
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Olli Korjus

Meeting Scheduling Assistant:

Automatic scheduling between heterogeneous
calendar systems

Master’s Thesis
Espoo, September 27, 2012

Supervisor: Professor Tomi Männistö
Instructor: Varvana Myllärniemi M.Sc. (Tech.)

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Olli Korjus

Title:
Meeting Scheduling Assistant: Automatic scheduling between heterogeneous cal-
endar systems

Date: September 27, 2012 Pages: 115

Professorship: Software Engineering Code: T-76

Supervisor: Professor Tomi Männistö

Instructor: Varvana Myllärniemi M.Sc. (Tech.)

Finding a suitable time for a meeting between multiple people is a common prac-
tical problem today. The meeting scheduling process involves sharing information
about one’s availability and negotiating possible meeting times. The process can
often be arduous and time-consuming. There are many software applications that
simplify the scheduling process but they often still require a lot of manual effort
to use or cannot be used to schedule meetings across different organizations.

In this thesis, we design a software architecture for a meeting scheduling system
that allows people to schedule meetings with each other effortlessly and regard-
less of organizational boundaries. The meeting scheduling system finds suitable
meeting times by automatically reading the calendar information of the users
to determine their availability. The calendar information is read directly from
whatever device or system that the user uses to maintain her calendar, such as a
personal mobile phone or a company’s calendar server. Support for each type of
calendar system must be developed separately but the generic interfaces provided
by the meeting scheduling system allow third parties to develop support for any
calendar system.

We also implement a prototype meeting scheduling system based on the architec-
ture. The prototype successfully realizes all of the key features of the architecture.
The prototype consists of a central web server and a client component that runs
on a Nokia N950 mobile phone and reads calendar information from the built-in
calendar of the phone.

The architecture design and the prototype are evaluated in three ways. First,
we verify that the architecture and the prototype adhere to their original spec-
ification. Second, we compare the effortlessness of the prototype with that of
popular existing scheduling applications. Third, a group of experts validates that
the architecture and the prototype fulfill the needs of the users.

Keywords: meeting scheduling, heterogeneity, calendar systems, integra-
tion, automation

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Olli Korjus

Työn nimi:
Aputyökalu kokousaikojen sopimiseen: Automaattinen ajan etsintä heterogeenis-
ten kalenterijärjestelmien välillä

Päiväys: 27. syyskuuta 2012 Sivumäärä: 115

Professuuri: Ohjelmistotuotanto Koodi: T-76

Valvoja: Professori Tomi Männistö

Ohjaaja: Diplomi-insinööri Varvana Myllärniemi

Sopivan ajan löytäminen usean ihmisen väliselle kokoukselle on nykyään ylei-
nen käytännön ongelma. Ajanetsimisprosessissa osallistujat jakavat tietoa omista
aikatauluistaan ja neuvottelevat mahdollisista kokousajoista. Tämä prosessi voi
usein olla työläs ja aikaavievä. Monia ajanetsintäprosessia helpottavia ohjelmis-
tosovelluksia on olemassa, mutta niiden käyttö vaatii usein paljon vaivannäköä
tai niitä ei voi käyttää kokousaikojen sopimiseen eri organisaatioiden välillä.

Tässä työssä sunnittelemme ohjelmistoarkkitehtuurin kokousaikojenetsi-
misjärjestelmälle, joka mahdollistaa kokousaikojen sopimisen vaivattomasti
ja piittaamatta eri organisaatioiden välisistä rajoista. Kokousaikojenetsi-
misjärjestelmä lukee automaattisesti käyttäjien kalenteritietoja selvittääkseen
heidän aikataulunsa ja löytääkseen näin kokoukselle sopivat ajat. Kalenteritie-
dot luetaan suoraan mistä tahansa laitteesta tai järjestelmästä jossa käyttäjä
ylläpitää kalenteriaan, kuten henkilökohtaisesta matkapuhelimesta tai yrityksen
kalenteripalvelimelta. Tuki jokaiselle eri tyyppiselle kalenterijärjestelmälle täytyy
kehittää erikseen, mutta kolmannet osapuolet voivat kehittää tuen mille tahan-
sa kalenterijärjestelmälle kokousaikojenetsimisjärjestelmän tarjoamien yleisten
rajapintojen ansiosta.

Kehitämme tässä työssä myös prototyypin kokousaikojenetsimisjärjestelmästä
arkkitehtuurisuunnitelman pohjalta. Prototyyppi toteuttaa onnistuneesti kaikki
arkkitehtuurin avainominaisuudet. Prototyyppi koostuu keskusverkkopalvelimes-
ta ja asiakaskomponentista, joka pyörii Nokian N950-matkapuhelimessa ja lukee
kalenteritietoja puhelimen sisäänrakennetusta kalenterista.

Arkkitehtuuria ja prototyyppiä arvioidaan kolmella tavalla. Ensimmäiseksi var-
mennamme, että arkkitehtuuri ja prototyyppi noudattavat alkuperäistä spesifi-
kaatiota. Toiseksi vertaamme prototyypin ja suosittujen olemassaolevien ajanet-
sintäohjelmien käytön vaivattomuutta. Kolmanneksi ryhmä asiantuntijoita vah-
vistaa, että arkkitehtuuri ja prototyyppi täyttävät käyttäjien tarpeet.

Asiasanat: kokousaikojen etsintä, heterogeenisyys, kalenterijärjestelmät,
integraatio, automaatio

Kieli: Englanti

3

Acknowledgements

Most of all, I wish to thank my instructor Varvana Myllärniemi for all the
guidance and feedback that she has consistently given me during the writing
of my thesis. Her insight and enthusiasm have been an inspiration for me and
the thesis could never have reached the level of quality that it has without
her aid. Also, I wish to thank my supervisor Tomi Männistö for his expertise
and for helping me define the topic of my thesis in the beginning.

In addition, I wish to give my heartfelt thanks to Mikko Raatikainen
for providing frequent and knowledgeable feedback for my thesis. He also
contributed to and was closely involved in the architecture design process.

I also wish to thank Terho Norja and others at Intelligent Precision Solu-
tions and Services Ltd. for their assistance and dedication to the architecture
design process. They provided unique perspective and invaluable comments
that helped shape the architecture into a feasible and valuable solution.

I am also particularly thankful to Jari Pääkkö and Mikko Ylikangas for
their help with developing the prototype implementation but especially for
their joyous company during my work days. I am also grateful to everyone
at SoberIT for making it the best place I can think of to write my thesis.

Finally, I of course want to give special thanks to my family for all their
love and support and especially to my father and brother for setting such a
fine example for me to follow.

Espoo, September 27, 2012

Olli Korjus

4

Abbreviations and Acronyms

API Application Programming Interface
CRM Customer Relationship Management
DS Design Science
EARS Easy Approach to Requirements Syntax
HTTP Hypertext Transfer Protocol
HTML Hypertext Markup Language
IIMS Intelligent Inter-organizational Meeting Scheduler
IPSS Intelligent Precision Solutions and Services Ltd.
MSS Meeting Scheduling System
MVC Model-View-Controller
ORM Object-Relational Mapping
PDA Personal Digital Assistant
REST Representational State Transfer
SMTP Simple Mail Transfer Protocol
UI User Interface

5

Contents

Abbreviations and Acronyms 5

List of Tables 8

List of Figures 9

1 Introduction 10
1.1 Motivation . 10
1.2 Research goals and questions 11
1.3 Scope . 15
1.4 Research methodology . 16
1.5 Structure of the thesis . 20

2 Previous Work 21
2.1 Existing scheduling applications 21
2.2 Previous research . 25

3 Requirements 29
3.1 Important features . 29
3.2 Terminology . 30
3.3 Assumptions . 30
3.4 Detailed requirements . 31

4 Architectural Views 37
4.1 Context diagram . 37
4.2 Functional view . 40
4.3 Information view . 47
4.4 Process sequence view . 52
4.5 Integration view . 54

6

5 Prototype Tool Implementation 59
5.1 Prototype functionality . 59
5.2 Technology choices . 64
5.3 Implementation of the functional elements 66

5.3.1 Central system . 66
5.3.2 Calendar system . 72

5.4 Design and implementation of the interfaces 73
5.4.1 E-mail interface . 73
5.4.2 REST interface . 74
5.4.3 Long polling interface 76
5.4.4 Interface usage sequence 79

6 Evaluation 80
6.1 Traceability from research questions to implementation 80

6.1.1 From research questions to requirements 81
6.1.2 From requirements to architecture 81
6.1.3 From architecture to implementation 82

6.2 Comparison to other existing scheduling applications 84
6.3 Expert evaluation . 87

6.3.1 Evaluation procedure 87
6.3.2 Evaluation of effortlessness 88
6.3.3 Evaluation of the scheduling results 89
6.3.4 Evaluation of integration capabilities 90
6.3.5 Evaluation of privacy protection 91
6.3.6 Other evaluation findings 92
6.3.7 Expert evaluation summary 93

7 Discussion 94
7.1 Answers to the research questions 94
7.2 Threats to the validity of the results 97

8 Conclusions 99
8.1 Conclusions . 99
8.2 Future work . 101

A REST Interface Methods and Fields 109

7

List of Tables

1.1 Summary of the MSS success factors. 14

2.1 Comparison of existing meeting scheduling applications. 24

3.1 Terminology used in this thesis. 30
3.2 Assumptions made regarding the problem area. 31
3.3 Integration and privacy requirements. 32
3.4 Group and available times customization requirements. 32
3.5 Meeting creation requirements. 33
3.6 Meeting time finding requirements. 34
3.7 Meeting notification and response requirements. 35

4.1 Decisions regarding the context of the MSS. 38
4.2 Decisions regarding the functional elements of the MSS. 40
4.3 Decisions regarding the information in the MSS. 48
4.4 Information elements in the MSS. 51
4.5 Decision regarding the adding of the meeting event to calendars. . 52
4.6 Decisions regarding the integration capabilities of the MSS. 55

5.1 Scheduler database table summary. 70
5.2 HTTP methods accepted by the REST interface. 74
5.3 Long polling interface response types. 77

6.1 Omitted requirements in the prototype. 83
6.2 Comparison of MSS architecture and MSS prototype. 84
6.3 Comparison of existing scheduling applications and MSS. 86

A.1 REST interface resource URLs. 109
A.2 REST interface methods for each resource. 110
A.3 Data fields of the Meeting REST resource. 111
A.4 Data fields of the Time Period REST resource. 113
A.5 Data fields of the Request Response REST resource. 114
A.6 Data fields of the User REST resource. 115
A.7 Data fields of the Group REST resource. 115

8

List of Figures

2.1 Screenshot of Doodle web service. 23

4.1 Context diagram of the MSS. 39
4.2 Functional view of the MSS. 42
4.3 Information view of the MSS. 50
4.4 Scheduling process sequence diagram. 53
4.5 Integration of different types of calendar systems to the MSS. . . . 56
4.6 Interface usage sequence diagram. 58

5.1 Screenshot of the prototype client script output. 60
5.2 Screenshot of the prototype meeting creation form. 61
5.3 Screenshot of the prototype meeting detail view. 62
5.4 Screenshot of the prototype administrator website. 63
5.5 Solution stack of the MSS prototype. 65
5.6 Prototype functional view. 67
5.7 Database diagram of the Scheduler database. 69
5.8 Prototype interface sequence diagram. 79

9

Chapter 1

Introduction

In this chapter, we introduce the problem area, define the focus of the re-
search by setting research questions and the limits to our scope. We also
describe the research methods that we have chosen for this thesis.

