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From the past few years, there has been an exponential rise in the communica-
tion sector, especially wireless continuously fueled by the demand of higher data
rates by users. The concept of multiple input multiple output (MIMO) systems
is used extensively in currently deployed technologies to provide necessary data
rates. MIMO systems using spatial multiplexing achieves higher data rates with-
out wasting frequency or time resources. This happens even when there is channel
state information only at the receiver. It was observed that the channel knowledge
at the transmitter further increases the capacity of a system. Perfect channel state
information at the transmitter(CSIT) is generally not feasible in FDD systems,
however, partial CSIT may be used to further increase the capacity of a system.
This is commonly referred to as precoding. In precoding, codebooks which are de-
signed off-line and stored, known to both the transmitter and receiver, are used.
The main objective of this thesis pertains to the designing of codebooks and
the effect of codebooks on the capacity of limited feedback MIMO systems. A
codebook contains codewords in the form of matrices and the design of these
matrices reduces to a quantization problem on certain manifolds. The algorithm
employed for quantizing these manifolds is the Lloyd algorithm, one of the most
widely used. We make use of specific geometrical properties of these manifolds to
design codebooks.
Previously, much work has been done on designing codebooks by quantizing a
Grassmann manifold. Here, an alternate quantization of a permutation invariant
flag manifold is considered. We derive semi analytical distortion bounds to eval-
uate our codebook. Through this work, codebooks thus obtained are used and
their effect on capacity is observed and analyzed.

Keywords: MIMO systems, FDD systems, Channel State Information
Precoding, Codebook, Vector Quantization, Lloyd Algorithm
Grassmann Manifold, Permutation Invariant Flag Manifold
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1 Introduction

1.1 Background

Wireless communication refers to the transmission of signals across a wireless medium
[1]. With the passage of time, wireless communications has changed drastically with
an extensive use of communication services, thus requiring a need for more capacity.
Unlike wired communications, wireless has to deal with environmental challenges
such as fading and noise, with the addition of bandwidth and transmit power con-
straints. The increase in demand of high transmission capacity had to be fulfilled by
effective usage of available bandwidth and channel conditions, One of the ways pro-
posed was by employing multiple transmitters and multiple receivers often referred
to as Multiple Input Multiple Output (MIMO) systems. MIMO wireless systems
provide the necessary data rates and link range without the usage of additional
bandwidth or increased transmit power, which was demonstrated by researchers at
Bell labs during the mid-90s [2].

A traditional communication system consists of a single transmit and receive
antenna, often referred to as a Single Input Single Output(SISO) system. This kind
of system does not offer any gains besides transmission, often affected by fading.
Systems like SIMO and MISO were introduced to counter this fading issue by ex-
ploiting the diversity of channel conditions, also providing array/beamforming gain.
In addition to the diversity and array gains, MIMO systems exhibits multiple de-
grees of freedom allowing spatial multiplexing gain, leading to a significant rise in
the data throughput. To gain an insight on diversity, let us consider a simple com-
munication system in which a transmitted radio signal propagates through multiple
paths before reaching the receiver, which is termed as multipath propagation. The
received signal is the superposition of different multi-paths. If there is no direct line
of sight (LOS), then channel coefficients of each path is assumed to be independent
and identically distributed with finite mean and variance. By applying central limit
theorem, the resulting channel coefficient can be modeled as a complex Gaussian
random variable [3, page 8]. Often, the resulting channel coefficient has a very small
gain, thus transmission may not be suitable. To counter this problem of small chan-
nel gains we make use of diversity. The different diversity schemes are time diversity,
frequency diversity, and space diversity. In MIMO systems, space diversity is used.
Array gain in MIMO systems result in increase of average received SNR obtained by
coherently combining the incoming signals. Generally, the receiver has knowledge of
the channel, this channel state information at the receiver (CSIR) is made possible
by initially transmitting a pilot signal known to the receiver beforehand. Since, the
pilot signal is known, the receiver estimates the channel from the received signal.
The knowledge of channel at the receiver results in achieving a higher data rate. It
has been observed that having knowledge about the channel at transmitter (CSIT)
helps in further increase of data rate. However, at transmitter, it usually is diffi-
cult to realize the channel by employing the pilot signal method as the uplink and
downlink are of different frequencies (FDD) [4]. Thus, we resort to partial-CSIT,
facilitated by the feedback of some information about the channel properties from
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the receiver. A predefined codebook (a set of code words) is known to transmitter
and the receiver as well, the codebook contains information about the quantized
CSI in the form of precoding matrices. The receiver quantizes the channel state
information and feed them back by transmitting an index of the selected codeword
chosen from the codebook. It is because of the above mentioned advantages and
versatility, MIMO is an integral part of many wireless communication standards
such as IEEE 802.11n (Wi-Fi), 4G, Wimax, Long Term Evaluation (LTE), HSPA+.

1.2 Resarch problem and scope

Partial channel state information at the transmitter increases the throughput of a
system. In order to achieve this throughput increase, we consider transmit precoding
in which we use predetermined codebooks designed off-line, known to both ends of a
system. By orthogonalization of data streams and transmitting them along Eigen-
dimensions, these codebooks reduce cross talk impacting the system throughput.
The objective of this thesis is to construct codebooks for limited feedback MIMO
systems by considering unitary precoding in which we introduce a quantization
scheme on a specific flag manifold using modified Lloyd algorithm. The analysis of
the codebook is based on volume of a metric ball in the given manifold. We derive
the volume formula using numerical methods, and obtain semi-analytical upper and
lower distortion bounds. The scope of this thesis lies in the impact of our codebook
on the system capacity.

1.3 Thesis outline

This thesis is divided into two parts. The first part contains literature review while
the second part pertains to the analysis of our numerical results. The first part is
presented in sections 2, 3, and 4. The second part is discussed in detail in sections
5, and 6.

• Section 2 gives an overview of MIMO technology which forms the basis for
this thesis. Important features like diversity and spatial multiplexing gains of
a system are discussed. Fundamental theoretical concepts on capacity are also
presented.

• The notion of manifolds is introduced in Section 3. Relevant concepts like
tangent spaces, exponential mapping are discussed briefly. The concept of
Riemannian and Grassmann manifold are also presented which are essential
for our codebook design.

• Section 4 is about precoding, necessity and brief description of limited feed-
back systems. Relevant vector quantization concepts are discussed. Section
4 basically connects the objectives of section 2 and 3, directly addressing our
research problem.

• A thorough analysis of Lloyd algorithm specific to this thesis is presented.
Semi-analytical bounds for second order distortion are obtained, Monte Carlo
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simulations of codebook performance along with the bounds are presented in
Section 5. The codebooks’ quality is analyzed in detail.

• We analyze and discuss the impact of using our codebooks on the capacity
of a limited feedback system equipped with a linear ZF receiver in Section 6,
which is thus shown to be a good solution to the proposed problem.
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2 MIMO wireless systems

This section reviews the evolution of a simple communication system i.e. SISO to
MIMO, benefits of deploying MIMO systems, and environmental factors that affect
MIMO capacity. Furthermore, we define and investigate on some basic properties
of a MIMO transmission model. Since capacity is one of the key parameters in
this thesis, we discuss about the necessary information theoretic concepts which
provide the information required for better understanding of MIMO technology.
With background knowledge of MIMO technology, we take a closer look at the
already mentioned diversity and array gain.

2.1 Prior work and Motivation

Wireless communication has its fundamentals based on Electromagnetic theory pro-
posed by James Clark Maxwell. The first long range transatlantic radio link was
established by Marconi in 1901, since then wireless communication has advanced
drastically. Initially wireless was about analogue phones and radio paging, nowa-
days, global connectivity is made possible by advanced wireless technologies. We
can communicate with each other in a matter of seconds using our mobile phones
or personal communication devices. The simplest form of a wireless communication
model is having a single antenna at the transmitter and at the receiver as well, it is
sometimes referred as SISO.

Figure 1: SISO transmission model.

The signal x(t) is transmitted in the air and y(t) received. Given all the details
of the reflectors and absorbers in the environment, one can use Maxwell’s equations
to find out the propagation of the electromagnetic waves and get y(t) as an exact
function of x(t). However, we do not need such rigorous calculation to obtain the
model. The transmitter and the receiver antennas are usually separated by several
wavelengths and far field approximations of signal propagation is good enough to
obtain a model that is applicable to most of the surroundings [5].

Let us focus on a familiar Additive White Gaussian Noise(AWGN) channel.
where x[m] and y[m] are real input and output at time m respectively and w[m]

isN (0, σ2). noise, independent over time. It is very essential to mention this channel
as this will be a basic building block for the subsequent wireless channels mentioned
in this thesis [1, page 167].
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Figure 2: channel model 1

The input and output is related as

y[m] = x[m] + w[m] (1)

We can model the EM signals as rays. Each ray experiences a certain amount
of propagation delay and attenuation. Further, the rays get reflected by different
reflectors present in the surrounding environment. Thus, the signal arrives via mul-
tiple paths, each having its own delay and attenuation. Our final model contains
signal subjected to a channel along with AWGN. The channel model 1 is modified
to

Figure 3: channel model 2

(1) is modified to be

y[m] =
∑
i

aix(m− τi) + w[m] (2)

Where ai is the attenuation coefficient of the ith path and τi is the delay it
experiences.

Rayleigh fading
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Most often, in a typical mobile radio channel, the mobile unit receives the signal
via multiple paths with no direct line of sight. When the number of paths is large, by
applying the central limit theorem , the resulting channel coefficient can be modeled
as a complex Gaussian random variable with zero mean and finite variance. Thus,
the envelope of the received signal follows a Rayleigh probability distribution and
its phase follows obeys a uniform distribution between −π to π [6, page 51]. The
probability distribution function of Rayleigh distribution is given by

p(a) =

{
a
σ2
s
e
−a2

2σ2s if a ≥ 0;

0 if a < 0.

If there is a direct line of sight then we can model the channel based on Rician
fading. In our subsequent sections, we assume that the channel experiences flat-
fading. Thus, a single filter tap is sufficient to represent the channel. The channel
is given by

h[m] =
∑
i

aiδ(m− τi) (3)

We can now modify (2) as

y[m] = h[m].x[m] + w[m] (4)

The above explained model is SISO, the simplest antenna technology. In some
environments, SISO systems are vulnerable to problems caused by multipath effects.
The signals coming from different paths causes problems such as fading, cut-out(cliff
effect), and intermittent reception(picket fencing). In a real time situation, for a
given digital communication system, these problems can cause a reduction in the
data throughput and an increase in the error rate.

In order to mitigate the problems caused by multipath wave propagation, smart
antenna technology is used. There are three forms of smart antenna, known as
SIMO(single input, multiple output), MISO(multiple input, single output), and
MIMO(multiple input, multiple output).

