branch in general reference frame [A]

ikr2 rotor current of the second branch in general reference frame [A]

ikr3 rotor current of the third branch in general reference frame [A]

is stator current [A]

iks stator current in general reference frame [A]

Le self-inductance resulting from eddy current effect [H]

Lm magnetizing inductance [H]

Lr1 self-inductance of the first branch [H]

Lr2 self-inductance of the second branch [H]

Lr3 self-inductance of the third branch [H]

Lσs stator leakage inductance [H]

lend coil length outside the form-wound stator [m]

lend−r coil length outside the random-wound stator [m]

N1 number of coils in a slot

Ns number of stator slots

Pst stator resistive loss of the motor [W]

Prt rotor resistive loss of the motor [W]

Pt total resistive loss of the motor [W]
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ploss power loss density [W/m3]

R9 upper convection thermal resistances [K/W]

R10 lower convection thermal resistances [K/W]

Re resistance resulting from eddy current effect [Ω]

Rew1 axial thermal resistance in the end-winding region [K/W]

Rew2 radial thermal resistance in the end-winding region [K/W]

Rr total rotor resistance [Ω]

Rr1 rotor resistance of the first branch [Ω]

Rr2 rotor resistance of the second branch [Ω]

Rr3 rotor resistance of the third branch [Ω]

Rs stator resistance [Ω]

Rsw1 radial thermal resistance [K/W]

Rsw3 tangent thermal resistance [K/W]

T temperature [K]

T0 ambient temperature [K]

Te electromagnetic torque [Nm]

ur rotor voltage [V]

us stator voltage [V]

uks stator voltage at general reference frame [V]

wib width of a bar insulation [m]

wis width of a slot insulation [m]

wsc width of a conductor bar [m]

Zc1 end-ring impedance of the first branch [Ω]

Zc2 end-ring impedance of the second branch [Ω]

Ze the small-signal impedance of the motor in the stator reference frame [Ω]

Zie imaginary part of impedance from the circuit [Ω]

Zim imaginary part of impedance from the FEA data [Ω]

Zre real part of impedance from the circuit [Ω]

Zrm real part of impedance from the FEA data [Ω]

Δ a small-signal perturbation of a variable

λ thermal conductivity [W/(m.K)]

λw thermal conductivity of conductor [W/(m.K)]

ψ
s

stator flux linkage [Wb]

ψ
r

rotor flux linkage [Wb]

ψk
s

stator flux linkage at general reference frame [Wb]

ψk
r1

rotor flux linkage of the first branch at general reference frame [Wb]

ψk
r2

rotor flux linkage of the second branch at general reference frame [Wb]

ψk
r3

rotor flux linkage of the third branch at general reference frame [Wb]

ωk angular frequency at general reference frame [rad/s]
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Abbreviations

2D, 3D two-dimensional, three-dimensional

ac alternating current

dc direct current

DC. Res. Loss dc resistive loss

DE differential evolution

FE finite element

FEA Finite Element Analysis

FEMM Finite Element Method Magnetics - public domain code

FRF frequency response function

GA genetic algorithm

PAM pulse amplitude modulation

PI proportional integral

PSO particle swarm optimization

PWM pulse width modulation

rms root mean square

sin sinusoidal

Total. Res. Loss total resistive loss
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1. Introduction

1.1 Background

Inverter-fed electrical machines are widely used in industrial sectors. They

operate at high efficiency when supplied by frequency converters. How-

ever, even a minor improvement in their performance would significantly

reduce the transferred energy losses. The magnitude of these losses can

be greatly affected during either the design or use stages of the electri-

cal machines. Within the design process, a machine can be structurally

optimized to reach the minimum losses. For end users, optimal controls

reduce the losses in the machines. In both approaches, the modelling and

optimization of electromagnetic losses in electrical machines remain ex-

tremely demanding.

Computational methods for modelling electrical machines have been de-

veloping explosively for many decades. Their applications range from de-

signing to controlling electrical machines. Among these methods, finite el-

ement analysis (FEA) has served as a powerful tool to model complicated

phenomena in electrical machines, for instance, eddy-current or satura-

tion problems. The collection of sufficient information from the modelling

supports the optimization process in the design stage. However, FEA

modelling requires detailed data on electrical machines, and it is time-

consuming. Being a faster tool, circuit models are a simple method to

predict losses in electrical machines. During the use stage, for instance

in motor drives, a controller usually communicates with an electrical ma-

chine via a circuit model representing the machine. The PI gains of the

current controller are calculated from the electrical parameters and sys-

tem bandwidth. Appropriate circuit models for the machines allow the

drive systems to operate at their highest performance levels. Moreover,
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optimal controls use the parameters to define electromagnetic losses and

torque via analytical functions.

Electromagnetic losses, typically resistive and core losses, lead to a tem-

perature rise in electrical machines. Thermal analysis is a prerequisite

in any design of electrical machines. Temperature constraints are also

stated in the international standards. Therefore, temperature rise anal-

ysis and electromagnetic modelling cooperate in the design stage. FEA

is a tool for accurate thermal analysis. The optimization of an electrical

machine requires up to thousands of thermal calculations. Thermal net-

works, a simpler and faster model compared to FEA, seem to be a suitable

tool for checking the temperature rise constraints in the optimization in

the design stage.

To reduce the electromagnetic losses, contemporary optimizations of elec-

trical machines mainly concentrate on an optimal structure for the ma-

chine rotor. The machine stator using traditional random-wound wind-

ings costs less and is assumed to be optimal. However, the challenges in-

volved in the modelling of the eddy currents in random-wound windings

may cause an underestimation of the stator losses in the design stage.

Contrary to random-wound windings, form-wound windings made of rect-

angular conductors have robust structures and high reliability, but they

are expensive. The resistive losses in form-wound windings have been

well modelled in the recent research. The good design of the machines is

assisted by sufficient information being obtained from the modelling. In

specific applications, such as high-speed machines for air compressors or

gas pumps for undersea use, the savings resulting from reliable operation

outweigh the initial investment costs. The cost will be further reduced by

a minimum loss design for the stator form-wound winding.

Loss minimization in machine designs, a main objective of the mod-

elling of electrical machines, normally involves optimizations and con-

straint checking. If the problem has many variables, the optimization

will consume a lot of time. It is necessary to eliminate unimportant vari-

ables from the optimization to reduce the design cost. For the same pur-

pose, the design constraints, for instance, thermal constraints, should be

checked rapidly for a possible solution during the optimization.

12
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1.2 Aim of the work

The main objective of this study is to model the resistive losses of in-

duction motors in the design and control stages, taking the interaction

of frequency converters into account. A sub-task is to develop a method

to reduce the losses in electrical machines. To obtain sufficient loss in-

formation in the design stage, time-discretized FEA is used to model the

resistive losses in form-wound induction machines. On the basis of a tem-

perature rise, the structure of the form-wound stator windings is adjusted

to reduce the resistive losses, and in order to fulfill the IEC-standard

(IEC 60034-1 2004). To achieve fast modelling, equivalent circuit mod-

els are proposed and identified to model the resistive losses in electrical

machines. The parameters of the circuit are estimated over a wide range

of frequencies for applications in inverter-fed motors. Alternatively, the

parameters of a deep-bar induction machine are estimated from the mea-

sured stator voltages and currents in the time domain without using in-

formation on the structure and materials of the motor.

1.3 Scientific contribution

This section presents the scientific contributions extracted from Publica-

tions I to V.

It was found that the resistive losses are dependent on the harmonic

amplitudes and independent of the harmonic phases. Other than an ap-

propriate circuit model representing an induction motor, the loss predic-

tion for the motor does not require additional circuits to take the higher

harmonic effects into account.

A method to estimate the parameters of a triple-cage circuit in the time

domain is developed by using differential evolution. When the param-

eters of the circuit are accurately estimated, the triple-cage circuit well

represents a deep-bar induction motor in both the steady and transient

states.

An equivalent circuit for modelling the resistive loss in a form-wound in-

duction motor is proposed. The eddy-current losses in form-wound induc-

tion machines can be taken into account by adding extra circuit branches

to the T-equivalent circuit. A comparison of the performance evaluations

between the circuit model and time-discretized FEA shows a good agree-

ment with errors of less than 3 %.
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Sufficient information on the losses, combined with temperature rise

analysis, is required in order to have a good design for the form-wound

winding of a high-power motor based on the IEC standard (IEC 60034-1

2004). It was shown that the hottest spot in a form-wound stator is the

bar closest to the air-gap. When the distance from the stator bar to the

air-gap is increased, the resistive losses are reduced.

