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Tutkimus  keskittyy  liikkuvien  tyokoneiden  sarjahybridivoimansiirron
mallintamiseen, suunnitteluun ja ohjaukseen. Liikkuvien tyokoneiden hybridisoin-
ti on ajankohtaista, koska se mahdollistaa COs-padstojen ja energiankulutuksen
pienentamisen seké erilaiset tehontuottomuodot. Tutkimus esittaa sarjahybridi-
voimansiirron systemaattiseen mallintamiseen lahestymistapaa, jonka lasken-
tasuunta on kuormasta takaperin lahteisiin. Lisaksi mallinnustapaa voidaan
kuvata toiminnallisen, staattisen, naennaisstaattisen, ja dynaamisen mallinnus-
tavan yhdistelmaksi. Lopputulemana tyo esittelee tehokkaan ja systemaattisen
mallinnuslahestymistavan liikkuvien tyokoneiden voimansiirrolle, seka tarkastelee
menetelman mallinnustarkkuutta. Lisaksi tutkimus kasittelee aktiivisella
superkondensaattorilla puskuroidun diesel-sahkoisen voimansiirron tehonoh-
jausalgoritmeja.  Tutkimus hyodyttaa liikkuvien tyokoneiden voimansiirron
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tahéan saakka puuttuneet tai olleet vaillinaisia. Liikkuvien tyokoneiden hy-
bridisointi tai polttokennotehontuoton hyodyntaminen vaatii viela monien
tutkijoiden seka insinoorien pitkédjanteista tyota useiden vuosien ajan, kunnes eri
voimansiirtotopologioiden hyodyllisyys ja suunnitteluperiaatteet on selvitetty.
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Preface

The series-hybrid electric vehicle powertrain study at Aalto University facilities
started in the year 2002, with the demonstrator for the interest of industrial part-
ners. My contribution to the topic started in the mid-2007, when the work continued
with the development of the series-hybrid Hardware-in-the-Loop test environment.
My work with powertrain components efficiency measurements, power control ex-
periments, and modeling of the system components, progressed in 2008 and 2009.
Analysis of the results lasted until 2010 and writing of the thesis until the mid-2012.
The created modeling platform has been in my own and colleagues’ design use since
2009, and adopted for teaching purposes in 2012.

I would like to thank all my colleagues for their support, and the good working
atmosphere.

This study has been carried out in the HybDrive, TopDrive and ECV /Tubridi
projects, financed by the Doctoral Program of Electrical Energy Engineering (DPEEE),
the Finnish Funding Agency for Technology and Innovations (Tekes), and the Mul-
tidisciplinary Institute of Digitalization and Energy (MIDE) of Aalto University,
respectively. Furthermore, grants given by the Henry Ford and Fortum foundations
have supported progression of this thesis.

Otaniemi, 15.11.2012

Matti Liukkonen
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Symbols and abbreviations

Symbols

In general, the electrical variables with subscripts written in upper case refer to the
quantities on the DC-link voltage potential and subscripts written with lower case
refer to the quantities on the energy storage voltage potential, respectively.

A Battery exponential voltage

B Battery exponential capacity

C Battery nominal current

Cpc Constant capacitance of a DC link

Chuc Constant capacitance of an ultracapacitor pack

Cuc Variable capacitance map of an ultracapacitor pack

D Current direction for a DC-DC converter

€n Speed error term of a proportional-integral controller
€y Voltage error term of a proportional-integral controller

Erat Battery pack energy content
E, Energy losses of a component ¢

Ef: ! Ultracapacitor pack energy content

IAFE Direct current of an active front-end converter

That Battery current

1BRK Brake unit current

RS Energy storage current on a DC-link voltage potential

TES Energy storage system current reference on a DC-link voltage
potential

Tes Energy storage current

Ife Fuel cell current

ILOAD Load current on a DC link
isspcc  Sum current on a point of common coupling

Lox Maximum current of a DC-DC converter

Loin Minimum current of a DC-DC converter

Tref Current reference

Trof! Current reference before limitations

Ujref| Absolute current reference

Tuc Ultracapacitor pack current

N Battery low-frequency current dynamics

it Battery extracted capacity

Jiot Total inertia on engine shaft

K Integral coefficient of a proportional-integral controller
Kp Proportional coefficient of a proportional-integral controller
m Engine fuel quantity in milligrams per stroke

NEM Electric machine speed

Ne_ref Engine speed reference

ng Generator speed

nyvspe  Engine actual speed
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PLOAD
Pyvax
Pmech
Dref

Rbat
Rpc
RUC
Tk
Upat
Upc
UDC _ref
U’es
Ut
Umax
Ul’lOl’l’l

Uratio

Unc
Uo
n(ies ) uratio)
77(”(} ) Treq)

Thhoost
Tlbuck

ED (nEM, TEM)
TEM
Te
Tload
Tmap
Treq
TAFE
T™DC/DC
Te

wa
WvsDaG

1X

Surface polynomial coefficient

Load power, electrical

Tuning parameter of an energy management algorithm
Load power, mechanical

Load power reference

Battery maximum capacity

Battery resistance

Equivalent series resistance of DC-link capacitors
Equivalent series resistance of an ultracapacitor pack
Discrete-time sample with an index &

Battery nonlinear output voltage

DC-link voltage

DC-link voltage reference

Energy storage voltage

Fuel cell cource output voltage

Ultracapacitor maximum voltage

Battery minimum voltage value of the linear area

Voltage conversion ratio, energy storage respect to DC-link
voltage

Ultracapacitor pack voltage

Battery maximum voltage value of the linear area
Efficiency map of a DC-DC converter

Combined efficiency map of an active front-end converter
and generator

Efficiency map of a DC-DC converter in a discharge opera-
tion mode

Efficiency map of a DC-DC converter in a charge operation
mode

Efficiency map of an electric drive

Torque of an electric machine

Output torque of a diesel engine

Load torque of a diesel engine

Torque data mapping of a diesel engine

Generator requested torque

Control delay time-constant of an active front-end converter
Control delay time-constant of a DC-DC converter

Control delay time-constant of a diesel engine

Generator angular speed

Engine angular speed



Abbreviations
AC/DC AC to DC rectifier
AFE Active Front-End converter
AOC Adaptive Optimal-Control

COq Carbon dioxide

DC/AC DC to AC inverter

DC/DC DC to DC converter

ED Electric Drive

EM Electric Machine

EMS Energy Management Strategy
ES Energy Storage

EUT Equipment Under Test

FC Fuel Cell

G Generator

HE High Energy

HP High Power

ICE Internal Combustion Engine
MABX dSpace MicroAutoBox

MPC Model Predictive Control
NRMM Non-Road Mobile Machinery
OEM Original Equipment Manufacturer

PE Power Electronics

PEM Polymer Electrolyte Membrane or Proton Exchange Mem-
brane fuel cell

PI Proportional-Integral controller

SHEV Series Hybrid Electric Vehicle

ucC Ultracapacitor

VSDG Variable Speed Diesel Generator-set



1 Introduction

Non-road mobile machineries (NRMMs) are vehicles whose aim is to produce ef-
fective work in mobile positions. This category includes devices such as, harbor
straddle carriers; mine loaders; forest work machineries, for instance, harvesters and
forwarders; and military vehicles. Complementary terms for an NRMM are an off-
road heavy vehicle [1]—[2], or even a heavy-duty vehicle [3]. The powertrain, which
is the focus of this research, functions as a part of NRMMs.

Thus, a powertrain refers to the part of a vehicle which generates power and
provides a path for power from the source to its load. In general, a powertrain
may consist of various different components, due to the diverse purposes of NRMMs
as illustrated in example Fig. 1. A harbor straddle carrier is used to lift, move,
and descend containers in a harbor area. An underground mining loader charges a
bucket at the end of an underground mine and hauls ore to a point from where an
underground truck carries ore the rest of the way up. A forwarder collects logs with
a boom and delivers logs next to the road from where a truck is able to pick up logs
for road transportation.
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Figure 1: Different non-road mobile machineries; (a) harbor straddle carrier, (b)
mine loader, and (c) forwarder.

The powertrain, for instance in a passenger car, consists of an internal combus-
tion engine (ICE), a gearbox, driveshafts, and differentials. In this vehicle, the ICE
operates as a source, and the wheels operate as loads. Another example of powertrain
design can be found in a diesel-electric train, which consists of an ICE, generator,
rectifier, inverters, and traction machines. This type of a powertrain transforms
rotational movement into an electric current and back to rotational movements.
The third example of powertrain design is hydraulic, which is usually operated in
hydro-static means. In that powertrain, the ICE rotates a hydraulic generator that
in turn is connected via hydraulic hoses to hydraulic motors. In such cases, the
fluid pressure of the hoses is kept constant. Furthermore, this thesis uses the word
“powertrain” as described in the context of these three aforementioned examples.
Synonyms are used to denote the powertrain [1]—[2], such as drivetrain [2]—[4], drive
line, and transmission.



In the conventional car powertrain, the ICE operates as a source, and the wheels
to the environment contacts operate as loads. Thus, a two-wheel drive has two
bodies which create a load for the ICE, and a four-wheel drive has four. The ICE
usually couples mechanically to loads and, thus, always operates at a speed defined
by a vehicle speed and a gear ratio. In practice, loads define the torque and speed of
the ICE and therefore, it cannot be operated in the best efficiency operation area.
Moreover, the ICE cannot absorb more regenerative power than the parasitic loads
on the ICE shaft consume, and therefore, during deceleration the kinetic energy from
the vehicle body is consumed as heat in the brakes. On the other hand, some trains
and ships have adopted the diesel-electric powertrain which relieves the ICE from
the mechanical speed of a load. Furthermore, in trains the diesel-electric powertrain
is needed if the railway line is lacking power lines. Such high cost high power
applications as these have conventionally used electric powertrains. However, the
diesel-electric powertrain cannot provide regenerative energy recuperation, although
electric traction machines and inverters could provide such an operation. In practice,
the diesel-electric powertrain only lacks a suitable energy storage system.

In comparison to cars, heavy-duty vehicle powertrains are more diverse. Besides
the need for kinetic energy, heavy-duty vehicles often need linear movement for
actuators, such as, buckets, hoists, and booms, which are usually operated with hy-
draulic cylinders. The movements and payloads of hydraulic actuators yield another
load for the ICE, and may demand high peak powers. Conventionally, hydraulic ac-
tuators have introduced partly or fully hydrostatic power transfer to the powertrain
of a heavy-duty vehicle. The hydrostatic power transfer has traditionally had low
overall energy efficiency which is in range of less than 10 % due to partial loading
of an ICE with high constant speed. Furthermore, in conventional designs, the hy-
draulic transmission has transferred power in only one direction, thus preventing
regenerative energy recuperation.

Heavy-duty vehicles are a diverse group as described earlier. Trucks, cranes,
tractors, bucket loaders, and trains among others can be included in this category.
Some of these vehicles operate only on bounded sites, and thus are called non-
road mobile machineries. Traditionally, NRMMs have been built with a mechanical,
hydraulic, or diesel-electric powertrain. The conventional designs of NRMM power-
trains have not usually enabled regenerative energy recuperation, which is available
in most NRMM work cycles as kinetic and potential energy forms. In the traditional
design, regenerative energy has been converted into heat in mechanical brakes, hy-
draulic valves or in brake resistors. Moreover, system efficiency is low during engine
idling, i.e. partial loading of an ICE. These reasons together lead to low overall
energy efficiency in a system. For instance, the corresponding system efficiency in
a conventional passenger car application is in the range of 14 - 22 %, and with a
hybridized system 29 - 30 %, respectively [5]. Furthermore, through hybridization,
low emission by-production in power generation, and lower or even locally zero-
emission powertrains can be succesfully achieved [3]. Therefore, different hybrid
powertrain topologies are studied for the regenerative energy recuperation of the
NRMM powertrain.

A hybrid vehicle powertrain can be realized in many different ways. In gen-



eral, different combinations of mechanical, hydraulic and electrical power transfer
components may come into question for the right drivetrain topology choice for
a specific case. For example, series, parallel, series-parallel, and complex hybrid
electric vehicle architectures have been defined in [4]. However, feasible powertrain
topology choices are predefined based on the application field, and thus, the study
for hybridizing a powertrain in the NRMM concentrates on the series-hybrid electric
vehicle (SHEV) topology [1]—[2].

This series-hybrid electric powertrain can consist of several different energy
sources and storages, see Fig. 2. These energy sources usually are engine and
fuel cell, whereas the usual energy storage options are battery, ultracapacitor, and
flywheel [6]. Additionally, the drive line demands controllable electric power conver-
sions with power electronics devices. Such devices change the form of the current
from alternate to direct, and vice versa, for the use of generator and electric machine.
DC-DC converters control electric power through different voltage levels in the drive
line, for the utilization of energy storage full capacity [7]. The amount of options
for the design of a hybrid drive line makes it an undoubtedly complex process. The
degrees of freedom in design arise because of several energy storage options and
their combinations, the sizing of energy sources and storages, the energy source and
storage interface options, e.g. active or passive, and the control of active interfaces.
Thus, feasibilities and design procedures of series hybrid powertrains are studied for
the needs of NRMM manufacturer product development [8]. The importance of the
study arises—specifically, due to the complexity of the subject, implementation of
a new design, lack of already known design principles, and the education of new
engineers. Therefore, efficient modeling principles for the NRMM powertrain design
are considered in this research.

Loads
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Figure 2: Different series-hybrid electric vehicle powertrain component options.

Thus, this study concentrates on the series-hybrid electric powertrain, which



has all system loads connected to the common DC-bus. In other words, all system
loads are treated as one load which is consumed from the common DC-bus. This
simplification neglects the realization of the load, since this would lead to an overly
diverse research area.

As a summary, the goal of this thesis is to provide design knowledge, and tools
for engineering series-hybrid powertrains in NRMM applications. In some NRMM
applications, conventional powertrains needs to be re-designed due to low-energy
efficiency, and lack of regenerative energy recuperation. As a design options, there
exist various types of powertrains, as different types of hybrids, and as different types
of series-hybrids which are discussed in Chapter 2. In practice, the engineer should
be capable of choosing the right powertrain for a specific application. Therefore,
contributions have been made in order to reach previous common goals. Firstly, the
research concentrates on a series-hybrid electric powertrain modeling from known
loads of the DC-bus to actual values of powertrain variables (such as currents and
voltages) in different voltage potentials, and primary energy source outputs. The
primary energy source actual output values for the fuel cell stack are current, voltage
and hydrogen, and for the diesel generator-set, speed, torque, and fuel consumption.
Secondly, the research focuses on power control for an ultracapacitor (UC) buffered
series-hybrid electric powertrain. Thirdly, developed modeling and simulation tool
are used to analyze the cost, size, weight, and efficiency of different fuel cell series-
hybrid powertrain topologies [8].

The main scope of this thesis is on series-hybrid electric powertrain modeling
and energy management for the design of non-road mobile machineries.

This thesis is organized as follows: Chapter 1 defines the background, scope,
and structure of the thesis; Chapter 2 previews the history and the State-of-the-Art
of the topic; Chapter 3 presents the development of different series-hybrid power-
train component plant models, describes test setups for plant model validations and
presents mathematical descriptions of the models; Chapter 4 summarizes and re-
views publications; and Chapter 5 summarizes the thesis.

The publications included in this thesis are reprinted at the end.



2 State-of-the-Art

2.1 History

Development Milestones of an Early Electric Vehicle

The invention of the electric vehicle has been attributed to various people from
the 1820s to 1900s. Named contributions began with Anyos Jedelik in 1828, who
demonstrated an early type of electric motor. After several other contributions,
in 1881, French inventor Gustave Trouvé demonstrated a working three-wheeled
automobile at the International Exhibition of Electricity in Paris, which was powered
by 0.1 horsepower DC motor and weighted 160 kg.

The 1890s was an era of rapid development of an electric vehicle. The first
commercially succesful electric car, able to carry six passengers at 16 km/h, was
made in 1893 by Paul Pouchain. Later, the 100 km/h speed barrier with an electric
vehicle was broken in 1899 for the first time by Camille Jenatzy. Development was
rapid due to a series of competitions that promoted technical improvements.

The first hybrid vehicles reported were shown at the Paris Salon in 1899 with a
presentation of parallel and series-hybrid concepts. The series-hybrid was derived
from a pure electric vehicle, and built by the French firm Vendovelli and Priestly.

During 1900-1910, electric cars reached the height of their success, and manu-
facturing amounts peaked in the United States by 1912. As gasoline automobiles
became more powerful, more flexible, and above all easier to handle—electric vehi-
cles started to disappear. Their high cost, limited range and performance impaired
them against the gasoline vehicles. In nearly 60 years, the only electric vehicles sold
were forklifts, delivery vehicles, and golf carts. [9]—[12]

Fuel Cell

The first contributions for the fuel cell invention were made as early as 1839 by Sir
William Grove, who discovered that it might be possible to generate electricity by
reversing the electrolysis of water. It took until 1889 before the term “fuel cell”
came into use while Charles Langer and Ludwig Mond tried to engineer the first
practical fuel cell using air and coal gas.

It was remarkably later, in the 1950s, that Francis Bacon successfully produced
the first practical alkaline fuel cell. In the 1960s, an alkaline fuel cell power plant
was developed for the Apollo spacecraft. The plant provided both electricity (1.5
kW) as well as drinking water for the astronauts on their journey to the moon. A
drawback in previous fuel cells was that carbon dioxide would react with the alkaline
electrolyte, and thus reduce the overall efficiency of the fuel cell. Technologies with
the non-alkaline electrolytes became more attractive for terrestrial applications, such
as, solid oxide fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells and
proton exchange membrane (PEM) fuel cells which were later considered to be the
power source in vehicles.

Already in the early 1960s, Thomas Grubb and Leonard Niedrach developed the
first PEM fuel cell while working in General Electric. The PEM fuel cell technology



was interesting but not immediately adopted by NASA’s space flights. The era of
PEM fuel cells on space flights started with Gemini 6 to 12, between 1965 and 1966.
Then in 1979, the company Ballard Power Systems was established, and it has since
grown to become recognised as a world leader in PEM fuel cell technology. [11], [13]

Evolvement of a Diesel-Electric Powertrain in Heavy Vehicles

The diesel-electric powertrain has long been used in some applications, such as in
locomotives [14], and ships [15]. In the 1900s, electric propulsion was introduced to
ships. In those days, electrical systems were various kinds of AC or DC systems,
and a power source in the beginning was a turbine, and later on diesel engines were
also utilized [15]. In about 1925, the diesel-electric traction began to compete with
other propulsion systems in locomotives [14]. Some decades later, in 1947, a braking
resistor system was proposed for a locomotive to prevent the need for brake shoe
maintenance, wheel wear, and to increase faster schedules for operation [16].

Concerns about the environment triggered more research on electric vehicles
between 1955-1965, and as a result, a new thyristor inverter technology with ad-
vantages, including the use of asynchronous motors, was adopted to traction motor
considerations [12]. Simultaneously, an earth-moving DC electric drive vehicle, the
100-ton with 1100-horsepower ore truck, was in commercial use. In those days, an
ore truck powertrain consisted of a gas turbine as a power source, DC generators
and motors. The motors were integrated in wheels with gearings [17].

Research continued to adopt “commutator-less” AC-drives for locomotives, mil-
itary vehicles, battery powered electric vehicles, and other types of NRMMs. In the
middle of the century, NRMM powertrains were realized by diesel engines with gear-
shift and torque-converter transmissions [17]. By 1973, the new converter technology
with asynchronous traction motors had been introduced to diesel-electric locomo-
tives. At that time, a diesel-electric powertrain consisted of a diesel generator-set
with a passive diode rectifier, DC intermediate circuit with a braking resistor, and
thyristor based inverters operating asynchronous traction motors [18].

A Rise of New Interest in Electric Vehicles

In the 1970s, the period of energy crises increased the interest of vehicle manufac-
turers towards electric vehicle research. The energy crisis was a period in which
the major industrial countries of the world faced substantial shortages of petroleum.
The two worst crises of this period were the 1973 oil crisis, and the 1979 energy
crisis. Oil prices first rose in the early 1970s, and then declined during the late
1970s, thus leaving electric vehicle research interest dependent on its environmental
impacts [19].

In the beginning of the 20th century, battery capacities were around 0.02-0.07
kWh/kg, and by 1988, it was understood that theoretical battery capacities would
stay under 0.3-2.8 kWh/kg [11]—[12]. On the contrary, gasoline and diesel energy
densities are in the range of 12 kWh/kg. Thus, it was agreed that electric vehicles
could never compete with gasoline automobiles in the driving range. The automo-
bile industry begun to concentrate on research on hybrid and fuel cell vehicles for



long-range vehicular purposes [11]. Furthermore, energy densities of batteries are
currently still within 0.05-0.15 kWh/kg [20].

In the 1960s, GM resurrected its research (since the 1910s) on electric and hy-
brid vehicle propulsion systems. For instance, in 1966, the first fuel cell van was
demonstrated. At that time, the fuel cell system was reported to be too expensive
and complicated.

In 1968, an electrically powered six-wheel military vehicle was demonstrated with
an IC engine, AC generator, inverters, and wheel motors. That same year a series-
hybrid powertrain, with the stirling engine providing power to a passive battery
pack, was tested in a small size passenger car [19]. Thus, by 1983, research for
hybridizing vehicle powertrains had already a long history. Meantime, development
of a parallel hybrid powertrain test vehicle was reported in [21].

By the 1990s, automobile manufacturers became interested in hybrid and fuel
cell applications. Several demonstrations were made for both in the 1990s. Com-
mercial markets of hybrid vehicles were initiated in 1997 by Toyota Prius [4], and
the commercialization of the fuel cell vehicle is still waiting to begin. Fuel cell vehi-
cles currently exist for all modes of transport. The most prevalent fuel cell vehicles
are forklifts and material handling vehicles. However, there are currently no fuel
cell cars available for commercial sale. The major challenges for fuel cell technology
commercialization are on lowering the cost of volume production, and increasing
reliability as well as durability. [22]

2.2 State of the Research

The previous section states the long history of electric, hybrid and fuel cell pow-
ertrains. Despite this lengthy history, the field of hybrid powertrain research is in
a relatively early phase. An increase in publicly available publications related to
the topic began in the late 1990s. However, this section concentrates on recent
proceedings on the field, thus covering the early 2000s.

By the year 2007, Terminal Systems Inc. reported completion of the prelimi-
nary testing of their first ECO Crane with a diesel /battery hybrid powertrain [23].
The application is similar as in Fig. 1 (a), and studied in Publication V. Other
proceedings relating to a comparable system have been reported in [24] and [25].

Publication [24] reviews six different energy management strategies (EMS) for
a diesel-electric system with energy storage. Furthermore, that publication focuses
on providing design rules for different series-hybrid powertrains with a passive high
power (HP) battery pack or an active ultracapacitor pack as possible energy storage.
The research proposes methods with which to compare different EMS strategies,
and compares the HP battery powertrain topology cost sensitivities with different
EMSs, but will not proceed to conclusions on the supremacy of either an active
ultracapacitor buffering or an HP battery buffering. Furthermore, the study neglects
weights and sizes of different powertrain options; moreover, the proposed methods
for design are simple, but superficial.

Publication [25] presents power control for a powertrain with diesel-engine, sep-
arately excited generator with diode rectifier, and DC-DC converter between low



capacitance intermediate circuit and UC energy storage. Tuning variables for power
control in the system-level are generator excitation and intermediate voltage refer-
ence of a DC-DC converter.

In 2007, the journal Proceedings of the IEEE published a special issue related
to the hybridization of vehicles, which reviewed the State-of-the-Art of the field.
Therefore, it is publicly known that for vehicles driven on fixed routes and with a
cyclic pattern, i.e. stop-and-go means, the fuel saving potential is an average of
50 % or more, with either parallel or series-hybrid powertrains [4]. Furthermore, it
is self-explanatory that for many vehicles, including hybrids, the most energy effi-
cient path from fuel conversion to vehicle propulsion is the most direct path. For
combustion engine driven vehicles, this means mechanical coupling; for fuel cell ve-
hicles, this means directly through an intermediate bus without passing through an
energy storage media, because every energy conversion generates losses [7]. There-
fore, general considerations are made to choose either a mechanical or a hybridized
powertrain for each vehicle applications.

The following review classifies different powertrains with the control possibility
of power electronics converters. In this context, a converter or energy storage (ES)
coupling is termed passive, if it allows no controllability provided by e.g. hard-
switching of semi-conductors, or when a component is directly coupled. On the
other hand, they are defined as active, if controllable semi-conductor technology
is utilized. Furthermore, the fuel cell (FC) or the ICE primary source is another
basis of classification for powertrains. Based on this categorising, recently studied
different series-hybrid powertrains are described in the following paragraphs.

A powertrain with an engine generator-set, active rectifier, and passive
battery pack

The powertrain topology presented in Fig. 3 and earlier covered in [1], [4], [11],
[24], [26], and [27]; is the first step forward from diesel-electric powertrains which
are commonly utilized in trains and heavy high power ore trucks. The powertrain
provides engine operation steadily on the chosen operating point, with commands
of operation speed w, and torque 7, which together define power p to a battery pack
in the intermediate circuit.

Furthermore, passive HP batteries are proposed—specifically for charge-sustaining
operation of series-hybrid powertrains [24].

Publication [26] presents dynamic modeling which takes into account both elec-
trical and mechanical phenomena in the powertrain with actively loaded ICE and
passive battery pack.

Publication [27] reviews different hybrid powertrain topologies, including series-
hybrid, as well as heavy-duty FC hybrid; and states the need for high power-density
batteries in hybrid vehicles.
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Figure 3: The powertrain with an engine generator-set, active rectifier, and passive
battery pack.

A powertrain with an engine generator-set, active rectifier, and active
battery pack

The powertrain topology presented in Fig. 4 is proposed in studies [2], [4], and
[28]. The active battery pack refers to a battery which is controlled with a DC-DC
converter.

In this topology, the powertrain control strategy becomes similar to the earlier
powertrain case, if the DC-DC converter regulates voltage of a low capacitance
intermediate circuit. However, there is another possibility for the powertrain control
strategy which derives from the diesel-electric powertrain without energy storage.
In such a case, voltage of the low capacitance intermediate circuit is regulated with
the active rectifier, and the DC-DC converter primarily commands the current of
the energy storage.

Publication [28] states needed operation modes to control power flows in all
relevant directions. Furthermore, a sizing method is proposed for traction motor,
engine, and energy storage system. The sizing method is based on the maximum
power needed from components of the powertrain. An energy storage system design
is discussed and the design of a hybrid energy storage explained, i.e. combined
battery and UC. It is noted that the hybrid energy storage has much less weight
than a battery alone as the energy storage. In addition, both passive and active
hybridizations of the energy storage system are proposed.
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Figure 4: The powertrain with an engine generator-set, active rectifier, and active
battery pack.

A powertrain with an engine generator-set, active rectifier, and active

UC pack

The powertrain with an engine and a UC energy storage is shown in Fig. 5 and
proposed in [4], [24], [29], and [30]. Power control strategies in this case can include
intermediate circuit voltage regulation features, the DC-DC converter regulation,
and the active rectifier regulation. However, the voltage operation range of an UC
pack delimits its control freedom in respect to the battery buffering case.

Publication [24] proposes UC buffering for the crane application, suggests six
different power management strategies and compares their costs. The study does
not consider the sizes and weights of such systems.

Publication [29] presents thoroughly the characteristics of the UC buffered pow-
ertrain with its parameters. In the case presented, the control strategy is such that
the DC-DC converter regulates voltage of the low capacitance intermediate circuit;
moreover, the active rectifier generates power flow from an engine depending on the
state-of-charge (SOC) of a UC, current derivative limitations, and the efficiency map
of a combined active rectifier generator unit.

Publication [30] proposes an energy management strategy to save both the power
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Figure 5: The powertrain with an engine generator-set, active rectifier, and active
ultracapacitor pack.

losses in the hybrid system, and capacitance of the UC pack. The strategy is based
on keeping the summation of the kinetic energy and the UC energy constant. It
is proposed that the engine is controlled in three steps: maximum, optimum, and
auxiliary power regions. Furthermore, the study proposes a method to design appro-
priate capacitance for the UC buffered diesel-electric powertrain in local or express
train applications.

A powertrain with an engine generator-set, active rectifier, passive bat-
tery, and active UC pack

The powertrain with an engine, a passive battery as an intermediate circuit, and an
active UC energy storage system as a peak power unit is presented in Fig. 6 and
studied in [31]—[32].

The objective of the publication [31] is on the dynamic control strategy of the DC-
DC converters for energy management between the batteries and supercapacitors.
The dynamic modeling describes phenomena occurring on the intermediate circuit,
which has parallel smoothing capacitors (1.5 mF) and a lead-acid battery pack
with current smoothing inductor (25 pH) in series. The circuit creates the same
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Figure 6: The powertrain with an engine generator-set, active rectifier, passive
battery, and active ultracapacitor pack.

phenomenon which can occur in the intermediate circuit with long cabling between
different power electronics components, or between a power electronic component
and a battery pack.

Publication [32] continues the research on the control laws of DC-DC converters
in the energy management between battery and UC by polynomial control strategy,
and by dynamic modeling of such systems. Both studies concentrate on optimizing
the system by designing the switching event time-scale operation.

A powertrain with an engine generator-set, passive rectifier, and active
UC pack

The UC buffered diesel-electric powertrain with a passive rectifier is presented in
Fig. 7 and studied in [25], and [33].

Publication [25] proposes improvements to an EMS, which is based on both the
DC-link voltage regulation and the engine generator-set droop frequency regulation.
In the EMS, the DC-link voltage regulation is used when primary power is fed by the
active UC pack, thus, the DC-link voltage can be regulated to a value which does
not allow the passive rectifier to conduct. Furthermore, while using regenerative
braking, the voltage control mode transfers power to the UC pack. In contrast, in
the event of the UC pack being exhausted or the load too high, the engine generator-
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Figure 7: The powertrain with an engine generator-set, passive rectifier, and active
ultracapacitor pack.

set droop frequency regulation is chosen. Then, primary power is fed by the engine
generator-set. If the droop frequency reference cannot be met, the UC pack assists
the operation. The contribution of the study itself is on the generator frequency
estimator algorithm for the EMS operation. The study presents a hybrid powertrain
with engine size decreased to one-third of the original. However, a drawback of the
system is that the engine is used to charge the UC pack to ensure operation.
Publication [33] concentrates accurately on electrical behaviors, and power elec-
tronics (PE) control in the system, thus neglecting system level operation issues
outside the study. The paper proposes use of a bidirectional three-level DC-DC
converter with energy storage, and a control algorithm for the converter to perform
power control which affects the system level power flow. The proposed control algo-
rithm seems to result in the ON-OFF operation of the two power sources. However,
the contribution of the study is on the UC based energy storage design guidelines for
such a system which has a ride-through capability against voltage sags (or dips, i.e.,
an instantaneous decrease in the RMS voltage with a range of 10 % - 90 % and du-
ration up to a minute) in the mains. Furthermore, the study is exact and systematic
in its analysis, as well as discussing deeply issues relating to converter technology
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possibilities in such a system. The proposed power flow control algorithm is based
on DC-link voltage from which UC voltage and current references are calculated.
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Figure 8: Different fuel cell source powertrain cases; (a) the powertrain with a
passively coupled FC source and passive ES, (b) the powertrain with a passively
coupled FC source and active ES, and (c) the powertrain with an actively coupled
FC source and active ES.

