
Ville Väänänen

Gaussian filtering and smoothing based
parameter estimation in nonlinear
models for sequential data

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo October 29, 2012

Thesis supervisor:

Prof. Jouko Lampinen

Thesis advisor:

D.Sc. (Tech.) Simo Särkkä

.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80706223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Ville Väänänen

Title: Gaussian filtering and smoothing based parameter estimation in
nonlinear models for sequential data

Date: October 29, 2012 Language: English Number of pages:7+70

Department of Biomedical Engineering and Computational Science

Professorship: Computational and Cognitive Biosciences Code: S-114

Supervisor: Prof. Jouko Lampinen

Advisor: D.Sc. (Tech.) Simo Särkkä

State space modeling is a widely used statistical approach for sequential data.
The resulting models can be considered to contain two interconnected estimation
problems: that of the dynamic states and that of the static parameters. The
difficulty of these problems depends critically on the linearity of the model, with
respect to the states, the parameters or both.

In this thesis we show how to obtain maximum likelihood and maximum a poste-
riori estimates for the static parameters. Two methods are considered: gradient
based nonlinear optimization of the marginal log-likelihood and expectation
maximization. The former requires the filtering distributions and the latter both
the filtering and the smoothing distributions. When closed form solutions to
these distributions are unavailable, we apply efficient Gaussian filtering based
methods to obtain approximations.

The resulting parameter estimation algorithms are demonstrated by a linear
target-tracking model with simulated data and a nonlinear stochastic resonator
model with photoplethysmograph data.
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Tila-avaruusmallinnus on eräs laajalti käytetty aikasarjojen mallinnusmenetelmä.
Tila-avaruusmallin voidaan ajatella sisältävän kaksi keskenään vuorovaikkuteista
estimointiongelmaa: dynaamisten tilojen estimointi sekä staattisten parametrien
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General notation
Z Matrix (bold uppercase letter)
ZT Transpose of matrix Z
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z Column vector (bold lowercase letter)
zT Row vector
z1:T Set of vectors {z1, . . . , zT }
θ Parameter
p(x | y) Conditional PDF of x given y
mk|k−1 Conditional value of mk given measurements up to step k − 1
N(x | m, P) Gaussian PDF of x with mean m and covariance matrix P
N,R,C The fields of natural, real and complex numbers

Abbreviations
AR Autoregressive
BFGS Broyden–Fletcher–Goldfarb–Shanno
CKF Cubature Kalman filter
CKS Cubature Kalman smoother
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ECG Expectation–conjugate–gradient
EKF Extended Kalman filter
EM Expectation maximization
fMRI Functional magnetic resonance imaging
gEM Generalized expectation maximization
GHKF Gauss–Hermite Kalman filter
HMM Hidden Markov model
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
MEG Magnetoencephalography
ML Maximum likelihood
PDF Probability density function
PMCMC Particle Markov chain Monte Carlo
RTS Rauch–Tung–Striebel
SMC Sequential Monte Carlo
SSM State space model
VB Variational Bayes
vEM Variational expectation maximization
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1 Introduction
Modeling temporal data is of great interest in numerous branches of science. Since
the passage of time is so deeply embedded in our experience of the world, it is under-
standable that many scientific questions are posed in a dynamic setting. Arguably,
the very concept of life implies variation in time and so as an example of a dynamic
system we can consider any biological being, such as ourselves. Measuring heart
rate or neuronal activity or any biosignal, with any of the available technologies,
produces sequential data (see, e.g., Särkkä et al., 2012, for a recent application). A
classic example of a dynamic system is target tracking, where based on a sequence
of noisy range or angular measurements from a measurement intrument, typically a
radar, we would like to continuously estimate the true position and velocity of the
target (Bar-Shalom, Li, & Kirubarajan, 2004; Godsill, Vermaak, Ng, & Li, 2007).

Let us assume the existence of a sequential dataset which is a result of making
measurements on a system of interest. In order to answer questions of interest about
the system quantitatively, the system and the measurements should be mathemat-
ically modeled. The class of mathematical models for dynamical systems we will be
concerned with are known as state space models (SSMs). Important characteristics
of SSMs are stochasticity and decoupling of the system dynamics and the measure-
ments. At any instant, the system is thought to be in a certain finite-dimensional
state. The state summarizes enough information about the system so that it is possi-
ble to formulate the system state at the next instant as a function of the current state
and process noise. However the state is hidden (or latent) and the inference on the
state has to be made entirely based on the measurements. Often some components
of the measurements would otherwise translate directly to corresponding compo-
nents of the state, except that the measurements are always assumed to be noisy.
As an example, in target tracking the state should contain at least the location and
the velocity of the target.

The stochasticity forces us to assume a probabilistic framework. In this thesis
the viewpoint is decidedly Bayesian. In Bayesian statistics, ideally, the complete
answer is always the posterior probability distribution, meaning the joint probability
distribution of the random variables of interest given the measurements. Thus in-
stead of answering with a single value or a value with error bounds, the answer is the
probability density function of the interesting quantity given the data. It is impor-
tant to highlight, however, that Bayesian statistics can be used to treat many kinds
of uncertainty (as pointed out in e.g. Särkkä, 2012). For example, the instruments
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used to obtain the measurements are a source of uncertainty related to randomness,
whereas our uncertainty regarding the model and its parameters implies another
kind of uncertainty. Both kinds of uncertainties can be quantified with Bayesian
statistics and thus applying statistical methods to a problem does not imply that
the problem is actually random.

SSMs are a general framework and in any specific application prior knowledge
of the system has to be brought in. This prior knowledge is not necessarily very
specific, for example in ballistic target tracking it might include the assumption that
Newton’s laws are applicable. The mathematical form of the dependence between
the measurements and the state has to be formulated as well as the dependence
of the state on its predecessors. Usually one is able only to specify the parametric
form for these equations. This results in a model with a set of unknown parameters,
denoted with θ. In the Bayesian framework, θ is a random variable with some
prior probability distribution p(θ). In order to complete the model, θ needs to be
estimated based on some available training data, the same sequential dataset we
assumed earlier. This is sometimes, at least in control engineering, known as system
identification. In this thesis, it is assumed that the parameters are static, that is
independent of time. This is then an important distinction between the states and
the parameters, in this thesis.

In general, assuming the aforementioned distinction between parameters and
states, there are two separate but interconnected estimation problems in SSMs:
that of the states and that of the parameters. The interest might lie in either one or
both, depending on the model. Traditionally, state estimation, given measurements
up to the current instant, is known as filtering. The term can be thought to relate
to the idea of filtering the noise out of the measurements in order to observe the
states. Given a batch of measurements, state estimation is called smoothing. In
order to engage in smoothing, the batch of measurements needs to be collected in
its entirety, making smoothing an offline procedure. Filtering, on the other hand,
is online, meaning the estimates can be updated every time a new measurement
arrives.

A distinction is drawn in this thesis between linear and nonlinear models. The
linear model can be thought of as a special case of the nonlinear model, so that
linear models could be implicitly covered by only considering nonlinear models.
The distinction is useful for the simple reason that in the linear case closed form
solutions exist. The Bayesian solution of the filtering problem for a linear system
with additive Gaussian noise is given by the celebrated Kalman filter (Kalman,
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1960).
Our focus in this thesis is in the static parameter estimation problem for the non-

linear case. Depending on the method, this requires either the filtering or filtering
and smoothing solutions of the state estimation problem. Thus the state and pa-
rameter estimation problems are inherently connected. For reasons of computational
complexity, we will not try to pursue the complete Bayesian solution of finding the
posterior distribution. We will settle for a point estimate called the maximum a pos-
teriori (MAP), which is the mode (the value of the parameter giving the maximum)
of the posterior distribution (Gelman, Carlin, Stern, & Rubin, 2004). Under an as-
sumed uniform prior distribution, the MAP estimate becomes equivalent with the
maximum likelihood (ML) estimate. The philosophical difference between these two
might be fundamental, but as will be seen, from the perspective of the estimation
equations it is not.

Figure 1 illustrates the concepts of states, measurements and parameters. In
Figure 1a, we have simulated a simple first order autoregressive (AR(1)), or first
order random walk, model for T = 150 steps. The states, xk, are unidimensional
and are denoted with a continuous line. This reflects the fact, that commonly the
system of interest operates in continuous time. The measurements, yk, are denoted
with crosses which reflects the fact the measurements, our sequential dataset, are
almost always discrete. The model in Figure 1 has a parameter θ and the simulation
in Figure 1a is made with θ = 1. In Figure 1b, we have tried to estimate θ, based
only on the measurements. We have drawn a curve, which can be described as the
likelihood function or the unnormalized posterior probability distribution with a
uniform prior distribution. We can see that if we choose as our estimate the mode
of this curve, denoted with a star, our estimate would be close to the true value.

We begin with the background, where SSMs are covered in necessary detail,
Bayesian optimal filtering and smoothing equations are derived and the role of the
static parameters is elaborated on. Following the background, in Section 3 we focus
on state estimation, first for linear and then for nonlinear systems. The Kalman
filter is introduced here as is the concept of Gaussian filtering, a deterministic ap-
proximation used for nonlinear systems. The fourth section is concerned with the
two methods of parameter estimation we are comparing: gradient based nonlinear
optimization and the Expectation Maximization (EM) algorithm. Our goal here is
to present the underlying ideas, the resulting equations and the most helpful literary
references for one to be able to actually implement these methods.

The theoretical analysis is sufficiently detailed in order to draw some conclusions
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Figure 1: (a) A simulation of a first order random walk model in Section 1, with
parameter θ = 1.The noisy measurements are denoted with crosses. (b) A plot
of the unnormalized posterior probability distribution of θ, given the simulated
measurements and assuming a uniform prior.

about the behavior of the parameter estimation methods in the results section. The
results section has two subsections: a target tracking application with simulated
data and a biomedical signal processing application with real world data.
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2 Background

2.1 State space models

State space models (SSMs) provide a unified probabilistic methodology for modeling
sequential data (Ljung & Glad, 1994; Durbin & Koopman, 2012; Cappé, Moulines,
& Rydén, 2005; Barber, Cemgil, & Chiappa, 2011). Sequential data arise in nu-
merous applications, typically in the form of time-series measurements. Modern
time-series data arise often in the context of medical imaging, for example in the
case of functional magnetic resonanse imaging (fMRI) or magnetoencephalography
(MEG). However it is not necessary for the sequence index to have a temporal mean-
ing. In probabilistic terms, a time-series can be described by a stochastic process
y =

{
y(t) : t ∈ T

}
, where y(t) is a random variable and T ⊆ R for continuous time

or T ⊆ N for discrete time sequences. In this thesis we will only be concerned with
discerete time processes and we write y1:k ≡ {y1, . . . , yk} ≡ {y(t1), . . . , y(tk)}.

A fundamental question in probabilistic models for sequential data is how to
model the dependence between variables. It is infeasible to assume that every ran-
dom variable in the process depends on all the others. Thus it is common to assume a
Markov chain, where the distribution of the process at the current timestep depends
only on the probability distribution in the previous timestep. A further assump-
tion in SSMs is that the process of interest, the dynamic process x, is not directly
observed but only through another stochastic process, the measurement process y.
Since x is not observed, SSMs belong to the class of latent variable models. Some-
times, as in Cappé et al. (2005), SSMs are called hidden Markov models (HMM)
but usually this implies that the sample space of x is discrete. Yet another term
for a quite general subclass of SSMs is dynamic Bayesian networks (DBNs). These
and some connections to classical time-series modeling approaches are discussed in
Murphy (2002).

An important characteristic of SSMs is that the values of the measurement pro-
cess are conditionally independent given the latent Markov process. An intuitive
way to present conditional independence properties between random variables is a
Bayes network presented by a directed acyclic graph (DAG) (Pearl, 1988; Bishop,
2006). A Bayes network presentation of a discrete-time SSM is given in Figure 2.

The value xk ∈ X ≡ Rdx of the dynamic process at time tk is called the state at
time tk. As explained in the introduction, the state summarizes as much information
about the dynamic process as is needed to formulate the dynamic model introduced
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Figure 2: A discrete-time state space model as a graphical model presented with a
directed acyclic graph. Each node represents a random variable and arrows present
dependence. The hidden variables xk, meaning the states, form a Markov chain and
each state has a corresponding measurement yk, which is oberved. Given the states,
the measurements are independent. Both the states and the measurements depend
on the parameter θ.

below. For the measurements we define yk ∈ Y ≡ Rdy . As depicted in Figure 2, we
assume that the joint probability density function (PDF, will be used interchangeably
with density and distribution) of x0:T and y0:T is conditional on a set of parameters
θ ∈ Θ ⊆ Rdθ .

Taking into account the Markov property

p(xk | x1:k−1,θ) = p(xk | xk−1,θ) (1)

of the dynamic process and the conditional independence property

p(yk | x1:k, y1:k−1,θ) = p(yk | xk,θ) (2)

of the measurement process, the joint density of states and measurements factorises
as

p(x0:T , y0:T |θ) = p(x0 |θ)
T∏

k=1
p(xk | xk−1,θ)

T∏
k=0

p(yk | xk,θ). (3)

Thus in order to describe a SSM one needs to specify three distributions:

Prior distribution p(x0 |θ) is the distribution assumed for the state prior
to observing any measurements. The sensitivity of the marginal posterio
distribution to the prior depends on the amount of data (the more data
the less sensitivity).

Dynamic model p(xk | xk−1,θ) dictates the time evolution of the states.
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Measurement model p(yk | xk,θ) models how the observations depend on
the state and the statistics of the noise.

In this thesis it is assumed that the parametric form of these distributions is known
for example by physical modeling (Ljung & Glad, 1994). Regarding the notation,
we will overload p(· | ·) as a generic probability density function specified by its
arguments. Also the difference between random variables and their realizations is
suppressed.