2.2 SIMO systems

Let us consider a SIMO channel with one transmit antenna and nR receive antennas
as Figure 4

The output at the receiver is given by

yl[m] = hlx[m] + wl[m] l = 1, ...., nR, (5)

where hl is the fixed(invariant for a small time duration) complex channel gain
from the transmit antenna to the lth receive antenna, and wl[m] is CN (0, σ2), is
the additive white Gaussian noise. A sufficient statistic needed to obtain x[m] from
y[m] = [y1[m], y2[m], ...., ynR [m]]t is [1, Page 179]
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Figure 4: SIMO transmission model.

ỹ[m] = h∗y[m] = h∗hx[m] + h∗w[m], (6)

where h = [h1, ...., hnR ]t and w[m] = [w1, ..., wnR ]t. This is an AWGN channel
with

SNR(γ) =
P |h∗h|2

E{|h∗w|2}
, (7)

where P is the average power per transmit symbol.
The noise power is given by

Pn = E{|h∗w|2} = E{|h∗ww∗h|} = h∗E{ww∗}h = σ2h∗InRh = σ2h∗h.

Where InR is nR by nR identity matrix. (6) and (7) becomes

γ = P
|h∗h|2

σ2h∗h
= P

h∗h

σ2
= P
||h||2

σ2
, (8)

and

ỹ[m] = h∗y[m] = ||h||2x[m] + h∗w[m] (9)

respectively. The capacity is given by

C = log2

(
1 +

Ps||h2||
σ2

)
bits/s/Hz. (10)

We have to keep in mind that the weight at each receiver antenna is assumed to
be it’s corresponding fading channel amplitude. This assumption is made in order
to have a clear understanding on how diversity combats fading which is reflected in
(8), maximizing the output SNR by having channel gain(||h||2). However, in reality
the weighting factors are estimated by using diversity schemes.

We use receive diversity scheme by having multiple receive antennas to maximize
the SNR, also known as diversity gain. The central idea here is that antennas receive
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different versions of the same signal. The probability of all these copies being in a
deep fade is considerably small. However, employing diversity schemes makes sense
only when the fading is independent from element to element. In general, the
performance of the communication system with diversity techniques depends on the
way the multiple signal replicas are combined at the receiver in order to improve
the overall SNR. The different types of combining methods used at the receiver are
selection combining, maximal ratio combining, and equal gain combining. The goal
of all these diversity schemes is to find a set of weights α, which are chosen to
mitigate the fading effect for a single user.

2.2.1 Selection Combining

Selection combining is a simple diversity combining method, the block diagram
for selection combining is as shown in Figure 5. In such a system, the largest
instantaneous signal to interference ratio is selected as the output.

Figure 5: Selection combining method

In selection combining therefore,

αi =

{
1 γi = maxn{γn};
0 otherwise,

}
Since the antenna chosen is the one with maximum SNR, the output SNR of the

selection diversity scheme is γ = maxn{γn}.
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2.2.2 Maximal Ratio Combining

In selection diversity scheme, the antenna having the best SNR is chosen. This is
not the optimal solution since nR − 1 antennas are completely ignored. Maximal
ratio combining(MRC) is a linear combining method, in which various signals are
individually weighted and then summed together in order to maximize the output
SNR. The block diagram is as shown in Figure 6.

Figure 6: Maximal Ratio Combining with weighting factors followed by co-phasing

The output signal from an MRC scheme is given by

ỹ[m] = α∗y[m], (11)

The SNR is given by γ = P |α∗h|2/σ2α∗h. By the Cauchy-Schwarz inequality [7,
page 4-6], γ attains the maximum when α is linearly dependent on h, i.e.,

α = h.

Thus,

γ = P
|h∗h|2

σ2h∗h
= P
||h||2

σ2
= P

nR−1∑
n=0

|hn|2

σ2
(12)

The maximum diversity can be achieved when the weights are the same as the
channel coefficients. This method is called optimum combining since it maximizes
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the output SNR, and the data throughput achieved will be the capacity(Shannon’s
limit) of the system as observed in (10).

2.2.3 Equal Gain Combining

Equal gain combining(EGC) is a sub-optimal but simple linear diversity combining
technique. MRC is optimal in the sense of maximizing SNR, however, the weights
should adapt with respect to the fading signals, whose amplitude may fluctuate with
time. This is avoided in the case of EGC by setting amplitudes of the weighting
factors to be unity. Thus, we have

αn = ej arg(hn)

.
In this manner the signals coming from each individual branch is cophased and

added together. The implementation of EGC is relatively easy as it does not require
estimation of the fading amplitude. However, the downside is that the performance
is EGC is less than that of MRC.

2.3 MISO systems

Let us consider a MISO system Figure 7 with nT transmit antennas and one receive
antenna

Figure 7: MISO transmission model.

y[m] = h∗x[m] + w[m], (13)

where x[m] is the vector containing the transmitted symbol x̃[m]. The channel
is considered to be slow fading and is assumed to be known at the transmitter to
gain an insight on the capacity of the system, power gain via transmit diversity.
h = [h1, ...., hnT ]t and hnT is the channel gain from the transmit antenna nT to
the receive antenna. In the previous mentioned SIMO channel, the statistic which
was required was the projection of nR along the channel as shown in (9). Thus, an
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intuitive way for the MISO channel is to send the signal along the channel vector
h [1, page 180]. Thus,

x[m] =
h

||h||
x̃[m],

where h/||h|| is the matched filter used at the transmitter. (13) reduces to a
simple AWGN channel of the form

y[m] = ||h||x̃[m] + w[m] (14)

with a total power constraint Ps. The capacity is given by

C = log2

(
1 +

Ps||h2||
σ2

)
bits/s/Hz. (15)

Multiple antennas are used at the base station for uplink receive diversity in order
to compensate for the low power signal transmitted from the mobile terminal. But,
using multiple antennas at the mobile terminal during downlink receive diversity is
not recommended. Since, increasing the number of antennas at the mobile terminal
results in more processing power, which is limited for a mobile. Thus, we have
multiple antennas at the base station and employ transmit diversity schemes for
downlink.

The transmission diversity maximizes SNR when the signals received from dif-
ferent transmit antennas are added coherently and more power is allocated to those
channels with better channel gain. This method of steering the transmit signal
in the direction of transmit antenna array pattern is often referred to as transmit
beamforming [1, page 180] . Many transmit diversity schemes have been proposed
in the past. The schemes are basically of two types: schemes with and without
feedback. The difference in these two schemes is that the former has the channel
knowledge at the transmitter obtained via feedback channel, while the latter has no
channel knowledge and aims to achieve diversity by using space-time codes [8] [9] .

In the case of transmit diversity with feedback, the weighting factors is chosen in
a such a way so as to maximize the SNR or the channel capacity. One such example
is switched diversity proposed for DPSK mobile radio systems [10]. Sometimes, in
practical mobile systems, channel estimation is difficult due to the mobility and
environment. This imperfect channel estimation can have an adverse affect on the
system performance. Thus, sometimes space-time codes are used at the transmitter,
which do not require any channel knowledge. Space-time trellis codes, linear space-
time block codes are some examples of space-time codes. An in-depth analysis of
space-time codes is beyond the scope of this thesis. (10) and (15) clearly shows the
effect of receive and transmit diversity on power gain respectively.

In the SIMO and MISO examples, the benefit of having multiple antennas either
at the receiver or transmitter side results only in power gain. To get a gain in degrees
of freedom, one has to use multiple transmit and multiple receive antennas. The
degrees of freedom of a channel is the dimension of the received signal space. It has
been shown in [2, 11] that number of degrees of freedom for a single-user point to
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point MIMO(nT × nR ) channel is nS = min(nT , nR).

2.4 MIMO wireless systems

We will see that under suitable channel conditions, having both multiple transmit
and multiple receive antennas provides an additional spatial dimension for commu-
nication and yields a degree of freedom gain. Because of these additional degrees
of freedom, we can break down a high data rate signal into multiple low data rate
signals(so called streams) and transmit them from each of the multiple transmit
antennas. Thus, the space dimension is multiplexed and it is commonly referred to
as spatial multiplexing.

In a nT × nR MIMO, the maximum spatial multiplexing order i.e. the number
of streams is limited to

nS = min(nT , nR),

(or rank of the MIMO channel matrix H) if a linear receiver is used. This means
that nS streams can be transmitted in parallel, theoretically leading to an nS times
increase of the capacity. However, the spatial multiplexing gain is limited due to
spatial correlation, since some of the channel coefficients may be correlated leading
to weak channel gains.

2.4.1 MIMO system model

We consider a single user communication and a point-to-point link where the trans-
mitter is equipped with nT antennas and receiver with nR antennas. We also assume
that bandwidth of the message signal is less than coherence bandwidth of the chan-
nel, i.e. all frequency components of the signal experience the same magnitude of
fading(flat fading). If the channel is frequency selective then one could use an orthog-
onal frequency division multiplexing (OFDM) system to turn the MIMO channel
into a set of parallel frequency-flat MIMO channels [12].

We shall consider a narrow band, block fading (time invariant for certain symbol
intervals L) channel in order to get the under lying structure of a MIMO system
model as shown in Figure 8

where hi,j is the path gain from transmit antenna j to receive antenna i. let the
complex valued signals {x1, ...., xnT } be transmitted thorough nT antennas respec-
tively. The received signal at the ith antenna is

yi =

nT∑
j=1

hi,jxj + wi, (16)

The channel path gains, transmitted complex valued signals, and the received
signals for the system model can be represented as
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Figure 8: MIMO system model.

H =


h1,1 h1,2 . . . h1,nT
h2,1 h2,2 . . . h2,nT

...
...

. . .
...

hnR,1 hnR,2 . . . hnR,nT

 ,
x = [x1, ....., xnT ]t x ∈ CnT ,

y = [y1, ....., ynR ]t y ∈ CnR ,

respectively. Thus, (16) [3, page 6-7] can be extended to

y = Hx+w. (17)

The noise vector
w = [w1, w2, ....., wnR ]t ∈ CnR

where w is assumed to be spatially white circular Gaussian random variable(for
reasons explained later) with zero mean and finite variance, i.e.

w ∼ CN (0, σ2
nI)

.
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The transmitted signal satisfies the total power constraint:

E(x∗x) =

nT∑
i=1

E
(
|xi|2

)
=

nT∑
i=1

σ2
s,i ≤ Ps.

Since the channel remains constant for L symbol intervals(block fading), we can
further extend (17) [3, page 7] to

Y = HX +W (18)

where Y = [y1, ....,yL], X = [x1, ....,xL] , and W = [w1, ....,wL].

2.4.2 Information theory background

In this section, we discuss the information theory behind the capacity expressions
used throughout the thesis, and for analysis of MIMO systems. Furthermore, these
concepts are essential for analyzing the results obtained in the final chapter. Infor-
mation theory is a vast branch of applied mathematics and electrical engineering,
thus, only the necessary basic concepts have been explained. For the following defini-
tions and concepts, we have referred to [13, page 183,184], [3, page 10-12]. However,
We have not elucidated any proofs.