A powertrain with passive or active coupling of a fuel cell source and a
battery pack

Basic fuel cell source powertrain topologies with battery buffering are illustrated in
Figs. 8 (a)-(c), and studied in [7], [20], [27], [34], and [35].

Publication [7] proposes FC powertrains with: passive coupling of FC and UC
[Fig. 8 (a)], passive coupling of FC and active coupling of battery pack [Fig. 8
(b)], as well as active coupling of FC with an energy storage system [Fig. 8 (c)].
In the study, the passive coupling of the FC source is justified by fewer losses on
the primary power path, and the active coupling of the FC source is justified only
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by a matching of the intermediate circuit voltage. Thus, the efficiency of the FC-
converter is extremely important due to its direct effect on vehicle fuel efficiency.

Publication [20] investigates a modern tramway as a hybridization target. In such
a system the powertrain is doubled, the tram is equipped with both, a generator sized
based on the peak load power, as well as overhead lines for supply and regenerative
power. By hybridization, overhead lines can be removed and generator size decreased
to supply only average power, which in this case is less than a third of the peak load
power. The average power operated generator is reversible with the FC source,
and thus, an actively coupled FC with passive battery pack is proposed as well
as an actively coupled FC with active UC. The energy management algorithm for
the active FC and passive battery pack case is based on the battery SOC which is
maintained with control of the FC source. Additionally, the algorithm consists of
battery current limitations, and current slope limitations for the FC source. The
energy management for the active FC and active UC powertrain is realized with
the DC-link voltage regulation (PI-controlled) by the UC-converter, while the FC-
converter is controlled to maintain the UC state-of-charge (P-controlled). Both
controller outputs are limited to ensure usage within a safe operation area of the
sources. Design examples of both energy storages are presented, and algorithm
operations are verified by experiments.

Publication [27] reviews schematics of fuel cell based powertrains for passenger
cars and heavy-duty transit buses.

Publication [34] presents a reduced scale Hardware-in-the-Loop test system for a
powertrain with passive FC coupling, and passive battery pack. The study proposes
a low-cost, effective, and easy to adapt design environment which combines parts of
real hardware, and parts replaced by emulating tools.

Publication [35] compares three powertrain cases, a passively coupled FC with
an active battery pack, a passively coupled FC with an active UC pack, and a
passively coupled FC with both active battery and active UC packs. The publication
concludes that the case with both battery and UC packs is the most promising
powertrain topology for passenger car applications. The conclusion is affected by
the fact that calculation parameters for a battery are based on lead acid technology
instead of other types of batteries with higher specific power. The profitability of
the combined active HE battery and active UC buffering with respect to battery
or UC only topologies was also concluded in Publication V. Furthermore, in some
applications, the combined battery-UC pack ES is replaceable with the proper design
of an HP battery. However, features of these powertrain cases are dissimilar due to
different amounts of energy in the ES system, and thus, they might become suitable
for different applications.

A FC powertrain with an UC pack buffering

The FC powertrain with UC buffering (Fig. 8) is considered in studies [7], [20],
[35]—[41]; and buffering with a flywheel in [41]. Issues discussed in Publications [7],
[20], and [35]; were reviewed in the previous section.

Publication [36] compares two different EMSs for a powertrain with an actively
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coupled FC source and active UC pack. Compared EMSs are a rule-based method
and a model predictive control (MPC) method. Both EMS cases are based on
a low-level control strategy in which DC-bus voltage is regulated with the FC-
converter, and the UC-converter is controlled with the current reference. In both
cases, the low-level control strategies are the same as those proposed for the diesel-
electric series-hybrid powertrain in Section 3.11, and in Publications II-1V; i.e.,
the DC-bus voltage regulation with the primary source converter, and the current
controlled UC pack. The rule-based EMS relies on a high-pass filtering of the load
current, which defines the UC current reference with compensation of power losses
and change of voltage potential. Furthermore, the FC source is targeted to be
operated near the optimal operation point. The MPC approach utilizes a model
of the system to project the future response as a function of control inputs and
known disturbances. The designs of both controllers are briefly explained, and the
behaviors of design examples compared. Conclusions between behaviors are drawn,
but no real differences on performances were comprehensively reported.

Publication [37] presents an approach for the design and analysis of FC-UC
hybrid systems oriented to automotive applications. The design issues of the power-
train with an actively coupled FC and active UC are discussed, and a presentation
then made of the powertrain design approach based on drive cycle parameters result-
ing in proper FC and UC source sizing. The study concludes that the most suitable
hybridization degree of the FC-UC powertrain for an automotive application is 79
%, which is a suitable value for urban driving cycles, as stated in Publication [38].
The proposed result in [37] is based on calculations with different driving cycles.
The hybridization degree (HD) is defined, as

P,
HD = ess,max -100
Pfcs,max + Pess,max [%]’

where Py max refers to the maximum energy storage system power, and Pies max t0
the maximum fuel cell system power, respectively.

Publication [38] studies proper sizings for FC-battery and FC-UC topologies
(considering the degree of hybridization), and discusses approvable design domains,
as in [24]. Furthermore, Publication [38] concludes different hybridization degrees
for powertrains depending on a driving cycle. In both powertrain cases, the hy-
bridization degree varies between 20 % to 80 %, depending on whether the driving
cycle represents sub-urban or urban driving, respectively.

Publication [39] proposes an adaptive optimal-control (AOC) method as the
EMS for the powertrain with an actively coupled FC and active UC pack. The
design and learning routine of the neural network based AOC method is presented,
and comparison against a fuzzy logic based EMS has been assessed. Conclusions
favour the AOC-EMS method in respect to the fuzzy logic based method designed
by an expert. The tuned AOC algorithm takes load power and SOC as inputs, and
gives the fuel cell power reference as output to a low-level control algorithm. The
idea of the AOC-EMS is similar as in the EMS designed in Publications I[1—III, and
presented in Section 3.11.
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Publication [40] is an earlier study of neural networks usage (in respect to Publi-
cation [39]) for an EMS of a powertrain buffered with the active UC pack. The study
proposes a more complex neural network with eight inputs, and with one output as
the UC pack current reference. Moreover, the study neglects operating points of a
primary energy source, since it concentrates on active UC buffering in general.

Publication [41] reviews feasibilities of a hybrid powertrain in different train
applications. It is noted that a hybrid powertrain is not advantageous in all train
application cases, such as in locomotives for high-speed, heavy freight, and switcher
applications. The reasons for previous cases are either extended periods of maximum
power (high-speed, heavy freight), or low-speed (switcher) operations where power
provided by the powertrain is less of an issue due to the limitations of wheel adhesion.
On the other hand, a hybrid powertrain may be beneficial in subways, mass transit,
commuter, and intercity rail applications.

A FC powertrain with combined battery and UC buffering

As the last group of introduced topologies, a FC powertrain with two energy storages
has been investigated in [42]—[46]. Different methods exist to realize a FC powertrain
with two energy storages, as shown in Fig. 9.

Publication [42] presents predictive controllers for different converters in the
powertrain with FC source, active battery, and active UC packs [Fig. 9 (a)]. The
proposed predictive controllers are for low-level controls, and they are proposed
to replace classical Pl-regulators from each converter. Predictive controllers have
been demonstrated to be faster with simulations and validation measurements in
a reduced scale testbed. Use of predictive controllers in each converter low-level
control results in faster dynamic system responses.

Publication [43] presents an energy management strategy based on the flatness
control technique and the fuzzy logic control. The studied EMS is proposed for the
generic battery and UC buffered topology, but the study presents a design example
for a powertrain with two DC busses from which one connects to a FC source and
active UC pack, and via other DC-DC converter to a higher voltage DC bus, and to
loads, and to an active battery pack [Fig. 9 (b)]. The main property of the proposed
EMS is that, power flow of the system in different operating modes is managed with
the same control algorithm without any algorithm commutation or prediction of the
system behavior. Furthermore, the flatness control is utilized to divide load power
between the FC source and the ES system, and the fuzzy logic control is used to
divide the ES system current between the battery and UC packs.

Publication [44] studies a powertrain with a passively coupled FC source, active
battery, and active UC pack [in the control point of view as Fig. 9 (c)]. The study
proposes use of a three-port isolated triple-half-bridge DC-DC converter for ESs,
and proposes two different EMSs for the powertrain. Furthermore, a design routine
is provided to size the battery and UC in order to achieve the lightest mass at the
95 % efficiency. The study concludes that the constant operation of the FC source
leads to higher system efficiency in the studied case than the ON-OFF operation of
the FC source.
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Figure 9: (a) The powertrain with an actively coupled FC source, active battery,
and active UC, (b) the powertrain with a passively coupled FC source, and active
ESs in two different DC-buses, and (c) the powertrain with a passively coupled FC
source, active battery, and active UC. For the sake of simplicity, possible brake units
have been left out of the Figure.
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Publication [45] proposes a dynamic power distribution between the FC source,
battery, and UC [Fig. 9 (a)]. The powers between the FC source and ES system,
as well as active battery and active UC are individually controlled; and a proposal
made for a global optimization controller with real-time capability. Simulations have
been used to prove feasibility of the proposed control against common thermostatic
controls. Results suggest a great benefit over urban driving, and lesser benefit to
sub-urban driving. Furthermore, the study presents cost functions for optimization
of both controllers.

Publication [46] presents the design of a wavelet-transform-based power manage-
ment for a powertrain with an actively coupled FC source, active battery, and active
UC packs. The proposed wavelet-transform algorithm is capable of identifying the
high-frequency transient and real-time power demand of the HEV, and allocating
power components with different frequency contents to corresponding sources. Simu-
lations of the proposed control were presented, and experimental data for verification
and validation of results have been created with a reduced scale test bed.

Hardware-in-the-Loop environments

State of the research in the design of different powertrains has been presented in
previous paragraphs based on Publications [24]—[46]. Furthermore, different ap-
proaches for Hardware-in-the-Loop environments for supporting research have been
presented in Publications [34], [47], and [48].

The ideas of Publication [34] were discussed in an earlier section. A full-scale
Hardware-in-the-Loop environment which is used for research in this thesis is pre-
sented in Publication [47]. In addition, useful test setups regarding performed re-
search and relating to Publication [47] are presented in Section 3.1.

Publication [48] presents an idea of two reverse-coupled electric machines emulat-
ing a driving cycle for use of the traction unit testing in different hybrid powertrains.
In such a system, one of the electric machines is controlled with speed, and the other
with torque command based on driving cycle and vehicle parameters.

Different modeling methods

The dynamic forward map-based modeling represents a more complete vehicle pow-
ertrain system model, contradictory to the proposed multi-stage modeling approach,
which concentrates only on the powertrain design beginning from the tractive effort
or the drive cycle.

The dynamic forward system models have been presented and validated for the
series-hybrid powertrain in Publication [26], and for the power-split hybrid power-
train in Publication [49]. Furthermore, forward and backward, as well as dynamic
and quasi-static modeling approaches are widely discussed in [1], [48], and [50].

Therefore, in the modeling approach framework, this study concentrates on how
to combine different modeling methods—specifically for the design of different series-
hybrid powertrains.
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The framework of this study in the State-of-the-Art context

The framework of this study is on the guidelines of systematic and effective series-
hybrid NRMM powertrain modeling for designing powertrain hardware dimensions
and software algorithms.

In the early phase of the study, the focus was on finding suitable modeling
methods. Then, this focus switched to the UC buffered diesel-electric series-hybrid
powertrain with indirect primary source power buffering. Finally, the proposed mod-
eling approach was used for the comparison of different FC series-hybrid powertrains
in an NRMM application.
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3 Development of Series-Hybrid Powertrain Plant
Models

An introduction to the studied series-hybrid drive lines, their variables, and princi-
ples of plant models are presented in Figs. 10 and 11.

The basis of plant models are control delays of sub-systems and mappings of
quantities, such as efficiency and fuel consumption. The control delays are either
constant or variable. In this study, the control delays 7aorg and mpc/pc are con-
stant, whereas 7, is dependent on speed, and fuel quantity controlled by a speed
Pl-regulator.

The power conversion losses are considered with efficiency mappings. Efficiency
affects the magnitude of a variable on the unregulated side of a sub-system com-
ponent. For example, the active front-end (AFE) converter-generator combination
efficiency mapping 7(ng, Treq) is a function of generator speed (ng), and requested
torque (Tieq). Furthermore, the DC-DC converter efficiency mapping 1(ies, Uratio) 18
a function of energy storage current (ie), and voltage conversion ratio (tratio)-

In Fig. 10, the primary control signal for the variable speed diesel generator-set
(VSDG) is speed value (nyspg), which speed regulator gives fuel quantity (1) as an
output. The AFE converter is controlled with the DC-link voltage reference, which
voltage regulator gives iapg as an output. The DC-DC converter is controlled with
the current (i) reference.

In addition, Fig. 10 presents a plant model for the ultracapacitor pack. It consists
of either constant (C\.) or variable capacitance (C,.) value, and the equivalent series
resistance (Rye).

The existence of the tractive electric drive plant model is dependent on the
starting point of the simulation, mechanical or electrical load, pmecn OF Proap, re-
spectively.

An example of the fuel cell series hybrid powertrain is presented in Fig. 11. It
introduces a battery pack and a fuel cell source plant models and their variables.
This figure presents the active battery and UC pack buffered electric powertrain.

3.1 Test Setups for Experimental Identifications and Vali-
dations of the Sub-system Models

The identification of the DC-DC converter and the UC module plant models can
be performed with the test setup presented in Fig. 12 which is reviewed from
Publication IV. The test setup consists of the AFE converter connected to the mains,
the DC-DC converter connected between the AFE converter and the UC module,
as well as measuring and data-acquisition systems. The devices in the test setup
were NXA_0460 5 (Vacon Plc.) for AC/DC conversion, MSc200DCDC750 (MSc
Electronics Ple.) for DC-DC conversion, BMOD0018 P390 (17.8 F, 390 V, Maxwell
Technologies Inc.) as the UC module, Norma D6100 (LEM) as the measuring
device with 6 to 300 A current shunts, and dSpace MicroAutoBox 1401/1501/1507
(MABX) as the data-acquisition and control hardware.
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Figure 10: The active UC buffered electric powertrain with the ICE. Powertrain
variables and principles of plant models.

The identification of the VSDG plant model speed control responses can be
performed with the test setup presented in Fig. 13. The test setup consists of
VSDG, diode rectifier, DC-DC converter, and load resistor with parallel capacitors.
The VSDG in the test setup was 49 DTAG (AGCO Corporation Plc.) with the
custom made axial flux permanent magnet machine PMG120-2000 (Axco-Motors
Plc.) as a generator.

The validation test setup (utilized in Publication III) for the DC-DC converter
and the UC plant models, and for the supervisory control algorithms is presented in
Fig. 14. The tractive electric drive in the test setup consisted of a Siemens ELFA
1PV5135-4 WS28 traction electric machine and a G650 D44/170/170 M7-1 inverter.
The braking electric drive consisted of the same asynchronous machine model, and
an industrial frequency converter (Vacon Plc.) with a braking resistor. The AFE
converter NXA_0460 5 (Vacon Plc.) regulated the DC-link voltage around 650 V
and supplied the primary source current ipapg. The DC-DC converter between the
DC link and the UC module had a continuous current (ie) of 120 A, maximum
current of 200 A and minimum current of 20 A in the ES voltage level.

Fig. 15 presents the full series-hybrid powertrain system test setup which is not
considered in this thesis.

3.2 Basis of Plant Models

The target of the plant models is to envisage mean values of powertrain variables
with 20 Hz-bandwidth. The targeted bandwidth is in the range of a DC-link volt-
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Figure 11: The active battery and UC pack buffered electric powertrain with the
fuel cell source. Powertrain variables.
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Figure 12: The test setup for the DC-DC converter and the ultracapacitor module
identification.

age controller, whereas a chosen time-step for simulator is in the range of current-
controllers within such a system. Furthermore, the designed sub-system models
should be ‘fast’ to provide efficient rapid control prototyping of an energy man-
agement [51]. In this context, the word ‘fast’ refers to system models which finish
a whole driving cycle in a time-period of 5 to 30 minutes rather than within sev-
eral hours to days. Therefore, the backward functional modeling from the imposed
load cycle towards the primary energy sources power delivery is appropriate, which
is computationally lighter, for example, than the forward modeling method. The



24

6-pulse
_______ diode
| VSDG | reclifier

: Diesd AC — DC
| Engre DC DC %
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Figure 14: The Hardware-in-the-Loop test setup for validations of the DC-DC con-
verter and the ultracapacitor module plant models.

backward model approach is also known as the wheel-to-engine and the front-to-
rear modeling [1]. The differences to the forward modeling are that the backward
model lacks “Driver model”, “Environmental model”, “Tire interface model”, and
“Traction control algorithms”, as the starting point of the proposed model is the
load cycle of the existing NRMM.

In the proposed modeling approach, different descriptions for plant models are
used, such as static, quasi-static, dynamic, and functional. In this context, the
static model or a part of a model refers to one or two dimensional mappings of sub-
system behavior. Thus, efficiency mapping of an electric drive or FC output voltage
behavior [ug = f(it.)] are considered as static models. The quasi-static definition
is used when a model uses a static mapping with some dynamics description, but
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Figure 15: The full UC buffered diesel-electric series-hybrid powertrain Hardware-
in-the-Loop test setup.

does not influence the up-stream of calculation direction, i.e., a quasi-static model
assumes backward calculation and a dynamic model forward calculation, respectively
[50, p. 70]. In the proposed approach, there are quasi-static characteristics in
several sub-system models, such as in load power, fuel consumption, and energy
losses calculations. The dynamic definition is used when the model influences the
up-stream of calculation direction, and thus, is considered as a sub-model of forward
calculation [50, p. 70]. This is the case, for instance, with a DC-DC converter model,
since it defines an energy storage current, whereas the ES state affects its operation.
In this context, the dynamic definition does not consider the accuracy of transients.
Eventually, the functional definition is used when a plant model primarily imitates
operation of a sub-model, as when an EM is controllable with an inverter.

The system-level simulation speed depends much on the chosen simulation time-
step. The time-step of simulations is determined by the fastest dynamically modelled
variable, such that the time-step should be smaller than the time-constant of such
variable. In this study, the shortest modeled time-constant is 7org, which refers to
the AFE converter current response time. Therefore, the length of the simulation
time-step, i.e. t, — tx_1, is chosen as 1 ms, where t, refers to a discrete-time sample
with an index k. Furthermore, the time-step should be a multiple of one in order to
operate with both even and odd time-step long discrete operations, and thus the next
possible option for the time-step is 10 ms which is already too long. In addition, the
time-step selection gives space for the modeling functional characteristics of plant
models.

3.3 Electric Drive Plant Model

In the presented modeling approach, the static electric drive plant model is used if
the starting point for simulations is the mechanical load (pmecn). Conversely, it is
not used if the starting point is the electrical load (proap)-

Fig. 16 presents a measured one-quadrant efficiency map of an electric drive [47]
for the proposed static electric drive plant model. A measured efficiency map is
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used to scale mechanical load to electrical. The efficiency map describes the input

and output power relation of an electric drive as functions of speed and torque.

This figure illustrates that combined efficiency of an inverter and a traction electric

machine, in this case, reaches a 92 % efficiency in a certain operation region.
Realization of the load power scaling can be expressed, as

Prmech / nep(neM, TEM), if  Dmeecn > 0,

Pmech - MTED (MEM, TEM): 1 Pmecn < 0,

(1)

PLOAD =

where power is defined as positive towards the load.

However, the presented one-quadrant efficiency map is well defined only for the
motoring mode operation, and mirroring the efficiency map to the generator mode
operation affects the load scaling accuracy [50, p. 75]. Thus, a two-quadrant effi-
ciency mapping of an electric drive is a more convenient choice for the static electric
drive plant model.

350
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Figure 16: Combined measured efficiency map of Siemens ELFA 1PV5135-4WS28
traction electric machine and G650 D44/170/170 M7-1 inverter.

Furthermore, energy losses on the electric drive (Ejosses_gp) can be expressed, as

t
Elosses,ED - / (1 - TIED) * Pmech * dt. (2)
0
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In the dynamic modeling approach [52], an electric drive plant model is realized
with inverter efficiency mapping, and the dynamic equations of a specific traction
motor. However, dynamic modeling of a traction motor is not essential, if the
powertrain design concentrates on power transfer from a source to loads, and does
not concentrate on the traction control. Furthermore, dynamic modeling of different
electric motor types have been introduced in [50, pp. 76-90].

Functionalities of the Electric Drive Plant Model

It is known that the active load can behave as negative resistance. This behavior, in
a large-signal meaning, may cause the DC-link voltage to collapse if the load power
is not derated. The collapse of the DC-link voltage occurs due to saturated power
transfer from energy sources or storages via DC-DC converters to the DC link. The
effect can be avoided with the load power deration, which can be expressed, as

Pret (tk), if  upc(t-1) > USY,
Pact(t) = { Pref(tic) - flupc(ty-1)), if USE > upc(te-1) > UBE, (3)
O, if Uglén > ch<tk,1).

In Eq. 3, pact refers to the actual load power, and p..r to the load power reference.
In addition, UKY and UB refer to a region where f(upc) changes e.g. linearly from
1 to 0. Furthermore, such a deration function can be expressed, as

f(unc) = min [1,max(o, (upc — Un) / (Ul — pmim) )} . (4)

However, utilization of the proposed functionality in the ED sub-system, changes
the approach from static to functional quasi-static in sense of the sub-system input
interface and behavior. [50, pp. 70-76]

3.4 DC-DC Converter Plant Model

This section proposes a modeling approach for a non-isolated multiphase interleaved
bi-directional DC-DC converter, as in [7], and [47].

The power electronic converters typically achieve very high efficiency values in
their best operation area. In this context, a very high efficiency refers to a power
conversion with efficiency in the range of 97 % to 98 %. On the contrary, the effi-
ciency of the PE converter may decrease remarkably to between 50 % and 90 %, if an
inappropriate operation area is used. This thesis proposes efficiency mapping and a
functional description approach for the DC-DC converter modeling, due to the limi-
tations of the chosen simulation time-step (1 ms), and the need for exact full-system
efficiency comparisons. The chosen simulation time-step restricts power semiconduc-
tor switching events, since modeling of the shortest semiconductor switching periods
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would decrease the simulation time-step to a range of 10 us. Furthermore, a shorter
time-step would make a system model unnecessarily complex, and would lead to
slower full driving cycle simulation times whose total lengths are in the range of 100
s to several 1000 s.

The efficiency of the DC-DC converter depends on the energy storage current
(ies), and the voltage conversion ratio (Uag,) Which is defined, as

Uratio = ues/uDC- (5)

An example of the efficiency mapping of the DC-DC converter during charge
mode is presented in Publication IV, and data is given on Appendix A.

The thesis proposes the first-order response function as an approximation of the
DC-DC converter current control loop. A comparison of the first-order response
behavior to a PI-controlled response is presented in Eq. 6 and in Fig. 17. Further-
more, a Pl-controller tuning method and parameters for a comparison are given in
Eqgs. 7-9, and in Table 1.

Z.es 1 KP'S+KI

Les,ref TDC/DC'S“_1 L'S2+(KP+TL+T’65)'S+KI ( )

In Eq. 6, Kp refers to a proportional coefficient and K7 to an integral coefficient
of the current Pl-controller. In addition, L refers to a choke inductance and 7y,
to a choke resistance of a DC-DC converter, and r. refers to an ES resistance,
respectively.

In the comparison the PI-controller parameters are defined, as

Kp = Q¢ - L, (7)

K= ozz - L, (8)
where

a.=2-7- fe. (9)

In Egs. 7-9, a, refers to the current-controller bandwidth in angular frequency
[rad/s], and f. to the bandwidth in frequency [1/s].

Table 1: Parameters for comparison of responses.
TDC/DC fc L L Tes
(ms]  [1/s] [mH] [mQ] [mg)]

100 200 1.0 13.5* 70.0°

2 An approximate for a choke in low-frequencies.  Bases on 1.1 Q/F for UCs, 500 V
potential, and to the datasheet of BMOD0063 P125 (Maxwell Technologies Inc.).

Fig. 17 illustrates errors between the first-order response and the PI-controlled
response. A cumulative error (ex) between the first-order response and the PI-
controlled case is in range of 0.5 As for the 100 A current transient. For example,
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Figure 17: The comparison of the first-order response behavior to the PI-controlled
response.

such an error in a transient occurring once in a time-period ¢ would cause a total
error to energy transfer, as
AEQS (S

~

Ees Z'es -t

Eq. 10 results to the total error value between 0.05 % to 5.0 % when t is changed
from 0.1 s to 10 s. Thus, the usage of the DC-DC converter highly affects the energy
transfer accuracy of the proposed modeling method, in other words, an insignificant
error occurs when a converter controls continuously constant powers. Conversely,
significant error occurs if the converter transfers transient loads. However, internal
controller parameters are not always known by system integrators, and therefore an
approximation needs to be made with the described possible existence of an error.

Other essential functionalities of the plant model are minimum and maximum
current limits (I, Imax), Sub-system level proportional voltage controller, and
conduction event of an upper anti-parallel diode.

The proposed approach for the DC-DC converter plant model can be expressed,

- 100 [%). (10)

as
iref =D- i|ref|; when ]min S ’D| : i\ref| S Imaxa (11)

les = That = luc = Ufe = iref/(TDC/DC S+ ]-)a (12)
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. ies@k) : nboost(ies (tk—1)7 uratio<tk—1)) : Uratio(tk—l); while discharging,
300 = 0 (1) o (i), Uratio (1)) - traio (fe_n), whille charging.
(13)
In Eq. 11, D (+1, 0, or —1) refers to current direction of the DC-DC converter.
Note that (tk — tk—l) << TDC/DC-

The modeling approach neglects the exact behavior of converter dynamics, and
therefore, it is unclear whether “dynamic model” or “quasi-static model” should be
used. However, as described in [50, p. 70], the proposed approach fulfils dynamic
description in sense of the interface and influence on adjacent components in the
system level modeling.

Furthermore, energy losses on the DC-DC converter (FEjosses_DC /Dc) can be ex-
pressed, as

t
Elosses,DC/DC = / (1 - nDC/DC) * Ues * Tes - dt. (14)
0

Discussions of Accuracies in DC-DC Converter Efficiency Mapping

The accuracy of the measured efficiency mapping was first discussed in Publica-
tion IV. In efficiency measurements, the utilized power analyzer was Norma D6100
(LEM) with its triaxial shunts for 6 to 300 A current measurements. The measuring
accuracy for voltage channels in the frequency range of 0 to 15 Hz are + (0.15 + 0.03)
% for reading and range, respectively. The measuring accuracy for current shunts
is = 0.1 % within a frequency range of 0 to 100 kHz. Furthermore, measurements
were taken at 70 kHz sampling frequency, and averaged over 1 s time-period. Table
2 illustrates voltage measurement accuracies depending on the operation point of an
energy storage system.

Table 2: Voltage measurement maximum errors in different operation points.

Ues Ues Ues Ues Upc Upc Upc Upc
reading range  error error  reading range  error error
Vi [V Vi %] V] Vi Vi (%]

200 340 £ 0.402 = 0.201 650 670 +1.176 =+ 0.181
380 670 £ 0.771 =+ 0.203

The maximum error of an efficiency measurement An can be calculated with the
partial differential equation, as

) 0 ) )
A?] - 7 AUout + _77 Aiout + _77 Auin + _17 Aii]m (15)
5uout Lout 5uin 5211’1
where ,
Uout * Lout
n=——""
Uip * lin
thus

Z.ot Uout . uot'iot uot'iot .
A"] = - . Auout + u. AZout + %Auin + u—.QuAZin-

Uin * tin in ° ¢in in * Yn Uin * U,
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Table 3 illustrates efficiency measurement accuracies on four operation points. This
table utilizes the measured values of current and voltage, and concludes that the
total maximum error of the efficiency mapping is in the range + 0.47...0.52 %. The
total maximum error is a value for a case when all error components cumulate the
same direction.

Table 3: Efficiency measurement maximum errors in different operation points.
Uout Z‘out Uin Z.in AT]
Vi 1Al IV [A] %]
254.8 29.2 650.4 122 + 0.505
379.7 29.57 650.4 17.99 =+0.467
256.7 194.4 650.3 79.5 +0.519
369.3 194.6 650.2 113.3 =+ 0.478

In practise, an efficiency mapping needs a look-up table with a high number of
cells, and in this case the introduced efficiency mapping needs a look-up table with
531 cells as for data in Appendix A. Thus, it is common to fit a polynomial function
to represent such a data-set as the efficiency mapping. However, the measured
efficiency mapping is non-linear, and therefore, introduction of a polynomial function
for the efficiency surface creates an RMS error. The introduced error is dependent
on the degree of a polynomial function which can be expressed e.g. for the DC-DC
converter efficiency, as

n(iesa uratio) = Poo + Pio - Z-es + Po1 * Uratio

+p2o - iis + D11 * Tes * Uratio + P02 Ufatio (16)

4.
N i1 j—1 G-1  j—2
FDi0 * les T P-1)(i—1) “Los * Uratio T P—1)(i-2) * Yes * Uratio T - - -

2 J

— j—1 .
St p(i_2)(j—1) “les uratio + pOJ Uratio-

In Eq. 16, p; refers to a coefficient of a polynomial function, and indexes i and j
define the degree of the surface function.

Table 4 illustrates decrease of an RMS error, and increase of a coefficient number,
as functions of a surface polynomial degree numbers.

Furthermore, introduced RMS errors change if a polynomial function is defined
only for a bounded region where in most operation of a converter occurs. These
errors are illustrated in Table 5 within voltage conversion range of 0.3...0.59.

Tables 4 and 5 highlight that an introduced RMS error by a polynomial function
is 0.41 % if the whole efficiency surface is estimated. However, an error decreases to
0.078 % if only suitable parts of the mapping are estimated. These values refer to
cases with 18 and 12 coefficients for definition of a polynomial function.

To conclude, an efficiency mapping, if measured only once, has the total maxi-
mum error of £ 0.47...0.52 % due to principles of qualitative analysis. In practise,
the total error limits would decrease if efficiency measurements would be repeated
and quantitative analysis utilized. Furthermore, if the whole efficiency mapping
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Table 4: Polynomial fittings for the efficiency surface within ., of 0.07 ... 0.59.

