System design and risk
assessment for safety
critical control software
product lines

Nikolaos Papakonstantinou

Aalto University DOCTORAL
DISSERTATIONS
| |

Aalto University publication series
DOCTORAL DISSERTATIONS 148/2012

System design and risk assessment for
safety critical control software product
lines

Nikolaos Papakonstantinou

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) (Doctor of Philosophy) to be defended, with
the permission of the Aalto University School of Electrical
Engineering, at a public examination held at the lecture hall AS1 of
the school on the 23rd of November 2012 at 12:15.

Aalto University

School of Electrical Engineering

Department of Automation and Systems Technology
Information and Computer Systems in Automation

Supervising professor
Prof. Kari Koskinen

Thesis advisor
Dr. Seppo Sierla

Preliminary examiners

Prof. Georg Frey, Saarland University, Germany

Dr. Jari Hamalainen, Valtion Teknillinen Tutkimuskeskus (VTT),
Finland

Opponent
Prof. Birgit Vogel-Heuser, Technische Universitat Miinchen (TUM),
Germany

Aalto University publication series
DOCTORAL DISSERTATIONS 148/2012

© Author

ISBN 978-952-60-4861-1 (printed)

ISBN 978-952-60-4862-8 (pdf)

ISSN-L 1799-4934

ISSN 1799-4934 (printed)

ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-4862-8

. . %O\CEEO%
Unigrafia Oy 7 %
Helsinki 2012 /////

N4

i 441
Finland Printed matter

697

A' Aalto University Abstract

] Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Nikolaos Papakonstantinou

Name of the doctoral dissertation
System design and risk assessment for safety critical control software product lines

Publisher School of Electrical Engineering

Unit Department of Automation and Systems Technology

Series Aalto University publication series DOCTORAL DISSERTATIONS 148/2012

Field of research Information and Computer Systems in Automation

Manuscript submitted 13 June 2012 Date of the defence 23 November 2012
Permission to publish granted (date) 16 October 2012 Language English

[] Monograph X Article dissertation (summary + original articles)

Abstract

A methodology is presented for the design of safety critical product lines for control
automation software. The functional failure identification and propagation risk assessment
method is used in the early design phase of the mechatronic system. The applied methodology
starts with the decomposition of the system into functions that are connected by energy,
material and signal flows. This results in a functional model that does not make any
assumptions on what components are used to realize the functions. The functions are mapped
to mechatronic components in a model that can be simulated: the configuration flow graph.
Functional failure logic is executed in parallel to the simulation to monitor the simulation
signals and to determine the health of each function. The functional health results of the
simulation, when critical events are injected, are used to identify the propagation of functional
failures. Alternative designs that are described with a feature model, combinations of
component parameter values and changes in the critical event scenario can be simulated.
System designs that result in undesirable behavior are rejected. The purpose is to identify risks
and to determine mechatronic designs with adequate safety characteristics before the design
process branches into software, electrical and mechanical domains. The final deliverable of the
mechatronic system design phase is a feature model capturing the design alternatives with
acceptable safety characteristics. The aspect of this model containing software is the starting
point for software product line engineering. In control automation, programmable logic
controller targets are used, so a methodology and toolchain for supporting software product
line configuration for such platforms has been developed using the PLCopen standard. Two
case studies are used to demonstrate the methodology: a boiling water reactor, with a focus on
reactor coolant pumps, and a mobile elevating work platform.

Keywords Risk assessment, safety, fault propagation, functional modeling, design alternative,
software product line, control software, PLCopen, IEC 61131-3

ISBN (printed) 978-952-60-4861-1 ISBN (pdf) 978-952-60-4862-8
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Location of publisher Espoo Location of printing Helsinki Year 2012

Pages 154 urn http://urn.fi/URN:ISBN:978-952-60-4862-8

Preface

As engineers we are trained to provide practical solutions, within constraints, to the community. This
demanding task can be achieved only though a series of careful compromises. While these compromises
are a necessity, some of them can eventually become social norms, and be later treated as preconditions.
Many constraints change over time, and thus trade-offs that were made in the past, may now be different
or may not even be necessary. In the past four years, while working as a research scientist, many times |
had to strongly defend my choice to reevaluate some compromises that had evolved into habits. At this
time, | feel that it was worth the effort.

Espoo, 1st of Nov. 2012

Nikolaos Papakonstantinou

Contents
LISt Of PUDIICATIONS .c..eeiieitieiesiieiet ettt st st sae et e st e e st e s st e st et e s seetesbeensenbesssen ssbesnnansenns 3
AUthor's CONEIBULION ... e 4
SUMMArY O PUBIICAIONS ..c.veuiiiiiiiiie ettt sn st e 5
List Of @bBreviationsccoiiiiiiii s 6
INEFOAUCTION .. bbbt bbb s 7
T MOTIVATION .ttt bbb e bbb s e 7
2 LItEratUr@ FEVIEW ...eiiuiiiiiiiiieicicicet e b e ebe e b e e s ae b sebeenaesae s 9
b T 191421 Y2 SRS 9
2.2 Safety and risk analysis in the industrial informatics fieldooereeiinniiniice e 10
2.3 Comparison of risk assessment and verification Methods..........ccoecvvviiiiniiriiinieeeececeeeeee e 11
2.4 Software product lines and feature MOdeliNg........cccuevvieriierie i 12
2.5 Safety critical software product lines and mechatronic product line engineering.......c..c.ccoceeeevrennene. 13
2.6 Software Product Lines for industrial control software applications.........cceceveveerierernienesceene s 14
IS0] o= 4 1RSSR 15
4 CASE STUAIES ...ttt bbbt b bt bbbt e b e s bbbt e h bbb ae e h e b s e b b st ene 16
4.1 Mobile elevating work platform product familycccocceeriiiriiiii e 16
4.2 BOIlING WaAter REACTON....ccuiiiitiictii ettt ettt e et e et e et e e ae e s b e e saeesateessaessteassseenbeasseeeseessseensaesnsennsen 17
L3\ 1= T [T OSSPSR URUSRPOON 21
5.1 FEAtUIE MOUEIING ...eeeneiieiieeiieeieeete ettt sttt s e et e e st esbe e s abe e beesabeesateebeesateesaeesateenanesns sas 21
5.2 Simulation based risk @sSeSSMENTcccciiiiiiiiiiiii s 23
5.3 ChOiCe OF CASE STUAIES ...ouviuiiiiiiieiceett ettt s bbb 30
B RESUILS ..o e 32
6.1 Failure propagation analysis with the boiling water reactorcccceceevieiiiecic e 32
6.2 Analyzing Critical EVENT SCENATIOS......cctiiriirieieietrertetet ettt 38
6.3 Evaluating the safety of design alternatives by failure propagation analysesc.ccccevervvererveviennnne 45
6.4 Configuring machine control software based on a feature model of safe design alternatives............ 54
7 DISCUSSION ..tiiiiiiiiiiitie ettt ettt ettt ettt e s eab b e e e bbb e e e b b e e e s bt e e e bb e e e e b b e e s sab b e e s bbb e e e bbb e e sabbaeesns seabbeeeabreeeebbees 62
7.1 Discussion related 10 ODJECHIVE L....coviiiiiiriiiiieeieeeeeee et st s s b e saeeebaesaaeenaees 62
7.2 Discussion related 10 ODJECHIVE 2.....ccuiicuieiiicieeieceee ettt s e e et e s saeetaesaaeenbaeesaeennnas 62
7.3 Discussion related t0 ODJECTIVE 3......ccciiieieierierieseetere ettt st sae s et ste e s e ssessaenbesanensenes 63
B CONCIUSIONS ...t e 65

[T =T a1 SRS 66

List of publications

Publication I: Nikolaos Papakonstantinou, Seppo Sierla, Jarmo Alanen, Kari Koskinen: Reducing
Redesign of Safety Critical Control Systems by Early Risk Assessment, IEEE INDustrial INformatics
(INDIN) conference, July 13-16, 2010, Osaka, Japan. 6 pages.

Publication II: Nikolaos Papakonstantinou, Seppo Sierla, David Jensen, Irem Tumer: Capturing
interactions and emergent failure behavior in complex engineered systems and multiple scales, ASME
2011 International Design Engineering Technical Conferences (IDETC) and Computers and Information
in Engineering Conference (CIE), August 28-31, 2011, Washington, DC, USA. 10 pages.

Publication IlI: Nikolaos Papakonstantinou, Seppo Sierla, Kari Koskinen: Object oriented extensions of
IEC 61131-3 as an enabling technology of software product lines, IEEE Emerging Technologies in Factory
Automation (ETFA) conference, September 5-9, 2011, Toulouse, France. 8 pages.

Publication IV: Nikolaos Papakonstantinou, Seppo Sierla, Kari Koskinen: Generating and validating
product instances in IEC 61131-3 from feature models, IEEE Emerging Technologies in Factory
Automation (ETFA) conference, September 5-9, 2011, Toulouse, France. 8 pages.

Publication V: Seppo Sierla, Irem Tumer, Nikolaos Papakonstantinou, Kari Koskinen, David Jensen: Early
integration of safety to the mechatronic system design process by the functional failure identification
and propagation framework, MECHATRONICS international journal, 2012. 22(2): P. 137-151,
doi:10.1016/j.mechatronics.2012.01.003. 26 pages (before final layout).

Publication VI: Nikolaos Papakonstantinou, Seppo Sierla: Early Phase Fault Propagation Analysis of
Safety Critical Factory Automation Systems, IEEE INDustrial INformatics (INDIN) conference, July 25-27,
2012, Beijing, China. 6 pages.

Publication VII: Nikolaos Papakonstantinou, Seppo Sierla, Irem Tumer, David Jensen: Using fault
propagation analyses for early elimination of unreliable design alternatives of complex cyber-physical
systems, ASME 2012 International Design Engineering Technical Conferences (IDETC) and Computers
and Information in Engineering Conference (CIE), August 12-15, 2012, Chicago, IL, USA. 9 pages.

Author’s contribution

All the publications listed in this section are the result of teamwork of their authors (see List of publications
section). The contribution of the author of this dissertation to the articles can be summarized as follows:

IEEE INDIN 2010 (Publication 1): The author was responsible for part of the literature review (Section II), for
the research and development of the proposed metric (Section Il1), development of the software tool that
implements the metric and generation, presentation and interpretation of the results (Section V).

ASME IDETC/CIE 2011 (Publication II): The author was responsible for the presentation of the case study,
the development of the simulation model for the case study and for the generation, presentation and
interpretation of the results (Section “CASE STUDY”).

IEEE ETFA 2011 (Publication Ill): The author was responsible for part of the literature review (Section 2),
for the development of the methodology (Section 3), development of the case study in CoDeSys (Section 4),
development of the software tool which is part of the proposed toolchain and for the generation,
presentation and interpretation of the results (Section 5).

IEEE ETFA 2011 (Publication 1V): The author was responsible for part of the literature review (Section 2), for
the development of the case study in CoDeSys (Section 3), development of the software tools which are
part of the proposed toolchain and for the generation, presentation and interpretation of the results
(Section 4).

Elsevier Mechatronics journal (Publication V): The author was responsible for the development of the case
study and its simulation model in Simulink (Section 3), and for the generation, presentation and
interpretation of the results (Section 4).

IEEE INDIN 2012 (Publication VI): The author was responsible for the development of the case study in
Simulink (Section 1l1), extension of open source software tools to support the proposed environment and
toolchain (Section V) and for the generation, presentation and interpretation of the results (Section V).

ASME IDETC/CIE 2012 (Publication VII): The author was responsible for the development of the case study
in Simulink, extension of open source software tools to support the proposed environment and toolchain
and for the generation, presentation and interpretation of the results. (Sections “CASE STUDY”,
“METHODOLOGY, SIMULATION ENVIRONMENT AND TOOLCHAIN” and “RESULTS”).

Summary of publications

Publications I-VII are part of this dissertation. For complete references, see the List of publications section.

Publication | proposes a metric which quantifies the amount of system design rework done, after a change
request originating from risk assessment, during different phases of the system design. The results of the
metric, when applied to a case study, showed that the amount of rework for a change request rises
significantly the later the risk assessment is performed. The publication motivates development of early
phase risk assessment methods, which are the subject of publications Il, V, VI and VII.

Publication V present the extension of the Functional Failure Identification and Propagation framework to
support early designs of complex systems which contain feedback loops. Previous work on the method had
been in mechanical design, and this publication extends the method into the mechatronic domain by
incorporating machine control software. Since the results are dependent on how the model is
parameterized based on the concept phase knowledge of the system, the response of the system to design
parameter changes was investigated Publication II.

Publication VI and Publication VII present the extension of the Functional Failure Identification and
Propagation framework towards supporting the assessment of alternative system designs. A methodology
is introduced to describe the alternative designs using the feature model notation and to use the Functional
Failure Identification and Propagation method to identify and then remove the unsafe designs from the
product line.

Publication Ill presents a methodology that applies the Software Product Line paradigm to control software
design. The Object Oriented extensions of IEC 61131 and the PLCopen XML file format for storing control
applications are used as enabling technologies to support the implementation of feature modeling
concepts. Publication IV presents a methodology and a supporting toolchain for adding feature model
constrains into the PLCopen XML representation of the control application product line and then for
configuring valid product configurations of the IEC 61131 control application.

List of abbreviations

AADL - Architecture Analysis and Design Language
BWR - Boiling Water Reactor

CFG - Configuration Flow Graph

DECOS - Dependable Embedded Components and Systems
EMS - Energy Material Signal

FFA - Functional Failure Analysis

FFIP - Functional Failure Identification and Propagation
FFL - Functional Failure Logic

FMEA - Failure Modes and Effects Analysis

FMECA - Failure Mode Effect and Criticality Analysis
FTA - The Fault Tree Analysis

HAZOP - HAZard and OPerability study

IDE - Integrated Development Environment

IEC - International Electrotechnical Commission

IT - Information Technology

LON - Local Operating Network

MDE - Model Driven Engineering

MEWP - Mobile Elevating Work Platform

OCL - Object Constraint Language

0O - Object Oriented

PCV - Pressure Control Valve

PLC - Programmable Logic Controller

POU - Program Organization Unit

PRA - Probabilistic Risk Assessment

RPM - Rotations Per Minute

SFMECA - Software Failure Mode, Effects and Criticality Analysis
SFTA - Software Fault Tree Analysis

SIL - Safety Integrity Level

SPL - Software Product Line

ST - Structured Text

TPS - Turbine Protection System

UML - Unified Modeling Language

XML - Extensible Markup Language

Introduction

1 Motivation

Safety critical machine automation is based increasingly on software. Safety, cost efficiency and product
flexibility are key factors to the development of safety critical automation systems. The paradigm of
Software Product Line (SPL) [1], which originates from the software engineering domain, can facilitate the
design of safety critical machine automation if it is focused towards that goal. In this dissertation, the
following definition for SPL is used: "a set of software-intensive systems that share a common, managed set
of features satisfying the specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way" [2]. There is a lack of research for a methodology to
identify product line members of safety critical SPLs. Additionally, performing risk analysis on early designs
can lead to less redesign and thus cost reduction [3]. Since safety is a property of the mechatronic system,
it is necessary to investigate the safety critical product line from a mechatronic perspective, in order to
identify potentially unsafe configurations before isolating the software aspect of the product line.

The feature modeling technique is used to describe mandatory, optional and alternative features in a
product line, so that product instances are obtained by selecting among these optional and alternative
features [4]. In this dissertation, the following definition for feature is used: "property of a domain concept,
which is relevant to some domain stakeholder and is used to discriminate between concept instances" [4].
In this definition, a domain stakeholder is anyone involved in the SPL. Additionally, constraints may be used
to prevent the selection of incompatible feature combinations. Further research is needed to develop
methodologies for obtaining feature models that satisfy non-functional quality requirements; in this
dissertation, the focus is on safety. Safety of machine control software cannot be evaluated independently
of the physical equipment to be controlled [5], so feature modeling is applied to mechatronic designs. This
model is presented as source information for risk analysis, which is used to identify unsafe combinations of
features. These combinations are removed from the model either by removing features or adding
constraints. After removing features that do not involve software, the resulting feature model is the
starting point for software development by established SPL techniques.

The SPL paradigm was developed to generate software implementations that follow the Object Oriented
software development paradigm. Recent advances to control automation development platforms attempt
to add object oriented extensions to IEC 61131 [6], the industry standard for programming Programmable
Logic Controllers (PLC). Efforts have also been made towards interoperability between automation
software development platforms by introducing a standardized file format for describing automation
projects (PLCopen Extensible Markup Language file format). In this research, the object oriented extensions
and the PLCopen Extensible Markup Language (XML) file format are used in the SPL toolchain to produce
vendor independent PLC software implementations, after product instances have been configured from the
feature model.

A system development process is presented, starting with the development of the feature model that
describes mechatronic design alternatives. A methodology for risk assessment of a mechatronic feature
model is presented, aiming at restricting the model to exclude unsafe feature combinations. Even if safety
of individual features has been verified, specific combinations of features may introduce risks, so a risk

assessment method for studying interaction of mechatronic components is needed. This dissertation uses
the FFIP (Functional Failure Identification and Propagation) framework, a methodology for tracking fault
propagation over boundaries of subsystems and automation, electrical and mechanical domains [7]. A
toolset is presented for performing this risk assessment and for supporting the configuration of vendor
independent PLC software implementations.

This research is motivated by the lack of methods for obtaining a product line specification for a safety
critical product line. A risk assessment method for addressing complex, software intensive mechatronic
systems containing variability has not yet been proposed. While software engineering methods and tools
for SPL development are well established, this technology has not yet been applied to machine control
software development based on the PLC. This is not only an engineering problem but also a scientifically
significant research problem, since the PLC introduces a fundamentally different programming and
software execution paradigm.

2 Literature review

2.1 Risk analysis

Several researchers in the safety field have discussed the advantages of applying a certain risk assessment
method or a set of such methods [3]. One extreme view is that only one method should be used to avoid
comparability issues within a set of requirements derived by different methods; the authors recommend
Enhanced Markov Analysis, a difficult and time consuming method, due to its great expressive power [8].
Other authors justify the need for several methods in order to adequately address human and
organizational factors [9], to cope with situations when adequate failure data is not available [10] and to
apply more work intensive methods only to the most critical parts of the system [11], [12]. A more rarely
addressed criteria in the choice of risk assessment methods is the capability to identify system failures
based on conceptual designs before costly design commitments are made; Kurtoglu and Tumer [7] propose
the functional-failure identification and propagation (FFIP) framework for this purpose.