Information theory was developed by Claude E. Shannon to find fundamental
limits on signal processing operations such as data compression and ultimate trans-
mission rate of any communication system. In order to find the ultimate transmis-
sion rate(or capacity of a system), we initially need to explain the communication
process.

Figure 9: General communication system,

A typical communication system is shown in Figure 9. Let us assume that
original message ’m’( M bit sequence) is first mapped into a longer message ’x’(N
bit sequence) via a encoder with N > M , the extra bits are added to compensate
for transmission errors. The encoded message x is sent through a communication
channel and the output message from the channel is ’y’. The channel is defined
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by the transition probability p(y|x), i.e. the probability that the received signal is
y subjected to the condition of transmitted signal being x. In a noiseless channel,
the message received is y = x . But, in the case of a noisy channel, y is generally
different from x. Though y is random, it still has a distribution that depends on x.
Hence, from y, the decoder deduces an estimate, m′ of the original message.

The following definitions are from [13, page 191-192, 200-201]

Channel capacity: We have a discrete channel consisting of input alphabet X
and output alphabet Y and a probability transition matrix p(y|x) that expresses the
probability of observing the output symbol y given that we send the symbol x. The
channel is said to be memoryless if the probability distribution of the output depends
only on the input at that time and is conditionally independent of previous channel
inputs or outputs. Thus we define the channel capacity of a discrete memoryless
channel as

C = max
p(x)

I(X;Y ).

Where the maximum is taken over all possible input distributions p(x )

The prior definition of capacity is needed for the recap of Shannon’s second
theorem which gives a view of channel capacity as the highest rate at which the
information can be transmitted (in bits per channel use) with a low probability of
error.

Shannon’s second law: The total number of possible Y sequences is ≈ 2nH(Y ).
This set has to be divided into sets of size 2nH(Y |X) corresponding to the differ-
ent input X sequences. The total number of disjoint sets is less than or equal
to 2n(H(Y )−H(Y |X))= 2nI(X;Y ). Hence, at most 2nI(X;Y ) distinguishable sequences of
length n can be sent.

Having familiarized with the concept of channel capacity, we now state the basic
theorem in information theory.

Channel coding theorem: For a discrete memory less channel, all rates below
capacity C are achievable. Specifically, for every rate R < C, there exists a sequence
of (2nR, n) codes with maximum probability of error λ(n) −→ 0. Conversely, any
sequence of (2nR, n) codes with λ(n) −→ 0 must have R ≤ C.

2.5 MIMO information theoretic capacity

With the basic background in information theory, we now apply these concepts to
analyze MIMO wireless systems. In this following section we obtain the expressions
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for MIMO capacity for deterministic and random channel. We also analyze their
properties which lays the foundation for rest of the thesis.

2.5.1 Capacity of Deterministic MIMO channel

We consider a deterministic block fading channel, i.e., the channel H is assumed to
be constant for L symbol intervals. This channel is described by (17) To find the
channel capacity from the definition, we need the following lemmas [2]

Lemma 1: Suppose the complex random vector is zero mean and satisfies E [xx∗] =
Q. Then the entropy of x satisfies H(x) ≤ log2 det(πeQ) with equality if and only
if x is a circularly symmetric complex Gaussian with

E [xx∗] = Q.

.
That is, entropy of x is maximized only when x is a circularly symmetric complex

Gaussian random variable

Lemma 2: if x ∈ Cn is a circularly symmetric complex Gaussian then so is
y = Ax for any A ∈ Cmxn.

Lemma 3: if x and yare independent circularly symmetric complex Gaussians
then z = x+ y is also circularly symmetric complex Gaussian.

According to the channel capacity definition, the capacity of the MIMO channel
is

C = max
p(x)

I(x;y).

The mutual information

I(x;y) = H(y)−H(y|x) (19)

where H(y) is the differential entropy of the received vector y, while H(y|x)
is the conditional differential entropy of the vector y, given the knowledge of input
vector x. From entropy of the sum of two random variables, we have H(y/x) =
H(w/x)1. Since the vectors x andw are statistically independent, H(y|x) = H(w),
we can state (19) as

I(x;y) = H(y)−H(w) (20)

and therefore maximization of mutual information I(x;y) reduces to maximizing
H(y). Since noise is assumed to be circularly symmetric Gaussian random and from
Lemma1 we have

H(w) = log2 det(πeRnn) = log2 det(πeInR)

1If x and y are 2 r.v. drawn from 2 different sources and z = x + y then H(z/x) = H(y/x).
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we have x with zero mean and covariance E [x∗x] = Q, then it follows from
lemma1 that entropy of y is maximized when it is circularly symmetric complex
Gaussian, which is the case(lemmas 2 and 3 ) since x is circularly symmetric Gaus-
sian random. We first need to evaluate the covariance matrix of y in order to obtain
the maximum entropy of y and thus capacity.

The covariance matrix of y, Ryy is

Ryy = E{yy∗} = E{(Hx+ w)(Hx+ w)∗} = E{Hxx∗H∗}+ E{ww∗},

which can be further simplified into [3, page 13]

Ryy = HE{xx∗}H∗ + E{ww∗} = HQH∗ + σ2
nInR

Thus, we have the maximum differential entropies of y and w

H(y) = log2 det(πeRyy) (21)

and

H(w) = log2 det(πeσ2
nInR) (22)

respectively.
Thus using (21) and (22), we define the capacity as

C = max
p(x)

I(x;y) = max
Tr(Q≤Ps)

log2 det(InR +
1

σ2
n

HQH∗) (23)

The capacity C in (23) represents the data rate per unit bandwidth that can be
transmitted reliably over the MIMO link, in other words error free spectral efficiency.

If the channel is unknown to the transmitter then the input vector x is statisti-
cally independent [14, page 23-26], covariance matrix of the input signal Q becomes
an Identity matrix InT . From (23), we have2

C̃ = log2 det(InR +
Ps
nSσ2

n

HH∗). (24)

The matrix HH∗ ∈ CnR×nR is a positive semi-definite matrix whose Eigen de-
composition yields

UΣU∗,

where U ∈ CnR×nR is a unitary matrix and Σ = diag{σ1, ..., σnR} are the ordered
Eigen values. The squared singular values λ2i of the channel matrix H are the Eigen
values of HH∗.

Thus, (24) can be further simplified to

C̃ = log2 det(InR +
Ps
nSσ2

n

UΣU∗). (25)

2 The power term is scaled by a factor of nS since there is no waterfilling, power is distributed
equally.
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We have from [15, Page 416]

det(InR
+MN ) = det(InT

+NM )

for matrices
M ∈ CnRXnT

and
N ∈ CnTXnR

. Thus, (25) reduces to

C̃ = log2 det(InT +
Ps
nSσ2

n

Σ), (26)

The capacity in (26) is denoted as C̃ since it is not the channel capacity of the system,
C̃ can be increased when the channel knowledge is available at the transmitter.

The channel estimation at the transmitter side is usually difficult since most of
the systems are FDD in nature. However, there are ways to acquire CSI at the
transmitter, one of them being precoding which is discussed in detail in section 4.
For the time being, we assume the channel knowledge is perfectly available at the
transmitter for capacity analysis.

With the knowledge of CSI at the transmitter, we can increase the capacity by al-
locating different levels of power(water filling principle) to various transmit antennas
based on different path gains. We perform Singular Value Decomposition(SVD)(See
Appendix) of H to get.

H = UΛV ∗ =

nS∑
i=1

λiuiv
∗
i (27)

.
Where U ∈ CnR×nR , V ∈ CnT×nT satisfying

UU∗ = U∗U = I = V V ∗ = V ∗V

thus,
HH∗ = [UΛV ∗][V ΛU∗] = [UΛ2U∗].

where Λ ∈ RnRXnT , non diagonal entries are zero, and diagonal entries λ1 ≥ λ2 ≥
...... ≥ λnS are the ordered singular values of channel matrix H . Let us consider
a input vector x̃ ∈ CnS , this vector x̃ is pre multiplied with the matrix V before
transmission. The signal vector received y is post multiplied by U∗ by using a
simple receiver, i.e.,

x = V Qx̃

ỹ = U∗y

w̃ = U∗w
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The input output relation given in (17) can be restated as

ỹ = U∗HV Qx̃+U∗w (28)

=⇒ ỹ = U∗UΛV ∗V Qx̃+U∗w. (29)

Thus, capacity of the system from (23) reduces to3

C = log2 det

(
InR +

1

σ2
n

QH∗eqHeq

)
= log2 det

(
InR +

1

σ2
n

QV ∗H∗HV

)
= log2 det

(
InR +

1

σ2
n

QΛ2

)
bits/s/Hz. (30)

Where Heq is the effective channel seen by the receiver. Equation(27) shows
that the channel H can be decomposed into nS parallel SISO channels as shown in
Figure 10

Figure 10: MIMO as nS parallel SISO channels.

Thus, (29) is
ỹi = λix̃i + w̃i, i = 1, 2, ...., nS (31)

The capacity of MIMO system, (30) is thus the sum of nS parallel SISO channel

3Since we have assumed perfect CSIT for analytic purposes, Heq = HV
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capacities [1, page 292-293] given by

C =

nS∑
i=1

log2

(
1 +

P ∗s,iλ
2
i

nSσ2
n

)
bits/s/Hz. (32)

Where P ∗1 , ..., P
∗
nS

are the water-filling power allocations to each of the transmit
antennas:

P ∗si =

(
µ− σ2

n

λ2i

)+

,

where µ is a variable chosen to satisfy the power constraint:
∑

i=1 P
∗
si ≤ Ps [16, page

37-38]. Each λ2i corresponds to a Eigenmode of the channel. The symbol, ()+ is a
function that sets negative numbers to zero.

2.5.2 Capacity of a Random MIMO channel

Until now, we have assessed the MIMO capacity for a deterministic channel. In
general, however, the channel is randomly varying with time. Which means that
channel capacity is also randomly time varying. In other words, the MIMO capacity
is given by its time average. This Shannon channel capacity can be achieved only
when coding is performed over infinitely long, independent channel matrix realiza-
tions.

H 3Hi i = 1, ....,∞

Thus, we assume that the random channel is an ergodic process.

