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Wireless sensor networks localization is one of most vibrant research field since it
has more advantageous than a global positioning system (GPS) in aspect of cost
and indoor usability. In wireless sensor networks (WSN), predetermined location
of a sensor can sometimes be meaningless because a sensor can be deployed in such
an area where is hardly reachable. Therefore, a sensor must be able to localize
itself and provides its location information to other sensor nodes.
Non-cooperative localization, also called traditional localization, like local posi-
tioning system (LPS) has been done by communications only between anchor
nodes and an agent node. However, a sensor requires to have a sensor that has
unlimited power transmission capability, which seems unrealistic. Furthermore,
accuracy is also limited due to communication only between an anchor node and
an agent node. To deal with these problems, cooperative localization technique
has been suggested and studied. Cooperative localization is the technique includ-
ing not only measurement between anchor nodes and an agent node but also the
measurement between agent nodes for location estimation so as to increase posi-
tioning accuracy and robustness.
Among various sensory modalities (acoustic, seismic, infrared and so on) the
modality of measurement made in wireless sensor networks throughout this thesis
is radio frequency (RF). Simulation results of both non-cooperative and coop-
erative localization accuracy will be observed in order to prove that cooperative
localization outperforms non-cooperative localization. In addition, simulated data
is compared to data which is actually measured in indoor environment to give the
idea how reliable the simulation is in indoor.

Keywords: Wireless sensor networks (WSN), anchor node, agent node, tradi-
tional localization, cooperative localization
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Chapter 1

Introduction

1.1 Structure of wireless sensor network

An interest in wireless sensor networks has rapidly grown due to its poten-
tial use for countless applications including commercial and military applications
like control, automation, environmental monitoring, medical application, agricul-
ture and surveillance [1]-[3]. For instance, people engaged in agriculture would like
to monitor soil and air, as well as plant and for people in animal care desire to observe
behavior patterns and interactions between animal species using various sensors like
acoustic, seismic, and radio frequency (RF) sensor. Due to remote communication,
energy-efficient communication strategy is key issue for deploying wireless sensor
networks [2].

Figure 1.1: Wireless Sensor network

A wireless sensor network is comprised of a vast number of sensor nodes
communicating to one another in ad-hoc manner. Query messages from users are

1
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distributed to sensor network through a gateway, and responses from sensor networks
are gathered to base station, also referred to as sink node. A sensor gateway is used
to route the sensor network to the Internet [4]. In addition, it also processes data
assessment at each sensor and data storage service. The storage services are present
between user and sensors, which is providing space for data. And also, data storage
is added to the IP network to store sensor data from edge sensor networks and to
support various user-initiated browsing and search functions [5]. A base station, a
node where communication ends, connects the sensor network to another network
to convey the data gained [6].

Figure 1.2: Block diagram of a sensor node

As shown in Figure 1.2 [7]a sensor node is usually comprised of a radio fre-
quency (RF) transceiver with an antenna, a micro-controller (MCU), and a battery.
When it comes to sensor nodes, power consumption has always been the biggest
concern since all sensor nodes are powered by battery. As transceiver (transmitter-
receiver), the component makes it possible to realize wireless communication be-
tween sensor nodes, typically consumes most power among components in a sensor
node, it is the most core component of a wireless sensor node among components of
a sensor node [8]. Therefore, the technology enabling communication by low power
and ideal balance between data rate and power consumption are needed [9]. And a
micro-controller (MCU), the other component, is used to process the data measured
from sensors and transmits the data to transceiver [10], [11]. A node can either be
deployed at pre-fixed or random location to sense physical or environmental change
like motion, temperature, sound, vibration, image and so on [12].

Sensor nodes in wireless sensor network (WSN) can be sorted to two groups
- an anchor node and an agent node. An anchor node means a node whose loca-
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tion is initially known whereas an unknown node refers to a node whose location
is priori unknown. It is often called as an agent node as well. Traditional locali-
zation method, non-cooperative localization method, utilizes distance informations
between anchor nodes and an unknown node only. On the other hand, cooperative
localization method utilizes distance informations even between unknown nodes to
improve accuracy and to overcome the limitation of power transmission range.

1.2 Motivation and objective

Due to energy limitation, the way to enable low-power wireless communica-
tion has been studied and suggested in the wireless network field. The research
interest of localization technique in wireless sensor networks (WSN) localization has
been increased due to its various applications such as animal species monitoring,
and target tracking [13]. Accurate and low-power sensor localization is crucial and
challenging for the deployment of wireless sensor networks. There are decent amount
of research papers suggesting way of realizing cooperative localization in order to
improve accuracy and power efficiency.

Therefore, this paper conducts non-cooperative and cooperative localization
and compares accuracy. To briefly explain about first part of work, using received
signal strength (RSS) and time of arrival (TOA) non-cooperative and cooperative
localization are simulated under scenario where anchor nodes are deployed in three
different patterns. The accuracy of both non-cooperative and cooperative method
are observed as a sensor density is varied with fixed transmission range first. Af-
ter that, the accuracy of localization algorithm are again calculated as a trans-
mission is varied range with fixed sensor density. Through the simulations, both
non-cooperative and cooperative localization algorithms are observed in aspect of
accuracy and variance. In addition, it is possible to observe which pattern of anchor
nodes deployed shows the best accuracy.

Another work is to verify how similar simulated data is to measured data.
Using the parameters of RSS and TOA data obtained from some researcher’s ex-
periment, RSS and TOA data are generated under particular noise distribution. By
comparing simulated data based localization to measured data based one, one can
learn how reliable simulated data is.

1.3 Organization

The contents of this thesis are organized as follows. Chapter 2 introduces
basic concepts of necessary localization-related knowledge including a several mea-
surements, which are used to estimate a distance and location estimation algorithms.
In Chapter 3, simulation results on three different anchor node grid with localization
algorithms mentioned in Chapter 2 are compared to one another in order to find
out best grid formation and algorithms.
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Chapter 4 analyzes data measured in an experiment and compares it to sim-
ulated data for the purpose of observing how viable simulated data is. Finally,
Chapter 5 concludes all the results of simulations conducted throughout this thesis.



Chapter 2

Location estimation in wireless
sensor networks

This chapter provides fundamental knowledge regarding a location estimation
in the following order. First, location measurements such as received signal strength
(RSS) and time of arrival (TOA) are introduced with corresponding noise channel
applicable to the measurement. Then, both non-cooperative and cooperative locali-
zation methods are explained. Last, Cramér-Rao lower bound, lower bound on the
possible covariance by any existing unbiased location estimator, is illustrated with
formula.

2.1 Distance measurement using radio frequency

2.1.1 Received signal strength

Figure 2.1: General radio signal transmitting system

A general and a simple radio system consists of antennas, transmitter, and
receiver as shown in Figure 2.1. To briefly explain the radio signal processing,

5



6

the signal including information is first modulated through transmitter. Then, the
modulated radio signal is converted into an electromagnetic wave by transmitting
antenna. After the electromagnetic wave travels through medium, free space, it is
captured by receiving antenna which converts it to electronic signal. And finally, the
converted signal is demodulated back to original signal involving information [14].

There are major factors causing the power loss of the radio frequency (RF)
signal, which is called path loss. First of all, the transmission distance affects the
loss of RF signal power as a power loss is inversely proportional to a distance. Sec-
ond factor is fading caused by multi-path propagation. One of fading induced by
multi-path propagation is so-called frequency-selective fading. It happens when sig-
nals from different path are added, causing either constructive or destructive change
on an amplitude and an phase of a signal at the receiver. The other major fading is
slow fading, so-called shadowing. It is caused when a signal is refracted, reflected,
and diffracted by obstacle [18].

Received signal strength is used in localization as a distance can be estimated
from the power received in the particular frequency channel. Therefore, the received
signal strength indicator (RSSI) is designed in order to measure the power received
from RF signal. The received signal strength indicator (RSSI) is implemented in-
side a sensor node so that external hardware is not required for measuring the power
received. However, value on RSSI oscillates due to multi-path fading or mobile en-
vironment and so on [19].

By relation between power value measured on received signal strength indica-
tor (RSSI) and the distance between nodes, the distance from transmitter to receiver
can be estimated. In free space, signal power is inversely proportional to square of
distance. In realistic channels, there are two main interferences in RSS measure-
ment, multi-path signals and shadowing.

Multi-path signal fading takes place when multiple signals arrive with differ-
ent amplitudes and phases at the receiver and theses signals are added positively
and also negatively as a function of the frequency and distance. This distortion can
be compensated using a spread-spectrum method averaging the received power over
a wide bandwidth. The received power measured using wide bandwidth equals to
the sum of the powers measured from each multi-path signal [20]. Even assuming
that multi-path fading problem is solved, shadowing, environment dependent error,
can also be problem.

Shadowing is attenuation of a signal due to obstructions like pillar, furniture,
which a signal must pass through or diffract on the path between transmitter and
receiver. Due to signals from various paths, it is more realistic to calculate the
ensemble mean received power of all these signals. And signal distribution under
fading channels has been proved to conform to a log-normal distribution closely [16].

Thus the mean power at distance d is typically expressed as log-normal
path loss propagation model by using a path loss exponent, which is P̄ (d) =
P0 − 10np log

d
d0

, where P0 and np denote the received power and the path-loss
exponent respectively. A value of path loss exponent varies depending on the en-
vironment where communication takes place. For example, path loss exponent is
between 2.7 and 3.5 for urban area cellular radio whereas it is between 2 and 3 for
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impaired circumstance in building [17]. The received power Pi,j in dBm at sensor
i transmitted by j, can be expressed with a noise, which is Gaussian distribution
with zero mean as

f(Pi,j = p | θ) = N
(
p; P̄ (di,j), σ

2
dB

)
(2.1)

where p, P̄ (di,j), σ2
dB represent Gaussian probability density(pdf), mean power, and

variance in dB respectively.
Therefore, the simulation conducted in Chapter 3 applies formula P̄ (d) =

P0 − 10np log
d
d0

+ n, where n denotes Gaussian noise with standard deviation σdB.
More detailed explanation about parameter value such as received power at reference
distance P0 and path-loss exponent np and σdB and so on is left to Section 3.1.2.

2.1.2 Time of arrival

A time of arrival (TOA) is the measured time at which a signal first arrives at a
receiver. The time delay is computed by subtracting the known transmit time from
the measured TOA. Sensors chosen for TOA have synchronized clocks.Two-way time
of arrival measurement is more desirable than one-way time of arrival due to the
fact that time synchronization is not necessary [18]. As we can see in Figure 2.2 [21],
offset time, which is denoted as OS, is canceled out for two-way TOA calculation.

Figure 2.2: Time of arrival

The accuracy of the arrival time is limited by additive noise. In estimating
accurate time of arrival (TOA), therefore, it is the key issue to find the time delay
between the transmitted signal and the received signal distorted by noise as accu-
rately as possible. However, estimation technique of time delay caused by additive
noise is developed pretty well both in high and in low signal-to-noise case [22].
Developed technique is the generalized cross-correlation algorithm (the maximum
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likelihood estimator), which maximizes the signal to noise ratio [23]. And to get
the general idea of reducing noise, it is helpful to look the formula of Cramér-Rao
lower bound as it is the possible lowest variance. The Cramér-Rao lower bound in
multipath-free channel is calculated as

1

8π2 · T ·W · f 2
rms

· 1 + 2 · SNR
SNR2

≃ 1

8π2 · T ·W · f 2
rms

· 2

SNR
for high SNR

(2.2)

where T , W ,frms denotes the observation time, the bandwidth of the signal, RMS
value of the center frequency of the signal respectively in a multi-path-free chan-
nel [24]. And frms is computed as frms

√
1 + W

12f2
c
. As shown in the equation above,

accuracy of TOA depends only on signal’s bandwidth, the center frequency, obser-
vation time, and signal-to-noise ratio (SNR). Cramér-Rao lower bound (CRB) gives
an idea which factors affect TOA and how those factors are related to the accuracy
of TOA estimate [25].