Traditionally SSMs are specified as a pair of equations specifying the dynamic
and measurement models. In great generality, discrete-time SSMs can be described
by the following dynamic and measurement equations

xk = fk(xk−1, qk−1,θ) (4a)
yk = hk(xk, rk,θ). (4b)

Here the stochasticity is separated into the noise processes q and r which are usually
assumed to be zero mean, white and independent of each other. We will restrict
ourselves to the case of zero mean, white and additive Gaussian noise. Furthermore,
the dynamic, measurement and both noise processes will be assumed stationary.
This means that fk and hk and the PDFs of qk−1 and rk will be independent of k.
Thus the SSMs considered in this thesis are of the form

xk = f(xk−1,θ) + qk−1, qk−1 ∼ N
(
0, Q(θ)

)
(5a)

yk = h(xk,θ) + rk, rk ∼ N
(
0, R(θ)

)
(5b)

x0 ∼ N
(
µ0(θ), Σ0(θ)

)
. (5c)

Regarding the Gaussian probability distribution, suppose x is normally distributed
with mean m and covariance matrix P. We will then use the notation x ∼ N(m, P)
for “distributed as”, whereas “distribution of” is denoted as p(x) = N(x | m, P),
where the Gaussian probability density function is

N(x | m, P) ≡ det(2πP)−1/2 exp
(
−1/2 (x − m)TP−1(x − m)

)
. (6)

Clearly the mappings f : X → X and h : X → Y in Equation (5) specify the means
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of the dynamic and the measurement models:

p(xk | xk−1,θ) = N
(
xk

∣∣∣ f(xk−1,θ), Q(θ)
)

(7a)

p(yk | xk,θ) = N
(
yk

∣∣∣h(xk,θ), R(θ)
)
. (7b)

Going further, for the sake of notational clarity, we will sometimes make the depen-
dence on θ implicit and use the shorthand notation

fk−1 ≡ f(xk−1,θ), hk ≡ h(xk,θ)

Q ≡ Q(θ), R ≡ R(θ)

µ0 ≡ µ0(θ), Σ0 ≡ Σ0(θ).

(8)

2.2 Bayesian optimal filtering and smoothing

State inference can be divided into subcategories based on the temporal relationship
between the state and the observations (see, e.g., Särkkä, 2006; Anderson & Moore,
1979):

Predictive distribution p(xk | y0:k−1,θ) is the predicted distribution of the
state in the next timestep (or more generally at timestep k + h, where
h > 0) given the previous measurements.

Filtering distribution p(xk | y0:k,θ) is the marginal posterior distribution
of any state xk given the measurements up to and including yk.

Smoothing distribution p(xk | y0:T ,θ) is the marginal posterior distribu-
tion of any state xk, k = 1, . . . , T , given the measurements up to and
including yT .

Predictive distribution

Let us then derive a recursive formulation for computing the filtering distribution at
time k. Let p(xk−1 | y1:k−1) be the filtering distribution of the previous step. Then

p(xk | y0:k−1,θ) =
∫

p(xk, xk−1 | y0:k−1,θ)dxk−1

=
∫

p(xk | xk−1)p(xk−1 | y0:k−1,θ)dxk−1, (9)

which is known as the Chapman-Kolmogorov equation (see,e.g., Särkkä, 2006). In
this thesis the predictive distributions will be Gaussian or approximated with a
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Gaussian

p(xk | y0:k−1,θ) ≈ N
(
xk

∣∣∣mk|k−1, Pk|k−1
)
. (10)

Filtering distribution

Incorporating the newest measurement can be achieved with the Bayes’ rule (see,
e.g., Gelman et al., 2004)

p(xk | y0:k,θ)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(yk | xk,θ)

prior︷ ︸︸ ︷
p(xk | y0:k−1,θ)

p(yk | y0:k−1,θ)︸ ︷︷ ︸
normalization constant

= p(yk | xk)p(xk | y0:k−1)∫
p(yk | xk)p(xk | y0:k−1)dxk

, (11)

which is called the measurement update equation. In this thesis the filtering distri-
butions will be Gaussian or approximated with a Gaussian

p(xk | y0:k,θ) ≈ N
(
xk

∣∣∣mk|k, Pk|k
)
. (12)

Smoothing distribution

The smoothing distributions can also be computed recursively by assuming that the
filtering distributions and the smoothing distribution p(xk+1 | y0:T ) of the “previous”
step are available. Since

p(xk | xk+1, y0:T ,θ) = p(xk | xk+1, y0:k,θ)

= p(xk, xk+1 | y0:k,θ)
p(xk+1 | y0:k,θ)

= p(xk+1 | xk,θ)p(xk | y0:k,θ)
p(xk+1 | y0:k,θ)

we get

p(xk, xk+1 | y0:T ,θ) =
filtering︷ ︸︸ ︷

p(xk | y0:k,θ)

dynamic︷ ︸︸ ︷
p(xk+1 | xk,θ) p(xk+1 | y0:T ,θ)

p(xk+1 | y0:k,θ)︸ ︷︷ ︸
predictive

, (13)
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so that the marginal is given by

p(xk | y0:T ,θ) = p(xk | y0:k,θ)
∫ [p(xk+1 | xk,θ)p(xk+1 | y0:T ,θ)

p(xk+1 | y0:k,θ)

]
dxk+1, (14)

where p(xk+1 | y0:k) can be computed by Equation (9). In this thesis the smoothing
distributions will be Gaussian or approximated with a Gaussian

p(xk | y0:T ) ≈ N
(
xk

∣∣∣mk|T , Pk|T
)
. (15)

Marginal likelihood

An important quantity concerning parameter estimation is the marginal likelihood
p(y0:T |θ). If we’re able to compute the distributions

p(yk | y0:k−1,θ) =
∫

p(yk | xk,θ)p(xk | y0:k−1,θ)dxk, (16)

which we recognize as the “normalization constant” in (11), then by repeatedly
applying the definition of conditional probability we find that the marginal likelihood
can be computed from

p(y0:T |θ) = p(y0 |θ)
T∏

k=1
p(yk | y0:k−1,θ). (17)

Since (16) is needed for the filtering distributions, the marginal likelihood, or an
approximation to it, can be easily computed with the chosen filtering algorithm.
Equation (17) is sometimes known as the prediction error decomposition (Harvey,
1990).
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3 State estimation
In this section we are concerned with finding the, exact if possible and approximate
otherwise, filtering and smoothing distributions of Equations (11) and (14). In fact,
since it is needed in parameter estimation, we will focus on the somewhat more
general problem of finding the cross-timestep joint densities. In state estimation it
is assumed that the parameter θ is given. Thus throughout this section we will, in
general, suppress the dependence on θ and use the shorthands specified in (8).

3.1 Linear-Gaussian State Space Models

A linear map Q : A → B satisfies the equation

Q(αa + βb) = αQ(a) + βQ(b), ∀ a, b ∈ A & α, β ∈ R. (18)

Since linear maps can be described by matrices, stationary linear-Gaussian SSMs
are described by the subset of SSMs of the form (5) where

f(xk−1,θ) = A(θ)xk−1 (19)
h(xk,θ) = H(θ)xk. (20)

The dx × dx matrix A ≡ A(θ) is called the transition matrix and the dy × dx matrix
H ≡ H(θ) the measurement matrix. These linear-Gaussian SSMs, equivalently
known as linear dynamical systems (Bishop, 2006), are one of the few cases where
computing the exact predictive, filtering and smoothing distributions is tractable
(see, e.g., Särkkä, 2006). As will be seen, all of the aforementioned distributions
stay Gaussian.

3.1.1 Kalman filter

The Kalman filter is the best known filter, first presented in the seminal article of
Kalman (1960). It provides the closed form solution to computing the predictive and
filtering distributions of Equations (9) and (11). With the help of Lemmas A.1 and
A.2, deriving the Kalman filter equations is quite straightforward (Särkkä, 2006).
The resulting recursions are (Jazwinski, 1970; Grewal & Andrews, 2008):
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Predict:

mk|k−1 = Amk−1|k−1 (21a)
Pk|k−1 = APk−1|k−1AT + Q (21b)

Update:

vk = yk − Hmk|k−1 (21c)
Sk = HPk|k−1HT + R (21d)
Kk = Pk|k−1HTS−1

k (21e)
mk|k = mk|k−1 + Kkvk (21f)
Pk|k = Pk|k−1 − KkSkKT

k . (21g)

This includes the sufficient statistics for the T joint distributions

p(xk, yk | y1:k−1,θ) = N


xk

yk

 ∣∣∣∣∣∣
 mk|k−1

Hmk|k−1

 ,

 Pk|k−1 Pk|k−1HT

HPk|k−1 Sk


. (22)

3.1.2 Rauch–Tung–Striebel Smoother

Once the filtering distributions are obtained going forward in time, the joint smooth-
ing dustributions (13) can be computed going backwards in time. In this computing
order sense, the last filtering distribution is the first smoothing distribution. In the
linear-Guassian case, the Rauch–Tung–Striebel (RTS) smoother gives the statis-
tics mk|T and Pk|T (Jazwinski, 1970; Rauch, Tung, & Striebel, 1965) in Equation
(15). We will use a version that gives the joint distribution of the states across a
timestep, since the cross-timestep covariance will be needed in the parameter estima-
tion phase. Assuming now that all the predictive and filtering distributions, that is
N
(
xk+1

∣∣∣mk+1|k, Pk+1|k
)

and N
(
xk

∣∣∣mk|k, Pk|k
)

respectively, are available, the RTS
recursions can be written as

Jk = Pk|kATP−1
k|k+1 (23a)

mk|T = mk|k + Jk

(
mk+1|T − mk+1|k

)
(23b)

Pk|T = Pk|k + Jk

(
Pk+1|T − Pk+1|k

)
JT

k . (23c)
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This includes the sufficient statistics for the T joint distributions

p(xk, xk−1 | Y,θ) = N


 xk

xk−1

 ∣∣∣∣∣∣
 mk|T

mk−1|T

 ,

 Pk|T Pk|T JT
k

JkPk|T Pk−1|T


. (24)

3.2 Nonlinear-Gaussian SSMs

In the nonlinear case at least one of the mappings f and h in (5) is nonlinear (in
x). Unfortunately in this case computing the filtering distributions in closed form
becomes intractable and one has to resort to some sort of approximations. We
can divide these approximate filtering (and smoothing) solutions into two categories
(see, e.g., Arasaratnam & Haykin, 2009):

i) Local approaches assume the parametric form of the posterior distributions
(9), (11) and (14) a priori. These methods are analytically inexact but less
computationally demanding. This is the category that we will be concerned
with in this thesis.

ii) Global approaches require the use of particle filtering, also known as sequential
Monte Carlo (SMC), methods, which are simulation based.

The number of different methods in the first category is substantial, but a large
proportion can be analyzed under the framework of Gaussian filtering (or assumed
density filtering with a Gaussian assumption). As implied by the name, these meth-
ods work by restricting the form of the posterior density to be Gaussian a priori.
This way one is again able to perform (approximate) filtering and smoothing by
only propagating the first two moments, which makes the local approaches compu-
tationally efficient. As will be shown later, the specific Gaussian filtering methods
only differ in their chosen numerical integration methods.

The global approaches are certainly appealing in not placing any restrictions on
the form of the posterior distribution. Particle filtering has been enjoying widespred
interest since the introduction in Gordon, Salmond, and Smith (1993) (see also
Cappé, Godsill, & Moulines, 2007; Kantas, Doucet, & Singh, 2009; Cappé et al.,
2005). However they are Monte Carlo methods, the use of which usually requires
tuning and convergence monitoring. The most obvious downside compared to the
local methods are their increased computational requirements.
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3.2.1 Gaussian filtering and smoothing

One approach to forming Gaussian approximations is to assume a Gaussian proba-
bility distribution a priori (Kushner, 1967; Ito, 2000; Y. Wu, Hu, Wu, & Hu, 2006;
Särkkä & Hartikainen, 2010). Since a Gaussian distribution is defined by its first
two moments, a moment matched approximation can be obtained if the first two
moments of the actual probability distribution can be computed (Ito, 2000; Särkkä,
2006). As will be seen, computing these Gaussian approximations reduces to the
problem of computing multidimensional moment integrals of the form nonlinear
function × Gaussian.

We shall next derive the general form of the three moment integrals and then
show how they can be applied in the specific case of approximating the joint smooth-
ing distribution of Equation (13). Suppose now that

p(x) = N(x | m, P),

p(y | x) = N
(
y
∣∣ f(x), R

)
.

Then p(x, y) is Gaussian only if f(x) is a linear map (with a possible affine constant).
Assuming that’s not the case, let us denote a Gaussian approximation to p(x, y) with

p


x
y


 ≈ N


µx

µy

 ,

Σxx Σxy

ΣT
xy Σyy


.

Then according to Lemmas A.1 and A.2, we have to have

µx = m

Σxx = P

µy =
∫

f(x)N(x | m, P)dx (25)

Σyy =
∫ (

f(x) − µy

)(
f(x) − µy

)T
N(x | m, P)dx + R (26)

Σxy =
∫ (

x − m
)(

f(x) − µy

)T
N(x | m, P)dx (27)

Prediction step

Since the Gaussian approximation to (13) will be calculated by forward (filtering)
and backward (smoothing) recursions, let us assume that we already have available
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the filtering distribution of the previous step

p(xk−1 | y1:k−1) ≈ N
(
xk−1

∣∣∣mk−1|k−1, Pk−1|k−1
)
. (28)

Then

p(xk−1, xk | y1:k−1) ≈ N
(
xk−1

∣∣∣mk−1|k−1, Pk−1|k−1
)
N(xk | fk−1, Q)

≈ N


xk−1

xk

 ∣∣∣∣∣∣
mk−1|k−1

mk|k−1

 ,

Pk−1|k−1 Pk−1,k

PT
k−1,k Pk|k−1


, (29)

where by application of Equations (25), (26) and (27)

mk|k−1 =
∫

fk−1N
(
xk−1

∣∣∣mk−1|k−1, Pk−1|k−1
)

dxk−1 (30)

Pk|k−1 =
∫ (

fk−1 − mk|k−1
)(

fk−1 − mk|k−1
)T

× N
(
xk−1

∣∣∣mk−1|k−1, Pk−1|k−1
)

dxk−1 + Q
(31)

Pk−1,k =
∫ (

xk−1 − mk−1|k−1
)(

fk−1 − mk|k−1
)T

× N(xk−1, mk−1|T )dxk−1

. (32)

Update step

For the update step we first approximate

p(xk, yk | y1:k−1) ≈ N(yk | hk, R)N
(
xk

∣∣∣mk|k−1, Pk|k−1
)

≈ N


xk

yk

 ∣∣∣∣∣∣
mk|k−1

µk

 ,

Pk|k−1 Ck

CT
k Sk


.