RMS error [%)] coefficients 1 ]
1.27 3 1 1
1.15 ) 2 1
0.92 ) 1 2
0.76 6 2 2
0.60 9 2 3
0.55 12 2 4
0.53 15 2 5
0.44 14 3 4
0.41 18 3 5
0.39 20 4 5
0.39 21 5 5

Table 5: Polynomial fittings for the efficiency surface within .4, of 0.3 ... 0.59.
RMS error [%)] coefficients
0.59 3
0.33
0.59
0.33
0.16
0.33
0.078 1
0.073 1

O© © O Ot Ot
NN WK DN DN .

1
1
2
1
2
3
2
4
)

ot N

would be estimated with a surface polynomial function, then the total maximum
error would increase, for instance, to + 0.9 %, as stated in Table 4, or to & 0.55...0.6
% (Table 5) if only a bounded area of the mapping is estimated. Thus, in this phase
of research it is convenient to use only look-up table based efficiency mapping for
the plant model of a DC-DC converter; and if measurements of a DC-DC converter
efficiency would be made quantitatively, then, for instance, a surface polynomial
function for suitable parts of the mapping could be considered as an option to result
in a total maximum error e.g. in the range of & 0.1 %.

In addition, the average of RMS errors between charge and discharge modes in a
specific operation point is & 0.3 %, when the efficiency data is compared in the range
(Tess Uratio) = (30 A...196 A;0.2...0.6), and £ 0.2 % when a5, = 0.3...0.6. Thus,
for more accurate energy transfer calculations, there is a need for different mappings
of charge and discharge modes and quantitative analysis of efficiency measurements.

Control Interface of the DC-DC Converter Plant Model

The objective of the DC-DC converter is to control the current to the DC link
(igs). However, energy storages have operation restrictions such as a charge for
ultracapacitors and batteries, and speed for flywheels.
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Specifically for ultracapacitors, there is a need for maximum and minimum volt-
age operation limits to avoid over-voltage, operation in unsuitable efficiency, and
limited power areas. Therefore, a deration is introduced as a limitation for system
control to prevent prohibited operation. The deration e.g. for the ultracapacitor
pack, based on the voltage u,., can be expressed, as

. ijref’| * f1(Uuc), while discharging,
Uref| = ire’|  f2(Uuc), while charging. (17)
Functions fi(uy.) and fo(uy) are piecewise determined, for instance, as
f1(uge) = min[l, maX(O, (ch — Ufféin) / (Ullf(’:w — Uf;in) ﬂ , (18)
Foltne) = mm[1, max(o, (U™ ) / (Urmex _ gbish) )} . (19)

In Egs. 18 and 19, U2** and U™ refer to the maximum and minimum voltages of
the UC pack, Ulgh and U9 refer to the ES current limitation threshold high and
low voltages, respectively.

Furthermore, a static inversion of the DC-DC converter is needed in order to
achieve the objective to control the DC-link current reference igs,. The static inver-
sion can be expressed, as

. ligs |/ (Uratio * 1) (%jref| Uratio)); While discharging,
Uref’| = { (20)

‘iES” : n(i|ref\7 uratio)/uratim while Charging'

Eventually, the current control direction D can be concluded based on a sign of the
RS’ -

However, the static inversion is not necessarily suitable for the low capacitance in-
termediate circuits due to the risk of overcompensation. That is the case—specifically,
in the proposed indirect primary source power buffering (Section 3.11), since over-
compensation confuses the DC-link voltage Pl-regulator of the AFE converter. Fig.
18 illustrates the cause for the problem. For instance, when igg is overcompensated,
then upc becomes higher than its reference, and the AFE converter Pl-regulator
tries to compensate upc by transferring power to the primary source.

3.5 Ultracapacitor Pack Plant Model

This section proposes basic approaches for the ultracapacitor pack plant model.

In the basic approaches, the UC pack can be modeled with either constant or
variable capacitance, and equivalent series resistance. The mapping of a variable
capacitance, as functions of current and voltage, is presented in Publication IV.
Furthermore, this study considers R, as a constant quantity, although it is depen-
dent on temperature and voltage. The advantage of the proposed approaches is
computational simplicity.
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Figure 18: The AFE converter Pl-regulator sign changes if igg is overcompensated.

Furthermore, there exists several electric circuit models for more accurate model-
ing of an ultracapacitor behavior. However, such models need parameter extraction
from experimental tests, and might affect system-level simulation time-steps from
operating as intended. For instance, three basic electric circuit models are: the RC
parallel branch model, the RC transmission line model, and the RC series-parallel
branch model. Fig. 19 illustrates different types of UC electric circuit models. [53]

Iuc IUC IUC

o—P
uucl R uucl RS RER R.
C]- ' Cl—l— Cz—l— C3_|_

“l R | R |R

uc C:_[ CZ Q=_
_|_
C

Figure 19: (a) Simple ultracapacitor model, (b) RC parallel branch model, (¢) RC
transmission line model, (d) RC series-parallel branches model.

In the basic dynamic approach, the UC pack output voltage can be expressed,
as

t
/ iucdt - Ruciuc + ch,initial- (21)
0

uuc —_=
uc
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The variable capacitance (as in Publication IV) can be expressed by a fitted
polynomial function, as

Cuc(ium uuc) = Poo + plOiuc + Po1Uyc- (22)

The polynomial fitting introduces an RMS error of 0.34 F with coefficients: pgy =
14.42; p1p = —0.006072, and pg; = 0.01938, for a BMOD0018 P390 (17.8 F, 390 V,
Maxwell Technologies Inc.) UC module.

Energy losses on the UC pack can be expressed, as

t
Elosses,uc = Ruc/ iicdt' (23)
0

Furthermore, energy content for the weight, size, and cost calculations of the UC
pack (E,.) is calculated as,
By = (1/2) - Oy - U2

max’

(24)

where U,y refers to the maximum voltage of the ultracapacitor pack.

The local efficiency [50, p. 114] has been measured in Publication IV for the
static modeling of the UC based ES systems. In this context, the static model refers
to efficiency mapping, for instance, within a look-up table.

Capacitor Plant Model

Furthermore, the low-capacitance intermediate circuit voltage, i.e. the DC-link volt-
age, can be expressed, as
1 t
upc = F— is~pocdt — Rpcisspoc + Upc_initial, (25)
e Jo
where Cpc refers to the DC-link capacitance, ¢s~pcc refers to the sum current on

a point of common coupling, and Rp¢ refers to the equivalent series resistance of
DC-link capacitors.

3.6 Battery Pack Plant Model

The modeling of a battery is a very complex procedure and requires a thorough
knowledge of electro-chemistry. However, the simulation of complete systems, as
the hybrid vehicle powertrains, does not require a high level of precision in electro-
chemical phenomenons. Therefore, a generic Li-ion battery model, proposed in
[54]—[55], with dynamic behavior was utilized in this research.

In general, there exist three basic types of battery models: experimental, electro-
chemical, and electric circuit models. However, only electric circuit models are useful
to represent electrical characteristics of batteries. The two basic electric circuit
models are: a voltage source in series with an internal resistance, comparable to
Fig. 19 (a), and an open-circuit voltage in series with resistance and parallel RC
circuits, as in Fig. 19 (d). The second case of models needs a parameter extraction
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based on experiments, and thus, in the first phase of the powertrain design the
generic battery model derived from the first case is more suitable.

The main feature of the generic battery model is that parameters can be ex-
tracted from a manufacturer’s discharge curve. On the other hand, the model has
several assumptions, which are: the internal resistance is supposed to be constant,
charge characteristics are assumed to be the same as for discharge, capacity of the
battery is not dependent on current amplitude, temperature has no effect, no self-
discharge, and no memory effect [54].

In the generic battery modeling method, the Li-ion battery pack discharge char-
acteristics (i* > 0) is modeled, as

ubat(it7 i*, Z'ba~t> - UO - KQC_) Ztl* - KQC_) itit + A€_B‘it — Rbat . ibat; (26)
and charge characteristics (i* < 0), as
) = U= Ky g = gt A B (2D

In Eqgs. 26 and 27, upy is non-linear output voltage (V), it is extracted capacity
(Ah), i* is low-frequency current dynamics (A), ipat is battery current (A), Uy is the
maximum voltage value of the linear area (V), K is polarization constant (Ah™!), Q
is maximum battery capacity (Ah), A is exponential voltage (V), B is exponential
capacity (Ah™'), and Ry, is constant ESR (€2) of the battery pack.

The battery internal resistance depends on several factors, such as state-of-
charge, temperature, and age of the battery. Thus, manufacturer data-sheets do
not always give any value for battery resistances. For such cases, the study [54]
proposes use of an experiment based estimate value for the battery resistance. The
proposed resistance is constant and represents the correct resistance in only the mea-
sured operation point, and thus includes an error in every other operation point. The
battery resistance can be calculated as,

Unom

Rbat — (1 nbat) C )
where ny,,¢ refers to the battery efficiency with the nominal battery current C, and
Unom 1s the minimum voltage of the battery packs linear voltage area. This study
uses efficiency of 99 % for high-energy batteries. In other words, that means 1 %
power losses on the battery pack with the 1C value for the both charge and discharge
conditions. In case of a high power battery, the continuous current instead of the
nominal current 1C should be used, e.g. 4C. This assumes thermal conduct of power
losses for the high power battery pack to be equal with the high energy battery pack.

Energy losses on the battery pack can be expressed, as

(28)

t
Elosses,bat = Rbat/ Z%atdt- (29)
0

Energy content (Fy,) for the weight, size, and cost calculations of the battery
pack is calculated, as

Epay = ———22Q. (30)
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3.7 Active Front-end Converter and Generator Plant Model

This section proposes a functional quasi-static approach for an active front-end con-
verter and generator combination plant model—specifically, for series-hybrid pow-
ertrains with a low-capacitance intermediate circuit. A different type of modeling
approach comes into question depending on the topology of the hybrid system. For
instance, the article [52] proposes a functional method in which converter output
current is empirically defined based on speed, field current, and output voltage of a
generator, and by field current first-order dynamics, for a hybrid powertrain with a
passive battery in an intermediate circuit.

The active-front-end converter, i.e. an inverter in a voltage control mode, and
generator sub-system model can be realized with the efficiency mapping in the
torque-speed plane, and with the DC-link voltage Pl-regulator which controls the
DC current to the intermediate circuit. The energy losses of power conversion from
the DC link to the engine shaft are taken into consideration as in Eqs. 1 and 2, and
Fig. 16 presents. The DC-link voltage regulator type, and parameter values, affect
the realization of power transfer from the primary source.

In general, the plant model contains the DC-link voltage Pl-regulator, and feed-
forward value (if_¢) which is the difference between the load current, and the energy
storage system current, as if_r = iLoap — igs- Furthermore, the error term (e,) for
the Pl-regulator is defined, as e, = upcret — Upc.

The current reference before the limitations (i) is defined, as

t
Z'ref’ (tk) = ifff + KPeu + KI/ [eu + Kaw(iref(tkfl) - Z'ref’ (tkfl))] dt; (31>
0

where t) refers to time index, Kp and K are Pl-regulator coefficients, and K,,, is
the anti-windup coefficient.

The current reference i,.» must be limited to prevent stall and overspeed of the
engine. Therefore, the current reference with the maximum and minimum limita-
tions, is defined as

Z‘max(nG)a if Z‘ref’ (tk) 2 imax(”G)?
iref(tk) = iref’ (tk), if imax(nG) > iref’ (tk> > Z.min<nG)7 (32)
Z.min(nG)a if imin(nG) Z Z.ref’ (tk)7

where ip.¢(ng) refers to a dynamic maximum current limit, and iy, (ng) to a dy-
namic minimum current limit, respectively.
The study proposes a definition for the dynamic maximum current limit, as

imax(nG) = Imax(na) — P(ng,, — na). (33)

The dynamic maximum current limit consist of the static maximum DC current
vector [fmax(ng)] which is derived from the maximum power curve of the engine
[P.(ne)]. The load limitation decreases proportionally if the generator speed (ng)
fails to meet the reference (ng.,). The purpose of the dynamic maximum current

limit is to prevent stalling of the engine.
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The dynamic minimum current limit [imi,(ng)] is proposed to be defined, as

Zmln(nG) = P(nG - nGmax)’ (34)

where ng,,,, refers to the maximum allowed speed, and the P-regulator limits the

regenerative load to the engine shaft, and thus, prevents overspeed. The dynamic

minimum current limit can have a value between zero to I,;, which is a negative

value, and derived based on the maximum parasitic shaft load. It is used to enable

the regenerative braking to the engine shaft when the DC-link voltage arises over

the reference, and the engine speed is low enough for the regenerative braking.
Eventually, the DC-link current of the AFE converter is defined, as

IAFE = tret/ (TaFE - S + 1), (35)
where Topg refers to the current control delay time-constant of the AFE-converter-
generator combination. Therefore, the load torque 7,,q for the engine can be derived
from the DC-link current (iarg), as

iarE - Unc/ (Mep (NG, Treq) - wa), if  iape >0,
Tload = (36)

iAFE - Upc - eD (NG, Treq)/wGa it 0> iapg.

In Eq. 36, nep(na, Treq) refers to the efficiency mapping of the electric drive, which
consists of the permanent magnet machine and the AFE converter. wq refers to
the generator angular speed, and 7., refers to the requested torque, as 7Tyoq =
IAFE * UDC/WG.

Energy losses on the AFE-converter-generator combination (Elosses AFE_gen) Call
be calculated, as

t
Elosses,AFE,gen - / (1 - nED) *UDC - iAFE -dt. (37)
0

3.8 Diesel Engine Plant Model

The diesel engine modeling is an essential part of the powertrain design. The engine
modeling can be very complicated due to the complexity and various subsystems
of an engine [52]. However, more generalized fuel consumption mapping based en-
gine models exist in order to decrease the amount of model parameters and their
complexity.

In 1986, Tsai and Goyal presented a fuel consumption mapping based quasi-
linear dynamic diesel engine model, which is suitable for testing the adequacy of its
controller under all operating conditions [56]. Such a model is based on knowledge
of output torque as functions of fuel injection and speed.

Although, the quasi-linear dynamic model is known and its construction is rel-
atively simple, more simplified first and second-order torque response functions are
proposed for modeling of diesel engine dynamics. In such cases, fuel consumption is
derived based on experimental mapping of fuel consumption with different torque
and speed [49]. The advantage of the latest model is that torque response and
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fuel consumption mapping can be experimentally tested for any engine, with no
knowledge needed of fuel injection dependency to output torque.

However, as this study has not achieved any experimental data of fuel con-
sumption or emissions, use is made of a modified model based on the proposal and
parameters presented by Tsai and Goyal [56].

In general, the diesel engine plant model includes Newton’s second law for rota-
tional dynamics, as

t
/ (Te = Tload) - At + WySDG _initial - (38)
0

In Eq. 38, Jiot refers to the inertia of the VSDG shaft, which includes both the
inertia of the diesel engine and generator. The wyspg refers to the angular speed of
the variable speed diesel generator-set.

The VSDG is controlled with the speed reference and therefore, the sub-system
PI-controller for speed is defined, as

€n = MVSDG_ref — TVSDG, (39)
t
m/:Kp'€n+KI/ en~dt, (40)
0
Mmax(nVSDG)a if m, Z Mmax(nVSDG)a
m = m/, if Mmax(nvs])g) > > 0, (41)
0, it 0>,

In Egs. 39-41, e, refers to the error term of the speed reference and the actual value,
m’ refers to the unlimited fuel injection output value of the speed Pl-controller, and
Mmax<7'LVSDG) refers to the maximum fuel quantity vector as a function of the VSDG
speed. The MmaX(TLVSDg) defines the maximum torque curve for the diesel engine.
The output 7 is the actual fuel quantity value [mg/stroke|. Furthermore, the model
uses the speed reference change rate limiter.

The fuel consumption m of the engine can be expressed, as

t
m = K/ nvspa m - dt, (42)
0

where the coefficient K is piston amount | stroke cycle.

The engine torque follows a nonlinear torque function of injected fuel and engine
speed with a time delay which varies in length by the time between successive engine
firings. The torque response delay for the four-stroke cycle, the six-cylinder high
speed engine, can be expressed, as

T map
€ = 9 43
Te =065 -7 -s+1 (43)

where the time-constant 7, is given, as

Te = ZO/HVSDg. (44)
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Fig. 20 presents the torque data (Ty,.p) for the turbocharged diesel engine as a
mapping of speed, and fuel quantity per stroke. The torque mapping presented in
this figure refers to the brake torque which is the indicated torque minus the parasitic
losses of the water pump, fuel pump, oil pump, valve train, air filter, muffler, piston
rings, and crank bearings [56].
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Figure 20: The torque data as a mapping of fuel quantity and speed of the engine.

The torque mapping can be expressed with a polynomial function of speed and
fuel quantity. The surface fitting can be done with a surface fitting tool to achieve
coefficients for the surface function, as

Tmap(MVsDG, ™) = Poo + P1o - Nvspe + Por -
2 . .2
+P20 - Nyspg T P11 ° MvsDaG - M+ Po2 - M (45)
3 2 . .2
+p30 - Nygpa T P21 - Nygpe © M + P12 - Nvspg - M.

The coefficients of Eq. 45 are presented in Table 6. The RMS error of the surface
function respect to data is 13.4 Nm.

3.9 Fuel Cell Source Plant Model

This study proposes use of a static ui-curve model for a FC-stack. The FC-stack
is modeled as a current-dependent voltage source, hence ug. = f(ig.), where wuy. is
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Table 6: Coefficients of the torque data surface polynomial function.
Coeflicients Value

Poo —39.28

P1o —0.06109
Po1 6.34

D20 —1.092e7°
P 5.736e73
P02 —3.565e73
D3o 6.791e~?
P21 —1.6026_6
P12 —7.244e76

the output voltage of the FC-stack, and ig is the FC-stack current, as well as the
low-voltage side current of the boost converter. The fuel cell stack ui-curve imitates
the output voltage, i.e., the polarization curve of a typical commercial fuel cell
stack, which is usually given by a FC manufacturer. The easiest way to imitate the
polarization curve is with a look-up table.

Furthermore, hydrogen and oxygen consumption calculation is needed for the
powertrain design. The rates of conversion (utilizations) of hydrogen (um,) and
oxygen (uso,) are determined in [55], as

nt, R-T-N ig
UfHy = 3 — ’
’ ni-rIIQ Z - F- Pfuel ’ Vzpm(fuel) - %

nh, R-T-N-ig
ni82 B 2'Z'F'Pair'vipm(air)'y%'

In the above equations, ny, is relieved hydrogen, and niﬁg hydrogen input, as well as
ng, refers to relieved air, and ng, to air input, respectively. In addition, R is the gas
constant and equals to 8.3145 J/(mol-K), T is operation temperature (K), and N
is number of cells. Parameter Z refers to the number of moving electrons per mole
of fuel, i.e., 2 for a single hydrogen—oxygen fuel cell reaction (Hy + Oy — H50),
but for multiple reactions it becomes an experimental decimal value (e.g. 2.967 for
PEM FC - 6 kW - 45 V in Simulink™ models [55]). Furthermore, F is the Faraday
constant and equals to 96485 A-s/mol, Py, is fuel absolute supply pressure (atm),
P, is air absolute supply pressure (atm), Vipn (el is fuel flow rate (1/min), Vip(air)
is air flow rate (1/min), x is percentage of hydrogen in the fuel, and y is percentage
of oxygen in the oxidant.

Dynamic modeling of a FC system have been discussed in articles [57], and [58].
The article [57] proposes a dynamic model extended by a static current-voltage
description with temperature dependence. The proposed model captures the first-
order physical phenomenas, and furthermore, it can be identified from electrical
terminal measurements. The article [58] discusses in depth the modeling of a FC-
system in general, and proposes a model which is targeted at the development of the
PEM FC real-time control systems. However, such dynamic models are considered
too complex for energy management and system design of the entire powertrain.

(46)

(47)

uf02 -
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3.10 Brake Resistor and Chopper Plant Model

This section proposes a functional modeling approach of a brake resistor and chop-
per, i.e. a braking unit, in a low capacitance intermediate circuit. Based on the
knowledge attained, modeling of a braking-unit in vehicle powertrain systems has
not been recently discussed in the literature. However, other possibilities to model
the braking-unit would be electrical circuit modeling with either ideal or non-ideal
power semiconductor switches, or also by functionally with a constant voltage op-
eration limit.

In any case, the braking-unit modeling method should not affect a system level
simulation time-step, and thus, electrical circuit modeling is unviable. A simpler
method with only a constant voltage operation limit would assume unlimited power
capabilities in a braking-unit, and furthermore, it adds a computational disconti-
nuity due to a state change in intermediate circuit variable. Thus, the proposed
functional modeling method can be considered to be the most suitable method.

The braking unit is used to prevent excessive increase of voltage in low capaci-
tance intermediate circuits. Functionality of the braking unit can be described, e.g.
as

t .
) (t ) Kp . €u<tk—1) —+ K[ fO eu(tk—l) . dt, if UDC(tk—l) > Uglgke (48)
i = .

BRI 0, if  UBEke > upc(t_q).

In Eq. 48, iggrk refers to braking unit current, e, refers to voltage error between
UBré‘ke and upc, as well as Kp and K are due to functional modeling of a braking
unit. Furthermore, a power limitation saturates excessive values of igrk.

3.11 Energy Management Algorithm in the Hybrid Control
Mode Validation

This section proposes an indirect primary source power buffering method for use in
the active ultracapacitor buffered diesel series-hybrid powertrains. The method was
used for validations of plant models in Publication III. The indirect power buffering,
in this context, means the low capacitance intermediate circuit regulation with the
AFE converter, while the DC-DC converter filters the load. On the contrary, the
direct power buffering refers to the low capacitance intermediate circuit regulation
with the DC-DC converter, while the primary source is controlled based on the
averaged load.

A scheme of the proposed series-hybrid powertrain energy management is pre-
sented in Fig. 21. The control signals and actual values are the speed reference
(nyef) for the VSDG electronic control unit, the DC-link voltage reference for the
AFE converter (upc_ref), the actual UC pack voltage (uye), the actual DC-link volt-
age (upc), the current reference (i) and direction (D) for the DC-DC converter,
as well as the actual load power (pLoap)-
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Figure 21: The energy management hierarchy of the series-hybrid powertrain with
the ultracapacitor pack for power buffering.

The Energy Storage System Control in the Series-Hybrid Powertrain

In general, the energy storage system control design can be started on the energy
storage system current to the DC link (igg), since the DC-link current relation to
the energy storage current can be expressed as in Eq. 20. The energy storage system
control depends on the whole powertrain control strategy and therefore, one general
solution does not exist.

The ES System Control in the Plant Model Validation Experiment

This sub-section presents the energy management algorithm which was used in the
ES system Hardware-in-the-Loop experiments.

The energy management algorithm has two parallel regulators. First, the P-
regulator from DC-link voltage, as

igs'_1 = P(upc_ret — Unc). (49)

Second, the filter structure based on coefficients (by...b,) of a moving average function
with values 1/(n + 1), i.e. a discrete-time finite impulse response (FIR) filter. The
study uses a 20-second averaging period with 0.1 s time-steps. The output of the
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FIR filter is, as

st = S [roan(t)/(n+ 1) (50)
_ prir (k)
upr(tk) =2 — Puax

where t) refers to a discrete time-step between initial ¢; and ending ¢, values, and
furthermore, Pyiax refers to the tuning parameter of the energy management algo-
rithm which is, e.g., 2...3 times the maximum primary source power. The output
of the FIR filter is multiplied with the power reference for the primary source (up)
which in the validation case is expressed, as

up(ty) = PMAX<1 — %?) (51)

Furthermore, the filter output (pgier) is piecewise determined, as

(52)

(t) = upr (b)) - up(ti), i upm(t) - up(tc) > 0,
Prilter\lk) = 0, it 0> UFIR(tk) 'UP(tk)-

This prevents the negative output of the filter. Therefore, all regenerative load
power is included in the filter output and subtracted from the actual load power of
the DC link. The power regulator output is, as

PLOAD — PAilter

1B 2 = (53)

Upc
Thus, the ES system current reference on the DC-link voltage potential can be
expressed, as
igs’ = 1gs/_1 + IBS 2 (54)

The sign of igg determines the current control direction D.

The stability of the ES system control algorithm can be studied by deriving the
igs with all its inputs. The ES system current reference space on a static state is
presented in Fig. 22 with the values upc_ref 650 V, upc 600 V...700 V, P-regulator
coefficient of 2, and proap between Pyax to —Pyax (100 kW...—100 kW). The
static current reference space is the worst case in the sense of the filter output, since
the maximum output occurs only if the maximum input lasts long enough.

The current reference space shows how parallel regulators affect the ES system
current. With the high load, the full energy storage voltage, and the low DC-link
voltage, the ES system gets the highest positive reference. On the contrary, the
highest negative reference is given with the low ES voltage, the high regenerative
load, and the high DC-link voltage. The positive linear function, described in Eq. 52,
makes impossible negative output values of the filter and therefore, the negative load
power weights the current reference towards negative values. The power buffering
is performed based on the load power level and the ES voltage with the weighting
depended on the actual DC-link voltage.
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Figure 22: The static ES system current reference (igs/) space presented in 5 piece-
wise charts with all inputs.

The Rule-Based Speed Control for the VSDG in the Series-Hybrid Pow-
ertrain

The variable speed diesel generator-set can be forced to operate on the minimum
fuel consumption per kilowatt hour area, with the co-operation of the VSDG speed
control, and the AFE converter control, as discussed in [59]. The rule-based speed
control for the VSDG can be expressed, e.g. as

it pare > Plim_max,

ne,maxa

Ne_ref = ' o
Ne_t, if Bim_2 > PArE > Plim_1 + Physt,

Ne_idle;, 1 Plim_1 = PAFE,

which defines engine speed references depending on its load.
Ne_1, - -

In Eq. 555 ne_idte,
., Ne_max refer to different speed references for the engine; Py 1, Bim o, - -

°
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Plim_max refer to different power limits between speed reference transitions; Py
refers to the hysteresis between power transition limits; and papg refers to the AFE
converter power, as iapg - upc. Simulated Fig. 23 illustrates the operation areas
where the VSDG operation can be forced. Crowded operation point areas represent
specific static speed (Ne_idle; Me_1, ---» Me_max) Values, and scattered operation points
are due to transitions between static speed states.

250 300 350 400 450 500
Fuel consumption [g/kWh]
140 - - - - - -
Operation point * 24365
1201 Maximum power limit mll B SRR |

100

o
o

Power [kW]

O \% | zl/ | I I I
800 1000 1200 1400 1600 1800 2000 2200
Speed [rpm]

Figure 23: Operation points of the diesel engine in the variable speed use on the
fuel consumption map.

The proposed rule-based speed control for an engine is not suitable for all types
of loading. For instance, an engine might overload due to an abrupt high load step.
Such a load can occur in a vehicle suddenly stopping and re-starting traction while
already moving. On the other hand, the proposed engine speed control is suitable for
loading which is ramped up during a longer time-period. Fig. 24 illustrates changes
of operation areas with the proposed rule-based speed controller for an engine. This
figure shows how static speed states are changed with high torque values to higher
speeds, and, on the contrary, with low or regenerative torque values to lower speeds.

The context of the proposed speed control is based on an idea of using an engine
with predetermined constant speeds on the low fuel consumption area, rather than
using an engine with continuously varying speed as proposed in Publication II. The
engine plant model speed transition accuracies are studied in Publication III, and
reviewed in Section 4.3.
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Figure 24: Operation principle of the proposed rule-based speed control of an engine.

3.12 Cumulative maximum errors of the proposed modeling
method

The target of the proposed modeling method is to provide a feasible way to design
a powertrain for a specific use. System-level plant models together enable design
of powertrain energy management algorithms. However, there is a need for a full
powertrain modeling error analysis in order to have a proper estimate of the designed
EMS affect to fuel consumption and other characteristics. Thus, this sub-section
concentrates on modeling and model parameter extraction accuracies for the diesel-
electric powertrain with an active UC buffering.

Generally, the maximum error of a variable can be calculated with the partial
differential equation, as

OF

5.]71

oF
Aa:l + ‘_
5%2

OF

AF =
0%y

Ax2+

Axy, (56)

where F refers to the function of the variable, x, refers to the n'" factor of the
function F, and Az, to an error value for the n'" factor.

Therefore, in order to have an accurate fuel consumption modeling result, as Am,
the proposed model is piecewise differentiated in relation to all changing parameters.
Strictly speaking, the presented accuracy analysis considers only the static-state
accuracies, and neglects accuracies in transients. The target to concentrate on the
static accuracy gives an assumption that all errors for variables controlled with an
integral term become equal to a measurement error.

Depending on the starting point of the simulations, the static error analysis
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begins either on pyecn Or proap. When the starting point is chosen at pyecn, then
speed and torque of traction motors are considered to be known accurately. However,
pLoap is considered to be known if the starting point is on an intermediate circuit
side.

The accuracy of an electric drive efficiency mapping ngp can be derived, as

1) ) ) ) .
AnED = 1ED A‘TEM + "IED ACUEM =+ 1D AUin + @ Alin, (57)
(STEM 5wEM 5uin 6Zin
where
TEM * WEM
nNep = ———,
Uin * in
thus
w T T - W T - W .
Anep = = Mgy = Awpar + — 5 Aty — " N

Table 7 gives accuracies for the efficiency mapping sensors. The accuracy of
torque sensor is a datasheet value of Dataflex 42/1000 (KTR), accuracies of tachome-
ter speed measurements are given in [60], and electrical measurement accuracies are

based on Norma D6100 (LEM) datasheets.

Table 7: Measurement sensor accuracies for efficiency mapping of an electric drive.
TEM n n Uin Uin
error error at  error at  error at error
30 rpm 3000 rpm 650 V
[Nm]— [%] [70] (7] %]

+5 £0025 £005 £0.181 +£0.1

Thus, efficiency mapping measurement accuracies are illustrated in Table 8 for
low speed (30 rpm) with 1.0 kW shaft power, and for high speed (3000 rpm) with
100 kW shaft power.