1.1 Motivation

Finding a suitable time for a meeting between multiple people is a common
practical problem in many work places. The meeting scheduling process usu-
ally involves sending and receiving meeting time proposals back and forth
between the participants until a suitable time is found. This is an arduous
and time consuming task and can often lead to situations where some par-
ticipants might agree to times that are not the most suitable for them just
because they want to get the scheduling process over with.

The main challenge behind meeting scheduling is the fact that one par-
ticipant is only familiar with her own calendar events and thus only knows
which times are suitable for her and not the others. So, to be able to compare
everyone’s free times, and to find the time that is suitable for all, the free
times need to be elicited individually from each participant, which can cause
a significant amount of work depending on the method of communication
(e.g. talking, phone, email etc.)

Many software applications exist which can help people share calendar
information more easily. Some of them, for example Microsoft Exchange
(Microsoft Corporation, 2011), enable the automatic sharing of electronic
calendars between groups of people. This way, one person can quickly see
which times are available for others and schedule a meeting appropriately.
Other applications, such as Doodle (Doodle AG, 2012), provide a conve-
nient way for people to inquire and share the available times that they have

10

CHAPTER 1. INTRODUCTION 11

checked from their calendars themselves. However, all of these applications
often have some limitations to their usefulness. For example, the sharing
of calendars can usually only happen between users of the same application
and within a single organization. Thus, people wanting to schedule a meeting
between other people in different organizations still need to resort to e-mail
or telephone discussions. The limitation with the applications that share
manually checked times is that checking your own available times by hand
is cumbersome and it can take a long time for all participants to share their
times.

Despite the large offering of scheduling tools available, there does not seem
to be an optimal solution that would allow easy meeting scheduling across
organizations. In this thesis, we study the problems that are involved in
designing such a solution and describe a software architecture for a Meeting
Scheduling System (MSS) that is effortless to use and support scheduling
across organizational boundaries.

1.2 Research goals and questions

We intend the MSS to be useful to anyone and everyone who might be strug-
gling to find suitable times for meetings. Because of this, we aim to design the
MSS to be easy to take into use by a broad audience. There are many things
that influence how fast a new innovation, such as the MSS, is adopted by the
prospective users. Such things are, for example, the communication channels
through which information about the innovation spreads or the social system
within which the adoption occurs but also, of course, the characteristics of
the innovation itself (Rogers, 1995). The characteristics of the innovation
are the most interesting of these factors for us since in this thesis we are
designing the innovation (the MSS) and its characteristics.

The characteristics of an innovation that affect its adoption are its relative
advantage, compatibility, complexity, trialability and observability (Rogers,
1995). Relative advantage (Rogers, 1995) means that users perceive the inno-
vation to be somehow better than previous solutions. Compatibility (Rogers,
1995) refers to how well the innovation matches with existing values, needs
and the past experiences of the users. The adoption happens slowly if users
have to change their values or learn new behavioral patterns to be able to
utilize the innovation. Complexity (Rogers, 1995) measures how difficult it
is for the users to understand and use the innovation. Trialability (Rogers,
1995) is the possibility of the users to test the innovation in some limited
format. Adoption is likely to be faster if the users are able to evaluate the
benefits of the innovation without having to commit to it too strongly. Ob-

CHAPTER 1. INTRODUCTION 12

servability (Rogers, 1995) means how well the results of the innovation are
visible to others. If an innovation has high observability, the news of its
usefulness reach prospective new users quickly.

Based on our own experience on using existing meeting scheduling appli-
cations and other software, we have identified four success factors for the MSS
which address these important characteristics defined by Rogers (1995): The
MSS should offer something that existing scheduling systems do not, provide
satisfactory results, be easy to take into use and protect the privacy of the
users.

The most important characteristic of an innovation such as a software
application is to have a relative advantage to other similar applications. That
is, the application should be better than competing applications in some
way. Many applications already exist that attempt to solve the problems
related to meeting scheduling but most of them have some limitations that
make them sub-optimal for certain usage scenarios. Some require a lot of
manual effort to use while some require that all participants use the same
system, thus usually confining the scheduling capabilities to within a single
organization. So, to improve upon these existing systems, the MSS should
enable the easy scheduling of meetings over heterogeneous calendar systems
and organizational boundaries.

Also related to providing a relative advantage, the MSS should deliver
results that the users are satisfied with so that it is at least not any
worse than the other systems in this regard. This is a fairly obvious criterion
but we feel it is an important success factor for the MSS. The reason is that
while meeting scheduling is a process that is a suitable target for automation
due to its repetitive nature, the quality of the results from a fully automated
scheduling process is more difficult to guarantee. This is because the calendar
from which an automated process would determine a user’s availability is
not a perfect source of information. People do not always record all of their
schedule in a calendar (Ehrlich, 1986). For example, someone might not
mark their regular lunch break in their calendar but would still prefer not to
have meetings at that time. Also, the other participants of the meeting could
influence which times a person wants to make available for that meeting. For
example, some people might want to meet with customers only on mornings
but would be willing to meet coworkers at any time. In cases such as these,
it is only the person herself who can truly know what times are suitable for
her and a completely automated process would fail to provide good results.
A way in which this problem could be alleviated is to allow the users to
somehow provide input to the automated scheduling process in order to get
better results. On the other hand, of course, requiring the users to contribute
too much effort into the process would defeat the point of the automation in

CHAPTER 1. INTRODUCTION 13

the first place so a balance between automation and manual effort must be
found.

To avoid too much complexity, the MSS should be easy to learn and
simple to deploy. The amount of new things that the users have to learn is
minimal if the MSS takes as much advantage as possible from other software
applications or systems that the users have already learned to use. Specifi-
cally in our case, the users should not have to learn to use an entirely new
calendar or scheduling system but, instead, the MSS should utilize the cal-
endar systems that the users are already familiar with, such as the calendar
on their mobile phone or other device. Allowing the users to use the same
calendar systems that they have used before is also a great way to ensure
that the MSS is compatible with their previous values and experiences, which
should make them more readily adopt it. Utilizing existing calendar systems
also has a positive impact on the trialability of the MSS because the users
are able to quickly test the MSS without too many new things to learn and
slow them down.

In this thesis, being simple to deploy refers to how well the application is
supported on the software and hardware environments that different people
might be using it on. Or, if such support for a specific environment doesn’t
already exist, how easily it can be developed. To facilitate this, the software
application should be designed to be open and easily integrable to external
systems and as free from various technological constraints as possible.

We believe that one important success factor for any system is to protect
the privacy of the users. This is related to providing a relative advantage
to other solutions because the privacy protection should be at least on the
same level if not better than on competing systems. Privacy is also one
aspect of compatibility with existing values and past experiences because
people want their calendar data to remain private and have come to expect
that from the other calendar related applications that they use. Privacy
preservation is an interesting problem for us because the entire purpose of
the MSS is to give users more information on the availability of others but at
the same time the users should not be able to see too much private calendar
information of the others. Finding the right balance between privacy and
exposing enough information for the MSS to function is not trivial.

The success factors and the innovation characteristics they address are
summarized in Table 1.1.

The one characteristic that our success factors do not address is observ-
ability. The results of the MSS are not very visible to those that are not
already using it because the meeting times scheduled for others just are not
relevant to them. However, we believe this problem is offset by the fact that
users who have gotten good results with the MSS are likely to recommend

CHAPTER 1. INTRODUCTION 14

Table 1.1: Summary of the MSS success factors.

Success factor How to realize Related innovation
characteristic

Be better than
competing applica-
tions.

Enable easy scheduling across
heterogeneous calendar sys-
tems and organizational
boundaries.

Relative advan-
tage.

Provide satisfying
results.

Automate certain parts of the
scheduling process but allow
users to provide input to the
process.

Relative advan-
tage.

Be easy to learn
and simple to de-
ploy.

Utilize existing calendar sys-
tems and make it easy to de-
velop support for new calendar
systems.

Complexity, com-
patibility, trialabil-
ity.

Protect the privacy
of the users.

Prevent private calendar infor-
mation of the users from being
visible to other people.

Relative advan-
tage, compatibil-
ity.

it for others because the existing users benefit from the MSS even further if
they are able to schedule meetings with more of their associates.

The success factors together represent what we envision the MSS to be.
They can be combined into the following vision statement for the MSS:

A system that automatically utilizes the heterogeneous calendar
systems of the users to help schedule meetings effortlessly and ac-
curately over organizational boundaries while protecting the pri-
vacy of the users’ calendar data.

The research goals for this thesis are to find solutions to the problems
regarding the success factors of the MSS. We have condensed the research
goals into the following research questions:

RQ1 How to enable the scheduling of meetings between people who use
heterogeneous calendar systems in a way that is more effortless than
with currently existing tools or methods?

RQ2 How to ensure that the scheduled meeting times are satisfactory to the
users?

CHAPTER 1. INTRODUCTION 15

RQ3 How to enable the MSS to take advantage of a wide variety of existing
calendar systems?

RQ4 How to avoid exposing too much user’s private calendar information
to other users while allowing the MSS to function effectively?

The contribution of this thesis is the comprehensive design and documen-
tation of a software architecture for the MSS. We will also demonstrate the
feasibility of the architecture by creating a prototype implementation of it
and evaluating how well the implementation fulfills the objectives set for the
architecture.

1.3 Scope

One of the success factors for the MSS discussed in Section 1.2 and the idea of
the research question RQ3 was making the MSS integrable to a wide variety
of different calendar systems. While we will be designing the architecture so
that it allows integration with as many types of calendar systems as possible,
we will primarily focus on integrating the MSS with calendars on mobile
phones or other mobile devices. The reason is that this thesis is made as a
part of a larger research project and mobile phones are the focus area of that
project as well.

To further clarify the intended scope of this thesis, in this section we
highlight some possible focus points relating to the problem area that we are
deliberately leaving out of our research.

We will not focus on the design of algorithms for the various tasks within
the MSS. The performance of the MSS is not something that we intend
to study rigorously in this thesis and the optimization of the algorithms
would mostly only contribute to performance. Instead, we are interested in
researching the suitable distribution of responsibility between the users of
the MSS and the automated process of the MSS itself. Therefore, in a sense,
it is more important to us to know what the MSS does rather than how it
does it.

We are not interested in doing user interface- or user experience research
in this thesis. The final implementation of the MSS would surely benefit from
having a well designed and intuitive user interface that provides sufficient
guidance to the users since it is intended to be used by a large audience
of non-experts in their daily life. Other possible features to improve the
user experience could be, for example, taking holidays automatically into
account when suggesting meeting times and providing travel schedules for
the users based on the location of the meeting. However, since we are only

CHAPTER 1. INTRODUCTION 16

making a prototype implementation of the MSS architecture, and only seek
to demonstrate that the basic functionality of the MSS is viable, we find that
focusing on the user experience is unnecessary at this point.