(33)

Applying Equations (25), (26) and (27) again, we get

µk =
∫

hkN
(
xk

∣∣∣mk|k−1, Pk|k−1
)

dxk (34)

Sk =
∫ (

hk − µk

)(
hk − µk

)T
N
(
xk

∣∣∣mk|k−1, Pk|k−1
)

dxk + R (35)

Ck =
∫ (

xk − mk|k−1
)(

hk − µk

)T
N
(
xk

∣∣∣mk|k−1, Pk|k−1
)

dxk. (36)

The approximation to the filtering distribution p(xk | y1:k) ≈ N
(
xk

∣∣∣mk|k, Pk|k
)

is
then given by applying Lemma A.2 to (33). Analogously to the update equations
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of the Kalman filter (21), we get

vk = yk − µk (37a)
Kk = CkS−1

k (37b)
mk|k = mk|k−1 + Kkvk (37c)
Pk|k = Pk|k−1 − KkSkKT

k . (37d)

Smoothing step

Let us write down the approximation to a conditional distribution that is easily
derived from Equation (29), namely (note the change in indexing):

p(xk | xk+1, y1:T ) = p(xk | xk+1, y1:k) ≈ N
(
xk

∣∣∣m′
k, P′

k

)
, (38)

where

m′
k = mk|k + Gk

(
xk+1 − mk+1|k

)
P′

k = Pk|k − GkPk+1|kGT
k

Gk = Pk,k+1P−1
k+1|k.

At this point we have derived all the components needed to compute (13). As pointed
out previously, the last (T :th), filtering distribution is also the “first” smoothing
distribution, and smoothing recursions then advance backwards in time. Let us as-
sume that the smoothing distribution of the previous step, p(xk+1 | y1:T ), is available.
Then by applying Lemma A.1 we have

p(xk, xk+1 | y0:T ) ≈ N


 xk

xk+1

 ∣∣∣∣∣∣
 mk|T

mk+1|T

 ,

Pk|T Dk

DT
k Pk+1|T


, (39)

where

Dk = GkPk+1|T

mk|T = mk|k + Gk

(
mk+1|T − mk+1|k

)
Pk|T = Pk|k + Gk

(
Pk+1|T − Pk+1|k

)
GT

k .

What we have now established is that a Gaussian assumed density approximation
to the joint smoothing distributionof Equation (13) is transformed into solving six
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multidimensional integrals of form nonlinear function × Gaussian, namely the ones
in (30), (31), (32), (34), (35) and (36). Notably, the smoothing distribution approx-
imations can be computed without further integrations.

3.2.2 Numerical integration approach

We will now discuss the topic of numerically solving Gaussian expectation integrals
of the form

⟨
κ(x)

⟩
≡
∫

X
κ(x)N(x | m, P)dx, (40)

where it is assumed that

X = Rdx

x ∼ N(m, P)∫ ∣∣κ(x)N(x | m, P)
∣∣dx < ∞.

As explained in Y. Wu et al. (2006), the approaches to solving (40) can be
justifiably divided into three categories:

i) product rules
ii) rules exact for monomials
iii) integrand approximations.

Recognizing that the chosen numerical integration method is the principal differen-
tiator provides a common framework for analyzing the properties of the numerous
Gaussian filters and smoothers (Särkkä & Hartikainen, 2010; Särkkä & Sarmavuori,
2013; Ito, 2000; Y. Wu et al., 2006). Furthermore the first two categories differ only
in their approach to multidimensional integrals, so that the main difference between
the categories can be described as applying an integration formula known to be
exact for certain class of integrands or approximating the integrand and integrating
the approximation exactly. Since truncated Taylor series approximations are often
used in the latter case, an important distinction is that the former does not require
computation of Jacobians or higher order differentials.

Since there exists many efficient integration rules defined on the unidimensional
line, a natural idea is to extend these to the hypercube by iterated integrals. This
is exactly the basic premise of the product rules. The most efficient polynomial
interpolation type of rules in one dimension are known as Gauss’ quadrature rules and
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the subset for Gaussian weighted integrals are the Gauss-Hermite quadrature rules.
Quadrature is a term referring to unidimensional numerical integration, whereas
cubature is the generalization to higher dimensions. A common form for cubature
rules for Gaussian expectation integrals is

∫
X
κ(x)N(x | m, P)dx ≈

m∑
i=1

wiκ(ui) =
m∑

i=1
wiκ

(
m +

√
Pε(i)

)
, (41)

where the points of evaluation {ui}m
i=1 are called the sigma points (or abscissas or

just points) and wi are the weights. The sigma points can be obtained from the unit
sigma points

{
ε(i)

}m

i=1
by translating with the mean and scaling by the Cholesky

decomposition of the covariance matrix, P =
√

P
√

PT. This means that to specify
any cubature rule of the form (41), it suffices to specify it for the case with zero
mean and unit covariance matrix

∫
X
κ(x)N(x | 0, I)dx ≈

m∑
i=1

wiκ
(
ε(i)

)
. (42)

As was to be expected from the iterated integration approach, the problem with
product rules is the exponential increase in the number of sigma points with the
number of dimensions, also known as the curse of dimensionality. Thus if the
unidimensional rule has m sigma points (and thus m integrand evaluations), then
the d dimensional product rule has md sigma points. The Gaussian filter based on
Gauss-Hermite product rules is known simply as the Gauss-Hermite Kalman filter
(GHKF, sometimes shortened also GKF or QKF, for quadrature Kalman filter)
(Ito, 2000). The number of sigma points in the unidimensional rule is a parameter
of GHKF.

More sophisticated cubature methods search for rules exact for monomials∏dx
j=1 x

ej

j ,
where x =

[
x1, . . . , xdx

]T
. The degree of the monomial is defined as ∑j ej and a cu-

bature rule is then said to have precision p, if it integrates exactly monomials up to
degree p but not to degree p + 1. Naturally since integration is a linear operation,
a rule which is exact for a monomial up to order o is exact for multidimensional
polynomials of order o. Unfortunately finding efficient rules exact for monomials is
something of an art, since even the least possible number of points required for given
precision and dimension is in many instances unknown. Nevertheless, following the
work in Y. Wu et al. (2006), in Arasaratnam and Haykin (2009, 2011) a filter and a
corresponding smoother are presented, based on a third degree cubature rule. The
theoretical lower bound in points for a third degree rule is 2 dx, which is met by the
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rule used in the Cubature Kalman Filter (CKF) and the Cubature Kalman Smoother
(CKS). Another notable nonlinear filter in this category is the Unscented Kalman
Filter (UKF) (Julier & Uhlmann, 1997; Julier, Uhlmann, & Durrant-Whyte, 2000;
Merwe, 2004), also based on a third degree rule. A corresponding smoother is de-
rived in Särkkä (2008). An interesting recent development which could be considered
to belong between the product rules and rules exact for monomials is presented in
Jia, Xin, and Cheng (2012), where the method of sparse-grid quadrature is used to
obtain yet another nonlinear filter belonging to the class of Gaussian filters.

The oldest and most well known nonlinear filter, belonging to the third category,
is the extended Kalman filter (EKF) (see, e.g., Grewal & Andrews, 2008). It is based
on forming local linear approximations to the dynamic and measurement models
so that the standard linear Kalman filter equations can be used. An undesirable
requirement of the EKF is that it requires computing the Jacobian matrices of f
and h.

3.2.3 Cubature Kalman Filter and Smoother

In this subsection we will present the Cubature Kalman Filter (CKF) and Cuba-
ture Kalman Smoother (CKS) algorithms (Arasaratnam & Haykin, 2011, 2009). We
consider these algorithms in more detail than other Gaussian filters and smoothers,
since they are applied in Section 5. The CKF results from applying a 3rd order
spherical cubature approximation to the integrals in Equations (30), (31), (32), (34),
(35) and (36).

As stated earlier, the 3rd order spherical cubature approximation uses the min-
imal amount of sigma points for a 3rd order rule, 2 dx. The unit sigma points in
Equation (42) are given by

ε(i) =
√

dxei, i = 1, . . . , dx

ε(i) = −
√

dxei−dx , i = dx + 1, . . . , 2 dx,
(43)

where the orthonormal basis vectors {ei}dx

i=1 form the canonical basis of Rdx . The
weight is constant, wi ≡ w = 1

2 dx
, so that approximation (41) can be written as

∫
X
κ(x)N(x | m, P)dx ≈ 1

2 dx

2 dx∑
i=1
κ
(
m +

√
Pε(i)

)
. (44)



20

4 Parameter estimation
As mentioned in the introduction, it is usually the case that after constructing a
SSM, the result is a family of models indexed by the static parameter θ. The
ultimate interest might lie in estimating the states or the parameter or both. Be as
it may, the two inference problems are intimately coupled and interest in the other
requires the resolution of the other.

In general, parameter estimation techniques are divided into offline or batch
methods and online or recursive methods (Cappé et al., 2007; Kantas et al., 2009).
This is analogous to the difference between the filtering and smoothing problems in
state estimation. We focus only on offline methods, where some sort of training or
calibration data has been acquired beforehand.

A classic solution to the parameter estimation problem is to introduce an aug-
mented and thus necessarily nonlinear SSM, where the parameters have been con-
catenated as part of the state. For static parameters, the part of the dynamic model
corresponding to the parameters is set to identity. Classically an extended Kalman
filter is then applied to approximate the probability distribution of the augmented
state vector in the joint space of parameters and states. This approach is known as
joint EKF and it has the virtue of being an online procedure (Wan & Nelson, 2001).
It appears that the method has problems with convergence in some situations, which
is understandable since when using the EKF, a Gaussian approximation is applied
to the joint space of states and parameters.

A more recent method utilizing another form of augmented SSM is known as
iterated filtering (Ionides, Bhadra, Atchadé, & King, 2011). It is an offline method,
but only requires being able to sample from the dynamic model given the parameter
and no gradient computations are required. The algorithm however introduces mul-
tiple parameters of its own and so might require some tuning (Kantas et al., 2009).
Furthermore, it is designed to utilize the simulation based SMC methods mentioned
briefly in Section 3.2. In the sequel, parameter estimation methods based on state
augmentation will not be further considered.

4.1 Bayesian Estimation of Parameters

In the Bayesian sense the complete answer to the filtering and parameter estimation
problems would be the joint posterior distribution of the states and the parameters
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given the data

p(x0:T ,θ | y0:T ) ∝ p(x0:T , y0:T |θ)p(θ)

= p(x0:T | y0:T ,θ)p(y0:T |θ)p(θ).
(45)

By defining the SSM in Equation (5), we have implicitly defined the “complete-data”
likelihood p(x0:T , y0:T |θ) (see Equation (3)). By introducing the prior distribution,
p(θ), the components of (45) and thus the joint distribution posterior of states and
parametes is defined. Recently, methods known as Particle Markov chain Monte
Carlo (PMCMC) have emerged, which are able to sample from the joint distribu-
tion in (45) without knowledge of the normalization constant (Andrieu, Doucet, &
Holenstein, 2010). This is achieved by combining particle filtering approximations
to p(x0:T | y0:T ,θ) with traditional Gibbs and Metropolis-Hastings sampling in a
nontrivial way (Andrieu et al., 2010; Gelman et al., 2004).

4.1.1 Maximum a posteriori and maximum likelihood

In this thesis we would like to avoid Monte Carlo methods altogether. Thus instead
of considering the problem of finding the posterior distribution of the parameter, we
will pursue finding the mode of this distribution, that is, the maximum a posteriori
(MAP) estimate θMAP. The MAP estimate is not necessarily unique, but let us
assume for the moment that the posterior distribution in fact has a unique maximum.
Since the logarithm is a strictly monotonic function, maximizing a function is the
same as maximizing its logarithm. Since y0:T is observed, let us denote the log
marginal likelihood with

ℓ
(
θ
)

≡ log p(y0:T |θ).

The MAP estimate of θ is then defined as

θMAP ≡ arg max
θ

[
log p(θ | y0:T )

]
= arg max

θ

[
ℓ
(
θ
)

+ log p(θ) + C
]
, (C is independent of θ)

= arg max
θ

[
ℓ
(
θ
)

+ log p(θ)
]
. (46)

In the case of a uniform (constant and thus improper) prior distribution, p(θ) =
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C, the MAP estimate reduces to the maximum likelihood (ML) estimate

θML ≡ arg max
θ

[
ℓ
(
θ
)]

. (47)

In the limit of infinite data, the influence of the prior disappears. Then if the sup-
port of the prior includes the true parameter value, the MAP estimate has the same
asymptotic properties as the ML estimate (Cappé et al., 2005). Since the mathe-
matical difference between the MAP and ML estimates depends only on the model
dependent prior distribution assigned to θ, we will mainly focus on computing the
ML estimate. Some steps where the prior plays an important role will be separately
highlighted.

With the help of the Gaussian filtering and smoothing methodology introduced in
Section 3.2, computing the (approximate) MAP estimate corresponds to maximizing
a completely known function. Thus the problem is turned into one of nonlinear
optimization (also called nonlinear programming) (Cappé et al., 2005).