The error caused by multi-path fading, another main interference, can be much
more severe than that caused by additive noise. All multi-path components decreases
the SNR of the desired line-of-sight signal. A line of sight refers to electro-magnetic
wave traveling in straight line, not diffracted, reflected or shadowed by unexpected
obstacles. In the multi-path channel, the receiver must find the first-arriving peak
because it is not assured that the line-of-sight signal will be the strongest of the
arriving signals. This measurement can be done by calculating time that the cross-
correlation crosses a threshold first. Template-matching is an alternative method to
measure the time of arrival in multi-path channel [26].

Since dense sensor networks have the distinct advantage of being able to calcu-
late TOA between nearby neighbors, the shorter inter-sensor distances are the less
attenuated line-of-sight (LOS) signal is. And also, wider signal bandwidths provides
narrower autocorrelation peak, which enhances the ability to accurately indicate the
arrival time of a signal and makes it easy in distinguishing LOS signal from multi-
path signals [18].

In two-way time of arrival, since same measurement is used for calculating
time, same clock offset will be applied for both forward (additive term) and re-
verse measurement (subtractive term) results as shown in figure above. Therefore,
summation of forward and reverse offset is canceled out [27].

2.2 Position estimation algorithm

This section introduces several localization algorithms. First, least squares
estimation, one of most known estimator, is introduced. Next, joint map estimation,
possible algorithm for situation where an anchor is not given, is explained. And
finally, the cooperative algorithms, the algorithms that utilize communication data
between agent nodes in estimating location, is introduced.
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2.2.1 Least squares estimation

Least squares estimation (LSE) is the most common standard approach to
find the "best fit" solution, where number of equations are more than a number of
unknown variables [28]. For most cases, there is no solution x satisfying Ax = b,
where A and b are a design vector and an observed data vector respectively. There-
fore, LSE is used to estimate value of x in a way that Ax minimizes the euclidean
distance between b and the column space of Ax. To express Ax mathematically, it
can be

Ax =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

... . . . ...
am,1 am,2 · · · am,n



x1

x2
...
xn

 =


a1,1 · x1 + a1,2 · x2 + · · ·+ a1,n · xn

a2,1 · x1 + a2,2 · x2 + · · ·+ a2,n · xn
...

am,1 · x1 + am,2 · x2 + · · ·+ am,n · xn


=

[
a1

]
· x1 +

[
a2

]
· x2 + · · ·+

[
an

]
· xn

(2.3)

where an denotes nth column vector of A. As proven above, Ax is linear combina-
tions of A’s column space. In other words, Ax is necessarily in the column space of
A. According to The Best Approximation Theorem [28], if the column space of A
is subspace of Rm and b is the vector in Rm, then∥∥∥b− b̂

∥∥∥ < ∥b−w∥ (2.4)

where b̂ is the perpendicular projection of b onto w, any vector in the column space
of A. In other words, b̂ is closest point in A’s column space to b.

Figure 2.3: The closest point to the vector space

Figure 2.3 might help to understand why the perpendicular projection of b is
the closest point of the column space of A. Since Ax lies in the column space of A
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regardless of x, there always exists x satisfying Ax = b̂. To find x which makes Ax
equals to the perpendicular projection of to column space of A b̂, we need to use
orthogonal property of two vectors which b is composed of.

Figure 2.4: The orthogonal decomposition

As shown in Figure 2.4, b can be decomposed into the vector b−Ax and Ax,
which lies in column space of A. And these two vectors are orthogonal to each other
only when Ax = b. Therefore, the goal is to find x which satisfies (b−Ax) ·acol = 0
where acol denotes a column vector of A. It can be expressed as below.

A⊤(b−Ax) = 0 (2.5)

Then, A⊤b−A⊤Ax = 0 → A⊤Ax = A⊤b (2.6)

It is shown that the solution x of Ax = b is same as the solution x of A⊤Ax = A⊤b.
Finally, according the Equation (2.6) the least squares solution is

x = (A⊤A)−1A⊤b (2.7)

A simple example of least squares application, linear equation which is y = β0+β1x,
can be drawn in 2-dimension as below.

As shown in figure 2.5, the difference between y value of data and y value
of the line, the error, is called as residual. And least squares estimation works in a
way that make the line as close as possible to n data points (x1, y1), · · · , (xn, yn).
Therefore, the purpose of this estimation is to find the parameters β0, β1 of the line
y = β1 · x+ β0 which is minimizing the sum of residuals’ squares. To rewrite linear
equation above in matrix equation, it can be expressed as xβ = y, where

x =


1 x1

1 x2
...

...
1 xn

 , β =

[
β0

β1

]
, y =


y1
y2
...
yn

 (2.8)
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Figure 2.5: Fitting a line based on data

For the case of localization, since there are two unknown variables to be esti-
mated; x and y coordinate of an unknown node, there should be at least more than
three measured data of distances between the unknown node and anchor nodes. It
is possible to calculate x and y coordinate of unknown node from square of distance
d2 between an unknown node and anchor nodes. In equation below, which derives
position of unknown node from distance d, coordinates of anchor node i is expressed
as xi and yi respectively.

By using distance information, least squares estimation (LSE) can be used to
find position of unknown node as below equations show in [29]. Let’s start with
three distance data, the simplest example, in order to get basic idea how general
LSE equation is supposed to be

(x1 − ux)
2 + (y1 − uy)

2 = d21 (2.9a)
(x2 − ux)

2 + (y2 − uy)
2 = d22 (2.9b)

(x3 − ux)
2 + (y3 − uy)

2 = d23 (2.9c)

where ux and uy denote coordinates of unknown node. For calculation of distance
based on measurements (RSS and TOA) is left to chapter 3. Under assumption that
distance is obtained from measurements, formulas above can be expanded as below.

x2
1 − 2x1ux + u2

x + y21 − 2y1uy + u2
y = d21 (2.10a)

x2
2 − 2x2ux + u2

x + y22 − 2y2uy + u2
y = d22 (2.10b)

x2
3 − 2x3ux + u2

x + y23 − 2y3uy + u2
y = d23 (2.10c)

Equations above need to be subtracted to one another to remove n2
x and n2

y. Then,
equation will be reduced as below.

(x2
1 − x2

2)− 2ux(x1 − x2) + (y21 − y22)− 2uy(y1 − y2) = d21 − d22 (2.11a)
(x2

1 − x2
3)− 2ux(x1 − x3) + (y21 − y23)− 2uy(y1 − y3) = d21 − d23 (2.11b)
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(x2
2 − x2

3)− 2ux(x2 − x3) + (y22 − y23)− 2uy(y2 − y3) = d22 − d23 (2.11c)

Then, move all of elements which are multiplied with neither x nor y coordinate of
unknown node (nx, ny) to the left-hand side.

(x2
1 − x2

2) + (y21 − y22)− d21 + d22 = 2ux(x1 − x2) + 2uy(y1 − y2) (2.12a)
(x2

1 − x2
3) + (y21 − y23)− d21 + d23 = 2ux(x1 − x3) + 2uy(y1 − y3) (2.12b)

(x2
2 − x2

3) + (y22 − y23)− d22 + d23 = 2ux(x2 − x3) + 2uy(y2 − y3) (2.12c)

Finally, those three equation can be expressed in matrix form as

b = Ax (2.13)

where

b =

x2
1 − x2

2 + y21 − y22 − d21 + d22
x2
1 − x2

3 + y21 − y23 − d21 + d23
x2
2 − x2

3 + y22 − y23 − d22 + d23

 A =

2(x1 − x2) 2(y1 − y2)
2(x1 − x3) 2(y1 − y3)
2(x2 − x3) 2(y2 − y3)

 x =

[
ux

uy

]
(2.14)

Therefore, general LSE matrix where n distance data is given can be expressed as

b =


x2
1 − x2

2 + y21 − y22 − d21 + d22
...

x2
1 − x2

n + y21 − y2n − d21 + d2n
...

x2
n−1 − x2

n + y2n−1 − y2n − d2n−1 + d2n

 A =


2(x1 − x2) 2(y1 − y2)

...
...

2(x1 − xn) 2(y1 − yn)
...

...
2(xn−1 − xn) 2(yn−1 − yn)

 x =

[
xu

yu

]

(2.15)

Therefore, matrix x, which is x,y coordinate of unknown node can be calculated due
to

b = Ax ⇒ Ax = b (2.16)

x = (A⊤A)−1A⊤b (2.17)

2.2.2 Joint map estimation

Joint map estimation algorithm realizes localization using only the distance
information between nodes in group A and nodes in group B without information
of the distance between nodes in same node group [30]. Furthermore, the location
of all nodes are unknown as well. However, in this thesis an anchor node (a node
whose location is already known) is included to estimate absolute sensory location
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since localization using the distance information provides only a general map of the
all sensors’ relative locations, .

There are various scenarios where this algorithm can be applied. A scenario
can be that a position of a node group A is traveled by a mobile node and the
location of a node group B is fixed. Another possible scenario is that sensor node
group A and sensor node group B are identical and all distance between nodes are
identified.

This algorithm decomposes the distance matrix between sensor node group A
and B into x and y coordinate of both sensor groups. To express mathematically,
the squared distance matrix D is decomposed into matrix A and B where A and B
is

A =
[
1

√
2ax

√
2ay ad

]
∈ RNa×4 B =

[
bd −

√
2bx −

√
2by 1

]
∈ RNb×4

(2.18)

where ad and bd denotes ax · ax + ay · ay and bx · bx + by · by respectively. In
addition, Na and Nb denote a number of sensor node in group A and B respectively.
The squared distance D can be expressed as

D = AB⊤ (2.19)

However, due to presented noise, the squared distance matrix calculated in
noisy environment is very likely to be different from squared true distance. There-
fore, square of measured distance, D̂, can be expressed as AB⊤ + σW where W is
normal distributed random variable matrix with unit variance.

After following the calculation as written in [30], one can get x and y coor-
dinate of both A and B node groups. As nodes of A and B group are set to be
identical in the simulation throughout this thesis, x and y coordinate of both node
groups are same. In situation where a transmission range of all nodes is reachable to
one another, cooperative localization can be realized by placing all unknown nodes
not only one unknown node in either sensor group. In Chapter 4, the comparison
between traditional and cooperative localization results is given.

However, since the locations of sensor nodes are just relative location, refor-
mulation work is needed to convert a relative location in either sensor group into an
absolute location using the location of anchor nodes. The structure of the relative
location of anchor nodes matrix R is

R =
[
rx ry

]
∈ RNn×2 (2.20)

where Nn denotes a number of anchor nodes. Using the relative location of anchor
nodes and the absolute location of anchor nodes Aa ∈ RNn×2, reformulation matrix
F ∈ R2×3 can be computed as

FRa = Aa (2.21)
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where

Ra =
[
rx ry 1

]
∈ RNn×3 (2.22)

The structure of reformulation matrix is

F =

[
f11 f12 f13
f21 f22 f23

]
(2.23)

Elements in first row of F (f11, f12, and f13) are x, y, and constant coefficient re-
spectively, which reformulate the relative location to x coordinate of the absolute
location of anchor nodes. Likewise, second row of F reformulates the relative lo-
cation to y coordinate of the absolute location. Since FRa = Aa, F is computed
as

F = AaR
⊤
a (RaR

⊤
a )

−1 (2.24)

With reformulation matrix F computed by the equation above, the relative location
of all nodes including unknown nodes in either sensor group, U ∈ RNa×2 can be
reformulated. And the structure of the relative location of all nodes U is

U =
[
ux uy

]
∈ RNa×2 (2.25)

where Na is a number of all nodes in either sensor group since sensors in group A
and B are set to be identical. Finally, the absolute location of all nodes can be
found by computing UrF

⊤. where

Ur =
[
ux uy 1

]
∈ RNa×3 (2.26)

2.2.3 Conjugate descent

This section illustrates the conjugate descent algorithm, the cooperative loca-
lization algorithm used through. This algorithm updates unknown nodes iteratively
from initial point until the position of undated unknown nodes is barely changed.
First, we will go through how the gradient descent works since its mechanism is si-
milar to that of conjugate descent and easier to understand than conjugate descent.
After that, conjugate descent concept is introduced as a supplementary method to
overcome the drawback of the gradient descent. More detailed explanation will be
followed in following subsections.