Ergodic channel capacity The ergodic capacity of a MIMO channel is the en-
semble average of the information rate over the distribution of the elements of the
channel matrix H is given by [17] [1]

C = EH
[

max
Tr(Q=nT)

log2 det(InR +
1

σ2
n

HQH∗)

]
bits/s/Hz, (33)

which is sometimes referred to as ergodic channel capacity. For example, the
ergodic channel capacity with and without CSI at the transmitter is given by

C = EH
[
log2 det(InR +

1

σ2
n

QΛ2)

]
bits/s/Hz (34)

and

C̃ = EH
[
log2 det(InT +

Ps
σ2
n

Σ)

]
bits/s/Hz (35)

respectively. From (32)(34), we can appreciate the increase in channel capacity
of a MIMO system over a SISO/SIMO/MISO using spatial multiplexing and water-
filling concepts.
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Outage Capacity :
The ergodic channel capacity is a relevant performance metric in the case of a fast
fading channel. Where we maximize the average rate of information flow through
the channel in order to achieve ergodic channel(Shannon’s) capacity. However, in
the case of a slow fading, averaging is not possible over all channel realizations. The
transmission rate is a random variable which depends on the quasi static channel
not making ergodic capacity a feasible measure. Thus, the objective is to ensure
reliable transmission by minimizing the probability that the rate of information flow
falls below a target rate R bits/s/Hz. We can achieve reliable communication as
long as it satisfies [1, page 187]:

log2 det(InR +
HQH∗

σ2
n

) ≥ R. (36)

If MIMO channel is unable to satisfy the (36) then we are in outage. The outage
probability is given by

pmimo
out (R) = max

Tr(Q≤Ps)
P
(
log2(1 + ||H||2 ≤ R

)
, (37)

and the corresponding performance metric for a slow fading MIMO channel is outage
capacity.

We also mention to our readers that from here on we set the covariance matrix,
Q to I though we consider partial CSIT.

2.5.3 Diversity-Spatial multiplexing trade off

MIMO channel basically offers diversity and spatial multiplexing gain. However,
higher spatial multiplexing comes at a price of sacrificing diversity gain and vice-
versa. Both gains can be simultaneously obtained, but there is a fundamental trade
off. This trade off speaks about the dual benefits of a MIMO communication channel
in the high SNR regime.

In a slow fading i.i.d Rayleigh MIMO channel, the objective is to ensure reliable
transmission, in other words to achieve maximum diversity gain. For a given nT×nR
MIMO channel, the maximum diversity gain is found to be nTnR (for a fixed rate
R [1, page 384]) and the outage probability decays in the form 1

SNRnT nR
[18] in the

high SNR regime. On the contrary, we emphasize on maximizing the average rate of
information flow using spatial multiplexing in the case of fast fading channel. This
gain is provided by the additional degrees of freedom nS. It has been shown by
Foschini [18, 19] that at high SNR, the capacity of the MIMO channel is given by

C = nS log(SNR) nS = min(nT , nR) = rank(H). (38)

When we want to have reliable communication(maximum diversity gain), the
target rate(R) is fixed. At high SNR, the channel capacity in (38) grows dwarfing
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R. From this, we observe that there is no effective utilization of degrees of free-
dom thereby compromising on spatial multiplexing gain. Thus, there is a need for
diversity-multiplexing trade off.

[18]A MIMO communication system is said to have achieve diversity gain d∗(r)
if the data rate

R = r log SNR

and the outage probability is

Pout(R) ≈ SNR−d
∗(r),

taking log and applying limits we get,

lim
SNR→+∞

log pout(r log SNR)

log SNR
= −d∗(r). (39)

d∗(.) is referred to as diversity multiplexing trade off.
if the multiplexing gain r → 0 then we achieve maximum diversity gain nTnR, else

a maximum multiplexing gain of nS with no diversity gain. Therefore, optimal trade
off was proposed (39) in order to strike a balance between diversity and multiplexing
gain.

2.5.4 Environmental factors affecting MIMO capacity

MIMO systems are used to increase the spectral efficiency by using spatial multi-
plexing. However, with the increase of transmit and receive antennas, the capacity
of the system will be severely affected by the environmental factors. In this final
section we shall briefly review the factors which affect the performance of MIMO
systems. The factors are channel complexity, external interference, and channel
stationarity [20].

Channel complexity The channel matrixH plays a vital role in determining the
channel capacity. It is a function of richness of scatterers. The spectral efficiency
increases with the increase in singular values. For analytic purposes, H can be
assumed to have i.i.d Gaussian complex channel gains. But, this kind of matrix
may lead to flat singular values distribution [20]. On the other hand, the channel
can be ascertained based on diversity order, which gives an insight into the spatial
correlation of the channel [21].

Interference A given MIMO system may have to work with several other MIMO
systems. As a result, there is bound to be a lot of interference from the other systems,
cases such as mutli-user MIMO systems, wifi bands operating in unlicensed bands
are some good examples.

Channel Stationarity There are generally two communication scenarios, i.e., one
being stationary and the other being mobile. In a stationary environment, though
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the channel is considered to be static, in a practical system the channel estimation
is limited because the environment changes after certain time duration. Thus, the
transmitter will have the knowledge of previous channel estimates which results in
a greater error in channel estimation at the transmitter [20], thereby affecting the
system capacity.

With the MIMO system model in mind, we move onto our next part of brief
literature study on manifolds.
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3 Manifolds

In the previous section, we discussed some aspects of MIMO wireless systems. In
this section we describe metric spaces, differentiability, notion of tangent vectors,
and related aspects of manifolds. Furthermore, we concentrate on specific manifolds
that are used for our codebook design laying out the foundation for solving the
proposed research problem. An in-depth analysis of manifolds and group theory is
beyond the scope of this thesis.

3.1 Metric spaces

3.1.1 Cauchy sequence

For any arbitrary set X, Cauchy sequence is a sequence whose elements in X become
arbitrarily close to each other as the sequence progresses. In other words, the infinite
sequence (x1, x2, ...) of points in X converges to a point xm ∈ X. The formal
definition is stated as [22]:

A sequence x1, x2, ... of real numbers is called Cauchy, if for every positive real
number δ, there is a positive integer n0 such that for all natural numbers m,n > n0

|xm − xn| < δ.
This notion of convergence can be further extended to Rn with n−tuples of real

numbers using the distance function

d(x,y) :=
√

(x− y).(x− y) (40)

3.1.2 Concept of metric spaces

We can generalize the distance function defined in (40) on any set X by analyzing
the notion of convergence of the Euclidean distance d(x,y). This generalization
leads to a metric on set X

Distance metric [23, page 158,159]: A metric on a set X is a map d :
X ×X → R that satisfies the three conditions

d(x, y) = d(y, x) (symmetry)

d(x, y) ≥ 0, and = 0 iff x = y

d(x, y) ≤ d(x, z) + d(z, y) triangle inequality

for all x, y, z ∈ X.
Thus, endowed with a metric d, the set X is sometimes referred as metric space

denoted by (X, d).
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3.1.3 Points, subsets in metric spaces

Let us consider a subset U of the metric space X with a metric d. The ball (Figure11)
around a point x of radius δ is formally defined as

Bx(δ) := {x′ ∈ C| |x− x′| < δ}. (41)

Every point in X belongs to one of the three categories w.r.t U ⊂ X mentioned
below [24, page 12]:

Figure 11: Illustration of an interior, an exterior, and a boundary point.

1) x is an interior point if there exists δ > 0 such that the ball Bx(δ) around
x ∈ X has the property that Bx(δ) ⊂ U .

2) y is an exterior point if there exists δ > 0 such that the ball By(δ) has the
property that By(δ) ∩ U = Φ.

3) z is a boundary point of U if every ball Bz(δ), δ > 0 intersects both A and Ac

The set of all interior, exterior, and boundary points of U are denoted by Int(U),
Ext(U), and Bd(U) respectively. A set U is said to be open iff U = Int(U) excluding
the boundary points Bd(U). The collection of all open sets of metric space X is
called the topology of the space X [24, page 13].

3.2 Differentiable manifold

In order to understand the notion of differentiable manifold, we shall consider a
topological space M to be connected, Hausdorff space and also delineate relevant
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concepts . A topological spaceM is said to be connected if it cannot be represented
as the union of two or more disjoint nonempty open subsets, and is said to be a
Hausdorff space [25] if given points (x and y ∈ M) can be separated by disjoint
neighborhoods, i.e., there exists a neighborhood U of x and a neighborhood V of y
such that U and V are disjoint(U ∩ V = Φ). See Figure12.

Figure 12: Points x and y separated by neighborhoods U and V respectively.

Definition 1. A function f : X → Y is a homeomorphism(isomorphism in gen-
eral topology) if and only if i)f is a bijective ii)f is continuous and iii)f−1 is also
continuous [26] [27, page 449-452] .

3.2.1 Coordinate chart

A coordinate chart on m- dimensional M is a pair (U, φ) consisting of an open
subset U ⊂ M and a map φ : U → Rm such that φ(U) is open. The map φ is a
homeomorphism between U and φ(U). [28, page 18-20] as illustrated in Figure 13.
An atlas of dimension m on M is a collection of pairs (Ui, φi) ( i ranging in some
indexing set I), satisfying the following conditions [24, page 62],

i) The union of all the pairs ∪i∈IUi constitutes the topological space M.
ii) We have two over lapping coordinate charts such that U1 ∩ U2 6= Φ. The

overlap function between the coordinate charts is the map φ2 ◦ φ−11 from φ1(U1 ∩
U2)→ φ2(U1 ∩U2), where both are open subsets ⊂ Rm as shown in Figure 14. The
second condition is that the map

φ2 ◦ φ−11 : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

must be a C∞ map. Where C∞ is a smooth function, having partial derivatives
of all orders. For an atlas, the collection of all the pairs (Ui, φi)i∈I is referred to
as a differential structure on M. Thus, the topological space M is said to be a
differentiable manifold or m-manifold [24, page 62]. One of the prominent examples
of a n-dimensional differentiable manifold is subset Sn := {~x ∈ Rn+1 : ||~x|| = 1}.



27

Figure 13: A local coordinate chart

Figure 14: Overlap function of coordinate charts

3.3 Tangent Space

Tangent spaces is one of the most important, useful ideas of differential geometry.
To a certain extent, we can regard the tangent space as the linearization of the
manifold at a point.
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3.3.1 The notion of a Tangent vector

The geometrical representation of a tangent vector ~v to a curve on a manifold Sn
embedded in a Rn+1 is shown in Figure 15 [24, page 73].

Figure 15: A tangent vector ~v at point ~x ∈ Sn

In Figure 15, the tangent vector ~v is the tangent to the curves at point ~x. Since
these curves lie on the manifold, we can say that ~v is a tangent vector to the
manifold(Sn) itself. Thereby generalizing the tangent to a curve to the tangent to
the manifold [28, page 53]. However, a closer observation of Figure 15 reveals that
there are two curves(σ1,σ2) having the same tangent vector. Thus, the notion of
tangent vector represents equivalent class of curves, i.e. ~v = [σ].

The pictorial representation of two tangent vectors(~v1,~v2) for two non-equivalent
curves (σ1,σ2) respectively, at a given point (p ∈ U ⊂ M) is illustrated in Figure
(16). The collection of all tangent vectors at p constitutes the tangent space TpM
to M at p. The tangent space can be regarded as a linear subspace of the vector
space Rn+1, and the tangent bundle TM is defined as TM = ∪p∈MTpM [28, page
57].