A variety of established approaches for performing risk analysis are available. The effects on the system
when a single component enters a failure mode are examined using the Failure Modes and Effects Analysis
(FMEA) [13] method. The FMEA method is used widely in safety critical industries but is still heavily based
on past experience and is very laborious for complex systems [14] . The Failure Mode Effect and Criticality
Analysis (FMECA) [15] is an extension of FMEA that evaluates the probability of a component entering a
failure mode against the severity of the consequences to the system. Research has been made for
extending FMEA to support a combination of component failures, but when the source material is detailed
designs of complex systems the number of combinations is not manageable [16]. FMEA can be combined
with functional models and that leads to better applicability to complex systems [17]. The Functional
Failure Analysis (FFA) is a method that follows the workflow of the FMEA but operates solely on the
functional model of the system [18]. The HAZard and OPerability (HAZOP) method is qualitative and uses
the functional models. A set of keywords is combined with the system functions and, using past experience,
potential hazards are identified [19]. Attempts have been made to reduce the manual effort of performing
HAZOP by using technologies like knowledge databases [20]. The Fault Tree Analysis (FTA) method is a top —
down approach, where an undesirable system state is analyzed to a combination of component failure
modes [21]. The Probabilistic Risk Assessment (PRA) [22] is a method that provides quantitative results and
targets to reveal potential hazards in complex system designs; the detailed designs along with reliability
information for every component are required, so its applicability is only to the last stages of the design
process. The aforementioned risk analysis methods require extensive expertise of the behavior and the
interactions within the complex system and are geared towards the latter phases of the system
development. They are time-consuming and usually are applied for verification of the safety requirements
of a refined design.

The risk analysis methods that are performed manually require continuous update to keep their source
information consistent with the evolution of the system design. This process causes further delays and
requires considerable effort [23]. Research attempts are being made to address this weakness by
proposing risk and reliability analysis methods that are integrated with the simulation of the system model.
By specifying a set of detailed input parameters which are then used for simulating the model of the
system, designers can evaluate the effects of these parameters to the system’s behavior. Common analysis
methods include Monte Carlo simulation modeling [24], response surface models [25] and meta-modeling
techniques such as in [26]. When these methods are reliability oriented [27], the probability of a system

10

response is estimated, given specific probability distributions. The minimization of the variation of the
response of the system is not considered by reliability-based methods. Robust design optimization oriented
methods [28] target the minimization of the variation of the system behavior. A robust optimal design
method that combines Monte Carlo Simulation and Stochastic Petri Nets is proposed in [29]. These
methods are applicable to models of systems that are detailed enough to include specific component
reliability information and operation tolerances, in early system designs such information is not yet
available.

The effects of faults in a system and the assessment of risk factors can be analyzed by simulation-based
techniques. Methods like directed graphs and Multi-Signal Flow Graphs [30] can reveal the fault
propagation paths within a system. The behavior of the system components can be modeled in a
qualitative level and failure propagation and loss of system function health can be reasoned based on
system-level abstractions [7, 31].

The goal of the risk assessment method presented in this dissertation is to help the system designer make
safety related decisions during the early design of a complex system, when the knowledge about the
system is still qualitative and incomplete. This risk assessment technique utilizes the simulation model of
the system which supports different abstraction levels for the system’s components.

2.2 Safety and risk analysis in the industrial informatics field

Since this work is addressing safety critical automation software, a review of safety related research in the
industrial informatics community is presented [3]. Most publications in this field that make some claims to
safety do not clearly define safety, nor do they seem to follow definitions presented in standards. The
broadly accepted safety standard IEC 61508 is often cited by those publications that operate on a clear
definition of safety. This work uses the definition of safety provided in IEC 61508 part 4: “freedom from
unacceptable risk” [32]. The definition implies that risk assessment must be performed before the level of
safety requirements can be known.

Much of the safety related research is not concerned with risk assessment, but assumes that a certain level
of safety requirements is to be satisfied. This level is usually specified in terms of SIL (Safety Integrity Level),
a metric which is defined by IEC safety standards [32, 33]. Restrictions to the Programmable Logic
Controller (PLC) programming standard IEC 61131-3 are proposed in [34] in order to make these languages
appropriate for the development of applications with high SIL requirements. Extensions to the SIL measure,
as defined in IEC 61508, are proposed in [35] in order to account for failures due to the real-time properties
of the system. A categorization of communication errors and relevant safety measures for several Ethernet
based protocols that are rated for SIL 3 is provided in [35]. A proposal for improving the ISOBUS protocol as
to obtain transmission error rates that are within the limits of SIL 3 has been devised in [36]. An overview of
safety functions for drives and examples of their technical realization are presented in [37], but it is not in
the scope of our research to determine if the application at hand actually needs the investment of the
presented safety functions or if the safety requirements of a high integrity application are fully met by
these functions. [38] describes a set of self-tests for inexpensive microcontrollers to decrease the
proportion of dangerous undetected failures to satisfy the requirements of SIL 3. [39] identifies possible
failure sources in the Local Operating Network (LON) protocol stack (e.g. data corruption; loss of messages;
manipulation of messages) and [40] proposes extensions to the communication frame that have been
certified to reduce the rate of these failures to satisfy SIL 3. While each of these papers makes a relevant

11

contribution to the safety of industrial systems, our goal of reducing and quantifying redesign by early risk
assessment is not in the scope of these papers. These research problems are encountered in a late phase of
the development cycle, whereas this dissertation targets the early phases.

In [41], a risk analysis method is proposed to prioritize the use of limited resources for the maintenance of
a system that is not safety critical; the approach is interesting and practical but does not conform to the
rigorous expectations of IEC 61508 or other safety standards.

A smaller number of publications provide a thorough treatment of risk assessment. A partially automated,
rule-based method for hazard identification based on HAZOP is described in [20], but the possibility of
obtaining requirements in terms of SIL with this approach is not discussed. The Dependable Embedded
Components and Systems (DECOS) project has proposed a comprehensive methodology for the systems
development and safety process, with a test bench infrastructure that supports certification of systems or
their parts against specific SIL requirements [5], [42]. [43] and [44] introduce a life cycle model that merges
the models of safety (IEC 61508) and security (IEC 15408) standards; the focus of the papers is to resolve
conflicting requirements that may result from these models that are traditionally carried out separately.
While each of these papers makes a relevant contribution to the risk assessment of industrial systems, they
do not address the problem of assessing complex mechatronic systems, for which traditional methods such
as FMEA, FTA and HAZOP are inadequate. In order to fill this gap, a simulation-based risk assessment
methodology for such systems has been proposed to this research community as a part of this dissertation
[45].

2.3 Comparison of risk assessment and verification methods

This dissertation is concerned with risk assessment rather than verification methodology. Verification
requires detailed system models, which are checked against safety requirements; risk assessment is a core
activity in obtaining these requirements. Verification is applicable in later phases of the development
process, such as hardware-in-the-loop simulation [46], or when the system design process has split into
domain specific processes such as software development, in which the task is to determine formal
requirements and to ensure the software implementations conformance to those requirements [47]. Much
research on verification methods has been restricted to control software that is described by sufficiently
formal models, such as SCADE [48], while our goal is to track fault propagation paths that cross the
boundaries of software, electrical and mechanical systems. Recently, verification methods have been
developed to analyze a model consisting of control software and a physical process. An approach
combining Petri nets with differential equations systems to verify systems containing continuous and
discrete dynamics [49]. Another approach combining theorem proving with non-linear optimization
techniques is described in [50].

In [49], the verification of the software with Petri nets is done against a differential equation system
describing the nominal characteristics of the physical equipment under control. In simulation-based risk
assessment, the system-wide effect of component failures can be studied. In the FFIP framework used in
this dissertation [51], it is possible to inject critical events to drive any component to one of several possible
failure modes. This component’s simulation switches to using set of difference equations capturing the
faulty behavior, while the simulation continues and the abnormal flow levels caused by the failed
component propagate to other parts of the system. In risk assessment, our interest is not to discover any

12

deviation from specifications, but to determine if these abnormal levels impact the system’s ability to carry
out its safety related functions in the face of several component failures. The verification with Petri nets
performs static analyses of the system model to make sure that software will not reach a state that is
foreseen to be unsafe. FFIP simulates the software together with the equipment under control to
determine the robustness of the mechatronic design in equipment failure scenarios.

2.4 Software product lines and feature modeling

SPL is an established technology in the Information Technology (IT) domain for providing a broad range of
customer options without the cost and delays involved in developing code separately for individual
products [1]. SPL is considered a key technology for producing software products when time to market and
software reuse are critical factors for the success of a product (e.g. [1, 52]), and research is already focusing
on the problem of migrating legacy software to a SPL [53, 54]. This section provides an overview of
available SPL technology that mainly relies on Unified Modeling Language (UML) and object oriented
technologies [55], while section 2.5 examines research that could be used to bridge the gap between the
research in this section and the PLC (Programmable Logic Controller) programming languages used in
industrial automation [56]. Fig. 1 presents the main activities needed to create and exploit a SPL; the
concept is intentionally general and abstract, since it only serves to position the numerous papers in this
section under a common context.

Creation of feature
model

-l Specification of product
instance

Code
generation

Figure 1, Main activities in creating and exploiting a SPL, adapted from [55]

Feature modeling is a key technique that supports the first phase in Fig. 1. Feature models describe
mandatory, optional and alternative features that are supported by a software product line (SPL), so that
customer-specific product instances may be derived by selecting among optional and alternative features
[57]. A feature may also require or exclude the presence of another feature, so such rules need to be
defined at the product line level and validated at the product instance level. Usually it relates only to
software, but sometimes also to other system parts such as sensors [58]. The starting point for this
research is that a feature model exists for describing product features that are considered desirable by
market experts. Features may also describe technical implementation alternatives that are to be evaluated
from a safety perspective.

The development of a SPL starts with the creation of a feature model based on the domain requirements,
which specifies the mandatory, optional and alternative status of features and thus determines which
combinations of features will be considered a valid product instance [59-61]. Further, the feature model
may include rules specifying which features require or exclude another feature, sometimes using Object
Constraint Language (OCL) [62]. Based on requirements derived from a market analysis, the feature
oriented approach to creating a SPL starts with identifying the features and then placing them into a

13

hierarchy, which corresponds to a top-down architecture of the system [63]. An alternative approach first
builds a domain requirements model focusing on scenarios and goals as an intermediate step before
creating the feature model [64]. The feature model is usually expressed either as some variation of the
notation defined by [4, 59] as in [65] or UML [66, 67].

The second phase in Fig. 1 involves product configuration through selection of features to be included in a
customer specific product instance. The visual modeling notations proposed to support this phase are
adapted either from UML [68] or the feature modeling notation of [4] as in [69, 70]. An important
functionality for any tool for this purpose is the ability to check the validity of the chosen configuration
against the rules and features of the SPL level feature model [71]. The Rhizome approach defines modeling
languages based on XML, but the user interaction is based on typing commands to a console [72].
Commercial tools to support this phase enable the user to configure the product instance based on textual
list and tree views [73, 74].

After the product instance has been configured, it is necessary to generate source code that is ready to be
compiled to a finished software product (the last phase in Fig. 1). The FeaturelDE eclipse plugin [69], apart
from feature modeling and product configuration, supports Java code generation. The operating principle
behind Rhizome is to disable or enable parts of code from templates to get the source code of the product
[72]. An approach for automatic code generation with the aspect oriented paradigm is presented in [75],
but it involves manual edits to the build file. In order to support targets used in industrial automation, the
resulting source code should be in a programming language such as the IEC 61131, which can be used by a
PLC integrated development platform.

2.5 Safety critical software product lines and mechatronic product line
engineering

The risk analysis methods presented in sections 2.1 and 2.2 are designed to be applied on a single system
design. The introduction of SPL as a system design paradigm that enables flexibility and cost effectiveness
requires a risk analysis method that can be adapted to support the product family design. For safety critical
systems, it is necessary for such a risk analysis method to address all the aspects of the mechatronic system
and not to be restricted only to software.

For safety critical applications, SPL remains an academic research problem without widespread industrial
adoption; this is a serious problem considering the sharp growth of software intensiveness in safety critical
domains such as transportation, manufacturing, aerospace and nuclear power. The majority of research has
a unidisciplinary focus on safety issues arising from the software itself, such as ensuring that software
features do not interact to bring the system to an unsafe state [76, 77] or exhaustive verification of product
instances for certain required properties [78)].The safety criticality of software is due to its controlling of
electronic and mechanical devices, which are able to cause harm. A fundamental discovery in the field of
mechatronics has been that no sophistication on the part of the software can overcome poor
electromechanical designs [79], and this has resulted in a recognized need for concurrent design of
software, electronic and mechanical aspects of a system [80]. A recent advance toward a mechatronic
direction has been the integration of AADL (Architecture Analysis and Design Language) to fault tree
analysis (FTA) [81], but this is still limited to the software and execution hardware. The need for verification
of software requirements against system safety requirements is recognized and addressed by applying

14

safety analysis methods such as Software Fault Tree Analysis (SFTA) and Software Failure Mode, Effects and
Criticality Analysis (SFMECA) on the SPL [82, 83], but this avoids the more fundamental question of how to
perform risk analysis of the product line at the system level in order to decide what functionality is
implemented in software, what are the potentially hazardous interactions between this software and the
rest of the system, and how this knowledge is used to define constraints on valid combinations of features
in the SPL.

2.6 Software Product Lines for industrial control software applications

Based on this literature review of the state-of-the-art in SPL, which heavily exploits object oriented
technologies, it is possible to investigate the application of SPL to object oriented function block based
machine control software [84]. Model driven SPL approaches for object-oriented targets are emerging [69],
but fundamental changes would be required in order to support PLC targets. In the industrial software
domain, an approach towards industrial product line software development based on the IEC 61499
programming standard is presented in [85], although actual generation of executable IEC 61499
applications is left for further work. However, IEC 61499 follows only partially the object oriented paradigm
and has not gained widespread industrial acceptance [86]. The IEC 61131-3 programming standard has
been widely accepted in industry [56] and recently supports object-orientation [6], but the SPL approach in
this context has not yet been researched and no SPL tools to support IEC 61131-3 application generation
are available. While both standards could feasibly support SPL for industrial control, IEC 61131-3 is chosen
for the above mentioned reasons. The goal of this research is to support SPL of machine control software
with IEC 61131-3.

Many years before the introduction of object-oriented extensions to IEC 61131-3, researchers started to
investigate the benefits of object orientation in the context of industrial control software. A UML model of
the software is used to support formal design and verification techniques in [87]. An object oriented tool
for programming control applications generating IEC 61131 code (without the object oriented extensions) is
presented in [88]. Several researchers have proposed guidelines for implementing object oriented designs
with one of the IEC 61131-3 languages [89] [90] [91].

Object oriented extensions of IEC 61131-3 are presented in [6] and the mapping of UML class diagrams to
the extended function blocks is described in [92], which illustrates some of the benefits of the new
modeling constructs. In this research, the inheritance mechanism is exploited to obtain a mapping from
feature models to IEC 61131-3 applications. The vendor independent PLCopen XML standard for
exchanging IEC 61131-3 applications supports open toolchains in several recent initiatives based on the
AutomationML [93]; in this paper, PLCopen XML is used to store the SPL and product instance level models
as well as the source code. Since the language is based on a schema, it has the same expressive power as
UML metamodels, and is thus a possible technology for supporting the chain illustrated in fig. 1.

The PLCopen XML schema does not yet cover object-oriented constructs, but a part of the schema (the
<addData> element) enables extensions, which the CoDeSys tool has exploited to describe the new object-
oriented features of IEC 61131-3. In our research the <addData> element [55] is used to support feature
modeling constructs. This is also a proposal for standardization to the PLCopen community, which will
become topical if other feature modeling approaches are proposed.

15

3 Objectives

Risk analysis methods typically expect a single design as source information, and do not support analysis of
alternative designs or optional features. It is here posited that in order to provide starting information for
simulation-based risk assessment of a mechatronic product line, feature modeling is used to describe a
mechatronic product line; this model is subjected to risk analysis, so that unsafe feature combinations are
eliminated. The resulting feature model can then be handed to software developers, and the software
design and implementation, even in the face of evolution and maintenance pressures, can be addressed
with the existing body of research in SPL as long as targets used in industrial automation are supported.

In Fig. 2 the methodology for system design and risk assessment for safety critical control software product
lines is drawn in steps. The first step is the design of the functional model of the system, which captures the
desired functionality without making assumptions on how it is implemented. Then different system design
alternatives are specified as a feature model (step 2). Simulation-based risk assessment is applied
systematically to every valid configuration of the feature model and unsafe design alternatives are
eliminated, resulting in a feature model describing the range of possible products that are considered safe
(step 3). In step 4, the features that do not involve software are removed from this model, after which it is
possible to apply existing SPL technology to develop it further. In this work, a tool able to configure
applications for PLC targets has been developed (step 5). This methodology is presented in this dissertation
using two safety critical case studies: a boiling water reactor’s recirculation pumps and a mobile elevating
work platform.

Step 1 - Functional model of the system

I—+

Step 2 - Feature model representing multiple

system design alternatives

—

Step 3 - Simulation-based risk analysis using the FFIP method
eliminates unsafe system configurations

—

Step 4 - Feature model representing the software alternative
and optional features

—

Step 5 - Configuration of software product instance
and generation of target specific code

Figure 2, Workflow overview for system design and risk assessment for safety critical control software product lines

The objectives for the methodology presented in this dissertation are:

1. The modeling approach should support filtering designs based on results of risk assessment

16

2. The behavioral simulation in previous work on FFIP does not support any kind of study of several positive
or negative feedback loops affecting the same process variable. The discrete qualitative enumeration for
flow values [zero, low, nominal, high] is insufficient to capture, even in a qualitative way, how several
feedback mechanisms reinforce or oppose each other. An objective of this work is to propose a continuous
range of values to qualitatively describe flow values, so that simulation models are able to capture how
several feedback mechanisms reinforce or oppose each other.

3. The modeling approach used in behavioral simulation should support comparative evaluation of the
safety of alternative designs or different parameter values for the same design. As the number of
alternatives increases, the scalability of the method should be evaluated.

4 Case studies

4.1 Mobile elevating work platform product family

The Mobile Elevating Work Platform (MEWP) product family is one of the two case studies of this
dissertation (see Fig. 3). It will be used in section 5.1 as an example for the introduction of the feature
modeling methodology and section 6.4 for demonstrating the integration of feature modeling and IEC
61131 PLC software.

Figure 3, Mobile Elevating Work Platform system concept [3]

The basic function of a MEWP is to safely move the person(s) on its platform to a certain height in order to
perform some work required there. The requirements for the product family of the MEWP state that all the
machines should support manual vertical movement. Optionally, automatic movement could be available
as an extra feature. The automatic movement, if present on a machine, requires additional user interface
controls: two quick height buttons. If a quick height button is pushed longer than a predefined time, the
current platform height is stored in the memory of the control application. If that button is pushed for less
than the predefined time, the platform moves automatically to the previously stored height. Two buttons
make it possible to store two different positions in memory.