Gradient descent

The gradient descent algorithm is the localization method based on partial
derivative of the distance between nodes. It is often called as the steepest descent
as minimizing error function moves in steepest direction, the direction of negative
gradient. The gradient descent is operated iteratively until the accuracy is not
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improved any more [31]. This method is variation of the ordinary lest squares
estimation, which localizes more precisely especially in the environment where the
parameters to be estimated are formed in non-liner function such as localization
under log- normal shadowing [32].

The object to be detected can be localized cooperatively, which is the way
of localization based on distance information not only from anchor nodes but also
from agent nodes within a transmission range contrary to least square estimation
introduced in section 2.2.1. In this algorithm, the squared distance matrix D is
formed as below.

D =



d2(a1, a1) · · · d2(a1, am) d2(a1, u1) · · · d2(a1, un)
... . . . ...

... . . . ...
d2(am, a1) · · · d2(am, am) d2(am, u1) · · · d2(am, un)
d2(u1, a1) · · · d2(u1, am) d2(u1, u1) · · · d2(u1, un)

... . . . ...
... . . . ...

d2(un, a1) · · · d2(un, am) d2(u1, u1) · · · d2(un, un)


(2.27)

where ai and ui is ith anchor node and ith unknown node, respectively; and d(a, b)
denotes the distance to the node b from the node a. In addition, m and n denote a
number of anchor nodes and a number of unknown nodes respectively. The reason
of putting square on distance is for convenience in calculation of partial derivative,
which will be explained later. The goal of this algorithm is to minimize square of
difference between squared observed and estimated distance matrix, which can be
expressed as

∥ DO −DE ∥2F= c ≃ 0 (2.28)

where DO, DE, and c is squared observed distance and squared estimated distance
with respect to an unknown node, cost function to be minimized respectively. Ob-
served distance indicates the distance between all reachable nodes and an unknown
node’s location, which is calculated based on measurement data such as time of
arrival and received signal strength. And estimated distance is the distance between
all reachable nodes and an unknown node’s location, which can randomly set. To
minimize the equation above, its derivation should be zero.

Therefore, the partial derivative of ∥ DO − DE ∥2F with respect to x and y
coordinate of an estimated unknown node, ux and uy, is desired to be zero. This
algorithm is operated iteratively until there is no change on c. Partial derivative of
c▽c is mathematically expressed as

▽c =
1

2
· ▽c =

1

2
· ∥ DO −DE ∥2′F =

1

2
·
m+n∑
i=1

n∑
j=1

(D
(i,j)
O −D

(i,j)
E )2

′

=
1

2
· 2 ·

m+n∑
i=1

n∑
j=1

(D
(i,j)
O −D

(i,j)
E ) ·

m+n∑
i=1

n∑
j=1

(D
(i,j)
O −D

(i,j)
E )′

=
m+n∑
i=1

n∑
j=1

(D
(i,j)
O −D

(i,j)
E ) · −1 ·

m+n∑
i=1

n∑
j=1

D
(i,j)′

E ≈ 0

(2.29)
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1
2

is multiplied to ▽c to ease the computation. By taking partial derivative of
∥ DO −DE ∥2F with respect to coordinate of estimated unknown node iteratively, a
position of unknown nodes is estimated. Before calculation of partial derivative of
how overall sum of an element in DE, d2E, it is helpful to know how it is expressed.
And it is

d2E =
m+n∑
t=1

n∑
j=1

D
(t,j)
E

=
m∑
k=1

n∑
j=1

d2E(ak, ui) +
n∑

l=1

n∑
j=1

d2E(ul, uj)

=
m∑
k=1

n∑
j=1

(axk − uxj)
2 + (ayk − uyj)

2 +
n∑

l=1

n∑
j=1

(uxl − uxj)
2 + (uyl − uyj)

2

(2.30)

where ax and ay denote coordinate of an anchor node. In addition, ux and uy

denote coordinate of an unknown node. Furthermore, the distance d is expressed as√
(x1 − x2)2 + (y1 − y2)2 where xi and yi denote ith x and y coordinate respectively.

Therefore, partial derivative ∂d2E
′

∂ux
, ∂d2E

′

∂uy
can be calculated respectively as below

∂d2E
∂ux

= −2 ·
m∑
k=1

n∑
j=1

(axk − uxj) + 2 ·
n∑

l=1

n∑
j=1

(uxl − uxj) (2.31a)

∂d2E
∂uy

= −2 ·
m∑
k=1

n∑
j=1

(ayk − uyj) + 2 ·
n∑

l=1

n∑
j=1

(uyl − uyj) (2.31b)

Since the equation above is the sum of all unknown nodes’ partial derivative, partial
derivative of one particular unknown node is expressed as

∂d2E
∂uxi

= −2 ·
m∑
k=1

(axk − uxi) + 2 ·
n∑

j=1

(uxi − uxj) (2.32a)

∂d2E
∂uyi

= −2 ·
m∑
k=1

(ayk − uyi) + 2 ·
n∑

j=1

(uyi − uyj) (2.32b)

Finally partial derivative of c, with respect to coordinate of i th unknown node uxi
and uyi can be calculated. In this calculation, 1

2
is also multiplied for computational

convenience as done in Equation (2.29). Therefore partial derivative of c is computed
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as

∂c

∂uxi

=
1

2
·
m+n∑
t=1

(D
(t,i)
O −D

(t,i)
E ) · (−1) · ∂d

2
E

∂uxi

=
1

2
·
m+n∑
t=1

(D
(t,i)
O −D

(t,i)
E ) · (−1) ·

(
−2 ·

m∑
k=1

(axk − uxi) + 2 ·
n∑

j=1

(uxi − uxj)
)

=
m+n∑
t=1

(D
(t,i)
O −D

(t,i)
E ) ·

( m∑
k=1

(axk − uxi)−
n∑

j=1

(uxi − uxj)
)

(2.33)

This term can be expanded to give the final equation

∂c

∂uxi

=
m+n∑
t=1

(D
(t,i)
O −D

(t,i)
E ) ·

( m∑
k=1

(axk − uxi)−
n∑

j=1

(uxi − uxj)
)

=
m∑
k=1

(d2O(ak, ui)− d2E(ak, ui)) +
n∑

j=1

(d2O(ui, uj)− d2E(ui, uj))·

( m∑
k=1

(axk − uxi)−
n∑

j=1

(uxi − uxj)
)

=
m∑
k=1

(d2O(ak, ui)− d2E(ak, ui)) ·
m∑
k=1

(axk − uxi)

−
n∑

j=1

((d2O(ui, uj)− d2E(ui, uj)) ·
n∑

j=1

(uxi − uxj)

=
m∑
k=1

(d2O(ak, ui)− d2E(ak, ui)) · (axk − uxi)

−
n∑

j=1

(d2O(ui, uj)− d2E(ui, uj)) · (uxi − uxj)

(2.34)

Since the result of formula above is to be minimized to zero, multiplicative factor 2
is taken away from formula as seen in last term in Equation (2.34). And likewise,
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∂c
∂uyi

can be computed as

∂c

∂uyi

=
1

2
·
m+n∑
t=1

(D
(t,i)
O −D

(k,i)
E ) · (−1) · ∂d

2
E

∂uyi

=
m∑
k=1

(d2O(ak, ui)− d2E(ak, ui)) · (ayk − uyi)

−
n∑

j=1

(d2O(ui, uj)− d2E(ui, uj)) · (uyi − uyj)

(2.35)

Finally, the estimation of an unknown node (ux, uy) being updated can be mathe-
matically expressed as[

ux
uy

]
Update

=

[
ux
uy

]
Current

−K

[
∂c
∂ux

∂c
∂uy

]
(2.36)

where (x, y)Update and (x, y)Current is x and y coordinate of the unknown node’s
location to be updated and the current location respectively. In addition, K denotes
step size which plays an important role in updating current location in a way that
approaches to the true location correctly.

Despite its high accuracy, the gradient descent algorithm has critical drawback.
The adequate step size has to be decided to get a high accuracy, which is hard
to find optimal step size. Furthermore, initial point should be chosen well. In
some case, due to incorrect initial point, convergence to the closest point to true
location is not possible even after infinite iteration [33]. Therefore, there needs to
be other supplementary algorithm to complement the drawbacks of the gradient
descent method mentioned above. In this paper, the conjugate gradient method
is suggested as a supplementary method. In following subsection, the conjugate
gradient method will be introduced.

Extension from the gradient descent

The gradient descent algorithm minimizes the difference between true point
and estimated point slowly. And extension of this algorithm, a conjugate gradient
converges much faster. It is because for gradient descent new direction vector is just
orthogonal to that of previous point in reaching a true point. As a result, gradient
descent based localization finally converges to closest point to true location in a zig
zag manner.

On the other hand, for conjugate gradient the direction vector of initial point
directly searches closest point to true location in first step of iteration by stretching
quadratic contour space to circular contour space as it is seen in Figure 2.6. And
for rest iteration, the estimated position approaches to minimum point with equal
length along one right direction throughout n step.
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(a) Gradient descent (b) Conjugate gradient

Figure 2.6: Comparison of direction vectors

In Figure 2.6, the orthogonal vector d1 from previous direction vector d0 is not
able to search for the true location directly due to ellipse contour of object to be
found in gradient descent. On the other hand, orthogonal vector d1 from previous
direction vector d0 directly finds where true location is in conjugate gradient due
to circular contour of true location. As a result, conjugate gradient makes it much
faster in reaching the minimum point where the difference between estimated point
and true location is smallest. However, it is still possible for conjugate gradient
method not to make convergence on minimum point. The less quadratic function J
is, the higher chance the failure of convergence is [33].

As conjugate gradient is also a type of gradient methods its equation is similar
to that of the gradient descent. The update of conjugate gradient for every step is
basically same as the gradient descent method, which is[

ux
uy

]
n+1

=

[
ux
uy

]
n

−Kn · dn (2.37)

where, Kn and dn indicates nth step coefficient, which determines how far current
point should move along direction vector and nth step direction vector, which leads
a algorithm in a way that approaches to minimum point directly. The conjugate
gradient algorithm is designed in a way that direction vector at each iteration step
is conjugate to one another.

To explain conjugacy concept, when there are p and q satisfying pTAq = 0 p
and q are said to be conjugate with respect to A, which is any symmetric positive
definite matrix. In this algorithm, p and q are two linearly independent direction
vectors. And A is Hessian matrix, second order partial derivative matrix, of cost
function explained in gradient descent part with respect to x and y. To express
mathematically, conjugate gradient descent satisfies dT

i Hdj = 0 at every step where
di and dj are previous and current direction vector respectively.

Among several conjugate gradient methods, scaled conjugate gradient is used
for this paper due to its natural characteristic avoiding the complex computation of
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the Hessian by making simple but accurate approximation on second order of weigh
vector of error function [34], [35]. Therefore, the scaled conjugate gradient has much
faster than other conjugate gradient methods in computation.

2.3 Cramér-Rao lower bound

This section provides brief explanation about Cramér-Rao lower bound (CRLB).
Next, the result of CRLB in cooperative localization based on TOA and RSS, the
localizations to be implemented in the simulation part of thesis, is given.