Note, however, that while we are not focusing on the actual ease-of-use of
the MSS, we are interested in the ease-of-deployment instead, as mentioned in
Section 1.2. With ease-of-deployment we refer to how well the MSS supports
different platforms and calendar systems and how the users of those systems
can take advantage of the MSS. Ease-of-deployment could also mean the
simplicity of the process of installing the MSS to a given platform but we will
not be focusing on that problem since it is not as significant architecturally.

In Section 1.2, we mentioned how a person’s calendar does not necessarily
accurately imply when that person is available for a meeting and we stated
two reasons for this. One was that people do not always record their complete
schedule in their calendar. The other one was that people might want to
meet certain people only at certain times, which could be referred to as the
social context of the meeting. However, most often meetings also have other
contexts that can influence whether a person is available for that meeting,
such as the location or the topic of the meeting. The location can matter
because a person needs time to get to the location from wherever she is
before the meeting and there might not be enough free time in that person’s
schedule to travel there. The topic of the meeting could be relevant if users
want to dedicate a certain time for meetings with certain topics or assign
different priorities to different topics and only participate in meetings that
are of high priority. However, in this thesis the only context that we will
be focusing on is the social context. This is because we want to limit the
complexity of the problem area that we are researching and we think that
the social context is the most relevant one for our research.

1.4 Research methodology

Any research strategy in software engineering is composed of three different
parts: research setting, approach and validation (Shaw, 2001). Research set-
ting defines the problem that is being solved and it is primarily determined by
the types of research questions that the researchers ask. Research approach
refers to the types of results that are produced by the research to answer the
research questions. Finally, the purpose of validation is to demonstrate that
the research results are valid and useful. All of the three parts of the re-
search strategy should be planned carefully so that they support each other.
They should also be presented clearly in the research paper to effectively
communicate the results to the readers (Shaw, 2003).

CHAPTER 1. INTRODUCTION 17

A classification of different types of research questions, results and vali-
dation techniques has also been developed by Shaw (2002). The type of all of
the research questions in this thesis is design of a particular instance (Shaw,
2002) because all of the questions are about solving problems regarding a
specific application rather than software development in general. Following
this, the results of this thesis are of the type specific solution (Shaw, 2002)
because we are designing a software architecture and a prototype for a spe-
cific application that incorporates the answers to our research questions. The
type of validation that we employ in this thesis is evaluation (Shaw, 2002)
because we perform the validation by evaluating how well the architecture
design and the prototype match the requirements that were elicited for them.
Additionally, we allow a group of experts to evaluate the feasibility of the
architecture and how well it fulfills their needs for the system.

Because the research setting and the research approach of this thesis focus
on the creation of a specific solution, we have chosen Design Science (DS) as
our research methodology. DS is a suitable methodology for this thesis since
its goal is to ”create things that serve human purposes” (March and Smith,
1995). Many different frameworks for conducting DS research have been
proposed (Hevner et al., 2004; Gregor and Jones, 2007) but the framework
that we chose for this study is the one proposed by Peffers et al. (2007).
Their framework is a combination of common elements from several prior
DS frameworks.

The framework consists of the following six activities:

1. Problem identification and motivation: Define what actually is
the problem under research and justify how a solution to it would be
valuable (Peffers et al., 2007).

2. Define the objectives for a solution: Elicit objectives for the so-
lution that it has to fulfill to properly address the previously identified
problems (Peffers et al., 2007).

3. Design and development: Based on the objectives, design and cre-
ate an artifact which can be applied to solve the problem (Peffers et al.,
2007).

4. Demonstration: Use the artifact to solve an instance of the problem
to demonstrate that it is appropriate for the task (Peffers et al., 2007).

5. Evaluation: Measure and compare the results from the use of the
artifact with the objectives defined beforehand and evaluate how well
the artifact fulfills its purpose (Peffers et al., 2007).

CHAPTER 1. INTRODUCTION 18

6. Communication: Communicate the background, methods, and re-
sults of the study to relevant audiences to spread the new knowledge
(Peffers et al., 2007).

In the text below, we explain how each of these six activities is performed
in this thesis.

We identified the problems with meeting scheduling through personal
experience and discussions with other people. Finding a suitable time for a
meeting has time and time again proven to be a tedious task that requires
close communication between the participating people. The vast offering of
various meeting scheduling and calendar applications would indicate that
there is a demand for such things. This, in turn, speaks something about the
prevalence of the problem. Despite the existence of a multitude of assisting
applications, meeting scheduling is still often problematic in some situations,
such as in cross-organizational scheduling, due to the limitations of the ap-
plications. We believe that many of the problems in the existing applications
can be overcome and that the new solution would not only reduce the amount
of manual work required but also save time and provide better results. The
research problem and motivation are described in more detail in Section 1.1.

Since the problem that we are addressing was identified from personal
experience, we were also mostly able to determine ourselves which are the
necessary objectives for the solution. We decided that in addition to, of
course, solving the obvious problems at hand, the new solution should also
have other qualities that make it appealing to more people. Such qualities
are, for example, the usefulness of the results, ease-of-deployment and pri-
vacy. To help us in defining the objective for the solution, we collaborated
with our research partner on the industry side, Intelligent Precision Solutions
and Services Ltd. (IPSS). IPSS is a company that provides technology so-
lutions for businesses to manage their customer relationships and to utilize
their customer data to increase sales. They are interested in possibly apply-
ing the results of this thesis to actual products and were able to provide us
with a better perspective to the solution from the end user’s point of view.
The objectives that we defined for the MSS are explained in more length in
Section 1.2.

We began designing the artifact by eliciting a number of more detailed
requirements for the MSS based on the objectives that we had defined pre-
viously. The requirements were formulated partly from our own needs for
the MSS and partly from the needs that we estimate a typical user of the
MSS to have. Many of the requirements also came from IPSS and they were
very helpful in providing us with insight into the end user needs. IPSS also
validated all of the requirements to ensure that they are realistic from an end

CHAPTER 1. INTRODUCTION 19

user’s point of view. We prioritized the individual requirements on a scale
of high/medium/low based on how important we felt that the requirements
were to achieving the purpose of the MSS. Once the detailed requirements for
the MSS began to clarify, we started designing the software architecture by
identifying what kind of functional components there would have to be in the
MSS and what kind of information they would be handling. We decided, for
example, what was the network topology between the different components
and what tasks each of them would do. IPSS, again, helped us by provid-
ing their insight into architectural challenges that didn’t have a single clear
answer, such as the specifics of balance between user privacy and informa-
tion availability. After the most significant decisions about the architecture
had been made, we began developing the prototype implementation of the
MSS. We chose only the most crucial features of the MSS, that are key to
demonstrating the ideas behind the architecture, to be implemented to keep
the required effort reasonable in the scope of this thesis. The technologies
we used were selected mostly on the basis of what was familiar to us from
previous experience. All of the parts of the design, the requirements; the
architecture; and the implementation, were iterated over several times dur-
ing the design process as the problem area became more familiar to us. The
requirements that we elicited for the MSS can be found in Chapter 3. The
software architecture for the MSS is documented in Chapter 4 and details
about the implementation are described in Chapter 5.

We successfully implemented all of the important features of the archi-
tecture in the prototype, which demonstrates that the architecture design
is suitable for solving the problem. However, we have not used the prototype
in an actual usage scenario so we mainly evaluate the architecture through
other methods.

We evaluated the artifact by validating and verifying the architecture
and the prototype using various methods. Validation was a constant pro-
cess alongside the architectural design process. We frequently presented the
progress of the architecture design and the prototype to IPSS and they pro-
vided feedback and insight for the design process. Additionally, we held a
larger, slightly more formal evaluation session at the end of the design pro-
cess where the experts at IPSS evaluated the complete architecture as well as
the prototype. We did verification by tracing the prototype implementation
and the architecture back to the requirements and research questions which
are the basis of the design. In addition, we compared the effortlessness of the
MSS scheduling process against that of some other meeting scheduling appli-
cations. The results of our evaluation methods are documented in Chapter
6.

This thesis itself is the main method of communicating the knowl-

CHAPTER 1. INTRODUCTION 20

edge that we have gained in our research. The relevant audiences that
would most likely benefit from this thesis are software architects and other
technologically-oriented people. Chapter 1 should also give a clear picture
of the problem area and an overview of the solution to less technologically-
oriented audiences. Additionally, we have presented the problem, the archi-
tecture design and the prototype in poster sessions at two quarterly review
events of the Finnish Cloud Software Program. The audience of the review
events consisted of representatives from academic and software industry or-
ganizations.

1.5 Structure of the thesis

The rest of the thesis is structured as follows: In Chapter 2, we study the
previous work that has been done in the field of meeting scheduling. This
includes analyzing existing scheduling software applications and presenting
some previous research based on the literature. In Chapter 3, we introduce
the key features and the requirements for the MSS. Chapter 4 documents the
architecture design for the MSS and also contains some discussion about the
major architectural decisions that we have made. In Chapter 5, we describe
the prototype of the MSS in detail and explain how we implemented it.
In Chapter 6, the validity of the architecture is evaluated in various ways.
Chapter 7 contains discussion about the results of the thesis. Finally, Chapter
8 concludes the thesis.

Chapter 2

Previous Work

The finding of a suitable time for a meeting is a very common practical
problem and, to solve it, numerous calendaring and scheduling software ap-
plications have been created over the years. Meeting scheduling has also
been the topic of some scientific research. In this chapter, we describe some
of the meeting scheduling software that already exists today and highlight
examples of previous research relating to the problem area.

2.1 Existing scheduling applications

The amount of different calendar or scheduling software applications avail-
able in the internet is vast. The applications can either be web services or
installable on the users’ own devices. Installable applications are available for
desktop computer operating systems, such as Microsoft Windows (Microsoft
Corporation, 2012b); Apple OS X (Apple Inc., 2012a) and Linux, and also for
mobile operating systems, such as Apple iOS (Apple Inc., 2012b) and Google
Android (Google, 2012a). In addition, mobile operating systems often have
a built-in calendar application.

Not all applications offer actual meeting scheduling features. Many are
simply electronic calendars that help users keep track of their own appoint-
ments. However, many applications do offer the functionality to simplify
meeting scheduling. We divide those applications that have scheduling fea-
tures into two categories Applications in the first category allow users to
share their calendar with other people. Applications in the second category
allow one user to make time slot suggestions that other users can then mark
as suitable or unsuitable.