4.1.2 Ascent methods

Both of the parameter estimation methods we are going discuss, the expectation
maximization algorithm and the instances of gradient based nonlinear program-
ming dealt with in the next chapter, belong to the class of iterative ascent methods
(Luenberger & Ye, 2008). Suppose that m : Θ → Θ defines an iterative ascent
method and that we are maximizing the objective function ℓ : Θ → R. Then given
some initial point θ0, the sequence of estimates {θj ∈ Θ : θj = m(θj−1)} where
j = 1, . . . has the property ℓ

(
θj

)
≥ ℓ

(
θj−1

)
. This means that the objective function

is increased at every iteration of an iterative ascent method. Given some regular-
ity and boundedness conditions, it also means that objective function necessarily
converges to a local maximum (Cappé et al., 2005; Luenberger & Ye, 2008).

4.2 Gradient based nonlinear optimization

There exists a large amount of efficient nonlinear optimization methods that require
the gradient of the objective function to be available (Luenberger & Ye, 2008). The
best known general purpose algorithms probably belong to the classes of quasi-
Newton or conjugate gradient methods. For example, the MATLAB Optimization
Toolbox contains the function fminunc utilizing both conjugate gradient and quasi-
Newton methods in certain cases (The Mathworks Inc. 2012).
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The simplest gradient based method is the method of steepest ascent. It requires
that the first partial derivatives of the objective function are defined and continuous
in their domain. The method of steepest ascent is then defined by the iteration

θj+1 = θj + αj∇ℓ
(
θj

)
. (48)

The idea is intuitive since it is well known that the gradient points to the direction
of steepest ascent, a direction that is orthogonal to the isolines of constant value.
To determine αj, the step size, another minimization problem needs to be solved,
namely

αj = arg min
α

ℓ
(
θj + α∇ℓ

(
θj

))
. (49)

The one dimensional optimization algorithms that are used to solve the step-sizes
are known as line search methods (Luenberger & Ye, 2008). Common line search
methods include the golden rule method and methods based on polynomial inter-
polation.

Suppose now that θ⋆ is the value of the parameter giving the unique maximum
of ℓ

(
θ
)
. We define the order of convergence as the supremum of the numbers p ≥ 0,

where

0 ≥ lim
j→∞

∣∣∣θj+1 − θ⋆

∣∣∣∣∣∣θj − θ⋆

∣∣∣p < ∞. (50)

When p = 1, we also define the linear rate of convergence as the number 0 ≤ ρ < 1
in

lim
j→∞

∣∣∣θj+1 − θ⋆

∣∣∣∣∣∣θj − θ⋆

∣∣∣ = ρ. (51)

It can be shown that the steepest ascent method has linear order of convergence
(p = 1) and if the Hessian of the objective function is positive definite with r = A/a,
the ratio of the largest and smallest eigenvalues,

ρ ≤
(

r − 1
r + 1

)2

. (52)

A much more efficient nonlinear optimization algorithm is the Newton’s method. It
is based on Taylor expanding the objective function around the current estimate θj.
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Let us assume that ℓ has continuous second-order partial derivatives. Then

ℓ
(
θ
)

≈ ℓ
(
θj

)
+ ∇ℓ

(
θj

)T(
θ − θj

)
+ 1

2
(
θ − θj

)T
∇2ℓ

(
θj

)(
θ − θj

)
and maximizing the approximation by setting its gradient to zero gives

∇ℓ
(
θj

)
− ∇2ℓ

(
θj

)(
θj − θ

)
= 0

⇒ θj+1 = θj − ∇2ℓ
(
θj

)−1
∇ℓ
(
θj

)
. (53)

Near θ⋆ the Hessian is invertible and so the algorithm is well defined there (see,e.g.,
Luenberger & Ye, 2008). It can be shown that when initialized sufficiently close to
θ⋆, (pure form) Newton’s method always converges to θ⋆ with order of convergence
at least two.

Further away from the maximum, there are various problems with Newton’s
method as formulated in Equation (53). There are no guarantees for the invertibility
of the Hessian and higher order terms may cause a step to actually decrease the
objective function. Thus we turn our attention to algorithms of the general form

θj+1 = θj − Ĥ−1
j ∇ℓ

(
θj

)
, (54)

where Ĥj is a symmetric matrix, the search direction is Dj∇ℓ
(
θj

)
and the step-size

is αj > 0. Generally Ĥj should also be negative definite, to guarantee that the
method is an ascent method for small αj.

Clearly we get gradient ascent with Ĥj = I and Newton’s method with Ĥj =
∇2ℓ

(
θj

)
. Other methods of this form have thus orders of convergence between

one and two. In practice the step size parameter is always determined by a line-
search, so that different algorithms of the form (54) differ only in how the search
direction is computed. Even if we could guarantee the invertibility of the Hessian,
its computation is nevertheless notoriously computationally demanding.

Thus we will discuss methods derived from Newton’s method, but which only
require gradient information. These are commonly known as quasi-Newton methods
or sometimes secant methods (Battiti, 1992). Given the analytical gradient, the idea
is to iteratively approximate the analytical inverse Hessian by utilizing information
gathered as the ascent method advances. Suppose we are given two points, θj and
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θj+1, and that

gj ≡ ∇ℓ
(
θj

)
(55)

qj ≡ gj+1 − gj (56)
pj ≡ θj+1 − θj. (57)

We could then approximate the Hessian from

qj ≈ ∇2ℓ
(
θj

)
pj, (58)

which in the one dimensional case is the slope of the secant line drawn through the
two points θj and θj+1 (Battiti, 1992). In case of constant Hessian, Equation (58)
becomes exact. In multiple dimensions Equation 58 doesn’t give a unique solution for
the approximate Hessian. The Broyden update suggests to pick the one that deviates
the least from the current approximation in the sense of the Frobenius norm. Let
us suppose that we’re searching for a symmetric and negative definite approximate
Hessian Ĥj+1 based on the current approximation Ĥj. Since the Broyden update
doesn’t guarantee negative definiteness we instead update an invertible Cholesky
factor, thus guaranteeing the negative-definiteness of Ĥj+1. These considerations
lead to the widely applied Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Broyden,
Dennis, & Moré, 1973; Battiti, 1992) update

Ĥj+1 = Ĥj + qkqT
k

qT
k pk

+ ĤjpkpT
k Ĥj

pT
k Ĥjpk

. (59)

Since we are actually in need for the approximate inverse Hessian, applying the
Sherman-Morrison inversion formula gives

Ĥ−1
j+1 = Ĥ−1

j +

1 + qT
k Ĥ−1

j qk

qT
k qk

pkpT
k

pT
k qk

+
pkqT

k Ĥ−1
j + Ĥ−1

j qkqT
k

qT
k pk

. (60)

It should be pointed that the commonly used MATLAB unconditional nonlinear
optimization function fminunc that we referred to earlier, uses the BFGS quasi-
Newton method with cubic (and occasionally quadratic) polynomial interpolation
based line search.
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4.2.1 Linear-Gaussian SSMs

Let us then focus on computing the gradient of the log-likelihood function ℓ
(
θ
)
, also

known as the score function. By marginalizing the joint distribution of Equation (22)
we get

p(yk | y1:k−1,θ) = N
(
yk

∣∣∣Hmk|k−1, Sk

)
. (61)

Applying Equation (17) and taking the logarithm then gives

ℓ
(
θ
)

= −1
2

T∑
k=1

log det Sk − 1
2

T∑
k=1

(
yk − Hmk|k−1

)T
S−1

k

(
yk − Hmk|k−1

)
+ C, (62)

where C is a constant that doesn’t depend on θ and thus can be ignored in the
maximization. There are two seemingly quite different methods for computing the
score function. The first one proceeds straightforwardly by taking the partial deriva-
tives of ℓ

(
θ
)
. As will soon be demonstrated, this leads to some additional recursive

formulas, known as the sensitivity equations, which allow computing the gradient
in parallel with the Kalman filter. The second method needs the smoothing distri-
butions with the cross-timestep covariances and it can be easily computed with the
expectation maximization machinery that will be introduced later. When applied to
linear-Gaussian SSMs these two methods can be proved to compute the exact same
quantity (Cappé et al., 2005). At this point we will focus on the sensitivity equa-
tions. Going further it will be assumed that ℓ

(
θ
)

is continuous and differentiable
for all θ ∈ Θ. We will also assume here that H is independent of θ, since in practice
this is often the case (i.e., the linear mapping from the state to the measurement is
known).

In order to calculate the score function

∇ℓ
(
θ′
)

=
∂ℓ
(
θ
)

∂θ

∣∣∣∣∣∣
θ=θ′

=

∂ℓ
(
θ
)

∂θ1
. . .

∂ℓ
(
θ
)

∂θdθ

T∣∣∣∣∣∣
θ=θ′

, (63)
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we have to compute the partial derivatives:

∂ℓ
(
θ
)

∂θi

= − 1
2

T∑
k=1

Tr
(

S−1
k

∂Sk

∂θi

)

+
T∑

k=1

(
H

∂mk|k−1

∂θi

)T

S−1
k

(
yk − Hmk|k−1

)

+ 1
2

T∑
k=1

(
yk − Hmk|k−1

)T
S−1

k

(
∂Sk

∂θi

)
S−1

k

(
yk − Hmk|k−1

)
.

(64)

From the Kalman filter recursions (21) we get

∂Sk

∂θi

= H
∂Pk|k−1

∂θi

HT + ∂R
∂θi

, (65)

so that we are left with the task of determining the partial derivatives of mk|k−1 and
Pk|k−1,

∂mk|k−1

∂θi

= ∂A
∂θi

mk−1|k−1 + A
∂mk−1|k−1

∂θi

(66)

∂Pk|k−1

∂θi

= ∂A
∂θi

Pk−1|k−1AT + A
∂Pk−1|k−1

∂θi

AT

+ APk−1|k−1

(
∂A
∂θi

)T

+ ∂Q
∂θi

,

(67)

as well as of mk|k and Pk|k:

∂Kk

∂θi

=
∂Pk|k−1

∂θi

HTS−1
k − Pk|k−1HTS−1

k

∂Sk

∂θi

S−1
k (68)

∂mk|k

∂θi

=
∂mk|k−1

∂θi

+ ∂Kk

∂θi

(
yk − Hmk|k−1

)
− KkH

∂mk|k−1

∂θi

(69)

∂Pk|k

∂θi

=
∂Pk|k−1

∂θi

− ∂Kk

∂θi

SkKT
k − Kk

∂Sk

∂θi

KT
k − KkSk

(
∂Kk

∂θi

)T

. (70)

Equations (66), (67), (68), (69) and (70) together specify a recursive algorithm for
computing (64) that can be run alongside the Kalman filter recursions. As noted
earlier, these equations are sometimes known as the sensitivity equations and they
are derived at least in Gupta and Mehra (1974). See also Sandell and Yared (1978)
and Mbalawata, Särkkä, and Haario (2012).
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4.2.2 Nonlinear-Gaussian SSMs

Here we will present the derivation of the sensitivity equations for nonlinear SSMs
with additive Gaussian noise. Since the predictive and filtering distributions have
to be approximated in the nonlinear case, we will work in the Gaussian filtering
framework. The 3rd order spherical cubature approximation of Equation (44) will
be applied to integrals intractable in closed form. The result is an approximate
recursive algorithm for computing ∂mk|k

∂θi
and ∂Pk|k

∂θi
, which are the partial derivatives

of the mean and and variance of the filtering distributions. These enable us to
compute the partial derivatives of the marginal log-likelihood and by Equation (63),
an approximation to the score function.

By marginalizing the joint distribution of Equation (33) we get the approxima-
tion

p(yk | y1:k−1,θ) ≈ N(yk |µk, Sk), (71)

so that taking the logarithm of the factorization (17) gives the approximate log
marginal likelihood

ℓ
(
θ
)

≈ −1
2

T∑
k=1

log det Sk − 1
2

T∑
k=1

(yk − µk)T S−1
k (yk − µk) , (72)

where terms independent of θ have been dropped. To compute the score function,
we need the partial derivatives

∂ℓ
(
θ
)

∂θi

≈ − 1
2

T∑
k=1

Tr
(

S−1
k

∂Sk

∂θi

)

+
T∑

k=1

(
∂µk

∂θi

)T

S−1
k (yk − µk)

+ 1
2

T∑
k=1

(yk − µk)T S−1
k

(
∂Sk

∂θi

)
S−1

k (yk − µk) .

(73)

Let us denote the predictive distribution sigma points by ς(j)
k|k−1 = mk|k−1+

√
Pk|k−1ε

(j),
where j = 1, . . . , 2 dx, and the constant weight by w = 1

2dx
. We will first focus on

computing an approximation to

∂ς
(j)
k|k−1

∂θi

=
∂mk|k−1

∂θi

+
∂
√

Pk|k−1

∂θi

ε(j). (74)
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By applying the cubature rule to the integrals (30) and (31) we get

mk|k−1 ≈ w
2 dx∑
j=1

f
(
ς

(j)
k−1|k−1

)
(75)

Pk|k−1 ≈ w
2 dx∑
j=1

(
f
(
ς

(j)
k−1|k−1

)
− mk|k−1

)(
f
(
ς

(j)
k−1|k−1

)
− mk|k−1

)T
+ Q, (76)

so that the partial derivatives of these become

∂mk|k−1

∂θi

≈ w
2 dx∑
j=1

Jf
(
ς

(j)
k−1|k−1

) ∂ς
(j)
k−1|k−1

∂θi

(77)

and

∂Pk|k−1

∂θi

≈

w
2 dx∑
j=1

[(
Jf
(
ς

(j)
k−1|k−1

) ∂ς
(j)
k−1|k−1

∂θi

−
∂mk|k−1

∂θi

)(
f
(
ς

(j)
k−1|k−1

)
− mk|k−1

)T

+
(

f
(
ς

(j)
k−1|k−1

)
− mk|k−1

)(
Jf
(
ς

(j)
k−1|k−1

) ∂ς
(j)
k−1|k−1

∂θi

−
∂mk|k−1

∂θi

)T
]

+ ∂Q
∂θi

.