Cramér-Rao lower bound (CRLB) is used as a mean for finding a lower bound
on the covariance of any unbiased estimator relevant to measurement such as RSS
or TOA. Since CRLB provides the best accuracy an unbiased estimator can reach,
it has been useful for researchers and system designers who are concentrating on im-
plementing localization algorithms, that is, CRLB is used as benchmark for checking
of a particular algorithm’s accuracy [18]. To grasp CRLB, it is very fruitful to know
the theorem below [36].

Theorem Let f(x|θ) be a family of pdfs parameterized by θ ∈ M , the random
sample number of x. And also let’s assume that l denotes the log-likelihood function
of f(x) which is ln(f), and Fisher information matrix J, Jij equals to E

(
∂l
∂θi

∂l
∂θj

)
.

Given arbitrary coordinates θ = (θ1, θ2, · · · , θn) ∈ Rn on M, then for any unbiased
estimator θ̂ of θ

C ≥ J−1 (2.38)

where C = E

[(
θ − θ̂

)(
θ − θ̂

)⊤
]

is the error covariance matrix between an error(
θ̂ − θ

)
and J is the Fisher information matrix with respect to these coordinates.

We will now observe the result of CRLB. Before going through results, there are
some assumptions made to simplify the results of CRLB. The assumptions are [18]

First The localization conducted is two dimensional.

Second Received power strength and path loss exponent for RSS and time delay
error for TOA are all known.

Under assumptions above, CRLB result of RSS and TOA is calculated. Ac-
cording to [18], CRLB matrix of RSS and TOA consists of three sub-matrices form
n × n, where n indicates the number of unknown nodes. Three sub-matrices are

[Fxx]k,l =

{
γ
∑

i∈H(k)(xk − xi)
2/dsk,i, k = l

−γIH(k)(l)(xk − xl)
2/dsk,i, k ̸= l
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[Fxy]k,l =

{
γ
∑

i∈H(k)(xk − xi)(yk − yi)/d
s
k,i, k = l

−γIH(k)(l)(xk − xl)(yk − yl)/d
s
k,i, k ̸= l

[Fyy]k,l =

{
γ
∑

i∈H(k)(yk − yi)
2/dsk,i, k = l

−γIH(k)(l)(yk − yl)
2/dsk,i, k ̸= l

(2.39)

where γ, s, H(k), and da,b denotes channel constant, exponent parameter, a set
of sensors which are located inside transmission range of sensor k, and a distance
between sensor a and sensor b respectively. In addition, IH(k)(l) is the indicator
function, which allows the measurement information only if sensor k makes a mea-
surement with sensor l. For instance, if sensor l satisfies l ∈ H(k),IH(k)(l) is 1
otherwise 0.

A channel constant γ and exponent parameter s are varied on measurement
type. In RSS case, a channel constant γ is ( 10np

σdB log 10
)2, where np is path-loss exponent

and σdB is standard deviation of received signal’s power in dB respectively. And the
value of exponent parameter s is 4. On the other hand, in TOA measurement, a
channel constant γ is 1/(vpσT )

2, where vp and σT is wave propagation velocity and
standard deviation of TOA respectively. And the value of exponent parameter s is
2.

For RSS and TOA case, three sub-matrices form entire Fisher information
matrix F , inverse of CRLB, as

F =

[
Fxx Fxy

F⊤
xy Fyy

]
(2.40)

As mentioned above, each of sub-matrix is n × n. Therefore, Fisher informa-
tion matrix F must be 2n × 2n. Since CRLB is inverse of Fisher information matrix
F , CRLB can be mathematically written as F−1. 2n diagonal elements of CRLB
matrix are lower variance bound of n unknown sensor; first n for x coordinate and
last n for ycoordinate. For example, the trace (main diagonal) of CRLB where has
three unknown nodes can be displayed as

tr
(
F−1

)
=

[
xLB1 xLB2 xLB3 yLB1 yLB2 yLB3

]
(2.41)

where xLBi indicates lower bound of variance for x coordinate of ith unknown sensor.
Therefore, variance of 1st unknown sensor can be written as

σ2
1 ≥ xLB1 + yLB1 (2.42)

In consequence, the variance of ith unknown sensor node out of n unknown
sensor nodes can be expressed as

σ2
i ≥ tr

(
F−1

)
i
+ tr

(
F−1

)
n+i

(2.43)



Chapter 3

Setup and analysis for the simulation
of various grid patterns

This chapter conducts simulations of received signal strength (RSS) and time
of arrival (TOA) based localizations. Both RSS and TOA based simulations are pro-
ceeded in the following order. First, two traditional (non-cooperative) localization
algorithms, the location estimate method only using a distance information between
an unknown node and an anchor node, are implemented in which anchor nodes are
deployed in several particular grid patterns to be introduced later. After that, a
cooperative localization, a localization method utilizing not only the information
between an unknown node and an anchor node but also the data between unknown
nodes, is conducted to prove its superior performance to traditional localization.

As a non-cooperative localization algorithm, least squares estimation and joint
map estimation is used. And cooperative localization algorithm implemented in this
thesis is scaled conjugate gradient, which is iterative least squares estimation. All
algorithms are introduced in Chapter 2.

For each grid pattern, an accuracy of non-cooperative localization is calcu-
lated and evaluated as the density of sensor (number of sensor per m2) with the
fixed transmission range first. After that, transmission range of a sensor node varies
with the fixed sensor density.

3.1 Set up and explanation of simulation

This section illustrates the scenario of both received signal strength (RSS) and
time of arrival (TOA)-related simulation to be conducted and shows how accuracy
is computed in this simulation. Then, the detail explanation about formula and
parameters used for RSS and TOA of the simulations are followed.

22
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3.1.1 Scenario and process

The scenario for both received signal strength (RSS) and time of arrival (TOA)
based simulation is that unknown nodes are localized in the squared area where an-
chor nodes are deployed in three different grid pattern (square, random and triangle)
as shown in figure 3.1.

(a) Square grid (b) Random grid

(c) Triangle grid

Figure 3.1: Anchor nodes deployed in three different grid patterns

The aim of deploying anchor nodes in three different grid patterns is to ob-
serve which anchor nodes’ array maximizes the accuracy of the localization. It is
very likely to get biased accuracy for one fixed random anchor node array. There-
fore, the simulation is set in a way that random grid patterned anchor nodes are set
to be re-arrayed while transmitting a signal many times. The more detail simulation
setup about random grid pattern is in section 3.2.

In three different anchor node grid, unknown nodes are assumed to be ran-
domly distributed in the smaller squared space in the center of where anchor nodes
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are located in as in figure 3.2. The reason of locating unknown node in smaller area
is to avoid poor accuracy on the estimation of an unknown node located in the edge
of the area.

Figure 3.2: The area where anchor nodes and agent nodes are deployed

In both RSS and TOA simulations, every sensor sends a signal multiple times
to other sensors located inside their transmission range. After transmitting a signal
multiple times, the position of the unknown nodes is re-arrayed and a signal is trans-
mitted multiple times again. This change of unknown nodes’ formation is repeated
several times. The reason for re-arraying unknown nodes’ positions in computing
accuracy is to avoid biased accuracy on a particular position of the unknown nodes.
In other words, a signal is transmitted several times on each different formation of
unknown nodes.

While the location of unknown nodes are changed, anchor nodes’ array in
random grid is also changed in a while to reduce the effect of bias accuracy on the
certain random grid’s position. The root mean squared error (RMSE) for every
single signal transmission and the median value of RMSE collected is calculated.
This process of RMSE computation is made in both scenario where a density of
anchor nodes is varied with fixed transmission range and where a fixed transmission
range is varied with fixed density of anchor node. Its detailed explanations is left to
following subsections in this chapter.

Throughout this paper, a root mean square error (RMSE) based on two
measurements (RSS and TOA) is shown as a mean to evaluate the accuracy of esti-
mation. The RMSE is the square root of mean squared error, which is the difference
between the estimated location and the true location. The RMSE is preferably used
as the measure of the magnitude of errors in many fields. For instance, in electrical
engineering field, root mean squared value is used to show the average value of AC
voltage, which varies continuously [39]. If there are n numbers of an estimated value
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θ towards to a true value µ, root mean squared error (RMSE) is mathematically
expressed as √

1

n
· ((θ1 − µ)2 + (θ2 − µ)2 + · · ·(θn − µ)2) = θrms (3.1)

Therefore, n unknown nodes should be calculated as√√√√ 1

n

n∑
i=1

(
(σ2

xi) + (σ2
yi)

2

)
= Urms (3.2)

where σ2
xi, σ

2
yi, Urms denotes variance of x and y coordinate of i th sensor node and

average RMSE of n number of unknown nodes respectively. And in most of simula-
tion result in this thesis, Urms for every single signal transmission has been collected
and displayed in order to show the accuracy and the stability of localization results.
Later section shows how the accuracy and the stability can be observed from the
simulation results. Likewise, average root mean squared value of Cramér-Rao lower
bound (CRLB) can be computed as [38]√√√√ 1

2 · n

n∑
i=1

(
F−1

xi + F−1
yi

)
= UCRB (3.3)

where F−1
xi and F−1

yi denotes lower variance bound of x and y coordinate, which is
the ith and n+ i diagonal element of F−1 respectively as illustrated in 2.43.

When calculating RMSE of localization of overall signals transmitted using
Urms, it can be mathematically expressed as√√√√ 1

NS ·NC

NC∑
j=1

NS∑
i=1

U2
rms i

(j) (3.4)

where NS is a number of signals transmitted and NC different array of unknown
nodes.

When calculating CRLB of overall signals transmitted, standard deviation σ
of signals transmitted and the position of sensor nodes are key factor affecting a
value of CRLB as shown in CRLB part in Chap.2. Therefore, average root mean
squared CRLB of overall signals transmitted can be calculated as√√√√ 1

2 ·NC

NC∑
i=1

U2
CRB i (3.5)

where NC is a number of different formulation of unknown nodes. Both average root
mean squared error (RMSE) and average root mean squared CRLB of overall signals
transmitted are given in the end of simulation part in order to give an overview of
general accuracy of all algorithms.
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3.1.2 Set-up for received signal strength

Link parameters and formula used for received signal strength simulation are
an example of a value provided from the website of Breeze Wireless Communications
Ltd. [14] and [15].

Parameter of received signal strength
Pr Received power
Ct Transmitter cable attenuation in dB
Gt Transmitting antenna gain in dBi
Cr Receiving antenna gain in dBi
Cr Receiver cable attenuation in dB
PL Path loss in dB
Pt Output power transmitted 20dBm
PL(do) Path loss at reference distance do 32.4dB
d Distance between transmitter and receiver
f Frequency 2.4Ghz
np Path-loss exponent 2 (in free space)
do Reference distance between transmitter and receiver 1Km
σ Standard deviation 3.4 dBm

Formula
PL= 10·np log10 f(MHz) + 10 · np · log10 d

do
(Km)−Gt −Gr + Ct + Cr(dBm)

Pr =Pt-PL

Table 3.1: Parameter values for RSS based simulation

For simplicity, antenna gains and cable attenuations and a noise are not con-
cerned in calculating received signal strength. A noise is considered later. Therefore,
received signal strength can be simplified as Pr = Pout − PL(do)− 10 · np · log10 f −
10 · np · log10 d

do
, where path-loss np is 2, (free space). Using the parameters in the

table 3.1 received signal strength with respect to distance unit, m, the distance unit
to be used in simulation, is mathematically expressed as

20− 32.4− 10 · np · log10 f(MHz)− 10 · np · log10 d(Km)

= −12.4− 20 · log10 2400− 20 · log10(0.001 · d(m))

= −12.4− 67.6− 20 · log10(0.001 · d(m))

= −80− 20 · log10 0.001− 20 · log10 d(m)

= −20− 20 · log10 d(m)

(3.6)

As shown in formula above received signal power at reference distance P0 used
for the RSS based simulation in this chapter is −20dBm. And since the distance
unit used in the simulation is meter, −20 · log10 0.001 was added at the end of the
formula above to convert the distance unit from Km to m.