Popular calendar applications Microsoft Exchange calendar (Microsoft
Corporation, 2011) and Google Calendar (Google, 2012b) fall into the first

21

CHAPTER 2. PREVIOUS WORK 22

category (calendar sharing). While Google Calendar is a web service and
Microsoft Exchange can be used either with a web or a desktop client, they
both offer largely the same features. They provide the user with one or more
calendars where the users can record their appointments and other events.
Users can choose to allow other users who are in the same domain to have
access to their calendar and see when they are busy or available. Domains are
set up by system administrators and are usually limited to a single organiza-
tion. The sharing of calendars makes it easy to schedule meetings as one user
can see at a glance when every participant is available. This saves the par-
ticipants from having to manually communicate their available times to each
other. Microsoft Exchange and Google Calendar also allow the organizer
to send meeting invitations to people who have not shared their calendar
but the applications cannot assist in actually scheduling meetings with these
people. The meeting invitations are sent via e-mail and the meeting details
are included in a standard iCalendar format (Dawson and Stenerson, 1998).
Other calendar applications that support the iCalendar format may then be
able to add the meeting automatically to the participant’s calendar.

Examples of the second category (manual time slot suggestions) are ap-
plications called Doodle (Doodle AG, 2012) and Meetin.gs (Meetin.gs Ltd,
2012). Doodle is a web service that allows anyone to create scheduling ”polls”
where they can initially select multiple date and time options for a meeting.
The poll creator can invite other people to the meeting by providing them
with a link to the poll. The other participants can then use the link to see
the time slots proposed by the poll creator and can mark on each proposal if
that time is suitable, unsuitable, or in some cases ”possible if absolutely nec-
essary” for them. The poll creator and optionally other participants are able
to see all the answers given by the participants and based on these answers
the organizer can select and confirm the time slot that she feels is the most
suitable for everybody. A screenshot of Doodle can be seen in Figure 2.1.
This arrangement simplifies the scheduling process because it removes the
participants’ need to communicate their times directly with each other. On
the other hand, the selection of the time suggestions by the organizer and the
marking of suitable times by the participants still requires a lot of manual
effort from the users. Meetin.gs is another web service that uses the same
scheduling principle as Doodle but also has other features related to organiz-
ing meetings, such as a messaging board and meeting material management
capabilities.

There are also some scheduling applications that are not intended for
meeting scheduling but instead offer more specific or refined scheduling fea-
tures for certain environments or use cases. Hello Scheduling (Hello Indus-
tries, Inc., 2010), for example, is geared towards employee scheduling and

CHAPTER 2. PREVIOUS WORK 23

Figure 2.1: A screenshot of Doodle web service. In this view an invited user
can mark which times are suitable and unsuitable for her and see how other
users have responded.

CHAPTER 2. PREVIOUS WORK 24
T

ab
le

2.
1:

C
om

p
ar

is
on

of
h
ow

d
iff

er
en

t
st

ep
s

of
th

e
sc

h
ed

u
li
n
g

p
ro

ce
ss

ar
e

d
on

e
in

so
m

e
of

th
e

ex
is

ti
n
g

m
ee

ti
n
g

sc
h
ed

u
li
n
g

ap
p
li
ca

ti
on

s.

A
p

p
li
ca

ti
o
n

S
el

ec
ti

n
g

p
a
rt

ic
ip

a
n
ts

F
in

d
in

g
fr

ee
ti

m
es

A
g
re

ei
n

g
o
n

a
ti

m
e

A
d
d

in
g

th
e

ev
en

t
to

a
ca

le
n

d
a
r

M
ic

ro
so

ft
E

x
ch

a
n

g
e

A
n
y

e-
m

a
il

a
d

d
re

ss
.

C
a
le

n
d

a
rs

o
f

o
th

er
M

ic
ro

so
ft

E
x
ch

a
n

g
e

u
se

rs
w

h
o

a
re

in
th

e
sa

m
e

d
o
m

a
in

a
re

v
is

ib
le

to
th

e
o
rg

a
-

n
iz

er
so

sh
e

is
a
b

le
to

se
le

ct
a

su
it

a
b

le
ti

m
e.

T
h

e
a
p

p
li
ca

ti
o
n

a
ls

o
su

g
g
es

ts
ti

m
es

.
+

N
o

eff
o
rt

n
ee

d
ed

fr
o
m

p
a
rt

ic
ip

a
n
ts

+
F

re
e

ti
m

es
a
re

fo
u

n
d

im
m

ed
ia

te
ly

-
N

o
h

el
p

fo
r

sc
h

ed
u

li
n

g
w

it
h

p
eo

p
le

w
h

o
a
re

n
o
t

in
th

e
sa

m
e

d
o
m

a
in

o
r

u
se

a
d

iff
er

en
t

a
p

p
li
ca

ti
o
n

-
M

u
st

sh
a
re

a
t

le
a
st

fr
ee

ti
m

es
fr

o
m

th
e

w
h

o
le

ca
le

n
d

a
r

O
rg

a
n

iz
er

se
le

ct
s

a
ti

m
e.

M
ee

ti
n

g
in

v
it

a
-

ti
o
n

is
se

n
t

v
ia

e-
m

a
il

in
iC

a
le

n
d

a
r

fo
rm

a
t

w
h

ic
h

th
e

p
a
rt

ic
ip

a
n
ts

ca
n

a
c-

ce
p

t,
a
cc

ep
t

te
n
ta

ti
v
el

y
o
r

d
ec

li
n

e.
P

o
ss

ib
le

to
re

sc
h

ed
u

le
.

A
d

d
ed

a
u

to
m

a
ti

ca
ll

y
b
y

M
i-

cr
o
so

ft
E

x
ch

a
n

g
e

a
n

d
p

o
ss

ib
ly

o
th

er
a
p

p
li
ca

ti
o
n

s
b

a
se

d
o
n

a
n

iC
a
le

n
d

a
r

fi
le

in
cl

u
d

ed
in

th
e

e-
m

a
il
.

+
N

o
m

a
n
u

a
l

eff
o
rt

re
q
u

ir
ed

G
o
o
g
le

C
a
le

n
d

a
r

A
n
y

e-
m

a
il

a
d

d
re

ss
.

C
a
le

n
d

a
rs

o
f

o
th

er
G

o
o
g
le

C
a
le

n
d

a
r

u
se

rs
w

h
o

h
a
v
e

sh
a
re

d
th

em
a
re

v
is

ib
le

to
th

e
o
rg

a
n

iz
er

so
sh

e
is

a
b

le
to

se
le

ct
a

su
it

a
b

le
ti

m
e.

T
h

e
a
p

p
li
ca

-
ti

o
n

a
ls

o
su

g
g
es

ts
ti

m
es

.
+

N
o

eff
o
rt

n
ee

d
ed

fr
o
m

p
a
rt

ic
ip

a
n
ts

+
F

re
e

ti
m

es
a
re

fo
u

n
d

im
m

ed
ia

te
ly

-
N

o
h

el
p

fo
r

sc
h

ed
u

li
n

g
w

it
h

p
eo

p
le

w
h

o
h

a
v
e

n
o
t

sh
a
re

d
th

ei
r

G
o
o
g
le

ca
le

n
d

a
rs

-
M

u
st

sh
a
re

a
t

le
a
st

fr
ee

ti
m

es
fr

o
m

th
e

w
h

o
le

ca
le

n
d

a
r

O
rg

a
n

iz
er

se
le

ct
s

a
ti

m
e.

M
ee

ti
n

g
in

v
it

a
-

ti
o
n

is
se

n
t

v
ia

e-
m

a
il

in
iC

a
le

n
d

a
r

fo
rm

a
t

w
h

ic
h

th
e

p
a
rt

ic
ip

a
n
ts

ca
n

a
c-

ce
p

t,
a
cc

ep
t

te
n
ta

ti
v
el

y
o
r

d
ec

li
n

e.
P

o
ss

ib
le

to
re

sc
h

ed
u

le
.

A
d

d
ed

a
u

to
m

a
ti

ca
ll

y
b
y

G
o
o
g
le

C
a
le

n
d

a
r

a
n

d
p

o
ss

ib
ly

o
th

er
a
p

-
p

li
ca

ti
o
n

s
b

a
se

d
o
n

a
n

iC
a
le

n
d

a
r

fi
le

in
cl

u
d

ed
in

th
e

e-
m

a
il
.

+
N

o
m

a
n
u

a
l

eff
o
rt

re
q
u

ir
ed

D
o
o
d

le
S

h
a
re

a
li
n

k
b
y

a
n
y

m
ea

n
s.

A
ls

o
p

o
ss

ib
le

to
se

n
d

e-
m

a
il

d
ir

ec
tl

y
fr

o
m

th
e

se
rv

ic
e.

+
F

re
ed

o
m

to
ch

o
o
se

h
o
w

to
sh

a
re

th
e

li
n

k

O
rg

a
n

iz
er

cr
ea

te
s

d
a
te

a
n

d
ti

m
e

su
g
g
es

ti
o
n

s.
P

a
r-

ti
ci

p
a
n
ts

m
a
rk

w
h

ic
h

ti
m

es
a
re

su
it

a
b

le
fo

r
th

em
.

+
P

a
rt

ic
ip

a
n
ts

d
o

n
o
t

n
ee

d
to

sh
a
re

ca
le

n
d

a
rs

-
O

rg
a
n

iz
er

m
u

st
g
u

es
s

g
o
o
d

su
g
g
es

ti
o
n

s
-

P
a
rt

ic
ip

a
n
ts

h
a
v
e

to
m

a
n
u

a
ll
y

ch
ec

k
a
n

d
m

a
rk

th
ei

r
fr

ee
ti

m
es

-
C

o
u

ld
ta

k
e

a
lo

n
g

ti
m

e
fo

r
p

a
rt

ic
ip

a
n
ts

to
re

-
sp

o
n

d
w

h
il
e

si
tu

a
ti

o
n

m
ig

h
t

ch
a
n

g
e

O
rg

a
n

iz
er

se
le

ct
s

o
n

e
o
r

m
o
re

o
f

th
e

su
g
-

g
es

te
d

ti
m

es
.

P
o
ss

i-
b

le
to

ch
a
n

g
e

se
le

ct
io

n
la

te
r.

M
a
n
u

a
ll
y.

P
o
ss

ib
le

to
a
ls

o
ex

-
p

o
rt

a
n

iC
a
le

n
d

a
r

fi
le

w
h

ic
h

h
a
s

th
e

m
ee

ti
n

g
d

a
ta

.
P

o
ss

ib
le

to
a
d

d
d

ir
ec

tl
y

to
G

o
o
g
le

C
a
le

n
-

d
a
r.

P
o
ss

ib
le

to
a
d

d
d

ir
ec

tl
y

to
M

ic
ro

so
ft

O
u

tl
o
o
k

o
r

A
p

p
le

iC
a
l

v
ia

p
lu

g
-i

n
s.

-
R

eq
u

ir
es

m
a
n
u

a
l
eff

o
rt

o
r

p
lu

g
-

in
s

M
ee

ti
n

.g
s

A
n
y

e-
m

a
il

a
d

d
re

ss
.

O
rg

a
n

iz
er

cr
ea

te
s

d
a
te

a
n

d
ti

m
e

su
g
g
es

ti
o
n

s.
P

a
r-

ti
ci

p
a
n
ts

m
a
rk

w
h

ic
h

ti
m

es
a
re

su
it

a
b

le
fo

r
th

em
.