(78)

Here Jf (·) denotes the Jacobian of f . We assume that at the current iteration
k we have available the approximate mean and variance of the previous filtering
distribution, mk−1|k−1 and Pk−1|k−1, as well as the partial derivatives ∂mk−1|k−1

∂θi
and

∂Pk−1|k−1
∂θi

. This means we can form ς
(j)
k−1|k−1 = mk−1|k−1 +

√
Pk−1|k−1ε

(j).

In Equation (74) we clearly need ∂
√

Pk|k−1

∂θi
, the partial derivative of the Cholesky

decomposition of Pk|k−1. Having ∂Pk|k−1
∂θi

available, this can be obtained for example
by differentiating an algorithm for computing the Cholesky decomposition.

By applying the CKF cubature rule to the integral (35) we get

Sk ≈ w
2 dx∑
j=1

(
h
(
ς

(j)
k|k−1

)
− µk

)(
h
(
ς

(j)
k|k−1

)
− µk

)T
+ R, (79)
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so that

∂Sk

∂θi

≈ w
2 dx∑
j=1

[(
Jh
(
ς

(j)
k|k−1

) ∂ς
(j)
k|k−1

∂θi

− ∂µk

∂θi

)(
h
(
ς

(j)
k|k−1

)
− µk

)T
+

(
h
(
ς

(j)
k|k−1

)
− µk

)(
Jh
(
ς

(j)
k|k−1

) ∂ς
(j)
k|k−1

∂θi

− ∂µk

∂θi

)T
]

+ ∂R
∂θi

,

(80)

where Jh(·) denotes the Jacobian of h. The approximate partial derivative of µk

can be derived from Equation (34):

∂µk

∂θi

≈ w
2 dx∑
j=1

Jh
(
ς

(j)
k|k−1

) ∂ς
(j)
k|k−1

∂θi

. (81)

From Equation (37b) we get

∂Kk

∂θi

= ∂Ck

∂θi

S−1
k − CkS−1

k

∂Sk

∂θi

S−1
k (82)

and Equation (36) gives

Ck ≈ w
2 dx∑
j=1

(
ς

(j)
k|k−1 − mk|k−1

)(
h
(
ς

(j)
k|k−1

)
− µk

)T
, (83)

so that

∂Ck

∂θi

≈ w
2 dx∑
j=1

[( ∂ς
(j)
k|k−1

∂θi

−
∂mk|k−1

∂θi

)(
h
(
ς

(j)
k|k−1

)
− µk

)T
+

(
ς

(j)
k|k−1 − mk|k−1

)(
Jh
(
ς

(j)
k|k−1

) ∂ς
(j)
k|k−1

∂θi

− ∂µk

∂θi

)T
]
.

(84)

Finally, from Equations (37c) and (37d) we obtain

∂mk|k

∂θi

=
∂mk|k−1

∂θi

+ ∂Kk

∂θi

(yk − µk) − Kk
∂µk

∂θi

. (85)

and
∂Pk|k

∂θi

=
∂Pk|k−1

∂θi

− ∂Kk

∂θi

SkKT
k − Kk

∂Sk

∂θi

KT
k − KkSk

(
∂Kk

∂θi

)T

(86)
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4.3 Expectation maximization (EM)

Expectation maximization (EM) algorithm is a general method for finding ML and
MAP estimates in probabilistic models with missing data or latent variables. It
was first introduced in the celebrated article of Dempster and Laird (1977) and its
convergence properties were proved in C. F. J. Wu (1983) . Instead of maximizing
(62) directly, EM alternates between computing a variational lower bound and then
maximizing this bound (Bishop, 2006; Barber, 2012). As will be seen, since the
bound is strict, increasing the bound implies an increase in the objective function.
We shall use ⟨·⟩q ≡

∫
· q(z)dz to denote the expectation over any distribution q(z).

Let us introduce a family of “variational” distributions indexed by the parameter
ψ, q(x0:T |ψ), over the states x0:T (or the latent variables in general). Noting now
that p(x0:T | y0:T ,θ) = p(x0:T , y0:T |θ)/p(y0:T |θ) and that ℓ

(
θ
)

≡ log p(y0:T |θ) is
independent of x0:T , we can perform the following decomposition on the marginal
log likelihood:

ℓ
(
θ
)

= log p(x0:T , y0:T |θ) − log p(x0:T | y0:T ,θ)

=
⟨
log p(x0:T , y0:T |θ)

⟩
q(x0:T |ψ) −

⟨
log p(x0:T | y0:T ,θ)

⟩
q(x0:T |ψ)

=
⟨
log p(x0:T , y0:T |θ)

⟩
q(x0:T |ψ) −

⟨
q(x0:T |ψ)

⟩
q(x0:T |ψ)︸ ︷︷ ︸

B
(
θ,ψ

)
+ KL

(
q(x0:T |ψ)

∥∥∥ p(x0:T | y0:T ,θ)
)
.

(87)

By invoking the nonnegativeness of the Kullback-Leibler divergence

KL
(
q(x0:T |ψ)

∥∥∥ p(x0:T | y0:T ,θ)
)

= −
⟨

log p(x0:T | y0:T ,θ)
q(x0:T |ψ)

⟩
q(x0:T |ψ)

, (88)

or equivalently the relation

⟨
log q(x0:T |ψ)

⟩
q(x0:T |ψ) ≥

⟨
log p(x0:T | y0:T ,θ)

⟩
q(x0:T |ψ), (89)

provable by Jensen’s inequality, we see that B
(
θ,ψ

)
is indeed a lower bound on

ℓ
(
θ
)
. These considerations suggest an iterative algorithm which produces a series

of estimates {θj}, where j = 0, . . . . Given the initial guess θ0, the two alternating
steps of the algorithm are:

E-step
Set q

(
x0:T

∣∣∣ψj+1

)
to the distribution that maximizes B

(
θj,ψ

)
with re-
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spect to ψ. Here θj is the current estimate of θ.

M-step
Set θj+1 to the estimate that maximizes B

(
θ,ψj+1

)
with respect to θ.

In some sense then, the algorithm can be viewed as coordinate ascent in B
(
θ,ψ

)
(Neal & Hinton, 1998).

The sharpest bound can clearly be found among distributions of the form p
(
x0:T

∣∣∣y0:T ,θ′
)
,

since the Kullback-Leibler divergence vanishes with q(x0:T |ψ) = p(x0:T | y0:T ,θ).
Let us now define

Q
(
θ,θ′

)
≡
⟨
log p(x0:T , y0:T |θ)

⟩
p(x0:T | y0:T ,θ′) (90)

H
(
θ,θ′

)
≡
⟨
log p(x0:T | y0:T ,θ)

⟩
p(x0:T | y0:T ,θ′) (91)

B
(
θ,θ′

)
≡ Q

(
θ,θ′

)
− H

(
θ′,θ′

)
. (92)

Regarding these functions we will use the convention that denoting for example
B
(
θ,ψ

)
means the expectation is taken with respect to some unspecified distribution

q(x0:T |ψ), whereas B
(
θ,θ′

)
implies it is taken with respect to p

(
x0:T

∣∣∣y0:T ,θ′
)
,

meaning the posterior distribution of the states given the parameter θ′.
According to (87) we now have

ℓ
(
θ
)

≥ B
(
θ,θ′

)
∀θ,θ′ ∈ Θ (93)

and especially

ℓ
(
θ
)

= B
(
θ,θ

)
. (94)

When we want to maximize B
(
θ,θ′

)
with respect to θ, it clearly suffices to consider

only Q
(
θ,θ′

)
, known as the expected complete-data log-likelihood or the intermediate

quantity of EM (Cappé et al., 2005; Bishop, 2006).
What is also interesting about Q

(
θ,θ′

)
is that it can be used to compute the

gradient of the log-likelihood, meaning the score, itself. From Equations (92) and
(94) it can be seen rather easily that the score evaluated at θ̂ is given by

∇ℓ
(
θ̂
)

= ∇θQ
(
θ̂, θ̂

)
≡

∂Q
(
θ, θ̂

)
∂θ

∣∣∣∣∣∣
θ=θ̂

. (95)

Equation (95) is known as Fisher’s identity (Cappé et al., 2005; Segal & Wein-
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stein, 1989). It gives an alternative route for the score function computation. The
implications will be discussed in more detail in the sequel.

We are now in a position to formulate the so called fundamental inequality of
EM (Cappé et al., 2005). From (93) we have

ℓ
(
θj+1

)
≥ Q

(
θj+1,θj

)
− H

(
θj,θj

)
,

so that using (94) and assuming that the M-step result θj+1 increases the bound we
can write

ℓ
(
θj+1

)
− ℓ

(
θj

)
≥ Q

(
θj+1,θj

)
− Q

(
θj,θj

)
≥ 0. (96)

This highlights the fact that the likelihood is increased or unchanged with every new
estimate θj+1. Also following from (96) is the fact that if the iterations stop at a
certain point, meaning θl = θl−1 at iteration l, then Q(θ,θl) must be maximal at
θ = θl and thus its gradient, and by (95) that of the likelihood, must be zero at
θ = θl. Thus θl is a stationary point of ℓ

(
θ
)
, that is, a local maximum or a saddle

point.
Figure 3 illustrates the EM algorithm for a unidimensional parameter θ. Starting

from the lower left corner, given the current parameter estimate θk, the E-step
computes the lower bound B

(
θ, θk

)
(dashed line) to the objective function ℓ

(
θ
)

(solid line). Clearly B
(
θk, θk

)
= ℓ

(
θk

)
and ∇θB

(
θk, θk

)
= ∇θQ(θk, θk) = ∇ℓ

(
θk

)
.

In the M-step, the next parameter value θk+1 is found by maximizing the lower
bound obtained in the E-step. In the case of Figure 3, we can see that EM estimate
is close to the ML estimate at iteration k + 2.

We have so far formulated the EM algorithm only for ML estimation. In the case
of MAP estimation with a nonuniform prior (remember that with a uniform prior
the estimates are identical), the E-step stays the same since the prior is independent
of x0:T . The MAP M-step is

M-step (MAP)
Set θj+1 to the estimate that maximizes B

(
θ,ψj+1

)
+ log p(θ) with re-

spect to θ.

EM in exponential families of distributions

Computing the intermediate quantity of EM is especially simple if the dynamic
model and the measurement model belong to an exponential family of distributions,
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Figure 3: Illustration of two iterations of the EM algorithm for a unidimensional pa-
rameter θ. Starting from the lower left corner, given the current parameter estimate
θk, the E-step computes the lower bound (dashed line) to the objective function ℓ

(
θ
)

(solid line). In the M-step, the next parameter value θk+1 is found by maximizing
the lower bound obtained in the E-step. The EM estimate is very close to the ML
estimate at iteration k + 2.

which have probability distribution functions of the form

q(z |θ) = h(z) exp
{
ψ(θ)Ts(z) − c(θ)

}
. (97)

Here s(z) is called the vector of natural sufficient statistics and η ≡ ψ(θ) is the
natural parameterization. Let us suppose now that the complete-data likelihood is
of the form (97), so that zT =

[
vec{x0:T }T, vec{y0:T }T

]
, where the operator vec{·}

creates vectors out of matrices by stacking their columns. Thus z contains the
hidden variables x0:T and the measurements y0:T .

The intermediate quantity, which is the expectation of the logarithm of q(z |θ)
over the posterior distribution of x0:T (implicit in the notation) becomes now

Q
(
θ,θ′

)
= ψ(θ)T⟨s(z)

⟩
− c(θ) +

⟨
h(z)

⟩
. (98)

Since the last term is independent of θ then the maximization in the M-step is
independent of this last term. Thus the role of the E-step degenerates into computing
the expectation of the sufficient statistics

⟨
s(z)

⟩
.
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EM as a special case of variational Bayes

Variational Bayes (VB) is a fully Bayesian methodology where one seeks for an
approximation to the parameter posterior (Barber, 2012; Bishop, 2006; MacKay,
2003; Bernardo, Bayarri, Berger, Beal, & Ghahramani, 2003)

p(θ | y0:T ) = 1
Z

p(y0:T |θ)p(θ) ≈ q(θ). (99)

The appeal here is that when succesfull, fully Bayesian results can be obtained
with significantly reduced computational requirements as compared to simulation
based methods. Unfortunately it seems that applying VB to SSMs is somewhat
problematic, as discussed in Turner and Sahani (2011).

Let us introduce the following simplifying factorization to the joint posterior of
states and parameters:

p(x0:T ,θ | y0:T ) ≈ q(x0:T )q(θ). (100)

Noting now that p(x0:T ,θ | y0:T ) = p(x0:T , y0:T ,θ)/p(y0:T |θ) and that ℓ
(
θ
)

≡ log p(y0:T |θ)
is independent of x0:T we can then perform the following decomposition on the log
likelihood:

ℓ
(
θ
)

= log p(x0:T , y0:T ,θ) − log p(x0:T ,θ | y0:T )

=
⟨
log p(x0:T , y0:T ,θ)

⟩
q(x0:T )q(θ) −

⟨
p(x0:T ,θ | y0:T )

⟩
q(x0:T )q(θ)

=
⟨
log p(x0:T , y0:T ,θ)

⟩
q(x0:T )q(θ) −

⟨
q(x0:T )

⟩
q(x0:T ) −

⟨
q(θ)

⟩
q(θ)

+ KL
(
q(x0:T )q(θ)

∥∥∥ p(x0:T ,θ | y0:T )
)
.