A co-simulation model is developed by combining an optimization and a

thermal network in Matlab and time-discretized FEA. The model is used

to minimize the resistive loss in the stator winding of a high-speed induc-

tion motor. The resistive losses in the stator are reduced by about 10 %

within certain limits of stator dimensions and temperature rise.

It was shown that the Taguchi approach (Roy 2001) can be used as an

optimization method for minimizing torque ripple in electrical machines

or for other purposes. To minimize the resistive losses in form-wound

stator windings, the approach cannot serve in that manner if the eddy-

current effects are taken into account. However, it can be used to deter-

mine which parameters are important for minimizing the resistive losses.

On the other hand, it helps to reduce the computational cost of the loss

minimization.

If eddy-current loss in the form-wound stator windings of high-speed

induction motors is to be minimized, it is important to consider the type

of the voltage supply. Depending on the voltage supplies, the optimiza-

tion tries to reduce or compromise between dc-resistive and eddy-current

losses in the stator winding.

1.4 Structure of the dissertation

The work is organised into 4 chapters. Chapter 1 introduces the back-

ground, motivation, and objective of the dissertation. The scientific con-

tribution and accepted publications related to the work are listed at the

end. Chapter 2 reviews up-to-date research in the literature related to

resistive loss modelling, parameter estimation, thermal analysis and op-

timization of electrical machines. Chapter 3 summarizes the methods and

main results that have been presented in the publications. Chapter 4 in-

troduces some discussions and conclusions.
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1.5 Overview of publications

The publications are summarised in this section as follows

Publication I

The effect of pulse width modulation (PWM) supply on the resistive loss

is studied for induction motors with a rated power of 45 kW and 1250

kW. It can be seen from the Fourier decomposition of a classic 4 kHz in-

verter supply that the 5th (250 Hz) harmonic and 79 th (3950 Hz) har-

monic voltages have the dominant amplitudes, and typically represent for

low and high frequency ranges of harmonics. These are superimposed on

the fundamental voltage to study the effects of the harmonic amplitude

and phase on the resistive losses of the motor. From the results of time-

discretized FEA, it is clear that the resistive losses are independent of the

harmonic phases, and proportional to the square of the harmonic ampli-

tudes. The behaviour of those machines seems to be a linear system at

high order harmonics. Within this work, the parameters of a triple-cage

circuit representing a deep-bar induction machine are estimated using

the impulse method (Repo 2008). The resistive losses calculated from the

circuit are compared to the losses calculated by the time-stepping FEA.

The estimation method is based on the transfer function in the frequency

domain, so the machine was required to be linearized within a certain fre-

quency range. The impulse method needs the estimation data of voltages

and currents from small excitation to be less than 10% of the fundamental

voltage.

Publication II

The eddy-current losses in the form-wound windings of high-power in-

duction machines were successfully modelled by Jahirul Islam (2010).

The eddy-current losses in a form-wound stator winding fed by a fre-

quency converter serve as the input for a temperature rise analysis using

the public domain code FEMM. The inhomogeneous distribution of the

eddy-current losses produces different hot spots in the stator windings.

The hottest spot is the top bar closest to the air-gap, and the coldest spot

in the stator winding is the innermost slot bar. However, the standard IEC

60034-1 proposes that the difference between the maximum temperature

and average temperature should be below 10 K. The distance from the

top bar to the air-gap has to be adjusted to reduce the eddy-current losses

in the form-wound stator winding, and then the machine being studied

15
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matches the qualification of the standard.

Publication III

To overcome the difficulty of using the estimation method in Publica-

tion I, a method for estimating the parameters of the triple-cage circuit

representing a deep-bar induction motor in the time-domain is proposed.

The data for the estimation consist of the stator voltages, currents and

speed. These can easily be measured by research groups or industry. The

parameters are estimated both in the steady state and transient state

by a curve-fitting technique using differential evolution. The estimation

method was verified by a comparison of the machine performances evalu-

ated by the circuit model and an existing tool - FEA. The variation in the

parameters related to the slotting harmonics in a non-skewed deep-bar

induction motor was shown in the study. The constant parameters of the

triple-cage circuit well represent the motor in the transient state when

the motor is started.

Publication IV

For a faster and simpler model to take the eddy-current effects into ac-

count, a circuit model was developed in this study. From the inhomoge-

neous distribution of resistive losses in the form-wound stator windings,

it was clear that a dc resistance is not sufficient to represent the ac re-

sistive losses in form-wound induction motors. The T-equivalent circuit

is modified by adding extra branches. The purpose is to increase the or-

der of impedance frequency response. The augmented circuit can take

the eddy-current effects into account. The total resistive losses calculated

from the circuit are compared to those from the time-discretized FEA in

Publication II to verify the feasibility of the proposed circuit.

The parameters of the circuit are estimated over a range of frequencies

(-200 to 200 Hz) so as to adapt any direction of the rotation as referred

to the stator reference frame. This allows the circuit parameters still

to remain valid for the higher harmonics from the frequency-converter

supplies. The data for parameter estimations are collected from FEA.

Publication V

To achieve a better performance for a high-speed induction motor using

form-wound stator windings, a loss minimization is required to improve

the performance of the form-wound stator windings. The electromagnetic
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losses are modelled by means of time-discretized FEA. It is quite time-

consuming if all the stator dimensions are varied in the optimization us-

ing data from the time-discretized FEA. To reduce the time consumption,

some dimensions should be omitted in the optimization if their effects on

the electromagnetic losses are small. The Taguchi approach is used to

analyse the effects of the variables on the electromagnetic losses. From

this evaluation, the number of variables for the optimization is deter-

mined.

The supplies for the motor during optimization using differential evo-

lution (DE) are pure sinusoidal and pulse amplitude modulation - PAM.

With the pure sinusoidal supply, the optimization reduces mainly dc re-

sistive losses when it increases the cross-sectional area of the copper bars.

The optimization with the PAM supply reduces the eddy-current losses by

increasing the distance from the top bar to the air-gap.
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2. Review of Relevant Research

Up-to-date research related to the work is reviewed in this chapter. The

modelling methods for predicting the resistive losses in electrical ma-

chines will be summarised from the point of view of modelling tools, typ-

ically FEA and circuit models. Thermal modelling related to the elec-

tromagnetic losses will follow next. Finally, optimization algorithms to

reduce the losses in electrical machines will be reviewed.

2.1 Modelling of resistive losses by finite element analysis

In general, resistive losses are the largest losses in electrical machines.

Since the beginning of FE modelling for electrical machines, stator resis-

tive loss has normally been modelled by a lumped dc resistance (Arkkio

1987). However, the dc resistances can only model the dc resistive losses

or homogeneously distributed losses in electrical machines. Therefore,

this cannot be an appropriate solution for modelling eddy-current losses

in the copper area of electrical machines.

In modern electric drives, electrical machines are fed by frequency con-

verters. It is necessary to take the losses of electrical machines under

multi-harmonic voltages into account (Yamazaki and Watari 2005), (Ya-

mazaki et al. 2009). The loss distribution of inverter-fed electrical ma-

chines was considered by Lee et al. (2004) and Liu et al. (2008). To study

the effect of PWM supply on the electromagnetic losses in the motor,

the authors used time-stepping FEA. The difference between the losses

caused by purely sinusoidal and PWM supplies was shown in Lee et al.

(2004). The important role of sufficient loss information in the design

stage was mentioned in the same research. In the report, dc resistance

stands solely for the resistive losses in the stator winding of an induction

motor. That means only the dc resistive loss in the stator winding.
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Lähteenmäki (2002) calculated the electromagnetic losses in high-speed

induction machines by using FEA. The measurements in the research

showed the difference between the measured and calculated losses to be

about 20%. The reason for this phenomenon is that the FEA modelling did

not take all the losses in the machines into account. Circulating current

losses and extra power losses were mentioned as the main problems in

the study. The role and selection of power supply for high-speed machines

were also discussed in the report.