Table 8: Efficiency mapping accuracies of an electric drive with low and high speeds,
and motoring as well as regenerative powers.
TEM WEM Uin lin Angp
[(Nm]  [rad/s]  [V] [A] %]
+ 3183 +3.141 +650 + 7.692 £ 0.375
— 3183 +3.141 + 650 —0.308 =+ 9.38
+ 3183 + 3141 +650 + 181 £ 1.62
— 3183 + 3141 + 650 —130.8 +£2.24

Maximum errors of efficiency mapping remain high, due to a high error in torque
measurement which covers ~ 83 % of the maximum error, cf. with Eq. 57 and values
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of Tables 7 and 8. The worst presented error in efficiency mapping accuracies,
ie. £ 9.38 %, refers to the case when low mechanical power is transferred to the
intermediate circuit. However, the impact of the high error with low powers is small
to the full cycle cumulative error value due to the fact that cumulation of small
powers results to small energies. In other words, more dominant maximum error
value examples during full drive cycle analysis are e.g. & 1.62 % and & 2.24 %.
Furthermore, cumulative error in an electric drive energy losses calculation is,

t
AEwlosses,ED = / A77ED : pmechdt7 (58)
0

and thus, integral of Angp determines directly error percentage in Flogses_ED-
Then, the accuracy of proap is described, as

Pmech - AnED/n]QE)Dv if Pmech > O,
Pmech - ANED, if  pmen < 0.

dproa
Aproap —‘ 6L D

TIED

Accuracy of proap with motoring and regenerating powers, and both, 1.0 kW
power at low speed, and 100 kW power at high speed, are given in Table 9. The
results illustrate that absolute error values of the proap are dependent on the pecn
magnitude, and therefore, relative errors change depending on the sign of the load
power.

Table 9: Accuracy of proap when the starting point of modeling is mechanical
power.
Pmech  Proap  Aproap AprLoap/pLoap

kW] [kW] (W] 7]
+1.00 +50 £938 + 1.88
—1.00 —020 +938 + 46.9
+ 100"  + 118 4 2240 + 1.90
— 100" — 85.0 4 2240 + 2.63

2 At 30 rpm, ° at 3000 rpm.

The worst presented relative error value (Aproap/pLoap) is high (£ 46.9 %),
as the absolute error deriving from efficiency mapping is high in contrast to proap-
However, the relative error with low power has a minor impact on the full cycle
cumulative error value in which error values close to the nominal power are dominant.

Then, as the intermediate circuit voltage is controlled with the PI-regulator, thus
the actual value of upc is a constant. Therefore, the static error of Aipoap/iLoaD
equals to Aproap/pLoap. Furthermore, the Pl-regulator ensures that,

ILOAD = ES T LAFE, (60)

in the static-state, and thus, the energy storage system current igg needs to be
solved. Figure 25 illustrates error paths which exist in the considered system. The
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primary sources of error in simulations are efficiency mappings ngp and 7pc/pc, as
well as measurements %es, Uye, and upc.

Ubc ref Au ™ Eqs 49-5 ApLOAD
DC T
l ; I ref
Voltage Current

24
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Figure 25: Error paths of the model-based design for the diesel-electric powertrain
with an active UC buffering.

The accuracy of the energy storage system current is dependent on i, Ues, Upc,
and 7pc/pc, as

digs Olgs

Si
S o [
u

OUes

digs

Oles

Anpe/pe- (61)

AUDC + ‘

e /DC

Therefore, the accuracy Aigs can be written, while discharging, as

Ues * TIboost . Z.es * Thhoost Ues * Z'es * Tlboost Ues Z-es
—Azes + —Aues + Q—AUDC + AT]boosta (62)

uUpc Upc Upc Upc

and while charging, as

Ues . Z'es Ues * ies Ues - ies
AZes + Aues + ) AUDC + 2 A77buck-
UDC * Mbuck UpC * Mbuck Upc * Mbuck UDC * Mpuck

In Egs. 62, known error values are Aues, Aupc, AMboost; and Anpue. Accuracies of
Aues and Aupc are considered to equal the overall accuracy of the voltage transducer
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(Atmeas) AV100-750 (LEM), which changes from + 0.7 % to £ 1.7 % at nominal
voltage of 750 V depending on the considered temperature range, either constant
+25 °C, or —40...485 °C. The accuracies of efficiency mappings were derived in
Section 3.4 to £ 0.5 % with look-up table data, and to £ 0.9 % based on a polyno-
mial function. The accuracies of efficiency mappings do not consider temperature
dependencies in any means. The unknown Ai is dependent on control algorithms,
as described in Section 3.11. Furthermore, the Au is a function of i., and thus
errors have a cross-coupling. Therefore, Aues is simplified to the neighbourhood of
Ues together with the overall measurement accuracy Atupeas, as

Aues = Auuc - Auucl + Auuc2 = Ruc : Aies + Aurneaus; (63)
and the integral part of Eq. 21 determines charge-discharge frequency error, as

t .
Ad — (1/Cye) - fo A@esdt.
2- (Umax — Umin)

(64)

Thus, the error value At determines errors in energy storage voltage, and charge-
discharge frequency.

Moreover, energy storage voltage affects to Aies due to feedback in control algo-
rithms. However, the effect of Auy.; on Aig, cannot be taken into consideration,
because of an existing algebraic loop. Thus, error Ai. is considered to accumulate
measurement accuracies of variables ues, proap, and error Ai..s in the converter
current Pl-control. The error in upc is neglected. The error analysis considers the
accuracy of current measurement (Aipeas) to equal with the overall accuracy of the
current transducer CT 50-T (LEM), which is + 0.1 % at nominal current of 50 A
within temperature range of —25...+70 °C. Therefore, Ais is determined, as

0 os
OUye

Oles

A/ites =
dPLOAD

Auye +

ApLoap + Aimeas- (65)

In Eq. 65, the first partial derivative in respect of u,. can be derived, as

Ay,

OUye

AU _ ’5[P : (UDC,ref - UDC) . UDC/uuc + (pLOAD - pﬁlter)/uuc]

in which the difference of upc et and upc becomes zero, and the parallel controller,

) PLoAp _ (2 - Pyax — t“sz [proan(tx)/(n + 1)])/%21(:

2
Uye

Aye.

ti=tk—n—1

Then, the partial derivative in respect of load power gives,

[pLOAD@kH 58 LpLOAD(tk>/<n+1>]'<1—uuc/Umax>] / e

tk—n—1

5 APLOAD;
PLOAD
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Aproap(tk) + i [Aproan(ti)/(n + 1)] - (1 = tuc/Unax)

lk—n—1

UUC

Therefore, Table 10 illustrates energy storage current error values depending on
considered error sources. Eight different operation points with variance in proap
value, power direction and energy storage voltage is used to give an overview of
variance in error values. Five different error values for each of the operation points
are presented, which refer to different error sources as: Aieg /ies considers Auy,. = 0.7
% and Aproap = 0.0 %, Ades/ies considers Auy,. = 1.7 % and Aproap = 0.0
%0, Aiesz/ies considers Auye = 0.0 % and Aproap = Table 9, Aiegy/ies considers
Auye = 0.7 % and Aproap = Table 9, and Adegs/ies considers Au,. = 1.7 % and
Aproap = Table 9. In all cases, Aipeas is considered to be 0.1 %.

The results of Table 10 show five different cases with different assumptions of
the present situation. Case 1 refers to either the system modeling beginning from
the intermediate circuit load (prLoap), or control error in the real system in which
Aproap is measured accurately. The temperature is assumed to be +25 °C. In such
a case, iqs error at a high load is in range of £+ 0.52 %, and with a low load at + 53 %.
Case no. 2 is equal to Case 1 except that an assumption of temperature is changed
to —40...485 °C. In Case 2, comparable error values are + 1.1 % with high, and
+ 130 % with low-loads, respectively. Case no. 3 assumes errors of proap will be
realized due to inaccuracies in the efficiency mapping of an electric drive. However,
energy storage voltage measurement is considered to be ideal. In the third case, iqg
error values vary within + 4.8 % with high and low-loads, respectively. The fourth
case assumes all measurement errors to realize in 425 °C ambient temperature, and
thus, error values at a high load is in range of &+ 5.3 % and with a low load at + 58
%. The fifth case is similar to Case 4 with a difference in the ambient temperature
range which is —40...+85 °C. Then, error values were within 4+ 5.9 %, and + 134
%, respectively. The results show that an error may be significant at low loads, but
decreases remarkably when high loads are transferred. In the worst error cases (bold
font with red color), the regenerative power magnitude is negligible, i.e. — 0.2 kW,
which is not possibly transferred to the ES system at all. Therefore, a realistic 7.
maximum error with low loads is in range of &+ 53... 134 %, and with high loads in
the range of + 0.35... 5.9 %. Furthermore, as stated before, high error values with
low loads have a small impact on the full cycle cumulative error value in which error
values close to the nominal power are dominant.

The moving average in Eq. 65, approx. halves ramp-up proap signals, and
passes the long-time constant proap signals by multiplying those with a coefficient
of one. The assumption of a ramp-up proap refers to acceleration of a vehicle from
zero speed, and the period of constant power refers to acceleration or deceleration
of vehicle with some initial speed. Table 10 presents error values referring to the
long-time constant proap case. Furthermore, it is assumed that half of the positive
load power is taken from the ES system and half from the primary source. On the
contrary, all the regenerative power is considered to be charged to the ES system.
An effect of this assumption can be seen in the differences between motoring and
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regenerating i.; accuracies with high loads, for example, regenerative error values
are smaller. In addition, this consideration assumes U,,., to be 390 V, and U, to
200 V, respectively.

Table 10: Energy storage current accuracies.

PLOAD  Uuc ies AZ-esl/ies AZ-QSQ/Z.GS AZ.es3/ies AZ.es4/ies AZ.es5/ies
kW] [V [A] (%] [%] [%] (%] (%]
+50 390 +64 + 53 + 130 + 3.9 + 57 + 133
+50 295 + 85 £ 53 £ 130 + 4.8 £ 38 + 134
-02 200 —-10 +£700 £ 1700 + 70 + 770 £1770
—-02 29 —-070 +£700 £ 1700 £ 60 + 760 £ 1760
+ 118 390 + 150 =+ 0.52 + 1.1 + 3.9 +4.3 +4.9
+ 118 295 4200 =+ 0.52 + 1.1 + 438 +5.3 +59
-8 200 —430 £0.35 £+ 0.7 +4.0 +4.3 + 4.6
-8 295 —-290 =£0.35 + 0.7 + 34 + 3.6 + 4.0

Energy storage voltage maximum error based on Eq. 63 and Table 10 becomes +
1.4V...3.3V, for an UC module with capacitance of 17.8 F, R, of 65 m€2, and Uy,
of 390 V. In Publication III, Hardware-in-the-Loop experiments were compared with
simulations, and £ 1.0 V... 3.0 V accuracy in mean values were reached. The lower
voltage error value refers to modeling with a variable capacitance, and the higher
error to constant capacitance, respectively. It can be noticed that experimented
mean error values are within the theoretically calculated maximum error value of
ES voltage.

Then, the error of ES system current on the intermediate circuit as functions
of Aieg, Atles, Aupc, and Anpc/pc, described in Eq. 62, can be calculated. Fur-
thermore, the error of AFE converter current is the sum of the load current and
ES system current errors. The results are presented in Table 11 with two different
cases, when Aig uses the values of Cases 1 and 4 from Table 10, upc is 650 V with
accuracy of Atpeas, and Anpe/pe is £ 0.5 %.

Maximum error values in Table 11 refer to cases in which all partial errors are
realized with their maximum values in the same direction. The minimum values
refer to cases where the system loading were considered to be electrical, and the
maximum values refer to mechanical starting points of the modeling, respectively.
Furthermore, ambient temperature have been assumed to +25 °C. Considered error
sources are efficiency mapping of an electric drive, ES current and voltage measure-
ment errors for control of the ES system. In addition, this assessment included the
DC-DC converter plant-model realization inaccuracies consisting of maximum errors
in ES current and voltage, DC-link voltage, and efficiency mapping of the DC-DC
converter. Resulted values are pessimistic, and for more descriptive error values the
quantitative analysis should be used.

Furthermore, the highest error values in Tables 10 and 11 (bold font with red
color) can be neglected, because such small powers are most likely not delivered
through an ES system. In practice, auxiliary loads in the intermediate circuit are
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Table 11: Energy storage system current Aigg and AFE converter current Aiapg
accuracies on the intermediate circuit.

Uye les nDC/DCa AZ.es/iesb AZ'ES/Z.ESb AZ'AFE/'L.AFEb
V] [A] 7] 7] %] %]

390 + 6.4 95.6 + 53...57 + 55...59 + 57...61
295 4 8.5 94.3 + 53...58 + 55...60 + 57...62

200 — 1.0 93.3 +699...768 +£701...771 £ 750...820
295 — 0.70 94.3 +699...757 +£701...759 4 750...810
390 + 150 97.5 + 0.52...4.3 +24...6.3 +4.3...8.2
295  + 200 96.9 + 0.52...5.3 +25...74 +4.4...9.3
200 — 430 95.8 + 0.35...4.3 + 2.3...6.8 +4.9...94
295 — 290 97.0 + 0.35...3.6 + 2.3...5.8 + 4.9...84
2 see Appendix A, P variation in Ade/ies, Aigs/igs, and Aispg/isrg refers to the cases
1 and 4 in energy storage current (ies) accuracies.

higher than those regenerative powers in question, and thus in those cases, power
control would not necessarily react at all.
The error in charge-discharge frequency bases on Eq. 64 which can be further

derived to Ad "
24 / fes gt (66)
0

7 .
Thus, the maximum error of d for low power operation is within 4 53...58 %, and
for high power operation within £ 0.35...5.3 %, based on 4. values in Table 11.

Finally, load torque of an engine T),,q can be solved, which is based on AFE
converter current iapg and efficiency mapping of an electric drive ngp. An error in
generator speed is considered to be zero due to a speed Pl-controller for an engine.
Load torque can be derived, as

ZBS

5Tload . 5Tload
ATioad = | Aippg + Angp, (67)
diAFE 0nED
thus )
Upc . UDC * TAFE .
ATigaq = - Aiarg + —5———— - Angp, when izpg > 0,
TED * WG NED - Wa
and ,
Upc - MED . UDpC * TAFE .
ATipaq = ————— - Aiapg + ———— - Angp, when irpg < 0.
wa wa

The AFE-converter-generator combination efficiency mapping accuracies are based
on sensor accuracies in Table 7, and derived for two different motoring operation
points based on Eq. 57. Results are presented in Table 12.

Then, Eq. 67 with positive izpg results to relative errors of + 180...190 %
for low loads, and to 4+ 8.0...13.0 % for high loads, respectively. Finally, relative
errors of fuel consumption are available, if

A ~ ATload’ (68)

m Tload
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Table 12: Efficiency mapping accuracies of the generator electric drive in considered
operations points.
Upc LAFE WEM Tem  Anep

VI (Al [rad/s]  [Nm] %]
+650 +3.85 +3141 +160 =+63.4
+650 +90.5 + 3141 +220 =+3.03

is assumed. Smaller error values correspond to cases with electrical load as the start-
ing point, and maximum values refer to the mechanical starting point, respectively.
The values assume ambient temperature to be in the range of +25 °C. Considered
error sources are efficiency mappings of all power electronics devices and electric
machines, current and voltage measurement errors for control of the system, and
inaccuracies in realization of a DC-DC converter plant model. After all, presented
accuracies still neglect the fuel consumption mapping accuracy of an engine.

Although, the relative error values for variables become high due to a cumulation
of errors. It should be remarked that error values represent the maximum errors
in which all errors are realized in the same direction, and thus, are the worst case
values. More representative error values could be attained with quantitative analysis
which is, however, excluded from this study.

Proposed sub-system models were in the beginning targeted to mean values with
20 Hz-bandwidth. Presented experiments and simulations (in Publications) show
that low-frequency operation behavior can be predicted with proposed models. Fur-
thermore, error analysis gives the theoretical maximum error value for predicted
fuel consumption in static states. The presented maximum error values in fuel con-
sumption are high due to a cumulation of errors in different sub-systems. Maximum
error values can be decreased by considering quantitative analysis e.g. in efficiency
mappings. Therefore, qualitative error analysis seems to be more reasonable when
considering maximum errors of individual sub-system components.

The target of the proposed models was to predict system behavior in 20 Hz-
bandwidth, which has been proven to some extent. Thus, proposed models enable
design of EMSs only within this bandwidth, and faster behaviors are most likely not
predicted with appropriate accuracy. Furthermore, the proposed modelling approach
may not necessarily be used as the precision tool for fuel consumption predictions,
as noticed in error analysis. Thus, the proposed simulation models suit the design of
different energy management hierarchies by the Model- and Hardware-In-the-Loop
principles.

An analysis of maximum errors of the proposed simulation method illustrates
that small individual error values cumulate to a high total maximum error value in
fuel consumption of a studied system. Thus, it is unclear what would be a sufficient
accuracy of a sub-system model. For instance, an increase in error of the DC-
DC converter efficiency mapping from + 0.5 % to £+ 0.9 % has a greater influence
on fuel consumption error than on interface variables of the converter. Therefore,
continuous improvement of simulation model accuracies can be considered to be good
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practise. In future, such a procedure leads to knowledge of achievable accuracies in
a sub-system and full-system models.



57

4 Summary of Publications

4.1 Publication 1

The paper presents and analyses the first versions of simulation models which
were realized for supervisory control software prototyping and optimization of a
series-hybrid powertrain. Possible powertrain components are introduced and their
system-level power control discussed. Furthermore, the initial state of ideas to con-
trol energy through a powertrain is discussed.

Fig. 26 presents the high level schematics of the designed system-level simulation
model. The focus of the simulation tool was to realize the interfaces of sub-system
models with real-value physical simulation components, such as resistors, inductors,
capacitors, and current sources. Thus, current controllers had the highest band-
widths of phenomena to be modelled. The functionality of sub-system models were
imitated with basic Simulink and State-flow blocks.

{ 1 " = '_L
e ———2 .
4 OC+ B = ['|Ultracapacitor
. ¢ DC+H
i DC-link B
DG DC-D rolled
Load
4
¢
—
DC-DC -converter, current controlled
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Active rectifier-bridge and generator
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Figure 26: The series-hybrid powertrain simulation model realized with the Sim-
PowerSystems and Stateflow library components.

In the first phase, the simulation method was already the backward calculation
from a known load cycle to sources. The load was modelled with a controlled
current source, the brake resistor with a voltage regulated current source, the battery
pack had a current controlled DC-DC converter as an interface and the UC pack
interface device was a voltage controlled DC-DC converter, respectively. Finally,
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engine torque was calculated backward from the load regulated by the intermediate
circuit voltage controller and the constant speed operation of the engine.

A merit of this study is that it brought to light the need for a simulation en-
vironment which would help with supervisory control prototyping and design of
series-hybrid powertrains. Furthermore, the study discussed an approach to model
the full series-hybrid powertrain system, and thus the value for others is on dis-
cussions of modeling and energy management ideas. Design of energy management
hierarchies can be started with the presented and discussed modeling approach.
Furthermore, use of this or nearly similar implementation would most likely lead to
proper solutions in energy management designs. The advantage of this approach is
on physical electric circuit components which better visualize the system for new
engineers.

However, there were three essential reasons to further contribute to the series-
hybrid powertrain design environment. The first was such that physical simulation
tools are not executable on targeted digital signal processors, and thus those can-
not be used for real-time calculations. The second reason is the license costs of
extra Simulink™ libraries for original equipment manufacturers. The third reason
was that the approach aimed at overly accurate electrical phenomenon modeling
for powertrain topology studies, thus increasing the full operation cycle simulation
times. Increase in simulation times was due to the modeling of current regulators
for controlled current sources, which have been assumed as ideal in the later phase
of research. The proposed simulation method situated between proper approaches
for the full powertrain and electrical-circuit models. This method was slow for the
full powertrain modeling and inaccurate for the control design of internal controllers
in the power electronics components. At this phase of research, it is not clear if the

presented approach becomes beneficial in powertrain design issues with bandwidths
higher than 20 Hz.

4.2 Publication II

The paper presents a model-based design of an energy management strategy for the
diesel-electric powertrain buffered with the active UC pack. The proposed energy
management is validated in Publication III and reviewed structure presented in
Section 3.11. The indirect primary source power buffering method is investigated for
the series-hybrid powertrain. The background for low-level controls of the proposed
energy management was on the existing hardware, a current controlled DC-DC
converter and a voltage controlled active rectifier.

This research adopts efficiency mappings of a DC-DC converter to plant models,
and illustrates simulations of system-level models which were realized with basic
Simulink blocks without utilization of physical SimPowerSystem components. Fur-
thermore, the ES system cycle efficiency is introduced, which includes two times
DC-DC converter and two times UC pack energy losses.

The UC buffered diesel-electric powertrain topology, under consideration of the
study, was presented in Fig. 21. Load power reference for the model-based design
study was the New European Driving Cycle which is shown in Fig. 27. Figs. 28 and
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29 illustrate simulated currents, and Fig. 30 presents the energy storage voltage.
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Figure 27: The New European Driving Cycle and required traction power.
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Figure 28: The simulated ES current with the NEDC.

The paper presented correctly directed simulation results for the powertrain op-
eration with the NEDC which were validated in Publication III. The simulation
study illustrated the VSDG decrease potential to be within 50...72 % of an orig-
inal, while an ES system operates in a proper efficiency area. The decrease ratio
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Figure 29: The simulated AFE converter intermediate circuit current with the
NEDC.
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Figure 30: The simulated UC pack voltage with the NEDC.

depends on the drive cycle, and the sizing of the UC pack as well as DC-DC con-
verter. Furthermore, the problematic nature of controlling power was noticed with
only one energy management algorithm during overly high loads.

However, the proposed control algorithms had a flaw, although the right aspects
of a well operating controller were presented. An error occurred in the choice of the
DC-DC converter current direction, which in the presented form (Fig. 7) resulted
in unstable operation. However, the described error did not have an impact on the
presented results of the study due to the small proportional controller coefficient
value for DC-link voltage stabilization after the chosen current direction, c.f. Table
2 in Publication II. Thus, correction to the algorithm was made in the validation
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phase (Publication III), and review of the algorithm is presented in Section 3.11.
Furthermore, derations of the DC-DC converter control were not implemented into
the models in this phase of research, which can be noticed from simulations in
Publication II. Moreover, the idea of an additional filtering of iapg (Fig. 8) could
not be implemented into the target hardware (in Publication III) due to the low
bandwidth of the DC-DC converter current regulator.

4.3 Publication 111

The paper presents validation experiment results for the designed series-hybrid pow-
ertrain plant models. Furthermore, this paper focuses on modeling and energy man-
agement of the UC buffered diesel-electric powertrain.

First, information is gained on the accuracies of the designed simulation mod-
els. Figs. 31, 32, and 33 illustrate experiments in contrast to simulation results.
These figures show that the mean values of variables can be predicted with the
designed plant models. In addition, the study illustrates that the designed energy
management (in Publication II) operates as intended. The study concludes that
the proposed energy management interface enable all operation modes of a hybrid
powertrain. Based on the information gained, precise descriptions of energy man-
agement algorithm interfaces have not been covered thoroughly for all powertrain
topology cases.

Furthermore, it can be argued that the presented experiments with simulation
comparisons are either the first or amongst the first, which can be found from the
literature for the studied powertrain case. In addition, essential operation behaviors
are pointed out with figures. Those figures and presented accuracies are valuable
for peers working with the same or similar series-hybrid powertrain systems.
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Figure 31: Comparison of the simulated and the experimented ES current with the
proposed energy management algorithms.



62

Current [A]

Apee Calculated AFE current |77 """" """" """"
) Simulated AFE current | 5L S 4
P .
I P AP .
70 i I i i I i 1 i i
] 20 40 &0 =) 100 120 140 160 180 200
Time [s]

Figure 32: Comparison of the simulated and the experimented AFE current with
the proposed energy management algorithms.
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Figure 33: Comparison of the simulated and the experimented ES storage voltage
with the proposed energy management algorithms. Comparison consist of variable
and constant capacitance simulations.

A limitation of the study is that it only mentions the descriptions of simulation
models, and thus neglects mathematical descriptions as well as the schematics of
plant models. Thus, the study is difficult to reproduce for a new engineer, but most
likely behind a moderate workload for an engineer with existing simulation tools and
experimenting hardware. Moreover, a better choice for the DC-DC converter plant
model validation would have been an intermediate circuit current and not an ES
current. The intermediate circuit current would have also considered the accuracy
of the plant model, and not only the accuracy of the energy management algorithm.
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Review of Plant Models Accuracies

In autumn 2010, a new comparison was performed of modeling accuracies. Table
13 summarizes the accuracies which were achieved with the proposed simulation
method. The static and dynamic accuracies are characterized as being good, inter-
mediate, and low by referring to the behavior of a plant model, not to the plant
model description. In addition, there was a revaluation of max, mean, and RMS
errors between simulated and measured variables.

Table 13: The variable accuracies with the proposed backward modeling approach.

upc  MVSDG LAFE Une les
Static behavior good good good good good
Dynamic behavior low good intermediate good intermediate
Max error - ~90 rpm ~80 A 3Va..5VP ~150 A
Mean error - ~b rpm +02A 1Ve .. 3VP +05A
RMS error - ~9 rpm ~3.0 A 3Ve .. 4VP ~6.0 A

& refers to the variable Cyc, b refers to the constant Cye

Accuracies are the poorest when the simulation bandwidth, and simulated phe-
nomenon bandwidths are the closest. Therefore, the DC-link voltage modelling
accuracy is the poorest—specifically in transitions. However, mean error values are
small as targeted at the beginning of this study, and therefore, the approach enables
the energy management algorithm design for series-hybrid powertrains within 20
Hz-bandwidth.

4.4 Publication IV

The paper presents the experiments of two different power buffering cases with
active control of an UC pack. First, the peak power cutting method is described,
as well as an acceleration assistance and regenerative energy recuperation method.
Furthermore, there is a presentation of efficiency maps of single power conversion
through a DC-DC converter, single power conversion through an UC pack, and ES
system cycle efficiency through twice a DC-DC converter and twice an UC pack.
Finally, efficiency and fuel consumption maps are utilized for illustrations of the ES
system and the VSDG operation areas with the proposed control algorithms.

The paper concentrates especially on the control and efficiencies of an ES sys-
tem. Furthermore, described power control methods were applied to simulations
of the diesel-electric powertrain with an active UC buffering. The simulations pre-
sented illustrate precisely the operation areas of a diesel engine and ES system in
two different energy management cases, and show the downsizing potential of an
engine. Based on the information attained, similar system level energy management
comparisons have not been presented before for the studied series-hybrid powertrain
case in the literature.

However, the simulated Figs. suggest that the proposed control for the system
add divergent power transitions to the primary source, and controls the ES system
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current with less sudden transients. Such a system operation may be unwanted due
to operation of an engine. Based on the figures presented, it is not clear whether
problems arise from the proposed energy management algorithms, sizing of a DC-
DC converter, or sizing of an UC pack. Therefore, solutions to avoid transients in
engine operation should be considered when reproducing similar work.

Fig. 34 shows the operation areas of the ES system on the two-quadrant efficiency
map with two simulated cases. Green crosses refer to the operation points with the
peak power cutting control method, and red circles refer to operation points with the
acceleration assistance and regenerative energy recuperation method, respectively.
Fig. 35 illustrates loading of the VSDG in conventional use, and in hybrid powertrain
cases.

New similar research contributions could be made for different energy manage-
ment strategies and algorithms. In those new contributions, emphasis could be on
ensuring steady operation of an engine. Furthermore, load transient limitations for
an engine should be specified as a base for the energy management design. Two inter-
esting paths can be named for considerations of new energy management strategies
and algorithms. First, a new algorithm structure with use of either a dynamic rate
limiter or a high-pass filter to ramp-up an engine power reference, and to subtract
an ES power reference based on load and engine power references. Second, change of
the control strategy from the AFE converter regulated intermediate circuit voltage
to the ES converter regulated voltage, respectively. In the second case, a tuning
variable for an engine control would be torque.
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Figure 34: Operation points of the ES system during ECE-15 drive cycle simula-
tions. Green crosses refer to the peak power cutting control method, and red circles
refer to the acceleration assistance and regenerative energy recuperation method,
respectively.
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Figure 35: The loading of the VSDG in three simulation cases. The blue line refers
to the conventional VSDG use, the green line refers to the peak power cutting
control method, and the red dashed line refers to the acceleration assistance and
regenerative energy recuperation method, respectively.

4.5 Publication V

A mutual comparison is presented of different powertrain topologies in a specific
harbor straddle carrier usage in this paper. In the comparison, five different FC
powertrain cases are considered. Powertrain cases are: FC and passive battery,
FC with passive battery and active UC pack, FC with active battery and active UC
pack, variable power operated FC with active UC pack, and constant power operated
FC with active UC pack. Considered features in the comparison are weights, sizes,
efficiencies, and initial as well as lifetime costs of each powertrain cases.

The paper presents mathematical descriptions of plant models to improve the
repeatability of similar work and illustrates different powertrain cases with figures of
simulated power flows. Furthermore, the knowledge attained of mutual differences
between powertrain cases enables optimization of a duty vehicle powertrain for a
specific purpose. For instance, a different topology optimizes a powertrain in respect
to weight and size, than which optimizes a powertrain in respect to costs or in
efficiency.

However, the whole comparison topic is wide and one conference paper cannot
describe all the issues related to the work, e.g. specific control algorithms on each
case. Therefore, more concentration is needed on describing energy management al-
gorithms in each powertrain case through mathematical descriptions and schematic
illustrations. Otherwise the repeatability of the work for other researcher or engi-
neers may be difficult. Thus, future research directions include exact descriptions
of energy management algorithms based on modelling principles presented in this
study.

Furthermore, the study has only considered usage of the high energy density bat-
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tery technology, and neglected possible use of high power density battery technology.
The review presented in the next section adds the high power battery technology to
the consideration of mutual differences between different powertrain cases.

4.6 Review for Comparisons of Fuel Cell Series-Hybrid Pow-
ertrain Topologies

This section reviews results of Publication V with respect to high power (HP) battery
packs. In this categorization, the high energy (HE) battery refers to cases with
continuous 1C charge and discharge currents, and with maximum 2C discharge
current. The HP battery refers to cases with 6C continuous current for both charging
and discharging, and 10C maximum current, respectively. The results in Publication
V are calculated assuming use of the HE battery.

Five different powertrain topologies are considered (as in Publication V) with
the following configurations:

e Case a: fuel cell, and passive battery, [Fig. 36 (a)]

e Case b: fuel cell, passive battery and active UC, [Fig. 36 (b)]

Case c: fuel cell, active battery and active UC, [Fig. 36 (c)]

Case d: fuel cell with active UC, variable FC power production, [Fig. 36 (d)]
and

e Case e: fuel cell with active UC, limited FC power production. [Fig. 36 (d)]

Calculation parameters for the review are presented in Table 14. The results are
calculated assuming 15 years lifetime of a powertrain.

Table 14: Weight, size, price, and lifetime parameters.