3.3.2 Alternate approach to the notion of tangent vector

Motivated by the notion of directional directive, the tangent vector v can be de-
fined [24, page 79] as

~v(f) =
df(σ(t))

dt
; t := 0

The tangent vector acts as a differential operator on the differentiable manifold
M. The manifold M can be regarded as a ring over R [24, page 79,80], tangent
vector as a derivation map from this ring to R. The set of all derivations at p ∈M
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Figure 16: tangent space, collection of all vectors at point p

is denoted as DpM [24, page 79,80]. This alternate approach is intrinsic as opposed
to the geometrical representation of tangent vector because latter doesn’t involve
embedding the manifold in any Euclidean space.

3.4 Riemannian Manifold

A Riemannian manifold(M,g) is a differentiable manifold equipped with a Rieman-
nian metric,g. The Riemannian metric

gp : TpM×TpM→R, p ∈M

is the collection of all Riemannian inner products, < ., . >p, defined in the tangent
space TpM for every point p ∈ M [29]. A differentiable manifold having a local
coordinate system p = (p1, ....., pn) induces a basis ∂

∂p
= ( ∂

∂p1
, ..., ∂

∂pn
) on the tangent

space TpM. Hence, we have the dot product of the tangent vector to the coordinate
curves : gij(p) :=< ∂

∂pi
, ∂
∂pj

>. The collection of all the dot products can be rep-

resented as a symmetric positive matrix:G[p] = gij(p) [30]. Thus, we have the dot
product between two tangent vectors < v,w >p= vTG[p]w (From here on we shall
represent ~v as v). This matrix G[p] is called the local representation of Riemannian
metric in the tangent space [30].

Geodesic of a Manifold For a differentiable manifold M endowed with a Rie-
mannian metric g, the minimum length of a curve joining the points p, q ∈ M is
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defined [30] as

d(p, q) = min
γ

∫ b

a

|| ˙γ(t)||dt =

∫ b

a

(
< ˙γ(t), ˙γ(t) >γ(t)

) 1
2
dt (42)

where the infinum is over all piece-wise differentiable curves t → γ(t) in M that
pass through the point p and q, which is referred to as the geodesic.

For every p ∈M and every v ∈ TpM, there is a unique geodesic on the manifold
denoted as γv, such that γ(0) = p and its corresponding mapping on the tangent
space is γ̇(0) = v, and the domain of γ is the largest possible with γv as the maximal
geodesic [31]. The manifold is said to be geodesically complete if the manifold has
no boundary and no singular point.

Exponential map There are many fundamental differences between the classical
Euclidean geometry and the Riemannian geometry due to the global topology of the
manifold. However, locally Riemannian geometry is similar to Euclidean geometry
in many ways. Thus, we introduce the notion of exponential map. The whole idea
behind the exponential map is to locally express a Riemannian manifold(M) at a
point p in terms of the tangent space TpM [31], the tangent vectors explained in
terms of their corresponding geodesics. The formal definition of an exponential map
is [31]:

Let (M,g) be a Riemannian manifold. For every p ∈ M, let D(p) be the open
subset of TpM given by

D(p) := {v ∈ TpM|γv(1) is defined},

with γv as the unique maximal geodesic, and initial conditions γv(0) = p and γ̇v(0) =
v. The exponential map is the map, expp : D(p)→M, given by

expp(v) = γv(1).

3.4.1 Grassmann Manifold

Let n,p be two positive integers such that n > p. The Grassmann manifold rep-
resents the p-dimensional linear subspaces of Rn often denoted as Gn,p, which is a
special case of Riemannian manifold.

An element Y in Gn,p can be specified by a basis, i.e. a set of p orthonormal
vectors y1, ...,yp such that Y is the set of all their linear combinations . When these
orthonormal vectors are ordered as the columns of a matrix Y ∈ Cn×p [32], then Y
is said to span Y and Y is said to be the column space of Y [32] [33]. The span of
matrix Y is an element on Gn,p iff Y has only orthonormal vectors.

Vn,p := {Y ∈ Cn×p : Y Y ∗ = I}

An element Y of Gn,p may present the image of many different column spaces,
Y i for 1 ≤ i <∞ spanning the same subspace. Thus, for a given matrix Y ∈ Vn,p,
the set of matrices which have the same span as Y is given by [33]:



31

Y Up := {YM : M ∈ Up} (43)

where Up represents the set of p × p unitary matrices. We identify Gn,p as the
quotient space [34, page 63] [33] of

Vn,p/Up. (44)

The complex Stiefel manifold in this thesis is represented as the quotient space
Un/Un−p. Thus, (44) is modified to

Un/(Un−p × Up), (45)

where Un represents the set of n-by-n unitary matrices.

Distance metric The concept of Euclidean or chordal distance in Gn,p can be
defined in terms of principal angles between the elements Y1,Y2 ∈ Gn,p [35] The
SVD of Y 1Y

∗
2 is given by U(cos Θ)V , where cos Θ = diag(cos θ1, ..., cos θp) and

{θi}pi=1 are the principal angles between the sub-spaces spanned by the elements
Y1,Y2 [36]. The chordal distance metric on Gn,p is given by [36]

d(Y 1,Y 2) =
1√
2
||Y 1Y

∗
1 − Y 2Y

∗
2||2 = || sin Θ||2 (46)

3.4.2 Permutation Invariant Flag Manifold

A complex flag manifold is a homogeneous space whose points also referred to as
flags, represents finite dimensional vector space V with dim(V )i = ni over a field F
in an ordered sequences of subspaces. It is mathematically defined as

{0} = Vo ⊂ V1 ⊂ V2..... ⊂ Vn.

We consider a unitary group Un consisting of n × n unitary matrices. Some of
these unitary matrices in Un may be equivalent. We define two equivalence relations
for a unitary matrix U ∈ Un such that U ∼ UΘ and U ∼ UP , where Θ and P
are arbitrary rotation and permutation matrices respectively. In addition, we also
define Xn = {X : X = PΘ or ΘP } for Θ ∈ Θ and P ∈ P , where Θ and P are
sets of rotation and permutation matrices respectively [37].

We can extract a representative from each equivalence class by considering the
quotient space defined as [37]

Fn,n = Un/Xn, (47)

this quotient space consists of unitary points which are non-equivalent.

Distance metric For a given unitary group Un×n is a Lie group [38](see Ap-
pendix). Xn×n forms a closed Subgroup of Un×n under matrix multiplication [37].Since
any unitary matrix is an isometry with respect to the norm, we consider the quotient
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space Fn×n of Un×n/Xn×n is a homogeneous space which are in essence Riemannian
manifolds [37]. The Euclidean distance defined in this flag manifold4is given by

d(U ,V ) =

√√√√n−max
π(.)

n∑
m=1

|u∗π(m)vm|2 =

√√√√n−
n∑

m=1

|uπ̃(m)∗vm|2, (48)

where U ,V are unitary matrices belonging to the quotient space, π̃(.) is the max-
imizing permutation function in (48) or in other words U is permuted to U ′ w.r.t
V such that the distance function is minimized. This distance generalizes the per
column chordal distance defined in the Grassmann manifold, since it can be viewed
as sum of n chordal distances for the permuted columns of the precoding matrix [37].

4Flag manifold is a very general term, our permutation invariant flag manifold is a specific case
of flag manifold, however, from now on we just address as flag manifold for the sake of simplicity.
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4 Precoding

In conventional single stream beamforming, the same signal is emitted from each
of the transmit antennas with appropriate weighting such that the signal power is
maximized at the receiver output. When the receiver has multiple antennas, single
stream beamforming cannot simultaneously maximize the signal level at all of the
receive antennas. Thus, in order to maximize the throughput in multiple receive
antenna systems, multi-stream beamforming or commonly referred to as precoding
is required.

Precoding involves the use of certain predetermined matrices, codewords known
to transmit and receive antennas. A codebook is a set containing these distinct, non
equivalent codewords. MIMO systems employing precoding are commonly known
as limited feedback systems as shown in Figure 17. This section initially gives a
brief description of limited feedback MIMO systems. To design these codewords,
vector quantization concepts and algorithm are utilized to quantize Grassmann and
flag manifolds, which are explained in the remaining parts of the section.

4.1 Limited Feedback System

When CSI is perfectly available at the transmitter and receiver, singular value de-
composition (SVD) precoding is known to achieve the MIMO channel capacity as
given in (30). In this approach, the channel matrix is diagonalized by taking an SVD
and removing the two unitary matrices through pre- and post-multiplication at the
transmitter and receiver, respectively. Then, one data stream per singular value can
be transmitted (with appropriate power loading) without creating any interference
whatsoever, which is mathematically explained in(27)

Many times perfect CSI cannot be made available to the transmitter in a con-
stantly changing wireless systems, especially for FDD systems, where downlink and
uplink channels are of different frequency bands separated by a guard band.Thus
they are not reciprocal and as a result there are many imperfections such as channel
estimation errors, feedback delay, and also limited feedback bandwidth. Certain
CSI imperfections such as feedback delay and estimation errors, can be captured
by a statistical channel mean information model [39]. Another important CSI im-
perfection is the bandwidth constraint over the feedback link, which conveys to
the transmitter only finite bits about the nature of the channel. For such cases,
the transmitter and the receiver need to maintain a predetermined codebook, i.e.,
a finite collection of precoding matrices commonly referred to as codewords. For
each received codeword index, the transmitter chooses the corresponding precoding
matrix for data transmission [39].

4.1.1 Limited Feedback MIMO system model

MIMO system model with finite rate feedback is shown in Figure 17, where M is
the precoding matrix, Z is the equalizer which is a linear receiver in our case. The
stream x̃ is processed, split into several sub-streams, pre-multiplied with codeword
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and transmitted. The received signal, subjected to channel conditions and thermal
noise of the receivers, post multiplied at the receiver is given by

ỹ = ZHMx̃+Zw, (49)

where x̃ = [x̃1, x̃2, ..., x̃nT ], ỹ = [ỹ1, ỹ2, ..., ỹnR ].

Figure 17: MIMO system model with Precoder.

However, precoding can have an affect on the throughput only when water fill-
ing concept is used at the transmitter, else with the complete channel knowledge
available at the receiver, we can achieve the same capacity by inverting the channel
matrix, recover the symbols as shown in (49) along the Eigen directions.

4.2 Vector Quantization

Roughly speaking, vector quantization(VQ) can be viewed as a form of pattern
recognition in which the input pattern is approximated to an already known tem-
plate. However, we discuss VQ in detail to gain an actual understanding of the
generalized Lloyd algorithm. The structure and basic principles for vector quantiza-
tion can be generalized to matrix quantization as well [36].