To predict the losses of an electrical machine in its design stage suffi-

ciently well, Jahirul Islam et al. (2007) modelled stator resistive losses

in the form-wound stator winding of an induction motor using 2D time-

harmonic FEA. The stator resistive losses consist of the dc resistive loss

and eddy-current loss. The effects of magnetic saturation and nonlinear-

ity were taken into account in the time-harmonic FEA. Time-harmonic

FEA is time-efficient, but it is not suitable for modelling the losses in

inverter-fed motors. To include higher harmonic effects, Jahirul Islam

and Arkkio (2009) presented time-stepping FEA to calculate the stator

resistive losses in a high-power induction motor. Time-stepping FEA suc-

cessfully modelled the eddy-current losses when the motor was supplied

by a PWM voltage. As a consequence, time-stepping FEA rather than

time-harmonic FEA seems to be an appropriate solution for modelling the

resistive losses in electrical machines under inverter interactions.

In another approach, Gyselinck et al. (2010) modelled the eddy-current

losses in the form-wound stator winding using frequency- and time-domain

homogenization methods. FEA was used to take the skin and proximity

effects into account before the homogenization technique was used. The

resistive losses are computed in both the frequency domain and time do-

main. The eddy-current loss from a PWM supply modelled by FEA re-

quires sufficiently detailed finite elements. One more degree of freedom

of the homogenization technique is needed for an accurate calculation of

the eddy-current losses. The tools for the accurate calculation of the losses

are expensive, but they are necessary for designing high-performance ma-

chines.

The importance of resistive loss modeling means that it is still an at-

tractive topic for extensive research (Amara et al. 2010, Lubin et al. 2010,

Wu et al. 2012, Yamazaki et al. 2012). Stermecki et al. (2012) and Wro-

bel et al. (2012) developed 3D FEA to take the eddy-current effects into

account. The development of processors in recent years has allowed re-
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searchers to use 3D simulation for accurate calculation Lin (2010). The

additional losses of inverter-fed induction motors are shown in this report.

The research using 3D simulation rather focus on the eddy-current losses

in the structural parts and the end-winding than in the core region, where

2D FEA can well manage the loss prediction.

In brief, time-stepping FEA is recognized as an accurate tool for mod-

elling the resistive losses in the copper areas of inverter-fed electrical ma-

chines. Unfortunately, it is very time-consuming. In the design stage

of electrical machines, it may require up to thousands of FEA simula-

tions. The reduction of the time consumption involved in using the time-

stepping FEA remains a challenge.

2.2 Circuit modelling of electrical machines

Circuit models are an alternative option for modelling electromechanical

devices (Yamazaki 2002, Laldin et al. 2011). The modelling using the cir-

cuit model is not as accurate as FEA, but it significantly reduces the time

consumption of the modelling. In addition, it is not necessary to know the

motor structure and materials in detail. In a recent report, Li et al. (2010)

developed an adaptive circuit to model a Thomson-coil actuator. Each seg-

ment of the coil is modelled by an RL circuit to take the eddy-current effect

into account. The circuit model seems to be a promising approach simpli-

fying the modelling of electromagnetic phenomena in electrical machines.

In motor drives, circuit models are representatives of electrical machines

in the control systems. Within a drive scheme, the outputs of the PI

current regulators are reference voltages for inverters as in the analysis

by Briz et al. (2000). The PI gains of the current regulator are calcu-

lated from its bandwidth and the electrical parameters of the machines.

The motor manufacturers normally provide electrical parameters of T-

equivalent circuits at rated operating points. However, the users control

the motors at different operating points. The effect of motor parameters

on the motor performance was recently shown by Hwang et al. (2010). The

use of incorrect parameters may damage the performance of inverter-fed

motors.

Using the same approach, Sudhoff et al. (2002) mentioned the problem

of traditional d-q equivalent circuits for inverter-fed electrical machines.

The d-q circuit can only predict the fundamental current and average

torque. The circuit model in motor controls should be adaptive. The au-
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thors proposed an induction motor model to study the interaction between

the inverter system and the motor. The model can take the saturation ef-

fects into account by assuming the linkage fluxes as a function of currents.

The model was built up into integrated and complicated functions. To ap-

ply the model in a specific application, Sudhoff et al. (2003) simplified the

model into small-signal impedance and a steady-state equivalent circuit.

The model was well capable of representing the motor fed by an inverter

in predicting stator currents and torque ripple. However, the loss predic-

tion based on the circuit and the influence of the phase and amplitudes

of higher harmonics has not been studied yet. Although the procedure

to estimate the parameters for those circuits is still a challenging task

in experiments, those studies confirmed that the improvement of circuit

models under the effects of frequency converters is necessary for energy-

efficient electric drives.

Methods to estimate the parameters have recently been proposed as an

effort to improve the electric drive performance. From a motor structure,

Dolinar et al. (1997) and Stumberger et al. (1998) used FEA to calculate

the parameters for two-axis models of induction motors. In the same ap-

proach, Stumberger et al. (2001) paid more attention to the saturation

and magnetization under load conditions. Those methods required mo-

tor information, typically structure and material, in the design stage. To

take the skin effect in a deep-bar induction motor into account, Repo et al.

(2006) introduced a distributed circuit representing the motor. The pa-

rameters of the circuit were predicted by time-harmonic FEA. For electric

drives, Stumberger et al. (2004) and Sonnaillon et al. (2007) introduced

experimental methods to estimate a few parameters from the circuits rep-

resented for electrical machines. Recently, Repo (2008) presented dynamic

induction-motor models for motor controls. Estimation methods using an

impulse test and FEA were used to predict a large number of parame-

ters over a wide range of frequencies. The transfer functions in those

studies are suitable for the linear system in the frequency domain, as ex-

plained by Harnefors (2007) and Hinkkanen et al. (2010). In brief, the

limited parameters of a T-equivalent circuit may be experimentally iden-

tified in the time domain as shown in the literature (Stumberger et al.

2004). For a large number of parameters in the circuit, the motor is nor-

mally linearized in the frequency domain for the estimation. In up-to-date

research, there is a lack of methods in the literature to estimate a large

number of motor parameters in the time domain.

22



Review of Relevant Research

Bazzi and Krein (2010) reviewed up-to-date methods for minimizing the

losses in inverter-fed electrical machines. Almost all loss-minimization

algorithms have used parameters from the equivalent circuit to calculate

the electromagnetic losses. The inclusion of the stray-load losses on the

circuit model was studied by Boglietti et al. (2010). Additional resistance

in series with the stator impedance can model the effects of air-gap spa-

tial harmonics. The accuracy of the parameters is important for defining

the electromagnetic losses for loss-minimization and improving the per-

formance of electric drives. For the same purpose, Boglietti et al. (2011)

presented computational algorithms to predict the electrical parameters

of induction motors after designing a machine. It was necessary to have

the structure and material information of the machine for the estimation.

Gieras and Saari (2012) proposed a method to evaluate the performance

of high-speed induction machines that was also based on the electrical

parameters, using machine data available at the design stage. So far, the

eddy-current loss has been treated as negligible by assuming a single dc

resistance on the stator side. Anyway, the inclusion of the eddy-current

loss in the circuit model is still lacking.

2.3 Thermal analysis of electrical machines

The limit of the power and torque of an electrical machine normally de-

pends on the temperature rise constraints (Hafiz et al. 2010, Borisavlje-

vic et al. 2010, Kolondzovski et al. 2011). Thermal analysis has become a

must in machine designs, especially for high-speed machines (Huang et al.

2012). Therefore, there is a lot of research in the literature related to ther-

mal analyses. This can be divided into two common groups based on the

tools used to analyze temperature rises: FEA and thermal networks. FEA

gives accurate results for temperature rises, but its time-consumption and

cost are quite high. The thermal network is a cheaper tool, but it requires

experience to define all the model parameters. Depending on their specific

purposes, researchers should compromise between accuracy and cost.

Saari (1998) presented a thermal network for analyzing the tempera-

ture rises in high-speed machines. The model was validated by measure-

ments. The lumped resistances within the thermal network were calcu-

lated from the dimensions of the motor. The maximum power of the motor

was estimated on the basis of the thermal limitation. The model analyzed

the temperature rise in induction machines that had random-wound sta-
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tor windings. However, it was hard to find a study in the literature that

specifies temperature rise analysis in form-wound electrical machines us-

ing thermal networks.