17

A specific product in this product family may either have binary or proportional valves to control the
movement cylinder (see the partial hydraulics of the MEWP in Fig. 4). Correspondingly, the software will
include either a binary (on-off) or analog control algorithm. With binary control, the automatic mode drives
the platform at full speed to the stored position. With analog control, the automatic mode can support two
additional safer variations: “Slow auto” and “Smooth auto”, in which the platform moves at a reduced
speed or with restricted acceleration, respectively. There are two variations for the user input device: a
joystick is used with analog control and buttons are provided for binary control. In the software, there may
be a cylinder simulator for testing purposes.

Lifting/lowering

Gravity lowering valve

down_actuate

Ll

Figure 4, Mobile Elevating Work Platform partial hydraulics diagram [3]

4.2 Boiling Water Reactor

The second case study of this dissertation is a Boiling Water Reactor (BWR) in its early design phase. The
scope of the case study is the reactor core, the coolant circulation and the main steam outlets. The main
principle of operation of a BWR is the generation of thermal energy due to nuclear fission (see the BWR
concept P&I diagram in Fig 5). Within the reactor vessel are fuel rods that are packed as fuel assemblies,
which are arranged by reactor physicists to form the reactor core. The spaces between the fuel rods within
the fuel assemblies are called fuel channels. Under normal operation, the fuel assemblies are submerged
under water, which acts as both coolant and moderator. The circulation of coolant is upward through the
fuel channels and then downward along the sides of the reactor vessel.

18

In a boiling water reactor, the thermal power output is directly proportional to the flow rate through the
reactor coolant pumps. The presence of steam in the fuel channels has a negative impact on the number of
thermal neutrons that sustain the nuclear chain reaction. The increased circulation of water through the
fuel channels reduces the void fraction, which is defined as the proportion of steam in the coolant. This
lower void fraction leads to more effective moderation of neutrons and increased power production. Thus
in power control mode, the coolant pumps receive their setpoint from the power control subsystem. In
emergency situations, the pumps have the dual task of maintaining sufficient circulation to prevent steam
buildup at the core while at the same time reducing the thermal power output of the reactor. These two
tasks are accomplished by driving the rotations per minute of the pumps down by a ramp.

High pressure steam is produced in the reactor vessel, and the reactor pressure is controlled by the
pressure control subsystem by using a pressure control valve in the pipeline joining the reactor vessel and
the turbine. The pipeline also has a quick close valve that is closed immediately if for any reason the turbine
is not ready to accept steam. In such situations, the steam from the reactor is dumped directly into the
condenser through pipes that bypass the turbine; this pipeline contains a dumper valve that is controlled by
the turbine protection subsystem.

C N T 7
1 ! ctrl
T

{>V<} To turbine

Pressure control
valve (PCV)

Steam
Liquid To condenser

Dumper A

alve |

Coolant v |
circulation : :

I Neutron] 1~~~ 777] Turbine /|

Reactor By flux v prot. of P
core
Fuel rods

v Reactor,
i prot.
i
I
i

Recirculation

pump motor
and drives Q

[} Control
! \ rods

Coolant
flow

Pump
ctrl

i Emergency signal |

Figure 5, P&I concept diagram of a boiling water reactor, its steam outlets and related control and protection systems [51]

The energy production in the reactor core is affected by several feedback loops. An increased flow of
coolant through the fuel channels decreases the void fraction and thus increases the neutron flux and
thermal power output. The neutron flux is a measure of neutrons in the thermic range capable of causing
fission reactions [94]. An increase of pressure has a similar effect, as it compresses steam bubbles and thus
decreases the void fraction. Due to the Doppler effect [95], an increase in fuel rod temperature decreases
the neutron flux.

19

An emergency shutdown of the reactor can be initiated by the reactor protection system. This shutdown
process, which is referred to as SCRAM, can be triggered by a number of initiating events such as increased
neutron flux in the reactor core, low coolant flow rate and loss of external power (from the national grid).
In case of a SCRAM, the coolant pumps must go into a safe mode of operation and ramp down the coolant
flow in order to reduce the power output of the plant while maintaining minimum coolant circulation
needed to reduce the void fraction. The control rods are also inserted into the core to shut down the
nuclear reaction, but without the timely action of the coolant pumps, fuel rod damage may occur before
the control rods are in place. In order to ensure the operation of the coolant pumps in the case of voltage
sags or transients in the power rail supplying these pumps, local emergency power supplies are available.

A known potential hazard that a BWR design must be able to handle is related to the control of the
pressure in the reactor vessel. If the pressure control subsystem that controls the pressure control valve
closes the steam path to the turbine, then the turbine protection system is notified and opens the dumper
valve that releases steam to the condenser. A hazard emerges if the pressure control subsystem closes the
pressure control valve due to a software malfunction. In that case the turbine protection system is not
notified, the dumper valve does not open and a pressure shockwave propagates from the pressure control
valve back to the reactor vessel, resulting in compression of steam bubbles, decreased void fraction and
increased neutron flux over the SCRAM threshold. The coolant pumps play a key role into maintaining this
process under control.

Design alternatives at this early concept phase of this case study can be assessed (see section 6.2 and 6.3)
for their behaviour against the afore-mentioned hazard. In Fig 6 two alternative designs are presented to
the basic concept of Fig 5. The most basic configuration is that the turbine protection system does not
receive a pressure measurement, so that it is up to the reactor protection system to identify overpressure
and trigger a SCRAM. One alternative is to connect the measurement from the pressure sensor inside the
reactor vessel directly to the turbine protection system. Another alternative for slightly earlier detection is
to introduce an additional pressure sensor into the pipeline before the pressure control valve, and to
connect it to the turbine protection system. The purpose of providing this measurement to the turbine
protection system, in the context of pressure shockwave hazard scenario presented earlier, is to identify an
emerging pressure shockwave and to open the dumper valve to relieve the pressure.

/\ ____________ >
/‘\ /-\ ressur
Pressure . Ct.ﬁ

{>¢<} To turbing

Pressure control
valve (PCV)

Steam
Liquid

To condenser

Coolant
circulation

! Turbine Notification

v prot./ | of PCV closure
! Reactor,
! prot.
! i
: |
Recirculation - i
pump motor |
and drives !
Control i
! rods !
i
I
Pump !
ctrl 1
) i
!

Figure 6, Boiling Water Reactor concept design after the introduction of optional pressure sensor information (in bold),
either before the pressure control valve or in the reactor vessel [45].

21

5 Methods

5.1 Feature modeling

Feature models provide the necessary modeling notation, graphically [69] or textually [61], to present in a
tree hierarchy the alternative and optional features. In this dissertation, feature modeling is used both in
systems engineering and later in software development. A feature is defined as a "property of a domain
concept, which is relevant to some domain stakeholder and is used to discriminate between concept
instances" [4]. Thus, features can be used to express design alternatives submitted to risk assessment as
well as requirements to a software product line. Feature models can represent graphically or by text the
constraints on the compatibility between features. The information that a feature model contains enables
the specification of valid software product configurations.

A software product should provide some functionality that satisfies requirements common among all the
members of the product family (these software features are called in feature modeling terms “mandatory”)
and possibly some additional functionality that is not shared by all members of the product family (these
features are called “optional”). A feature can have several alternatives. A feature can contain one or more
sub-features, which can be related to each other with an “and” relationship (all mandatory sub-features
should be present) or an “or” relationship (one or more of the sub-features needs to be selected).
Constraints can be set on the feature model; features can “exclude” or “require” each other [4].

The feature model needs to be configured in order to define a product instance. A valid configuration must
contain all the mandatory features. Optional features may or may not be selected. If a selected feature has
alternative implementations, at least one of the alternatives needs to be selected. A valid configuration
should also satisfy the compatibility constraints among the features.

An introduction to feature modeling will be presented in this section using as an example a Mobile
Elevating Work Platforms (MEWPs) (see section 4.1 where this case study is presented) SPL. The
requirements for the MEWP product family lead to the design of the feature model presented in Fig 7. The
root of the tree is the MEWP itself with the mandatory sub-features “Input”, “Control”, “CylinderControl”
and the optional feature “CylinderSimulator”. The “VerticalUserCommand” feature has two alternative
variations, the “Joystick” and the “Buttons”. The “AutomaticControl” feature, an optional sub-feature of
the “Control”, has three alternative variations as described in the requirements.

To complete the feature model, the constraints are added. For example, the “AutomaticControl” feature
“Requires” the “QuickButtons” feature. As an example of the “Excludes” constraint, the “BinaryControl” (an
alternative variation of the “CylinderControl” feature) “Excludes” the “Joystick” feature.

22

o] ol

i

L
VerticalUserCs

-/’ 2
®
ManuaiControl | | a
e >
AutomaticControl = QuickButtons
BinaryControl = Buttons
BinaryControl = ~Joystick
AnalogSim = AnalogContral
Slowuto = AnalogControl
SmoothAuto = AnalogControl

ya

Legend:

& Mandatory
Optional

A Alternative

/. And

Figure 7, Feature model of the MEWP control software product family created using the FeatureIDE tool [55]

After the feature model for the software product family is defined, the user must select a set of features in
order to configure of a specific product. An algorithm that checks the user choices against the feature

model determines if the product is valid (see Fig. 8).

—
Start

User selects desired features <
|

Check the choices against the feature model
(Mandatory, Alternative and Or relations)

Y

‘ Check that no constraints are
‘ violated

v

Yes

v

Product instance is valid

Y

(End

Figure 8, An algorithm for checking whether a product instance is valid

Product instance is
invalid

No

23

5.2 Simulation based risk assessment

The Function Failure Identification and Propagation (FFIP) framework was developed to study the
propagation of failure in complex systems early in the design stage and to present the effects in terms of
functional losses [7, 31, 96, 97]. The simulation and reasoning approach in FFIP has its roots in qualitative
physics [98] and qualitative reasoning [99-101]. FFIP represents system behavior as a finite set of
component and flow status values, and performs reasoning based on qualitative relationships between
functional and behavioral models of system components.

The first step in building a FFIP framework is the development of a Functional Model of the system under
study. Functions are then mapped to the components in a Configuration Flow Graph, which captures the
design. The components contain behavior logic that includes failure mode behavior, so the Configuration
Flow Graph can be used to simulate the system-wide effects of component failures that are injected by the
user. A Function Failure Logic monitors simulation signals and determines the health of the system
functions in the Functional Model. Product line design alternatives can be specified as variants in the
Configuration Flow Graph, after which a specific variant may be assessed by simulating the system
response to a critical event scenario. Simulation runs that result in the loss of health of safety functions are
identified for elimination from the product line.

The remainder of this section introduces the FFIP methodology by the simplest example that is sufficient
for illustrating the different elements of the FFIP framework, so that the reader may understand how the
results in the later sections were obtained. The example is a simplified water cooling system for a
microprocessor (Fig. 9).

Radiator

! Input liquid Flow
(Hot)

Cooler
.

Leak Liquid Flow

b 4

Output Liquid Flow
(Cold)

Figure 9, Piping and Instrumentation Diagram of the example water cooling process

24

The cooler is used to transfer heat from the microprocessor to the water flowing through the cooler. Warm
water coming out from the cooler enters the radiator. The air flow generated by a fan attached to the
radiator reduces the temperature of the water that flows through. The purpose is to obtain cold water that
will flow back to the cooler. When the water in the radiator is at reference level, this circulation cools it
adequately. If the water level is less than the reference level due to a leak, the output liquid flow is
compromised and less flow of water is directed to the cooler. Additionally, if the water level in the radiator
is less than the reference level, the water is not cooled efficiently and the temperature of the output flow is
higher than normal. Also if there is less water in the system, then the water temperature will rise because
the total available heat capacity will decrease. The transfer of heat that is performed by the cooler requires
sufficient water flow and low water temperature.

If the water flow to the cooler is less than normal or the temperature of the water is higher than normal,
then the temperature of the component that is generating heat, the microprocessor, will rise. The system
detects this rise of temperature and acts when it reaches two alarm threshold values, tempA and tempB. If
the microprocessor’s temperature reaches tempA, the system starts the shutdown process which involves
storing the system’s state to non-volatile memory and notifying users and other networked systems of the
upcoming shutdown. After the shutdown process is complete, the system powers off. If the
microprocessor’s temperature reaches tempB, in order to prevent physical damage to the system, the
power is cut abruptly regardless of the progress of the shutdown process; this behavior can cause loss of
data and may leave the system in an inconsistent state. The FFIP method is used to assess different design
alternatives and determine which ones have an acceptable behavior in case of a critical failure scenario (a
leak in the radiator).

The desired functionality is expressed as a functional model, according to the standard functional basis
defined in [102](Fig. 10). The ultimate goal of failure propagation analyses with FFIP is to identify
degradation or loss of these functions. A component failure may not necessarily result in health
degradation of functions, and failure propagation may cause the loss of a function that is not necessarily
associated with failed components. For these reasons, component failures are not interesting in their own
right. FFIP simulates fault propagation in a component model and then reasons about the loss or
degradation of functions in the functional model.

Liguid flow (Water)

Decrement Supply Liquid Transfer Liquid Transmit
Thermal Energy == Material = s=—3 Material =3 Thermal Energy
(Radiator) (Radiator) (Pipes and Pump) (Cooler)

Figure 10, Functional model of the example water cooling process (see Fig. 9)

The functional model is not simulated, since simulation requires information about components, their
connections and internal behavior. This information is captured in a configuration flow graph (CFG), which
has been implemented in the Simulink tool (Fig. 11). The CFG and functional model have the same flows
between functions and components, following the taxonomy defined in [102]. This makes it possible for a
Function Failure Logic (FFL) to passively observe how abnormal flow levels propagate in the simulated CFG,
and to use this information to determine if a function defined in the functional model (Fig. 10) has been
degraded, lost recoverable or lost. The thresholds for these function health statuses are configured

25

separately for each function; this depends on the application and an example is given below in the
discussion related to Table 1. The FFL for the Supply liquid material (Radiator) function is shown in Fig. 12; it
compares the output flow of the radiator with the reference flow shown in Fig. 11. The FFL for the Transmit
Thermal Energy function is shown in Fig. 13; it evaluates the temperature of the cooler component shown
in Fig. 11.

<
I_Ig(‘
TD1 o
I_IM‘
L TD
InputLiquidFlow OutputLiquidFlow .
(global) o . o N
RefinputLiquidFlow RefLiquidFlow LeakLiquidFlow
Dagegéore —P»| InputLiquid Temperature OutputLiquid Temperature »
Radiator Scope
P InputLiquidFlow
OutputLiquidFlow -
(global) % -~ o
TestNumber TestNumber InputLiquidTemp
P (globa) T Ui OutputlLiquidTemperature —
Read ModelSetup RefinputLiquidFlow RefLiquidFlow
Data Store Cooler
Read2

Figure 11, Configuration flow graph of the example water cooling process (see Fig. 9)

FunctionlsHealthy
entry:SupplyLiquidMaterialRadiatorHealth=HealthEnum.healthy;

[OutputLiquidFlow<0.75*RefLiquidFlow] T[OutputLiquidFIow>0.75*RefLiquidFIow1

1
1
FunctionlsDegraded
entry:SupplyLiquidMaterialRadiatorHealth=HealthEnum.degraded;
2
[OutputLiquidFlow<0.5*RefLiquidFlow] [OutputLiquidFlow=0.5*RefLiquidFlow]

FunctionlsLostRecoverable
entry:SupplyLiquidMaterialRadiatorHealth=HealthEnum.lostRecoverable;

Figure 12, Function Failure Logic for the Supply liquid material (Radiator) function, which is related to the Radiator
component (see Fig. 11).

26

Healthy
entry: TransmitThermalEnergyHealth=HealthEnum.healthy;

[CoolerTemp=80] [CoolerTemp<60]

Degraded
entry: TransmitThermalEnergyHealth=HealthEnum.degraded;

1

CoolerT >99
[CoolerTemp=>99] [CoolerTemp<80]

LostRecoverable
entry: TransmitThermalEnergyHealth=HealthEnum.lostRecoverable;

Figure 13, Function Failure Logic for transmit thermal energy function related to the Cooler component (see Fig. 11).

The relationship between input and output flows of a component in a CFG is defined by a behavioral model
(BM). The BM for the radiator tank is shown in Fig. 14. Statecharts are used in behavioral modeling, and a
state is defined for each nominal and failed mode of the component. In this case there is one failed mode:
the radiator is leaking. Critical events may be injected to the simulation at any time, and these cause mode
changes (e.g. the leakFailure event triggers a transition to the LeakingMode state.) The behavioral model of
the cooler is shown in Fig 15.

/" RadiatorLiquidLevel

InitialiseWaterLevel
entry:TankLiquidLevel=6.0;
entry:OutputLiquidFlow=RefLiquidFlow;
entry:OutputSize=RefLiquidFlow/2.0;

\' after(5,sec)

NominalMode
during:QutputLiquidFlow=InputLiquidFlow;

} [leakFailure]

LeakingMode
during:QutputLiquidFlow=(QutputSize/3.0)*TankLiquidLevel;
during:LeakLiquidFlow=(leakSize/10)*TankLiquidLevel;

during: TankLiguidLevel=TankLiquidLevel-0.006*LeakLiquidFlow;

RadiatorTemperature %

TempCalculation
entry:TankTemperature=40.0; 3
during:TankTemperature=InputLiquid Temperature-0.02*((TankLiquidLevel+0.1)/6.0)*(Tank Temperature-40); | ;

Figure 14, Behavioural model of the Radiator component (see Fig. 11).

27

Init
entry: OutputLiquidFlow=RefLiquidFlow;
entry:CoolerTemperature=40;

Hafter(&sec)
Nominal

during: OutputLiquidFlow=InputLiquidFlow;
during:CoolerTemperature=InputLiquidTemperature+0.2+0.05*(24/InputLiquidFlow);

/[CoolerTemperatureﬂOO]

Shutdown
during: OutputLiquidFlow=InputLiquidFlow;
during:CoolerTemperature=InputLiquidTemperature;

Figure 15, Behavioural model of the Cooler component (see Fig. 11).

In earlier versions of the FFIP framework, flow levels were described with an enumeration [zero, low,
nominal, high] [7], but this approach is insufficient for our boiling water reactor case study, in which several
positive and negative feedback loops affect a single flow. Would two feedback loops simply cancel each
other out, if one of them increases a flow and the other decreases it? How can the effect of varying design
parameters be captured in the simulation? In order to describe feedback loops in early phase designs, flow
levels may be any value in the range [0..10] in this simulation. First order linear difference equations are
used to relate input and output flows to each other. Consider the state NominalMode in Fig. 14. Since the
behavioral model is executed by a fixed-step solver, the radiator level is a sequence, with one value for
each simulation step. The first line of code in the nominal state is a linear difference equation that relates
the current and previous elements in the sequence. The behavioral model is thus a system of first order
linear difference equations relating the input flows, output flow and component’s internal variables (such
as the radiator level). The coefficients may either be fixed numbers or parameters that may be changed
between successive simulation runs; an example of the latter is “leakSize” in the LeakingMode state.