Component Weight Size Price Lifetime
[Wh/kg] [Wh/dm?] [$/kWh] M]
HE battery 102 129 210 - 840 0.3*
HP battery 50 95.6 980 - 2800 0.3*
UucC 2.3 1.6 2380 - 3220 1P

(kWear/kg]  [kWpear/dm?]  [$/kWiear]  [years]

FC 0.21-0.38 0.14 - 0.27 100 1.6
DC-DC 3.45 5.8 100 15
Brake resistor 13 6.6 5 15

2 refers to a shallow cycle, P refers to a deep-discharge cycle
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Figure 36: Schematics of studied powertrain topologies.

Lower price values of energy storages refer to mass manufacturing costs, and
high price values refer to early market costs, respectively. Prices of FC and PE are
somewhat the same as mass manufacturing costs estimated for 500k units yearly
production.

Table 15 presents equivalent FC hybrid powertrains based on backward sim-
ulations from a known load cycle of a NRMM to sources. Results are based on
simulations presented in Publication V.

Fig. 37 presents weight and size comparisons for different topologies with HE
batteries, in cases a, b, and ¢. The UC buffered topologies are cases d and e, as well
as b and ¢ with UC peak power buffering only. Fig. 38 presents weight and size
comparisons for the HP battery buffered topologies, respectively.

These figures show that the minimum weight and size are achieved with the fuel
cell, passive HP battery topology. Almost equivalent weights and sizes respect to the
HP case a are attained with HP cases b and ¢. However, if the HE battery is used, the
weight and size order changes. Then, the minimum weights and sizes are achieved
with cases b and c¢. Furthermore, the HE case a becomes significantly heavier and
larger, and is comparable to UC buffered cases d and e. The heaviest and largest
case is the e in which the FC source is operated continuously on maximum power
region and buffered with UC packs. Therefore, weight and size mutual relations of
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Table 15: Equivalent powertrains.

Battery  UC FC DC-DC Resistor
[kWh]  [kWh]  [kWpea] [>° kWpear]  [kWpeax]
Case a, HE 189 0 75 75 0
Case b, HE 108 0.55 75 275 0
Case ¢, HE 108 0.55 75 386 157
Case a, HP 34 0 75 75 0
Case b, HP 19 0.55 75 275 0
Case ¢, HP 19 0.55 75 386 157
Case d 0 2.63 200 357 267
Case e 0 4.03 82 385 27
3500
mE 3000 »
k=) I Weight
§ 2500} | I Size
g 2000
£, 1500}
(]
=
1000}

Casea Caseb Casec Cased Casee

Figure 37: Weights, and sizes of different topologies, with the HE battery buffering.

different topologies are dependent on nominal current value which can be reached
from a high power battery pack.

Figs. 39 and 40 present initial and lifetime costs calculated with new parameter
values. Lifetime costs are average values within energy storage cost variance which
is shown with error bars.

The figures show that the minimum costs are achieved with the case e, e.g. the
maximum power region operated FC source buffered with UC packs, due to the
low price of UCs. Note that the UC error bars are negligible. The second lowest
price is attained with the case d which has a higher rated FC source. Battery based
topologies will not ever achieve as low lifetime costs with shown parameter values.
In battery based topologies, the cheapest is the HP case b, and the second cheapest
is the HP case c¢. The most expensive topology is the HE case a.

Table 16 presents distribution of mass manufacturing costs in percentages be-
tween different powertrain components. The table illustrates the significant impact
the battery has in each case on topology costs. Energy cost becomes more significant
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Figure 38: Weights, and sizes of different topologies, with the HP battery buffering.
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Figure 39: Initial and lifetime costs of different buffering topology cases, with the
HE battery pack.

if battery size is decreased with the low-cost UC based peak power unit. The FC
source price dominates on UC based topologies d and e, whereas UC and PE prices
begin to have an impact.

Fig. 41 illustrates an iteration path which was used during the study. The first
phase of the work refers to the general design of powertrain topology, control strat-
egy, and energy management algorithms. The second phase refers to simulations
with the present state of the model. After simulation, a comparison is made be-
tween reference power and realized power transfer. A comparable powertrain case is
achieved when reference and actual powers are equal, in which case the characteris-
tics of the powertrain can be calculated. In the case of derated load power transfer,
either simulation parameters, such as designs of DC-DC converters, battery, UC
pack, or FC source are reconsidered, or even the basis of the control strategy and
the energy management are reconsidered.
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Figure 40: Initial and lifetime costs of different buffering topology cases, with the
HP battery pack.

Table 16: Distribution of lifetime costs in percentages.
Battery [%] UC [%] FC [%] PE [%] Energy [%]

Case a, HE 77.5 0.0 13.7 1.5 7.4
Case b, HE 60.9 1.1 18.9 7.4 11.8
Case ¢, HE 53.9 0.9 16.7 9.4 19.0
Case a, HP 69.9 0.0 14.9 1.6 13.6
Case b, HP 50.0 1.1 19.1 7.5 224
Case ¢, HP 42.3 0.9 16.1 9.1 31.7
Case d 0.0 5.5 55.5 11.0 28.0
Case € 0.0 13.8 36.8 18.6 30.9
Design
Powertrain topology, Control strategy and  «
energy management algorithms or
¢ Reconsider parameters:
DC-DC: Imax & Imin, /Jococ
Multi-stage backward modeling [ Battery: Uo & Unom , Ah, n*C
Ultracapacitor: Cucap & Umax
l FC-stack: dp/dt & urc(irc)
Unequals Teither

Comparison of pref to pact

l Equals

Calculation of characteristics

v

Comparable case x... y... z

Figure 41: Iteration path to simulations to achieve comparable powertrains.
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5 Conclusions

The main scope of the study is specifically on design, modeling, and energy manage-
ment of series-hybrid powertrains for non-road mobile machineries. Contributions
are made to find proper plant models for the model-based design of different series-
hybrid powertrains in vehicles. This study proposed the use of certain system-level
plant models for the design of series-hybrid powertrains, gave mathematical descrip-
tions for plant models, and pursued an understanding of accuracy in a model-based
design, with both based on theory and experiments. Furthermore, contributions
were given, especially for energy management design in the diesel-electric power-
train with an active ultracapacitor pack as the energy storage. Finally, designed
plant models were used for the comparison study between different FC powertrains.
As a result, knowledge is gained of mutual differences between powertrain charac-
teristics, such as weights, sizes, efficiencies, and costs.

A multi-stage simulation tool has been created for the engineering purposes of
different series-hybrid powertrains. The modeling method and its use for powertrain
comparisons, as well as energy management design, have been illustrated with ex-
amples. Thus, the work has value for students, researchers, and engineers aiming to
reproduce similar work. Furthermore, designed powertrain models can be adopted
to aid powertrain designers R&D, or for teaching purposes. Based on a compari-
son between simulations and experiments, as well as theoretical error analysis, the
proposed multi-stage approach enables the energy management algorithm design for
series-hybrid powertrains within 20 Hz-bandwidth. The motivation of this thesis is
on the distribution of knowledge and on documentation needs of the proposed mod-
eling method. Furthermore, the adoption of clean and renewable energy technologies
requires similar studies as presented in this thesis.

This thesis illustrated thoroughly the design and operation of the energy manage-
ment algorithm for the active UC pack buffered diesel-electric powertrain. Special
care must be taken while implementation the proposed or similar energy manage-
ment to the target hardware, due to the complexity of the full system. Despite
promising energy management illustrations and experiments, some modifications to
algorithms might be needed. Furthermore, implementation of this or any other en-
ergy management algorithm is vulnerable to issues arising from behaviors above 20
Hz-bandwidth.

This thesis provided knowledge on achievable accuracies with the proposed mod-
eling method in the vehicle powertrain design. Furthermore, comparison procedure
for different series-hybrid powertrains is described, and this research contributes to
an understanding of mutual differences in the characteristics of different powertrain
cases targeted to—specifically, the harbor straddle carrier application. Therefore,
a comparison has been introduced of different series-hybrid powertrain topologies.
However, mutual differences in powertrain comparison are sensitive to parameter
changes, such as nominal battery current, as well as weights, sizes, costs of compo-
nents. Thus, it might become beneficial to enact a similar powertrain comparison
in parallel with design process of new hybrid powertrains.

New research contributions could be created, firstly, for the design of differ-



72

ent energy management strategies and algorithms in the active UC pack buffered
diesel-electric powertrain. In those contributions, emphasis could be more on steady
operation of an engine. Two interesting paths for those studies were mentioned in
this thesis; first, that of changing the energy management algorithm, and secondly,
changing the control strategy. In this context, changing the energy management
algorithm refers to new algorithm structure, and changing of the control strategy
refers to changing primary tuning variables in the energy management. Secondly,
new research contributions are needed to give exact mathematical and schematic
descriptions for different energy management algorithms in series-hybrid powertrain
topologies. Algorithms should be implemented to the real hardware in order to
avoid misleading errors. Such work is needed for knowledge transfer and documen-
tation, as well as for adoption of clean and renewable energy technologies in the
transportation sector. Thirdly, introduction of quantitative analysis is suggested for
efficiency and fuel consumption mappings, in order to cumulate small error values
in the resulted fuel consumption estimate.
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Table Al: The efficiency mapping data of the DC-DC converter in charge mode.

Uratio S0A  H0A  70A  85A 107TA 126A 146A 170A 196A
0.01  0.632 - - - - - - - -

0.02 0.711 0.711 0.748 0.748 - - - - -

0.03 0.750 0.803 0.796 0.804 - - - - -

0.04 0.791 0.832 0.837 0.839 - 0.753 - 0.422 0.137
0.05 0.812 0.854 0.859 0.861 0.824 0.808 - 0.690 0.322
0.06 0.839 0.868 0.874 0.877 0.852 0.862 0.859 0.742 0.693
0.07 0.852 0.880 0.886 0.888 0.874 0.880 0.883 0.793 0.878
0.08 0.862 0.889 0.895 0.898 0.886 0.893 0.890 0.845 0.882
0.09 0.870 0.896 0.903 0.905 0.899 0.895 0.897 0.896 0.886
0.10 0.877 0.902 0.909 0911 0.910 0.897 0.900 0.910 0.898
0.11  0.882 0.908 0.914 0.916 0.912 0915 0908 0.914 0.910
0.12  0.888 0.912 0919 0.921 0917 0919 0916 0.918 0.915
0.13 0.893 0.916 0.923 0.924 0.923 0925 0923 0.922 0.920
0.14 0.897 0.920 0.926 0.929 0.927 0930 0928 0.925 0.924
0.15  0.901 0.923 0.930 0.932 0.930 0.932 0.930 0.930 0.927
0.16 0904 0926 0.932 0935 0932 0933 0932 0.933 0.930
0.17 0.907 0.929 0935 0.937 0934 0.936 0.936 0.935 0.932
0.18 0.909 0.931 0.937 0940 0.937 0939 0940 0.938 0.938
0.19 0913 0.933 0.939 0942 0.940 0.941 0.942 0.940 0.940
0.20 0915 0935 0941 0944 0942 0944 0.943 0.942 0.942
0.21 0918 0.937 0944 0946 0.944 0946 0.945 0.941 0.941
0.22 0922 0939 0945 0.948 0946 0.948 0.948 0.948 0.941
0.23 0924 0941 0947 0949 0.943 0945 0951 0.955 0.948
0.24 0927 0.942 0.949 0.951 0.948 0951 0.953 0.950 0.954
0.25 0928 0.943 0949 0.952 0.953 0.956 0.957 0.951 0.951
0.26  0.929 0.941 0.950 0.954 0.952 0.952 0.954 0.952 0.952
0.27 0930 0946 0.952 0.955 0.954 0.954 0.955 0.954 0.952
0.28 0.931 0.947 0.954 0.957 0.955 0.955 0.957 0.955 0.954
0.29 0932 0948 0.954 0.957 0.956 0.956 0.958 0.956 0.955
0.30  0.932 0.950 0.956 0.958 0.957 0.958 0.958 0.958 0.957
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Table A2: The efficiency mapping data of the DC-DC converter in charge mode.

Continuing from the previous page.

Uratio 30A  H0A  70A  85A 107TA 126A 146A 170A 196A
031 0933 0.951 0.957 0.959 0.957 0.959 0.959 0.959 0.958
0.32 0934 0.952 0.957 0.960 0.959 0.960 0.961 0.961 0.959
033 0935 0.953 0.958 0.961 0.960 0.961 0961 0.961 0.960
0.34 0.936 0.954 0.959 0.962 0.961 0.962 0.963 0.962 0.961
0.35 0936 0.955 0.960 0.963 0.962 0963 0.963 0.963 0.961
0.36 0.937 0.956 0.961 0.963 0.963 0.964 0.964 0.964 0.962
0.37 0.937 0.957 0.962 0.965 0964 0965 0964 0.964 0.963
0.38 0.938 0.958 0.962 0.965 0.965 0.965 0.965 0.965 0.964
0.39 0939 0.958 0.963 0.966 0.966 0.966 0.966 0.966 0.965
0.40 0.940 0.959 0.964 0.966 0.966 0.967 0.967 0.967 0.966
041 0941 0.959 0.965 0.967 0.966 0.967 0.968 0.967 0.966
042 0941 0.960 0.966 0.968 0.967 0.969 0.969 0.968 0.967
043 0942 0.961 0.966 0.969 0.969 0.969 0.969 0.969 0.968
044 0942 0.962 0.967 0.969 0.969 0.969 0970 0.970 0.968
0.45 0.943 0.962 0.967 0.970 0.970 0.970 0.970 0.970 0.969
046 0944 0.963 0.968 0.970 0970 0970 0970 0971 0.970
047 0944 0.963 0.969 0971 0971 0971 0971 0972 0.970
048 0945 0964 0970 0971 0971 0972 0972 0.972 0.971
049 0946 0.965 0.970 0972 0972 0973 0.973 0.973 0.972
0.50  0.947 0.965 0.970 0973 0973 0973 0973 0.973 0.972
0.51 0.947 0.966 0.971 0973 0973 0974 0970 0.972 0.968
0.52 0948 0.966 0.972 0974 0972 0974 0974 0.974 0.971
053 0949 0.967 0972 0974 0974 0975 0975 0975 0.974
0.54 0.950 0.968 0.973 0975 0975 0976 0976 0976 0.974
0.55 0951 0.968 0973 0975 0975 0976 0.976 0.976 0.975
0.56 0.952 0.969 0.974 0976 0976 0977 0.976 0.976 0.975
0.57 0953 0970 0975 0976 0977 0977 0977 0976 0.976
0.58 0.955 0.971 0.975 0977 0977 0973 0975 0976 0.976
0.59 0956 0971 0976 0977 0977 0973 0975 0976 0.976
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Functional Simulations of Power
Electronics Components in Series-Hybrid
Machinery for the needs of OEM

Matti Liukkonen, Ari Hentunen, Jussi Suomela and Jorma Kyyré

Abstract— This paper proposes method for rapid control pro-
totyping of the series-hybrid transmission system. The rapid con-
trol prototyping needs simulation submodels from all system
components in order to develop supervisory control software.
The same simulation models can also be used to optimize the
drive train. The target framework for the rapid control prototyp-
ing method is the original equipment manufacturer (OEM),
where the objective is to build devices from subcontractor’s
components. The machinery industry, as a target group, uses
high power ratings for the creation of motion, which leads to
high voltage and current values used in the system. Therefore,
prototyping is started with careful simulations. This paper also
seeks to create a general idea about the structure of the series-
hybrid power transmission and assists the start of the process for
designing the supervisory control.

Index Terms—functional simulation, power electronics, series-
Hybrid drive train

I. INTRODUCTION

EAVY machinery such as harbor straddle carriers, loaders

for underground mines and forestry harvesters are conven-
tionally powered with the internal combustion engine (ICE).
The ICE is traditionally connected to the mechanical or hy-
draulic power transmission. Work cycles of such machinery
are often such that the fuel economy of the machine could be
increased considerably by hybridizing the drive train. Buff-
ered electric power transmission allows energy regeneration
and optimization of the diesel operation.

The driving force behind the hybridizing of heavy machin-
ery is the fuel economy. As a side-effect, better fuel economy
results in lower emissions and equipments life-cycle costs. In
some cases, it is also possible to downsize the engine, because
the engine no more has to be sized for peak-power [1]. An-
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other important aspect is the drastically increased amount of
available electric power. In the heavy machinery there often
exist subsystems which could benefit from the on-board elec-
tric power plant and electric energy storage. For example, the
belt-driven cooling fan could be replaced with an electric mo-
tor driven fan. The speed of the fan could then be adjusted
freely, because there is no mechanical coupling between the
ICE's shaft and the fan. When cooling is not needed, energy
could be saved by shutting the fan off. Additionally, the elec-
tric power transmission provides better traction and actuator
control than the traditional power trains.

A hybrid electric vehicle is drive-by-wire by nature and
needs a sophisticated vehicle control system. The control sys-
tem collects data from subsystems, and based on the data and
driver’s requests, it gives control references to the subsystems.
Because of the complexity of the system, model-based soft-
ware development is widely adopted in the industry.

Model-in-the-loop (MIL) simulations provide fast and
flexible development of the system level power management.
Simulations provide also useful information in the concept
design phase and can be used in the component selection of
the subsystems.

In order to perform model-in-the-loop (MIL) simulations
for the vehicle control system, functional models of the sub-
systems are needed. A functional simulation model describes
the basic behavior and operational limits of a component or a
subsystem. The models should have the same 1/O interface as
the real components. The models should also simulate real
variables, such as voltages, currents and engine speed, with
enough accuracy. Too high accuracy results in very slow
model execution, and too low accuracy results in inaccurate
data, thus corrupting the simulation results. Therefore, a good
balance between accuracy and model execution time is desir-
able.

In this paper, functional models of the main components of
the series-hybrid system are presented. MATLAB is used as a
modeling environment. The framework of the study and de-
velopment is the heavy machinery original equipment manu-
facturer (OEM) industry [2].

Il. SIMULATION OF SERIES-HYBRID SYSTEM

The series-hybrid drive train connects primary energy
sources to energy storages and loads via the dc voltage link.
Therefore, power electronic devices are needed to separate

NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, June 9-11, 2008



different voltage potentials between energy storages and to
control the power flow through the drive train. Furthermore,
power electronic devices are needed for motion control with
the electric motors.

Figure 1 represents possible components used in the series-
hybrid drive train. The internal combustion engine or the fuel
cell stack is used as a primary energy source. As a secondary
energy storage can be used, for example, ultracapacitor mod-
ule, battery, fly-wheel or a combination of these, depending
on the application. Methodologies for designing appropriate
power transmission system are presented in papers [1], [3] -

[6].

Electrical Control Unit

Gontrol wires

e nG Brake -
L 1 Braka -
D+ 1[F]=

Fly-vhesl Batiery Ulia
system capacitor

Energy storages

Fig 1. The layout of the series-hybrid drive train

Primary energy sources

The connection from the generator-set to the dc voltage link
is made with an active rectifier, which enables adjustment of
the output voltage in the dc voltage link part. As a result, it is
possible to force the generator-set to work along the maximum
efficiency line, in co-operation with the speed control and the
active rectifier control [7]. The connection from the fuel cell
stack to the dc voltage link is made with a unidirectional dc/dc
converter. In contrast, the battery and the ultracapacitors are
connected to the dc voltage link using bi-directional dc/dc
converters [8]. The fly-wheel is connected to the dc voltage
link through an inverter.

The simulation models presented in this paper are made
with the MATLAB/Simulink software. Further, the simulation
libraries SimPowerSystems and Stateflow are used to generate
the simulation subcomponent models of the series-hybrid sys-
tem. The SimPowerSystems library components are used for

Icontrol_in

modeling the hardware in the series-hybrid drive train, and the
Stateflow library is used for producing the control logic of the
subsystems in the simulation model.

Modeling of the series-hybrid power transfer system should
reach 20 Hz-bandwidths accuracy, which is enough for the
system level control design. The accuracy is ensured by using
correct capacitance and inductance values in the interfaces of
power electronic component submodels. With regard to the
transferred current levels, this bandwidth carries electrical
transients caused by capacitors, inductors and the equivalent
series resistances. The bandwidth enables the power electronic
switches to be left out from the submodels, and the models are
built over the current control loop. The functioning of the
power-semiconductor switches is taken into account with the
Pl-regulators, which limits the maximum value of control sig-
nal. In additionally, the simulation models are run with a dis-
crete solver of the MATLAB/Simulink, in which the sampling
time of the models is close to the switching frequencies of the
power electronic devices.

—f O+
—{. DC+ %
i DC-link
DC-1

1

%|Ultracapacitor

rolled
s Load SR ]
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from ICEM

Active rectifier-bridge and generator
>

Fig. 2. The series-hybrid system simulation model realized with the SimPow-
erSystems and Stateflow library components.

The simulation model of the series-hybrid system includes
submodels of the current and the voltage controlled dc/dc
converters, the brake chopper, the load consumption data and
the active rectifier-generator combination. Accurate simula-
tion model from the internal combustion engine have been left
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out of study for the simplicity. Therefore, the simulation
model solves the required torque from the internal combustion
engine, which gives information from the rating necessary.

A. Modeling of the Current Controlled DC/DC Converter

Modeling of the dc/dc converters is based on the current
control loop. The dc/dc converters are presumed to transfer
the current ideally from one voltage level to the other, because
the consideration of transfer losses in transferred current
would be difficult. The current control loop in the dc/dc con-
verter simulation model will be as follows.

1. Given current reference is generated to the wanted
direction

2. Transferred power is measured

3. Solved current is taken from the opposite direction

The difference between current transfers can be neglected
because of a short sampling time in the simulations.

The interfaces of the dc/dc converters are modeled using
the capacitance and the inductance components found in the
SimPowerSystems library. The current reference coming from
the superior control is generated and directed through to the
inductance port with the controllable voltage source connected
to Pl-regulator.

Superior to the current control loop, the dc/dc converter has
Stateflow block, which contains the voltage value limits of
energy storage. If either the maximum or the minimum limit
overpasses, then the signals coming from the superior control
are disabled. The maximum voltage level is defined by the
nominal voltage of the energy source and the minimum volt-
age is determined by the point at which the power transfer
efficiency in the dc/dc converter collapses.

Information of the power transfer losses in the dc/dc converter

Information of the dc/dc converter’s transfer losses is based
on the measured efficiency map. The dc/dc converter’s effi-
ciency is defined by the transferred current and the conversion
rate of the voltages between upper and lover voltage levels.
The efficiency map is included into the simulation model as a
lookup table, which gives the state of the power transfer at the
time.

B. Modeling of the Voltage Controlled DC/DC Converter

The voltage controlled dc/dc converter is used in fast low
level control/stabilization of the dc-link voltage. This con-
verter is typically used with ultracapacitors [4]. The simula-
tion model from the voltage control has been implemented
between the current control and the superior control of the
system. This control has been made using the Stateflow block.

Discharge_5C
e leorirsl_out = 1;

Voltage limit
Controller

—— ——{ VoltageD Clink
Ibtagadif < Uimks[2]]

[okage
— —{VoltageSC %_\jl;‘ Icontrol _out/f— —
Limits bus I—P Limits

Voltage Limits
Fig. 4. The voltage control limits build on top of the current control loop with
the Stateflow block.

In addition to the voltage limits in energy storage side, the
voltage controlled dc/dc converter has a tolerance-band con-
trol in the dc voltage link port. The dc-link’s tolerance-band
control ensures that the dc-link’s voltage does not collapse or
increase in sudden load transients. After the voltage changes
to the maximum or the minimum control value, the current is
transferred via the dc/dc converter to stabilize it. The current
direction depends in which, maximum or minimum, limit
value dc-link’s voltage overpasses. The current transfer stops
after the voltage overpasses the hysteresis of the limit in ques-
tion. The voltage controlled dc/dc converter enables the
smooth loading of other energy sources, which is suitable for
their operation. Therefore, other energy sources should be
controlled to remove loading from the voltage controlled con-
verter and to maintain the dc-link’s voltage within its voltage
tolerance band [9].

DC-link

578.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
Time (s)

Fig. 5. The voltage control limits illustrated with constant current reference.

C. Modeling of the Active Rectifier

The active rectifier allows controlling of the output voltage
of the dc-link’s port. The active rectifier is modeled in a simi-
lar way as the dc/dc converters, which includes the ideal
power transfer, the interface capacitance and the controllable
current source. The output in the dc-link’s port is voltage
regulated, and the output voltage is calculated using the inter-
nal combustion engine’s speed state value and also the voltage
reference, which come from the superior control. The trans-
ferred power to the dc-link is measured and the necessary
torque to maintain the speed reference of the internal combus-
tion engine is solved. The generated transfer losses will be
modeled using the efficiency data inside the lookup table.



Permanent magnet generator

The permanent magnet generator is modeled by taking into
account the approximate efficiency value and the inertia of the
rotor. The efficiency of the generator increases the torque
value necessary from the internal combustion engine. The
inertia of the rotor affects the speed states of the internal com-
bustion engine.
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Solving the needed torque from the internal combustion en-
gine

Modeling of the internal combustion engine is problematic
because it operates behind its own electrical control unit.
Therefore, the model of generator-set is superficial and in-
cludes only the inertia of the internal combustion engine and
the speed control loop from which the required torque is
solved. The torque is solved from the transferred power and
from the speed state of the internal combustion engine and up
rated with the efficiency value of the generator. The speed
control loop, with the P-regulator, adjusts the required torque

current of active rectifier -bridge

Efficiency of

generator
Speed state of

the internal combustion engine

with the production of inertia as well as with the speed state
adjustment signal.

D. Modeling of the Inverter load

The loading of the series-hybrid system is modeled using
the recorded power consumption data. The heavy machinery’s
power consumption data can be recorded from the parameter
values of the inverter in the machinery, which has electric
drive train. The real power data gives information from rating
of the secondary energy storages, the dc/dc converters as well
as rating of the ICE. If the apparent power is used instead of
the real power, the simulation offers information also from the
necessary dc-link capacitance. The measured data can be
driven out from the dc-link with the controllable current
source. The inverters real power data is needed designing a
supervisory control for different power flow directions and
operation points. The other approach for the simulation of the
load is to generate an approximate load curve with the signal
builder block.

E. Modeling of the Brake chopper

The brake chopper is modeled using the current source par-
allel with the dc-link. The current source is controlled with a
Pl-regulator which is controlled with the dc-link voltage. As a
functionality of the brake chopper, the current sources power
transfer is limited by the maximum power, which can be dis-
sipated into the brake resistor. The brake chopper enables
when the dc-link’s voltage overpasses the activation limit.

F. Modeling of the Power Sources

The ultracapacitors and the battery are modeled simply with
an internal resistance, capacitance and with the energy stor-
ages initial condition. In reality, the equivalent circuit is more
complex, but for the OEM needs this modeling level is suffi-
cient. The supervisory control of the series-hybrid power
transmission does not necessarily need information from volt-
age balance between subcomponents of the energy storage
[10].
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Fig. 7. The simulation model of the generator-set in the series-hybrid system
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G. Converting the Simulation Model to S-function

The simulation model of the series-hybrid system is realized
using the SimPowerSystems as well as the Stateflow compo-
nents, which do not belong to basic Simulink libraries. There-
fore, it is worthwhile to generate the S-function from the
simulation model with the MATLAB/real-time workshop. The
S-function belongs to the basic Simulink library, and after
compilation, no other Simulink libraries are needed. This is an
advantage because then the OEM does not necessarily need to
have the same Simulink libraries as the university.

I1l. SYSTEM LEVEL POWER TRANSFER CONTROL

The power transfer in the series-hybrid system is realized
through the dc voltage link. The first, requirement is to create
algorithms for controlling the energy storages with the dc/dc
converters and the internal combustion engine within the al-
lowable control limits. For example, with the dc/dc converter,
the voltage drop over the energy sources series resistance en-
forces the down rating of the current while operating near the
energy sources maximum and minimum voltage levels [9].
Furthermore, the energy storages maximum voltage and
power transfers efficiency’s collapsing defines these voltage
limits.

The second, requirement is to create algorithms and control
logic for transferring power through the dc-link with stabi-
lized dc-link voltage. Control with a stabilized dc-link voltage
leads to minimized losses in the internal resistance of dc-links
capacitor bank. It should be possible to transfer power from
any source to any secondary energy storage. Information
about the suitability of the controls is also gained from the
torque curve of the ICE.

The third, requirement is to create the supervisory control

Current ref, current controlled dc/dc converter
Nalhbih

Current direction of current controlled dc/dc converter,
disable 3 - charge 2 -discharge 1 —— —]

Voltage controlled dddc converter, dc-link max
— P

for the series-hybrid power transmission. Several control
strategies have been presented in the latest research papers.
Simple control strategies are torque boost, in which an ultra-
capacitor module is used as support while accelerating and as
storage while decelerating. Another simple control strategy is
peak shaving, which smoothens loading from the ICE during
continuous run with the ultracapacitor module. The need for
slightly more complicated supervisory control strategies arises
when a battery is included in the drive train. More sophisti-
cated supervisory control strategies are presented in papers
[6], [7], [10] and [11]. One interesting strategy, for example,
is the Equivalent Consumption Minimization Strategy
(ECMS) [7].

IV. TEST BENCH

The supervisory control for controlling the hybrid power
transmission needs to be tested with the corresponding test
setup. The testing is made with the test bench built in the
automotive laboratory. The test bench includes an active recti-
fier-bridge (Pcont 310 kW) connected to a power grid, which
can be used to simulate the active rectifier connected to the
generator-set in the hybrid drive train. The dc/dc converter
(Pecont 90 kW) and the ultracapacitor module (17,8F, Unom
390V) are used for energy buffering in the test bench. The
loading of the dc-link is created with an inverter (Seony 120
kVA), which is connected to the induction motor (P 67
kW). The induction motor is used against the dynamometer,
which transfers power back to the power grid. The dyna-
mometer has a continuous power limit of 120 kW. Parallel to
the dc-link is the brake chopper, for which the power dissipa-
tion is rated as 60 kW. At the moment, the series-hybrid
power transmission test bench is lacking Li-ion batteries as the
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Fig. 8. S-function generated from the series-hybrid transmission simulation model and its control interfaces.



other secondary energy storage.

The series-hybrid power transmission system’s components
are connected to CAN-bus to Beckhoff industrial 1/O inter-
face, which is controlled with the dSPACE prototyping hard-
ware MicroAutoBox. The dSPACE MicroAutoBox can be
used to compile the Simulink models to C-code and also as the
software platform [12].

B

Fig. 9. The test b_e;nch in the litor'hdtivé IaEbratdryh

V. SIMULATION EXAMPLES

The simulation model is introduced with the control princi-
ple, where an ultracapacitor module is used for the power
generation in fast load transients, whilst the battery current is
ramped up to support the internal combustion engine [4]. The
active rectifier is used for raising the dc-link voltage over the
voltage controlled converters control limit. After disabling the
ultracapacitors, the load current is supplied from the active
rectifier and the battery.