For greater accuracy, Inamura et al. (2003) used FEA to calculate the

core and resistive losses in switched reluctance machines. The tempera-

ture rise was analyzed from the calculated losses. Good agreement with

the measurements was shown in the report. The same approach to this

kind of motor was presented by Faiz et al. (2009). This latter report, us-

ing the ANSYS commercial code calculated the electromagnetic losses in

detail. The eddy-current loss in the stator winding was studied by an an-

alytical model. The effects of the dimensions of the machine on the elec-

tromagnetic losses and temperature rise were mentioned in that study.

The evolution of temperature rise analysis was well summarized by

Boglietti et al. (2009a). The authors evaluate the merits and demerits of

temperature analyses using FEA and thermal networks. The cost of those

approaches was visibly estimated. Heat-transfer coefficients for thermal

networks need to be carefully determined as shown by Jankowski et al.

(2010) and Bracikowski et al. (2012), while convection boundaries are im-

portant when using FEA (Hettegger et al. 2012). It seems that the use

of FEA to model the temperature rise is suitable for modelling solid con-

duction components. In a later report, Boglietti et al. (2009b) developed a

method to calculate heat-transfer coefficients for a thermal network, be-

cause of to its important role, as mentioned before. Huang et al. (2009)

employed both 3-D FEA and thermal network in their thermal analysis

of high-speed motors. These authors also mentioned the speed and cost

of each method in the report. The modelling of electromagnetic losses

used for a thermal network is a demanding task in the study by Zhao

et al. (2011). Loss calculation using FEA may guarantee the accuracy of

thermal analysis using thermal networks. All the thermal studies mainly

focus on improvement of the modelling itself. It is difficult to find any

reports in the literature combining thermal analysis with a design stan-

dard.

In a simple thermal problem, the temperature rise can be analyzed by

using a public domain code like FEMM (Meeker 2009). The boundary con-

ditions can be simplified on the basis of the code instruction. In a design

process, to reduce the time consumption for the machine design, thermal

constraints can be checked by a thermal network. The heat transfer co-

efficients of the thermal network have to be well defined and validated
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beforehand. Traditionally, the electromagnetic losses can be accurately

predicted by FEA for a temperature rise analysis.

2.4 Optimization of electrical machines

Accompanying the development of processors, optimizations have become

a powerful tool to reduce the engineering costs. Modern optimization tech-

niques for electrical engineering were reviewed and explained in a report

by Lee and El-Sharkawi (2008). For design tasks, the optimization of elec-

trical machines was focused on structural optimizations, as shown in the

reports by Uler et al. (1995) and Centner and Schafer (2010). In a recent

overview, Di Barba (2011) provided a good summary of the up-to-date op-

timization methods for electrical machines in the literature. For a fast

design, the analytical functions are normally used to define the objective

functions (Gao et al. 2010). FEA is an accurate tool for defining the objec-

tives (Yamazaki 2010), but it is expensive. In principle, each optimization

method has its own merits and demerits. It also depends on the applica-

tions and tools available within the research group. This issue is beyond

the scope of this thesis. Naturally, electrical engineers select a method

that is suitable from their point of view.

In an application of the optimization, Kim et al. (2009) used a magnetic

equivalent circuit and FEA to design an interior permanent magnet syn-

chronous motor. To ensure a highly accurate design, FEA was used in

spite of its high cost. The Taguchi approach was the optimization method

used in this study. Using the same approach, Islam et al. (2011) min-

imized the torque ripple in the same kind of motor. It seems that the

Taguchi approach is a commonly used method to reduce the torque rip-

ple in permanent magnet motors. As disputed in the report by Ben-Gal

(2005), this approach may rather reach a quality design than be an op-

timal design. However, the Taguchi approach can evaluate the effect of

variables on the objective functions. Recently, the method was used in the

analysis of the magnetic field, as shown in the report by Shi et al. (2012).

It seems from recent research that the Taguchi method is not directly used

for loss minimization, especially in form-wound stator windings. For an

optimal design, Zhang et al. (2012) used a multi-objective optimization al-

gorithm combined with FEA to obtain an optimal structure for the rotor of

an induction motor. It seems that the researchers focused mainly on the

structure optimization on the rotor side. The optimal status of stator sides
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is not clearly mentioned in the literature. In addition, the optimal meth-

ods mostly improve the performance of the motor, typically the torque or

electromagnetic losses, in such a way that they are separate from thermal

constraints. The combination of FEA and thermal analysis in the design

process remains a problem.

The results of an optimization process are normally defined on the basis

of the stopping conditions of an algorithm. The algorithm can stop after

the number of the iterations reaches its maximum value or the objective

function is unchanged over a large amount of evaluations (Pham et al.

2011). Designers have to compromise between the time consumption and

stopping conditions in the algorithm. To reduce the time-consumption of

using heuristic optimizations and FEA, the number of variables in the

problem has to be reduced. As a result, the size of population or the num-

ber of FEA simulations are reduced. On the other hand, the influence of

variables on the objective function has to be empirically or methodically

evaluated in advance.

Besides applications for machine designs, optimizations have also been

involved in the researches related to parameter estimation. For instance,

Repo (2008) used differential evolution to estimate the parameters of in-

duction motors. The same optimization was used to identify the param-

eters of a hysteresis model in the report by Toman et al. (2008). It is

clear that the optimizations are widely used in modelling and designing

electrical machines, and they continue to show great potential in the de-

velopment of electrical machines.

2.5 Conclusions

As shown in the literature, sufficient information on electromagnetic losses

was necessary in both the design and control stages of inverter-fed elec-

trical machines. In a specific problem of minimizing resistive losses, it

is important to know which input data are required for a design process.

Accurately calculated losses may guarantee the evaluation of the temper-

ature rise or power limit of the machines.

It has been shown that the losses in the traditional random-wound wind-

ings were underestimated. This may cause a non-optimal design for a mo-

tor using random-wound windings. It was clear that the dc resistive loss

is not the only loss in the stator windings. The eddy-current losses in the

stator winding have to be sufficiently modelled to minimize the difference
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between predicted and measured losses. For a highly reliable machine,

the form-wound stator windings are probably a good option, especially

in high-speed and high-power machines. In the optimization process of

the form-wound stator winding, a co-simulation model consisting of FEA,

thermal analysis, and an optimisation algorithm may be an interesting

piece of work in the industrial design.

As a cheap tool for modelling in electric drives, circuit models can be

further developed to take complicated phenomena in electrical machines

into account. For instance, the T-equivalent circuit needs to be augmented

to take the effect of the other losses into account by means of extra cir-

cuit branches. As a result, the number of parameters in the circuit is

increased and it becomes more demanding to identify them correctly. Be-

fore the circuit model is developed, it is necessary to know the behaviour

of harmonics on the machine performance.

Optimizations have been described as useful tools to reduce the cost of

modelling and designing electrical machines. Those can be diversified into

applications such as parameter estimation or machine design. In a design

problem, as mentioned above, the application of the Taguchi approach in

minimizing the resistive loss in the stator is not studied in the literature.

In predicting a large number of circuit parameters in the time domain,

an estimation model needs to be further developed by using an optimal

algorithm.
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3. Methods and results

The main objective of the work is to model and reduce the resistive losses

in induction motors. The results of the work have been shown in the

publications. In this section, the methods that were developed and the

main results are summarized.

3.1 Resistive loss modelling using finite element analysis

The resistive losses in the form-wound stator winding of a 1250-kW in-

duction motor were modelled by using time-discretized FEA as shown in

Figure 3.1. As the eddy-current effect was taken into account, the total

resistive loss in the stator is higher than the dc resistive loss (Publica-

tion II). The eddy-current loss is the difference between those resistive

losses. More details of the eddy-current loss modelling can be found in

Jahirul Islam (2010).
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Figure 3.1. Stator winding (a) and its resistive loss distribution (b).

To reduce the eddy-current loss, magnetic slot wedges were used to close

29



Methods and results

the slot openings. The slot wedges reduce the ripples of the air-gap flux

and the interaction of this flux on the conductors close to the air-gap. As

shown in Figure 3.2, the eddy-current loss reduces when the distance from

the conductors closest to the air-gap to the air-gap is increased. The loss

is further reduced by using magnetic slot wedges.
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Figure 3.2. Variation of eddy-current losses with and without magnetic slot wedges at
different radial positions.