Since during early phase design detailed component dimensions are not known and the range [0..10] is
used for flow levels, the results obviously depend on how the model is parameterized. One article in this
dissertation is focused on studying the effects of parameter changes in the behavioral models [103]. These
parameters may either be design parameters, timing of critical event scenarios or parameters of faults.
Changes in values of two parameters are studied in this example. The ReflnputLiquidFlow parameter in Fig.
11 is the reference liquid flow that should go through the radiator and the cooler in normal operation of
the process; it is a design parameter. In Fig. 14, within the LeakingMode state, the leakSize is a parameter
of a fault.

The methodology used is to define a number of values of interest for the parameters to be varied and to
systematically perform FFIP simulation to identify those combinations of parameter values that result in
degradation or loss of functions. The choice of values is done by an analyst who understands the
application domain. The flowchart in Fig. 16 illustrates the methodology in the case of two parameters, and
additional parameters can be handled by adding a nested loop for each new parameter. Fig. 17 displays the
graph that is obtained in the flowchart when parameter 1 is ReflnputLiquidFlow, S, (the set of values for

28

parameter p1) is [6.0, 12.0, 24.0], parameter 2 is leakSize and Sy, is [1.2, 2.4, 4]; each curve in the graph is
the trend for the radiator level in one simulation run. Some interesting simulation parameters can be
logged and presented in graphs. The liquid level of the radiator is shown in Fig. 17 and the temperature of
the cooler is show in Fig. 18. The output of Function Failure Logic for the simulation is shown in Table 1. The
Decrement Thermal Energy function is lost when the temperature of the radiator rises above a threshold.
The status is degraded, since partial cooling is still achieved. The Transmit Thermal Energy function, which is
associated with the cooler (thermal energy is transmitted from the hot process element to the cooler), is
first degraded as the first temperature alarm limit is exceeded; in this case the microprocessor is no longer
able to perform its normal tasks but it still may perform a controlled shutdown as explained previously.
When the second alarm limit is exceeded, the processor is powered off immediately to prevent hardware
damage, so the function status is lost. It is lost recoverably, since no hardware damage occurred and the
system may resume normal functioning after the radiator is fixed.

Concept phase
design alternatives
are identified

Select parameters to be studied and for each parameter, define S,

&
<

| Choose The next value from Sy,

[«

v

|Choose The next value from S,

’ Run simulation with current parameter values
/ Export results to Excel /

Is every
value in S, is used?

Symbols
Spn: Set of values
for parameter n

Is every
value in S is used?

Yes

End

Figure 16, A flowchart describing how every combination of parameter values is simulated systematically to determine
those combinations of parameter values that result in degradation or loss of functions

29

A\

55 W
N
s\

\\ \ ——RefFlow=6.0, Leaksize=1.2
e % — =RefFlow=6.0, LeakSize=2.4

E \ \ \ = RefFlow=6.0, LeakSize=4

= N\

T ¢ T % ——RefFlow=12.0, LeakSize=1.2

3

o \ — =RefFlow=12.0, LeakSize=2.4

el : A

] \ \ —— RefFlow=12.0, LeakSize=4

o

& 3 \ — RefFlow=24.0, LeakSize=1.2

B \ N

o« N\ — -RefFlow=24.0, LeakSize=2.4
25 \ N,

\\ ~ N \ = RefFlow=24.0, LeakSize=4
2 \ N
\ N \
15 i \\

1

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701 1801 1901 2001
Simulation time

Figure 17, The radiator liquid level result of performing the procedure in Fig. 16 when parameter 1 is
RefIlnputLiquidFlow and parameter 2 is leakSize. The level drop due to the leak flow does not depend on the reference flow
through the radiator. It only depends on the liquid level in the radiator and the size of the leak.

100
e RefFlow=6.0, LeakSize=1.2
90 = =RefFlow=6.0, LeakSize=2.4
G = RefFlow=6.0, LeakSize=4
] .
% 80 e RefFlow=12.0, LeakSize=1.2
'g = =RefFlow=12.0, LeakSize=2.4
E = RefFlow=12.0, LeakSize=4
= 70
§ —— RefFlow=24.0, LeakSize=1.2
o
= =RefFlow=24.0, LeakSize=2.4
0 = RefFlow=24.0, LeakSize=4
50

1101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701 1801 1901 2001
Simulation time

Figure 18, The cooler temperature result of performing the procedure in Fig. Flowchart_alt when parameter 1 is
RefInputLiquidFlow and parameter 2 is leakSize. The worst behaviour is for the combination of the smallest reference flow
and the most severe leak. The best three curves are the ones where the leak is the smallest.

30

Decrement Thermal

Supply Liquid Material (Radiator) Health Transmit Thermal Energy Health

Energy Health

RefFlow=6.0,

3 Degraded (t454), Lost Recoverable (t1017) Degraded (t332) Degraded (t769), Lost Recoverable (t1122)
LeakSize=0.6
RefFlow=6.0,

. Degraded (t254), Lost Recoverable (t536) Degraded (t223) Degraded (t446), Lost Recoverable (t630)
LeakSize=2.4
R:fFlI{L:v=6f, Degraded (t174), LostRecoverable (t343) Degraded(t179) Degraded (t315), Lost Recoverable (t431)

eakSize=

RefFlow=12.0,
LeakSize=0.6
RefFlow=12.0,

Degraded (t454), Lost Recoverable (t1017) Degraded(t662) Degraded (t1141), Lost Recoverable (t1525)

e Lieamnt Degraded (t254), Lost Recoverable (t536) Degraded (t390) Degraded (t640), Lost Recoverable (t843)
eakSize=2.
RefFlow=12.0,
LoakSize=4 Degraded (t174), LostRecoverable (t343) Degraded(t281) Degraded (t438), Lost Recoverable (t566)
eakSize=
RefF]ox‘v=24.0, Degraded (t454), LostRecoverable (t1017) Degraded(t938) Degraded (t1467), Lost Recoverable (t1892)
LeakSize=0.6
RefFlow=24.0,
) Degraded (t254), LostRecoverable (t536) Degraded (t534) Degraded (t813), Lost Recoverable (t1039)
LeakSize=2.4
RefFlow=24.0,
ie o“;ze_4 Degraded (t174), LostRecoverable (t343) Degraded(t372) Degraded (t548), Lost Recoverable (t693)

Table 1, The output of Function Failure Logic for the simulation in Fig. 17 and Fig. 18. In parenthesis is the simulation
time in which the function health changed status
The purpose of this simple example is not to demonstrate the FFIP as a simulation based risk assessment
method; the more complex boiling water reactor case study is used for this purpose. This purpose of this
section has been to describe how the results in later sections were obtained.

5.3 Choice of case studies

Since the objectives of the dissertation concern development of new methodology, case studies are used to
demonstrate the methodology. The recirculation pump subsystem has been chosen to illustrate the early
phases of the methodology (Fig. 2 steps 1-3), since this subsystem has many dependencies to physical
systems as well as other automation systems. These dependencies make it a mechatronic application that
is difficult to study using conventional risk analysis methods, so there is a need for simulation-based risk
assessment, as advocated in this dissertation.

The early phases of the development process result in a feature model describing all combinations of
design alternatives that passed the risk assessment. Thus, the source information of the later phases is such
a feature model, and the technology used from this point onward is not concerned with how this source
information is obtained. Therefore, it is considered acceptable to use another case from this point onward.
The mobile elevating working platform is used to demonstrate the process of supporting PLC targets with
SPL technology (Fig. 2 steps 4 and 5).

This mobile elevating work platform is representative of safety critical work machinery. The Boiling Water
Reactor (BWR) is representative of safety critical industrial processes, since beyond the fission reaction at
the core of the reactor vessel, the nuclear power plant has many similarities to conventional power plants.

Further research may evaluate the method with additional case studies and use a case study for the steps
1-5. At the minimum, the steps 1-3 and the steps 4-5 should all be carried out for the same case study. The
interface between step 3 and step 4 consists of passing a feature model that specifies the range of safe
product line variants. This is a well defined interface with a formal syntax and semantics, and the

31

methodology presented here makes no assumptions on tacit knowledge being passed between steps 3 and
4. For this reason, it is possible to evaluate steps 1-3 and steps 4-5 with different case studies.

32

6 Results

This section contains the results of the application of the methodology for system design and risk
assessment for safety critical control software product lines, presented in the objectives section of this
dissertation (section 3).

6.1 Failure propagation analysis with the boiling water reactor

The FFIP risk assessment method, introduced in section 5.2, is applied to the BWR case study, presented in
section 4.2. The BWR case study was selected as an example of the early design of a safety critical complex
system.

The first step of our proposed methodology (Fig. 2) is to identify the desired functionality and express the
processes inside the BWR as a set of functions. A functional model can be created by connecting these
functions with flows of Energy, Material or Signal (EMS). The functional basis [102] standard provides a list
of function and flow names that can be used in the functional model. The functional basis has been
carefully formulated to avoid assumptions on design and implementation decisions, which would imply
certain component choices. Several design alternatives will be presented in later sections to satisfy the
functional model of the BWR case study (see Fig. 5) presented in (Fig. 19).

Supply pressure energy

Status signal flow

,,,,,,,,,,,,,,, Separate gas and
(Steam content)

liquid material

Energy flow
(Pressure)

Energy flow
(Pressure)

Regulate and guide gas
material 1

—» Guide gas material

Energy flow f ! P Status signal flow L
. . (Neutron flux) f Al |
Convert Solid Material | Energy flow (Reactor pressure :
to Radioactive Ener (Thermal energy) Energy flow signal) Control signal flow
oactive Energy Condition (Pressure) 9nal) - alve control signal)
Transmit thermal radioactive energy v i
energy [Energy flow
(Thermal R .
egulate and guide Process status signals 2
energy) gas material 2 us sig
Material flow A
(Liquid material)
Material flow Control signal flow
Energy flow ; (Liquid material) (Valve control signal)
(Neutron flux) Status signal flow Status signal flow
(Neutro_n flux and (Status signal)
Liquid flow) Process status]
signals 3
Energy flow
Inhibit (Neutron flux)
radioactive energy 4 v

7'y
; Transport liquid
material

Energy flow
(Electrical energy)

Supply electrical
energy

Control signal flow
(Actuation signal) |
Control signal flow

(Emergency signal)
Process status signals 1 -

Figure 19, Functional model of the reactor core and steam outlets [51]

33

The second step of the methodology in Fig. 2 is to specify several alternatives for obtaining the required
functionality. This step is omitted in this subsection, which illustrates the application of FFIP to a single
design; the application to a family of designs is illustrated in section 6.3. The third step in Fig. 2 is to create
the Configuration Flow Graph (CFG) that contains components that can be simulated.

One function of the functional model can be related to one or more components and a component of the
CFG can be related to one or more functions. The CFG contains the components that implement the
functions of the functional model. The components are connected with the same EMS flows as in the
functional model. A CFG that implements the functional model of Fig. 19 is presented in Fig. 20, as an
overview, and is refined and extended in Fig. 21 as a Simulink model. The Simulink model in the Matlab
environment can be simulated and provides the results in sections 6.2 and 6.3. The CFG can have a
hierarchical structure. As an example, Fig 22 shows the contents of the Reactor component in Fig. 21. The
mapping between functions and components for this case study is presented in Table 2.

Turbine
777777777777777777777 i?a:"‘;sl————— Pressure
9 control
i
I
I
i
i
|
|
i
Dumper
> VahEe Control
signal
|
Reactor pressure signal i
pressure sign Pressure T '}
backflow Pressure |
i
—————Pressure Pressure—» Y Pressure—»
Steam Pressure
separator |4 Pressure YPipe Pressure Control P
backflow backflow Valve b;ii:ll:):l\eli
Thermal Pressure
energy backflow
Neutron flux
Y
and
Thermal ener
Fuel ol Flow —
rod ¢”Steam content | channel Liquid
(status) material
Neutrgn
Neutron Con'tjrol flux
flux ro
subsystem
Liquid
K‘ material
o Coolant Electrical Power
Actuation Neutron Flux pump energy (AC) | supply
signal And subsystem rail
! - Volumetric flow i
S N |
I
i
Reactor | | Emergency | !
protection signal

Figure 20, The Configuration Flow Graph model related to the functional model of the BWR in Fig. 19 [51]

34

—|PressureEnergyBackFlowIn1 PressureEnergyBackFlowQut——
—»|PressureEnergyln PressureEnergyOut1
PressureEnergyBackFlowIn2 PressureEnergyOut2 I
YPipe i
L : 5
otageFlow] Lp P ValveControlSignal PressureEnergy|
ressuresackrlowin PressureEnergyOut—1 —— PressureCor nalTargetP 5
—®*{RodsControlActuationSignal
Pressure Control Target
—» EmergencySignal NeutronFquOut—| L Pressure
At it olumetricFlow PressureEnergyln PressureEnergyOut|
Power Supply Reactor PressureEnergyBackFlowIn
AIﬁlngComrclSignalIaressureEnergyBackFlquut
— Pressure Control Valve
= RodsControlActuationSignalNeutronFluxin
Emer i icFl vinjs
Reactor Protection
Valve ControlSignal PressureContrc
P BackFlowin ’7 Turbine Protection System
AnalogControlSignallnp ‘J
Tests PressureEnergyQut PressureEnergyin
Power Control
PressureEnergyBackFlcwln<—|
Pr BackFlowOut AnalogC . A
Dumper Valve 5
Nominal Pressure Energy
Back Flow

Figure 21, The Configuration Flow Graph top level model in Simulink, related to the functional model of the BWR in Fig.

19, adapted from [103]

PressureBackFlowin

B SteamContentin NeutronFluxOut

NeutronFluxin

VolumetricFlowin 1 NermalEnergyOut

FuelRods

L A

ThermalEnergyln PressureEnergyOut {1)
PressureEnergyOut
PressureBackFlowln PressureBackFlowOut
SteamSeparator
NeutronFluxOut S on)
ActuationSignal 2)
RodsControl RodsControlActuationSignal
w2)
| NeutronFluxin NeutronFluxOut —— NeutronFluxQut
ThermalEnergyln ThermalEnergyOut
VolumetricFlowin SteamContentOut
PressureBackFlowln VolumetricFlowOut » 3)
FlowChannels VolumetricFlow
D]
EmergencySignal
VolumetricFlowin

EmergencySignal

VolumetricFlowOut ElectricalEnergy

SpeedSetPoint

ElectricalEnergy

CoolantPumps

F Y

L

5
SpeedSetPoint

Figure 22, The internal of the Reactor component of the Configuration Flow Graph in Fig. 21 [103]

35

Function Component
Supply pressure energy Reactor core
Convert Solid Material to Radioactive Energy Fuel rods
Transmit thermal energy Fuel rods
Condition radioactive energy Flow channels
Inhibit radioactive energy Control rods
Transport liquid material Coolant pumps
Process status signals 1 Reactor protection
Separate gas and liquid material Steam separator
Supply electrical energy Power supply rail
Guide gas material Y pipe
Regulate and guide gas material 1 Pressure control valve
Regulate and guide gas material 2 Dumper valve
Process status signals 2 Pressure control
Process status signals 3 Turbine protection

Table 2, Mappings between functions of the functional model in Fig. 19 and components of the Configuration Flow Graph
in Fig. 21 and Fig. 22 [51]
The components in the CFG contain behavioral code at different levels of detail, depending on the available
information in this early design phase. In Fig. 23 the different modes of operation of the coolant pumps
controller (see Fig. 22) are presented. The behavioral models of the components are expressed as
statecharts using the Stateflow language in Simulink.

The Stateflow chart for the coolant pumps controller (Fig. 23) contains three parallel processes. One
process controls the output voltage to the inverters that drive the pumps (OutVoltageControlState), one
process keeps track of the emergency power (emergPower) and the third process keeps track of the scram
state of the controller (ScramState). The state of the latter two are used to specify transition guards in the
former. During normal operation of the plant, the coolant pump controller receives its setpoint from the
Power control subsystem (see Fig. 21). As mentioned in section 4.2, the coolant pumps control the power
production of the plant as well as the cooling of the reactor core. When there is external power available
from the Power Supply subsystem, then the emergency power of the coolant pumps is charged. Emergency
procedures are initiated if voltage sags or transients occur in the external power supply or if a SCRAM signal
is received from the reactor protection subsystem. In such cases, the controller drives the pumps to ramp
down to minimum rotations per minute (RPM) or to zero RPM, if the pumps rely on the emergency power
supply. If the external power returns to the pumps while they are running at minimum RPM, and there is no
SCRAM signal recorded, the controller resumes normal operation. If external power is restored before the
pumps have stopped, the controller will maintain minimum RPM, if the SCRAM state is active, or resume
normal operation otherwise. If the pumps reach zero RPM, or if the emergency power is lost while it is
used, then the controller considers the pumps lost and their operation cannot be recovered without
operator action (state DeadStopUnrecoverable). If the controller receives the emergency signal and enters
the ScramState, it can return to the NoScram state if the emergency signal is not present anymore and the
operator acknowledges the SCRAM after a delay has expired.

7 emergPower

MATLAB Function
entry: Power=5.0;

Powerlnc

Charging
during: Powerlnc(),

/ [InVbltageFlow==4.9]
| /
3 [In\bltageFlow=<4 9] -
— ~ b
Using S
during: PowerDec();

—

"\ [CutOff==true]

Lost
L N

MATLAB Function
PowerDec

~—* [Power==0] /

J"Scraerare o 1 ={NoScram B
e

‘[Emergencysig::trueﬂ

! (Scram ’ 2 |
! [(EmergencvS\g::fa\se)&&i

B — OperatorAck==true)] 2

N\ l ScramAcknowledgeable

_ after(delay, sec) \ PR

36

/ " QutvoltageControlState T

entry: Out\bltageFlow=50;

[in(emergRower.Charging)&&
in(ScramState. NoScram}]

RampingToZero

during: Ouf\bltageDecToZero(),

in(Scram State.NoScram)]

\[‘m(emerr_grPg_wer.Chargmg)]

’//N\ve l "[\n(emergPower,USmg)”m(ScramState Scram)] \
T —
ﬁommal >4 “\.[RampingToMinRPM \

during: OutVbltageDecToMin();

I

[OutvbltageFlow==2]
[in(femergPower.Charging)&&

o

3 = MinRPM
during:Out\bltageFlow=2;
RN 2
Ry
2
MATLAB Function | -
Out\bltageDecToZero | MATLAB Function
| e Qut\bltageDecToMin
\ | [in(emergPower.Using)] /
e : /
[7 F
[infemergPowerLost)] | [Pumplnverterlost==true] Y,
=L Y -
DeadStopUnrecoverable -
‘entry: Out\Vbltage Flow=0; = [infemergPower Lost)] ;

S

Figure 23, Behavioural model of the CoolantPumps component in Fig. 22 [51]

The health of the functions in Fig 19 is determined by Function Failure Logic (FFL) that monitors the
simulation parameters and contains the logic that determines the health of a function. FFL may make
decisions either by comparing several flows or component state variables in the simulation or by using
thresholds for a single variable. The FFL for the health of the transmit thermal energy function (see Fig. 19),
which is related to the fuel rods in Fig. 22, is presented in Fig. 24. The FFL for the Transport liquid material
function, which is related to the coolant pumps in Fig. 22, is presented in Fig. 25.