(101)

Thus minimizing the KL divergence between the factorized approximation and the
true joint posterior is equivalent to finding the tightest lower bound to the log
likelihood. These considerations suggest an iterative algorithm which produces a
series of estimates qj(θ), where j = 0, . . . . Given the initial guess q0(θ), the two
alternating steps of the algorithm are:

E-step

qj+1(x0:T ) = arg min
q(x0:T )

KL
(
q(x0:T )qj(θ)

∥∥∥ p(x0:T ,θ | y0:T )
)

(102)
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M-step

qj+1(θ) = arg min
q(θ)

KL
(
qj+1(x0:T )q(θ)

∥∥∥ p(x0:T ,θ | y0:T )
)

(103)

Let us then suppose that we only wish to find the MAP estimate θ∗. This can be
accomplished by assuming a delta function form q(θ) = δ (θ,θ∗) for the parameter
factor in the joint distribution of states and parameters (100). With this assumption
the bound becomes

p(y0:T |θ∗) ≥
⟨
log p(x0:T , y0:T ,θ)

⟩
q(x0:T )q(θ∗) −

⟨
q(x0:T )

⟩
q(x0:T ) + const (104)

and the “M”-step (103) can then be written as

θj+1 = arg max
θ

[⟨
log p(x0:T , y0:T |θ)

⟩
q(x0:T ) + log p(θ)

]
. (105)

If the point estimate is plugged in the “E”-step Equation (102) we get

qj+1(x0:T ) ∝ p
(
x0:T , y0:T

∣∣∣θj

)
∝ p

(
x0:T

∣∣∣y0:T ,θj

)
. (106)

Thus the EM algorithm can shown to be a special case of VB with a delta function
form for q(θ).

4.3.1 Partial E and M steps

As can be seen from Equation (96), to ensure monotonicity it is enough that
Q
(
θj+1,θj

)
≥ Q

(
θj,θj

)
, which means θj+1 is not required to be the maximum

of Q
(
θ,θj

)
. This was observed already in Dempster and Laird (1977), where meth-

ods that only seek an increase in the M-step were termed generalized EM (gEM)
algorithms.

Another modification is the partial, or approximate, E-step. It is clear that in
this case, when we cannot compute p(x0:T | y0:T ,θ) exactly, the Kullback-Leibler
divergence in decomposition (87) is strictly positive. This means that the lower
bound we are optimizing never “touches” the log-likelihood as in Equation (94) and
Figure 3. Thus EM with an approximate E step is not an ascent algorithm anymore
(Goodwin & Aguero, 2005).
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4.3.2 Linear-Gaussian SSMs

Let us then turn to applying EM to the case of linear-Gaussian SSMs (Shumway &
Stoffer, 1982; Ghahramani, 1996) , so that

f(xk−1,θ) ≡ Axk−1

h(xk,θ) ≡ Hxk

θ ≡ {A, Q, H, R}.

First of all, from the factorization in (3), the complete-data log-likelihood becomes

ℓ
(
θ
)

= − 1
2

(x0 − µ0)
T Σ−1

0 (x0 − µ0) − 1
2

log det(Σ0)

− 1
2

T∑
k=1

(xk − Axk−1)T Q−1 (xk − Axk−1) − T

2
log det(Q)

− 1
2

T∑
k=1

(yk − Hxk)T R−1 (yk − Hxk) − T

2
log det(R)

+ const.

(107)

Taking the expectation of (107) with respect to p
(
x0:T

∣∣∣y0:T ,θ′
)

(assumed implic-
itly in the notation), applying the identity aTCb = Tr

[
aTCb

]
= Tr

[
CbaT

]
, and

dropping the constant terms we get

Q
(
θ,θ′

)
≈ −1

2

{
Tr
[
Σ−1

0

⟨
(x0 − µ0) (x0 − µ0)

T
⟩]

+ log det(Σ0)

+ Tr
[
Q−1

T∑
k=1

⟨
(xk − Axk−1) (xk − Axk−1)T

⟩]
+ T log det(Q)

+ Tr
[
R−1

T∑
k=1

⟨
(yk − Hxk) (yk − Hxk)T

⟩]
+ T log det(R)

}
.

(108)
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Let us denote the quadratic forms inside the traces in Equation (108) with

I1(θ,θ′) =
⟨
(x0 − µ0) (x0 − µ0)

T
⟩

=
∫

X ×T
(x0 − µ0) (x0 − µ0)

T p
(
x0:T

∣∣∣y0:T ,θ′
)

dx0:T

=
∫

X
(x0 − µ0) (x0 − µ0)

T p
(
x0

∣∣∣y0:T ,θ′
)

dx0

(109)

I2(θ,θ′) =
T∑

k=1

∫∫
X

(xk − Axk−1) (xk − Axk−1)T

× p
(
xk, xk−1

∣∣∣y0:T ,θ′
)

dxkdxk−1

(110)

I3(θ,θ′) =
T∑

k=1

∫
X

(yk − Hxk) (yk − Hxk)T p
(
xk

∣∣∣y0:T ,θ′
)

dxk. (111)

It is clear then that in the E-step one needs to compute the T + 1 smoothing
distributions, including the T cross-timestep distributions, since these will be needed
in the expectations. By applying the identity

var[x] =
⟨
xxT

⟩
− ⟨x⟩⟨x⟩T, (112)

we can write the first expectation as

I1(θ,θ′) = P0|T + (m0|T − µ0)(m0|T − µ0)T. (113)

This was a result of assuming the Gaussian prior distribution of Equation (5c).
As in (39), let us denote the joint smoothing distribution of xk and xk−1 by

p(xk−1, xk | y0:T ) = N


xk−1

xk

 ∣∣∣∣∣∣
mk−1|T

mk|T

 ,

Pk−1|T Dk−1

DT
k−1 Pk|T


. (114)

Then by applying the manipulation
⟨
(Axk−1 − xk) (Axk−1 − xk)T

⟩
=

AT

−I

T ⟨xk−1

xk

 xk−1

xk

T⟩AT

−I

 (115)
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we get

I2(θ,θ′) =

AT

−I

T
T∑

k=1


Pk−1|T Dk−1

DT
k−1 Pk|T

+

mk−1|T

mk|T

 mk−1|T

mk|T

T

AT

−I

 (116)

=

AT

−I

T
∑T

k=1

⟨
xk−1xT

k−1

⟩ ∑T
k=1

⟨
xk−1xT

k

⟩
∑T

k=1

⟨
xkxT

k−1

⟩ ∑T
k=1

⟨
xkxT

k

⟩

AT

−I



=

AT

−I

T X11 X10

XT
10 X00

 AT

−I


= X00 − AX10 − XT

10AT + AX11AT

=
(
A − XT

10X−1
11

)
X11

(
A − XT

10X−1
11

)T
+ X00 + XT

10X−1
11 X10. (117)

It’s easy to see that the extremum of the last line with respect to A is obtained by
setting

Aj+1 = XT
10X−1

11 . (118)

Analogously for I3(θ,θ′) we get

I3(θ,θ′) =

 I
−HT

T
T∑

k=1

 ykyT
k yk⟨xk⟩T

⟨xk⟩yT
k

⟨
xkxT

k

⟩

 I
−HT

 (119)

=

 I
−HT

T
T∑

k=1

Y00 C̄00

C̄T
00 X00

  I
−HT

 , (120)

giving

Hj+1 = C̄00X−1
00 . (121)

The next task is to derive the M-step maximization equations for the process
and measurement model noise covariance matrices Q and R. To achieve this, we
will differentiate (108) with respect to these matrices. As can be seen from (108),
the terms involving Q or R are similar in form and so the resulting maximization
equations are analogous. Focusing on Q, it is easier to differentiate with respect to
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Q−1:

∂Q
(
θ,θ′

)
∂Q−1 = − 1

2
∂

∂Q−1 Tr
[
Q−1

T∑
k=1

⟨
(xk − fk−1) (xk − fk−1)T

⟩]

− T

2
∂

∂Q−1 log det Q

= − 1
2

T∑
k=1

⟨(
xk − fk−1)

) (
xk − fk−1)

)T⟩+ T

2
Q, (122)

where we have used Equations (92) and (51) in Petersen and Pedersen, 2008. Setting
(122) to zero we get the update equation for the next estimate of Q

Qj+1 = 1
T

T∑
k=1

⟨
(xk − fk−1) (xk − fk−1)T

⟩
= 1

T
I2(θ,θ′).

(123)

The analogous result for R is given by

Rj+1 = 1
T

T∑
k=1

⟨
(yk − hk) (yk − hk)T

⟩
= 1

T
I3(θ,θ′).

(124)

All in all, the E-step of the EM algorithm in linear-Gaussian SSMs consists
of computing the T joint distributions of Equation (114) with the RTS smoother.
After this, the M-step estimates are computed for Q from Equation (123), for R
from Equation (124), for A from Equation (118) and for H from Equation (121).

4.3.3 Nonlinear-Gaussian SSMs

As explained in Section 3.2, in the nonlinear case the filtering and smoothing dis-
tributions cannot be computed exactly. Thus the E-step is approximate and the
convergence guarantees of EM as an ascent method won’t apply anymore. In the
fortunate case that the model is linear-in-the-parameters the M-step can be solved
in closed form. This situation will be covered later in Section 4.3.4. Currently we
will assume however that the model is nonlinear in the parameters as well as in the
states so that the simplest form to write the model is given by Equation (5). This
situation leads to complications in both the E and the M steps of the EM algorithm.
Applying EM to SSMs with partial or approximate E-step is considered at least in
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Schön, Wills, and Ninness (2011), Ratna (2008), Doucet, De Freitas, and Gordon
(2001), Roweis and Ghahramani (2001), and Goodwin and Aguero (2005).

Our strategy will be to apply Gaussian filtering and smoothing in the E-step to
compute the expectations of the sufficient statistics. We will settle for an incremental
M-step where we again apply a gradient based optimization method. This leads to
the requirement of being able to compute ∇θQ

(
θ,θ′

)
, that is the gradient of the

intermediate quantity with respect to θ. It is quite unclear how many iterations
of the optimization algorithm should be run in the M-step since, as pointed out
in section 4.3.1, any new parameter value that increases the log-likehood suffices.
In Lange (1995) a heuristic argument was used to only run a single iteration of
Newton’s method in the M-step.

Denoting fk−1 ≡ f(xk−1,θ) and hk ≡ h(xk,θ), we now have

Q
(
θ,θ′

)
≈ −1

2

{
Tr
[
Σ−1

0 I1(θ,θ′)
]

+ log det(Σ0)

+ Tr
[
Q−1Î2(θ,θ′)

]
+ T log det(Q)

+ Tr
[
R−1Î3(θ,θ′)

]
+ T log det(R)

}
,

(125)

where I1(θ,θ′) was given in Equation (109) and we approximate

p
(
xk, xk−1

∣∣∣y0:T ,θ′
)

≈ N


xk−1

xk

 ∣∣∣∣∣∣
mk−1|T

mk|T

 ,

Pk−1|T Dk−1

DT
k−1 Pk|T


 (126)

giving

Î2(θ,θ′) =
T∑

k=1

∫∫
X

(
xk − f(xk−1,θ)

) (
xk − f(xk−1,θ)

)T

× N


xk−1

xk

 ∣∣∣∣∣∣
mk−1|T

mk|T

 ,

Pk−1|T Dk−1

DT
k−1 Pk|T


 dxk−1 dxk

=

 I
−I

T
T∑

k=1

⟨ xk

fk−1

 xk

fk−1

T⟩ I
−I


(127)
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and

Î3(θ,θ′) =
T∑

k=1

∫
X

(
yk − h(xk,θ)

) (
yk − h(xk,θ)

)T N
(
xk

∣∣∣mk|T , Pk|T
)

dxk

=

 I
−I

T
T∑

k=1

⟨yk

hk

yk

hk

T⟩ I
−I

 .

(128)

Clearly the integrals (127) and (128) are Gaussian expectation integrals of the form
(40). An obvious strategy is thus to utilize a Gaussian smoother to compute the
joint smoothing distributions and then compute the 2T expectation integrals by
applying the same integration rule as was used by the smoother.

To use gradient based nonlinear optimization in the M-step, we will need the
analytical gradient of the objective function. It is important to highlight at this
point that the joint smoothing distribution approximation of Equation (126) depends
on θ′ (the current, e.g. given, parameter value) and during the M-step we are
searching for the next parameter value θ′′ = arg maxθ Q

(
θ,θ′

)
. In other words when

differentiating the integrals (127) and (128) the Gaussian functions are independent
of θ. Let us then find out the formal differential of a general log-Gaussian, where
both the mean and the variance depend on the scalar parameter θ. We get

∂

∂θ
log N(x | m, P)

= −1
2

∂

∂θ

[
(x − m)TP−1(x − m)

]
− 1

2
∂

∂θ
log det(P)

= −1
2

∂

∂θ
Tr
[
P−1(x − m)(x − m)T

]
− 1

2
Tr
[
P−1 ∂P

∂θ

]

= 1
2

Tr

P−1
(

∂P
∂θ

P−1(x − m)(x − m)T + 2 ∂m
∂θ

(x − m)T − ∂P
∂θ

)
If we then assume that f(xk−1,θ) , Q, h(xk,θ), R, µ0 and Σ0 depend on θi ∈ θ,

we can write

∇θQ
(
θ,θ′

)
=

∂Q
(
θ,θ′

)
∂θ1

. . .
∂Q

(
θ,θ′

)
∂θdθ

T

(129)
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and

∂Q
(
θ,θ′

)
∂θi

≈

1
2

Tr
[
Σ−1

0

(
∂Σ0

∂θi

Σ−1
0 I1(θ,θ′) + 2 ∂µ0

∂θi

(
m0|T − µ0

)T
− ∂Σ0

∂θi

)]

+1
2

Tr
[
Q−1

(
∂Q
∂θi

Q−1Î2(θ,θ′) + 2
T∑

k=1

⟨
∂f(xk−1,θ)

∂θi

xT
k

⟩

− 2
T∑

k=1

⟨
∂f(xk−1,θ)

∂θi

f(xk−1,θ)T
⟩

− T
∂Q
∂θi

)]

+1
2

Tr
[
R−1

(
∂R
∂θi

R−1Î3(θ,θ′) + 2
T∑

k=1

⟨
∂h(xk,θ)

∂θi

⟩
yT

k

− 2
T∑

k=1

⟨
∂h(xk,θ)

∂θi

h(xk,θ)T
⟩

− T
∂R
∂θi

)]
.