A vector quantizer Q of dimension n and size N is a mapping from a vector in n
dimensional complex Euclidean space to a finite set C containing N output vectors
referred to as code words. It is formally defined as Q(y),Q : Cn → Cn,y ∈ Cn. This
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can be extended to a matrix quantizer [36]Q(Y ),Q : Cn×p → Cn×p,Y ∈ Cn×p, p ≤ n.
In the following thesis we have a unitary constraint on Y , Y ∗Y = I, where I is
the identity matrix. The set C := (Y ′1, ...,Y

′
N) is called as codebook comprising

of codewords Y ′i ∈ Cn×p, where 1 ≤ i ≤ N. These types of codebooks are generally
designed off-line, are known to the receiver in advance. Each codeword induces a
partition in Cn×p, denoted as Si, also known as a Voronoi cell. This ith cell is defined
as [40]

Si = {Y ∈ Cn×p : Q(Y ) = Y ′i },

where the union of all cells Si is the complex Euclidean space, Cn×p :=
⋃
i Si

and Si
⋂
Sj = Φ, i 6= j [40].

The matrix quantizer(MQ), Q is inherently dependent on two conditions: Y ′i
and it’s corresponding cell Si. Thus, we can represent the quantizer using a decoder
and encoder. The receiver performs the encoding task by mapping a random point
Y ∈ Si to an index set I; I := 1, 2, ...., N and then feedbacks this index set to the
transmitter, which performs the decoding task. Upon receiving the index set, the
transmitter will map it back to Y ′i ∈ Si. The entire matrix quantization process is
mathematically represented as [40]

encoder := Y ∈ Si → I decoder := I → Y ′i ∈ Si, (50)

It can be seen in Figure 18 that MQ is a cascading of encoder and decoder, imply-
ing that receiver and transmitter collectively performs the quantization technique.

Figure 18: Quantization comprising of encoder and decoder.
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4.2.1 Structure of Matrix Quantizer

The encoder’s task is to examine each input point Y and identify in which partition
cell Si it lies. The matrix encoder just identifies the index of that partition cell which
contains Y and the decoder associates the index with the codeword representing that
partition cell. We model the operation of the encoder described in Figure 19, where
the selector function αi(Y ) is given by [41, page 317]

–

Figure 19: Structural decomposition of the Quantizer.

αi(Y ) =

{
1 if Y ∈ Si;
0 otherwise,

}
We can express the reproduction point, Y ′ which represents a linear combination

of the observable random variables αi

Y ′i = Q(Y ) =
N∑
j=1

Y jαj(Y )

Distortion as a Performance Measure The process of quantization always
comes at a price, since approximating a point Y to Y ′ results in a small error. This
error is measured in terms of average distortion(cost) davgdist := E{d2(Y ,Y ′)} which
directly gives the accuracy of matrix quantizer. In our thesis, the performance of the



37

MQ is inversely proportional to the average distortion. When a sequence of random
points Y is stationary and ergodic, then we can approximate the average distortion
D as

davgdist = lim
M→+∞

1

M

M∑
k=1

d2(Yk,Y
′). (51)

The choice of a distortion measure should be such that, it should be evaluated in
real finite time enabling the receiver to get the appropriate index from the index set.
The distortion measure should be amenable to allow analysis and designing of the
codebook. One of the most common and widely used distortion measure between
the Y and Y ′ is the Euclidean distance between the two points defined as:

d(Y ,Y ′) = ||Y − Y ′||2 (52)

The average distortion in (51) becomes

davgdist = E{d2(Y − Y ′)} = lim
M→+∞

1

M

M∑
k=1

p∑
j=1

n∑
i=1

d2(yk,i,j, y
′
i,j) (53)

where d(yk,i,j, y
′
i,j) is the distortion arising due to quantization in one dimension.

Nearest Neighbor Quantizers There are umpteen number of quantizers avail-
able, the quantizer considered here is popularly known as Voronoi or nearest neigh-
bor(NN) quantizer. In our scenario, the classification problem considered consists
of a finite set of training samples Y = {Y1, ....,YL}, where the training samples,
L >> M . A subset of Y , Y k 1 ≤ k ≤M belongs to a particular cell Si ∈ Cn×p, and
this cell is represented by a codeword Y ′i. We approximate Y k to Y ′i based on the
distortion measure. By imbibing NN quantizer we redefine the partition cell as

Si = {Y k : d(Y k,Y
′
i) ≤ d(Y k,Y

′
j) all j ∈ I}. (54)

In other words, the cell Si have those points with least distortion when approximated
to codeword Y ′i than any other codeword. The encoding algorithm of a NN encoder
can be described as [41, page 328]

Table 1: Nearest Neighbor Encoding Rule

STEP1. Initially set davgdist = d0, j=1, i=1

STEP2. Compute Dj = d2(Y ,Y ′j)
STEP3. If Dj < davgdist, set Dj → davgdist. Set j → i.
STEP4. If j < N , set j + 1→ j and goto step 2.
STEP5. Stop. set final index as i.

The resulting index i, encoder output is fedback to the transmitter to complete
the quantization process, initially davgdist is set to a very high value d0. Based on
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the algorithm in Table 1, we describe the encoding operation as

en(Y ) = c(Y ,C),

where the functional operation given by c(.,.) depends only on the distortion
measure [41, page 328]. The following Figure 20 illustrates the form of NN encoder

Figure 20: Nearest Neighbor Encoder with a predetermined codebook.

used at the receiver terminal. The primary advantage of NN quantizer is that it does
not depend on the geometrical description of cells. But however, the downsides are
that the encoding algorithm is computationally intensive and complexity increases
with the rise in flow of the information rate.

4.2.2 Optimality Conditions for Quantization

The main objective of a qauntizer is to assign a optimal codebook to the decoder
and a corresponding partition rule to the encoder such that the entire quantization
process minimizes the distrotion measure. Thus, the optimality conditions discussed
subsequently provides an optimal codebook for a given partition rule and an optimal
partion rule for a given codebook. We first consider the optimization of encoder for
a given codebook. Later, we consider decoder optimization for a fixed encoder.

Nearest Neighbor Rule For a given codebook C at the decoder, the optimal
partition cell is given by (54), i.e., Si = {Y k : d(Y k,Y

′
i) ≤ d(Y k,Y

′
j) all j ∈ I}.

Thus for a fixed decoder, the encoder is a minimum distortion expressed as

ddist(Y ,Q) = min
Y ′

i∈C
d2(Y ,Y ′i); i ∈ I (55)

Thus, the average minimum distortion is denoted as

davgdist = E{d2(Y ,Y ′i)} =
1

M

M∑
k=1

d2(Y ,Y ′i); i ∈ I (56)
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A necessary condition which is assumed is the collection of points equidistant from
at least two codewords has a zero probability, i.e. [41, page 355],

P (Y : d(Y ,Y ′i) = d(Y ,Y ′j, i 6= j) = 0)

We next consider the optimal condition for the decoder, given a fixed partition rule
at the encoder.This leads to our second criterion.

Centroid Condition We define the centroid, cent(Si), of any sub space Si ∈ Cn×p
as that point Y ′i which minimizes the distortion between point Y k, 1 ≤ k ≤ M in
Si and Y ′i . Thus [41, page 355],

Y ′i = cent(Si) if E [d(Y k,Y
′
i)|Y k ∈ Si] ≤ E [d(Y k,Y )|Y k ∈ Si]

for all Y ∈ Cn×p. This centroid condition is commonly denoted as

cent(Si) = arg min
Y

E [d2(Y k,Y )] = arg min
Y

M∑
k=1

[d2(Y k,Y )] (57)

For a fixed partition{Si; i = 1, ..., N} at the encoder, the codewords are optimal if

Y ′i = cent(Si).

4.3 Grassmannian and Flag Manifold Precoding

Precoding, when the codebook stored at both ends is obtained by quantizing Grass-
mann manifold is commonly referred to as Grassmann precoding. The main aim of
Grassmann precoding is to direct all the power to the nS sub-streams along their
corresponding eigen directions of the channel, which can be achieved by the selection
of appropriate codeword from the set that minimizes the distance [42]

d(V ∗,Y ′i) = arg min
j∈I

d(V ∗,Y ′j), (58)

where d is the chordal distance defined on the Grassmann manifold.
Flag manifold precoding is in a way similar to Grassmann, but the codebook is

designed by quantizing the unitary group. Distances on the Grasmannian manifold
is defined with respect to subspaces but in flag manifold, each matrix is a full rank
matrix belonging to a unitary group. Thus, all unitary precoders share the same
subspace [37]. It is due to this reason Grassmann chordal distance is not applicable,
the Euclidean distance used in flag manifold is given in 48 and the the power has to
be directed to all nT eigen directions.
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5 Codebook design and analysis

In the first part of this section, we derive semi analytical distortion bounds using
numerical methods. We also describe the modified Lloyd used to construct our flag
manifold codebooks. In the subsequent parts we evaluate our codebooks obtained
via Monte Carlo simulations w.r.t. the bounds. Finally, We compare our proposed
codebook with the codebook obtained from exhaustive search technique.

5.1 Distortion Bounds

We derive semi analytical bounds for distortion using ball volume calculations. The
normalized volume of a geodesic ball plays a very integral part in the analysis of
manifold quantization. A geodesic ball in the manifold can be realized as an image
of the exponential map [43]. The distances in this ball BP (δ) are measured along
their geodesics. We represent (41) alternatively as [44, page 24 ]

BP (δ) := {Q ∈M | d(P,Q) ≤ δ}, (59)

however, the geodesic ball in (59) has a boundary. The normalized volume is the
ratio of the volume of the ball to that of the volume of the entire manifold given as5

µ
(
B(δ)

)
=

vol
(
B(δ)

)
vol(M)

(60)

The normalized volume of a geodesic ball in Mn×n is given by [45]

µ
(
B(δ)

)
≈ cnδ

n2−n, (61)

where cn is calculated as follows.

5.1.1 Volume Estimates

Applying the ln operator in (61) we get

ln[µ(B(δ))] = ln[cn] + (n2 − n) ln[δ],

which is a linear equation with n2 − n as the dimension of the quotient group
Fn×n. The maximum value of µ(B(δ)) is unity, i.e., when the ball volume equals
the volume of the manifold, the corresponding critical radius is δc . Figure 21 shows
volume estimates for n = 2, 3, 4 by simulations.

From the figure, we can see that normalized volume increases linearly w.r.t. δ
until the critical point, where vol(B(δ)) = vol(M). The radius at this point is
denoted as δc. The critical radius is numerically found to be 1, 1.2, 1.4 respectively
following an arithmetic progression series. Thus, generalized expression for δc

6 is

5The center of the ball P is dropped since the calculation of the ball volume is independent of
the center chosen.
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Figure 21: Estimation of δc by trial and error method .

1 + N−2
5

. By using this expression in (61), we get

cn =

[
1 +

n− 2

5

]n−n2

. (62)

Figure 22 shows volume estimates for n = 2, 3, 4, 5, 6 by simulations. From this
figure, we can see that the volume can be well approximated to cnδ

n2−n, wherein
the constant cn depends only on n as shown in (62).