The health of the transmit thermal energy function (Fig. 24) is determined only by the temperature of the
fuel rods inside the reactor component (see Fig. 22). The FFL related to the transport liquid material
function (Fig. 25) determines the health of that function by evaluating the input and output liquid flows and

the emergency signal.

37

Healthy state

entry: TransmitThermalEnergyHealth=HealthEnum.healthy;
A

[Temperature<5.5]

[Temperature>5.5]

Degraded state

during: TransmitThermalEnergyHealth=HealthEnum.degraded;

[Temperature>6] [Temperature<6]

Lost Recoverable state

during: TransmitThermalEnergyHealth=HealthEnum.lostRecoverable;

[Temperature>7]

~
Lost state

during: TransmitThermalEnergyHealth=HealthEnum.lost;
. -

Figure 24, Functional Failure Logic that determines the health of the transmit thermal energy function (Fig. 19) related to
the FuelRods component in Fig 22 [103]

ﬁanspoﬂLiquidMaterial_FFL £ \

Nominal
entry TransportLiquidMaterialHealth=HealthEnum_healthy;

? [VolumetricFlowln==VolumetricFlowOut&&(VolumetricFlowQut!=0})]

@nmmal [VolumetricFlowln!=VolumetricFlowOut] \

Ramping $

TherelsAnEmergencySignal
entry. TransportLiquidMaterialHealth=HealthEnum.healthy|

EmergencySignal==false] T[EmergencySignaI::true]

TherelsNoEmergencySignal
entry. TransporiLiquidMaterialHealth=HealthEnum.degraded,

[(VolumetricFlowin-VolumetricFlowOut)<=0 02 &&(VolumetricFlowOut!=0)]
[(Vo

lumetricFlowln-VolumetricFlowOut)=0.02||(VolumetricFlowOut==0)]
2
1

LostRecoverable
entry TransportLiquidMaterialHealth-HealthEnum lostRecoverable;

N .
\v after(10,sec)
Lost

k entry. TransporiLiguidMaterialHealth=HealthEnum.lost;

S

/

Figure 25, Functional Failure Logic that determines the health of the transport thermal energy function (Fig. 19) related
to the CoolantPumps component in Fig 22 [51]

38

6.2 Analyzing critical event scenarios

6.2.1 Study of the basic critical event scenario

The effect of injecting two concurrent, independent failures was analyzed with the FFIP framework [51]. At
simulation time t40 the coolant pumps loose the external power supply and the pressure control
subsystem suffers a software malfunction and closes the pressure control valve without notifying the
turbine protection system (see the CFG model of the case study in Fig. 20). This critical event scenario leads
to the pressure control hazard described in section 4.2.

The output in Fig. 26 is generated by monitoring the most important flows from the reactor core CFG
model, ready to be simulated as a Simulink model, presented in Fig. 22. Additionally the temperature of the
fuel rods (“FuelRodsTemp” signal) was monitored from within the “FuelRods” component of the reactor
core CFG Simulink model. The graph in Fig. 26 shows how the levels of flows change within the qualitative
range [0...10] [103] during the concurrent failure of coolant power supply and pressure control system. The
behavioral models are parameterized so that when all components are running at nominal mode, all flows
have the nominal value of 5; this is why all curves in Fig. 26 diverge at the time when component failures
are injected.

10
9 are
8 e %
s : ==ThermalEnergy
9!7 i
o K = =SteamContent
T 6 £ i
o . i === FuelRodsTemp
;5 /:_-,\’“"-.,
9 : 7 ~ .
o o~ P N — e — . +++++NeutronFlux
—_—
= 1 ~ 7 H N —_— s —
4 | : "
" ;7 -~ .
E= | : = - VolumetricFow
] 7/ . \
3 3 i 7 -
o i "~ hY
- : R
2 - = Al
: SN
L : TR
H s
: NS
1 51 101 151 201 251 301 351 401 451 501 551 601 651 701

Simulation time
Figure 26, Behaviour at reactor core; both failures occur at t=40, coolant pumps can use their emergency power [51].

At t=40, a loss of power supply to coolant pumps occurs in conjunction with a software malfunction in the
“Pressure control” component, which drives the pressure control valve shut. Since it is a software
malfunction, the turbine protection system is not notified. The pressure transient resulting from sudden
valve closure is propagated upstream to the YPipe (by the pressure backflow arrows in Fig. 21). Since the
turbine protection system was not notified, it does not open the dumper valve, so the pressure shockwave
is propagated to the reactor and causes a sharp drop in the steam content (see the “SteamContent” flow in
Fig. 26). This improves moderation and causes neutron flux (see the “Neutronflux” flow) to exceed scram

39

threshold (6), which triggers the ramp of reactor coolant pumps (see the “VolumetricFlow” flow). Since the
power rail was lost due to an injected failure, the pumps use their emergency power supply.

The SCRAM causes control rods to be inserted, and these bring the neutron flux down after a delay. In the
meanwhile, although there is an increased thermal energy flow from the fuel rods (see the
“ThermalEnergy” flow), the combined effect of the coolant flow ramp (see the “VolumetricFlow” flow) and
the Doppler effect keep the transmit thermal energy function healthy (fuel rods temperature > 5.5 is
interpreted by the FFL reasoner as degraded (Fig. 24), see the “FuelRodsTemp” signal in Fig. 26).

6.2.2 Loss of emergency power supply to coolant pumps added to failure scenario

The following failure is added to the scenario presented in section 6.2.1. At simulation time t5, the coolant
pumps’ emergency power supply is lost (internal state change in pump subsystem — no effect on the flow
levels). The flow levels at the reactor core CFG Simulink model (Fig. 22) are shown in Fig. 27.

10

=—=ThermalEnergy

Q7
- O
= R = =5teamContent
o6 e v —
2) - ot —
K - ~ i —., === FuelRodsTemp
2 S L. . —
85 N .
2 . - NeutronFlux
= 1
g4 ' T
k=] /\ H =« VolumetricFlow
@ H
gV T N———
4 N
2 | L W
: A
0 :
1 ! A)
Y
I .
L L B o B B e e e e e e
1 51 101 151 201 251 301 351 401 451 501 551 601 651 701

Simulation time

Figure 27, Behaviour at reactor core when power supply and pressure control malfunction occur at t=40. Volumetric flow
drops sharply to zero since emergency power is not available due to injected failure [S1].

An effect of this injected failure is that the coolant flow (see the “VolumetricFlow” flow in Fig. 22) stops
immediately after the loss of the power to the pumps. The SCRAM is triggered by the coolant flow dropping
under 3.0, which in this case occurs before the neutron flux scram threshold is exceeded (see the
“Neutronflux” flow).

The loss of coolant flow causes steam buildup around the fuel rods (see the “SteamContent” flow), so the
thermal energy transfer from rods to coolant is slower (see the “ThermalEnergy” flow). The fuel rod
temperature exceeds the level 5.5 (transmit thermal energy function’s health becomes degraded) and later

40

the level 6.0 (transmit thermal energy function’s health becomes lostRecoverable), see the
“FuelRodsTemp” signal.

The transmit thermal energy function’s health recovers to normal as the fuel rod’s temperature drops after
the control rods reduce the neutron flux (see the “Neutronflux” flow and “FuelRodsTemp” signal). The
implication of the recovery for risk estimation is that the hazard can be given a reduced preliminary severity
ranking, which naturally must be confirmed by probabilistic methods after detailed design information is
available.

6.2.3 Propagation paths of function failures

Fig . 27 does not yet show the propagation of functional failures, but the FFL reasoner observing these flow
levels gives the following output regarding functional health changes. At simulation time t5, the failure
related to the loss of the emergency power supply of the coolant pumps is injected; this does not affect the
health of the transport liquid material function as long as the supply electrical energy function is healthy. At
simulation time t40, the failures of the power rail (which affects the health of the supply electrical energy
function) and the software failure of the pressure control component (which affects the health of the
process status signals function) are injected. Soon after, the transport liquid material function’s health
changes to lostRecoverable, since it has no main or emergency power supply. Also, the regulate and guide
gas material function’s health falls to degraded and then to lostRecoverable because of the pressure
transient that it is produced by the sudden closure of the pressure control valve. The combined effects of
the pressure transient and the loss of the transport liquid material function affect the health of the
condition radioactive energy function which falls to degraded and then lostRecoverable health status. This
condition affects the health of the transmit thermal energy function, which drops to degraded at time 152
and then to lostRecoverable at time 204. This information has been added to the functional model in Fig.
28.

These results do not give real-time information, but identify possible system wide effects of component
failures. This identification must be done by human judgment when using established methods such as
FMECA.

41

Time 152 - Degraded

Time 204 - Lost recoverable _ Time 042 - Degraded
. Time 043 - Lost recoverable
Supply pressure energy
Time 046 - Degraded
Time 047 - Lost recoverable
Status signal flow Separate gas and | Energy flow ; .| Energyflow _| Regulate and guide gas
(Steam content) liquid material (Pressure) ~>| Guide gas material F (Pressure) material 1
Energy flow T s . A
- Status signal flow ==« --=m-fremmmmmremenncs oo
Solid Material | Neutron flux) | Energyflow (Reaclor pressure Enorgy flow Sl At
to Ralloactive Energy (Thermal energy) signal) (Valve control signal)
Condition < (Pressure) H i
Transmit thermal radioactive energy . L —_—
neray —Energy flow— Time 040 L}ost (injected)
(Z::rrme;l T Regulate and guide :
) | | J ¢ gas material 2
| Process status signals 2
Material flow A
(Liquid material) |
Material flow Control signal flow
Energy flow (Liquid material) (Valve coqlrol signal)
(Neutron flux) Status signal flow ! — i
(Neutron flux and Status signal flow
Liquid flow) Process status | _(Status signal)
signals 3
Energy flow
Inhibit (Neutron flux)
i % - il - ini
radioactive energy - v Time 040 — Lost recoverable (injected)
A &
Transport liquid le Energy flow Supply electrical /
material (Electrical energy) energy |
\
Control signal flow \
(Actuation signal) | v

Control signal flow
(Emergency signal)
Process status signals 1 +--------------—

Time 005 — Emergency power supply lost (injected)
Time 045 - Lost recoverable

Figure 28, Propagation of functional failures displayed on the functional model of the BWR (Fig. 19), displaying the
results of the Functional Failure Logic reasoners, adapted from [51]

6.2.4 Multiple simulation runs with different scenario parameter values

In sections 6.2.2 — 6.2.3, one scenario was presented with specific timing of injected events and model
parameters. It is possible to run a series of simulation runs having different sequence and spacing of events.
The behavioral model’s input and output flow relationships are parameterized according to expert
judgment, so it is possible to perform several FFIP runs to cover a range of values for a parameter. The
value of doing these multiple simulation runs at the concept phase is that safety constraints of certain
parameters of the mechatronic design are discovered much earlier, making it possible to integrate safety
considerations to the task of finding the optimal mechatronic design by integration of technical design
subdisciplines.

To demonstrate this aspect of the framework, the time between the injected failure of the power rail and
the injected software malfunction of the pressure control was treated as a simulation parameter. A Matlab
script was used to run the simulation 8 times with the relative time between failures, measured in
simulation steps, taking the values from -30 to 40 with a step of 10 (negative values mean that the pressure
control malfunction happens before the loss of the power rail), as shown in Fig. 29.

42

6.2
6
5 —
3 5.8 Timelnterval=-30
g — - - Timelnterval=-20
_E - — —Timelnterval=-10
% =+ = Timelnterval=0
>
o - — —Timelnterval=10
i
T:u' ----- Timelnterval=20
- N N A Timelnterval=30
——Timelnterval=40
5
4.8

1 531 101 151 201 251 301 351 401 451 501 551 601 651 701

Simulation time

Figure 29, Fuel rods temperature in 8 simulation runs with different sequencing of injected failures. Timelnterval =
TPressureControlMalfunction — TpowerRailFailure [51]
In three of the runs the temperature exceeds the value of 6.0 which the FFL interprets as the limit for the
transition of the Transmit thermal energy function’s health from degraded to lostRecoverable. There is a
trend for the temperature to have a lower peak value when the power rail lost failure is injected later than
the pressure control software failure, and this is due to the pumps being able to ramp down partially before
losing power. While absolute numerical values are not meaningful, the observed trend can be taken into
account by designers. If it is possible to identify a common-cause failure behind these two injected failures,
the design should prevent their simultaneous occurrence. For example, an electric spike could cause loss of
the power rail and hardware damage to the pressure controller, resulting in the control output being stuck
low. Designers can guard against this by designing the emergency power in a way that cannot be affected
by the spike; if this is not possible, reactor shutdown might need to be initiated if emergency power is lost.
The value of FFIP over established risk assessment methods is that mechatronic system engineers are
aware of such design constraints before beginning detailed design.

6.2.5 Multiple simulation runs with different component parameter values

Apart from assessing the system design for different critical event scenarios (in section 6.2.4), it is equally
important to be able to run the FFIP method for different design parameters. Trends that emerge in the
system’s behaviour that are linked to a specific design parameter can be identified and help the designer
improve the system’s design. In this section different values for a component parameter, related to the
Heat Transfer Coefficient (HTC) between the fuel rods and the coolant, were used to run a number of
simulations for the critical event scenario presented in Table 3, which is similar to the scenario presented in
section 6.2.2 [103].

43

Time Scenario events

1043 Emergency power supply of coolant pumps is lost

Software failure injected in pressure control valve. It starts oscillating

077
between nominal and half closed

1078 The external power supply is lost

Table 3, Critical event scenario used in the simulations in Fig. 31 [103]

With the value of 5 as our baseline for the HTC, the simulation started with the value of 2 (smaller HTC than
the baseline) and with increments of 1 it continued until the value of 8 (bigger HTC than the baseline). The
comparison of the fuel rod temperature results reveals a trend of the improved fuel rod cooling in
emergency situations as the HTC is increased, as shown in Fig. 31.

Fuel rods temperature responce for different HTCs

Figure 31, Fuel rod temperature results when different values for the Heat Transfer Coefficient (HTC) design parameter
are used. Temperature values above 5.5 are considered not healthy by the Functional Failure Logic (Fig. 24) related to the
transmit thermal energy function (Fig. 19) [103]

6.2.6 Multiple simulation runs with combinations of simulation parameter values

Previously, the effect of varying a single parameter has been studied. In section 6.2.4, the timing
parameters of the critical event scenario were changed, and the effect on occurrence of functional failures
was explored (Fig. 29). In section 6.2.5, a single component parameter was used as a variable in order to
establish the effect of that parameter to the system behavior (Fig. 31). In this section, a methodology for
systematically studying several parameters is presented.

This section presents an algorithm for studying combinations of parameter values based on the following
inputs: a list of parameter names, their initial and final values and the value increment steps. The flow chart
of that algorithm is presented in Fig. 32. This algorithm refines the one presented in Fig. 16 and it is closer
to the implementation in a programming language. Recursion is used as a programming technique because
the algorithm does not need to know the length of the parameter list and to improve readability and
compactness of code [104, 105]. A tool was developed to read this input and to produce a Matlab script
that can run the simulation for all possible combinations and to export the results to a spreadsheet.

44

Start

v

Create parameter list with parameter names, initial values,
increments and end values (according to user’s choices)

}

Call CreateLoop function with the parameter
list and entryNumber=1 as arguments

Create the set of parameter values for
h» the parameter in the entryNumber
i) Yes entry of the parameter list

For every value in the set
v

Start —l

| Assign the parameter value to

CreateLoop function

Start

Is the entry entryNumber J
in the parameter list?

N*O the parameter in the Matlab
Write commands for Matlab to run SsL
the simulation, log simulation results v
to matrix Call CreateLoop function with the
parameter list and _—
l entryNumber+1 as arguments
Return from CreateLoop &

Return from CreateLoop

Write commands for Matlab to export matrix with
the results to spreadsheet

!

End

Figure 32, Algorithm for generating the parameter combinations for executing FFIP simulation runs, a refinement of the
algorithm in Fig. 16.
In the initial critical event scenario (see Table 3), the emergency power for the coolant pumps was cut off
before the pressure shockwave occurred. To demonstrate the algorithm in Fig. 32, three different values
are selected for the HTC parameter (see section 6.2.5), the slope of the ramp for driving the coolant pumps
to minimum rotations per minute (RampSlope) and the time delay between the unintentional pressure
control valve malfunction and power rail failure (RailFailDelay). The HTC will be given values of [1, 3, 5] in
separate simulations, the RailFailDelay will be one of the [0, 40, 80] simulation time periods and the
RampSlope is one of: [-0.01, -0.015, -0.02]. The medium value is the designer’s best estimation of a realistic
design parameter, while the low and high limits are given the most extreme values that are estimated to be
feasible. This will result in 27 fuel rod temperature curves, one for each combination of parameter values.
The selected function of interest is thermal energy transfer from fuel rods, so the Excel output for each
simulation run includes the lowest functional health status of this function during the simulation. The
curves for fuel rod temperature can be grouped by the health status of the transmit thermal energy
function. Temperature values above 5.5 lead to degraded health of the transmit thermal energy function
(see the FFL logic in Fig. 24). The results of the simulation runs, during which the transmit thermal energy
function’s health was healthy throughout the simulation, are presented in Fig. 33.

45

5.4
5.2
5 ErOES
—HTC=5.0, RailFailDelay=140.0,
- RampSlope=-0.0050
’ —HT(C=5.0, RailFailDelay=140.0,
46 RampSlope=-0.01

——HT(C=5.0, RailFailDelay=140.0,
4.4 RampSlope=-0.015

\\\\\ —HTC=8.0, RailFailDelay=70.0,
4.2 ';‘ RampSlope=[-0.01, -0.005, -0.015]
\‘\\\\ HTC=8.0, RailFailDelay=140.0,
4 \ RampSlope=-0.0050
\\\\ ——HTC=8.0, RailFailDelay=140.0,
38 RampSlope=-0.01
16 A\ — HTC=8.0, RailFailDelay=140.0,
’ \ _ RampSlope=-0.015
3.4 \ \
32 .

1. 5% 101 151 201 251 301 351 401 451 501 551 601

Figure 33, Temperature of fuel rods in simulations resulting in healthy FFL verdicts. The three curves for HTC=8 and
RailFailDelay=70 (for the three values of the RampSlope parameter) were overlapping and visually indistinguishable on the
graph, so the parameter value combinations corresponding to them are shown in square brackets in the legend.