In an application of time-discretized FEA, the resistive losses in a 300-

kW, 60000- rpm HSIM using form-wound stator windings were calculated

and reduced in the Publication V. Here, some details of the motor and

assumptions are presented. Descriptions and figures of the motor us-

ing random-wound windings can be found in Gieras and Saari (2012).

The basic parameters of the motor are presented in Table 3.1. The two-

layer random-wound winding of the motor is shown in Figure 3.3 (a). The

form-wound stator winding shown in Figure 3.3 (b) is designed on the ba-

sos ofthe original one. The cross-sectional area of the conductor and the

height of the slot H1 are kept the same between the two models.

In FEA modelling, the length of the end-winding of the form-wound sta-

tor winding is assumed to be the same as that of the random-wound wind-

ing. However, it is useful to discuss some possibilities concerning the end-

winding model of the form-wound stator winding. Normally, the length

of the end-winding is not a problem for multi-pole pair, high-power, form-

wound motors because it is still within an acceptable range (Mesrobian

and Holdrege 1990). Resistive losses will concentrate in the end-winding

when the end-winding length is too long. If the same approach is applied

for a 2-pole HSIM, the end-winding arrangement is shown in Figure 3.4.
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If the width of each bar and the distance from bar to bar in the end region

are wc and wbb, the shortest radial length of the end-winding is (6wc +

5wbb). As a result, the coil length of the end-winding is very long. This

causes a large resistive loss in the end-winding. One way to reduce the

end-winding length is that the coil-pitch of the stator windings should be

reduced. However, an increase in the magnetizing current as a result of

the smaller coil-pitch may lead to a greater loss in the motor.

1 2

Figure 3.4. Two-plane end-winding model of form-wound winding.

The practical feasibility of the stator winding should be considered in

the design stage. In principle, the form-wound coils are prepared in a form

before they are arranged in the stator core. If the curvature length of the
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Table 3.1. Data of studied HSIM.

Rated voltage (V) 400

Rated power (kW) 300

Number of stator slots 36

Rated slip (%) 1.0

Number of poles 2

Effective length (mm) 178

Inner stator core diameter (mm) 115

Outer stator core diameter (mm) 250

Outer rotor core diameter (mm) 109

end-winding is larger than the inner stator perimeter, it is impossible to

put the end-winding into the stator core. To deal with those problems, a

three-plane end-winding model is presented in Figure 3.5. It is possible to

subdivide the 6 coils per phase into 3 coils per plane in the axial direction.

The upper layer coils are arranged in Planes 1 and 2, while the lower

ones are in Planes 2 and 3. For instance, within Plane 2 in Figure 3.5, the

coils on the right-hand side (right-red) are in the lower layer of the stator

slots, and the coils on the left-hand side (left-red) are in the upper layer

of the stator slots. The right-red and left-red coils can be changed to the

upper and lower layers in the stator slots by connecting them to the coils

in Plane 1 and Plane 3, respectively. This model will be assumed in the

thermal evaluation of the form-wound stator windings in this research.

Plane 1

Plane 3Plane 2

Figure 3.5. Three-plane end-winding model of form-wound winding.

The motor is studied in Publication V with two different power supplies:

pure sinusoidal - sin and Pulse Amplitude Modulation - PAM - as shown

in Figure 3.6. Pulse Width Modulation (PWM) was not a good supply for

HSIMs as mentioned by Lähteenmäki (2002). The electromagnetic losses

in the motor using form-wound windings with the sinusoidal and PAM

supplies collected by FEA will be used in the optimization process.
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Figure 3.6. Voltage supplies for HSIM.

3.2 Resistive loss modelling using circuit models

As a faster and simpler tool for modelling, circuit models are an alterna-

tive option to predict the resistive losses of electrical machines. This sec-

tion presents equivalent circuits of the machines, typically for medium-

and high-power machines. The application of the circuit parameters to

identify the resistive losses will follow estimation methods for the equiv-

alent circuits.

An investigation of the effect of the amplitudes and phases of the PWM

harmonics was shown in Publication I. The investigation of 45-kW and

1250-kW induction machines was carried by using time-stepping FEA.

The 5th and 79th harmonics of a PWM supply were separately superim-

posed on the fundamental voltage of 50 Hz. When the harmonic ampli-

tudes are increased from 5% to 40% those of the fundamental voltage, the

stator and rotor resistive losses are quadratically increased. However, the

stator and rotor resistive losses are independent of the harmonic phases

when the phases are increased from 0 to 90◦. More details of the study

can be found in that report. It was shown that there is no need to have

additional circuits to identify the resistive losses at higher frequencies.

3.2.1 Resistive loss modelling for a deep-bar induction motor

A triple-cage circuit representing a deep-bar induction motor was intro-

duced in Publication I and by Repo (2008). The reports presented methods
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to estimate the parameters of the circuit by using FEA and the impulse

method. The dimensions and materials of the motor were required for

the estimation when using FEA. When the impulse method is being used,

the machines have to be linearized because the parameters are estimated

in the frequency domain using transfer functions (Harnefors 2007). Fig-

ure 3.7 shows the equivalent circuit of a 37-kW deep-bar induction motor

(Publication III).
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Figure 3.7. Triple-cage equivalent circuit.

Voltages, flux linkages, and currents were written in the space vector

form. For instance, the stator voltage and flux can be written as in (3.1)

and (3.2). The rotor voltages and flux equations can be found from Publi-

cation III.

uk
s = Rsi

k
k +

dψk
s

dt
+ jωkψ

k
s

(3.1)

ψk
s
= (Lm + Lσs) i

k
s + Lm

(
ikr1 + ikr2 + ikr3

)
(3.2)

The electromagnetic torque is calculated by

T e =
3

2
pIm

{
ψk∗
s
iks

}
(3.3)

The circuit model was built in Matlab Simulink from the voltage and

flux equations as shown in Figure 3.8. The stator voltages, currents and

speed ωr are measured from an operating motor or obtained by time-

stepping FEA. The voltage is supplied to the circuit model in the time

domain via Matlab Simulink. As shown in Figure 3.8, the parameters

were estimated by minimizing the error I between the current response

of the circuit iest and the stator current in the transient or steady states.

The estimated parameters were used to calculate the electromagnetic

torque by (3.3). Figure 3.9 shows a comparison of the torque responses in

34



Methods and results

Figure 3.8. Electrical circuit model.

the transient stage when the motor is being supplied by a rated voltage.

The torque calculated by the constant parameters of the circuit Te well

tracks the torque calculated by the time-stepping FEA TFEA. Therefore,

an appropriate circuit with constant parameters may predict the electro-

magnetic torque in the transient state.
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Figure 3.9. Torque response during estimated period.

In addition, the stator and rotor resistive losses can be calculated from

the rms value of the currents (capital letters) and resistances in the circuit

branches as follows.

P st =
3

2
RsI

2
s (3.4)

P rt =
3

2

(
Rr1I

2
r1 +Rr2I

2
r2 +Rr3I

2
r3 +Rc2I

2
r12 +Rc1I

2
r

)
(3.5)

where

ir = ir1 + ir2 + ir3

ir12 = ir1 + ir2
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The resistive losses of a 37-kW induction motor can be predicted from

the circuit when the parameters of the circuit are accurately identified.

The resistive losses were calculated from the constant resistances and

rms currents in the circuit branches as in (3.4) and (3.5). Figures 3.10

and 3.11 show the resistive losses calculated by the circuit (dots) and FEA

(solid-blue lines) when the number of data points in a period used for the

estimation is increased.
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Figure 3.10. Stator resistive loss of a 37 kW induction motor.
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Figure 3.11. Rotor resistive loss a 37 kW induction motor.

More details and discussion of the loss calculation and estimation method

in the time domain can be found in Publication III.

3.2.2 Resistive loss modelling for a high-power induction motor

As shown in Figure 3.1, the resistive-loss distribution in the stator bars

of a 1250-kW motor indicates that using a sole dc resistance cannot model

the eddy-current losses of the stator windings. The current or loss density

is not homogeneous over the cross-section of the stator slot. A similar phe-
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nomenon also occurs in semi-open rotor slots (Publication IV). When the

T-equivalent circuit shown in Figure 3.12 represents the 1250-kW form-

wound IM, the transfer function of the small-signal impedance of the mo-

tor in the stator reference frame can be written as in (3.6) as s = jω.