Throughout this paper, position of anchor nodes A are denoted as their po-
sitions [xa, ya] for all a ∈ A and position of agent (unknown) nodes U denoted as
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[xu, yu] for all u ∈ U. In addition, a noise is now considered, which is more realistic.
Therefore, the received signal power in noisy environment from each anchor node
can be formulated as below

Pr(i, k) = −20− 20 · log10
√

(xui − xak)2 + (yui − yak)2 + n (3.7)

where Pr(i, k), n is the received signal power of ith agent node from kth anchor node
and Gaussian noise respectively. In addition, n satisfies n ∈ N(0, σ2) indicating
normal distribution with zero mean and variance σ2. From formula above, the
distance can be easily computed from received power. For simplicity, other parts
than

√
(xui − xak)2 + (yui − yak)2 of the equation are all constant value. In addition,√

(xui − xak)2 + (yui − yak)2 is replaced by the true distance between node i and node
k, di,k. Finally, signal Pr(i, k) is

Pr(i, k) = C − 10 · np · log10 di,k + n (3.8)

where C denotes a constant. Therefore, received power between any two locations
Pr can be expressed as

Pr = C − 10 · np · log10 d+ n

= C − 10 · np · log10 d̃
(3.9)

where, d and d̃ denote the true distance and observed distance in noisy environment
respectively. Since base 10 logarithm of distance measured from received power in
noisy environment is mathematically expressed as

log10 d̃ =
C − Pr

10 · np

(3.10)

The observed distance d̃ under log-normal shadowing environment can be calculated
as

d̃ = 10
C−Pr
10·np

= 10
C−(C−10·np·log10 d+n)

10·np

= 10
10·np·log10 d−n

10·np

= 10
10·np·log10 d

10·np · 10−
n

10·np

= d · 10−
1

10·np ∝ d

(3.11)

As shown in the equation above, the received power of the distance is affected
by log-normal noise. Therefore, the noise affected to distance is multiplicative noise
, 10−

n
10·np , as shown in the equation above. The difference between observed distance

and true distance (error) is d · (10−
n

10·np − 1). Since 1
10·n1

is constant value and n
denotes random Gaussian noise, the error is proportional to true distance d. In
other words, the longer transmission distance is, the bigger the gap between the
true distance and the observed distance is.
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3.1.3 Set-up for time of arrival

This section explains about time of arrival (TOA) based simulation set-up
such as parameter values and formula used in simulation. In addition, how the
simulated data are modeled is shown. For time of arrival simulation, parameter
values including variance are in table 3.2, which is example given in [18].

Parameter of time of arrival
vp propagation velocity 3 · 108(m/s)
µt mean of time delay 0.3ns
σt Standard deviation of time delay 6.1ns

Table 3.2: Parameter values for TOA based simulation

According to [18] a noise in the TOA based localization can be roughly mod-
eled as Gaussian distribution, whereas the channel based on RSS measurement ex-
periences log-normal fading. Furthermore, the value of time delay variance is given
value from [37]. Therefore, time of arrival data is generated based on that variance.
In this simulation, two-way time of arrival (TOA) method is chosen in calculating
TOA since it does not require time synchronization between a transmitter and a
receiver. A time of arrival can be computed as

τ =
1

2
· (Trr − Trt + Tfr − Tft) (3.12)

where Trr, Trt, Tfr, and Tft are the time of reverse wave of receiver, transmitter, and
the time of forward wave of receiver, transmitter as explained earlier chapter [27].
And since noise in measured TOA can be approximately modeled as Gaussian noise,
time of arrival can be calculated as

τ = tt + n =
d

vp
+ µt + n (3.13)

where n indicates Gaussian (normal) noise, which has mean µt and variance σ2.
From the equation above, distance is easily calculated by (τ − µt) · vp. However,
since noise has been added during transmission of RF signal between a transmitter
and a receiver, distances d̃ calculated from time of arrival in noisy environment is
numerically expressed as below

d̃ = (τ − µt) · vp = (tt + n− µt) · vp
= (tt − µt + n) · vp = dt + n · vp

(3.14)

where tt,dt denotes the time of flight in noiseless environment and the true distance.
As obviously shown in formula above, noise added to distance is additive noise
and that additive noise, n · vp, is still Gaussian noise since n is noise of Gaussian
distribution and the speed of light vp is fixed value, which is 3 · 108.
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3.2 Analysis of simulation of RSS with varying sen-
sor density

This section observes root mean squared error (RMSE) of all algorithms intro-
duced in chapter 2 based on received signal strength (RSS) data in three different
grid patterns of anchor nodes where the density of anchor sensor nodes varied. Its
aim is to observe how the density of anchor nodes affects RMSE, which is used as a
barometer showing how accurate the estimation is. The result and the analysis of
the simulation is given in following order.

First, non-cooperative least squares estimation and joint map estimation re-
sult are shown and analyzed. After that, cooperative least squares estimation is
given and the result and its reason is discussed. Last, all of results of estimation
with Cramér-Rao lower bound is provided in order to provide the overview of the ac-
curacy of all three algorithms. Before dealing with the results of estimations, setup
of this RSS based localization is shortly illustrated to help grasp how the simula-
tion is proceeded. The parameters for basic setup such as a number of transmitting
signal are as

Parameter Value
A signal transmitted for each unknown nodes’ array 50
Number of unknown node 5
Number of different unknown nodes’ array 5
Scope of density of sensor 10−2.0 : 10−0.2 : 10−2.8

Transmission range 60m

Table 3.3: Parameter values for RSS with varying a sensor density

As written in table 3.3, each sensor node transmits a signal 50 times to other
nodes deployed within transmission range, 60m in this simulation. After that, the
location of unknown sensor nodes is reformulated and each sensor node again sends a
signal 50 times as done for first array of unknown nodes. This procedure is repeated
up to the 5th formulation of unknown sensor nodes. Consequently 250, 50 (the
number of signal transmission) × 5 (the number of unknown nodes’ formulation),
of root mean squared errors (RMSE) are collected at first sensor density.

After that, the density of anchor nodes, a number of anchor nodes per m2, is
changed by 100.2, approximately 0.63 sensor node per m2. And then, 250 of root
mean squared error (RMSE) is again computed by going through same procedure
as it was for first density of anchor nodes and then, the density of anchor nodes is
again changed by 100.2 until the density reaches to 10−2.8.

In figure 3.3, root mean squared error (RMSE) of non-cooperative least
squares estimation are given. The blue box in the graph indicates the RMSE which
are between 25 and 75 percentile, and the red horizontal bar inside the blue box
denotes the median value of 250 RMSE values. In addition, the edge of tail denotes
the extreme RMSE value of RMSE set. Red crosses located far from median is
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Figure 3.3: Non-cooperative least squares estimation based on RSS

the outlier. It is observed that median of RMSE decreases as the sensor density of
anchor nodes increases in all three grid patterns. In other words, the more anchor
sensors present, the higher accuracy is. And among three grid patterns, localization
of anchor node in random grid pattern seems to perform best.

However, the performance of random patterned localization may not be consis-
tent as it does not have any particular pattern. And in comparison between square
grid and triangle grid, triangle grid patterned localization has higher accuracy than
localization based on square grid pattern . Last, it is easily seen that as the height
of the blue box, RMSE values between 25 and 75 percentile, are about equal over
all sensor density range in all three grid pattern, variance is consistent over all den-
sities. In other words, the stability of the estimation are almost same regardless of
the sensor density level.

In spite of its relatively high accuracy in dense environment the accuracy of
joint map estimation in Figure 3.4 the accuracy gets drastically worse as the density
becomes lower due to its algorithmic characteristic when ill-posed. It seems that a
joint map estimation is suitable for dense sensing environment. Unlike in the least
squares estimation case where variance is about to equal over all density ranges, as
the sensor density is lower, variance of RMSE values become larger, which indicates
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Figure 3.4: Joint map estimation based on RSS

the location estimation is more unstable. During this simulation, sometimes a very
large value of the imaginary part has been computed for location estimate result,
and it happens more often when there are more noise or less anchor to localize. For
the simulation result, those result has been deemed as the "failed" and not counted
in calculating RMSE.

The result of cooperative localization is now given in 3.5, which utilizes mea-
surement data between an unknown node and the anchor nodes as well as between
the unknown nodes in estimating objects. Scaled conjugate gradient method has
been implemented to compare the accuracy with two non-cooperative localization
results which is shown previously. The scaled conjugate gradient is updated the
location iteratively, which is operated by function called scg in Matlab.

As expected, a median of RMSE values is much lower than non-cooperative lo-
calization algorithms shown before. In addition the height of the blue box indicating
general distribution are almost the same over all sensor density range and generally
shorter than that in two previous algorithms. That implies that this location esti-
mate is more stable than the other two algorithms and stability level is consistent
over all ranges of sensor density. The initial location is estimated by non-cooperative
least squares estimation in order to make it easier to converge to the point where
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Figure 3.5: Scaled conjugate gradient based on RSS

the difference between estimated location and true location is minimized.
To give intuition of the general accuracy of all the algorithms is given in
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Figure 3.6: All RSS-based localization results with varying density
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Figure 3.6. In this figure, Cramér-Rao lower bound, the lower bound for unbiased
estimator, is calculated in order to provide the basic view of how far the algorithms
are from the best accuracy possible. The RMSE values above are average RMSE of
signal transmitted 50 times with varying unknown nodes’ array as written in equa-
tion 3.4. LSE, JM, SCG, and CRLB in the figure denote least squares estimation, joint
map, scaled conjugate grident, and Cramér-Rao lower bound.It is noticeable that
joint map estimation shows even better accuracy than conjugate gradient, cooper-
ative method, at dense environment. But its accuracy becomes worst at less dense
scenario. Therefore, joint map estimation is well-suited for the place where many
anchor nodes are deployed. And in both least squares and joint map method, the
denser the sensing is the smaller RMSE is whereas in the conjugate gradient RMSE
is more or less same throughout all the range of sensor density. However, RMSE of
all localization algorithms are far above Cramér-Rao lower bound.

3.3 Analysis of simulation of RSS with varying trans-
mission range

This section examines the accuracy of the localization as a transmission range
of a signal is changed so as to learn the relationship between the accuracy and the
transmission range under certain sensor node density. Therefore, the aim for this
simulation is to observe how well the sensor nodes with limited power, which is more
realistic than the previous simulation, can estimate a location of agent nodes and
which algorithm is more useful in this scenario. The values of parameters below are
used for basic set-up of the simulation in this section.

Parameter Value
A signal transmitted for each unknown nodes’ array 50
Number of unknown node 10
Times of agent node array change 5
Scope of density of sensor 10−1.5

Transmission range 30 : 20 : 90m and ∞
Standard deviation 3.4 dBm

Table 3.4: Parameter values for RSS with varying a transmission range
As shown in table 3.4, the set-up for this simulation is very similar to the

simulation in the previous section. But in this section, the density of sensor node is
fixed by 10−1.5 (approximately 0.03 sensor node per m2 ) with a transmission range
of sensor nodes varying (from 30m to 90m with 20m interval). Since each sensor
node transmits a signal 50 times to one another in five different unknown node for-
mulations, a number of accumulated root mean squared errors at each transmission
range is 250, 50 · 5 (a number of a signal transmitted × a number of a different
formulation of unknown nodes). And a localization with unlimited range has also
been made to compare the localization result with long range such as 90m or even
longer distance. As done in previous section, two non-cooperative localization algo-
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rithms are introduced first and scaled conjugate gradient, cooperative localization
algorithm, is followed.