The voltage controlled dc/dc converter is used with a 580 V
minimum voltage level with 20 volts of control hysteresis. Its
current is controlled with the quadratic function of the dc-link
voltage. The current controlled dc/dc converter, which con-
trols the battery, has a linear current reference as a function of
the dc-link voltage, starting from the same dc-link voltage
limit as the voltage controlled converter. Likewise, the control
of the active rectifier is started from the same control limit and
the voltage reference is ramped up as a function of the dc-link
voltage.

Voltage controlled de/de converter
Le=f(Uc)

Current controlled de/de converter
lm_f(l-l:.')
. / T
Active rectifier-bridge
Uwr=f(Uc)

,_\_.

Fig. 10. The control functions in the example simulation

VI. FUTURE WORK

In the future, the series-hybrid power transmission systems
control algorithms generation will be continued and the testing
of the control logics is started with the hardware.

The test bench will be finalized with the lithium-ion battery
energy storage connected via the current controlled dc/dc con-
verter to the dc-link of the series-hybrid system’s test bench.
The active rectifier connected to the power grid is replaced
with a combination of the generator-set and the active recti-
fier.

Efficiency measurement results from the dc/dc converter
and from the inverter are included in the simulation model. As
a result, the simulation model gives information for the rating
of the liquid-cooling system.

Different supervisory control strategies will be simulated
and tested in the test bench. In particular, strategies based on
the inverter’s power transfer parameter will be considered.
Strategies with one and two current controlled energy sources,
both voltage and current controlled energy sources are also
investigated. Furthermore, it is possible to test different kinds
of predictive control strategies, if proper data from the ma-
chinery’s working cycle is available.

VII. CONCLUSIONS

This paper proposed a way to model the functionality of
power electronic components in the series-hybrid drive train.
For the generation of the simulation models the
MATLAB/Simulink software with SimPowerSystem and
Stateflow libraries were used. The model targeted to 20 Hz-
bandwidths accuracy. The simulation models aim is to provide
the possibility for early phase software design in the series-
hybrid power transmission system, and is also a way to opti-
mize the ratings of the secondary energy storages.

The construction and the operation principles of the sub-
model components were presented and the route for the su-
pervisory control generation was briefly described. The opera-
tion of the series-hybrid drive train was introduced with the
control principle in which ultracapacitors were used for fast
transient buffering while the battery and the internal combus-
tion engine were used during steady state loading.
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Abstract

This paper presents a low-pass filtered power-flmwmtrol strategy for a series hybrid electric vé@i¢S-

HEV) with an energy buffer. The proposed contrahaito decrease the maximum power values from the

primary energy source and, secondly, to reduceehgine-generator dynamics at sudden load changes

(from low loads at low speed to high loads). In easf variable speed diesel generator (VSDG) set

downsizing reduces the emissions and the fuel copsion. The proposed control strategy is introduced

with two different driving cycles, both, for the lnan and the sub-urban areas. The energy losseseddny

the energy buffering, and the sizing of heavy duépicle’s series hybrid drive train are gained assult.

Keywords: Low-pass filtered power-flow control, hgaduty vehicles, plant optimization, series hybgtgctric

vehicle, simulation

1 Introduction

THIs study is part of a duty vehicles hybridization
project. Heavy duty vehicles typically have very
machine and task specific cycles, which are
difficult to generalize. Therefore, the well known
Braunschweig and New European Driving (NEDC)
cycles have been used in order to provide new
information about power losses in supercapacitor
(SC) buffered series HEV driveline. The study,
which is made for the duty machines, can also be
utilized for heavy duty road vehicles such as treick
and busses.

Usefulness of the hybrid electric driveline
depends on the load cycle. Therefore, this paper
presents a low-pass filtered power-flow control,[5]
[71-[9], [11], [16] with two different load profils,
which argues for both convenient and inconvenient
cycles. As a result, the study offers confirmingala

for reducing the size of the primary energy source
compared to other research [8], as well as, sizng
power losses, in both, in the SC and in the dc/dc
converter of the system [6].

It has been shown that bad dynamical properties of
the system for the VSDG, as in conventional drive
train, can be considerably improved by implementing
power electronic converters with an energy buffer
[12]. The low-pass filtered power-flow control
reduces dynamic requirements from the primary
energy source.

The presented low-pass filtered power-flow control
also seeks methods to reduce the deep discharge
cycles from the SC, which causes limited life-tinme
very cyclic applications. In order to achieve saoféint
lifetime of supercapacitors, it should be avoided t
use the full operation range of the SC (50% to 100%
state of charge, SOC), which has a limited lifetiofe
1 million cycles.
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2 Introduction

2.1 Topology

The series hybrid drive train is presented in Fig.
1. The VSDG generates ac current to the active
front end converter (AFE), which converts the ac
current to the dc current and stabilizes the d& lin
voltage. The AFE regulates the dc link voltage to
650 V in the proposed system. The energy storage
(ES), in this case a supercapacitor module, is
connected via the dc/dc converter to the dc link.
The inverter is connected to the dc link and isdise
directly from Power Management System (PMS)
for the traction control purposes.

The proposed variables for the power-flow
control are the load power to the inverters, the
speed of the vehicle, the dc link voltage and the
energy storage voltage [9], [10]. The load power
can be considered as a measured or as a
feedforward value [4]. The control signals for the
power-flow control are the dc link voltage
reference, which would be controlled from the
PMS, feedforward power flow for the AFE, the
dc/dc converter's current and the speed of the
VSDG [2] [12]. VSDG is controlled within optimal
operation area [14] [16]. The system topology, the
control signals and variables are shown in Fig. 1.

(L

My oF Control
u,,
u, ™ 5
[ hwse [ e
i Diee ] AC [ I [L De
|| Engine ] e = -
=== 3 r

DC
DC

-

Supercapacitor

Fig. 1 The system topology, the control signals andontrol
variables for the supercapacitor buffered series-hjgrid
electric transmission.

2.2 Propulsion power in the Driving
Cycles

The required propulsion power from the electric
transmission is determined based on the system
constraints as maximum acceleration, rated and
maximum vehicle velocity, and vehicle gradability.
The propulsion power calculation is straightforward
with the following equations. First, the total ttam
force is solved:

F<t>=comg+§pcd A+ mEY

whereF(t) is the traction force as a function of time,
G, is the static friction coefficientn is the massg is
the gravitation, o is the air density,Cy is the air
friction coefficient,Ar is the cross-sectional areg)
is the current velocity according to time, aads the
acceleration as a function of time. Then,
propulsion poweP(t) as a function of time is:

the

P(1) = F(t)v() @

Therefore, solving of the propulsion power starts
from the driving cycle, which gives the current sge
and the acceleration as a function of the timetha
simulations we use the NEDC and the Braunschweig
cycles to demonstrate the behavior of the presented
control, as in reference [7]. Table | shows the
environment and the vehicle parameters used to
simulate the required propulsion power.

TABLE |
Environment and vehicle parameters in simulatidts [

Symbol Quantity Value

Co static friction coefficient 0,013%m°

m mass 10 000 kg

g gravitation 9,81 mhk

o air density 1,29 kg/nd

Cq air friction coefficient 0,3

As cross-sectional area &m

Fig. 2 illustrates the speed and the required
propulsion power for the NEDC and Fig. 3 represents
the same variables for the Braunschweig cycle. €hes
figures depict how the propulsion power reaches its
highest values in the end of the acceleration drel t
regenerative power at the start of the deceleration

The NEDC represents both, the urban and the sub-
urban area cycles. As from the Fig. 2 can be séen,
change point of the urban and the sub-urban aneas i
the NEDC is in the 800 seconds. The Braunschweig
cycle simulates only the urban area operation with
shorter accelerations and decelerations contrary to
NEDC.
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New European Driving Cycle and Generated
Propulsion Power
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Fig. 2 The New European Driving Cycle and the requied
propulsion power (duration 1160 s, length 11.0 kmaverage
speed 34.2 km/h, max speed 120 km/h, share of idk2.4%).

Braunschweig Driving Cycle

and Generated Propulsion Power
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Fig. 3 The Braunschweig driving cycle and the requied
propulsion power (duration 1740 s, length 10.9 kmaverage
speed 22.5 km/h, max speed 58.2 km/h, share of id?6%).

The following simulations are made to illustrate
how the maximum propulsion power can be
reduced with the low-pass filtered power-flow
control in different driving cycles, and which aits
drawbacks.

Besides the propulsion power calculated from the
driving cycles, the simulated cases are assumed to
consume constant power to auxiliary devices of the
vehicle. Constant power is simply added to
propulsion power. In these simulation cases proper
constant power consumption would be e.g. 10 kW,
which is later used in the simulations.

2.3 Power losses in simulations

The power transfer efficiencies have a significant
role in order to define the usefulness of S-HEV
driveline. In this paper, the power losses deriving
from power-flow filtering in dc/dc converter and
supercapacitor module are considered. This is
realized with measurement based efficiency maps

from the dc/dc converter and ESR value of a
commercial supercapacitor module. The power losses
in other converters and electric machines of stddie
system are left out of the scope, though; theysdile
modeled with the same hybrid simulation modeling
principle.

Inverters, rectifiers and traction motors, are
modeled based on hybrid simulation modeling of
converters and electric machines. These models are
built with the efficiency maps received from the
manufacturer. In hybrid simulation models, the
transferred power through the power train is scaled
with the efficiency value of the operation point thie
device in question.

Simulations concentrate only on system level
power transfer. Therefore, typical behavior of the
supercapacitors electrochemical characteristidsfis
out of consideration and simulations only consider
electrical characteristics of the energy storage.
Although supercapacitors resistance and capacitance
are state of charge dependent, supercapacitor
modules are simulated with constant equivalenteseri
resistance and capacitance [13]. Also, leakage
currents of supercapacitors are neglected.

2.4 Hybrid Simulation model of the
dc/dc converter

Dc/dc converter's transient behavior is neglected i
the simulations, which causes a small error to the
supervisory control simulations by the step resjgons
of modern dc/dc converter. Therefore, dc/dc
converters are assumed to be ideal and the siroulati
steps are pushed longer.

The power losses during the converter's operation
are defined with the measured efficiency data.
Efficiency values from the converter's different
operation points are used to calculate the power
losses in the dc/dc converter and in the SC module
during the energy buffering [3]. In the simulatigns
when operation point exceeds the limit of the
efficiency map, the end value of the map is used.
Preceding approach is widely called as a hybrid
simulation model.

Fig. 4 shows the efficiency map of the buck-
boost dc/dc converter as a function of the transfer
current and the ratio between upper and lower
voltage levels. The figure represents charge opsrat
and it is based on the measurements done for the
dc/dc converter which has interleaved inductor
phases and 120 amps nominal current.
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DC/DC converter efficiency
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Fig. 4 The measured efficiency map of the dc/dc corrter
during charge operation.

The total power transfer efficiency from the dc
link side is solved from the efficiency maps of the
charge and discharge operations of the dc/dc
converter, and also with the equivalent series
resistance (ESR) of the supercapacitor module. One
efficiency map of the energy storage according to
ESR losses is shown in Fig. 5. The efficiency map
from the ESR losses is calculated with the equation

usc ~ RESRE| I sc
u

where 77 is the efficiency,us is the voltage of the
SC module Resris the equivalent series resistance
attained from the datasheet [15] ang is the
current of the SC module.

[7:

sc

Power transfer efficiency according to
ESR losses in the energy storage (54 mOhm)

100 150 200 04
Energy storage current [A]
Fig. 5 The power transfer efficiency according t8H losses in

the energy storage.

Accuracy of solving the power losses in a
supercapacitor module is reduced when the losses
are calculated only with ESR value of the dc
resistance. This is because the capacitance of a
supercapacitor is very frequency dependent [13].
Therefore, assumption with supercapacitor power

losses modeling is that converters transfer only dc
current and power losses caused by converters
switching frequencies are neglected. So, the
simulated power losses in the supercapacitor module
are considered to be the minimum that can be
realized. Previous further speeds up system level
modeling, while more accurate modeling of losses
with higher frequency components make simulations
unnecessary complicated.

Fig. 6 represents the total power transfer efficign
of the energy buffering. Figure is done by
multiplying efficiency maps from the dc/dc convarte
and from the supercapacitor module with each other.
So, the figure takes into account charge and disgha
operations of the dc/dc converter and the ESR ef th
supercapacitor module. This figure is based on both
theoretically calculated and experimentally meadure
efficiency values.

g Total efficiency of the energy buffering
e T T T
g 0.9
]
en
£ 0.8
L=
RN
= 8 04 0.7
$ & 038
E= 03
)
£
= 0.5
>
2
= ; ’ ’ y 0.4
S 40 50 60 70 ’
=) Energy storage current [A]
Fig. 6 The total power transfer efficiency map frahe dc link side
according to theoretical calculations and experitaken
measurements.

3 Presented power-flow control

3.1 Power-flow control in the dc link

The low-pass filtered power-flow control, which is
previous presented in studies [5], [7]-[9], [11&rcbe
implemented above the system shown in Fig. 1. it ca
be generalized into two parts. The first is the lpea
power shaving control algorithms and the second is
the low-pass filtered power-flow control, which is
build on the top of the first one. The low-pasgdiled
power-flow control simply makes the peak power
shaving limits to move.
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3.1.1.1 The Peak
Shaving control

The proposed peak power shaving control is
based on the minimum and the maximum power
limits. These limits can also be used to specifg th
converter’s current direction. The power limits are
compared with the subtraction to the measured load
power, and the result is saturated either with the
normal or with the dynamic saturation. The
minimum power limit is creating an inverse of the
correct power buffering value; therefore it is nedd
to take absolute value from power buffering signal.
The saturation values for the peak power shaving
are from the zero to the maximum desired, and for
the power buffering from the maximum buffered
power to the power which triggers the buffering.
The previous signals are next divided by the state
value of the dc link voltage for to achieve the gea
shaving and buffering current references. By adding
them together, we attain dc/dc converter's current
reference in the dc link side. Then, the error \alu
from dc link’'s voltage is added to the current
reference with the proportional gain for to more
stabilize the dc links voltage. In the end, the reunt
reference is shifted to ES’s voltage level, in case
where the dc/dc converter is designed to contrel th
current in the ES’s side.

Power

Discharge
defde converter

de/de converter
current ref

i
e

Dynamic Abs
Saturation

Charge
defde converter

Fig. 7 The Peak Power Shaving control.

3.1.1.2 The low-pass Power-
flow control

The low-pass power-flow control, which is
shown in Fig. 8, is built on the top of the peak
power shaving control. In the proposed control
strategy, the idea is to make the maximum and the
minimum power limits to move as a function of the
load power and the voltage of the ES.

First, the state value of the load power is
determined and brought to the supervisory control.
Second, the discrete finite impulse response (FIR)
filter averages the load power. This could also be
made with several filters with different time
constants [11]. According to the simulations it is

suggested that the power is averaged with the tifne
the longest acceleration during the driving cycié. [
In this paper filtering is done with only one time
constant, which is 20 seconds. Third, the filtered
power is weighted with 2 - 1/75000%.q function.
This function priories the power buffering to take
place in low loads instead of times of high loads.

In contrast to filtered load power value, energy
storage’s voltage determines the power level, which
needs to be generated by the primary energy source.
Previous is realized with a function, which getglhi
power values at low energy storage’s SOC and vice
versa. In the simulations this function was fornteth
as 75000 — 750/5% and it is only scaled with
maximum energy storage’s voltage level value
between different simulation cases. In principleist
function creates power limit plane which defines
either to cut peak powers or buffer the power from
the VSDG. In addition, weighted function from
energy storages voltage is filtered with 2 seconds
time constant, which is also used to filter the
variation of the power limit plane.

In the low-pass filtered power-flow control, the
next step is to multiply prioritization function dm
the filtered load power and the power level credtgd
energy storage’'s voltage. The result creates a
weighted power limit plane as a function of filteke
load power and energy storages voltage. Then; the
hysteresis are added to the created power limihgla
These hysteresis are used to create delay between
dc/dc converter's charging and discharging control
signals. After hysteresis, control schemes from Fig
and Fig. 8 interconnect. The proposed power limit
plane has built-in maximum voltage limit for the SC

Fig. 8 also presents algorithm, which filters more
the AFE current. This AFE current filtering is also
added to dc/dc converter current reference, shawn i
fig. 7, with the proportional gain value. The AFE
current filtering component is calculated from the
state value of the AFE current, filtered value bkt
AFE current and with multiport switch, which takes
in consideration of present current direction irfdic
converter. Filtering of the AFE current was donetwi
20 seconds time constant.

Pawer
Limit

Weight
()

Discrete FIR Filter Saturation

Ponin

Saturation

Deldc converter
curren! direction
B

Fig. 8 The Low-pass filtered power-flow control algthm.
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The system without a load is driven
automatically to high SOC value, if the power
limits are kept high compared to the present stdte
the load power. This provides SOC to be adequate
for the next acceleration. Fig. 9 presents the BeP
by the weighted variables.

The Power Limit Plane

AR N

R
SRR
SRR

Power Limit Values [kW]

500 150

100
Energy storage voltage [V] Filtered load power [kW]

Fig. 9 The power limit plane set by weighted valdesn energy
storage’s voltage and the filtered power.

Table Il presents the parameter values which
were used in the introduced control.

TABLE Il
Current controller parameters in the simulations

Symbol Quantity Value / function

P Proportional gain in fig. 0,25

P Proportional gain in fig. 0,5

iref Dc/dc converter’s current --

ref in the energy storage
side
f(prie) The weighting function 2 - 1/75000%xitered
for the filtered power

f(Ug9 The weighting function 75000 — 750/5¢

for the energy storage
voltage

3.2 The flowchart of the proposed
power-flow management

Fig. 10 represents the startup flowchart for the
proposed power-flow management. In the
beginning, the system is in rest. After the auxyjia
power is switched on, the VSDG is started and the
supercapacitor module is charged to the specified
level. Then, the dc link voltage is regulated witte
AFE to 650 V level. After the activation of the dc
link voltage regulation, the low-pass power-flow
control begins to operate.

‘ Initializations and Basic Calculations

Main control No Control
Flag " OFF
Start Gen-Set
and Charge
Supercapacitor

DC-link voltage
regulation with AFE

Low-pass Power-flow
Control

Operating
Stop P €

Fig. 10 The flowchart of the proposed power-flow maagement
algorithm.

3.3 Control of Active Front End
converter in the simulations and
generation of operation points of the
Diesel Engine

In the proposed control, the dc link voltage is
stabilized with the active front end converter. AFE
get its control signals from the supervisory cohte
a dc link voltage reference and as a transferable
power to the dc link. The voltage reference wastset
650 V during the simulations and the power refeenc
was calculated from the static traction power
component of equations 1 and 2. So, feedforwarded
power reference was calculated without the term,
which included acceleration.

In the used AFE simulation model, limited
maximum current as a function of the generator
speed specifies the maximum counter torque of the
VSDG simulation model. As a VSDG simulation
model was used one-dimensional model of the diesel-
engine. The difference between the VSDG maximum
torque and the limited counter torque of the AFE
define dynamical torque, which is used for the spee
change of the VSDG. The control strategies of the
variable speed diesel generating systems weredurth
studied in [14].

The speed reference for the VSDG can be obtained
with several different strategies [14]. Proposed
control in the simulations formulates the VSDG
speed reference from the transferred power of the
AFE. Created operation points in one simulation of
this control strategy are shown in Fig. 11. Figure
presents generated power of the VSDG as a function
of the speed of the VSDG with red crosses. Period
between operation points was half second. In
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addition, the figure includes maximum power curve
of the VSDG simulation model (black curve) the
maximum power of AFE specified by its counter
torque (blue curve) and specific fuel consumption
curves of the used VSGD simulation model.

Operation points of the VSDG
in the simulation models specific fuel consumption map

Power [kW]

Te— %, : T
= L e, RS

800 1000 1200 1400 1600 1800 2000 2200

Speed [rpm]

Fig. 11 The variable speed diesel generator opangipints at
the start of one simulation case with Braunschweiging cycle
and 31,5 F energy storage.

Operation points of the VSDG during simulation
are determined by equation:

dw _T-T,

— 5

dt J ©)
where dajdt is differential speed changel is
torque of the VSDG,T, is counter torque of the
AFE and J is inertia of the gen-set shaft. In the
simulations, inertia of the simulated VSDG was
assumed to be 1 kgmand the initial speed of the
VSDG was 1400 rpm.

4 Simulations

The simulations are done with the 5
combinations of the capacitance value of the SC
module and its maximum voltage level. The results
from the simulations are tabulated and simulation
figures from Case | are shown. Table Il represents
the SC dimensioning in different simulation cases.
Energy storage’s nominal values are based on
manufacturer data. In these simulation cases
supercapacitors are considered as built-in modules,
which include cells, connections between cells,
voltage balancing circuits, packaging and cooling
[15].

TABLE Il
Dimensions of the energy buffer in different simtide cases
[15]

Values Values Values Values Values
Quantity Case Case Case Case Case
| 1 11} [\ V
Capacitance (F) 31,5 42 63 12,6 25,2
ESR (mQ) 34 255 17 85 42,5
Maximum 500 375 375 625 625
Voltage (V)
Weight (kg) 464 348 522 290 580
Usable energy 0,82 0,62 0,92 0,512 1,03
(kWh)
Continuous 300 300 450 150 300
current (A)
Maximum 1500 1500 2250 750 1500
current (A)
Modules (series/ (41/2) (31/2) (3173) (5/1) (5/2)
parallel)
Cells (series / (188/ (1417 (1417 (2357 (2357
parallel) 2) 2) 3) 1) 2)
Initial 450 3375 3375 562,5 562,5
Voltage (V)

Figures 12 — 15 presents three
simulations with ECE cycle. This means 600 seconds
long simulation.

Current [A]
N
(=}

* The efficiency map of the dc/dc converter is efiolated in
simulation cases where the maximum voltage valsesrhigher

than 400 V.

The simulation figures present the total load
current, the dc/dc converter current, the AFE cotre
the energy storages voltage and the dc link voltage
which are variables of proposed control algorithm.

4.1 The simulation figures with NEDC

The load current, which was drawn from the dc
link, was solved with equations 1, 2 and with daoKi
voltage state. In addition, current change rateewer
limited not to reach infinite value and to imitate
proper ramp times of power converters. The load
current, in case |, is shown in Fig. 12 during thre
rounds of ECE cycle.

4.1.1.1 Simulations with the ECE cycle
rounds of

Total load current
200 T T T ,

150~

_
=
<

S

-50r

-100, 100 200 300 400 500 600

Time [s]

Fig. 12 The simulated load current, which was sdl¥m the
traction power and from constant power consumptlaring three

rounds of ECE cycle.
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In this study presented control scheme creates Energy storage VOlta‘ge

500 w :

dc/dc converter current, which is shown in Fig. 13.
This dc/dc converter current is presented in energy

storage voltage level.

Dc/dc converter current
200

1508
100r
50r

0]
-50F
-100r
-150r

-200, 100

Current [A]

200 300 400 500
Time [s]

Fig. 13 The simulated dc/dc converter current,ase |, during
three rounds of ECE cycle.

600

The simulated active front end converter current
in the dc bus is shown in fig. 14. The figure shoavs
result of low-pass power filtering with dc/dc
converter and simultaneous dc link voltage
regulation of the AFE.

AFE current
100 .

Current [A]

300 400 500
Time [s]

200

0 100 600

Fig. 14 The simulated AFE current, in case |, dgrthree
rounds of ECE cycle.

The simulated energy storage’s voltage is shown
in fig. 15. In simulation case I, the energy stoeagy

capacitance was assumed to be 31,5 Farads and the

ESR 34 nf).

475}

Voltage [V]
B N
[\e] [
[ (=)

N
(=3
(=

375¢

33% 100

300 400 500
Time [s]
Fig. 15 The simulated supercapacitor module voltagease |,

during three rounds of ECE cycle.

200 600

The dc link voltage was regulated in the
simulations with the AFE, which got controls as a
voltage reference and as a feedforward power teansf
value. The simulated dc link voltage value is
presented in fig. 16. In the simulations, the dakli
capacitance was chosen to 40 mF, which directly
affects to the variation of the dc link voltage.

Dc - link voltage

655

=

[

$os0 ]
G

S

645 ]
640100 200 300 400 500 600

Time [s]

Fig. 16 The simulated dc link voltage, in caseuyitig three
rounds of ECE cycle.

4.1.1.2 Simulations with the
New European Driving
Cycle

Next, the simulation results with the NEDC after
800 seconds are shown.

Figure 17 shows the dc/dc converter current during
sub-urban part of the NEDC. In the end of the
simulation figure can be seen the current spikeicivh
is caused by energy storages voltage drop.
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Dc/dc converter current

750

500F H

250~ -

Current [A]

250 ~ 1

800 850 900 950
Time [s]
Fig. 17 The simulated dc/dc converter current,ase |, during

NEDC sub-urban part.

1000 1050

The figure 18 shows the energy storages voltage,
which causes failure of the simulated series hybrid
power transfer during sub-urban part of NEDC.

Total load current
300 T . ,

Current [A]

o

o

)
7

200-
-30% 100 200 300
Time [s]

Fig. 19 The simulated load current, which was sdlfm the
traction power and from constant power consumpfarthe 400
first seconds.

From the figure we can see that energy storages F|g 20 shows the dc/dc converter current in the ES

voltage drops to zero after 1050 secons of
simulation.

Energy storage voltage

850 900 950 1000

$oo ]
Time [s]
Fig. 18 The simulated supercapacitor module voltagease |,
during NEDC sub-urban part.

1050

4.2 The simulation figures with
Braunschweig driving cycle

Simulations with the Braunschweig driving
cycle were performed as NEDC. Following are
shown simulation figures from control variables
during Braunschweig driving cycles. Here only
400 seconds are shown to make pictures clearer,
although results are obtained with 1800 seconds
simulation. Fig. 19 represents the total load
current, which was solved from Braunschweig
driving cycle and from the constant power
consumption

voltage level.

Dc/dc converter current
400

300~

— N

o O

(=) (=)
T

Current [A]
<

o

o

S
7

-200- 1

-300- 1

_4000 100 1200 300 400
Time [s]

Fig. 20 The simulated dc/dc converter current,ase |, with
Braunschweig driving cycle.

The active front end converter current was
result of low-pass filtered power — flow control é&n
regulation of the dc link voltage. The AFE currast
shown in fig. 21.
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AFE current

120 ‘ ! 4.3 The simulation results for both
100r driving cycles
30" Following tables IV and V present the simulation
= results from the ECE and the Braunschweig cycles
5 60" low-pass power filtering. These tables consistsadat
% 40 from peak power decrease of the primary energy
&) source, energy losses during low-pass power filgri
20 and rating of dc/dc converter and supercapacitor
0 module.
The maximum propulsion power in ECE cycle was
220 | ! | 96,2 kW, which includes both the traction power and
0 100 Tiégo[s] 300 400 the constant power consumption. Similar value for
Fig. 21 The simulated AFE current, in case |, i teginning of the Braunschweig cycle is 156 kW.

Braunschweig driving cycle.
TABLE IV
In t_he Braunschweig d”V'nQ cycle the ES Simulation results with 4 rounds of ECE cycle
voltage varied almost between nominal and half of uanii casel Casell Casell
he nominal value. This can n from fig. 22. uantity ase ase ase
the no alvalue s can be see ° 9 Maximum power from the VSDG, 60,9% 59,9% 59,4%
E " ltao [%] of the maximum load
500 nergy storage voltage Energy losses inthedc/dc  525Ws 684 Ws 693 Ws
converter, average value during 4
simulation rounds
Energy losses in the supercapacitor230,1 353 Ws 209 Ws

ESR Ws
ES maximum current 156 A 158 A 155 A
ES rms current 3L3A 31,0A 3L7A

Voltage after 4 ECE cycles 439V 833V 328V

Case IV CaseV
Maximum power from the VSDG, 72,6 % 60,3 %

0 100 T.ZOO 300 400 [%] of the maximum load
ime [s] Energy losses in the dc/dc 542 Ws 517 Ws
Fig. 22 The simulated supercapacitor module voltagease |, converter, average value during 4
with the Braunschweig driving cycle. simulation rounds )
Energy losses in the supercapacitd626 Ws 215 Ws
H H ESR
The dc I_lnk vo[tage, which was also one of the ES maximum current 157TA 157 A
control variables in the proposed control, is shown
in fig. 23. ES rms current 312A  314A
Voltage after 4 ECE cycles 524V 506 v
DC link voltage
660 :
TABLE IV
Simulation results of Braunschweig cycle
655F
— Quantity Casel Casell Caselll
= Maximum power from the VSDG, 53,4% 60,0% 50,8%
3;4)650 | [%] of the maximum load
C Energy losses in the dc/dc 910,2 1235 1120
> converter, average value during4 Ws Ws Ws
645 : simulation rounds
Energy losses in the supercapacito828 Ws 1043 579 Ws
ESR Ws
640 ; ; ; ES maximum current 387 A 400,0A 383 A
0 100 200 300 400
Time [s] ES rms current 55 A 549A  554A
429V 316V 313V
Fig. 23 The simulated dc link voltage, in case Ittwthe Voltage after 4 ECE cycles

Braunschweig driving cycle.

CaselV CaseV
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Maximum power from the VSDG, * 54,4 %
[%] of the maximum load
Energy losses in the dc/dc * 883 Ws
converter, average value during 4
simulation rounds
Energy losses in the supercapacitor * 573 Ws
ESR
ES maximum current * 390,0A
ES rms current * 5494
495V

Voltage after 4 ECE cycles
* The energy storages’ voltage dropped to zero Wl
proposed control parameters.

The performed simulations suggest that in urban
areas and with very cyclic driving cycles it is
possible to decrease peak powers to half of their
original values. This peak power reduction can be
done with several ways. The proposed low — pass
filtered power flow control efficiency is dependent
from the control parameters and from the
dimensions of the energy storage. By increasing the
amount of series coupled supercapacitor cells we
can decrease energy losses in the dc/dc converter
and in the ES. On the other hand, by paralleling
supercapacitor cells or modules, we can decrease
energy losses in the energy storage. Paralleling of
supercapacitors naturally increases the capacity of
the energy storage, which affects the stabilityfod
power — flow control and also to the energy losses
of the dc/dc converter.

5 Conclusion

The simulations suggest that the low-pass power
control can achieve near 50 % down rating of the
maximum power from the primary energy source,
while in same time the energy storage’s voltage
fluctuates within 50 % of its maximum value.
Previous conclusion is related to vehicles that are
moving only in urban areas or have very frequent
accelerating decelerating cycles. The low-pass
power-flow control is not that effective when
changed to sub-urban areas, where high power
demand for energy storage charging and for traction
purposes together comes with the delay. In cases of
higher power peaks, as in sub-urban area driving
cycles, more capacitance in energy storage is
needed.