Details of the impulse method and small-signal models can be found in

Repo (2008).

Ze =
Zs (Zm + Zr) + Z

′
mZr

Zm + Zr

=
Δus
Δis

(3.6)

where

Zs = Rs + sLσs (3.7)

Zm = sLm − jω0Lm (3.8)

Z
′
m = sLm (3.9)

Zr = Rr + sLσr − jω0Lσr (3.10)

Figure 3.12. T - equivalent circuit.

The frequency response of the circuit is quite different from that of the

motor as shown in Figure 3.13. In the figure, Zm is the FRF obtained

from the impulse method and the Ze is the FRF from the circuit model.

The imaginary and real parts are marked i and r in the figure.

The Cauer ladder circuit was used to model the skin effect or eddy cur-

rents in the motor (Krah 2005). The equivalent circuit for the form-wound

IM is presented in Figure 3.14. The mathematical meaning of the extra

Cauer ladders is that they increase the order of the impedance FRF and

add degrees of freedom. As shown in (3.11) and (3.12), the orders of stator

and rotor impedances were increased, so they increase the order of the

total impedance (3.6).
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Figure 3.13. Frequency response of T - circuit model.

Figure 3.14. Equivalent circuit for the form-wound IM.

Zs (s) = Rs +
sLσs(Re + sLse)

sLσs +Re + sLse
(3.11)

Zr (s) = Rc + (s− jω0)Lc + Zr12 (3.12)

where

Zr12 =
((s− jω0)Lr1)(Rr2 + (s− jω0)Lr2)

(s− jω0)Lr1 +Rr2 + (s− jω0)Lr2
(3.13)

ψ
s
= Lσsiσs + Lseise + Lm (ir1 + ir2 + iσs + ise) (3.14)
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The impedance FRF of the circuit fits well to the data from FEA sim-

ulation as shown in Figure 3.15. When the motor is fed by a frequency

converter, the supply voltage is highly distorted by harmonics. The con-

trol algorithm of the converter needs a circuit model, which is valid over

a wide range of frequencies. The proposed circuit model is valid from -200

Hz to 200 Hz, and has constant parameters. The difficulty of the fitting

lies in the frequency range 0-100 Hz in Figure 3.15, so the frequency range

of the circuit can be easily expanded to higher frequencies than 200 Hz.

Therefore, not only does the model represent the motor well, but it is also

simple to implement in the motor control.
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Figure 3.15. Frequency response of the proposed model.

The total resistive loss of the motor is calculated as

Pt =
3

2

(
RsI

2
s +ReI

2
e +RcI

2
r +Rr2I

2
r2

)
(3.15)

The parameters of the circuit were used to predict the resistive losses

and the torque of the motor. The deviation between the predicted per-

formance by using the circuit and FEA is less than 3%. Details of the

research can be found in Publication IV.
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3.3 Temperature rise analysis

The electromagnetic losses cause a temperature rise in electrical machines,

so the temperature rise analysis is the next step in the study of the resis-

tive loss modelling. The thermal analysis of electrical machines using

random-wound windings can be found in the reports reviewed in the liter-

ature (Boglietti et al. 2009a). In this section, the temperature rise analy-

sis for induction motors using form-wound windings will be presented for

two methods: FEA and thermal networks.

3.3.1 Temperature rise analysis using FEMM

To know how the inhomogeneous losses lead to a temperature distribu-

tion in the stator slot of a 1250-kW form-wound IM, the public domain

code FEMM was used to analyze the temperature rise. The heat conduc-

tion of the conductor bars obeys Gauss’s law in (3.16). The convection

boundary of insulation inside air or slot-wedge inside air is described by

(3.17). Figure 3.16 shows that the hottest spot is the bar closest to the

air-gap. This leads to a big difference between the maximum temperature

and average temperature within the stator slot. However, the IEC 60034-

1 standard proposes that the difference should be smaller than 10 K in

a good electrical machine (IEC 60034-1 2004). The radial position of the

conductor should be adjusted to conform to the IEC standard.

− � · (λ�T ) = ploss (3.16)

λ
∂T

∂n
+ h (T − T0) = 0 (3.17)

As shown in Section 3.1, the magnetic slot wedges help to reduce the

eddy-current losses of the induction motor. The temperature rise analyses

of the stator with and without the use of magnetic slot wedges are shown

in Figure 3.17. As shown in Publication II, the radial position has to be

larger than 5.8 mm for the stator without the magnetic slot wedges. If the

magnetic slot wedges are used, this distance can be reduced to 4.8 mm,

or the machine diameter reduced by 2 mm. Anyway, the reduction of the

eddy-current losses as a result of using the magnetic slot wedges reduces

the outer diameter of the stator core or motor volume. The details can be

found in Publication II.
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Figure 3.16. Temperature-rise distribution in the stator slot.
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Figure 3.17. Temperature-rise in the stator slot with and without slot wedge.
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3.3.2 Temperature rise analysis using thermal networks

For a faster temperature rise analysis, thermal networks were widely

used for years (Demetriades et al. 2010, Howey et al. 2012). For high-

speed machines, a thermal network model was developed and validated

by Saari (1998). The model was used to analyze the temperature rise of

an HSIM using random-wound stator windings. The equivalent thermal

resistances in the stator and definition of thermal directions are shown in

Figure 3.18. Within a stator slot, the equivalent thermal resistances of

the random-wound winding are shown in Figure 3.19. In the stator slot,

three resistances exist: slot contact (blue line), slot insulation (bss) and

coils (inside). To apply the model to the HSIM using form-wound stator

windings in Section 3.1, the thermal conductivities and resistances have

to be redefined in this section. For the random-wound windings, the av-

erage thermal conductivities (coils or white background region in Figure

3.19) of the random-wound winding in the circumferential and radial di-

rections are equal (Pyrhönen et al. 2009).

λav−cr ≈ λi

(
Dc

D −Dc
+

D −Dc

D

)
(3.18)

The thermal conductivity of copper λw is thousands of times higher than

that of the insulation λi . It is reasonable to assume that the thermal

resistance of copper is zero when calculating the average thermal con-

ductivity λav−cr of the random-wound windings. In the calculation of the

average thermal conductivity, the thermal conductivity of the insulation,

0.15 W/(m·K), is quite small when compared to the thermal conductivity of

copper, 333 W/(m·K). Consequently, the circumferential or radial thermal

conductivity is 0.866 W/(m·K) in the coil region.

When the same approach is applied to form-wound stator windings in

the Publication V, the average thermal conductivities of the coil or copper

bar region are re-defined because they are different in the circumferen-

tial and radial directions. The circumferential thermal conductivity is

applied for the core region, while the radial thermal conductivity is used

in the calculations for the end-winding. Figure 3.20 shows a principle to

calculate the thermal conductivities in those directions.

The circumferential thermal conductivity of a form-wound stator slot is

calculated by (3.19) referred to in Figure 3.20 (b). In this direction, the

copper bar is directly involved in thermal conduction. There are no in-
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Figure 3.18. Connection of thermal resistances in the stator core (a) and definition of
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Figure 3.19. Random-wound winding and its equivalent thermal resistances.

sulation layers with a low conductivity in the circumferential direction of

the copper height 12 hc or 18 mm while the insulation height is about 10

mm. As a result, the average thermal conductivity in the circumferen-

tial direction of the form-wound winding of 198.2 W/(m·K) is significantly

larger than that of the random-wound winding of 0.866 W/(m·K).

λav−c =
λihis + λw12hc

his + 12hc
(3.19)

where his = H1 − 12hc

The average thermal conductivity of a bar in the radial direction as

shown in Figure. 3.20 (c) is calculated as

λbr =
2λiwib + λw (B12 − 2wis − 2wib)

B12 − 2wis
(3.20)
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Figure 3.20. Form-wound winding stator slot (a), equivalent model for calculating cir-
cumferential (b) and radial (c) thermal conductivities.

Radial thermal conductivity for the stator slot of 12 copper bars is

λsr =
λbrλi

12hcλi + (H1 − 12hc − hsb)λbr
(3.21)

In the radial direction, the conduction surface of the form-wound wind-

ing is higher than that of the random-wound winding. This also leads to a

higher average thermal conductivity of the form-wound winding of 12.75

W/(m·K) as compared to the 0.866 W/(m·K) of the random-wound winding

in the radial direction.