All the simulation runs in which the time delay between the pressure control valve malfunction and power
rail failure is zero (RailFailDelay=0) resulted in unhealthy verdicts for the transmit thermal energy function.
No emergency power is available for the coolant pumps and the external power rail is lost, so the coolant
pumps cannot follow the ramp to minimum Rotations Per Minute (RPM). In this case, the ramp slope
parameter is not relevant, and there is no HTC parameter value with which the fuel rod’s temperature stays
within the healthy limit.

The results in Fig. 33 provide the following constraints to the designer. If the time delay between the valve
malfunction and power rail failure is 70 (RailFailDelay=70), then only the combinations that include the
maximum HTC (HTC=8) lead to fuel rod temperatures that are safe regardless of the ramp slope. If the time
delay between the valve malfunction and power rail failure is 140 (RailFailDelay=140), all combinations of
parameter values result to a healthy transmit thermal energy function, with the HTC parameter being more
influential than the slope of the ramp.

6.3 Evaluating the safety of design alternatives by failure propagation analyses
Section 6.2 presented the simulation results for combinations of values for component parameters and
critical event timing parameters. That approach is restricted to configuration alternatives that can be
expressed by varying values of parameters, so it cannot cover more fundamental design differences such as
different types of control algorithms or the existence of sensors or connections [45, 106].

In this section the FFIP risk assessment method is applied to a set of design alternatives of the BWR case
(see section 4.2). By following the flow chart of Fig. 2, the next step after the creation of the functional
model of the system under study (this step has been presented in section 6.1) is the development of the

46

feature model (see section 5.1 for more information about creating a feature model) that contains the
features that define the design alternatives (Fig. 2, step 3).

For the BWR case study the option of providing pressure information to the turbine protection system is
added, as it is described in section 4.2 (see Fig 6). Additionally different variations for the algorithm for
dropping the coolant pumps’ RPM to a minimal level in case of emergency are introduced as design
alternatives. Apart from ramping to minimum RPM, the alternatives introduced are stepping to minimum
RPM and reaching minimum RPM using a decay function for the pump motors. The feature model is
presented in Fig. 34. The coolant pump control and the turbine protection subsystems are mandatory
features for all possible configurations. While the dropping to minimum RPM is a mandatory feature, there
are three alternative algorithms to perform that action, the choices are a step, a ramp or a decay function.
The connection to a pressure sensor is optional and there are two alternative designs, the pressure
information can be read from the sensor in the reactor vessel or a sensor can be added at the pipeline
before the pressure control valve (see Fig. 6). At this phase there are no constraints in the feature model.

All the possible alternative designs of the BWR case study are evaluated using the FFIP method against the
critical event scenario presented in section 6.2.1 The results of the simulation determine the acceptable
configurations and the feature model is updated so that it represents only these configurations. After this
step the feature model can continue to the latter phases of the design. The workflow for this methodology
is presented in Fig. 35.

AutomaticContral Legend:
g Mandatory
o Optional
CoolantPumpControl | | TurbineProtection A Alternative
Abstract
Concrete
DropToMIinRPM PressureSensor

PN A\

Step | | Ramp | | Decay Pipe | | Tank

Figure 34, Feature model describing the design alternatives of the Boiling Water Reactor case [106]

47

C Concept phase design alternatives identified)

Legend
i A step in the
process
Create feature model and parameterize The CFG model

,

Configure feature model and export configuration file.

A step that
outputs a

file

Run configured FFIP simulation

v

/ Export results to Excel //

All configurations tested?

Yes \ 4

A 4 Generate graph from Excel
Identify acceptable configurations

Geliable concept phase alternatives delivered to detailed desigD

Figure 35, Flowchart describing the identification of acceptable design alternatives, adapted from [106]

The CFG model includes the different behavior models that support the alternative features of the feature
model. The data flow during the simulation is controlled by configuration signals. The coolant pump
behavior models that correspond to the alternative algorithms for dropping to minimum RPM are

presented in Fig. 36. The boolean signals RampConf, StepConf and DecayConf determine which behavior is
going to be included in the simulation.

3
ElectricalEnergy

- InVoltageFlow

EmergencySignal

EmergencySignalFlow

™| SpeedSetPointFlo

OutVoltageFlow

48

InVoltageFlow

%mmmuﬂnwom

VolumetricFlowln

{1

Volumetric FlowOut

VolumetricFlowOut

=D,
SpeedsetPoint
— OperatorScramAck Pump
delayConf
Pump Control Ramp
1
VolumetricFlowin
D,
OperatorScramAck I P
U
- EmergencySignalFlow B2
g [}
J N 4 y—
1 peedSetPointFl; QutVoltageFlow confl fcn
DelayConf
_— conf2
Data Store
t— OperatorSq ACk
ead peratorScramAc! —wlconfa

InVoltageFlow

EmergencySignalFlow

L OperatorScramAck

i delayConf

Pump Control

QutVoltageFlow

Pump Control Step

Decay

RampConf

Data Store
Read2

stepConf

Data Store
Read1

DecayConf

Data Store
Read3

Configuration Selector

VolumetricFlowin

TransportLiquidMaterial_FFL

Figure 36, The internals of the CoolantPumps component of Fig. 22. Alternative behavioural models have been added to
support the different emergency behaviour algorithms presented in Fig. 35 [106]

The feature model in Fig. 34 was created using the FeaturelDE tool [69]. This tool contains a user-friendly
configurator (Fig. 37) that helps the user configure a product instance. Since the FeaturelDE is an open-
source software, it was possible to extend the configurator (see Fig. 38) in order to create a Matlab script
(see Fig. 39) that configures the CFG model from a valid product configuration. Every possible valid
configuration was created and was assessed with the FFIP method.

49

Fle Edt Navigste Search Project Run Window Help

irMrHEae® A-ied- (B-F-w

v

= (=

ER-I

[% Package Explorer 32

&4 NuclearFeatureModel
(B src
= JRE System Library [jre6]
(= configs
Confl.config
[€] ddd.config
[€] test.config
(= features
S modelxm
4 NuclearFeatureModelFittered

_ @ NuclearFeatureModel Model 1

4 [H| AutomaticControl (invalid, 18 possible configurations) |
4 [H CoolantPumpControl
4 [H| DropToMinRPM
Step
Ramp
Decay
Delay
4 [l TurbineProtection
4[] PressureSensor
Pipe
Tank

Figure 37, Configuring a valid product instance using FeatureIDE’s configurator

File Edit MNavigate Search Project Run Window Help

N-Hed w-icFr iH-H-eero-
[2 Package Explorer i3 = O [e] *Confl.config &3 . 9 NuclearFeatureModel Model 1
% | & ¥ || 4 [E AutomaticControl (valid, 1 possible configurations)
&2 NuclearFeatureModel 4 [@ CoolantPumpControl
(# src 4 [H DropToMinRPM
=i JRE System Library [ire6] Step
(= configs Ramp
Confl.config . Decay
|é] ddd.config Delay
|€] test.config 4 @ TurbineProtection
(&= features 4 [H] PressureSensor
§ modelaml Pipe
Tank

%2 NuclearFeatureModelFitered

Save In: | Users

=] Hikolaos

=3 Public

=3 TEMP

[UpdatusUser

File Name:

[configuremodeiinstance m

Files of Type: | Al Files

Figure 38, Extension developed for FeatureIDE’s configurator for the exports of a Matlab script (Fig, 39) that can

configure the Configuration Flow Graph model in Simulink (Fig. 36) [106]

50

% Initializing configuration signals

StepConf.InitialValue="true’;
DelayConf.InitialValue="true’;
PressureSensorConf.InitialValue="true';
TankConf.InitialValue="true';

% Run the simulation

gatherDataSPL

Figure 39, Matlab script that configures the Configuration Flow Graph model in Simulink (Fig. 36) [106]

The Function Failure Logic (FFL) indicates that for some configurations of design alternatives, there is health
degradation of the function “transmit thermal energy from fuel rods to coolant” (see the functional model
of the BWR in Fig. 19). The FFIP risk assessment of each individual configuration is done in a similar process
as in section 6.2.1. Fig. 40 shows the temperature curves for each valid configuration of the feature model
in Fig. 34; as there are 9 valid configurations, there are nine curves.

6.5

= Ramp and no
Pressure Sensor

- =Ramp and Tank
Pressure Sensor

©n
v

== Ramp and Pipe
Pressure Sensor

wn
|

----- Decay and no
Pressure Sensor

= - Decay and Tank
Pressure Sensor

Qualitative flow level [0..10]
=
w

4 ——Decay and Pipe
Pressure Sensor
3.5 ——Step and no
Pressure Sensor
3 ~——Step and Tank
Pressure Sensor
25 1= T T T

T T ™ Step and Pipe
i 51 101 151 201 251 301 351 401 451 501 551 601 Pressure Sensor
Simulation time

Figure 40, Fuel rod temperature results for different alternative design configurations. Temperature values above 5.5 are
considered not healthy by the Functional Failure Logic (Fig. 24) related to the transmit thermal energy function (Fig. 19)
[106]

A summary of the simulation runs for the entire feature model is obtained automatically and presented in
Table 4. If the function status remains healthy throughout the simulation, the configuration has passed,
since the functional requirements are satisfied. If it is degraded or lost at any time, the configuration has

failed and the number of simulation time steps spent in a status other than healthy is indicated in
parentheses.

51

No Pressure Sensor (PS) PS on Tank PS on Pipe
Ramp pass pass pass
Decay fail (120) pass pass
Step fail (435) fail (364) fail (395)

Table 4, Results of the Functional Failure Logic (Fig. 24) for the results presented in Fig, 40. In parenthesis is the total
simulation time that the transmit thermal energy function’s health status is “degraded” [106]
Fig. 41 repeats the temperature curve from Fig. 40 for the configuration decay and no pressure sensor
connected to the turbine protection system. The decay feature involves an algorithm that reduces the
control signal to the pumps by a logarithmic decay, and the volumetric flow of the coolant in Fig. 41 follows
this pattern. The steam content drops abruptly as a result of the shockwave and then rises as coolant flow
decreases and heat production due to increased neutron flux increases; insertion of the control rods
eventually brings the neutron flux down to a state. The temperature exceeds acceptable level, so the
verdict of this simulation run is failed.

10

—ThermalEnergy
9
8 4 — =SteamContent
4 - . - FuelRodsTemp

----- NeutronFlux

= - VolumetricFlow

Qualitative flow level [0..10]
4,

T T T f YT T T T T T Y T T T T T T T

1 51 101 151 201 251 301 351 401 451 501 551 601
Simulation time

Figure 41, The decay algorithm for the coolant pumps behaviour is rejected if pressure sensor information is not available
for the turbine protection system [106]
Fig. 42 shows a similar scenario, but in this case the pressure sensor inside the reactor tank is connected to
the Turbine Protection System (TPS). As soon as pressure exceeds an alarm threshold, the TPS opens the
dumper valve which relieves the pressure inside the tank, resulting in a sharp rise of steam content at the
core. After opening the dumper valve, the software in the TPS waits for a delay to expire and then closes
the valve as soon as pressure is nominal or lower. The purpose of the delay is to prevent very frequent
opening and closing of the dumper valve, which would otherwise occur with basic binary control. The three
spikes in the steam content curve in Fig. 42 are due to the dumper valve being opened 3 times in this
scenario.

52

In Fig. 42, the temperature stays within acceptable levels in this case, and the test is passed. As shown in
Fig. 40, the temperature decrease is even slightly better if the additional sensor in the pipeline is used,
since this permits the earlier opening of the dumper valve. In summary, the decay feature gave acceptable
performance if the pressure sensor option was present, regardless of which alternative (pipe or tank) was
selected. However, performance was evaluated unreliable if no pressure sensor was present. This can be
summarized as a constraint: the decay feature requires the pressure sensor feature to be also selected. In
the feature model syntax, this is written as follows:

Decay => PressureSensor

10
9
8
—y ThermalEnergy
-
s 7
S A - — =SteamContent
26 S A ra
2 SlF Ly — .) —— FuelRodsTemp
_g 5 — — .
= "\, O eeees NeutronFlux
@
= 4
- l .
£ = - VolumetricFlow
= 3] :
& o
2 N 1 1
- 5
J | Y
1 * —5—1
~ E-L 7/ 1
O T e T T T T T T T T T T T T T T T

1 51 101 151 201 251 301 351 401 451 501 551 601
Simulation time

Figure 42, The presence of pressure sensor information leads to acceptable system response to the critical event scenario
(see the functional health results in Table 4) for the configurations including the Decay feature. These are the results when
the pressure information comes from the reactor vessel. If there is a pressure sensor on the pipeline before the pressure
control valve, the results are even better (see Table 4 and Fig. 40) [106]

Fig. 43 shows the results for the step algorithm: the pumps are stopped immediately in response to a
scram. In this case, the impaired moderation due to faster steam buildup causes neutron flux to rise
significantly slower than when the decay algorithm was used (Fig. 41). However, since water acts as coolant
as well as moderator, the loss of volumetric flow of coolant also results in a lower thermal energy curve
(i.e., thermal energy output flow from fuel rods to coolant). The combined effect of these conflicting forces
is that fuel rod temperature rises to more dangerous levels with the step algorithm rather than the ramp
algorithm. Even the use of a pressure sensor by the turbine protection system for opening the dumper
valve does not help to reduce the temperature to within healthy limits in this failure scenario (Fig. 44). For
these reasons, the step alternative will be entirely removed from the feature model that is passed to
detailed design from the FFIP risk assessment. Determining the net effect of these conflicting forces is
problematic if traditional risk analysis methods relying only on human judgment are used; this case study
strengthens the argument for simulation based methods for the risk assessment of complex cyber-physical
systems.

53

10
9
8
E- = ThermalEnergy
2 A -
= I — =SteamContent
26 = ——3 —
= S : ° == . —— FuelRodsTemp
g5 X :
b \ H -----NeutronFlux
> 3 -
= 4 H i
= 4 : — - VolumetricFlow
= 3 4 i
= ———
32
2 s
] \:
. A
1 I e
O Arrrrrrrrirrrrrerrr e T R R AT
1 51 101 151 201 251 301 351 401 451 501 551 601
Simulation time

Figure 43, The Step algorithm for the coolant pumps behaviour fails if there is no pressure sensor information [106]

10
9
8
= = ThermalEnergy
o -
=2 Ly — -SteamContent
= £33
%6 g I .7 T e— L,
2 L e 3 = + . e = FuelRodsTemp
s c . L-F
&= N/ ! S e NeutronFlux
2a N+
£ ‘ 1] H — - VolumetricFlow
-§3 l') e
. o
2
I 1 v
. X 'l
L .
. v il
O T T T T A T AT T TR e e T

1 51 101 151 201 251 301 351 401 451 501 551 601
Simulation time

Figure 44, The inclusion of pressure sensor information cannot lead to acceptable system response to the critical event
scenario. This leads to the removal of the Step feature from the design alternatives in Fig. 34 [106]

Finally, the ramp algorithm employs a linear ramp to reduce the coolant pump rotations per minute. This
alternative gave healthy results for the “thermal energy transmission from fuel rods” function regardless of

54

what options were selected for the pressure sensor (see Fig. 40 and Table 4). The restricted feature model
is shown in Fig. 45; the feature combinations that were found unreliable in this risk assessment phase have
been removed. The constraint “Decay => PressureSensor” has been specified using the FeaturelDE tool and
can be used by the FeaturelDE configurator (Fig. 38) to determine valid configurations.

AutomaticCantrol Legend:

e Mandatory

ptional

d Optional

CoolantPumpControl | | TurbineProtection A Alternative

Abstract

Caoncrete
DropToMinRPM PressureSensor
Ramp | | Decay Pipe | | Tank

Decay = PressureSensor

Figure 45, Feature model after the risk assessment of the design alternatives. Compared to Fig. 34 the Step feature is
removed and the constraint that the Decay feature requires the presence of pressure information from either the reactor
vessel or the pipeline before the pressure control valve [106]

6.4 Configuring machine control software based on a feature model of safe

design alternatives

The methodology up to the previous subsection delivers a feature model of the system, from which unsafe
features and feature combinations have been removed (step 3 in Fig. 2). This is given as input to the SPL
development process, which first strips away the features that do not involve software (step 4 in Fig. 2).
The resulting feature model is processed in step 5, in order to configure products. As mentioned in section
5.3, the case study changes at this point. This is considered acceptable, since the interface between steps 3,
4 and 5 are only feature model deliverables, without additional dependencies to other artifacts produced in
steps 1-3.

In this section the configuration of software instances for the MEWP product family case study (see section
4.1) will be presented. Valid software product instances obtained by configuring the feature model of the
MEWP family from section 5.1 are used to configure PLC software projects. Object Oriented (OO)
extensions of IEC 61131 are used to realize the optional and alternative constructs as described in [55, 84].

6.4.1 Feature model to UML mapping and implementation using Object Oriented IEC 61131
extensions

The constructs provided by the UML class diagram [107] are used to specify the mapping from the feature
model to an object oriented language [55, 84]. These mappings (Fig. 46) exploit composition and
inheritance, and have been defined to enable simple and automatic configuration of product code after a
user has selected the features for a product.

55

Root Legend: m
< Optional
OptionalFeature | => yAN

FeaturePresent

| [tend s
& Mandatory
A Alternative

MadatoryFeature IMandatoryFeature (Abstract) |

> B &

| Option_1 |---| Option_N |

Root Legend:
< Optional
A Alternative
= ANIIAY

| Option_1 | | Option_N |

Figure 46, Mappings from feature model notation to UML [55]

By following the mapping rules in Fig. 46, the feature model in Fig. 7 will be converted into the object
oriented structure in fig. 47. After this UML model is created, it is possible to develop the generic control
application, without directly specifying optional or alternative features, in an Integrated Development
Environment (IDE) that supports the object oriented extensions of IEC 61131-3. In this case study, CoDeSys
3.4 and the Structured Text (ST) language was used.

Figure 47, UML model of the software product family, after applying the mappings in Fig. 46 to the feature model in Fig.
7(55]

56

The technique to create the PLC software relies on using superclasses as placeholders for optional features
and the parents of alternative features, as presented in the ST code presented in Fig 48.

PROGRAM FLC_FRG
VAR

VerticalUserCommandOPTION: VerticalUserCommandVEFB; Alterpative features for the user command
ipterface for the vertical movement of the platform.
Frrs Alternatives are Buttons (ButtonsFB) or Joystick (JoystickFB)

QuickButtona0PTION: QuickButtonsVEFB: /// Alternative features for the

s command interface for automatic movement of the platform. Alternative

the presence (QuickButtonsPresentFB) of not (QuickButtonsVFFB) of Quick Buttons

Ccrl:ControlFB; /// Movement Con

CylinderControlOPTION: CylinderControlVEFB; /// Alterpative features for the control algorithm
of the valve that controls the cylinder. Alter 1 1inderControl
(AnalogCylinderControlFB) or DigitalCylinderControl (DigitalCylinderControlFB)

CylinderSimulatorOPTION: CylinderSimmlatorVEFB; /// Alterna res for simu

£EE of the cylinder. Alternatives are AnalogCylinderSimulato gCyvlinderSimulatorFB)
/#f or DigitalCylinderSimulator (DigitalCylinderSimulatorFB)
END VAR

Figure 48, Unconfigured Structured Text code in CoDeSys for the main Program Organization Unit of the control
application of the Mobile Elevating Work Platform case
During product configuration, the user specifies alternatives; for example for VerticalUserCommand, the
Joystick alternative is selected. The product configurator tool, which will be described in section 6.4.3, is
able to automatically replace the type of the corresponding FB instance from VerticalUserCommand to
Joystick. Since the latter is a derived class of the former, no changes are needed to the rest of the program.