+
P

a
rt

ic
ip

a
n
ts

d
o

n
o
t

n
ee

d
to

sh
a
re

ca
le

n
d

a
rs

-
O

rg
a
n

iz
er

m
u

st
g
u

es
s

g
o
o
d

su
g
g
es

ti
o
n

s
-

P
a
rt

ic
ip

a
n
ts

h
a
v
e

to
m

a
n
u

a
ll
y

ch
ec

k
a
n

d
m

a
rk

th
ei

r
fr

ee
ti

m
es

-
C

o
u

ld
ta

k
e

a
lo

n
g

ti
m

e
fo

r
p

a
rt

ic
ip

a
n
ts

to
re

-
sp

o
n

d
w

h
il
e

si
tu

a
ti

o
n

m
ig

h
t

ch
a
n

g
e

O
rg

a
n

iz
er

se
le

ct
s

o
n

e
o
f

th
e

su
g
g
es

te
d

ti
m

es
.

P
o
ss

ib
le

to
ch

a
n

g
e

se
le

c-
ti

o
n

la
te

r.

M
a
n
u

a
ll
y.

P
o
ss

ib
le

to
a
ls

o
ex

-
p

o
rt

a
n

iC
a
le

n
d

a
r

fi
le

w
h

ic
h

h
a
s

th
e

m
ee

ti
n

g
d

a
ta

.
P

o
ss

ib
le

to
a
d

d
d

ir
ec

tl
y

to
G

o
o
g
le

C
a
le

n
-

d
a
r.

-
R

eq
u

ir
es

m
a
n
u

a
l

eff
o
rt

CHAPTER 2. PREVIOUS WORK 25

allows managers to plans work shifts and breaks for their employees. An-
other example is Mimosa scheduling software (Mimosa Software Ltd., 2012),
which is intended for school and university scheduling with features such as
course prerequisite checking and synchronizing study terms with the calen-
dar.

Table 2.1 summarizes how the four steps of a meeting scheduling process
are done in the four meeting scheduling applications that we introduced in
this section. The advantages and disadvantages of each approach are also
presented with green plus- and red minus points.

2.2 Previous research

While there has been much research about electronic calendar systems in the
past (Kelley and Chapanis, 1982; Kincaid et al., 1985; Payne, 1993; Mosier
and Tammaro, 1997; Blandford and Green, 2001; van den Hooff, 2004), the
topic of meeting scheduling especially in mobile context has received less
attention.

One study regarding mobile meeting scheduling is a user study by Starner
et al. (2004) about what different devices people use to help them schedule
meetings while mobile. The four most used devices in order were memory,
scrap paper, paper-based planners and Personal Digital Assistants (PDAs).
Their study showed that 36% of the people who claimed to use a PDA and
66% of the people who claimed to use a paper-based planner actually used
memory or scrap paper to schedule a meeting. They hypothesized that peo-
ple are more inclined to use a device with a shorter access time. This was
supported by their measurements that paper-based planners and PDAs re-
quired the most time to retrieve the device and navigate to the right time
in the calendar. Overall, the lower the access time was for a device, the
more it was used in the meeting scheduling. On the other hand, people who
relied only on memory confessed that they forget appointments more easily
than those who use paper-based planners or PDAs (Starner et al., 2004).
We would also like to add that while electronic calendars are often slower
and more cumbersome to use than memory or scrap paper, we believe that
the possibility to automate some tasks such as meeting scheduling or syn-
chronization make electronic calendars an appealing option to use even in a
mobile context.

The usage of mobile digital calendars has been studied on several occa-
sions. Wu and Tremaine (2004) interviewed knowledge workers about the
time management tools they use. In addition to mobile calendars, the peo-
ple who were interviewed also used desktop electronic calendars and paper

CHAPTER 2. PREVIOUS WORK 26

calendars. The results showed that the people who were most satisfied with
their time management tools used a combination of mobile and desktop cal-
endars (Wu and Tremaine, 2004). The mobile tool naturally allowed them to
access their calendar at any time while the desktop tool provided them with a
better view of the calendar due to a larger screen. However, there were many
complaints that the synchronization of the calendar between these tools does
not always work well.

The motivations to use electronic calendars rather than paper-based ones
has also been studied by Sell and Walden (2006) through interviews with
a group of professionals. The research results highlighted three different
categories of motivations. Some people have very heavy time management
requirements and they do not believe that they could handle them without
a digital mobile calendar (Sell and Walden, 2006). Other people have the
desire to take advantage of a group calendar, which allows them to see the
calendars of other people and other people to see their calendar (Sell and
Walden, 2006). Thus, they use a digital calendar because they need some
type of a digital tool to access the group calendar. Finally, some people have a
personal interest in the technology of a digital calendar or they feel that using
one is appropriate for their status or position (Sell and Walden, 2006). The
usage of both mobile and desktop electronic calendars together was found to
be popular also in this research and there were also some complaints about
the problems with synchronization.

However, in further research of mobile digital calendar use among knowl-
edge workers, it was revealed that the calendar load of the users did not
affect their view of the mobile calendars’ efficiency (Sell, 2008). The users’
personal interest in technology also did not appear to have an effect on their
satisfaction of using a mobile calendar (Sell, 2008). The factors that did
increase the sense of efficiency of a mobile calendar were the mobility of the
user’s work, the mandatory use of a group calendar and the sense of image
or status that the users associated with mobile calendars.

The topic of automatic meeting scheduling has been the focus of some
research. The comparison of four meeting scheduling methods, including
an automated scheduler, regarding their satisfaction and perceived efficiency
was conducted by Higa et al. (1996). In addition to the automatic scheduler,
the methods under study were face-to-face discussion, e-mail with a specific
time table formatting and free-form e-mail. The results showed that the test
subjects were more satisfied with the meeting time found through face-to-
face discussions than those that came from the automatic scheduler. This
was despite the fact that the automatic scheduler resulted in much fewer
conflicts that forced the subjects to compromise on the meeting time than
face-to-face discussions. Face-to-face discussions were also perceived to be

CHAPTER 2. PREVIOUS WORK 27

more efficient than both of the e-mail based methods and more satisfying than
the formatted e-mail method (Higa et al., 1996). There was no indication in
the study as to why the face-to-face discussions resulted in higher satisfaction
than the automatic scheduler even though the discussions suffered from more
numerous scheduling conflicts. We estimate that the habits and conventions
used in scheduling and the technological level of the scheduler at the time
when the study was conducted could explain this. However, we also assume
that one reason is that people enjoy the feeling of being in control of their
decisions and a completely automatic scheduler takes this control away from
them. For this reason, to maximize the combination of satisfaction and
efficiency of the MSS, we think that it is necessary to find a balance between
automation and allowing the users to control the process.

There has been a lot of research regarding automatic meeting scheduling
systems. Many researchers have built their own prototype scheduling sys-
tems to study some specific feature of the system. For example, Sen and
Durfee (1994) have created a system that can adapt to the environmental
conditions, such as the number of invited people and the system load, to
provide the best performance in scheduling. Haynes et al. (1997) expanded
this same system to allow users to set constraints and preferences, such as
the topic; host; invited people and length of the meeting, into the system
to determine which meetings are scheduled automatically, which ones are
presented to the user for confirmation and which ones are rejected outright.
Bilogrevic et al. (2011) have studied the effectiveness of different privacy-
preserving algorithms in their meeting scheduling system where the poten-
tially malicious central server and other participating devices try to decipher
the calendar information of the user. Jeong et al. (1999) have developed a
meeting scheduling system that can resolve meeting time conflicts by auto-
matically rescheduling previously scheduled meetings. Dent et al. (1992) as
well as Kozierok and Maes (1993) have experimented on intelligent software
agents that can help their users to schedule meetings by automatically learn-
ing the habits and preferences of the users which allows the agents to make
suggestions regarding future meetings.

Most of the automatic meeting scheduling systems in the literature func-
tion in a homogeneous environment. That is, all the participating people
are using the same calendar system. Automatic meeting scheduling in a he-
terogeneous environment has been research only little. One such work is a
conceptual model for an Intelligent Inter-organizational Meeting Scheduler
(IIMS) developed by Glezer (2003). The IIMS allows different organizations
to share knowledge, such as calendars; organizational charts; process flows;
personnel records and goals, between each other even if they are using hetero-
geneous data storages. The organizations can subscribe to receive some type

CHAPTER 2. PREVIOUS WORK 28

of information from other organizations but to do so they must also publish
that type of information from themselves to others. The different pieces of
information in each organizations are mapped to keywords that allow dif-
ferent pieces from different organizations to be recognized as certain type of
knowledge (Glezer, 2003). Enabling cross-organizational scheduling is also
an important goal for the MSS but the IIMS approaches this problem from
a slightly different perspective than we do. The IIMS connects the different
organizations to each other as a whole and the people who use the IIMS are
regarded only as parts of the organization. Conversely, we seek to remove
the organizational boundaries from the system altogether and connect the
people to each other as individuals.

Chapter 3

Requirements

This chapter documents the user needs and requirements that form the basis
of the architectural design. Assumptions that we have made regarding the
problem area are also stated in this chapter. Additionally, some terminology
used in this thesis is explained.

3.1 Important features

In Section 1.2, we stated that the research goals for this thesis are to find
solutions to the problems regarding the success factors that we identified for
the MSS. Based on the success factors we formulated four research questions
for this thesis. We answer these questions by designing a scheduling system
that incorporates the solutions to our problems and we have identified a set of
key features that such a system should have to succeed, taking into account
the scope of the thesis that we set in Section 1.3. These features are:

• Finding suitable meeting times.

• Allowing users to organize meetings through the system.

• Enabling integration with existing calendar systems.

• Allowing users to customize which times from their calendar are used in
the meeting scheduling based on the other participants of the meeting.

• Protecting the privacy of the users’ calendar information.

The features listed here are only the high-level requirements for the MSS.
More detailed lists of requirements are specified in Section 3.4.

29

CHAPTER 3. REQUIREMENTS 30

3.2 Terminology

There are some specific terms that are used consistently throughout this
thesis to refer to certain concepts or parts of the architecture. While they
have been chosen to be as descriptive as possible, some of the terms might
not be instantly understandable to readers. To avoid misunderstandings,
these terms are explained in Table 3.1.

Table 3.1: Terminology used in this thesis.

Term Description

MSS The entire system that is designed in this thesis includ-
ing all of its components: hardware, software etc.

Calendar system Any device, application or other system that contains
the calendar of one or more users. For example, a mobile
phone or a Customer Relationship Management (CRM)
system.

Central system A dedicated component of the MSS that manages all the
scheduling activity and to which all the calendar systems
are connected to.

Scheduling process The entire process of creating a meeting event with a
suitable time slot. Includes gathering suitable times
from users, selecting the time slot, sending meeting in-
vitations and adding the meeting to the participants’
calendar.

Invited user A user of the system who has been invited to a meeting
but has not accepted the invitation yet.

Participant A user of the system who has accepted an invitation to
a meeting.

3.3 Assumptions

The main purpose of this thesis is to design a software architecture and a
prototype implementation for research purposes rather than a full-scale im-
plementation for actual use. Therefore, some assumptions about the problem
domain are made to simplify the challenge and to reduce the scope of the
thesis. The assumptions are listed in Table 3.2.