As before, the initial location to be updated in scaled conjugate gradient is the
estimated location by least squares estimation. And for the rest scaled conjugate
gradients, the initial point are set in the same way.
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Figure 3.7: Linear least Squares estimation based on RSS

In figure 3.7, the median of 250 RMSE values of 10 unknown nodes estimated
by least squares algorithm are increased as the transmission range is longer. Since
longer transmission range involves more sensor data to estimate agent nodes, longer
transmission range scenario was expected to come up with better accuracy as proven
in [18]. However, surprisingly as transmission range is longer, the accuracy gets
worse, which was expected to happen in the opposite way. That is because received
signal power from RSS is affected by log-normal shadowing, the relationship between
the received power and distance is nonlinear. As shown in section 3.1.2, the received
power and the distance can be expressed as:

Pr = Pr(do)− log10 d+ n (3.15)

where Pr, P0, d, n is the received power, received signal power at reference distance,
the distance between a transmitter and a receiver, and Gaussian noise respectively.
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Since the distance estimated d̃ is calculated from Pr = P0) − log10 d̃, the difference
between actual distance and estimated distance can be expressed as d · (10n − 1)
showing that distance estimated from received power has non-linear relationship
with respect to the true distance d.

Therefore, as the distance between the transmitter and the receiver becomes
longer, the signal strength gets drastically weaker due to the its non-linear relation-
ship with distance, which leads to less accurate estimation in the algorithm suitable
for linear model. Therefore, the linear least squares estimation, solution of linear
system, shows poorer accuracy as transmitting distance is increased meaning since
received power being exponentially decreased is more likely to be involved in esti-
mating a location. In addition, it can be easily seen that the localization with the
longer transmission range also causes lager variance since the height of 25 to 75 per-
centile box becomes taller as the transmission range is longer. In terms of accuracy,
all three grid patterned localization results seemed similar to one another.
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Figure 3.8: Joint map estimation based on RSS

The result of joint map estimation in Figure 3.8 shows its characteristic clearly.
For localization with short transmission range (30m and 50m) where only the re-
ceived signals which has small noise, it displays relatively high accuracy whereas its
accuracy gets drastically worse as the signals received from long distance are involved
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in location estimate just like least squares estimation. In addition, as the height of
percentile box proves the longer the transmission distance involved in localization
is, the more unstable the estimation is. This result looks very similar to the result
of the joint map estimation in the environment where the sensor density varies. In
terms of stability and accuracy, the joint map algorithm shows high sensitivity on
noise.
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Figure 3.9: Scaled conjugate gradient based on RSS

In Figure 3.9, localization result of the conjugate gradient, the medians of
RMSE throughout all the range of transmission are generally lower than two pre-
vious localization in all three grid patterns as shown. The attractive result in this
localization is the transmission range that gives highest RMSE median and highest
error variance in all three grid pattern is 70m unlike previous two localizations where
unlimited transmission range based localization had worst performance.

Furthermore, the median in unlimited range is even lower than that in 70m. It
might be because when transmission range is longer than 70m a number of sensors
involved in localization is large enough to overcome high noise. And in aspect of
performance of each grid pattern, all grid patterned localizations show fairly the
same result in both accuracy and stability.

From the figure 3.10 the average RMSE with transmission range of 30m up
to 90m of all algorithms including Cramér-Rao lower bound can be observed as the
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Figure 3.10: All RSS-based localization results with varying transmission range

transmission range is increased up to 90m.
It is easily seen that cooperative localization using conjugate gradient, gener-

ally outperforms other non-cooperative localizations (least squares estimation and
joint map estimation) except for when transmission range is 30m and 50m. And
average RMSE of both least squares estimation and joint map estimation gets higher
as transmission range is longer meanwhile conjugate gradient shows better accuracy
for 70m transmission range. Last, it is noticeable that median of RMSE and average
RMSE is more or less the same.

3.4 Analysis of simulation of TOA with varying the
sensor density

This section conducts a localization based on time of arrival (TOA) data with
varying a sensor density. Same localization algorithms and grid patterns used for
the RSS based simulation are again implemented in this simulation in order to see
how different the localization results under identical conditions are between RSS
and TOA based localization. The table 3.2 shows the parameter used for setup of
TOA based simulation in this section.

The way of collecting RMSE values at each sensor density is basically same
as that in RSS based simulation with varying a sensor node. However, in this
simulation a number of signal transmitted is 100 with 10 different unknown nodes’
array, which ends up with collecting 1000 RMSE at each density. And the number
of unknown nodes is 10, which is twice of that in RSS based localization. Non-
cooperative localizations’ results is given first. After that, cooperative localization
(conjugate gradient) result is followed. Last, average RMSE of all the algorithms
are displayed to give overall intuition in terms of the accuracy as done in RSS based
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Parameter Value
A signal transmitted for each unknown nodes’ array 100
Number of unknown node 10
Times of agent node array change 10
Transmission range 60m
Density of a sensor 10−2:−0.2:−3m2

Table 3.5: Parameter values for TOA with varying a sensor density
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Figure 3.11: Linear least Squares estimation based on TOA

As expected, in Figure 3.11 the linear least squares estimation (LSE) shows
very good accuracy in TOA based localization since the noise is additive, which
leads to the linear relation between distance estimated from TOA data and the
actual distance in contrast with non-linear relationship between estimated distance
from RSS data and the actual distance. To explain mathematically, dn = dt + n · vp
where dn, dt, n, vp denotes distance measured, true distance, noise, and propagation
velocity respectively as shown in Equation 3.14. And since n is Gaussian noise and
vp is fixed value, the distance calculated from TOA data is linearly related to the
actual distance.
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The localization results from all the grid patterned anchor nodes are similar
to one another. The height of blue box representing half, 25% ∼ 75%, of RMSE
values closest to the median is more or less same over all the range of sensor density,
which is meaning that variance (stability) is consistent. It is noticeable that the
median of RMSE decreases as a sensor becomes more dense.
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Figure 3.12: Joint map estimation based on TOA

In Figure 3.12, localization at higher sensor density does not guarantee higher
accuracy in joint map estimation unlike the linear least squares estimation just
shown previously. Instead, it seemed the accuracy is best at density 10−2.4 per m2

in all grid pattern since median of RMSE values is lowest at that density in all
grid patterns. And among all three grid patterns, since square grid pattern shows
the lowest median and the blue box in square grid has shorter height throughout all
sensor density than the other two grid patterns, the localization based on square grid
patterned anchor nodes can be said to outperform other grid patterned estimations
in terms of stability and accuracy.

Compared to least squares estimation the joint map estimation’s result is much
worse in aspect of accuracy in all the range of sensor density. And the stability is
pretty inconsistent as the height of blue box is variant over all ranges of sensor
density. In other words, the linear least squares estimation is more optimized in
estimating location from the data where additive noise is present than joint map
estimation.
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Figure 3.13: Scaled conjugate gradient based on TOA

The result of conjugate gradient is now observed in order to prove that coop-
erative localization algorithm outperforms non-cooperative method (linear squares
estimation, joint map estimation). In Figure 3.13, it is clear that the median of
RMSE of conjugate gradient is lower than the previous two non-cooperative locali-
zation algorithms in all grid pattern. Since the result of the grid pattern is similar
to one another it is hard to state which grid patterned localization performs best.

It is important to note that as sensor density gets higher the accuracy is bet-
ter in all of grid patterns as observed in linear squares estimation. In addition, the
higher the density of the sensor the shorter the percentile box becomes. And even
extreme RMSE value, the value which is neither between 25 and 75 percentile nor
outlier, becomes farther from median when a sensor density is reduced. In other
words, as the sensor becomes less dense the localization estimation becomes more
unstable even though its tallest percentile box is still shorter or equal to the shortest
one in the least squares estimation.

The figure 3.14, average RMSE calculated as expressed in the Equation 3.1.2
gives more clear overview of the accuracy of all three different algorithms in all grid
patterns. In addition, the Cramér-Rao lower bound is also shown to give an idea
how well localization has been done and how much the accuracy of the algorithms
implemented needed to be better. As we already expected from the median in Fig-
ures 3.11 ∼ 3.13, the average RMSE of the joint map estimation is highest, meaning
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Figure 3.14: All TOA-based localization results with varying density

of most inaccurate among all three algorithms. And among the grid patterns in the
joint map method the squared gird patterned localization shows best accuracy as it
has obviously seen in the figure above. But for rest two grid patterns it is hard to
tell which pattern has higher accuracy.

It can be seen that conjugate gradient estimation is clearly more accurate than
the least squares. In aspect of performance of cooperative method, the conjugate
gradient based location estimate almost reaches to Cramér-Rao lower bound in a
dense sensory environment not like in the RSS case. And it is easy to observe that
as the sensor density is higher, average RMSE of localization using the conjugate
gradient is closer to Cramér-Rao lower bound.

3.5 Analysis of simulation of TOA with varying trans-
mission range

This section provides the localization result of the algorithm with varying
transmission range so as to observe the influence of transmission range based on
TOA data. The aim of the simulation in this section is to see the influence on RMSE
for both cooperative and non-cooperative algorithms as a signal transmission range
varies. Most of setup for this simulation such as a number of unknown nodes and
step size and so on are same as TOA simulation implemented in previous section. To
give a basic information about the parameter of basic setting regrading simulation is
first introduced. After that, for the result of a localization algorithm, the linear least
squares estimation, the joint map estimation, and the conjugate gradient estimation
are given in the order.

As shown in Table 3.6 the simulation setup is similar to RSS based simulation
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Parameter Value
A signal transmitted for each unknown nodes’ array 50
Number of unknown node 5
Times of agent node array change 10
Transmission range 20m : 10m : 100m and ∞
Density of a sensor 10−1.5m2

Table 3.6: Parameter values for TOA with varying a transmission range

introduced previously. A number of signal transmitted from each sensor node is 50
with 10 different formulations of unknown nodes, resulting in 500 RMSE accumu-
lated at each transmission range. As before, based on a median of RMSE throughout
all the range of transmission the accuracy is observed in order to figure out how the
transmission range affects the accuracy under all three grid patterned localization
with each of algorithm mentioned over this chapter.
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Figure 3.15: Linear least Squares estimation based on TOA

Figure 3.15 shows the median of RMSE values of linear least squares estimation
has a very low value, which indicates high accuracy. And longer transmission range
does not affect the difference between estimated distance and true distance anymore
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since the noise type present in TOA case is additive. In other words, the transmission
range does not affect the accuracy in TOA based location estimate.

However, in the unlimited range case, where involves most sensor in localizing
among all the transmission range presented in the simulation, has best accuracy,
involves most sensors in localization among all transmission ranges presented in the
simulation.
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Figure 3.16: Joint map estimation based on TOA

On the other hand, it seemed like regardless of type of noise, joint map estima-
tion performs poorly as a transmission range is longer as clearly shown in figure 3.16.
In all grid patterns, as transmission range is longer the accuracy gets worse. Fur-
thermore, the height of blue box becomes higher, meaning that the estimation is
more unstable and stability is not consistent. However, in the shortest range (30m),
the estimation is accurate and has stable estimation as seen from short percentile
box. Therefore, joint map estimation can be said to be not suitable algorithm in
localization from long distance like 50m or longer.

In Figure 3.17, the localization results of the scaled conjugate gradient can
be observed. As it is obviously seen, RMSE of the scaled conjugate gradient is lower
than that estimated by non-cooperative LSE methods. And as a transmission dis-
tance is longer the accuracy becomes higher in all grid patterns. That is because
localization in longer transmission range involves more sensors in estimating a loca-
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Figure 3.17: Scaled conjugate gradient based on TOA

tion and a distant localization based on TOA data does not degrade an accuracy in
conjugate gradient algorithm.

Therefore, the result here is very similar to the case when the sensor density is
varied. Furthermore, the distribution of half of 500 RMSE values collected closest to
the median is narrower as the transmission range is longer, which indicates that the
stability of the estimation gets better. As a result, localization in unlimited trans-
mission case showed the best accuracy where the median of RMSE is just about 0.2
and the distribution of RMSE values between 25 and 75 percentile about median is
very narrow.