For optional features such as QuickButtons, a superclass function block that is neutral to the program
(either has no logic or it copies its inputs to its outputs) is created and then it is extended by a function
block(s) that implement(s) the optional feature (QuickButtonsPresent in our example). If during product
configuration this feature is selected, the configurator tool will replace the type definition from
QuickButtons to QuickButtonsPresent.

The product configurator tool will configure the code in Fig 48 into the code in Fig. 49, if the Joystick,
AnalogControl and AnalogSim features are selected.

57

PROGRAM FLC FRG
VAR
VerticalUserCommandOPTION: JoystickFB;

interface for the vertical movem

ives are Buttons (ButtonsFB) or J

QuickButtonsOPTION: {uickButtonsVEFB; ///

(ff command interface for automatic movement

Ehe prese (QuickButtonsPresentFB)

Ctrl:ControlFB; /// 1

(AnalogCylinderControl (Digitall:

a
CylinderSimulator

Simulator (Dig.

END VAR
Figure 49, The code of Fig. 49 after it has been configured to a specific, valid, software product instance

According to Fig. 46, if a mandatory feature (e.g. VerticalUserCommand) has alternative subfeatures, the
mandatory feature is mapped to an abstract class. This is because one of the subfeatures must be selected.
If an optional feature has alternative subfeatures (e.g. AutomaticControl) it is not abstract but has the
above mentioned neutral implementation, which will be included into the final product in case the option

was not selected.

In summary, all modifications that need to be made by the product configurator tool will be limited to the
declaration part of a POU (Program Organization Unit); the code is not changed.

6.4.2 Extension to the PLCopen XML standard

The PLCopen XML standard for storing IEC 61131 applications has the flexibility to be extended so to
include feature modeling information [55]. The <Constrains> element, a child of the <data> element (which
is a child of the <addData> element), is proposed as a container to store this information. An attribute of
the <Constrains> element (“isOptional”) stores a Boolean of whether a feature is optional. The information
of whether other features are required or excluded if that feature is selected can be stored by using the
<requires> and <excludes> child elements of the <Constrains> element. The schema of the <Constrains>

element can be the following:

<xs:element name="Constrains">
<xs:complexType>
<xs:sequence>
<xs:element name="Requires" type="xs:string"/>
<xs:element name="Excludes" type="xs:string"/>
</xs:sequence>
<xs:attribute name="isOptional" type="xs:boolean"/>
</xs:complexType>
</xs:element>

58

The schema is not used to specify alternative features, because the class inheritance mechanism fits these
semantics: it is not possible to select more than one derived class, since object-oriented extensions of IEC
61131-3 do not permit multiple inheritance [6].

The <Constrains> element stores rules to prevent invalid feature combinations. Consider the optional
“AutomaticControl” feature, which requires the “QuickButtons” feature. This information is expressed
according to the schema as follows:

<pou name="AutoControlVPFB" pouType="functionBlock">
<interface>

<addData>
<data name="Feature Modeling data">
<Constrains isOptional="true">
<Requires>QuickButtonsPresentFB</Requires>
</Constrains>
</data>
</addData>

</interface>

</pou>

The <data> element under the <addData> is already used by CoDeSys to support object oriented
extensions, and with our additions the PLCopen file can still be imported. However, standardization will be
required for portability if several players will support feature modeling with IEC 61131-3.

6.4.3 Tools to support the IEC61131 PLCopen-based SPL

6.4.3.1 Embedding feature constrains in PLCopen XML

As a proof-of-concept, a tool was developed to guide the creation of constraints for a PLCopen XML file
describing a product line with mandatory, optional and alternative features (Fig. 50) [55]. The tool reads a
PLCopen xml file with the function block library of the project, and after analyzing the inheritance
keywords, it presents the alternative and optional features. After this, it is possible to specify “requires”
and “excludes”rules between any two features, which are stored in an “enhanced” PLCopen XML file,
according to the schema presented in section 6.4.2.

59

Open input PLCopen XML file

Feature requirements

ToystickFB - AnalogCylinderControlF B
QuickButtonsPresentFB AnalogCylinderSimulatorFB
QuickButtonsVPFB AutoControlVFFE
RegularAutoControlFB - BinaryCylinderControlFB
SlowAutoControlEB BinatyCylinderSimulatorFB
SmoothAutoControlFB ButtonsFB
VerticalUserCommandVPER = CylinderControlVFFB

Mandatory/Optional features

AutoContrelVPFB |Optu:mztl |v| | Add tule
CylinderControlVPEE
CylinderSimulator VEFB
QuickButtonsVPFB
VerticalUserCommandVEFB

Rules added:

AutoControlVEFE Requires QuickButtonsPresentEB
BinatyCylinderControlFB Requires ButtonsFB
BinatyCylinderControlFB Excludes JoystickFB
AnalogCylinderSimulaterFB Requires AnalogCylinderControlFE
SlowAutoControlFB Requires AnalogCylinderControlFB
SmoethAutoControlFB Requires AnalogCvlinderControlFB
AutoControlVEFE is Optional

QuickButtonsVPEB is Optional

CylinderSimulatorVPEB iz Optional

Wiite output PLCopen XML File

Figure 50, A tool that was developed to add the constraints information of the feature model in Fig. 7 into an “enhanced”
PLCopen XML file [55]

6.4.3.2 Configuring and validating products
A second tool was developed to help the product configuration, perform validation of the choices and then
produce the configured PLCopen xml file with the final product code [55].

The tool accepts as input an enhanced PLCopen xml file containing the generic IEC 61131 application and
the constraints of the feature model (see section 6.4.2). The user can select which optional features are
included, and for each alternative feature, one choice from a list of alternatives must be made (Fig. 51).

60

Cpen input PLCopen XML file
Variation Points Available choices
AuteControlVEFB ButtonsFB
CylinderControlVEEB JoystickFB
CylinderSimulatorVEEB
QuickButtonsVPFB
VerticallJzerCommandVPFB

Add choice

Choices mada

Selected: RegularAutoControlFB for variation point: AuteControl

Selected: AnalogCylinderControlEB for variation peint: CylinderControl
Selected: AnalogCylinderSimulatorEB for variation point: CylinderSimulator
Selected: JoystickEB for variation point: VerticalUserCommand

Feature compatibility tules

AnalogCylinderSimulatorFB requires AnalogCylinderControlFB
AutoControl VPFE is optional

AutoControlVPEB requires QuickButtonsPresentFB
BinatyCylinderControlFE requires ButtonsFB
BinaryCylinderControlFB excludes JoystickFB
CylinderSimulatorVPEE is optional

Notes - issues

|AutoControl requires QuickButtonsPresent

Write output PLCopen XML File

Figure 51, A tool that was developed to help the user to configure a software product instance, validate it against the
feature model, and export a configured PLCopen XML project file [S5]
After all the choices are made, the tool runs the validation algorithm in Fig. 52 to verify that no rules are
broken by the configuration and then it either produces the PLCopen xml file with the configured product,
or it presents feedback to the user about which rules were broken by the selected configuration.

After the configured PLCopen XML file is produced, it is ready to be imported in a PLCopen XML IEC 61131
compliant tool such as CoDeSys 3.4. It only needs to be built in order to obtain the executable application.

61

Checks failed, give
feedback to user

v A
Check that a choice was made for
all mandatory features

v

Check that no “excludes” or
“requires” rule is broken by the
configuration

v

Check that no more than one
“Alternative” features are No
selected

User configures product instance

Checks passed?

Yes
\ 4

The configuration is valid

End

Figure 52, Flowchart of the algorithm used in the tool in Fig. 51, that validates the user choices against the feature model
of the Software Product Line, adapted from [55]

62

7 Discussion

7.1 Discussion related to objective 1
According to section 3, objective 1 of this dissertation is that “the modeling approach should support
filtering designs based on results of risk assessment”.

The output of the method presented in the results section lists combinations of features that need to be
eliminated. Feature modeling with constraints provides the appropriate level of granularity to eliminate
these combinations and no other combinations. Currently this filtering process is done manually. Further
research would involve automating the filtering process by

reading the design alternatives subjected to risk assessment as a feature model

obtain FFIP output for unsafe feature combinations

define an algorithm that prunes the feature model (a tree data structure) created in step 1 to
eliminate the combinations identified in step 2

The scalability of the method requires automation of step 2 to systematically evaluate every feature
combination. In this dissertation, step 2 was done manually, and automating it is further research.

7.2 Discussion related to objective 2

According to section 3, objective 2 of this dissertation is that “The behavioral simulation in previous work on
FFIP does not support any kind of study of several positive or negative feedback loops affecting the same
process variable. The discrete qualitative enumeration for flow values [zero, low, nominal, high] is
insufficient to capture, even in a qualitative way, how several feedback mechanisms reinforce or oppose
each other. An objective of this work is to propose a continuous range of values to qualitatively describe
flow values, so that simulation models are able to capture how several feedback mechanisms reinforce or
oppose each other.”

The results section shows that the definition of qualitative continuous values for flow levels is able to
capture the aggregate effect of key phenomena in scram situations; examples of phenomena that are
included were:

e improved moderation due to lower void fraction after pressure shockwave

e Doppler effect

e decreased power output due to decreased coolant flow

e decreased heat transfer from fuel rods to coolant due to decreased coolant flow

A weakness is that an absolute value needed to be used for identifying flows that exceed safe thresholds;
for example the value 5.5. in Fig. 31. The significance of functional degradation identified according to such
criteria is that the hazard mechanism has been identified and that it is a requirement for the detailed
design phase to parameterize the design in such a way that the hazard is avoided or that its probability is
within acceptable limits. The modeling approach that was used is not based on first principles and cannot
be used for purposes of evaluating a single design. However, it can be used for comparative evaluation of
alternative designs as discussed under objective 3.

63

It is possible to use first-principles simulation models based on Sl units even in the early phase using generic
components, and one area of further research is to transfer the simulation framework that was used in this
dissertation to such an environment. The use of a simulation environment that provides a library of generic
components, commonly used in the engineering domain of the system under design, would result in
quantitative results with physical meaning. In an early design phase, the detailed configuration of
components is not yet possible, and for the purpose of reducing the complexity of the model only the most
important components should be included.

The methodology presented in this dissertation can be adapted to a more advanced simulation
environment; the most important implementation task would be to port the Functional Failure Logic code
into the new environment. The qualitative thresholds for the flows, that are the core of the Functional
Failure Logic in this dissertation, would have to be updated to realistic threshold values such as
temperature, pressure and flow volume thresholds. If the results of the simulation have physical meaning,
the risk assessment outcomes would be easier to understand by an expert of the domain, and redesign
requirements could be expressed in terms of Sl units.

The simulation environment used in this dissertation provides the flexibility of using state machines to
define the behavioral model of a component, with one state for each nominal and failure mode of the
component. The behavior within a state is defined by a system of linear difference equations. Since
difference equations were used, the solver of the simulation environment was able to handle the transition
between states with different sets of equations without convergence failures.

The response of physical process components is always continuous over time, and advanced simulators
model this behavior. For example, if the control software instructs a closed valve to open, the flow through
the valve doesn’t increase instantly by a step function, but follows a curve over time as the valve transitions
from allowing no flow to full flow. In a simulator that models separately the control algorithms and the
behavior of the process, the software can be described using state machines with instant transitions, while
the behavior of the controlled components of the process contains no discontinuities; for example, the
opening of a binary valve can be handled in the process simulator by increasing the cross-sectional area of
the aperture by a linear ramp.

7.3 Discussion related to objective 3

According to section 3, objective 3 of this dissertation is that “the modeling approach used in behavioral
simulation should support comparative evaluation of the safety of alternative designs or different
parameter values for the same design. As the number of alternatives increases, the scalability of the method
should be evaluated”.

The approach based on qualitative flow levels was able to capture how feedback loops opposed or
reinforced each other and how alternative designs or parameter value changes caused some configurations
to fail according to the criteria of the function failure logic. Further work for obtaining verdicts from
functional failure logic defined in terms of SI units was discussed in response to objective 2.

The method and tool presented in this dissertation supports the scalability of the approach for analyzing
variations in parameter values. Computation resources form a practical limit to scalability. Resource
consumption is increased by increasing the number of parameters being varied, the number of different
values used for each parameter and the level of detail of the simulation model. The user of the method is
responsible for controlling the factors that affect resource consumption, and the method proposed in this

64

dissertation does not attempt to constrain these decisions. After the simulation model is developed to the
desired level of detail, the user interface of the supporting tool provides the user full control of the factors
that impact resource consumption.

As the number of valid configurations in a feature model increases, the manual and computational load of
performing the method for the product line impacts the scalability of the method. In this dissertation, each
feature requires a single modification to the simulation model. However, the number of manual steps in
performing the analysis is equal to the number of valid configurations, which depends on the feature model
tree. For example, an application with n mandatory features under the root, each of which has m
alternatives, has m" valid configurations if no constraints are present. The number of manual steps in
performing the analysis can be reduced or even eliminated by further work on an automatic algorithm that
traverses the feature model tree and outputs a list of valid configurations as scripts that configure and
execute the simulation model; the functional failure logic results identify the configurations that did not
satisfy the functional requirements.

Even if further work for reducing the manual workload is performed, another limitation to scalability is
computation time. Many combinations in an unconstrained feature model can be identified as irrelevant or
infeasible by designers, so they should be eliminated by defining constraints in the feature model before
applying the method in this dissertation. Constraints should also be used to eliminate feature combinations
for which the simulation model is unsolvable, but if designers fail to identify such a configuration, the
method will simply output that the model was unsolvable. After these constraints are in place, computation
resources may still be insufficient. As simulation runs for each configuration are independent, several
machines can be used, and automatic distribution of the runs onto different machines is one possibility for
further work. Regardless of whether one or more machines are used, computational resources may remain
an issue. The advantage of FFIP is that it does not require a specific level of detail in the simulation model
and that it is applicable to lightweight conceptual models such as those presented in this dissertation.
There is a tradeoff between the level of detail in the simulation model and the computational resources.
The proposed method does not constrain this tradeoff, so the user is expected to make the tradeoff in the
context of the application.

65

8 Conclusions

The risk assessment method presented in this dissertation is applicable at the mechatronic system design
stage, before the development process branches into sub-domains such as software and electrical systems.
Some risks can only be identified when studying the interactions of software, electrical and mechanical
elements of the design. Further, if the design needs to be changed in response to an identified risk, it is still
possible to select the best design as the allocation of functionality to software, electrical and mechanical
subsystems has not yet been fixed. If risks are only identified in the later design phases, the options involve
compromises to the product quality or significant additional costs:

a) The mechatronic design may be changed in order to avoid the risk. This implies extensive re-work
for all the design phases that followed the outdated design, which in turn results in financial cost
and delays.

b) The system’s behavior may be improved by working around the problem in the software, electrical
or mechanical aspect of the detailed design. Although this may be less costly than option (a), the
other properties of the mechatronic design, such as performance, may be compromised.

c) Insome cases it is possible to accept the liability arising from the risk, if the cost of redesigning the
system to be safer is high [108]. Although this is not an option in a tightly regulated industry, such
as nuclear power production, it may be an option for other mechatronic applications.

Software safety is not addressed in this dissertation, as existing methods are applicable after the functional
requirements of the mechatronic system have been allocated to SPL features. For control software
applications, PLC targets need to be supported for configured instances of the SPL, and the open standard
PLCopen XML is used for that purpose. At this point, the methodology and toolchain presented in this
dissertation end: a feature model for the SPL has been obtained and the problem of configuring
applications on IEC 61131-3 targets has been addressed. From this point on, the implementation,
verification and validation in safety critical PLC environments such as PLCopen XML Safety Function Blocks
can be handled by existing methods [47].

The flows within the simulated configuration flow graph model are qualitative, since the component
implementation details are not yet determined when the system design is at an early phase. The FFIP
framework presented here could be applied to a more advanced simulation model, since the Functional
Failure Logic would continue to observe energy, material and signal flows in order to determine health
degradation based on abnormal flow values.

66

References

[1] J.D. McGregor, L.M. Northrop, S. Jarrad, K. Pohl, Initiating software product lines, IEEE Software, 19
(2002) 24.

[2] S.E.I. Carnegie Mellon, Software Product Lines - Overview, in: http://www.sei.cmu.edu/productlines/.
[3] N. Papakonstantinou, S. Sierla, J. Alanen, K. Koskinen, Reducing redesign of safety critical control
systems by early risk assessment, in: 8th IEEE International Conference on Industrial Informatics Osaka,
Japan, 2010.

[4] K. Czarnecki, U. Eisenecker, Generative Programming: Methods, Tools, and Applications, Addison-
Wesley, 2000.

[5] E. Althammer, E. Schoitsch, H. Eriksson, J. Vinter, A. Pataricza, G. Csertan, An open system for
dependable system validation and verification support - The DECOS generic test bench, in: IEEE INDIN,
Vienna, Austria, 2007.

[6] B. Werner, Object-oriented extensions for iec 61131-3, Industrial Electronics Magazine, IEEE 3(2009) 36.
[7] T. Kurtoglu, I.Y. Tumer, A Graph-Based Fault Identification and Propagation Framework for Functional
Design of Complex Systems, Journal of Mechanical Design, 130 (2008).

[8] J.L. Rouvroye, E.G.v.d. Bliek, Comparing safety analysis techniques, Reliability Engineering & System
Safety, 75 (2002) 289-294.

[9] J. Ren, I. Jenkinson, J. Wang, D.L. Xu, J.B. Yang, A methodology to model causal relationships on offshore
safety assessment focusing on human and organizational factors, Journal of Safety Research, 39 (2008) 87-
100.

[10] J. Wang, Offshore safety case approach and formal safety assessment of ships, Journal of Safety
Research, 13 (2002) 81-115.

[11] B.A. Gran, R. Fredriksen, A.P.-J. Thunem, Addressing dependability by applying an approach for model-
based risk assessment, Reliability Engineering & System Safety, 92 (2007) 1492-1502.

[12] A. Bobbio, E. Ciancamerla, G. Franceschinis, R. Gaeta, M. Minichino, L. Portinale, Sequential application
of heterogeneous models for the safetyanalysis of a control system: a case study, Reliability Engineering &
System Safety, 81 (2003) 269-280.