CHAPTER 3. REQUIREMENTS 31

Table 3.2: Assumptions made regarding the problem area.

ID Description

AS01 Each user only has one calendar which contains all the calendar data
that the users wish to be utilized by the MSS.

AS02 A calendar can only be accessed by the owner of the calendar or by
users authorized by the owner, not by others.

AS03 It is possible to utilize the internet when transferring data.

Assumption AS01 is made because if the MSS had to read data from mul-
tiple calendars with possibly incomplete or conflicting data it would compli-
cate the problem of gathering suitable meeting times too much to be tackled
in this thesis. Notice that this assumption permits a user to have more than
one calendar if only one of them is utilized by the MSS and the user herself
is responsible for synchronizing the data between the calendars. Assumption
AS02 is made because the concerns that we have about privacy in this thesis
are only related to how calendar data is shared within the system and not
how it is accessed by users outside of it. Even more importantly, there is
very little we could do to prevent outside access to the users’ calendar since
they are on external systems which we cannot control. Assumption AS03 is
made so that we don’t have to concern ourselves with designing a custom in-
frastructure for the MSS. This assumption is a reasonable one to make since
most of the mobile devices that we are focusing on also have the capability
to connect to the internet.

3.4 Detailed requirements

The key needs that we have identified for the MSS are described in Section
3.1. In this section, those high-level requirements are divided into much
more detailed functional requirements. The requirements have been given
a priority on the scale of high/medium/low based on how relevant they are
to the key needs for the MSS. A high priority means that the requirement
must be fulfilled or otherwise the MSS does not do what is expected of it. A
medium priority means that the requirement is not absolutely mandatory but
ensures that the MSS functions in a sensible manner. Requirements of low
priority are mostly nice-to-have features. The MSS can work well without
them and they just make it easier to use.

For the sake of clarity and convenience, the list of requirements for the

CHAPTER 3. REQUIREMENTS 32

MSS has been divided into five parts which are presented in the tables be-
low. Each table contains requirements that roughly relate to one of the key
needs of the MSS. The requirements are written using the Easy Approach to
Requirements Syntax (EARS) (Mavin et al., 2009).

Table 3.3: Integration and privacy requirements.

ID Description Priority

R11 The MSS shall be integrable with external calendar sys-
tems in a way that allows the MSS to access the calendar
information on the calendar system.

High

R12 The MSS shall have publicly available interfaces that are
accessible by third party applications.

High

R13 The MSS shall allow third party applications to get, add
and edit meeting scheduling related information through
the interfaces.

High

R14 The MSS shall restrict users to see and edit only the infor-
mation that is relevant to them through the interfaces.

High

R15 The MSS shall prevent users from directly accessing the
calendar information of other users.

High

R16 The MSS shall never send the complete calendar informa-
tion of the users (event details) outside of their calendar
system, only the free time periods.

High

The requirements listed in Table 3.3 describe the integrability of the MSS
as well as the needs for privacy protection. These aspects are very important
for the MSS and are related to research questions RQ3 and RQ4.

Table 3.4: Group and available times customization requirements.

ID Description Priority

R21 The MSS shall allow the users to form groups with other
users.

Medium

R22 The MSS shall allow the users to belong to any number of
user groups (or none at all).

Medium

R23 The MSS shall allow group members to set their group to
be joinable by everyone or just invited users.

Low

CHAPTER 3. REQUIREMENTS 33

Table 3.4: Group and available times customization requirements. (contin-
ued)

ID Description Priority

R24 The MSS shall allow group members to set their group to
be valid for only a certain period of time.

Low

R25 The MSS shall allow the users to specify before the sche-
duling process which periods of time from their calendar
the MSS considers available when scheduling meetings with
each different user group.

High

R26 The MSS shall allow the scheduling of meetings between
users who aren’t in the same group together.

Medium

R27 The MSS shall allow users to set what time periods are
available for scheduling when scheduling a meeting between
users who aren’t in the same group.

Medium

The requirements in Table 3.4 relate to the possibility of the users to
form user groups and to choose how they want to make their time available
to those groups. These features are part of our efforts to ensure that the
users are able to get satisfactory meeting times out of the MSS which is the
problem area of research question RQ2.

Table 3.5: Meeting creation requirements.

ID Description Priority

R31 The MSS shall allow users to create meeting proposals. High
R32 When a user has created a meeting proposal, the user shall

be considered as the organizer for that meeting.
Medium

R33 When the organizer is creating a meeting proposal, the MSS
shall require the organizer to enter at least the following
information before the meeting proposal can be created:
Participants, Topic, Date range, Location, Duration.

Medium

R34 When the organizer is creating a meeting proposal, the MSS
shall require that the organizer selects a user group for the
meeting.

High

R35 When the organizer has selected a user group for the meet-
ing, the MSS shall add all the members of that group to
the meeting as invited users.

Medium

CHAPTER 3. REQUIREMENTS 34

Table 3.5: Meeting creation requirements. (continued)

ID Description Priority

R36 When the organizer is creating a meeting proposal, the MSS
shall allow the organizer to add and/or remove individual
users from the meeting before initiating the scheduling pro-
cess, even if they were added as part of a group.

Medium

Table 3.5 contains the first half of the requirements that relate to the
users’ possibility to organize meetings with the MSS. These requirements
specify how the users create new meeting proposals before the actual schedu-
ling itself can commence. They are part of the basic scheduling functionality
of the MSS which mostly falls under research question RQ1.

Table 3.6: Meeting time finding requirements.

ID Description Priority

R41 When the organizer has created the meeting proposal, the
MSS shall present to the organizer a set of common time
periods during which all the invited users can attend the
meeting.

High

R42 When the MSS is gathering a set of common time periods,
the MSS shall determine a user’s availability at a certain
time by reading data from that user’s calendar.

High

R43 When the MSS is gathering a set of common time periods,
the MSS shall consider a time to be available to a user if
there is no other event at that time and if the user has
specified that time to be available for the user group that
is selected for the meeting being scheduled.

High

R44 The MSS shall present a set of common time periods to the
organizer in less than 10 seconds after the organizer has
created the meeting proposal.

Medium

R45 When the MSS has presented a set of common time periods
to the organizer, the MSS shall allow the organizer to select
a time slot that occurs within the common time periods.

High

R46 When the organizer has selected a time slot, the MSS shall
add the time slot as the time slot for the meeting.

High

CHAPTER 3. REQUIREMENTS 35

Table 3.6: Meeting time finding requirements. (continued)

ID Description Priority

R47 When the MSS has completed the scheduling process for a
meeting and if no common time periods have been found,
the MSS shall present to the organizer a set of the time
periods when the highest amount of invited users are able
to attend.

Medium

R48 While the scheduling process is on-going, the MSS shall
allow all time slots used in the process to be available to
other simultaneous scheduling processes as well.

Low

The most important aspect of the MSS is that it operates on data that
is taken directly from the calendars of the users, which is part of providing
the simplicity talked about in research question RQ1. The requirements in
Table 3.6 specify this aspect and also describe the organizer’s responsibility
to select the actual time slot for the meeting. This is an effort to try and
provide users with more satisfactory meeting times by allowing a human to
contribute to the scheduling process instead of only relying on a completely
automated algorithm. Satisfactory results are the focus of research question
RQ2.

Table 3.7: Meeting notification and response requirements.

ID Description Priority

R51 When the organizer has selected a time slot for the meeting
proposal, the MSS shall notify the invited users about the
proposed meeting.

High

R52 When the MSS has notified the invited users about the
proposed meeting, the MSS shall allow the invited users to
view information about the proposed meeting’s topic, time,
duration, location and invited users.

Medium

R53 When the MSS has notified the participants about the pro-
posed meeting, the MSS shall allow the invited users to
choose if they accept the proposed meeting, reject it or re-
quest that a new time slot is selected for the meeting.

Medium

R54 When an invited user has accepted the proposed meeting,
the MSS shall add the proposed meeting to the participant’s
calendar.

High

CHAPTER 3. REQUIREMENTS 36

Table 3.7: Meeting notification and response requirements. (continued)

ID Description Priority

R55 When the MSS has notified the participants about the pro-
posed meeting, the MSS shall allow the organizer to see
which invited users have accepted, rejected or not yet re-
sponded to the meeting notification.

Medium

R56 When the MSS has notified the invited users about the
proposed meeting, the MSS shall allow the organizer to
change the topic and the location of the proposed meeting
or cancel the proposed meeting at any point.

Medium

R57 When the organizer has canceled the meeting event, the
MSS shall remove the meeting event from the calendars of
the participants.

Medium

R58 When the organizer has changed the topic or the location of
a meeting event, the MSS shall change the meeting events
in participants’ calendars accordingly.

Medium

R59 While the MSS has notified the invited users about the
proposed meeting, the MSS shall allow the organizer to
send reminders to the invited users about responding.

Low

R510 When the MSS has created a meeting event, the MSS shall
allow each participant to exclude herself from the meeting
event.

Low

R511 When a participant has excluded herself from a meeting
event, the MSS shall remove that participant from the
meeting event’s list of participants as well as remove the
meeting event from that participant’s calendar.

Medium

Table 3.7 contains the second half of the requirements that relate to the
meeting organizing functionality. In contrast to the other requirements on
meeting organizing in Table 3.5, these ones specify what should happen after
the actual meeting scheduling has happened. These requirements also relate
to the basic scheduling functionality of research question RQ1.

Chapter 4

Architectural Views

In this chapter, the architecture for the MSS is presented using architectural
views (Rozanski and Woods, 2011).

Architectural views are a way of describing a software architecture by
dividing it into multiple separate representations of which each presents a
different aspect of the architecture (Rozanski and Woods, 2011). This is
done in order to avoid the architecture being represented with a single over-
complicated model that has too much information to be useful. Each view
usually focuses on one aspect of the architecture, for example what functional
components are in the system or what information is transmitted within the
system. Together the views describe the system as a whole.

To describe the significant architectural design decisions in this thesis,
we have chosen to represent the architecture with four views: the functional
view, the information view, the process sequence view and the integration
view. Each view is presented in detail in the following sections and the ratio-
nale behind our architectural design decisions is discussed. Before the views,
there is also a context diagram that clarifies in what kind of environment the
MSS operates in.

4.1 Context diagram

The main decisions that we have made regarding the context that the MSS
operates in are summarized in Table 4.1.

The context diagram in Figure 4.1 visualizes what different actors the
MSS interacts with during its operation. In the diagram, the Meeting sche-
duling system denotes the MSS itself.

The MSS, of course, interacts with different types of users. Organizer is
a special role that can be given to any user when they create a new meeting.

37

CHAPTER 4. ARCHITECTURAL VIEWS 38

Table 4.1: Decisions regarding the context of the MSS.

Decision Rationale

Utilize the external, ex-
isting calendars of the
users.

Utilizing the existing calendars of the users
is one of the key requirements for the MSS.
An alternative solution would be to provide a
proprietary calendar for the users.

Utilize an external notifi-
cation agent.