In the end-winding region, the heat transfer includes conduction and

convection. Heat-transfer coefficients were already defined in Saari (1998)

where the structure of the end-winding of the motor using random-wound

windings was shown in Figure 3.21. When the model for the HSIM us-

ing the form-wound stator windings is being applied, the cooling area of

the end-winding should be clarified. The end-winding model of the 300-

kW HSIM assumed in Figure 3.5 of Section 3.1 is shown in Figure 3.22.

From this model, both the thermal conduction and convection resistances

were calculated. For instance, the axial conduction resistance Rew1 and

radial conduction resistance Rew2 were calculated from the dimensions of

the end-winding by using the winding conductivity λw and radial conduc-

tivity λsr as follows
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Rew1 =
lend +

la−end

2

N1Nsπhcwcλw
(3.22)

Rew2 =
ln

(
Dwo

D12+hsb

)
2πla−endλrw

(3.23)

Dwi
Dwo

l end- r

Dend

axial

radial

Rsew2

Rsw2

R9+

Rsew2 R+ 10

Rsew1+

(a) (b)

Figure 3.21. End-winding model for the random-wound stator winding.

The equations to calculate the convection thermal resistances R9 and

R10 of the thermal network and convection heat-transfer coefficients in

Saari (1998) are re-used, but the cooling end-winding area is calculated

on the basis of Figure 3.22:

Aew1 = 2π(3wc +Dwo −D12 − hsb)Dwo (3.24)

It can be seen from the literature (Mesrobian and Holdrege 1990), Sec-

tion 3.1, and the analysis of thermal conductivities that high thermal con-

ductivity, robust structure and high reliability are typical advantages of

form-wound windings. The performance of the form-wound stator wind-

ing for a HSIM can be further studied numerically by means of the loss

minimum design, as introduced in the next section.

45



Methods and results

Dwo

la -end

Dwo

H13

l a -end

D12 hsb+

D12 hsb+

l end

Figure 3.22. End-winding model for the form -wound stator winding.

3.4 Resistive loss minimization for form-wound stator windings

The main purpose of modelling losses in electrical machines is to collect

sufficient information on the losses and to reduce the losses in the ma-

chines. The resistive loss in the random-wound winding is quite chal-

lenging to model. This may cause inaccuracy in the optimal design of the

motor. In the previous sections, the tools that can be used to model re-

sistive losses and temperature rises in form-wound stator windings were

presented. This section presents a procedure to reduce those losses in

HSIMs under the constraints of temperature rise and insulation thick-

ness. As an example, Figure 3.23 shows a form-wound stator winding of a

300-kW HSIM and related dimensions. The main objective is to minimize

the resistive losses in the stator windings of the motor.

As mentioned in Publication V, time-discretized FEA is used to model

the ac stator resistive loss (dc and eddy-current loss) in the stator winding.

To maintain the accuracy of the eddy-current modelling, finite-element

meshes are sufficiently detailed to model eddy-current effects in a stator

winding supplied by PAM voltages. Each conductor is always subdivided

into two layers with 8 second-order finite elements. The flux distribution

of a roughly-designed motor, presented in Section 3.1, is shown in Fig-

ure 3.24, which is of the motor before the optimization. The calculated

electromagnetic losses from time-discretized FEA serve as the input for
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Figure 3.23. Stator slot model and motor model.

the temperature rise analysis to check the temperature rise constraints

(Saari 1998).

Figure 3.24. Flux distribution of HSIM before the optimization.

A flow chart to reduce the electromagnetic losses of electrical machines

is presented in Figure 3.25. Publication V applies this flow chart to min-

imize the resistive losses in the stator form-wound winding of the HSIM.

To reduce the time consumption of a design, the Taguchi approach was

used to study which parameters are important for the design problem

(Hwang et al. 2012). The height of the conductor hsc and the distance from
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the top bar to the air-gap hsb are the two most important parameters for

minimizing the resistive loss as shown in Figure 3.26, while the influence

of the width of the slot B11 and the inner diameter of the stator D2 is quite

small. As a result of the evaluation, some insignificant parameters were

eliminated from the optimization. Therefore, the computational cost of

the design problem was significantly reduced.

Design Problem:
Variables, objectives

Tools and accuracy:
Time-discreted FEA, thermal network 

Time consumption for design process:
Taguchi approach to reduce variables

Optimisation algorithm - DE or PSO in 
Matlab co-simulation with FEA

Motor dimensions, objectives, optimal 
operating point

Figure 3.25. A procedure to minimize electromagnetic losses in the stator form-wound
winding.

In the design problem, the height of the conductor hsc and the distance

from the top bar to the air gap hsb are dependent variables. Within a sta-

tor slot, an increase in the height of the conductor hsc leads to a decrease

of hsb. An optimization is required to deal with this conflict. There are

many popular optimizations that are used in the machine designs, such

as particle swarm optimization (PSO), genetic algorithm (GA) or differ-

ential evolution (DE), etc (Lee and El-Sharkawi 2008). In this study, DE

was selected to minimize the resistive losses in the form-wound stator

windings of the HSIM.
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Figure 3.26. Factor Effect of stator dimensions on stator resistive loss.

In the design process of HSIMs, it is necessary to check the tempera-

ture rise, power factor, and insulation constraints. The temperature rise

was analyzed by using the thermal network described in Section 3.3.2.

The optimization and thermal analysis were built in Matlab. As a result,

a Matlab co-simulation with time-stepping FEA was proposed in the de-

sign process as shown in Figure 3.27 (Publication V). The importance of

having sufficient information was emphasized by the optimization with

sinusoidal and PAM supplies. In all the cases, the motor was run at a

constant slip of 1 %.

DE optimization

Motor
dimensions

Thermal analysis

Matlab simulation

Stator
resistive
losses

Electromagnetic
Losses

Temperature rise

FEA simulation

Electromagnetic losses modeling taking 
eddy-current effects in the stator into acount

Motor dimensions

Figure 3.27. Co-simulation model.
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Table 3.2. Initial and optimal dimensions.

initial Optimal - sin Optimal- PAM

hsc (mm) 1.5 1.58 1.30

wsc (mm) 5.0 5.80 5.80

hsb (mm) 3.0 9.88 10.0

H1 (mm) 34.25 39.4 40.0

D1 (mm) 250 260.8 283

Filling factor 0.375 0.3976 0.323

Table 3.3. Initial and optimal performance.

i-sin op-sin i-PAM op-PAM

Stator dc resistive loss (W) 2732.4 2178.0 2808.5 2824.1

Stator ac resistive loss (W) 3384.7 3020.4 4286.0 3825.6

Core region (W) 1426.2 1459.4 2273.0 1801.2

End-winding (W) 1958.4 1561.0 2012.9 2024.4

Stator core loss (W) 947.2 996.6 946.4 854.9

Rotor resistive loss (W) 3132.5 3029.3 4146.5 3993.3

Rotor core loss (W) 781.4 771.1 1310.7 1237.3

Total loss (W) 8871.9 8420.6 10692.2 9913.6

i-sin = initial-sin, op-sin= optimal-sin

i-PAM = initial PAM, op-PAM= optimal PAM

With PAM supply, the electromagnetic torque during the optimization

varied insignificantly around the value of 45.3 Nm and was assumed to

be a constant throughout the process. Table 3.2 shows the initial dimen-

sions and optimal dimensions using the sinusoidal and PAM supplies. The

optimization using the sinusoidal supply reduces the dc resistive losses as

shown in Table 3.3 or increases the copper area or filling factor as shown

in Table 3.2. However, when the motor is supplied with the PAM volt-

age, the optimization tries to reduce the eddy-current losses in the stator

slots, while the dc resistive loss remains more or less the same. The re-

duction of the ac stator resistive loss by about 10 % allows the machine to

be much cooler on the stator side as shown in Table 3.4. The power factor

of the machine is about 0.75, and the maximum torque defined from the

characteristic curve (torque versus speed) is 85.5 Nm.
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Table 3.4. Temperature rise with PAM supply.

initial optimal

Average stator winding (◦C) 145.9 124.3

Stator winding in core (◦C) 154.9 118.4

Stator winding in end-region (◦C) 141.4 128.8

Rotor coating (◦C) 134.8 130.6

Rotor end-ring(◦C) 134.6 130.4

Details of the study can be found in Publication V.
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4. Discussion and conclusions

This chapter first summarizes the research work and discusses possible

study in the future. Then conclusions after the work are given at the end.