5.1.2 Analytical Distortion Bounds

For a sufficiently large code size N , the expected value of distortion in using a
codeword for quantizing the source points uniformly distributed over a Riemannian
manifold can be lower and upper bounded as [45] [44, page 28]

n2 − n
n2 − n+ 2

(cnN)
−2

n2−n ≤ davgdist(N) ≤
Γ( 2

n2−n)
n2−n

2

(cnN)
−2

n2−n (63)

6The T th
m term is given by a+(m-1)d, where a is the first term and d is the common difference
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Figure 22: Validation of cn by approximating simulated volume to cnδ
n2−n.

Flag Manifold In order to obtain the semi analytical bounds for the source dis-
tributed over the flag manifold, we plug in the expression for cn from (62) in (63)
yielding

n2 − n
n2 − n+ 2

(
n+ 3

5

)2(
N
) −2

n2−n ≤ davgdist(N) ≤
Γ( 2

n2−n)
n2−n

2

(
n+ 3

5

)2(
N
) −2

n2−n (64)

Grassmann Manifold For the source distributed over Grassmann manifold, (63)
is modified to

p(n− p)
(n− p) + 1

(
cn,pN

)− 2
p(n−p) ≤ davgdist (65)

where

cn,p =
1

Γ(p(n− p) + 1)

p∏
i=1

Γ(n− i+ 1)

Γ(p− i+ 1)

and N is codebook size, and n < p [46].
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5.2 Lloyd Algorithm

One of the best ways of obtaining optimal codebook is by iterative codebook im-
provement algorithm, the most common being Lloyd algorithm which is employed
to construct our codebook.

Lloyd algorithm, sometimes known as K-means algorithm, is usually used for
grouping data points into a given number of clusters. It is an iterative clustering al-
gorithm which starts by partitioning the input space into N regions, S1,S2, ....,SN
based on some heuristic. It then calculates the centroid(codeword), Y ′i by averaging
the dimensions in Euclidean space and this process is repeated until some criterion
is met, in our case it is the distortion rate function [4] [47]. The two necessary con-
ditions required for partitioning are the nearest neighbor condition and the centroid
condition.

5.2.1 Algorithm Description

We discuss in detail on the steps involved in quantizing, and constructing codebooks
on Grassmann and flag manifolds respectively.

Initiation and training set generation Set k=0. Generate some random train-
ing set Y = {Y 1, ....,Y L} with uniform distribution on n dimensional space, also
choose a set of codewords as the initial codebook Y ′i(0), 1 ≤ i ≤ N , and initialize
the mean quantization error(MQE) to davgdist(−1) = +∞ as the overall distortion.

Cluster classification Classify the set of training vectors Y l into the cluster
Si to associate with the codeword Y ′i(k) by the nearest neighbor condition. For
∀Y l ∈ Y , Y l ∈ Si(k), if

d(Y l,Y
′
i(k)) < d(Y l,Y

′
j(k)), j 6= i, 1 ≤ j ≤ N, 1 ≤ i ≤ N

Cluster classification on Grassman manifold uses chordal distance in (46) which
is quite straight forward. However, cluster classification in our flag manifold using
Euclidean distance given in (48) needs a deeper insight. The manifold Fn×n consists
of unique unitary points. For ∀Y l ∈ Fn×n, Y l ∈ Si(k), if

d(Ỹ l,Y
′
i(k)) < d(Ŷ l,Y

′
j(k)), j 6= i, 1 ≤ j ≤ N, 1 ≤ i ≤ N.

Where Ỹ l is the permuted version of Y l w.r.t Y ′i and Ŷ l is the permuted version
of Y l w.r.t Y ′j

After classification, we calculate the mean quantization error davgdist(k) between
the codeword and each training vector of the cluster associated to that codeword.

Codebook evaluation If the decrease in the overall distortion at the current
iteration davgdist(k) relative to previous davgdist(k − 1) is below a certain reference
threshold or no further improvement is made, then stop; otherwise goto centroid
generation.
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Centroid generation We now compute the centroid for all the given training
vectors in each cluster given as

Y ′i(k + 1) = cent(Si(k)) (66)

where cent(Si(k)) is denoted in (57)

Centroid condition in Grassmann manifold(Gn,p) In this specific case the
distortion metric is the chordal distance defined in (46) and the Centroid computa-
tion on the Grassmann manifold is [36]

Y ′i(k+1) = ESi [d2(Y , Q(Y ))] ≈ arg min
Y

M∑
m=1

d2(Y m,Y ) = eig

( M∑
m=1

Y mY
∗
m

)
(67)

Where the training set vector Y m ∈ Gn,p. M is the number of elements in a given
cluster and eig(Z) denotes the column space of the dominant p eigenvectors of the
matrix Z [36].

Centroid condition in a flag manifold (Fn,n) For a given number of unitary
points Ỹ m, 1 ≤ m ≤ M , each column vector, ỹj of this permuted matrix, lies in
Gn,1. The centroid condition in (67) is for Gn,p. For Gn,1, we have

cj = eig

( M∑
m=1

ỹm,jỹ
∗
m,j

)
; 1 ≤ j ≤ n, (68)

where cj ∈ Gn,1 is the centroid vector7. For a given matrix M = [c1, ...., cn], we
acquire a unitary matrix U c via polar decomposition

polar decomposition[M ] = PU c, (69)

where P is a positive semi definite Hermitian matrix and U c is the centroid in the
flag manifold Fn×n. Hence, the updated centroid for Sthi cell is

Y ′i(k + 1) = U c.

The following diagrams give a better understanding about the Lloyd algorithm.
The Voronoi diagram of the current points at each iteration is shown, the + signs
denote the centroids of the Voronoi cells.

5.3 CodeBook Constructor and Simulator

In this section, we discuss on the procedure used for codebook construction along
with the parameters used with the help of a flow chart and table respectively. We
begin by generating many random points over the unitary space with an initial
codebook based on any heuristic. We now quantize the space and calculate new

7eig(.) here corresponds to the first dominant Eigenvector
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(a) First iteration (b) Second iteration (c) Third iteration (d) nth iteration

Figure 23: Distribution of codewords after succesive iterations
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codewords, i.e. run Lloyd alogorithm in an iterative fashion. With every iteration,
the codewords become more and more uniformly distributed. We continue until there
is no further improvement in codebook which is reflected in the expected distortion.
In the Monte Carlo simulations, we compare our results with the semi analytical
bounds analyzing the codebook’s quality. Once the codebook is obtained, we use
them for transmit precoding, and analyze its impact on the system’s capacity.

A generic flowchart of the system simulator is shown in Figure 24

Figure 24: Flow chart of the system simulator

5.3.1 Simulation parameters

The codebook construction and simulator comprises of two parts. The first part is
used to construct and evaluate the codebook, while the second part is used to analyze
the impact of using this codebook on a system’s throughput. Table 2 presents the
simulation parameters for expected distortion.
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Table 2: Distortion Simulation Parameters

Parameters Values

Transmitters(nT ) [2,3,4]

Spatial sub streams(nS = min(nT , nR)) [2,3,4]

Voronoi cells(N) [4,6,8,16]

Random points generated 104

5.4 Codebook Evaluation

In this section, we present our results on Monte Carlo simulations of expected dis-
tortion, which reflects the codebook’s quality. We also evaluate the codebook w.r.t
the semi analytical bounds given in (64). After having validated, we discuss the
factors affecting codebook’s performance.

We would also like to remind the readers that this thesis mainly concerns about
the codebook construction on flag manifold. However, we briefly present results for
Grassmann codebook which is implemented in [48].

5.4.1 Monte Carlo Simulations

We have considered the aforementioned Lloyd algorithm to construct codebooks on
Fn×n, or on unitary groups U(n) with different degrees of n, where n = 2, 3, 4. In
other words, we have MIMO systems with nS = nT = nR = 2, 3, 4 respectively.
We initially generate 104 random points with uniform distribution. We then run
the Lloyd algorithm iteratively until the expected distortion converges to a certain
point signifying no more improvement in the codebook, we terminate the procedure
as indicated in Figures 25, 26, 27. From the same figs, we observe that the distortion
is decreasing gradually until it converges, usually around the twentieth iteration.
Since the expected distortion is approaching the lower bound after convergence, we
can safely infer that the codebook is indeed good, if not optimal since the bounds
are obtained via numerical method.

The following Table 3 shows the numerical results obtained in Figures 25, 26, 27

5.4.2 Factors affecting Expected Distortion

A system’s capacity is a function of expected distortion. So, it becomes essential to
analyze the factors affecting expected distortion, which are discussed here.
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Table 3: Numerical values of expected distortion with bounds

(nT , nR) Number of clusters Simulated distortion Lower bound Upper bound

2× 2 4 0.12875 0.1278 0.13421

6 0.0829 0.0812 0.0948

8 0.062 0.0608 0.0698

16 0.03 0.029 0.036

3× 3 4 0.76 0.75 0.91

6 0.65 0.649 0.88

8 0.558 0.554 0.738

16 0.45 0.438 0.535

4× 4 4 1.52 1.42 1.92

6 1.4 1.3 1.85

8 1.38 1.25 1.79

16 1.15 1.05 1.52

Codebook Size For a given unitary space, we approximate any random point to
its nearest centroid. This approximation, or quantization of U(n) brings about a
distortion. When the volume of a given cluster is large then the error in approxima-
tion is also large. In order to minimize this error we increase the number of clusters
minimizing the volume of each cluster effectively reducing the average distortion as
illustrated in Figures 28, 29.

Nf = log2(Nclusters),

where Nf, Nclusters are number of feedback bits and clusters respectively. When
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Figure 25: Simulated expected distortion analytically bounded for a 2× 2 MIMO.
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Figure 26: Simulated expected distortion analytically bounded for a 3× 3 MIMO.
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Figure 27: Simulated expected distortion analytically bounded for a 4× 4 MIMO.

more bits are fed back, the transmitter has more codewords in the codebook to
choose from. In other words, it can have a better approximation, and combat the
channel H efficiently.

Impact of Spatial Sub-streams The increase in spatial sub-streams results in
degradation of expected distortion, irrespective of the codebook used. We have two
codebooks; from the flag manifold, Grassmann manifold as shown in Figures 28, 29
respectively. The flag manifold codebook is used when nS = nT = nR, and the
Grassmann codebook is used when nS = min(nT , nR). For a certain number of
spatial sub-streams, the Grassmann codebook yields a better performance than the
flag manifold codebook. We observe that G4,2 in Figure 29 yields a lesser distortion
than F2,2 in Figure 28. This is more apparent in the capacity simulations presented in
the next section. In any case, this effect of distortion can be combated by increasing
codebook cardinality.
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Figure 28: Codebook evaluation as a function of expected distortion for Riemannian
manifold.
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Figure 29: Codebook evaluation as a function of expected distortion for Grassmann
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5.5 Exhaustive Search Technique

We further analyze the proposed codebook’s performance by comparing it with
codebook designed via brute force method. The problem of finding a centroid can-
didate in a uniformly distributed space of unitary points can be solved by brute
force method in which we generate many points and test its accuracy as a centroid
candidate8. This is a trivial problem solving technique which requires high compu-
tation, and is generally not feasible. However, we use this method to evaluate our
codebook’s quality obtained via Monte Carlo simulations.