Users are accustomed to receiving notifica-
tions about meetings through e-mail. An al-
ternative solution would be to develop a cus-
tom notification method to the MSS itself.

Provide public interfaces
through which third-
party systems can utilize
the functionality of the
MSS.

Allows third-party systems to combine meet-
ing scheduling with additional meeting-related
functionality, such as resource or customer re-
lations management.

Organizers can decide which users to invite to the meeting and select the final
meeting time. Invited user is a person who has been invited to a meeting
by the organizer. Administrator is a special user who has free access to
the inner workings and data of the MSS for the purpose of maintaining it.

Additionally, the MSS must also interact with some external systems to
operate. The most important of these is the User’s calendar from which
the MSS gathers calendar data to see when the user is available for a meeting.
Note that the user’s calendar component in the context diagram refers to the
actual calendar itself, not the calendar system that it may reside in. The
physical boundaries between the calendar system and the other components
of the MSS are not visible in the context diagram. The meeting schedu-
ling system element in the context diagram includes the components that
are present in the users’ calendar systems. The user’s calendar can reside in
any type of calendar system, for example on a mobile phone or an internet
service but, as stated in assumption AS1 in Section 3.3, each user is assumed
to have only one calendar. The Notification agent is a service that noti-
fies the users when they have been invited to a meeting. The notification
agent must also provide some way for the user to respond to the invitation.
The notification agent is an external system, such as an e-mail service or a
notification application in the user’s mobile device. A custom notification
agent could also be built into the MSS itself but, because there are other
existing suitable notification channels, we do not think this is necessary. A

CHAPTER 4. ARCHITECTURAL VIEWS 39

Meeting scheduling system
<<external>>

Third-party meeting
management systemCommit time periods,

Edit user and group info

Create/Edit meeting,
Select time slot

Send meeting proposal,
Send meeting event

Submit request
response

Send meeting
request

Actor

<<e>> External system

System

<<external>>

User’s calendar

Respond to
request

Maintain
system

System action

User action

<<external>>

Notification agent

OrganizerOrganizer AdministratorAdministrator

Invited userInvited user

Read calendar events

Add meeting event

Edit availability rules,
Edit user and group info

Manage calendar

Figure 4.1: A context diagram of the MSS. Involved actors and how they
interact with the MSS.

Third-party meeting management system is a larger external system,
such as a CRM system, that can be optionally integrated into the MSS. The
third-party meeting management system can act as a calendar system if it
contains the calendar of one or more users. In this case, the MSS would
gather available time periods from the meeting management system instead
of from a personal calendar system. The meeting management system can
also replace some of the User Interface (UI) components of the MSS. For
example, the meeting management system could allow users to create and
manage meetings or to respond to meeting requests through the UIs it pro-
vides itself instead of the ones provided by the MSS.

It is important to remember that, even though the user’s calendar and
the third-party meeting management system components are depicted in the
context diagram only once, there can be and, in fact, should be more than
one calendar integrated into the MSS simultaneously. There can also be
multiple third-party meeting management systems integrated into the MSS
alongside multiple personal calendar systems.

CHAPTER 4. ARCHITECTURAL VIEWS 40

4.2 Functional view

The purpose of a functional view is to describe the architectural elements of
the MSS, their responsibilities and the interfaces and interactions between
them (Rozanski and Woods, 2011). In this section we present the functional
view of the architecture by stating the main architectural decisions that we
have made regarding the functional composition of the MSS and describing
the functional elements of the MSS as well as their interfaces.

The decisions regarding the composition of the functional elements of the
MSS are summarized in Table 4.2.

Table 4.2: Decisions regarding the functional elements of the MSS.

Decision Rationale

Centralized topology with a
separate dedicated central sys-
tem.

A single location is needed to compute
calendar information. We also have full
control over a dedicated system’s spec-
ifications. Alternative peer-to-peer and
ad-hoc master device topologies do not
offer both of these benefits.

User device is responsible for
calendar access and availabil-
ity rule management.

Calendar data and availability rules are
user specific and private.

Central system is responsible
for data management, schedu-
ling and notifications.

Central system is the most reliable com-
ponent, has guaranteed resources for
computation and has best access to data.

Organizing and user manage-
ment UIs are separate and re-
placeable.

Allows third-party meeting management
systems to replace the UIs with their own
solutions.

For the MSS, we chose a network topology where all the calendar sys-
tems are connected to a single dedicated central system. The central system
manages all connections to the calendar systems and stores all of the data
that is needed in the scheduling processes. We chose this approach because
having a separate central system means that we have full control over its
hardware capabilities, connections and availability. This allows us to reliably
plan which tasks and responsibilities we assign to it. We could not do this if
we had to rely only on the various calendar systems of the users since these
systems can vary greatly in technical aspects. For example, the calendar

CHAPTER 4. ARCHITECTURAL VIEWS 41

system could be a mobile device with very limited processing power and un-
reliable availability in which case it would be a poor choice to assign some
demanding or long-term task to it. Additionally, having a central system
is a benefit in the scheduling process because the calendar information that
is collected from the calendar systems can be gathered to a single location.
This makes it easy to calculate the commonly suitable times. Alternative
topology choices include a peer-to-peer network where the calendar systems
are connected to each other as equals or a topology where one of the calendar
systems takes a coordinating master device role.

Figure 4.2 shows the functional view of the MSS architecture. The view
displays all the logical functional elements of the MSS and how they are con-
nected to each other. All of the elements in the functional view correspond
to the elements in the context diagram in Figure 4.1 with everything inside
the system boundary in the functional view being part of the meeting sche-
duling system element in the context diagram. The exception to this is that
the third-party meeting management system element is displayed as a large
outline over multiple functional elements in the functional view instead of as
its own element as it is in the context diagram. This is because, as stated
in Section 4.1, the third-party meeting management system can act as a cal-
endar system and/or replace some of the UI components of the MSS. If the
meeting management system acts as a calendar system, it must implement
all of the components inside the User device boundary. The meeting man-
agement system can also implement the User management UI, the Group
management UI and the Organizer UI or a combination of these.

As displayed in the functional view, there are four types of functional
elements in the MSS: central system elements, user device specific elements,
independent system elements and external elements. Central system elements
are all part of the central system and there is only one of each of the cen-
tral system elements in the MSS. User device specific elements, on the other
hand, exist on each of the calendar systems of the users so there are multiple
instances of each user device specific element simultaneously in the system.
Meanwhile, independent system elements are not tied to any physical com-
ponent and as such they can be implemented either on the central system or
on the calendar systems. Indeed, it is also possible that the independent ele-
ments are implemented both on the central system and the calendar systems,
in which case the users could choose which ones they want to use. Finally,
external elements are already existing systems or other components that are
not directly part of the MSS but with which the MSS must communicate to
exchange necessary information.

The physical location, the responsibilities and the public interfaces of each
functional element are summarized in the tables below. Alongside the tables

CHAPTER 4. ARCHITECTURAL VIEWS 42

<<central>>

Meeting scheduler

<<independent>>

Organizer UI

<<external>>

Notification agent

Invited userInvited user

<<external>>

User’s calendar

<<c>> Central system element

<<u>> User device specific element <<e>> External element Connection to interface

User action

<<user specific>>

User availability rule

storage

<<central>>

Scheduler database

<<user specific>>

User calendar
manager

<<independent>>

Group management

UI

OrganizerOrganizer

AdministratorAdministrator

<<central>>

Administrator UI

<<user specific>>

Availability rule

editing UI

Maintain system

Edit availability rules

Select response

Manage groups
Organize
meetings

Provided interface

A

UserUser

Manage user details

Database
interface

Time period
interface

Calendar
interface

Availability rule
interface

Message delivery
interface

Request response
interface

Data editing
interface

User device boundary

System boundary

UserUser

Calendar action
interface

Third-party meeting
management system

<<i>> Independent system element Possible external system

Legend

<<independent>>

User management UI

Figure 4.2: A functional view of the MSS displaying the different functional
elements and how they are connected to each other.

CHAPTER 4. ARCHITECTURAL VIEWS 43

we present the rationale behind some of the important design decisions we
have made regarding these functional components. The public interfaces are
also described in more detail in Section 4.5.

Meeting scheduler

Location Central system

Responsibilities

Creates new meeting proposals based on the input
from the Organizer UI.
Calculates the common time periods from the indi-
vidual available time periods which are received from
calendar systems of invited users.
Creates and sends meeting requests based on the time
slot selection from the Organizer UI.
Gathers the meeting request responses sent by the in-
vited users and sends a new meeting event, an updated
meeting event or instructions to remove a meeting from
the user’s calendar based on the response.

Public interfaces

Provides Data editing interface for editing user, group
and meeting data.
Provides Time period interface for committing time
periods.
Provides Request response interface for submitting re-
sponses to meeting requests.
Connects to Calendar action interface provided by
User calendar manager to send meeting proposals and
meeting events.
Connects to Message delivery interface provided by
Notification agent to send meeting requests.

The Meeting scheduler contains all of the logic of the central system and,
as stated in Table 4.2, the central system is responsible for all of the actual
scheduling functionality of the MSS.

For example, the commonly suitable time periods are calculated on the
Meeting scheduler because the calculations require the user specific time peri-
ods as input. The time periods are gathered from the users’ calendar systems.
Therefore, it makes sense to perform the calculation in the central system
where all the calendar systems are connected to. Additionally, the calcula-
tions can require a non-trivial amount of computing power if there are many
participants in the meeting and the desired date range for the meeting is
long. In these cases the guaranteed resources of the central system are a

CHAPTER 4. ARCHITECTURAL VIEWS 44

benefit.

Scheduler database

Location Central system

Responsibilities

Stores all the data that is used in the operation of the
meeting scheduling system such as user and group data
as well as meeting events, time periods and request
responses.

Public interfaces N/A

A database is necessary on the central system because it is most rational
to store certain pieces of information there, such as user list and meeting
events. All the information elements in the MSS and their storage locations
are explained in Section 4.3.

Administrator UI

Location Central system

Responsibilities
Allows system administrators to freely edit the data in
the database in order to maintain the system.

Public interfaces N/A

The Administrator UI is connected to the Scheduler database via the
Database interface directly because it gives the administrators more freedom
to maintain the MSS as they can access all the data freely. It is a reasonable
assumption that the administrators will not abuse this power to corrupt the
data. This is in contrast to the User management UI, the Group management
UI and the Organizer UI that must access the data through the Data editing
interface which restricts the user’s ability to edit the data in order to protect
its integrity.

User management UI

Location Central system or calendar systems

Responsibilities
Allows users to edit the data about themselves in the
system and anyone to create new users into the system.

Public interfaces
Connects to Data editing interface provided by Meet-
ing scheduler to edit user data.

CHAPTER 4. ARCHITECTURAL VIEWS 45

Group management UI

Location Central system or calendar systems

Responsibilities
Allows users to create new groups, join existing groups
and edit the details about the groups they belong to.

Public interfaces
Connects to Data editing interface provided by Meet-
ing scheduler to edit user group data.