(130)

In order to gather the computations needed evaluate Q
(
θ,θ′

)
and ∇θQ

(
θ,θ′

)
given

the sufficient statistics of the T joint smoothing distributions, let us introduce the
shorthand notation f∇

k−1,i ≡ ∂f(xk−1,θ)
∂θi

and h∇
k,i ≡ ∂h(xk,θ)

∂θi

. One should then
perform the following operations:

1. For k = 1, . . . , T and i = 1, . . . , dθ, apply a numerical integration scheme to
compute

⟨
xk

fk−1

f∇
k−1,i




xk

fk−1

f∇
k−1,i


T⟩

(131)

and

⟨
yk

hk

h∇
k,i




yk

hk

h∇
k,i


T⟩

. (132)

2. Compute I1(θ,θ′), Î2(θ,θ′), Î3(θ,θ′) and Q
(
θ,θ′

)
from Equations (113),

(127), (128) and (125) respectively.

3. Compute ∇θQ
(
θ,θ′

)
from Equation (130).
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4.3.4 Score computation

As can be understood from Fisher’s identity in Equation (95), the gradient of the
intermediate quantity ∇θQ

(
θ,θ′

)
is equal to the log-likelihood gradient (the score)

at the point θ = θ′. This leads to an alternative computational strategy to the
sensitivity equations of Section 4.2.1, termed the easy gradient recipe in Olsson,
Petersen, and Lehn-Schiøler (2007). Thus to compute the score at θ′ one performs
the computations detailed in the previous section for evaluating ∇θQ

(
θ′,θ′

)
. Using

gradient based optimization for ℓ
(
θ
)
, where ∇ℓ

(
θ
)

is computed through the Fisher’s
identity is also the idea in the expectation-conjugate-gradient (ECG) method of
Salakhutdinov, Roweis, and Ghahramani (2003b).

Linear-in-the-parameters SSM:s

If the dynamic and measurement models are linear-in-the-parameters but nonlinear
in the states, then only the E-step is approximate and the M-step can be performed
in closed form. Thus this situation is a combination of the linear-Gaussian and the
nonlinear-Gaussian cases discussed in the previous sections.

Suppose now that f : X → X is a linear combination of vector valued functions
ρj : X → RdΦ,j , so that the parameters of f , Φj, are matrices of size dx × dΦ,j. Then
f can be written as

f(xk−1,θ) = Φ1(θ)ρ1(xk−1) + · · · + Φ(θ)mρm(xk−1)

=
[
Φ(θ)1 . . . Φ(θ)m

]

ρ1(xk−1)

...
ρm(xk−1)


= A(θ)g(xk−1),

(133)

so that A(θ) is now a matrix of size dx ×∑m
j=1 dΦ,j and g : X → R

∑m

j=1 dΦ,j .
Denoting g (xk−1) ≡ gk−1 and following the derivation in Equation (116) we now
have

Î2(θ,θ′) =

 I
−AT

T
 ∑T

k=1

⟨
xkxT

k

⟩ ∑T
k=1

⟨
xkgT

k−1

⟩
∑T

k=1

⟨
gk−1xT

k

⟩ ∑T
k=1

⟨
gk−1gT

k−1

⟩

 I
−AT

 (134)
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Then similarly to (118)

Aj+1 =
( T∑

k=1

⟨
xkgT

k−1

⟩)( T∑
k=1

⟨
gk−1gT

k−1

⟩)−1
. (135)

Analogously for h we can write

h(xk,θ) = Υ1(θ)π1(xk) + · · · + Υm(θ)πm(xk)

=
[
Υ1 . . . Υm

]

π1(xk)

...
πm(xk)


= H(θ)b(xk),

(136)

where H(θ) is now dx ×∑m
j=1 dΥ,j and b : X → R

∑m

j=1 dΥ,j . Denoting b (xk) ≡ bk,
we get

Î3(θ,θ′) =

 I
−HT

T
T∑

k=1

 ykyT
k yk⟨bk⟩T

⟨bk⟩yT
k

⟨
bkbT

k

⟩

 I
−HT

 , (137)

giving

Hj+1 =
(

yk⟨bk⟩T
)(⟨

bkbT
k

⟩)−1
. (138)
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5 Results

5.1 Endoathmospheric flight of a ballistic projectile

Let us consider a situation where a ballistic projectile is launched from the ground
into the air. We assume that the situation is governed by Newtonian mechanics and
that the projectile experiences a constant known gravitational force, directed towards
the ground. In addition we assume a constant drag force directed orthogonally to
the gravitational force. This is clearly an oversimplification, since in a more realistic
model the drag force should be proportional to velocity and directed against it.
Furthermore the drag force is highly dependent on air density and so on the altitude
(Ristic, Arulampalam, & Gordon, 2004). Nevertheless, we make the aforementioned
simplification to keep to resulting SSM linear. The modeling error is mitigated
slightly by introducing additive white noise to both forces.

We obtain a sequence of range measurements with a radar, so that our data
consists of the noisy two dimensional locations of the object as measured at time
points {tk}T

k=1. We assume a constant interval τ between the time points. With
these considerations, the system can be cast into a linear-Gaussian SSM.

In continous time and for a single coordinate χ, the dynamics can now be written
as

d
dt

χ(t)
χ̇(t)

 =

0 1
0 0

 χ(t)
χ̇(t)

+

0
1

 gχ +

0
1

 β(t), (139)

where gχ < 0 is the mean of the force and β(t) can be considered a white noise
process with variance (or spectral density) σ2

χ. Thus the state contains the position
and its first time derivative, the velocity.

To discretize the dynamics, we will apply a simple integration scheme where
x(t) = x(tk) when t ∈

[
tk, tk+1

)
(Bar-Shalom et al., 2004). The system will be

modeled in two dimensional Cartesian coordinates with two state components for
position and two for velocity, giving dx = 4. The state at time k is then

xk =
[
χk χ̇k γk γ̇k

]T
(140)

where χ̇k = dχ(t)
dt

∣∣∣∣∣∣
t=tk

and analogously for γ̇k. The corresponding measurement is
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given by

yk =
[
χk γk

]T
+ rk, (141)

where rk is a white noise process with variance σ2
r . The discrete time linear-Gaussian

SSM can now be written as

xk = Axk−1 + u + qk−1, qk−1 ∼ N(0, Q),

yk = Hxk + rk, rk ∼ N
(
0, σ2

rI
)
,

(142)

where

A =


1 τ

1
1 τ

1

 , u =


0
gχ

0
gγ

 ,

Q =


1/3σ2

χτ 3 1/2σ2
χτ 2

1/2σ2
χτ 2 σ2

χτ

1/3σ2
γτ 3 1/2σ2

γτ 2

1/2σ2
γτ 2 σ2

γτ

 , H =

1 0 0 0
0 0 1 0

 .

Additionally, the initial state x0 is assumed to be known with x0 =
[
0 cos(α0)v0 0 sin(α0)v0

]T
.

Figure 4 presents an example trajectory with the hidden state components ob-
tained by simulation and the corresponding simulated noisy measurements. The
simulated model was the linear-Gaussian SSM in Equation (142) with the parame-
ter values presented in Table 1.

Table 1: Parameter values used for simulation in Section 5.1
Parameter Value Unit Parameter Value Unit

σχ 1.2 m τ 0.01 s
σγ 0.8 m σr 2.5 m
gχ −1.8 m/s2 α0 60 °
gγ −9.81 m/s2 v0 40 m/s

Let us then proceed to estimating some of the parameters by using the noisy
measurements as input to the two parameter estimation methods we have been
considering. We choose parameters θB = {gχ, gγ, σr}, which are the accelerations
caused by the drag force and gravitation as well as the measurement noise standard
deviation. The true values, that is, the values which were used for generating the



48

measurements are presented in Table 1. To inspect the effect of the initial guess as
well as well as that of the specific measurement dataset, we ran M = 100 simulations
with the initial estimate for each parameter θi picked from the uniform distribution
U [0, 2θ∗

i ], where θ∗
i is the true generative value for parameter i given in Table 1.

The lengths of the simulated measurent datasets were around N ≈ 1400 with some
variance caused by always stopping the simulation when γk < 0 for some k. For
each simulated dataset and the associated initial estimate we ran the EM and the
BFGS parameter estimation methods for joint estimation of the three parameters.

In this case one can find closed form expressions for all three parameters in the
EM M-step. The M-step equations for linear-Gaussian SSMs, presented in Equations
(118), (121), (123) and (124), do not include one for estimating the constant input
u, which in this case contains the accelerations. It is not difficult to derive however
and for this particular model it reads

uj+1 = 1
2Tτ 2

0 1 0 0
0 0 0 1


×
(

3
(
m0|T − mT |T

)
+ τ

(
2

T∑
k=1

mk|T +
T∑

k=1
mk−1|T

))
. (143)

The BFGS implementation used was the fminunc function included in the Mat-
lab Optimization Toolbox (The Mathworks Inc. 2012). It is intended for general
unconstrained nonlinear optimization and implements other methods in addition to
BFGS. To force BFGS, fminunc should be called in the following way

opt = optimset(@fminunc);
opt.GradObj = 'on';
opt.LargeScale = 'off'; % use BFGS
% lhg = objective function and gradient
% [lh(x),lh'(x)] = lhg(x)
% p0 = initial estimate
p_min = fminunc(@lhg,p0,opt);

The likelihood convergence for both methods is presented in Figure 5. It is
important to note that the iteration numbers are not directly comparable between
the parameter estimation methods so that one shoudn’t attempt to draw conclusions
on the relative convergence rate betweeen the methods based on the convergence
plots.

The parameter convergence results are presented in Figure 6, which contains
eight separate panels: one per parameter and estimation method and the likelihoods
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for both estimation methods. One line is plotted in every panel for every simulated
dataset and the panels display their quantities as a function of the iteration number
of the estimation method. The convergence profiles show a lot of variability between
the methods and between the parameters but the means of the converged estimates
seem to agree very well with the generative values in all cases. Also gγ and σr show
very little variance in the converged estimate compared to gχ. In any case, according
to the asymptotic theory of the ML/MAP estimates, the variance should go to zero
as the amount of data approaches infinity.

Finally, Table 2 presents the averaged final results. Both methods seem to obtain
the same results and in fact they agree to the first six decimal places. This is to
be expected, since as mentioned earlier, they can be proved to compute the same
quantities in the linear-Gaussian case. The fact that the results differ after the
sixth decimal place can be explained by differing numerical properties of the two
algorithms. In case of gγ and σr, the estimates agree exactly at least to three decimal
places with the generative values, whereas gχ is correct up to two decimal places.
Since we are using unbiased estimates, the estimation error could be diminished up to
the order of the machine epsilon by simulating more data points . As a conclusion,
it seems that in this case the estimation problem was too simple to bring about
noticeable differences in the performance of the parameter estimation methods.
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χ

0

10

20

30

40
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Figure 4: A simulated trajectory (white line) and noisy measurements (black crosses)
from the linear-Gaussian SSM (142). The coordinates are in meters. The projectile
is simulated for approximately 7 seconds and there are T = 1396 measurements.
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Figure 5: Convergence of the likelihood for M = 100 simulated datasets with varying
initial parameter estimates. Both EM in (a) and BFGS in (b) converge to the same
likelihood value.

Table 2: Estimated parameter values and the final log-likelihood value averaged over
100 simulations in Section 5.1

gχ gγ σr ℓ/103

BFGS −1.796 −9.810 1.500 −5.122
EM −1.796 −9.810 1.500 −5.122

True −1.800 −9.810 1.500
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Figure 6: Convergence of the parameter estimates with EM and BFGS as a func-
tion of objective function evaluations in Section 5.1. The black line presents the
true generative value of the parameter. Note that the objective functions of the
optimization methods differ in their computational complexity, implying that the
plots cannot be directly compared in the x-axis.
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5.2 Photoplethysmograph waveform analysis

The second demonstration is concerned with a nonlinear model for photoplethys-
mograph (PPG) data, a short sequence of which is presented in Figure 7. PPG
is measured with a pulse oximeter the functioning of which is based on emitting
light (of which the infrared component is relevant to the PPG) through for example
a finger or an earlobe. Then either the transmitted or reflected light intensity is
measured with a photodiode (Shelley, 2007). As to what exactly is the source of
PPG is not without controversy, but as explained by Shelley (2007): “Conceptually,
it is most useful to view the pulse oximeter waveform as measuring the change in
blood volume (more specifically path length), during a cardiac cycle, in the region
being studied (typically the fingertip or earlobe)” (p. 31). The most important use
of the PPG is the calculation of arterial oxygen saturation, but it can also be used
to estimate the heart rate. In this case a PPG was obtained in connection with a
brain imaging study, where a pulse oximeter was attached to the subject while being
analysed with fMRI (Särkkä et al., 2012).

A realistic model for this data should take into account the quasi-periodic nature
of PPG data, meaning the frequency must be allowed to vary with time. Follow-
ing the ideas in Särkkä et al. (2012), one possibility is to write the model as a
superposition of noisy resonators with time-varying frequencies.

In continous time we can write a stochastic differential equation for the n:th
harmonic as

c̈n(t) = −ω(t)2cn(t) + εn(t), (144)

where cn(t) is the displacement from equilibrium at time t. The angular velocity ω

is related to the frequency f by ω(t) = 2πf(t) and εn(t) is additive white noise with
spectral density qn. For constant frequency and zero spectral density, the solution of
Equation (144) is well known to be cn(t) = exp(inωt + ϕn), where ϕn ∈ C depends
on the initial conditions.

Writing Equation (144) as a vector valued first order differential equation and
dividing the noise and the signal derivative by nω(t), we get

d
dt

cn(t)̂̇cn(t)

 =

 0 ω(t)
−ω(t) 0

 cn(t)̂̇cn(t)

+

0
1

 ε̂n(t). (145)

As explained in Särkkä et al. (2012), even if Equation (145) is not an exact repre-
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sentation of Equation (144), its discretized version has more appealing properties
than that of the exact version. Furthermore, the process noise can account for some
modeling errors.