For a given number of unitary points in a cluster, we begin our exhaustive search
by selecting a random point in the cluster as a centroid candidate minimizing the
distortion. We increase the sample size of these random points and repeat the process
until the sample size contains all the unitary points distributed over the cluster. We
then compare this centroid candidate with the proposed centroid obtained via Monte
Carlo simulations. In Figure 30, 31, 32, we observe that exhaustive search distortion
is decreasing with the increase in sample size but is never better than the proposed
distortion. This suggests the centroid obtained via Lloyd algorithm is better than
any random point generated in the cluster.
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Figure 30: Estimation of numerically obtained centroid against brute force method
for 2× 2 MIMO system

The other observation that can be made is in the decrease of proposed distortion
with increase in the number of clusters(or feedback bits), i.e.N = 4, 6, 8, 16, for a
fixed MIMO system. Which can be seen from Figure 30, 31, 32 respectively and
is summarized in Table 3. For a given space, the increase in number of clusters

8The terms centroid, distortion, codebook are interchangeable in context of performance as
they are all linearly related
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Figure 31: Estimation of numerically obtained centroid against brute force method
for 3× 3 MIMO system.
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Figure 32: Estimation of numerically obtained centroid against brute force method
for 4× 4 MIMO system.

will effectively reduce the volume of each cluster, thereby reducing any outliers,
facilitating a better quantization process. However, this physically results in more
feedback bits from receiver to the transmitter. From the exhaustive search test,
we can infer that the proposed codebook fairs better than any other codebook
constructed via any random search.
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6 Capacity Analysis for Limited Feedback MIMO

systems with Linear Receiver

In the previous section, we constructed our codebook used in transmit precoding.
In this section, we mainly present our capacity simulations addressing the scope of
the thesis.

6.1 Linear Receivers

One aspect that makes linear receivers unique is the methodology of using a linear
filter to separate each of the distinct spatial sub-streams. This filter is represented
by a weighted matrix Z. The vector estimate, ỹ is given by

ỹ = Zy = ZHeqx+Zw. (70)

Heq = HM = U eqΛeqV
∗
eq, where M is the codeword used at the transmitter,

V eq are the right singular vectors and Λeq contains the singular values. We also
define

Req = H∗eqHeq

as the equivalent correlation matrix [42].

6.1.1 Zero Forcing Equalizer

The zero forcing equalizer involves a simple linear filter scheme, aims at eliminating
interference between each independent sub-stream originating from each of the mul-
tiple transmit antennas [49]. This is facilitated by computing the Moore-Penrose
pseudo-inverse of the equivalent channel matrix [50, page 210], and setting it to Z

Z = (H∗eqHeq)
−1H∗eq,

However, one of the downsides of ZF receivers is that they suffer from noise en-
hancement [51].

Assuming that the receiver has complete channel knowledge, (70) is modified to

ỹ = (H∗eqHeq)
−1H∗eqHeqx+Zw = x+Zw (71)

The purpose of transmit precoding is to increase the capacity(or spectral effi-
ciency) of the system. We modify the capacity expression in (30) to

C = log2 det (InR + γReq) , (72)

where γ = Ps
nSσ2 , in the absence of water filling Q = I. However, we are using

a ZF linear receiver and reaching the optimum capacity is not possible unless the
correlation matrix, Req is a diagonal matrix. Alternatively for a linear receiver, the
general throughput equation can be written as [42]



55

C =

nS∑
i=1

log2(1 + γi), (73)

where γi is the post-processing SINR of the ith data stream given by

γi =
1

ZE{ww∗}Z∗
=

1

σ2
nZZ

∗ =
1

[γReq]
−1
i,i

.

We have simulated the capacity results for different MIMO scenarios. We analyze
the impact of feedback bits, low and high regions of SNR, and spatial sub-streams
on these systems.

6.2 Impact of Feedback Bits and Average Received SNR

We have previously seen the impact of codebook size on the expected distortion. As
mentioned earlier, the system capacity, which is a function of distortion also gets
affected. The system’s channel is denoted by a full rank matrix with equal number
of transmit and receive antennas. Figure 33, 34, 35 shows the flow of information
for 2× 2, 3× 3, and 4× 4 systems respectively. Since we are using a ZF equalizer,
information rate is dependent on precoding unlike the maximum likelihood receiver.
For a 2 × 2 MIMO system, we require only few feedback bits to approach perfect
precoding as illustrated in Figure 33. However, this is not the case in higher order
systems because with the increase in antennas, the volume of flag manifold becomes
large requiring more Voronoi cells(or feedback bits) to quantize the unitary space,
affecting the codebook’s performance. Thus, from Figure 34, 35, we can see system
throughput becomes more and more immune to precoding.

The same can be observed while using Grassmann precoding as shown in Figure
36, where G2,1 requires only 2 feedback bits to approach perfect precoding and system
performance degrades with the increase in the number of spatial sub streams as seen
in G4,2 . The additional knowledge of channel available at the transmitter facilitates
us to allocate different power levels to the transmitters based on water filling concept
further increasing the system capacity.

6.3 Impact of Spatial sub-streams

There is a fundamental trade off between spatial multiplexing and diversity gain.
Increasing the spatial sub-streams, we increase the system capacity at the cost of
diversity. However, in the case of unitary precoding with higher sub-streams(nS =
nT = nR), the relative gain becomes small and the improvement is slow as shown in
Figure 33 and Figure 35. The impact of precoding is adversely affected, eventually
leading to no improvement in the performance.
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Figure 33: Capacity for a 2× 2 system using unitary precoding.
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Figure 34: Capacity for a 3× 3 system using unitary precoding.
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Figure 35: Capacity for a 4× 4 system using unitary precoding.
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Figure 36: Capacity of a 2×1 and 4×2 MIMO system using Grassmann precoding.

For a given number of spatial sub-streams, Grassmann precoding G4,2 performs
better in terms of system capacity, having a gain of almost 3dB over unitary precod-
ing F2,2 as illustrated in Figure 36, Figure 33 respectively. For higher sub streams,
quantizing unitary space is not a trivial task due to it’s large volume, which is
reflected in the system performance.
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6.4 Impact of Codebook Partition on Capacity

We have designed codebooks in two different scenarios. In the first scenario, we
introduce a quantization scheme in which the full space of non-equivalent precoding
matrices is a flag manifold(Fn,p). While in the second scenario, the same space is
partitioned into Grassmannian part(Gn,p) and unitary group(Fp,p). We have simu-
lated and compared the capacities for both scenarios in Figure 37.

6.4.1 Codebook Partitioning

We partition the precoding matrix M into a part G corresponding to a point in the
Grassmann manifold Gn,p and point O in the unitary space Fp,p.

M = GO,

The transmitted symbols can be interchanged. This means that orthogonalization
matrices that are column permutations of each other are equivalent. The overall
phases of the columns are irrelevant. Thus, the space of non-equivalent orthogonal-
ization matrices occupy the coset space [42]

Fp,p = Up/(Pp × Up1 ).

The orthogonal matrices are equivalent up to a p-fold direct product of p phases and
and the set of column permutations forming the permutation group of p elements,
Pp. The orthogonalization part of the precoding matrix M is independent of the
metric used in Grassmannian space.

6.4.2 Capacity Analysis

Figure 37 illustrates the achievable data rate for a 4× 2 MIMO system using a ZF
equalizer with 2 spatial sub-streams. The code book is designed on F4,2 and G4,2.
It is quite evident from the figure that flag manifold codebook is achieving the data
rate which is almost equal to the optimum, better than Grassmann precoding, G4,2.
The codebook designed by partitioning the space into G4,2 and F2,2 [42], each having
two bits gives an intermediate performance between the two. The design criteria for
the codewords selection is based on minimizing the flag distance jointly over all the
possible combinations of Grassmannian and orthogonalization codewords.
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Figure 37: Codebook performance with/without precoder partitioning.
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7 Conclusions and Future Work

7.1 Conclusions

Codebooks are employed in MIMO wireless systems with the intention of acquiring
partial CSIT in order to achieve higher data rates. The work done during this thesis
mainly concerns with the design of these codebooks. The designing of codebooks is
closely related to quantizing aforementioned manifolds.

As a background, the evolution of MIMO systems from a simple SISO system is
reviewed along with its many advantages. Some classical information theory con-
cepts concerning capacity were presented with derivations for corresponding capacity
of a MIMO system, which is used later in our simulations and performance analysis.
The prerequisites of codebook designing are manifolds and quantization principles
which are explained in sections 3 and 4 respectively.

A matlab simulator was built to design our codebook using Lloyd algorithm to
quantize our manifolds. In Section 5, simulation results were presented with respect
to codebook design aspect: validation of our centroid estimate, simulated expected
distortion with its corresponding analytical bounds, impact of feedback bits and rank
of MIMO system on expected distortion. These Monte Carlo simulations confirms
the codebook’s optimality.

Finally, simulations on capacity for a limited feedback MIMO system are pre-
sented in Section 6. These simulations confirms the improvement in achievable data
rates due to precoding. The main conclusions that were drawn from this thesis are:
Increase in number of feed back bits improves the capacity of a system, increase
in spatial sub-streams adversely affects the feedback bits’ effect on the capacity.
Codebook designed by quantizing flag manifold without partition yields a better
performance when compared to the codebook obtained by partitioning the space
into Grassmannian and orthogonalization parts.

7.2 Future work

Future work could include a better mathematical analysis of the manifolds, as the
distortion bounds derived are not completely tight; The distortion bounds derived
in Section 5 are sub optimal. In Section 6, it would be justifiable to have capacity
bounds as a function of distortion instead of perfect and no precoding, since it would
give a better analysis on the performance of a system. The channel considered in
this thesis has been i.i.d., one suggestion would be to use a correlated channel and
analyze the performance.
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Appendices

Polar Decomposition

The polar decomposition is employed to obtain a unitary matrix, U and a
positive-semidefinite Hermitian matrix, P . For any given square complex matrix
A. The S.V.D of the given matrix A yields WΛV ∗. we now have the relation

U = WV ∗, P = WΛW ∗

Lie Groups

The aforementioned unitary group, Un is a Lie group. A Lie group G is a set
that is (a) A group in the usual algebraic sense;

(b) A differentiable manifold with the properties that taking the product of two
group elements, and taking the inverse of a group element, are smooth operations
devoid of any singular points. Specifically the multiplication maps G×G→ G

(g1, g2) 7→ g1g2

and the inverse G→ G

g 7→ g−1

are C∞.
The skew-Hermitian group forms the corresponding Lie algebra to the unitary

group, un. The Lie algebra encodes many of the properties of its corresponding Lie
group, its underlying vector space is the tangent space of the group at the identity
element, which completely captures the local structure of the group. A point from
Lie algebra can be mapped to its Lie group via exponential mapping .
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