4.1 Summary and significance of the research

To investigate the possibility of using one equivalent circuit for predicting

the resistive losses in the induction motors, higher harmonics are super-

imposed on the fundamental voltage. This is performed by means of FE

simulations. It is discovered that the resistive losses are dependent on the

harmonic amplitudes and independent of the harmonic phases. It seems

that an appropriate circuit representing the motor is sufficient to predict

the resistive losses, including higher harmonics.

In Repo (2008), it was shown that a triple-cage circuit can model the

eddy-currents of a deep-bar induction motor. The circuit parameters were

estimated in steady state by time-harmonic FEA, which requires the mo-

tor information, typically motor materials and structure. Unfortunately,

the estimation using FEA may have negative parameters with nonphys-

ical meaning. To overcome those problems, a method to estimate the pa-

rameters of the triple-cage circuit in the time domain is proposed by using

differential evolution. When the parameters of the circuit are accurately

estimated, the triple-cage circuit predicts the motor performance well in

both the steady and transient states.

From the FE modelling developed by Jahirul Islam (2010), it was found

that the eddy-current effects in a form-wound induction motor cannot be

neglected in the design stage. In this study, by using that FE model to

collect the resistive losses for a temperature rise analysis using FEMM, it

is shown that the hottest spot in the form-wound stator is the bar closest

to the air-gap. To have a good design for the form-wound winding of a
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high-power motor, as proposed in the IEC-standard (IEC 60034-1 2004),

the stator bars should be fitted far away from the air-gap. Slot wedges can

reduce the resistive losses in the stator and indirectly reduce the volume

of the machine as well.

A traditional T-equivalent circuit representing an induction motor im-

plies that the resistive-loss distribution in the stator is homogeneous and

the stator winding can be represented by a sole dc resistance. However,

when the eddy-current effect is significant, an advanced circuit model is

needed. An equivalent circuit that is suitable for modelling a form-wound

induction motor is presented in this research. The eddy-current losses can

be taken into account by adding extra circuit branches to the T-equivalent

circuit. The parameters are estimated over a wide range of frequencies

for applications in electric drives.

In the design process of electrical machines, technological constraints

such as temperature rises, insulation, etc. always have to be checked.

This information is defined by specific numbers and calculated using dif-

ferent softwares. A co-simulation model was shown to provide a good so-

lution for dealing with a design task that requires electromagnetic and

thermal calculations and insulation constraints in an optimization . The

time consumption of the optimization can be reduced by eliminating the

unimportant variables of the problem by using the Taguchi approach.

It can be seen that, in order to minimize resistive losses in form-wound

windings, information on the voltage supply is very important. Depending

on the voltage supply, the optimization increases or reduces the conductor

height or copper area to reach a minimum loss. If the machine is assumed

to be operating at a sinusoidal supply at the design stage, it is not neces-

sarily optimized from the perspective of losses at a PAM supply, and vice

versa.

4.2 Discussion of the work

A study of the effect of a PWM supply on the resistive losses was imple-

mented by FEA. A validation of the study by experimental results was

lacking. In an inverter-fed motor, the PWM supply involves many higher

harmonics, but this study considers the effect of individual higher har-

monics.

In this study, time-discretized FEA was used to accurately model the

electromagnetic losses in electrical machines. The temperature rise re-
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sulting the losses was analyzed in order to adjust the design of form-

wound stator windings as proposed by IEC 60034-1 (2004). This work

focuses on taking into account eddy-current losses in stator conductors

and their effect on the temperature rise. Other electromagnetic losses

were modelled by traditional FEA methods. The method for modelling

the eddy-current losses was not further developed beyond the work of

Jahirul Islam (2010). In order to overcome the drawbacks of the method,

such as the requirement of a detailed mesh, the model should be addition-

ally improved.

A method to estimate the parameters of a triple-cage circuit in the time

domain was presented. The method identifies the parameters at certain

operating points. As a result of this research, fundamental components

of resistive losses and electromagnetic torque and the torque response in

the transient stateare predicted by using the circuit model. No model

that took saturation and the effect of slot harmonics into account was

introduced in the study. The estimation method was separately applied

in the transient and steady states. The combination of the parameters

between those states has not been studied yet.

An equivalent circuit representing a form-wound induction machine was

introduced. The parameters of the circuit were estimated in the frequency

domain by an impulse method (Repo 2008). The measurement of impulse

signals is still very challenging in a real setup. A method to estimate

the circuit parameters based on measured signals, typically fundamental

stator currents and voltages, needs to be developed.

The temperature rise in electrical machines resulting from electromag-

netic loss was analyzed by FEA and an analytical model. For the FEA

approach, thermal modelling using FEMM is a very simple way of check-

ing the temperature difference among the conductors in a stator slot. The

thermal model is for a sole slot, so the interaction between stator slots

and other parts of the motor is lacking. The thermal exchange among

components should be comprehensively considered for a better evalua-

tion of the temperature rise of electrical machines. Within the analytical

approach, the thermal analysis involved whole components of machines

by using a thermal network developed by Saari (1998). The challenge of

defining heat-transfer coefficients was solved in that report. To apply the

model for a thermal analysis of the motor using form-wound stator wind-

ings, the structure of the stator windings and thermal conductivities were

redefined in this study. However, the structure of a prototype may be dif-
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ferent from the model that was designed. The air-space and cooling area

were not well specified in the present research.

As a main purpose of loss modelling, loss minimization in the form-

wound stator winding was obtained from a Matlab co-simulation with

FEA. This work concentrated on resistive losses. However, many other

loss components are involved in the design process of electrical machines.

In order to find a design for which all the loss components are minimized,

a multi-objective optimization for the machines is required (Di Barba

2010). Unfortunately, modelling for other electromagnetic losses is still a

challenge in multi-objective optimization as a result of the lack of proper

models. The selection of optimizations is always debated, so which opti-

mization is best for the optimal design of electrical machines is not con-

firmed by this research.

4.3 Conclusions

The importance of modelling resistive losses in electrical machines was

emphasized in this study. For high accuracy modelling, time-discretised

FEA was used to simulate induction motors using form-wound stator wind-

ings. A co-simulation model to reduce or minimize resistive loss in the

form-wound stator winding of a 300-kW high-speed induction motor was

introduced. Within the design process, the type of voltage supply is very

important information in the minimisation of the resistive loss. Prior to

final loss minimization, variables in the optimization problem or time-

computational cost can be reduced by using the Taguchi method.

Following IEC 60034-1 (2004), the resistive losses in the form-wound

stator winding of a 1250-kW machine were reduced in order to have a

good design from the temperature rise point of view. In this process, the

temperature rise analysis can be simply implemented by the public code

FEMM, while the resistive losses are modelled by time-discretised FEA.

To model resistive losses in electrical machines, circuit models were

shown as a promising option. A single circuit can be used to predict

the performance of the induction motors sufficiently. A time-domain op-

timization method to estimate the parameters of a triple-cage circuit was

presented. The circuit parameters obtained were used to predict the per-

formance of electrical machines. For modelling the eddy-current losses

in a form-wound induction motor, an equivalent circuit was developed by

adding extra branches to the T-equivalent circuit. The possibility of using
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the circuit in electric drives was shown by the estimation of the circuit

parameters through a range of frequencies.
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Publication III

The equation (15) to calculate rotor resistive loss is corrected as follows

P rt =
3
2

(
Rr1I

2
r1 +Rr2I

2
r2 +Rr3I

2
r3 +Rc2I

2
r12 +Rc1I

2
r

)
where

ir = ir1 + ir2 + ir3

ir12 = ir1 + ir2

Publication IV

The stator impedance in (12) is modified

Zs (s) = Rs +
sLσs(Re+sLse)
sLσs+Re+sLse

The equation (13) is corrected as

Zr (s) = Rc + (s− jω0)Lc + Zr12

where

Zr12 =
((s−jω0)Lr1)(Rr2+(s−jω0)Lr2)
(s−jω0)Lr1+Rr2+(s−jω0)Lr2
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