Figure 3.18 shows the average RMSE with transmission range of 30m up
to 90m in all three grid patterns of all algorithms to provide general view of the
accuracy of all algorithm. From this figure high accuracy of both non cooperative
and cooperative least squares estimation can be observed whereas joint map esti-
mation suffers accuracy especially at long transmission range. In the case of joint
map estimation, despite of its poor accuracy, it is meaningful to know that anchor
nodes in a square grid pattern always performs best among all three grid patterns
for joint map estimation.

Cooperative least squares method (conjugate gradient) is again clearly more
accurate than non-cooperative least squares estimation. As expected from the previ-
ous result of conjugate gradient, average RMSE of conjugate gradient almost reaches



45

0 50 100

10
0

10
1

Transmission range

R
oo

t m
ea

n 
sq

ua
re

 e
rr

or

Square grid

0 50 100

10
0

10
1

Transmission range

R
oo

t m
ea

n 
sq

ua
re

 e
rr

or

Random grid

0 50 100

10
0

10
1

Transmission range

R
oo

t m
ea

n 
sq

ua
re

 e
rr

or

Triangle grid

 

 

LSE

JM

SCG

CRLB

Figure 3.18: All TOA-based localization results with varying transmission range

the Cramér-Rao lower bound at long transmission distance.



Chapter 4

Analysis of measured data and
comparison to simulated data

This chapter compares the result of simulated data based localization to mea-
sured data based localization. First of all, the localization campaign based on re-
ceived signal strength (RSS) and time of arrival (TOA) conducted by some researcher
is introduced with relevant informations such as the place of experiment, method
use for data measured, and so on. After that, both RSS and TOA data are simu-
lated using same parameter like a path loss exponent and a standard deviation as
used in the experiment so that simulated data based localization and measured data
based localization can be fairly compared to each other. Lastly, the simulations
implemented are analyzed and evaluated.

4.1 Basic information about measurement

Figure 4.1: The position of sensor nodes
deployed at research lab

RSS and TOA measurement data
are collected by Neal Patwari, assistant
professor at University of Utah, sup-
ported by Motorola labs’ Florida com-
munications research lab, in Plantation,
Florida [40]. For this experiment, 44
sensors are deployed in the office (14m
× 13m) as shown in Figure 4.1.

The campaign is performed as fol-
lows. First, the transmitter is placed at
the location #1 while changing the lo-
cation of receiver from #2 to #44. Be-
tween the transmitter and each receiver,
signals are transmitted five times. Af-
ter the transmitter at the location #1
transmitted a signal five times up to the
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receiver placed at #44, the transmitter is then relocated to the location #2 and
transmits signals to receiver at #1 and at #3 through #44 five times again. This
procedure is continued until the transmitter is placed at the location #44. Con-
sequently, there are 10 times measurement made (five times as a transmitter and
another five times as a receiver) for any pair out of 44 locations drawn in Figure 4.1.
That is how the measurement was conducted. And the measurement data from each
pair of 44 locations is the average of 10times measurement. In this campaign both
time of arrival (TOA) and received signal strength (RSS) are measured.

The sensor device uses a wide band direct-sequence spread-spectrum (DS-SS)
transceiver (Sigtek model ST-515) [37]. The specification of the device is in Ta-
ble 4.1.

Parameter Value
Chip rate 40 MHz
Code length 1024
Center frequency 2443 MHz
Transmit power 10 mW
Antenna 2.4 GHz sleeve dipole antenna
Measured gain of antenna 1.1 dBi

Table 4.1: The specification of a sensor node

Throughout the experiment SNR had been kept over 25 dB to avoid noise
and ISM-band interference issue. For TOA measurement, a one-way measurement
method was chosen and time-synchronization tool has been equipped to synchronize
a time clock between a receiver and a transmitter [37]. In the following sections,
information related to measurement data of RSS and TOA will be briefly intro-
duced. Measured data based localization and simulated data based localization will
be conducted. Then, both simulated data and measured data will be utilized in es-
timating location of unknown nodes using the localization algorithms mentioned in
chapter2. And finally the results of measured data based localization and simulated
data based one will be analyzed and compared to each other.

4.2 Comparison for RSS based localization

In this section, the information of RSS data measured from the campaign
given the in previous chapter is provided first. And the data simulated based on
same parameters values of measured data are utilized in localization on the purpose
of comparing with localization results made from measured data. Table 4.2 shows
fundamental parameter for the measured data to give basic idea how to generate
RSS simulated data.

Received power at the reference distance Pr(do) is computed by Pout − Ct +
Gt−PL(do)+Gr −Cr (dBm), where Pout is output power transmitted, PL(do) is the
path loss at reference distance do, and Ct, Cr, Gt, Gr are attenuation and gain of
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Parameters and their values of RSS experiment
Pr(d0) Received power at the reference distance (1m) in dBm −37.5 dBm
np Path loss exponent 2.3
σdB Standard deviation 3.9 dBm

Table 4.2: The measurement data of RSS

cable and antenna as described in Table 3.1. Therefore, received power Pr can be
mathematically expressed as below.

Pr = Pr(d0)− np · log10 d+ n (4.1)

where np, do, and n denotes observed path loss exponent and reference distance
(1m), and noise with normal distribution respectively. Therefore, since log10d̃ can
be replaced to log10d+ n, received signal can be again expressed as

Pr = Pr(d0)− np · log10 d̃ (4.2)

where d̃ denotes estimated distance from noisy environment. Therefore, d̃ can be
calculated from received signal as

d̃ = 10
Pr(d0)−Pr

np (4.3)

A received signal power without noise Po is computed as Po = Pr(do) − np ·
log10 d, where d is true location between anchor node and unknown node. Standard
deviation σ is therefore calculated from

σ =

√∑N
i=1(P

(i)
o − P

(i)
r )2

N
(4.4)

where N , P (i)
o , and P

(i)
r is the number of a measurement conducted, received power

between ith node pair out of 44 nodes in noiseless environment, and the ith node
pair’s received power in noisy environment. Since there are 44 sensor nodes and
measurement is made between a sensor and the rest 43 nodes, a number of measure-
ment data N must be (43× 44)/2, which is 946.

That is how σdB in the table 4.2 is calculated. Under log-normal shadowing
assumption, all same parameter values in table 4.2 and locations of 44 sensors are
used for generating simulated data to be able to compare measured data. Using the
RSS data simulated, the comparison of localization based on both measured data
and simulated data is made with following set-up as given in Table 4.3 below.

Parameter Value
Number of unknown node 10
Number of anchor node 34
Times of node shift 100

Table 4.3: RSS based localization set-up

As noticed in the table above, 10 sensor nodes selected randomly out of 44
sensor nodes are set to be unknown. In other words, 34 anchor sensor nodes with
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10 unknown nodes are present. Since measured data has 3.9 (in dBm) as standard
deviation of received power, the data is simulated by adding Gaussian noise with
standard deviation, 3.9, on noiseless received signal, Pr(d0)−np ·log10d, which results
in log-normal fading over transmitting distance d. After average root mean squared
error (RMSE) of the localization is calculated for the first unknown nodes’ array,
the array of unknown nodes is changed. After that, RMSE is computed again. This
random unknown node shift is processed up to 100 times. Consequently, every sin-
gle algorithm to be implemented will have average RMSE from each of 100 different
unknown nodes’ array.

This section categorizes algorithms into two categories: least squares esti-
mation (LSE) and non-linear least squares estimation. Therefore, the result of two
algorithms under least squares category (non-cooperative LSE and cooperative LSE)
is given first. And later, the result of two algorithms under non-least squares cate-
gory (non-cooperative joint map estimation and cooperative joint map estimation)
is followed. More detail explanation about cooperative joint map estimation is left
to a later section of this chapter.

4.2.1 Least squares based localization

This section displays the difference of localization result between non-cooperative
LSE and cooperative LSE based on both measured RSS data and simulated RSS
data in order to compare not just the localization methods but also the results based
on measured data and simulated data.
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Figure 4.2: RSS based least squares estimation with CRLB

Figure 4.2 shows the result of non-cooperative and cooperative least squares
( scaled conjugate gradient) estimation. As it is obviously seen in Figure 4.2, mea-
sured data based location estimate generally more precise than the localization based
on simulated data in non-cooperative method. And also percentile box represent-
ing value range from 25 to 75 percentile is much shorter than that in simulated
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data based localization. It seems to happen due to difference of probability density
function (PDF) of noise of received signals between simulated data and measured
data.
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Figure 4.3: Comparison of PDF of noise for RSS

Therefore, the PDF of noise in simulated data and measured data are given to
compare to each other as given in Figure 4.3. As a measure of peakedness kurtosis
can be calculated, which is zero for normal distribution. If the kurtosis of certain
distribution is larger than zero, one can say it is "peakier" than normal distribution.
The kurtosis (peakedness) of noise in simulated data and measured data can be
computed by Matlab command kurtosis. And the kurtosis of noise in simulated
data and measured data is -0.0295 and 0.7632 respectively. In other words, noise is
concentrated closer to zero in measured data than those in simulated data, which
causes the probability of less noise. The center peak of noise PDF in measured data
is "peakier" than that in simulated data, normal distribution. Such a distribution
is called leptokurtic distribution or sometimes referred to super Gaussian distribu-
tion [41].

Therefore, due to the higher probability of having noises close to zero in mea-
sured data, it is expected that more precise distance estimation is made from mea-
sured data. And since log10 d̃ = log10 d + n as written in the Equation 4.2 the
relationship between the distance calculated from received signal d̃ and reals dis-
tance d can be expressed as

d̃ = d · 10−
n
np ∝ d · 10−n (4.5)

where d, n, and np denotes the true distance, the noise of received signal, and the
path-loss exponent, respectively. Since path-loss exponent np is close to fixed value
(3.92dB) according to measured value [37], it is considered not to affect the value
of estimated distance. The only factor affecting the estimated distance d̃ is 10−n.
Therefore, the higher the noise is, the longer the difference between the estimated
distance and the true distance is.

Furthermore, since 10−n is not additive but multiplicative factor as shown in
the Equation 4.5, as the transmission distance gets longer, the difference between
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the estimated distance and the true distance also becomes longer, which reduces the
accuracy of localization. Since the accuracy of location estimate depends on how
close the distance calculated from received signal is to the real distance, the value of
Gaussian noise n can be said to be key factor affecting the accuracy of the localiza-
tion especially for the non-iterative algorithm non-cooperative such as LSE or joint
map estimation. In consequence, measured received signal data based localization
has higher possibility to get smaller error than simulated data based localization
since there exist more noises which are close to zero in measured data.

We will now observe the accuracy of scaled conjugate gradient, one of an it-
erative LSE method, based on measured data and simulated data. As mentioned
in section 2.2.3, this algorithm localizes the object to be found by using not only
a communication between an anchor node and an unknown node but also between
unknown nodes for the purpose of improving the accuracy. The location of the ob-
ject is iteratively updated until there is no change in the location.

To avoid the failure of convergence of local minimum close location from de-
sired minimum, the location estimated from non-cooperative LSE, is chosen as an
initial point to be updated iteratively in the scaled conjugate gradient method, which
is used as cooperative LSE. As observed in Figure 4.2 the scaled conjugate gradi-
ent method is a lot more precise than LSE. In addition, even though the estimated
location from non-cooperative is selected as an initial point for the scaled conju-
gate gradient, the accuracy and stability of the scaled conjugate gradient based on
simulated data is as good as measured data based scaled conjugate gradient.