[13] B.G. Moffat, E. Abraham, M.P.Y. Desmulliez, D. Koltsov, A. Richardson, Failure mechanisms of legacy
aircraft wiring and interconnects, IEEE Transactions on Dielectrics and Electrical Insulation, 15 (2008) 808 -
822

[14] Y. Papadopoulos, D. Parker, C. Grante, Automating the failure modes and effects analysis of safety
critical systems, in: High Assurance Systems Engineering, Tampa, FL, USA, 2004.

[15] Y. Chen, L. Du, Y.-F. Li, H.-Z. Huang, X. Li FMECA for aircraft electric system, in: International
Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), Xi’an, China,
2011.

[16] C.J. Price, N.S. Taylor, FMEA for multiple failures, in: Reliability and Maintainability Symposium,
Anaheim, CA, USA, 1998.

[17] T. Hu, J. Yu, S. Wang, Research on complex system FMEA method based on functional modeling, in:
Reliability, Maintainability and Safety, Chengdu, 2009.

[18] G. Mauri, J.A. McDermid, Y. Papadopoulos, Extension of hazard and safety analysis techniques to
address problems of hierarchical scale, in: IEE Colloquium on Systems Engineering of Aerospace Projects
(Digest No. 1998/249), 1998.

[19] T. Pasquale, E. Rosaria, M. Pietro, O. Antonio, A. Segnalamento Ferroviario, Hazard analysis of complex
distributed railway systems, in: Reliable Distributed Systems, Florence, Italy, 2003.

[20] S. Schreiber, T. Schmidberger, A. Fay, J. May, J. Drewes, E. Schnieder, UML-based safety analysis of
distributed automation systems, in: Emerging Technologies and Factory Automation, Patras, Greece, 2007.
[21] W.E. Vesely, F.F. Goldberg, N.H. Roberts, D.F. Haasi, The Fault Tree Handbook, US Nuclear Regulatory
Commission, (1981).

67

[22] M. Stamatelatos, G. Apostolakis, Probabilistic Risk Assessment Procedures Guide for NASA Managers
and Practitioners, NASA, Safety and Mission Assurance, 2002.

[23] D. Hofmann, M. Kopp, B. Bertsche, Development in Mechatronics — Enhancing reliability by means of
a sustainable use of information, in: 2010 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), , Montreal, Canada, 2010

[24] Y. Kong, G. Pausch, K. Roemer, M. Neuer, C. Plettner, R. Lentering, J. Stein, Towards design and
optimization of scintillation-detector systems: A Monte-Carlo simulation framework, in: IEEE Nuclear
Science Symposium Conference Record (NSS/MIC), Knoxville, Tennessee, USA, 2010.

[25] T.W. Simpson, J.D. Poplinski, P.N. Koch, J.K. Allen, Metamodels for computer-based engineering design:
Survey and recommendations, Engineering with Computers, 17 (2001) 129-150.

[26] G. Wang, S. Shan, Review of metamodeling techniques in support of engineering design optimization,
Journal of Mechanical Design, 129 (2007) 370-381.

[27] J. Guo, X. Du, Reliability analysis for multidisciplinary systems with random and interval variables, AIAA
Journal, 48 (2010) 82-91.

[28] C. Zang, M.I. Friswell, J.E. Mottershead, A review of robust optimal design and its application in
dynamics, Computers and Structures, 83 (2005) 315-326.

[29] S. Nebel, A. Dieter, P. Muller, B. Bertsche, Application of ECSPN to RAMS modeling and analysis of
hybrid drive systems in: Annual Reliability and Maintainability Symposium (RAMS), San Jose, California,
2010.

[30] S. Deb, K.R. Pattipati, V. Raghavan, M. Shakeri, R. Shrestha, Multisignal flow graphs: a novel approach
for system testability analysis and fault diagnosis, in: IEEE Aerospace and Electronics Systems Magazine,
1995, pp. 14-25.

[31] T. Kurtoglu, I.Y. Tumer, D. Jensen, A functional failure reasoning methodology for evaluation of
conceptual system architectures, Research in Engineering Design, 21 (2010) 209-234.

[32] IEC, Functional safety of electrical/electronic/programmable electronic safety-related systems, in: Part
4: Definitions and abbreviations, 1998.

[33] IEC, Safety of Machinery — Electrotechnical Aspects — Functional Safety of Electrical, Electronic and
Programmable Control Systems, in, 2005.

[34] M. de Sousa, Restricting IEC 61131-3 programming languages for use on high integrity applications, in:
IEEE ETFA, Hamburg, Germany, 2008.

[35] C. Wilwert, T. Clement, Evaluating quality of service and behavioral reliability of steer-by-wire systems,
in: |EEE ETFA, Lisbon, Portugal, 2003.

[36] C. Fantuzzi, S. Marzani, C. Secchi, M. Ruggeri, A distributed embedded control system for agricultural
machines, in: IEEE INDIN, Singapore, 2006.

[37] P. Wratil, Technology of safe drives, in: IEEE INDIN, Vienna, Austria, 2007.

[38] T. Tamandl, P. Preininger, Online self tests for microcontrollers in safety related systems, in: IEEE
INDIN, Vienna, Austria, 2007.

[39] T. Novak, T. Tamandl, Architecture of a safe node for a fieldbus system, in: IEEE INDIN, Vienna, Austria,
2007.

[40] P. Fischer, M. Holz, M. Menzel, Network management for a safe communication in an unsafe
environment, in: IEEE INDIN, Vienna, Austria, 2007.

[41] S. Mohan, K. Elango, S. Sivakumar, Evaluation of risk in canal irrigation systems due to non-
maintenance using fuzzy fault tree approach, in: IEEE INDIN, Banf, Alberta, Canada, 2003.

[42] E. Althammer, E. Schoitsch, G. Sonneck, H. Eriksson, J. Vinter, Modular certification support - the
DECOS concept of generic safety cases, in: IEEE INDIN, Daejeon, Korea, 2008.

[43] T. Novak, A. Treytl, Functional safety and system security in automation systems - a life cycle model, in:
IEEE ETFA, Hamburg, Germany, 2008.

[44] T. Novak, A. Treytl, P. Palensky, Common approach to functional safety and system security in building
automation and control systems, in: IEEE ETFA, Patras, Greece, 2007.

[45] N. Papakonstantinou, S. Sierla, Early Phase Fault Propagation Analysis of Safety Critical Factory
Automation Systems, in: IEEE INDustrial INformatics (INDIN), Beijing, China, 2012.

68

[46] G. Cai, B.M. Chen, T.H. Lee, M. Dong, Design and implementation of a hardware-in-the-loop simulation
system for small-scale UAV helicopters, Mechatronics, 19 (2009) 1057-1066.

[47] D. Soliman, G. Frey, Verification and validation of safety applications based on PLCopen safety function
blocks, Control Engineering Practice, 19 (2011) 324-335.

[48] T. Bochot, P. Virelizier, H. Waeselynck, V. Wiels, Paths to Property Violation: A Structural Approach for
Analyzing Counter-Examples, in: 12th IEEE International Symposium on High-Assurance Systems
Engineering (HASE), 2010.

[49] E. Villani, P.E. Miyagi, R. Valette, Landing system verification based on petri nets and a hybrid
approach, IEEE Transactions on Aerospace and Electronic Systems, 42 (2006) 1420-1436.

[50] C. Sonntag, S. Lohmann, A. Vélker, S. Engell, Analyzing safety properties of hybrid processing systems:
A case study on an industrial evaporator, Journal of Process Control, 18 (2008).

[51] S. Sierla, I. Tumer, N. Papakonstantinou, K. Koskinen, D. Jensen, Early integration of safety to the
mechatronic system design process by the functional failure identification and propagation framework,
Mechatronics, 22 (2012) 137-151.

[52] L.M. Northrop, Software product lines: reuse that makes business sense, in: Software Engineering
Conference, Sydney, NSW, 2006.

[53] H.P. Breivold, S. Larsson, R. Land, Migrating Industrial Systems towards Software Product Lines:
Experiences and Observations through Case Studies, in: Software Engineering and Advanced Applications,
Parma, 2008.

[54]Y. Xue, Z. Xing, S. Jarzabek, Understanding Feature Evolution in a Family of Product Variants, in: 17th
Working Conference on Reverse Engineering, Beverly, MA, 2010.

[55] N. Papakonstantinou, S. Sierla, K. Koskinen, Generating and validating product instances in IEC 61131-3
from feature models, in: IEEE ETFA, Toulouse, France, 2011.

[56] A. Fay, R. Zurawski, Progress in industrial automation programming and design: from a primitive to a
simple solution [Guest Editorial], IEEE Industrial Electronics Magazine, 3 (2009).

[57] K. Czarnecki, A. Wasowski, Feature Diagrams and Logics: There and Back Again, in: Software Product
Line Conference, 2007, pp. 23 — 34.

[58] S. Thiel, A. Hein, Modeling and using product line variability in automotive systems, IEEE Software, 19
(2002) 66 - 72.

[59] J. Sun, H. Zhang, Y.F. Li, H. Wang, Formal semantics and verification for feature modeling, in: 10th IEEE
International Conference on Engineering of Complex Computer Systems, Shanghai, China, 2005.

[60] D. Benavides, S. Segura, P. Trinidad, A. Ruiz-Cortés, FAMA: Tooling a Framework for the Automated
Analysis of Feature Models, in: Proceeding of the First International Workshop on Variability Modelling of
Software-intensive Systems, Limerick, Ireland, 2007.

[61] K. Czarnecki, M. Antkiewicz, C.H.P. Kim, S.Q. Lau, K. Pietroszek, fmp and fmp2rsm: eclipse plug-ins for
modeling features using model templates, in: OOPSLA '05 Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, San Diego, CA, USA,
2005.

[62] D. Streitferdt, M. Riebisch, I. Philippow., Details of formalized relations in feature models using OCL, in:
10th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems,
Huntsville, AL, USA, 2003

[63] H. Mei, W. Zhang, F. Gu, A feature oriented approach to modeling and reusing requirements of
software product lines, in: 27th Annual International Computer Software and Applications Conference,
Hong Kong, 2003.

[64] M. Kim, H. Yang, S. Park, A domain analysis method for software product lines based on scenarios,
goals and features, in: 10th Asia-Pacific Software Engineering Conference, Chiangmai, Thailand, 2003.

[65] M.-O. Reiser, M. Weber, Managing Highly Complex Product Families with Multi-Level Feature Trees, in:
14th IEEE International Conference on Requirements Engineering, Minneapolis/St. Paul, MN 2006.

[66] D. Perovich, P.O. Rossel, M.C. Bastarrica, Feature model to product architectures: Applying MDE to
Software Product Lines, in: Joint Working IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture, Cambridge 2009

69

[67] V.T. Sarinho, A.L. Apolinario, Combining feature modeling and Object Oriented concepts to manage the
software variability, in: IEEE International Conference on Information Reuse and Integration, Las Vegas, NV,
2010.

[68] G. Botterweck, S. Thiel, D. Nestor, S. bin Abid, C. Cawley, Visual Tool Support for Configuring and
Understanding Software Product Lines, in: 12th International Software Product Line Conference, Limerick,
2008.

[69] C. Kastner, T. Thiim, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, S. Apel, FeaturelDE: Tool Framework
for Feature-Oriented Software Development, in: 31th IEEE International Conference on Software
Engineering, Vancouver, Canada, 2009.

[70] J. Bartholdt, M. Medak, R. Oberhauser, Integrating Quality Modeling with Feature Modeling in
Software Product Lines, in: Fourth International Conference on Software Engineering Advances, Porto
2009.

[71] J. White, D.C. Schmidt, D. Benavides, P. Trinidad, Automated Diagnosis of Product-Line Configuration
Errors in Feature Models, in: 12th International Software Product Line Conference, Limerick, 2008.

[72] G.G. Ge, E.J. Whitehead, Rhizome: A Feature Modeling and Generation Platform, in: 23rd IEEE/ACM
International Conference on Automated Software Engineering, L'Aquila, 2008.

[73] BigLever, BigLever Software Gears website, in: http://www.biglever.com/solution/product.html.

[74] Pure-systems, pure::variants Technical White Paper, in: http://www.pure-
systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf.

[75] L. Kwanwoo, G. Botterweck, S. Thiel, Feature-Modeling and Aspect-Oriented Programming: Integration
and Automation, in: 10th ACIS International Conference on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing, Catholic University of Daegu, Daegu, KR, 2009.

[76] J. Liu, J. Dehlinger, H. Sun, R. Lutz, State-Based Modeling to Support the Evolution and Maintenance of
Safety-Critical Software Product Lines, in: |IEEE ECBS, 2007, pp. 596 — 608.

[77] J. Liu, Safety analysis of software product lines using state-based modeling, in: IEEE ISSRE, Chicago,
Illinois, USA, 2005.

[78] C. Kastner, S. Apel, Type-Checking Software Product Lines - A Formal Approach, in: IEEE/ACM ASE,
2008, pp. 258 - 267.

[79] J.v. Amerongen, Mechatronic design, Mechatronics, 13 (2003) 1045-1066.

[80] K. Thramboulidis, Model-Integrated Mechatronics — Toward a New Paradigm in the Development of
Manufacturing Systems, IEEE Transactions on Industrial Informatics, 1 (2005) 54-61.

[81] H. Sun, M. Hauptman, R. Lutz, Integrating Product-Line Fault Tree Analysis into AADL Models, in: IEEE
HASE, Dallas, Texas, USA, 2007, pp. 15 —22.

[82] R. Lutz, Enabling Verifiable Conformance for Product Lines, in: Software Product Line Conference SPLC,
Limerick, Ireland, 2008.

[83] Q. Feng, R.L. Robyn, Bi-directional safety analysis of product lines, Journal of Systems and Software, 78
(2005) 111-127.

[84] N. Papakonstantinou, S. Sierla, K. Koskinen, Object oriented extensions of IEC 61131-3 as an enabling
technology of software product lines, in: IEEE Emerging Technologies in Factory Automation (ETFA),
Toulouse, France, 2011.

[85] R. Froschauer, D. Dhungana, P. Grunbacher, Managing the Life-cycle of Industrial Automation Systems
with Product Line Variability Models, in: 34th Euromicro Conference Software Engineering and Advanced
Applications, Parma, 2008.

[86] K. Thramboulidis, Different perspectives [Face to Face; "IEC 61499 function block model: Facts and
fallacies"], IEEE Industrial Electronics Magazine, 3 (2009) 7.

[87] M. Bonfe, C. Fantuzzi, Design and verification of mechatronic object-oriented models for industrial
control systems, in: IEEE Conference Emerging Technologies and Factory Automation, Lisbon, 2003.

[88] S. Ono Kajihara, H. M. Houzouji, H. Taruishi, Y. Takayanagi, Development and products of the object-
oriented engineering tool for the integrated controller based on IEC 61131-3, in: SICE Annual Conference
Sapporo, 2004.

70

[89] M. Bonfe, C. Fantuzzi, Object-oriented approach to PLC software design for a manufacture machinery
using IEC 61131-3 norm languages, in: |IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Como, 2001.

[90] G. Aiello, M. Alessi, M. Bruccoleri, C. D'Onofrio, G. Vella, An Agile methodology for Manufacturing
Control Systems development, in: 5th IEEE International Conference on Industrial Informatics, Vienna,
2007.

[91] V.M. Gonzélez, A.L. Sierra Diaz, P. Garcia Ferndndez, A. Fernandez Junquera, R.M. Bayén, MIOOP. An
object oriented programming paradigm approach on the IEC 61131 standard, in: IEEE Conference on
Emerging Technologies and Factory Automation, Bilbao, 2010.

[92] D. Witsch, B. Vogel-Heuser, Close integration between UML and IEC 61131-3: New possibilities through
object-oriented extensions, in: IEEE Conference on Emerging Technologies & Factory Automation,
Mallorca, 2009.

[93] R. Drath, A. Luder, J. Peschke, L. Hundt, AutomationML - the glue for seamless automation engineering,
in: |IEEE International Conference on Emerging Technologies and Factory Automation, Hamburg, 2008.
[94] R.J.J. Stamm'Ler, M.J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design, Academic
Pr, 1983.

[95] P. Abagyan, V.I. Golubev, N.D. Golyaev, A.V. Zvonareyv, Y.F. Koleganov, M.N. Nikolaev, M.Y. Orlov,
Propagation of neutrons in uranium dioxide Il. Doppler effect in U238, Atomic Energy, 25 (1968) 1090-1094.
[96] D. Jensen, L.Y. Tumer, T. Kurtoglu, Modeling the propagation of failures in software-driven hardware
systems to enable risk-informed design, in: ASME (Ed.) International Mechanical Engineering Congress and
Exposition, Boston, MA, 2008.

[97] D. Jensen, LY. Tumer, T. Kurtoglu, Design of an Electrical Power System using a Functional Failure and
Flow State Logic Reasoning Methodology, in: P. Society (Ed.) Prognostics and Health Management, San
Diego, 20009.

[98] D. Weld, J. de Kleer, Readings in qualitative physics, Morgan Kauffman, 1987.

[99] K. Forbus, Qualitative Process Theory, Artificial Intelligence, 24 (1984) 85-168.

[100] P. Struss, Mathematical Aspects of Qualitative Reasoning, International Journal of Artificial
Intelligence in Engineering, 3 (1988) 156-169.

[101] B.J. Kuipers, Qualitative Simulation, Artificial Intelligence, 29 (1986) 289-338.

[102] R. Stone, K. Wood, Development of a Functional Basis for Design, Journal of Mechanical Design, 122
(2000) 359-370.

[103] N. Papakonstantinou, D. Jensen, S. Sierla, I. Tumer, Capturing interactions and emergent failure
behavior in complex engineered systems and multiple scales, in: ASME IDETC/CIE, Washington, DC, USA,
2011.

[104] M. Davis, R. Sigal, E.J. Weyuker, Computability, Complexity, and Languages, 1994.

[105] J.E. Gaffney, C.F. Davis An Approach to Estimating Software Errors and Availability, in: Eleventh
Minnowbrook Workshop on Software Reliability, 1988.

[106] N. Papakonstantinou, S. Sierla, I.Y. Tumer, J. D., Using Fault Propagation Analyses for Early Elimination
of Unreliable Design Alternatives of Complex Cyber-Physical Systems, in: ASME IDETC/CIE 2012, Chicago,
Illinois, USA, 2012.

[107] D. Pilone, UML2.0 in a Nutshell, O’Reilly Media Inc, 2005.

[108] D. Rechenthin, Project safety as a sustainable competitive advantage, Journal of Safety Research, 35
(2004) 297-308.

ISBN 978-952-60-4861-1
ISBN 978-952-60-4862-8 (pdf)
ISSN-L 1799-4934

ISSN 1799-4934

ISSN 1799-4942 (pdf)

Aalto University

School of Electrical Engineering

Department of Automation and Systems Technology
www.aalto.fi

O
©
O
a1
N
O m——
o
I —
©
o
-
-

DOCTORAL
DISSERTATIONS