Discretizing Equation (145) at equispaced points {tk}T
k=1 with interval τ and

assuming ω(t) = ω(tk) ≡ ωk when t ∈ [tk, tk+1) and that the process noises have
equal distributions between the harmonics, we get the following dynamic model for
displacement x(n):

x
(n)
k

ẋ
(n)
k

 ∼ N


 cos(nωk) sin(nωk)
− sin(nωk) cos(nωk)

x
(n)
k−1

ẋ
(n)
k−1

 ,

0 0
0 τσ2

x


. (146)

We assume that ωk is part of the state and that its dynamics follow the previously
introduced first order random walk model:

ωk ∼ N(ωk−1, τqω). (147)

The joint dynamic model of m harmonics and ωk is then


ωk

x
(1)
k

ẋ
(1)
k
...

x
(m)
k

ẋ
(m)
k


︸ ︷︷ ︸

xk

=



1
cos(ωk) sin(ωk)

− sin(ωk) cos(ωk)
. . .

cos(mωk) sin(mωk)
− sin(mωk) cos(mωk)





ωk

x
(1)
k−1

ẋ
(1)
k−1
...

x
(m)
k−1

ẋ
(m)
k−1


︸ ︷︷ ︸

f(xk−1)

+qk−1

(148)

where

qk−1 ∼ N



0, τ



σ2
ω

0
σ2

x

. . .
0

σ2
x


︸ ︷︷ ︸

Q(θP)



. (149)
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Our objective is now to find the ML estimate (or, equivalently, the MAP estimate
with a uniform prior) of the parameter θP ≡ {σω, σx} by using both the gradient
based nonlinear optimization approach presented in Section 4.2.2 and the EM ap-
proach presented in Section 4.3.3. We will treat the rest of the parameters as fixed
with the values presented in Table 3. The first component of the parameter, σω, is
the standard deviation of the angular velocity and the second, σx, is the standard
deviation of the displacement x, shared between the m = 3 harmonic components.
It would be quite difficult to try to estimate these values based only on a priori in-
formation, in contrast to σr which could be obtained from the measurement device
(the pulse oximeter).

Since Q(θP) is diagonal, we can use Equation (123) in the EM M-step and pick
the corresponding elements from the resulting full matrix as our next estimates.
Similarly to the analysis of the ballistic projectile in Section 5.1, the BFGS imple-
mentation used was the fminunc function included in the Matlab Optimization
Toolbox. The CKF filter and CKS smoother of Section 3.2.3 were used as the
approximate filtering and smoothing methods respectively. The score function for
BFGS was computed by the recursive sensitivity equations of Section 4.2.2.

To analyze the results’ sensitivity to the initial estimate, we ran M = 100 op-
timizations with both methods with the initial estimates drawn from a uniform
distribution on a suitable interval (that the initial estimate was always the same
between the methods). The likelihood convergence for both methods is presented in
Figure 8. We note again that the iteration numbers are not directly comparable. As
can be seen, the EM estimates seem to converge to values producing identical log
likelihood values (on the figure’s scale) whereas the BFGS estimates have at least
two modes. In contrast to the linear SSM analyzed in the previous section, here we
can see that the convergence of the EM is not monotonic in all cases.

The parameter convergence results are presented in Figure 9, which contains four
separate panels: one per parameter and estimation method. One line is plotted in
every panel for every optimization run and the panels display their quantities as a
function of the iteration number of the estimation method. The first thing to note
is the vast difference in the behavior of the methods. The EM estimates are quite
predictable and either do not converge at all (in the case of σw) or converge to the
same value (in the case σx). The BFGS estimates on the other hand seem to have
multiple convergent values for both parameters, depending on the initial estimate.

To get more insight into the behavior of the parameter estimation methods,
illustration of the converge of ℓ as a function of the logarithms of both σω and σx
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is presented in Figure 10. The end points of the runs are marked with black stars.
It seems that there are minor local maximums on either side of the major local
maximum around log σx ≈ −3. Some of the BFGS optimization runs (31 out of 100
to be specific) converge to the minor local maximums. However, the BFGS runs
that do not converge to the minor local maximums converge in both paramaters
while the EM runs only converge in log σx. Since ℓ is very insensitive to changes in
σω (at least on the range explored), the variance in the final values for σω for the
EM runs has only a negligible effect in ℓ.

Table 4 presents the averaged final results. We have included two sets of estimates
for BFGS: one set for all 100 runs and another one averaged over the 69 runs
that converge to the major local maximum. The standard errors in BFGS(100)
are relatively enormous as expected. However, the standard errors of BFGS(69)
are markedly smaller across the range when compared to EM(100). A probable
explanation for this is the the inconvergence of σω in EM(100).

Table 3: Parameter values used in the PPG analysis in Section 5.2
Parameter Value Unit Parameter Value Unit

m 3 − τ 0.008 s
σr 0.001 V

0 2 4 6 8 10

t

0.2

0.1

0.0

0.1

0.2

V

Figure 7: A short sequence of the PPG data in Section 5.2.
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Figure 8: Convergence of the likelihood for M = 100 simulated datasets with vary-
ing initial parameter estimates in the photoplethysmograph waveform analysis of
Section 5.2.
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Figure 9: Convergence of the log-parameter estimates with EM (column (a)) and
BFGS (column (b)) as a function of objective function evaluations in Section 5.2.
Note that the objective functions of the optimization methods differ in their com-
putational complexity, implying that the plots cannot be directly compared in the
x-axis.
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Figure 10: Illustrations of the converge of the log-likelihood as a function of the
logarithms of both σω and σx for EM (top) and BFGS (bottom). There are 100
independent optimization runs per method with differing initial estimates, so that
equal initial estimates were used between the methods. The end points of the runs
are marked with black stars.
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Table 4: Estimated final parameter and log-likelihood values in Section 5.2. The
value in parentheses is the amount of independent optimization runs averaged over.
The ± columns are the standard errors of the estimates in the preceding columns.
BFGS(69) is included, since some runs in BFGS(100) converge to minor local max-
imums of ℓ.

σω ± σx ± ℓ/104 ±

EM(100) 0.867 1.4 × 10−2 0.038 7.7 × 10−6 1.908 9.0 × 10−2

BFGS(100) 0.844 3.9 × 10−2 0.032 2.8 × 10−3 1.864 6.7 × 101

BFGS(69) 0.623 4.2 × 10−6 0.037 1.6 × 10−8 1.908 2.4 × 10−8
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6 Conclusion
Our aim in this thesis has been to explore the problem of static parameter estimation
in both linear-Gaussian and nonlinear-Gaussian SSMs. The chosen approach was
to focus on two methods for finding MAP/ML estimates, namely gradient based
nonlinear optimization and EM. Since the static parameter estimation problem is
tightly coupled with the filtering and smoothing problems, the focus of the first
part of the thesis was on state estimation. Nonlinear filtering and smoothing is a
considerable problem, where closed form solutions exist only in very few situations.
We advocated the Gaussian filtering approach and more specifically the cubature
Kalman filter and smoother. If the filtering and/or smoothing distributions are well
approximated by a Gaussian, these methods offer good approximate solutions for a
fraction of the computational complexity of the more general simulation based SMC
methods.

The parameter estimation methods we have considered have specific strengths
and weaknesses which make them recommendable depending on the model. Let us go
through some of these and point out when they are evident in the two demonstrations
of Section 5.

Gradient based nonlinear optimization

An important difference in the gradient based nonlinear optimization approach when
compared to EM is that the smoothing distributions are not needed. Neither does
one need to figure out the model-dependent M-step maximization equations. The
marginal likelihood (Equation (62)), or an approximation to it if the model is non-
linear (Equation (72)), is obtained directly from the filtering algorithm.

A number of efficient gradient based nonlinear optimization algorithms are avail-
able. We focused on the quasi-Newton BFGS algorithm, which is implemented in
Matlab’s fminunc. Another BFGS implementation is ucminf which has a Matlab
version as well as a version for the open source R software environment (Nielsen,
2000; Nielsen & Mortensen, 2012; R Core Team, 2012). As described in Nielsen
(2000), implementing a robust quasi-Newton method is far from straightforward
and if the objective is ML/MAP parameter estimation of SSMs, it makes a lot
of sense the utilize an off the shelf algorithm. The main appeal of the gradient
based nonlinear optimization methods is their order of convergence, which can be
quadratic.

The main issue is the score function computation. There are two alternative
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routes: either the sensitivity equations, described in Section 4.2.1 for the linear case
and in Section 4.2.2 for the nonlinear, or using Fisher’s identity and the EM machin-
ery as described in Section 4.3.4. Using the sensitivity equations leads to recursive
equations which need to be run alongside and tightly coupled to the chosen filtering
algorithm. This is an issue from the perspective of being able to use decoupled
modular algorithms. Moreover, the Jacobian matrices of f(xk−1,θ) and h(xk,θ) are
required. As for the computational complexity, the sensitivity equations scale as dθ

Kalman filters (Cappé et al., 2005; Olsson et al., 2007). A Kalman filter scales as
O(n3).

With Fisher’s identity the parameter estimation algorithm can be made less
coupled to the filtering algorithm, but then a separate smoothing step is required.
This option doesn’t require the Jacobians and is is better suited for modular im-
plementation. Moreover, since the smoothing algorithm can be considered to have
the same computational complexity as a Kalman filter, using Fisher’s identity has
approximately the computational complexity of two Kalman filters.

EM

Using Fisher’s identity as part of a nonlinear gradient based optimization method
can be considered to be some sort of hybrid approach between the sensitivity equa-
tions and the full EM solution. Thus some of the strengths and weaknesses that
were mentioned in the previous chapter when comparing sensitivity equations and
Fisher’s identity apply directly when comparing the sensitivity equations to the EM
solution.

A critical question in this comparison is whether the M-step maximization equa-
tions can be computed in closed form. If this is not the case and the M-step includes
some sort of gradient based nonlinear optimization in itself as part of a generalized
EM (gEM) method (mentioned in section 4.3.1) using EM certainly loses some of
its appeal.

When the M-step maximization equations can be computed in closed form, EM
gains some strengths. First and foremost, no gradient computations are needed. As
a consequence, in this case EM is also independent of the parameterization, since
the M-step consists only of maximization operations (Cappé et al., 2005). This is
not true for the gradient based methods.

As for the order of convergence of EM, there exists some rather interesting results
which are discussed at least in Salakhutdinov, Roweis, and Ghahramani (2003a,
2004), Petersen and Winther (2005), and Gibson and Ninness (2005). As a summary,
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it seems that the convergence properties depend on the proportion of the total
information that is contained in the latent variables. Intuitively, the larger this
proportion is, the slower is the convergence. Also, if this proportion is small, the
order of convergence can approach that of a true Newton’s method (i.e. quadratic).
Interesting results concerning the convergence properties of EM (in linear models)
were also obtained in Petersen and Winther (2005) and Petersen, Winther, and
Hansen (2005). Their analyses seem to show that the order of convergence depends
on the signal-to-noise ratio (SNR) in such as a way that the convergence slows down
when SNR becomes high. Strategies for speeding up the convergence of EM has
been a subject of much interest and some approaches are presented at least in Meng
and van Dyk (1997) and Lange (1995).

In the nonlinear case, one has to resort to approximate filtering and smooth-
ing. This means that the marginal log-likelihood and score function computations
become approximations. At least with Gaussian filtering and smoothing, these ap-
proximations seem to be different between the sensitivity equations and EM (or
Fisher’s identity). This can be deduced from the fact that when computing the
score function through Fisher’s identity or the maximization equations of the M-
step in EM, we need the quantity Pk−1,k in Equation (29). Since Pk−1,k is part
of the Gaussian approximation and it is not needed when approximating the score
function through the sensitivity equations, the score function approximations are
most probably unequal.

The unequality of the approximations appears to be demonstrated in the re-
sults of the two demonstrations in Section 5. With the linear-Gaussian SSM of
Section 5.1 the two methods give identical results (when attributing the tiny differ-
ences to differing numerical properties). However with the nonlinear-Gaussian SSM
of Section 5.2 the results were markedly different, even though both methods were
given the same data and initial estimates. Deriving the quantitative difference in
the approximations would be an interesting subject for future work.



62

A Additional material

A.1 Properties of the Gaussian distribution

Lemma A.1. Suppose x ∈ Rn and y ∈ Rm have the distributions

p(x) = N(x | m, P)

p(y | x) = N(y | Hx + u, R).

Then the joint distribution is

p


x
y


 = N


x
y

 ∣∣∣∣∣∣
 m
Hm + u

 ,

 P PHT

HP HPHT + R




Proof.

⟨y⟩ =
∫

y p(y)dy

=
∫

y
(∫

p(y | x)p(x)dx
)

dy

(change the order of integration according to Fubini’s theorem)

=
⟨⟨

y | x
⟩⟩

(A.1)

= Hm + u (A.2)

var[y] =
∫∫ (
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)(

y − ⟨y⟩
)Tp(y | x)p(x)dydx

=
⟨⟨

y | x
⟩⟨

y | x
⟩T⟩−

⟨⟨
y | x

⟩⟩⟨⟨
y | x

⟩⟩T

+
∫∫ (

y −
⟨
y | x

⟩)(
y −

⟨
y | x

⟩)T
p(y | x)p(x)dydx

= var
[⟨

y | x
⟩]

+
⟨
var

[
y | x

]⟩
(A.3)

= HPHT + R (A.4)

cov[x, y] =
∫∫ (
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p(x)p(y | x)dxdy
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− ⟨y⟩
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=
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Lemma A.2. Suppose x ∈ Rn and y ∈ Rm have the joint distribution

p


x
y


 = N


x
y

 ∣∣∣∣∣∣
a
b

 ,

 A C
CT B


.

Then the marginal and conditional distributions are given by

p(x) = N(x | a, A)

p(y) = N(x | b, B)

p(x | y) = N(x | a + CB−1(y − b), A − CB−1CT)

p(y | x) = N(x | b + CTA−1(x − a), B − CTA−1C)
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