Simulations with different driving cycles suggest
that the highest decrease for the primary energy
source peak power is achieved in driving cycle with
short accelerations and decelerations. Previous
conclusion can be made by comparing simulation
results from ECE, NEDC and Braunschweig
driving cycles.

Energy losses generated by the low — pass power
filtering algorithm is depended on the control
parameters and from the dimensions of the
supercapacitor module. Simulations clearly showed

the benefit of paralleling supercapacitor modules,
which decreases the ESR, and thereby the losses in
the supercapacitor module. Also, the maximum
operation voltage of the supercapacitor module
showed its expected advantage when dc/dc converter
energy losses are considered.

As a drawback, in the simulations, proposed
control algorithm couldn’t manage the peak power of
the NEDC when driving cycles speed achieved 120
km/h. In addition, in this control algorithm the \&5
is used to charge the energy storage, which leads t
unwanted generation of power transfer losses.
However, this study was made to demonstrate
possibilities to cut peak power values from the
primary energy source.

In the case of Fuel Cell (FC) based systems, the
very high cost of FC stacks makes it very important
to reduce their nominal power [2]. This also can be
achieved by low-pass filtered power flow control
with long time constant, when only average power of
the load is supplied to the dc link.
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Abstract—This paper presents validation measurements of a
series hybrid electric vehicle (SHEV) drive line with an
ultracapacitor energy buffer. The backward functional quasi-
static power transfer plant models in SHEV are discussed and
compared against validation measurements. The full power
measurement equipment and equipment under tests (EUT) are
presented. A traditional road cycle is used to imitate duty
vehicles loading in the plant models validation tests. Finally, an
energy management algorithm and its behavior are presented,
and results are concluded.

I. INTRODUCTION

HIS study is part of a duty vehicles hybridization project.

Hybridization of vehicles and mobile machines aim to
decrease emissions and fuel consumption by exploiting kinetic
and potential energy of the system, downsizing the primary
energy source’s power rating, and by generating the primary
power with the most efficient means.

Design of a hybrid vehicle or a mobile machine is a very
complicated task. Therefore, profound research relating to
energy storing, hardware design and supervisory control is
needed. This study focuses on hybridization of heavy mobile
machines. Thus, the study concentrates on the SHEV drive
line topology with a variable speed diesel generator (VSDG),
or optionally in the future a fuel-cell (FC) stack, as the
primary energy source. [1]

In order to achieve all advantages of the SHEV drive line,
proper energy management is needed. Therefore, backward
functional quasi-static causal plant models [1] of power
transfer components in the SHEV have been developed with
Matlab  Simulink™ [2]-[3]. Plant models of SHEV
components are developed for the rapid control prototyping
(RCP) of energy management algorithms [4]. The design of
reliably energy management algorithms requires test facilities,
where operation of algorithms can be verified before
implementation in the target system [5]-[6].

The contribution and novelty of this article is on introducing
modeling accuracy of the used simulation method against the
behavior of real full-scale hardware, and on essential
discussions of full-scale hardware features. Also, conclusions
about the behavior of the used hard-computing algorithm for
the load-based energy management are made.

The paper is organized as follows. Section II introduces the
modeling principles of each power transfer component with
the case example comparison between the simulation and the
measurement, as well as presents error analysis. Section III
presents a discussion of the used energy management
algorithm, and section IV concludes the paper.

II. DEVELOPMENT OF SHEV PLANT MODELS

The presented work had its pre-studies published in [2]-[3].
An introduction to the SHEV drive line is presented in Fig. 1,
which is an example of an ultracapacitor module (UC) power
buffered SHEV drive line. The abbreviations in the figure
represent generator (G), active front end converter (AC/DC,
AFE), dc-dc converter (DC/DC), inverter (DC/AC) and
traction motor (EM). The control signals and actual values are
speed reference () for the VSDG electronic control unit,

power limits of the AFE (;ﬁmit), the dc link voltage reference

for the AFE (u4. rer), actual ultracapacitor module voltage (u.),
actual dc link voltage (uq.), current reference for the DC/DC
(irf) and actual load power (pioaq)-

W, E);. Energy By
U g " M;l::ﬁe—
by, ™
[y VvSDG__ . L"n-r
| Diesel H AC E T E [ DC @
|| Engine ! DC T AC
e _ = _ 1 f r
DC
DpC
—

)

Ultracapacitor
Fig. 1. The SHEV drive line with the ultracapacitor module for power
buffering.




A. General simulation parameters and starting point

The target of the developed plant models for the SHEV
drive line is to envisage 20 Hz-bandwidths events accurately.
Furthermore, the designed system level model should be fast
to provide efficient energy management RCP [4]. Therefore,
backward functional modeling from the imposed load cycle
towards the primary energy sources power delivery is
appropriate [1].

The starting point of simulation models is to choose a
proper simulation time-step, which in the presented cases is 1
ms. The previous fundamental time-step is justified by
possible response times of the current control loop in power
electronics (PE), for instance, an AFE converter [7].
Furthermore, accurate modeling of a change-over switching in
PE components would lead to very low system level
simulation times. For this reason, the current control loops of
PE components are neglected and it is assumed that PE and
EM components transfer the demanded current. Other
regulators in different plant-models are operating causality
with their input and output delays. Furthermore, the choice of
the simulation time-step enforces the plant-models to the
functional in the sense of a power electronics description.

In the backward simulations for the SHEV drive line
practical starting points are either on the mechanical load of
the EMs or the load currents of the inverters. The previous
choice is dependent on the available load data. In the case of
the mechanical load cycle data, we are able to derivate losses
in the EMs and AC/DCs as well as scale loading to electric in
the dc link side. This can be achieved with the measurement
based efficiency charts in the torque and speed plane, as
shown for EM in [5].

In this simulation model validation, the loading is regarded
as electrical and derived from the ECE-15 cycle. Figure 2
presents power control targets for both the FC [8] and the
VSDG powered SHEVs. The difference between these two
cases is on the source current during the cycle’s regenerative
energy. The shown current waveforms are for the load (ijpag),
the energy storage (ES) (igs) and the AFE (iarg).

. ) /: i]oad
_ AFE "load 7 o__
7 e N _/ |~
AFE | I 7
|//
DC
DC
- i
7 VES
i

1

|

Energ}-‘ storage
Fig. 2. The control problem of the hybrid power control; sketched targets
of control and used measuring setup for the dc-dc converter plant model
validation.

B. Measurement equipment and EUTs

Measuring hardware and software of this validation
consisted of dSPACE MicroAutoBox 1401/1505/1507 and
dSPACE  ControlDesk produced by dSPACE GmbH,
respectively [9]. The measuring time-step for all variables was
10 ms.

The load current measurement was performed with an
LEM/Norma D6100 power analyzer with its triaxial shunts for
6 to 300 A current. The accuracy of the current measurement
with the previous shunts is +/-0.1 %. The voltage uy. was
measured with the device’s terminal with an accuracy of 0.05
%. [10]

The current transducer for the dc-dc converter current
measurements was an L4 305-S and manufactured by LEM.
The specific current transducer has a frequency bandwidth (-
3dB) of DC to 100 kHz, overall accuracy of +/-0.8 % and less
than 0.1 % error due to non-linearity [11].

The voltage transducer in u., measurements was an AV100-
750, which is also manufactured by LEM. The specific voltage
transducer has a frequency bandwidth (-3dB) of DC to 13 kHz
with less than 0.1 % error due to non-linearity [11].

The EUTs in the validation tests were as follows: The AFE
converter NXA_ 0460 5, which is a product of Vacon Plc,
regulated the dc link voltage around 650 V and supplied the
primary source current ixpg. The dc-dc converter between the
de link and the UC module was produced by MSc Electronics
[13], with nominal current of 120A, maximum current of
200A and minimum current of 20A in the ES voltage level.

The UC module was a product of Maxwell technologies®,
with a nominal capacitance of 17.8 F and maximum voltage of
390 V [14].

C. Loading of the test system

In the simulation validation tests the load of the dc link was
created with inverter, which was controlling one side of an
EM dynamometer. The load current (ij,,q) was realized with
speed control mode of a loading EM and torque control mode
with the cascaded power controller of a traction motor. The
traction motor power reference was ECE-15 drive cycle based.
The structure of the used dynamometer is described in [5].

Figure 3 presents the speed pattern of the ECE-15 drive
cycle, measured load current of the EM dynamometer and the
AFE current in the dc link voltage level, as well as the ES
current in the energy storage’s voltage level.

The measured load current was used also as a loading of the
dc link in the simulation model validation. This was done
because modeling of the load would be very complicated and
is not necessary for the power management design in non-
predictive load-power-based-causal control. The ES current is
the result of the supervisory control algorithms for the dc-dc
converter in current control mode, and the AFE current is a
derivative of the load current and the ES current.
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Fig. 3. Speed pattern of the ECE-15 drive cycle, the measured load current,
the ES current and the resulting AFE current.

D. Functional plant model of the dc-dc converter

The PE converters typically reach to very high efficiency
values in their best operation area. On the contrary, the
efficiency of the PE converter can degrade significantly, if an
inappropriate operation area is used. Therefore, with the
previous presumption from the simulation time-step it is
necessary to simulate the dc-dc converters with a combination
of a measurement based efficiency map and a functional
description.

The efficiency of dc-dc converter in general depends on the
transferred current and the voltage conversion ratio. Hence, in
the study [3] have been investigated efficiencies, which can be
reached in power transfer with the previous variables.

The essential functionalities and dynamical properties
which can be programmed on the de-dc converter plant model
are current control response time, minimum current, current
ripple or noise, conduction event of the change-over switches’
anti-parallel diode, quadruple point voltage controller and
power losses according to the operation point.

Figure 4 shows how the plant model follows the original
EUTs’ current with the same loading (ij,,q) in the simulation
model as in the measurement. The measurement setup is as
shown in Figure 2. The dc-dc converter current is presented in
the ES voltage level and it corresponds to the ES current.

It can be seen from Figures 4 and 5 that there is some
difference and variance between the simulated plant models’
current and the EUTS’ current, but it is convenient that the
energy content of the difference is vanishing. The maximum
current difference is 150 A, the mean error is -0.32 A and the
rms error is 5.7 A. Furthermore, the mean error scale is near to
the linear error and the rms error is near to the overall error of
the sensor in the measuring range.

The largest differences between the measured and the
simulated currents can be noticed near the minimum current
(20 A) of the dc-dc converter (1), the highest regenerative
current values (2) and during the shut off of the regenerative
current (3). The previous numbers refer to areas in the scale-
up Figure 5.

Points 2 and 3, in Figure 5, come up because of the energy
management algorithm and the AFE voltage regulator is
acting to stabilize the dc link voltage. The exact behavior of
the AFEs’” voltage regulator is difficult to reproduce with the
used functional simulation method. Therefore, the dc link
voltage variation interacts with the measurement result. The dc

link voltage drop at point 3 can be seen in Figure 6. The dc
link voltage drop in this case was enforced with the low
generating power limit of the AFE. The dc link voltage drop
against the generating power limit could not be reproduced
with the used simulation approach.
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Fig. 4. The overview of the measured and the simulated dc-dc converter

currents.
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Fig. 5. The scale-up of the measured and the simulated dc-dc converter
current.
=)
2 el : : VR URTR I IR i
& Measured do-link valtage
s : Simulated ds-ink voltage : :
610 : : : : : : : J
&0 i 1 i i 1 i 1 i i
120 125 130 135 140 145 150 155 160 185 17D

Time [s]
Fig. 6. The measured dc link voltage during the simulation model validation.



E. Functional plant model of the AFE

The active-front-end converter in the system level model is
modeled with the efficiency map in the torque and speed
plane, and also with the voltage regulator, which controls dc-
current to the dc link. Losses of the generator are taken into
account respectively. Change of voltage regulator type and
parameters affect how power transfer is realized. In the
developed AFE functional plant model the considered aspects
of the voltage regulator are the stiffness of the voltage in the
dc link side, as well as the control response time.

In the presented simulation model validation
measurements the AFE took power directly from the power
distribution network. Even though the power limit of the AFE
was set to low (15.7 kW ~24 A) to prevent too strong supply,
still the dc link voltage variation was low. Under stable
conditions the dc link voltage was around 650 V +/-10 and in
some transients, which are pointed out in Figure 6, the dc link
voltage dropped down to 610 V. This affected the dc-dc
converter current shown in Figures 4 and 5.

The next figures present the indirectly measured current of
the AFE compared against the corresponding simulated
current. The AFE current was achieved by calculating the
difference between the load current and the dc-dc converter
current due to practical reasons. First, Figure 7 presents the
overview of the AFE current, and Figure 8 presents the scale-
up of the current transients.

a0

E_
é 201 . .
5 : : B : :

(S 1 S Cmloulated AFE ourmant | it -
ke S‘WUB_‘BUAFEGWBOT e
50k N
60 |- 4
70 i 1 1 i L i 1 i i

0 20 40 =1} =) 100 120 140 160 180 200

Time [s]
Fig. 7. The calculated and the simulated current of the AFE.

The scale-up figure shows the affect of the dc-dc converter
minimum current (1), the accuracy of the load current sharing
algorithm (2) and how current flows to the dc link from the
AFE, if the generating power limit is not changed (3 and 4).
The previous areas are shown in the scale-up figure. The
maximum current difference, between the measured and
simulated AFE current, is 79.8 A, the mean error is -0.19 A
and the rms error is 3.0 A. The mean error is comparable to
linear measurement accuracy and rms error to overall accuracy
as earlier in the current measurement.

The size of load-step for the AFE in area 2, shown in Figure
8, depends on the pattern of the loading and energy
management algorithm’s parameters. So, the loading
conditions should be taken under consideration in the energy
management algorithm in order to optimize load sharing
during the acceleration event.
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Fig. 8. The scale-up of the measured and the simulated current of the AFE.

F. Modeling of the ultracapacitor module

An UC simulation model is based on equivalent series
resistance (Ry) and measured capacitance variation as a
function of ES voltage and current. The function for
simulating the ES voltage is shown in Equation 1, where Cg
represents the capacitance of the ES, i, represents ES actual
current and Af represents the discrete time-step of simulations

Ueg (Rdc »Cs (”es sles )) = Rycles + At #igs / Cog (”es les ) (D

The figure below presents two different cases from the
simulated and the measured voltage variation of the UC
module with charging, discharging and static events. One
simulation case is for constant nominal capacitance of the UC
module, and other is for variable capacitance model
simulation. The simulated cases of UC voltages are the
integrals of the simulated dc-dc converter current.
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Fig. 9. Two different simulation cases from the UC modules” voltages
(Ceonstant and Clariale) and the measured voltage with the same ES current.

Reasonable simulation accuracy is achieved even with the
nominal capacitance of the UC module (error values: max 14
V, mean 4.8 V and rms 5.6 V), but smaller error values are
achieved with the measured capacitance variation based model
(max 8.4 V, mean 1.7 V and rms 3.0 V). Still, the mean error
is approximately a decade larger than linear measurement
error in measuring range.



G. Modeling of the diesel engine

The simulation model validation with measurements has
been divided into testing of the electrical energy management
and testing of the VSDG responses. This section presents a
comparison of the simulation and logged parameter values
from the VSDG electronic control unit. Realized loading of
the VSDG has been used as a load torque in the simulation
model. Both, the load-step and speed-reference-step responses
are considered.

The diesel engine simulation model includes Newton’s
second law for rotational dynamics, the Pl-controller for
speed, the rate limiter for the speed reference, idle losses as a
function of speed and calculation of fuel consumption from
the Pl-controller’s fuel injection output and actual speed. The
diesel engine under comparison is a 49 DTAG, and it is
manufactured by AGCO SISU POWER [15].

Figure 10 presents the actual load torque during the load-
step response test, a comparison between the simulated and
the logged speed, as well as the speed reference. An accurate
simulation of the speed response in load-steps depends on the
Pl-controller parameters. With the wused Pl-controller
parameters the speed error values were as follows: max 91
rpm, mean 4.9 rpm and rms 8.8 rpm. These values are
determined from an evaluation run of 300 seconds. The high
maximum error is caused by misalignment between simulated
and measured transients. Otherwise, the measurement
accuracy is dependent on the features of the target equipment.
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Fig. 10. The comparison between the simulation model and the measurement
in the load-step response test.

Figure 11 presents the speed-reference-step responses for
acceleration as well as for deceleration.

In the acceleration event the step-response depends on the
speed reference rate limiter and the over-shoot depends on the
Pl-controller parameters. In the deceleration event the step-
response depends on the inertia of the shaft, idle losses and the
loading. In the previous case the loading can be seen from
Figure 10 and in the latter case the loading was zero.
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Fig. 11. The comparison between the simulation model and the measurement
in the speed-reference-step test.

III. ENERGY MANAGEMENT ALGORITHM

This section presents a hard-computing algorithm, which
was used for energy management of the SHEV system model
in the validation tests with one ES. The presented energy
management is targeting to peak power shaving from the
primary energy source.

The energy management algorithm’s (Fig. 12) inputs are, as
defined with context of Fig. 1, ugc ref, Udes Proad and ues. The
output of the algorithm is i;. The moving average of the
algorithm had unity coefficients and was calculating a 20
seconds average from the load power. The weight vector w,
changes actual power to a per-unit value and w, defines the
power which should be generated with the VSDG as a
function of the actual ES voltage. The positive-linear function
prevents filtered power calculation from going negative, and,
therefore, all regenerative power is included in the load
sharing algorithms output. The P-controller from the dc link
voltage stabilizes the dc link and can be used for charging the
ES.

”dc ref
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—_—

P-controller
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1P 10ad ! ﬂtu_l

++

—_——-
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""" Load sharing algorithm

Fig. 12. Hard-computing algorithms for energy management in the SHEV
drive line

We can discover that the proposed hard-computing
algorithm is capable to realize all operation modes presented
in [16] for the series hybrid drive train. Therefore, the study
suggests that the power management of the SHEV drive line
can be designed using the discussed hard-computing
algorithms with use of finite-state machines or soft-computing
algorithms.



Figure 13 specifies operation modes, which are realized
with the proposed algorithm. Pure electric and engine modes
come naturally, as well as pure ES charging mode. Hybrid
mode (1) operates while the presented algorithm is running.
Engine traction and ES charging mode (2) can be achieved, for
example, with the change of voltage reference or the
algorithm’s weight vector w,. Regenerative braking mode (3)
operates with the algorithms nature, when the power limits of
the AFE are controlled to zero. Hybrid ES charging mode (4)
realizes when the algorithm is running and the power limits of
the AFE are controlled appropriately.

In Figure 13, the dc link voltage drop in the operation area 2
is due to a voltage reference change for the proposed
algorithms P-controller in order to charge the ES.
Correspondingly in operation area 3, the drop is caused by the
parallel current controllers of the algorithm regulating the
current reference simultaneously.
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Fig. 13. The simulation figure presents different operation mode areas in
the hybrid drive.

IV. CONCLUSION

This study discussed realization of backward functional
quasi-static causal plant models of the SHEV, the verified
simulation methods' accuracy with the introduced full-scale
hardware and the proposed load-based energy management
algorithms for the SHEV. In addition, relevant full-scale
hardware features for RCP plant-models were discussed.

The used simulation method derivates accurately the mean
values, as well as rms values, of all modeled variables. On the
other hand, some transients of wvariables could not be
reproduced as in cases which were caused by unknown
regulator parameters, simplifications of models or misaligned
control moments respect to validation. Therefore, maximum
errors during transients remain high. However, the simulation
accuracy is on a good level for a complex system. This can be
justified with the insignificant energy content of the mean
error values. Besides, the represented measuring errors are not
significant compared to the simulation errors.

The proposed load-based hard-computing algorithm shows
promising results for use in the SHEV energy management.
However, realization of hybrid mode in peak power shaving
during acceleration and deceleration is dependent upon the

load pattern. Therefore, further study could be made to
improve the algorithm to adapt in to different load pattern
conditions. In addition, all required operation modes for the
SHEV drive line energy management were described in the
simulation with the proposed algorithm.

This study’s aim is on duty vehicles hybridization, which
have diverse and in some cases very repetitive load cycles.
The previous brings opportunities for the energy management
design.

ACKNOWLEDGMENT

This study has been carried out in HybDrive, TopDrive
and HybLab projects financed by the Finnish Funding
Agency for Technology and Innovations (Tekes) and
Multidisciplinary Institute of Digitalization and Energy
(MIDE) of Aalto University School of Science and
Technology, respectively.

REFERENCES

[1] C. C. Chan, A. Bouscayrol and K. Chen, “Electric, Hybrid, and Fuel-
Cell Vehicles: Architectures and Modeling,” IEEE Trans. Veh. Technol.,
vol. 59, no. 2, pp. 589-598, Feb. 2010.

[2] M. Liukkonen, A. Hentunen, J. Suomela and J. Kyyrd, “Functional
Simulations of Power Electronics Components in Series-Hybrid
Machinery for the needs of OEM,” presented at the NORPIE, Nordic
Workshop on Power and Ind. Electronics, Espoo, Finland, Jun. 9-11,
2008.

[3] M. Liukkonen, A. Hentunen, J. Suomela and J. Kyyrd, “Low-pass
Filtered Power-flow Control in Series Hybrid Electric Vehicle,”
presented at the EVS24 Int. Battery, Hybrid and Fuel Cell Electric
Vehicle Symp., Stavanger, Norway, May 13-16, 2009.

[4] M. Broy, I. H. Kruger, A. Pretschner and C. Salzmann, “Engineering
Automotive Software” Proc. of the IEEE, vol. 95, no. 2, pp. 356-373,
Feb. 2007.

[5] A. Hentunen, J. Suomela, A. Leivo, M. Liukkonen and P. Sainio,
“Hardware-in-the-Loop Verification Environment for Heavy-Duty
Hybrid Electric Vehicles,” IEEE Vehicle Power and Propulsion Conf.,
Lille, France, Sep. 1-3, 2010, unpublished.

[6] Y. Cheng, J. V. Mierlo and P. Lataire, “Research and test platform for
hybrid electric vehicle with the super capacitor based energy storage,”
European conf. on Power Electron. and Applications, Aalborg,
Denmark, Sep. 2007.

[71 M. Gokasan, S. Bogosyan and D.J. Goering, “Sliding Mode Based
Powertrain Control for Efficiency Improvement in Series Hybrid-
Electric Vehicles,” IEEE Trans. on Power Electron. vol. 21, pp. 779-
790, May 2006.

[8] J. V. Mierlo, Y. Cheng, J.-M. Timmermans and P. V. Bossche,
“Comparison of Fuel Cell Hybrid Propulsion Topologies with Super-
Capacitor,” Power Electron. and Motion Control Conf. EPE-PEMC,
Portoroz, Slovenia, Aug. 2006.

[91 dSPACE homepage. [Online]. Available: http://www.dspace.de/

[10] Norma D6000 specification description. [Paper].

[11] LEM homepage. [Online]. Available: http://www.lem.com/

[12] Vacon homepage. [Online]. Available: http://www.vacon.com/

[

13] MSc Electronics homepage. [Online]. Available:
http://www.mscelectronics.fi/

[14] Maxwell Technologies homepage. [Online]. Available:
http://www.maxwell.com/

[15] AGCO Sisu Power homepage. [Online]. Available:

http://www.agcosisupower.com/

M. Ehsani and Y. Gao, “Hybrid Drivetrains,” in Handbook of
Automotive Power Electronics and Motor Drives, Boca Raton, FL:
T&F, 2005, ch. 1, sec. 3, pp. 37-53.

[16]



109

Publication IV

M. Liukkonen, A. Hentunen, and J. Suomela, “Analysis of the Ultracapacitor Mod-
ule in Power Buffering,” in Proc. 4th European Symposium on Super Capacitors and
Applications (ESSCAP 2010), Bordeaux, France, Oct. 21-22, 2010.



Analysis of the ultracapacitor module in power buffering

Matti Liukkonen, Ari Hentunen, Jussi Suomela

Aalto University School of Science and Technology, Otakaari 5, 02015 Espoo, Finland
E-mail: matti.j.liukkonen@tkk.fi

Abstract

This paper presents efficiency analysis of the power buffering in common voltage bus systems. Operation of the power
buffering is briefly described with the power control experiments. The efficiency measurement setup and performed
measurements from the charging and discharging events of the ultracapacitor module with the dc-dc converter are
presented. As a result, the efficiency map of the dc-dc converter is gained and losses of the ultracapacitor module
energy storage are differentiated. In addition, the efficiency map of the full charging and discharging cycle of the
energy storage system is attained and the capacitance variation of the ultracapacitor module in the dc-dc converters
operation area is presented. The operation areas of the energy storage system and variable speed diesel generator
(VSDG) in series hybrid electric vehicle (SHEV) application are investigated in simulation case studies.

1. Introduction 2. Power buffering in common voltage bus systems

This study is part of a duty vehicles hybridization Two different power control cases are presented in this
project. Hybridization of vehicles and mobile machineshapter: case 1 presents the peak power cutting method
aims to decrease emissions and fuel consumption land the case 2 presents the acceleration assistance and
exploiting the kinetic and potential energy of the systentegenerative energy recuperation method. In addition, the
downsizing the primary energy source’s power rating, anthtter can be separated into two sub cases depending on
by generating the primary power with the most efficienthe source current during the regenerative load current.

means. The current patterns and scheme of the experiment setup
Design of a hybrid vehicle, non-road mobile of these two power control cases are shown in Figure 1.

machinery (NRMM) or other hybrid power system is a Souree load

very complicated task. Therefore, profound researc

relating to energy storing, hardware design anc—y 7 VT W

supervisory control is needed. This study focuses on tt i ; A

system efficiency of peak power buffering in common __-——~_ "% load 4 -

voltage bus systems. The system efficiency study utilize cc2 | :/’_

the measured data, since it is not feasible to use tc DC ’

accurate system level models with a semiconductc

switching events. The functional approach in system leve be )

models provides possibility to solve power train’s total e e

efficiency efficiently. Also, characteristics of an m

ultracapacitor (UC) module in system level are considere —— . //i

[1]. - -
The contribution and novelty of this article is in Ultracapacitor > | A

introducing the power buffering from the Original module ¥

Equipment Manufacturer's (OEM’s) from the NRMM Fig. 1. The power control targets for two different cases: peak power
industry point of view. This consists of presemed:utting and acceleration assistance / regenerative energy recuperation.
measurements, analysis and case simulations for the UC 2.1 peak Power Cutting

mo_d_ule based power buffer]ng n SHEV. drive lines. Figure 2 presents the peak power cutting measurement.
Efficiency maps from charging, dlschar_glng, and fuIIT e dc-dc converter was controlled in the presented
cycle are presented for the three-phase interleaved bo% eriment with a constant power limit of 45 kW. After
g%pvert(ta_r,t [i] ?nd [3]1 Also, losses 0]; th?: Utch module Ahe load power exceeded the power limit value, the dc-dc
nerentiated trom the measurements. FUrthermore, as &, o ey discharged the UC module with a margin of the

case ex_ample the operation area of an energy storagg ; power and power limit value. The continuous current
system in peak power buffering is described on a two-

drant effici d the affect of the d dof the dc-dc converter was ~80A, which limited the
quadrant €fliciency map an € aflec ? € dC-C%ontinuous power of the ultracapacitor module to around
converter control strategy on the VSDG's pos,3|blel

operation area is compared. This study completes the5 KW. The minimum power limit, which is used for

SHEV modeling studies presented in [4] and [5].
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charging of the ultracapacitor module, operates 2.2 Acceleration assistance / regenerative energy
respectively during regenerative or low loads. recuperation

As features, the used dc-dc converter has overshot therigyre 3 presents the power control measurement with
reference current in the beginning of the dischargghe acceleration assistance / regenerative energy
operation and minimum current limit (27 A), which altersrecuperation method in the SHEV powertrain.
the used power limit values with a variable depending ofinplementation, comparison to simulations and error
the UC module’s voltage. In the shown figure thegstimation are presented in [4]. The hardware for the

minimum transferred power was ~5 kW. experiment is described in detail [2]. The presented power
o ) control experiment describes how primary source current
ol usap power |, can be ramped up in common voltage bus systems with
5 ok tmover the full-scale power transfer hardware for the primary
5 o energy source’s needs, [12] and [13]. The figure shows
£ WL the load current, the Ucap current, the source current and
o I the Ucap voltage during an ECE-15 based load cycle.
26 265 26 266 27 275 28 285 23 206 30
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Fig. 2. The peak power cutting control method with the ultracapacito g 22 e ]
module. The dc-dc converter with 80A continuous energy storag ©° D —— L
current is controlled when the load exceeds the maximum power limit. - i . i i i i i
= Za [P - : : p ]
2.2 Measurement setup in Peak Power Cutting 1 OO SOOI IO NSO O S
- f i ——— . o
experiments 5 2a il HR PR, P
o 20 40 a0 a0 100 120 140 160 120 200

The scheme of measurement setup is shown in Figu Time fs]
1. The measuring hardware and software for thiSig. 3. The acceleration assistance / regenerative energy recuperation
experiment consisted from dSpacéicroAutoBox control method with the ultracapacitor module. The figure presents an
experiment which was realized in the full-scale hardware-in-the-loop
1401/1505/1507 (MABX) and d_Space Controldesk verification environment.
produced bydSpaceGmbH, respectively [6].

The load power was calculated from the dc link voltage  preyious experiments with the different types of load

and the dc link current to load which were measured_witlgydes illustrate how an UC module is a practical choice
AV100-750and HTFS 400-Psensors. The ultracapacitor ¢, power buffering in different applications.

module’s voltage and current were measured WitH 00-
750 and LA 305-Ssensors, respectively. All the used3. Efficiency measurements
sensors are products bEM [7].
The source power is calculated from the previous S-1Measurementsetup
measured variables. The source was an active front end Equipment under tests (EUTs) includes the
converter (AFE) NXA_0460 5 (Vacon Plc.), which ultracapacitor module (17.8F, 390V) and the dc-dc
regulated the dc link voltage and supplied the sourceonverter. As a change for the previously described
current. [8] measuring setup all measurement sensors were replaced
The load was an electric drive system ELFA producetvith a power analyzer. Figure 4 illustrates the schematic
by Siemens [9]. The inverter (G650 D440/170/170) anéfom the measurement setup.
electric machine (1PV5135-4WS28) of the loading

system was operating against the NRMM'’s disc brake o Active front end L Ultracapacitor
its shaft. converter DC-DC converter module

The dc-dc converter was a productMfSc electronics | \pp ] Dc 1 i
Plc. and the model waMSc200DCDC75(10]. The UC = — — DC
was a product oMaxwell technologidsl, with a nominal pe| Mo g TEs
capacitance of 17.8 F and maximum voltage of 390 \
[11].