4.2.2 Joint map estimation

This subsection provides the results of non-cooperative and cooperative joint
map estimation based on both measured data and simulated RSS (received sig-
nal strength) data in order to compare the performance of algorithms against one
another. The joint map estimation implemented in Chapter 3 is non-cooperative
method, which estimates the location of a single unknown sensor node one by one.
However, in this section, since all the sensor nodes are reachable to one another, it is
possible to estimate the location in cooperative way by putting all unknown nodes
in the matrices to be estimated. This method is can be called as a cooperative joint
map estimation since this method localizes the object in a way that estimates the
location by involving the signal strength data between unknown nodes. In other
word, this algorithm utilizes both the data between unknown node and anchor node
and the data between unknown nodes. In this section, the localization result of co-
operative joint map estimation is observed to see how different the non-cooperative
and cooperative method are in terms of accuracy and stability.

As we can see from Figure 4.4, measured data based estimation has lower
RMSE median than the simulated data based one in both non-cooperative and co-
operative cases due to the presence of super Gaussian noise in measured RSS data
as explained in previous subsection. In both measured and simulated RSS based
localization results, it is easily seen that cooperative method has higher accuracy,
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Figure 4.4: Joint map estimation based on RSS data

which means lower RMSE median.
Especially, in case of simulated data based localization, cooperative joint map

method remarkably outperforms in aspect of accuracy. And in terms of stability, all
four results seem comparable as the blue box of all results are about the height.

4.2.3 Comparison of all algorithms

This subsection observes results from both least squares estimation and joint
map estimation to compare their performance.
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Figure 4.5: All algorithms with CRLB based on RSS data
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In Figure 4.5, the scaled conjugate gradient based on both measured data and sim-
ulated data, denoted as cg_m and cg_s respectively, has shown lower RMSE median
than the cooperative joint map estimation based on both measured data and sim-
ulated data, denoted as co.j_m and co.j_s respectively. It proves that the scaled
conjugate gradient has higher accuracy than cooperative joint map estimation. In
addition, the stability of both measured and simulated data based scaled conjugate
gradient estimation is better than cooperative joint map estimation.

However, when it comes to comparison of non-cooperative methods, the joint
map estimation result based on both measured data and simulated data, denoted
as J_m and J_s respectively, outperforms the non-cooperative LSE result, denoted
as Ls_m and Ls_s respectively. This result implies that the space of the place where
the campaign has been done is suitable enough for the joint map estimation to lo-
calize the object more accurately than non-cooperative LSE.

Non-cooperative LSE shows worse performance in both accuracy and stability
aspects. In contrast, cooperative LSE, the conjugate gradient, has the best result
in the accuracy and the stability aspects.

4.3 Comparison for TOA based localization

This section compares the localization results from TOA data measured in an
experiment with that from simulated data to gage how reliable simulated data based
localization is in real world. The same localization algorithms implemented in RSS
based localization part are again used and the way of categorization on localization
algorithms is also identical as RSS case. Table 4.4 shows fundamental parameter
values of the measured data to give an intuition of how TOA simulated data is
generated.

Parameters and their values of TOA experiment
µt Mean time delay error 10.9 ns
vp Wave propagation speed (speed of light) 3 · 108 m/s
σt Standard deviation 6.1 ns

Table 4.4: The measurement data of TOA

Mean time delay is the average delay error occurred by attenuated, phase
shifted, time-delayed, and attenuated multi-path replicas so-called multi-path er-
ror [37]. And the value of σt has been calculated in a way that σdB in RSS case is
computed. In other words, σdB is computed by averaging the difference between the
measured arrival time and the arrival time without noise of all pairs out of 44 nodes
as explained in Section 4.2.

An arrival time measured can be mathematically expressed as τ = d
vp
+µt+n =

d̃
vp
+ µt, where d̃ denotes the distance in noisy environment. Therefore, the distance

in noisy environment d̃ is
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d̃ = vp · (τ − µt + n) (4.6)

Since the time of arrival tTOA depends only on noise which is additive and vp
and µt is constant value, the relationship between the distance calculated from the
arrival time and arrival time measured is linear.
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Figure 4.6: Distance vs Noise

Figure 4.6 shows absolute value of noise with vs distance in measured data.
From this result, it can be observed that the noise presented during the experiment
is not affected by a distance of a transmission.

The basic information regrading the set-up of a location estimate are as below.

Parameter Value
Number of unknown node 10
Number of anchor node 34
Times of node shift 100

Table 4.5: TOA based localization set-up
As it can be easily seen, it is exactly same as how the localization processed in

RSS case. As done in RSS case, both non-cooperative and cooperative least squares
estimation results based on both measured and simulated data are provided first,
and joint map estimation results follow.

4.3.1 Least squares based method

The same localization algorithms and categorization as used in RSS case are
applied in this TOA based localization part. A non-cooperative and a cooperative
least squares estimation results are first given in this subsection as done in RSS case.

As shown in Figure 4.7, simulated data based localization result has lower root
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Figure 4.7: TOA based least squares estimation

mean squared error (RMSE) indicating higher accuracy than measured data based
result in both non-cooperative and cooperative least squares estimation. What is
most interesting about the result is that the cooperative method’s result is influenced
by non-cooperative algorithm. Cooperative LSE selects the location estimated by
the non-cooperative LSE as an initial point to be updated iteratively and measured
data based non-cooperative LSE result is worse than simulated data based one.
Therefore, cooperative LSE based on measured data shows worse accuracy than
same algorithm based on simulated data.

However, cooperative LSE result in RSS case was not affected by the result of
non-cooperative LSE that much. Therefore, it can be concluded that the cooperative
results are more intimately related to the non-cooperative results compared to RSS
data based cooperative LSE. In terms of stability, both measured and simulated
data based results using non-cooperative least squares estimation are similar so are
both measured and simulated data based results using cooperative methods.
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Figure 4.8: Comparison of PDF of noise for TOA
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Figure 4.8 is given to compare the noise of both measured signal strength
data and simulated signal strength data as done previously. Although it is not
very obvious, it looks like there are more noises deviated far from zero in simulated
data than in measured data. And the kurtosis (peakedness) calculated of noise in
simulated data and measured data was 0.1249 and 0.0665 respectively. In other
words, noise distribution in simulated data is slightly "peakier".

4.3.2 Joint map estimation

This subsection shows the results of non-cooperative and cooperative joint
map estimation based on both measured and simulated TOA data to observe the
performance of all four algorithms.
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Figure 4.9: Joint map estimation based on TOA data

According the Figure 4.9, the difference of accuracy between the measured and
simulated data based location estimate is longer compared to LSE case shown in
previous subsection. Even non-cooperative estimate based on simulated data has
better accuracy than cooperative localization result based on measured data. It can
be said that joint map estimation is more sensitive with respect to noise distribution
compared to LSE.

However, since the height of the blue box representing the range of values
between 25% and 75% are about to same in all joint map’s results, it is difficult to
conclude that a noise affects a stability. As in RSS case, cooperative method’s result
proves its higher accuracy than non-cooperative localization in both measured data
and simulated data based localization.
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4.3.3 Comparison of all algorithms

In this subsection, all results of localization are displayed and evaluated in
order to give an idea which algorithm has better accuracy between LSE and joint
map estimation.
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Figure 4.10: All algorithms with CRLB based on TOA data

Figure 4.10 shows that cooperative LSE (the scaled conjugate gradient) based
on both measured data and simulated data, denoted as cg_m and cg_s respectively,
has shown lower RMSE median than the cooperative joint map estimation based on
both measured data and simulated data, denoted as co.j_m and co.j_s respectively.
Therefore, the scaled conjugate gradient proves its higher accuracy than cooperative
joint map estimation based on both TOA data and RSS data. Furthermore, in terms
of the stability, LSE and joint map estimation are similar based on both measured
data and simulated data.

However, the non-cooperative localization case joint map estimation, denoted
as J_m and J_s respectively, outperforms the non-cooperative LSE result based on
both measured data and simulated data, denoted as Ls_m and Ls_s respectively. As
concluded in RSS part, the size of the place where the TOA measurement has been
conducted is suitable enough for the joint map estimation to perform better than
non-cooperative LSE in both accuracy and stability aspects.

Like the result in RSS case, non-cooperative LSE has the poorest result in
both accuracy and stability. In contrast, cooperative LSE, the conjugate gradient,
shows the best performance.



Chapter 5

Conclusions

Throughout this thesis, a localization using wireless sensors has been explained
theoretically and a simulation regarding the localization under certain scenario has
been implemented. In the theoretical part, Chapter 1 and Chapter 2, the structure
and the application of wireless sensor nodes has been introduced briefly. In addi-
tion, both non-cooperative and cooperative localization algorithms were introduced
with equations when needed. The following two chapters, the experimental part,
provided simulation results to observe the characteristic of each of localization al-
gorithms described in the theoretical part.

In Chapter 3, the location estimate has been conducted in the scenario where
anchor nodes are ployed in three different grid pattern (square, triangle, and ran-
dom grid) in a squared space (160m by 160m). The localization results have been
observed by varying a density first, a transmission range later. In Chapter 4, a
localization result based on simulated data is compared to measured data based
localization for both RSS and TOA case. In this chapter joint map estimation has
been also implemented in cooperative manner, the way of localizing the unknown
node using both anchor nodes and other unknown nodes located inside its transmis-
sion range to get better accuracy and to overcome transmission range limit problem,
in order to compare with non-cooperative joint map estimation.

The simulation given in Chapter 3 proved that the accuracy of all estima-
tion methods was improved as the anchor nodes are denser. Moreover, cooperative
method were proven to be generally better than other non-cooperative method in as-
pect of accuracy. However, in mild condition- for example, highly dense environment
or the environment where noise level is low- the joint map estimation showed very
high accuracy even higher than the conjugate gradient for some cases as shown in
Chapter 3. Cramér-Rao lower bound, which is the lower bound of unbiased estimator
has been given to evaluate the performance of localization algorithms implemented.

In RSS case, the scaled conjugate gradient, the most accurate algorithm among
all, yet still needs to be improved more to reach Cramér-Rao lower bound. In addi-
tion, the accuracy of all algorithms gets even worse as a transmission range is longer,
which should be opposite according to [18]. Therefore, the algorithm suitable for
non-linear relation between measurement and distance is needed to be implemented
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to get better result. However, in TOA case, the scaled conjugate gradient almost
achieved Cramér-Rao lower bound.

It was observed that linear least squares estimation showed poor accuracy as
the transmission range of a anchor node was longer in RSS based localization. That
is caused by non-linear relationship between the signal strength and distance. And
the accuracy of joint map estimation was drastically worse as the transmission range
of a anchor node was longer in both RSS and TOA based localization. Therefore, the
joint map estimation seemed to have poor accuracy when a transmitting distance
is long regardless of type of noise. Interestingly in joint map estimation case, the
localization with square grid pattern generally showed higher accuracy than other
grid patterns in both RSS and TOA based localization.

In Chapter 4, the localization results based on measured data has slightly
higher accuracy than simulated data based location estimate in RSS case. It was
caused by super Gaussian noise distribution in measured received signal whereas
noise present in simulated received signal was Gaussian noise. However, as the re-
sult proved simulated data based localization was quite close to measured data based
one, meaning that the simulated data based localization result is reasonable.

And when it comes to a comparison of algorithms performance, scaled con-
jugate gradient performed the best. And cooperative joint map estimation outper-
formed the non-cooperative method although there was not much difference in the
accuracy between two methods. In addition both non-cooperative and cooperative
joint map estimation had higher accuracy than linear least squares estimation. This
result was expected since the size of the place where the campaign was conducted is
only much smaller than the place in the scenario of Chapter 3. Therefore, through
simulated data and measured data based localization it is proven that the joint map
estimation can be said to be more suitable algorithm than non-cooperative least
squares algorithm in the small office environment.

However, the most significant result proven through Chapter 3 and Chapter 4
that is the cooperative localization outperforms non-cooperative one (the traditional
method), which implies the way the future localization method should be.
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