(%A;P ]3); ——  Power Analyzer

Fig. 4. The schematic from the measurement setup in efficiency
measurements.
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The used power analyzer waEM/Norma D6100with  operation points are functions of the ES curreagg)(and
its triaxial shunts for 6 to 300 A current measurementghe voltage ratio i) between the ES and the dc link.
The measuring accuracy for voltage channels in th&he efficiency maps for charge and discharge operations
frequency range of 0 to 15 Hz are + (0.15 + 0.03f&6 are calculated as in (1),
reading and range, respectively. The measuring accuracy ) U out dout
for current shunts is + 0.1% within a frequency range of 0 /7(U ratios! ES) i — (1)
to 100 kHz [14]. Uin Oin

Measurement data acquisition was performed via ahhe in and out subscripts refer to power transfer
RS-232 cable and the control of the dc-dc converter in thairections.

tests was performed with the MABX. Efficiency values corresponding to particular ES
32 M " current and voltage ratio in two digits accuracy are
- Measurements averaged. This way the realized charge efficiency map is

Efficiency measurements were performed in theresented in Figure 6. Measurements were performed in
following means. The UC was charged and dischargegho sets, firstly from zero current to 90 A, and ,secondly,
repeatedly from zero voltage to its maximum voltage an¢tom zero current to 200 A. Both measurement data sets
back to zero voltage. The UC current was kept constant iye utilized in the results.
one charge - discharge cycle, and afterwards tr

reference current was changed for the next repetition. Tt oe
dc link voltage was kept within 650 to 655 volts with the E S ——. ] RS
AFE, according to the averaged dc link voltage 05 AT

measurement data. f e 3w |Hng
Figure 5 illustrates the UC voltage measurement dai L o4 :
with different charging and discharging currents. Thes g

g P —— it
legend represents the average ES rms current valu %% | R KUREE RERAE N S
during charge — discharge operations. s =] ' : o
ozbe : : % 1Hos
400 T T T T : :
' 2944 SQM A
ag7al 01 : : == @078
—aa2a %f
87.6 A ;
—— 107 A T30 w0 w0 100 20 140 1e0 1m0 o7
= 126 4 Energy siorage current [A]
- ——146A Fig. 6. The efficiency map of the dc-dc converter during charge
g e 170A 1 operation.
c 194 4

The total power buffering efficiency can be derived
1 from the measurement results as in (2),
. U ratios | T
,7(u ratio'|ES): pout( ratio: ES) [gout @
i i pin(u ratioy'ES) Ti
7 W™ s In Equation 2,p, refers to instantaneous power on the dc
Fig. 5. Charging and discharging of the ultracapacitor module withink side towards the dc link angl,, respectively, towards
different constant currents. the ES.T, refers to the total discharge time of the ES and
. ) ) Tin to the total charge time of the ES. In additian, is

All measured variables in each charge — discharggseq without the voltage drop over the equivalent series
cycle were the voltages in the energy storage and the ggsistance (ESR) of the ES.
link side, as well as the currents from both voltage Tpe previous equation leads to the full power
potentials, respectively. All variables were taken as rmgygfering cycle efficiency according to the ES operation
values. The measurement points are illustrated in Figuksvints. The full power buffering cycle efficiency map is
4. ) ) presented in Figure 7.

Measurement data_sampling frequency in the power pyrther, from the measurement data can be derived
analyzer was fixed at 70 kHz. In addition, the measuring|so the variable capacitance map over the UC module
device averaged measured values over a 0.934 seconipration area. The variable capacitance map can be
time frame with a digital filter to avoid efficiency values gerived as in (3),
from varying and to prevent an excess amount of data. | [At

3.2. Measurement analysis Clugsies)= A (3)

The measured data provides directly the efficiency In Equation 3,C refers to capacitancel, to rms
maps of the dc-dc converters charge and discharggirrent,Zt to time change andlU to change of voltage.
operations. The efficiency valuesz)( in different The variable capacitance map is presented in Figure 8.

) ;
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The modeling of the UC can be realized with thelines and the measured efficiency pattern with colored lines,
variable capacitance map and the ESR value of tH&sPectively.

module, [1] and [4]. Ei .
2 . gure 9 can be compared to the efficiency contour
The efficiency of the UC module, with t_h(_e used dc-d attern created by pure ESR losses for the UC module.
converter, can be derived from the total efficiency map by, efficiency contours created by 63mesistance [11]

subtracting the charging and disqharging losses of the d > drawn in the background with black dashed lines as in
dc converter, and by assuming the UC module’34)
efficiency equal in charge and discharge operations, as’’ ) 2
contained in Figure 9. .\ _ UesUEg —ESROEgg
nluesies)= . 4
us : — U esles

The presented figure suggests that UC module’s losses
are mainly caused by the dc current in the ESR of the UC
module and the ripple current component of the dc-dc
converter has only minor or insignificant effects on low
ES currents. The change in the trend of the efficiency
pattern of the UC module can be seen with less than 50 A

values.
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07 4. Simulations

An introduction to the simulated SHEV drive line is
presented in Figure 10, which is an example of an
N ultracapacitor module power buffered SHEV drive line.
o @ Enﬂgrgy;?;ragézcnurreﬁ[m [ The abbreviations in the figure represent generator (G),
) ) c ) ) active front-end converter (AC/DC, AFE), dc-dc
Fig. 7. The full power buffering cycle efficiency map, which consists °fconverter (DC/DC), inverter (DC/AC) and traction motor

twice the losses from the dc-dc converter and the ultracapacitor module; .
(EM). The control signals and actual values are speed
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Simulations illustrate how the operation points of the
primary energy source and energy storage differ after
hybridization from the conventional electric drive line. In
8% the shown example, the drive line is considered to provide

power for the ECE-15 drive cycle, with peak power equal
TR TR (RN T TR TaT T oss  to the diesel engine’s maximum. The operation area of the
Energy storage current [4] conventional VSDG use and hybrid power control method
Fig. 9. The comparison between theoretical and measured efficiengases | and Il are illustrated in Figure 11. The figure
map of the ultracapacitor module in either charge or dis‘:harggpows the operation points of the conventional electric
operations. The theoretical efficiency pattern is drawn with black dashe hive line and the SHEV drive line with the UC module

Voltage [V]
1
=]
=]

o
=)

082
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ratings of 17.8F and 390V. In the figure blue stars refer ttowards energy storage and negative current is towards
operation points with the conventional VSDG use, greethe load. Figure 13 is derived by taking the square root
crosses refer to operation points in the SHEV drive linérom the full power buffering cycle efficiency map. The
with power control case | and red circles refer todc-dc converter is considered to transfer the current
operation points with power control case Il. Operatiorwithin its maximum current limit 200 A. Green crosses
points are drawn on the static fuel consumption mapefer to the operation points with power control case | and
(9/kWh), which is not exact during transitions. Inred circles refer to the operation points with power control
addition, the black line depicts the maximum power of thease II.

VSDG, and the VSDG is assumed to operate with th

speed reference as a function of transferred power.
140
120
e
2
100t _ %g :
: o= :
g sl JEOE DS SN L% > Lo i
5 : e
2 eof : L: :
o . :
aof % N S S .50 S S
m’_.//aao -200 -180 -100 -50 a 50 100 150 200
20k et Lo * O Energy storage current [A]
+oat o . . . . .
a 4 : : : : : Fig. 13. Operation points of the ultracapacitor module in the SHEV
Boo 1000 1200 1400 1600 1800 2000 2200 drive line during the ECE-15 drive cycle. Green crosses refer to the
Spssd [rom] operation points in the SHEV drive line with the power control case |
Fig. 11. Operation points of the conventional VSDG and with theand red circles to the case Il, respectively. The positive current is

SHEYV drive line during the ECE-15 drive cycle. The figure illustratestowards the UC module.
the primary source’s downsizing with two different power control
methods. Blue stars refer to the operation points with the conventional Figure 13 illustrates that the energy storage system

VSDG use, green crosses refer to the operation points in the SHEV dri‘é%ntaining the dec-dc converter and the UC module
line with the power control case | and red circles to the case I, . . _
respectively. operates mostly in area with 90 to 95 percent efficiency

when power conversion efficiencies either from the dc
Both SHEV drive line power control cases decreasink to the energy storage or to opposite direction is
the maximum power to approximately two thirds of theconsidered.
original. In addition, the power control case | provides the Figure 14 presents the UC module’s current in two
possibility to move the operation points of the VSDGpower control cases, in the time domain.
from low load and low speed to higher load with low
speed when compared against case Il.
Figure 12 presents the VSDG’s power in the eacl
simulation case, in the time domain.

conventional
. SHEV, case |
“““““ SHEV, case 1l

Gurrent [A]

power contral oase |

Power [kiA]

200

power contral case 11

1]

i
100

Tirme [=]

Fig. 14. The ultracapacitor module’s currents in the SHEV drive line

a 0 prn during the ECE-15 drive cycle presented in the time domain. The green
Time [s] line refers to values of the SHEV drive line with the power control case |

Fig. 12. The loading of the VSDG in three simulation cases. The pluand red dashed line to the case Il, respectively. The positive current is

line refers to the conventional VSDG use, the green line refers to tH@wards the load.

SHEV drive line with the power control case | and the red dashed line

refers to the case I, respectively. 4. Conclusions

200

Figure 13 depicts the operation points of the energy This study describes two different power control
storage system on the top of its total efficiency map. ThE'ethods for the SHEV drive line with experiments. Also,
figure is two quadrant, such that the positive current ighe efficiency measurement setup and efficiency
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measurements for the energy storage system are described
and results of the measurements are analyzed. The study
is concluded with case simulations from the operation
areas of the energy storage system and the VSDG in the
SHEV drive line in contrast to conventional use. The
approach to the system level models is a functional,
which utilizes measurements presented in the study. The
functional approach to system level modeling provides
the efficient method to solve the power train’'s total
efficiency.
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Abstract-This paper presents powertrain comparison for fuel cell
hybrid non-road mobile machinery. The objective of this study is
to investigate the feasibility of different fuel cell hybrid
powertrain topologies. This study concentrates on hybrid
powertrain topologies which are generated from the fuel cell
source output to loading inverters inputs. The compared
features of different powertrains are efficiency, weight, size, cost
and lifetime costs, as well as, benefits and disadvantages. The
study considers fuel cell hybrid topologies with different active
and passive connections of a battery pack, an ultracapacitor
pack or the both. The comparison of different powertrain
topologies requires a validated simulation tool, specific power
control algorithms for each topology, knowledge of the target
application and several iteration rounds for simulations.

I INTRODUCTION

The main objective of this study is to investigate the fuel
cell system (FCS) suitability as the primary energy and power
source for the non-road mobile machinery (NRMM). In this
context, the FCS properties such as efficiency, weight, size,
initial and lifetime costs, and operating requirements are
evaluated. The focus is on the fuel cell hybrid applications
therefore different powertrain topology options are introduced
and their characteristics evaluated [1].

For introducing the fuel cell system as a part of hybrid
powertrain in a NRMM application, the most relevant fuel
cell (FC) hybrid topologies were defined. In this context, the
topology means the main component configuration in the
powertrain system. This system usually includes the primary
power and energy source (engine, fuel cell...), energy storage
(battery, ultracapacitor, flywheel...), drive system such as
electric motors, and other loads (work hydraulics, auxiliary
devices...). Based on expertise knowledge and a literature
study, five different FC-hybrid cases were chosen to be
analyzed.

As mentioned before, special focus is given for different
energy buffering solutions. For FC-hybrid applications, an
important part of the hybrid system is the energy storage.
Depending on the application, they are used for storing
energy for short or longer period of time. Basically, the need
for energy capacity can be evaluated based on the operation
requirements. Moreover, these requirements typically depend
on the load cycle which describes the power need during a
certain period of time or distance.

Fuel cells have been successfully implemented in different
road vehicle applications such as passenger cars (Honda FCX,
MB F-CELL...) and city buses (MB Citaro, Van Hool...).

978-1-61284-247-9/11/$26.00 ©2011 IEEE

Also, some application of non-road mobile machinery has
been developed such as forklifts, loaders, tractors and
locomotives [2]-[6]. Currently, all the fuel cell powered
vehicles or NRMM are still in prototype phase because of the
high production costs, lower performance and limited access
to refuelling pure hydrogen.

1L RESEARCH METHOD

This study compares different fuel cell powered series-
hybrid buffering topologies for NRMM with the aid of system
level simulation studies. System control strategies are
developed for the each defined topology while a load cycle is
specific for the studied mobile machine. The simulation
model was developed and validated during previous
hybridization research projects [7]-[8]. The backward
modeling methods accuracy was proven to be on sufficient
level.

This research concentrates especially on the Heavy Mobile
Port Equipment load cycle. Studied topologies are simulated
with the particular power control and their powertrain
efficiency, approximate powertrain weight, size, initial and
lifetime costs, and operating requirements are analysed, with
targeted 15 years of operation. Therefore, starting points for
solving the feasibility of different powertrain topologies are
the Heavy Mobile Port Equipment load cycle, the FC-stack
and the battery pack operational limits. The target of power
control in each powertrain topology is to keep the FC-stack
load changes within 2.5 kW/s, which ensures the maximum
lifetime of the FC-stack [9].

111. SYSTEM LEVEL ANALYSIS

A. Load cycle

The studied Heavy Mobile Port Equipment has
conventionally an electric powertrain with a high voltage DC-
link and power sources. Therefore, it has been possible to
acquire traction and hoist loading data from inverters. The
traction and the hoist loading data consist from several
separate loading units, which are assumed as sum from the
point of common coupling. The full data acquisition from the
vehicle consists of powertrain variables with 0.5 seconds
interval from the 5312 seconds period. Table I presents
operation percentages for different load power levels. Power
levels in the table are per unit (p.u.) values from the
maximum load.



TABLE I
THE TRACTION, THE HOIST AND THE SUM POWER HISTOGRAMS FROM THE
TOTAL DATA ACQUISITION PERIOD.

Bin [p.u.] | Traction power [%] | Hoist power [%] | Sum power [%]

Min power -0.681 pu -0.900 pu -0.900 pu
-0.873 0 0.02 0.02
-0.764 0 0 0.01
-0.655 14 0.06 1.3
-0.546 2.5 0.07 2.3
-0.437 1.5 0.2 1.7
-0.328 1.9 0.7 2.6
-0.218 1.9 0.5 2.4
-0.109 2.9 1.0 3.4

0 36.0 92.1 32.7

0.109 8.0 L5 7.1°
0.218 4.1 1.1 477
0.328 7.4 1.1 8.1°
0.437 7.0 0.7 74°
0.546 4.5 0.5 49°
0.655 3.6 04 39¢
0.764 2.8 0.06 3.0°
0.873 8.9 0 89°
0.983 5.6 0 5.6°
1.092 0.01 0 0.01°

Max power 1 pu 0.716 pu 1 pu

“ The positive part of the sum power with the additional constant
load make a positive load E}jeq from the DC-link.

B.  Studied powertrain topologies
Four different powertrain topologies presented in Fig. 1 are
considered in this study with the following configurations:
A. Case a : fuel cell and battery,

B. Case b fuel cell, passive battery and active
ultracapacitor,
C. Case ¢ fuel cell, active battery and active

ultracapacitor pack and

D. Cased : fuel cell with active ultracapacitor packs.

Furthermore, topology case d is divided into two different
cases based on the control strategy. In comparison, the case d
refers to topology d with actively DC-link voltage controlled
ultracapacitor (UC) packs and varying FC power production.
In addition, the case e refers to topology d with both voltage
and current controlled ultracapacitor packs and constant FC
power production, see Section VI.

The case a consists of a high voltage FC-stack, a current
controlled unidirectional FC-converter, a high voltage battery
pack and load inverters. The battery pack was dimensioned
for the particular load cycle. Dimension of the battery pack is
impacted by the maximum allowable charging current, which
is a restrictive factor for the battery pack sizing in this
topology. The sizing of the battery pack can be achieved
based on FC-source control, battery pack voltage (i), and
the load cycle.

The case b can be controlled such a way that the active
ultracapacitor pack limits the maximum and the minimum
current of the battery pack approximately within the nominal
current value (C, Ah/h), as well as, it limits the battery pack’s
power transients.

The case ¢ consists of a FC-stack with its converter,
secondary storages, a battery pack and an UC pack, with their
converters and a brake resistor with its brake chopper. The

benefits of the topology originate from the increased amount
of degrees of freedom in energy storages control and sizing.
The fundamental reason for the lower powertrain efficiency is
the battery pack DC-DC converter losses, which occur
increasingly if the vehicle is operated during the start-up
phase of the FC-source.

The case d has UC packs as its energy storage. The DC-
link voltage controller for the UC packs was a proportional,
when the motoring load decreases the DC-link voltage and
the regenerating load increases the DC-link voltage. In this
case, the FC-source is controlled such a way that it follows
the load power against its power transition limit of 2.5 kW/s.

The case e can be designed such a way that the current
controlled UC pack averages the load power, the FC-source
operates on its maximum power region and the voltage
controlled UC pack stabilizes the DC-link and provides power
in transients. This topology with current and voltage
controlled ultracapacitor packs topology gives a low cost but
relatively high weight and size option for the powertrain.

C. Finding of equivalent powertrain sizing

In the backward powertrain design the reference load
power must be derated if the load power causes instability to
the DC-link. This might be due to the saturation of power
transfer components to their maximum limits and it is a sign
of a too high load or a weak design. In order to compare
different powertrain cases against each other, the designer
must ensure that they are able to provide the same energy, and
the peak power, to the load, as well as, receive the
regenerative power. This inspection is done by integrating the
positive and the negative load powers, and by comparing
those to integrations of the reference value. Disparity in
comparison is a sign of lacking performance and gives a
reason for a new iteration round of powertrain component
sizing. Powertrains cannot be equally compared until they
reach the same performance.

Fig. 1. Schematics of studied powertrain topologies.



D. Definition of the powertrain efficiency

This study investigates power transfer efficiencies between
the primary source output and load inputs. Therefore, the
efficiency from the fuel cell stack electrical output to
electrical inputs of inverters is considered. The efficiency of
the powertrain (1, is defined as
npt = E+load / ( E+]0ad + Epiconversinnilossss + Ebrakeiresist()r )a (1)
where E.,.; represents a positive load from the DC-link,
which contains the positive part of the sum power and the
constant load from the DC-link for auxiliaries. The constant
load in this study was 0.065 pu. E, comersion losses 15 @ sum of
the power losses integration in the FC-converter, energy
storage converters and the equivalent series resistance (ESR)
power losses in energy storages. Epate resisior Tefers to the
power losses in the brake resistor.

Iv.

A. Modeling of the FC-stack
This study uses a static ui-curve model for a FC-stack. The
FC-stack is modeled as a current-dependent voltage source,
i.e., ug. = (7)), where uy is the output voltage of the FC-stack
and 7 is current from the low-voltage side of the boost
converter. The fuel cell stack ui-curve imitates the output
voltage of a typical commercial fuel cell stack.

MODELING

B.  Modeling of energy storages

1. Battery pack
A generic Li-ion battery model was used in this research.
The Li-ion battery pack discharge characteristics (i° > 0) is
modeled as in (2), and charge characteristics (i* < 0) as in (3),
respectively.

ity iy iva) = Us— K Q /(O —it) i —K Q/(Q—if)it+A4
exp(—B "it) = Ryat " fpat. 2

oty 1, i) = Uo =K~ Q /it + 0.1 Q)i — K Q/(Q~in) it
+ 4 exp(-B "it) ~ R ina. &)

In equations 2 and 3, uy,, is nonlinear output voltage (V), it is
extracted capacity (Ah), i* is low frequency current dynamics
(A), ipy is battery current (A), U, is the maximum voltage
value of the linear area (V), K is polarization constant (Ah™),
0 is maximum battery capacity (Ah), 4 is exponential voltage
(V), B is exponential capacity (Ah™) and Ry, is constant ESR
() of the battery pack. The study uses an estimate value for
battery resistances, since resistance varies based on operation
and environmental parameters. The battery resistance is
calculated as

Rpat = Upom / C 0.01, “4)
where U,on is the minimum voltage of the battery packs linear
voltage area. In other words, Equation 4 means 1% power

losses on the battery pack with the 1C value for the both
charge and discharge conditions. [10]

2. Ultracapacitor pack
The ultracapacitor pack output voltage modeling with
moderate accuracy [7] can be performed as

o = (1) Coa) [ dt+ R e )

In equation 5; u, is ultracapacitor pack output voltage (V),
Cyap 18 ultracapacitor pack capacitance (F), 7, is
ultracapacitor pack current (A) and R, is constant ESR ().

3. Energy storage losses
In general, the energy losses in both battery and
ultracapacitor packs (Eiosses_energy storage) are calculated as

— . .2
E]()ssesienergyislorage =R '[les dt. (6)

C. Modeling of the DC-DC converter

The efficiency of the DC-DC converter depends on the
energy storage current (i.s) and the voltage conversion ratio
(Uratio). In the study [8], DC to DC power conversion
efficiencies in the energy storage system with different i,s and
Unho values have been investigated. Here, the voltage
conversion ratio is expressed as
Uratio = Ues / Upc, (7)
where u, refers to the energy storage side voltage and upc to
the DC-link voltage, respectively.

Modeled functionalities and dynamical properties on the
DC-DC converter plant model are following; current control
response time (Zhe/pc), minimum and maximum current limits
(Inin, Imax) and power losses according to the efficiency
mapping of an operation point. Furthermore, in the current
control mode the DC-DC converter plant model is controlled
with the current reference (iy.q) and with the current direction
D (+1, 0 or -1). Therefore, the DC-DC converter plant model
can be expressed, as in (7) to (11),

®)
®

ircf: D i\rcﬂa when Imin < i\rcﬂ < ]maxa

ies = ibat = iuc =1 /(TDC/DC s+ 1) ’ iref-

Equations 8 and 9 apply, because the classical boost
converter topology under consideration regulates the energy
storage current. Therefore, the energy storage system’s DC-
link current (igs) can be expressed, during discharging (10)
and charging (11), respectively.

(10)
an

iES = ics ’ nboosl(ics: ura!io) " Uratio-

iES = ies / nbuck(iesv uratio) " Uratio-



Equations 10 and 11 use the DC-DC converter efficiency
mapping M(Zes, Uratio) With values from 0 to 1.

V. EVALUATION PARAMETERS

A.  Calculation parameters

In order to compare differences between buffering topology
cases, weight, size, price and lifetime parameters need to be
fixed. Chosen parameter values are presented in Table II.

The weight and size calculations use manufacturers’ data
and reference sources. The FC-stack is considered as two
cases; 75 kW and 150 kW with weights of 350 kg and 400 kg,
and size 0.55m’ for the both. The brake chopper weight and
size is neglected.

In the lifetime column, unit M (million) refers to the
shallow cycle lifetime for the battery and to the deep
discharge cycle for the UC pack, unit y refers to years,
respectively. In this research an average lifetime of FC-stack
in test use during the last decade were considered. The battery
and power electronics component (PE) lifetimes are targets,
and the UC pack lifetime is a datasheet value.

TABLE II
WEIGHT, SIZE, PRICE AND CYCLE LIFE PARAMETERS FOR CALCULATIONS.
Comp. Weight Size Price Life- Refs
time
Bat. 102 129 500 0.3M | [11],[12],
Wh/kg Wh/dm® $/kWh [13]
uc 23 1.6 2800 IM [11]
Whikg Wh/dm® $/kWh
FC 0.21-0.38 | 0.14-0.27 80 1.6y | [14],[15],
kW/kg kW/dm® $/kW [16]
DC- 3.45 5.8 25 15y | [17],[18]
DC kWoeadkg | kWpeaddm® | $/kWoeak
Brake 13 6.6 5 15y [19]
res. kWpea/kg KWoear/ dm?® $/KWpeak
? estimate

Calculated battery capacities in the cases a and b are 189
and 108 kWh with U, 670 — U,m 614 V, and in the case ¢
108 kWh with 330 — 307 V area, respectively. The UC pack
capacities in the cases b and ¢ is 16 F, in the case d 76 F and
in the case e 100 F with U, of 500 V in all cases.

B.  Component lifetime estimation

In principle, an energy storage life expectancy can be
calculated out of the load cycle frequency, if the FC-source
power production is kept constant and secondary energy
storages’ buffer the load variation. This is true in all other
cases than the case @, in which the FC-stack is operated
against its allowable power transition limit and produced
power varies. Therefore, the study utilizes the modeled
charge-discharge cycle count for the energy storage lifetime
calculations. The cycle count is a rough visual approximation
from the charge-discharge frequency of the energy storage.

C. Powertrain initial and lifetime cost estimations
Prospected powertrain cost and lifetime cost estimations
are based on values presented in Table II. Values are based on
targeted mass production costs. The energy price is
considered as 0.1 $/kWh [11]. The electric machine and the
inverter costs are not included in the cost calculations, since

the design is done for a conventional diesel series-hybrid
powertrain.

Energy content for the cost calculations of the battery pack
(Evyy) 1s calculated as in (12), and for the UC pack (E,.) as in
(13), respectively.

Ebal:([J07L Unom)/2 ' Q (12)

Ewe=1/2"C" Unal- (13)
where U, refers
ultracapacitor pack.

The maximum (kW) and average power (kW) values of
DC-DC converters, brake choppers, and the FC-source are
attained from the powertrain modeling, presented in Section
VI. Therefore, all needed data is achieved and the powertrain
lifetime costs can be calculated as

to the maximum voltage of the

Stitetime = fref / tifetime 1~ S1 T fret / fietime 2~ S2 T ... F (1=
npl) ’ Pavg ’ Senergy " lrefs (14)
where Sjirime 1S the expected buffering topology cost within
the examined time span, #. is the examined time span (15
years), tjigime n refers to the n" component’s expected
lifetime, S, refers to the n™ component price, P, refers to the
average FC-source power and Seery refers to the energy
costs.

VL POWER FLOW WAVEFORM EXAMPLES

This section presents examples of the power flow
waveforms of the different buffering topologies. Figures from
2 to 5 present power flows at the point of common coupling
of the DC-link. Figures refer to a short period of the full
modeled loading cycle.

Fower

Load oyole
UG power
— = ~Bat power
FC power

Fig. 2. The power flow waveform example from the case b.

In figures, the blue colored, continuous and widened
waveform is the actual backward model loading data based on
the original reference value from the Heavy Mobile Port
Equipment. Other waveforms are case dependent and
descriptions are in the legends of the figures. The grid, axis
scales and units have been purposely left out from the figures.



Cases a, b and ¢ operate the FC-source on the maximum
power region due to the battery pack in topology. Cases d and
e operate the FC-source against power transition limit, as can
be seen from Figs. 4 and 5, respectively.

Cases b and c have slightly different targets for a battery
pack current limitations. The case b compensates energy
depletion in the UC pack with the battery pack current
limitation ability, and case ¢ does not compensate the UC
pack depletion, respectively.

Power

Load oyole

¢ Brake resistar
UG power

— — —Eat power

FC power

Fig. 3. The power flow waveform example from the case c.

Power

Load oyole
UG povwer
FC power

Tirne

Fig. 4. The power flow waveform example from the case d.

Power

A !! 'rl
limuﬂll.&

Load cycle

¢ Brake resistor
voltage ctrl UG power
= = —current ctrl UG power
FC power

Fig. 5. The power flow waveform example from the case e.

VIL RESULTS

This section presents results of different buffering
topologies in comparison. Fig. 6 shows how weight and size
are dependent on the choice of the buffering topology. Fig. 7
presents efficiencies and power losses of the different
buffering topology cases and Fig. 8 presents initial and
lifetime costs. Furthermore, lifetime cost percentages are
distributed between different components in Table III.

3500 , .
FG Prrax: : :
B8 KW 72 ki 7ERW 200 kw kW
: ‘3an dm®
3000 i
.
3
s
o
i)
B
3
Zesonf AT 4
= 2340 dm®
2 ]
= 2200 kg
g 2140 kg
2 2020 om®
2000 ; ; B
1770 dme 810 dm®
1700 kg 1700 kg] 1700 kg
1600

Case a Case b GCase o Case d Case e

Fig. 6. Weights, sizes and max. FC-stack powers of different topologie:

»

Efficiency [%]

@

Power losses kW]
I

Case a GCase b GCase o GCase d

Case e

Fig. 7. Efficiencies and power losses of different buffering topology cases.

The lowest weight is achieved in the cases b, ¢ and d while
the weight of the cases a and e are around 25-30% higher than
the lowest weight.

The minimum size is achieved in the cases b and ¢ with
proper choice of the battery and the UC pack. A battery or an
UC only buffering in the cases a, d and e increases sizes, thus
the UC only buffered topologies have the highest volume.

The efficiency maximum is reached with the case a, due to
the fewest DC-DC conversions on the primary energy path.
The case b has slightly lower efficiency, since peak powers
are taken via the DC-DC conversion. The case ¢ introduces
DC-DC conversion for the battery pack, and hence increases
significantly power losses with respect to the case b. The case
d is vulnerable to FC-converter efficiency and the case e finds
its powertrain efficiency between cases b and c.

Cost calculations favor the UC pack only buffering
topologies, while the relation to the battery based topologies



depend increasingly on calculation parameters. FC and energy
costs become significant in the cases d and e.

1200 . | T :
1000

a0

Cost [k§]
2
o

400

200

GCase b Case o Case d Case a

GCase a

Fig. 8. Initial and lifetime costs of different buffering topology cases.

TABLE III
DISTRIBUTION OF LIFETIME COSTS IN PERCENTAGES.

Case Bat ucC FC PE Energy
a 91% - 5% <1% 3%
b 83% 1% 8% 1% 7%
c 78% <1% 9% 1% 11%
d - 5% 57% 4% 34%
e - 20% 37% 6% 37%

VIIL CONCLUSIONS

This research compares five different fuel-cell hybrid
topology cases with the load cycle which is specific for the
Heavy Mobile Port Equipment. Each of the topologies has
their own benefits and disadvantages.

It can be said that the feasibility of the battery pack based
powertrains are very dependent on allowed charging and
discharging currents of high energy battery cells. In the fuel
cell battery topology the influence of double C values is the
largest by almost halving size, weight and lifetime costs.

Feasibility of presented topologies is very dependent on the
DC-DC converter efficiencies. Therefore, calculated
powertrain efficiency gives valuable feedback and reason to
reconsider the design of DC-DC converters. This is the case
e.g. in buffering topology cases ¢ and d, in which power
losses might cause powertrain option to become impractical.

This study was conducted as a full iterative process. Such a
process may not expectedly find the global maximums but
points near of those. Optimization targets for different
topologies could, with attained knowledge, be considered.

It should be remembered that the proposed efficiency
values are dependent on the load cycle, the powertrain
topology and the system control, and therefore, those cannot
be generalized. Also, calculated cost values are sensitive to
current trends and future prospects, and should not be
considered as targets, but as reference values in the presented
comparison. Therefore, results are interrelated and should not
be extracted from the context. Results of this study describe a
powertrain characteristics for NRMMs which duty-cycle is
repetitive for long periods of time.
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