Organizer UI

Location Central system or calendar systems

Responsibilities

Allows users to enter the information required to create
new meeting proposals. Users can also see information
about and edit the meetings that they are the organizer
of, for example, to select the time slot for the meeting,
change the location or topic of the meeting or see how
invited users have responded to the meeting requests.

Public interfaces
Connects to Data editing interface provided by Meet-
ing scheduler to edit meeting data.

As stated in Table 4.2, User management UI, Group management UI
and Organizer UI are independent elements, meaning that they can be im-
plemented both on the central system side and the calendar system side.
This is because their function does not rely on features of the central system
or the user specific data on the calendar systems.

User calendar manager

Location User’s calendar system

Responsibilities

Finds the available time periods for a user by read-
ing the calendar events from the user’s calendar and
applying the appropriate availability rules to them.
Adds and edits the meeting events scheduled by the
MSS in the user’s calendar.

Public interfaces

Provides Calendar action interface for sending meeting
proposals and meeting events.
Connects to Time period interface provided by Meeting
scheduler to commit time periods.

CHAPTER 4. ARCHITECTURAL VIEWS 46

User’s calendar

Location User’s calendar system, external

Responsibilities Stores the user’s calendar events.

Public interfaces N/A

The User calendar manager contains all of the logic of the calendar sys-
tems and, as stated in Table 4.2, the calendar systems are responsible for the
calendar access.

For this reason, the finding of available time periods is done in the User
calendar manager as it utilizes the calendar data from the User’s calendar.
The calendar data must never leave the calendar systems of the users for
privacy reasons, as stated in requirement R16, so any task that utilizes this
data must happen within the calendar system.

We chose to also use the User calendar manager element to add the
scheduled meeting events to the participant’s calendar. This is because the
access that the User calendar manager already has to the calendar to read
the free times can easily be used to also write events into the calendar.

An optional method to deliver the scheduled meeting events to the par-
ticipants is to publish the meeting to the calendar systems in a standardized
format. Many calendar systems and applications already support some stan-
dardized formats and are able to add meeting events to their calendar based
on the data. One such format is iCalendar (Dawson and Stenerson, 1998)
which is supported by many of the scheduling applications that we inspected
in section 2.1. However, we decided not to utilize the standardized formats
in the architecture because the existing calendar connection that we already
have is perfectly suited for this task.

User availability rule storage

Location User’s calendar system

Responsibilities Stores the availability rules of a user.

Public interfaces N/A

Availability rule editing UI

Location User’s calendar system

Responsibilities Allows users to create and edit their availability rules.

Public interfaces N/A

CHAPTER 4. ARCHITECTURAL VIEWS 47

The User availability rule storage is on the user’s calendar system because
the availability rules are specific to each user. Because the availability rules
are stored on the calendar system, it is also most sensible to also edit the
availability rules directly on the calendar system, which is why the Availabil-
ity rule editing UI is also located there. Availability rules are discussed in
more detail in Section 4.3.

Notification agent

Location N/A (external)

Responsibilities
Distributes meeting requests to invited users.
Allows users to respond to the meeting requests.

Public interfaces

Provides Meeting delivery interface for sending meet-
ing requests.
Connects to Request response interface provided by
Meeting scheduler to submit responses to meeting
requests.

The functionality of the Notification agent could be implemented within
the MSS as well, but utilizing an external system in this case is justified be-
cause there are many existing communication channels that fit its purpose,
such as e-mail or SMS. People are also already accustomed to actively moni-
toring these channels so they are unlikely to miss any notifications that they
receive through them. If a custom notification solution was built, the users
would have to learn to also check for messages that are sent through this new
channel.

4.3 Information view

The purpose of an information view is to describe what information there is
in the system and how it is stored, manipulated and distributed (Rozanski
and Woods, 2011). In this section we state the main decisions that we have
made regarding information in the MSS. We also list all of the elements of
information in the MSS and explain how are they used in the various tasks
of the MSS and where in the MSS they reside.

The main decisions that we have made regarding the information elements
of the MSS are summarized in Table 4.3.

The calendar information that is used in the meeting scheduling is read
from the calendar systems of the users but, since these systems are mobile
phones or computers in personal use of the users, their availability cannot

CHAPTER 4. ARCHITECTURAL VIEWS 48

Table 4.3: Decisions regarding the information in the MSS.

Decision Rationale

Calendar data and availability
rules are stored on the calendar
systems. Only free times filtered
with availability rules are sent to
central system.

Calendar data and availability rules
are user specific and private. There is
also a requirement that calendar data
never leaves the calendar systems as-
is.

Time periods are calculated just-
in-time and are not synchronized
to the central server.

Because of the availability rules,
the synchronization process would be
too complex when compared to the
achieved benefit.

be guaranteed. This will likely result in a situation where the MSS is unable
to access one or more of the calendars that it needs to during the meeting
scheduling process. Thus, in this situation the MSS cannot provide an ac-
curate information about the availability of the invited users to the meeting
organizer.

This kind of situation could be avoided if, instead of reading the calendar
information from the calendars just-in-time for the scheduling process, the
calendar information of every user would be stored on the central system.
This way, the MSS would always have access to the calendar information of
the users. However, this arrangement creates many difficulties that must be
considered before deciding to include it in the architecture. First, according
to requirement R16, the MSS must never send the complete calendar infor-
mation of the users outside of their calendar system. This means that only
the free time periods of the users could be stored on the central server. But,
as stated in requirement R25, the users can specify which of the free times
they want to make available to which user group. This, in turn, means that
the availability rules must also be stored on the central system for each user
so that the MSS is able to calculate the free times for each group. Alter-
natively, the central system could always store separate free time periods of
each user for each group but this would increase the amount of calendar in-
formation that needs to be stored many-fold. Second, the calendar systems
would be required to frequently synchronize their free times with the cen-
tral server. This increases the amount of network traffic between the central
system and the calendar systems. Third, the storing of calendar information
on the central server sets extra demands for its hardware capabilities, most
importantly the data storage.

CHAPTER 4. ARCHITECTURAL VIEWS 49

We decided not to synchronize the users’ calendar information to the
central system. We consider the complexity of the synchronization process
to be too great compared to the benefit that it provides. We believe that, in
the case that the calendar information from some calendar systems cannot
be acquired, it is sufficient to inform the meeting organizer about this so that
she can decide the best course of action to mitigate the problem.

The information view of the MSS is illustrated in Figure 4.3. The el-
ements and tasks in the figure are inside the functional elements in which
they are stored or performed. All the different elements of information are
also described in Table 4.4. In the text below we justify our decisions about
where in the MSS the various elements are stored.

The calendar data and the availability rules are stored on the calendar
systems of the users in the User’s calendar and the Availability rule storage.
This decision is stated in Table 4.3.

Both the user data and the user group data are stored in the Sche-
duling database on the central system. This is the most sensible solution
because this information is used by multiple different functional elements
such as the User management UI, the Group management UI, the Organizer
UI and the User calendar manager. When they all read and update this
data in one single location, it can be guaranteed that it is always valid and
up-to-date.

Time periods and common time periods are information that is only
needed temporarily in the MSS. For the time that they are used they are
stored in the Scheduler database on the central system. This is because,
although the time periods are theoretically only needed immediately after
a meeting proposal has been made, in practice the Meeting scheduler needs
to wait until all of the calendar systems have committed the time periods.
The already received periods must be stored somewhere during that time.
The common time periods, on the other hand, need to be stored until the
organizer has selected a time slot for the meeting. The organizer is free to
do this at any time so it might not happen immediately after the calculation
is complete.

The meeting data objects referred to as meeting proposals, meeting
requests and meeting events are stored in the Scheduler database during
the scheduling process. They are kept in the storage also after the process
so that the data about all the meetings in the MSS stays consistent and so
that it is possible to refer back to the meeting data and make changes to it
if necessary. It would have been an option to store the final meeting events
only in the calendar of the users but this would have made it difficult to
make any changes to the meetings afterwards since there would be no central
repository where all the calendar systems could get the changes from.

CHAPTER 4. ARCHITECTURAL VIEWS 50

<<system>>

User group
<<system>>

User identity

<<central>>

Scheduler database

<<task>>

1. Create meeting
proposal

<<user>>

Availability
rules

<<user>>

Calendar data

<<client>>

<<external>>

User’s calendar

<<client>>

Availability
rule storage

<<task>>

2. Find available time
periods

<<task>>

3. Find common time
periods

<<task>>

4. Create meeting
request

<<task>>

5. Gather responses

<<central>>

Meeting scheduler
<<client>>

User calendar manager

<<meeting>>

Meeting
proposal

<<meeting>>

Available time
periods

<<meeting>>

Meeting
request

<<meeting>>

Meeting event

OrganizerOrganizer

Invited userInvited user

Meeting duration,
topic, location
and date range

Time slot
selection

Response

<<meeting>>

Common time
periods

<<s>> <<t>>

<<u>>

<<m>>

System specific information

User specific information

Meeting specific information

Task

A

<<c>>

Used in a task

Produced from a task

User input<<c>>

<<e>>

Central system element

Calendar system element

External element

Legend

Send meeting
request

<<subtask>>

Add meeting event
to the calendar

Add event
to calendar

Send meeting
event

B

<<s>> Subtask

Information transfer

Figure 4.3: An information view of the MSS. The view shows what elements
of information there are in the system, in which functional elements they are
stored and what tasks they are used in and produced from. The tasks in
the view are numbered to indicate the order in which they happen in the
scheduling process.

CHAPTER 4. ARCHITECTURAL VIEWS 51

T
ab

le
4.

4:
In

fo
rm

at
io

n
el

em
en

ts
in

th
e

M
S
S
.

E
le

m
en

t
n

a
m

e
S

to
ra

g
e

lo
-

ca
ti

on
D

es
cr

ip
ti

on
H

ow
it

is
u

se
d

C
al

en
d

ar
d

a
ta

U
se

r’
s

ca
le

n
d

a
r

In
fo

rm
a
ti

o
n

ab
ou

t
th

e
u

se
r’

s
ca

le
n

d
ar

ev
en

ts
.

U
se

r
ca

le
n

d
a
r

m
a
n

a
ge

r
u

se
s

th
is

d
at

a
an

d
av

ai
l-

ab
il

it
y

ru
le

s
to

fi
n

d
av

ai
la

b
le

ti
m

e
p

er
io

d
s

fo
r

th
e

u
se

r.
U

se
r

d
a
ta

S
ch

ed
u

le
r

d
a
ta

b
a
se

In
fo

rm
a
ti

o
n

ab
ou

t
re

gi
st

er
ed

u
se

rs
.

M
u

st
at

le
a
st

co
n
ta

in
en

ou
gh

in
fo

rm
at

io
n

to
d

is
ti

n
gu

is
h

d
iff

er
en

t
u

se
rs

fr
om

ea
ch

ot
h

er
a
n

d
re

st
ri

ct
w

h
at

in
fo

rm
at

io
n

th
ey

ca
n

a
cc

es
s

in
th

e
M

S
S

.

O
rg

a
n

iz
er

U
I

p
re

se
n
ts

th
e

u
se

r
in

fo
rm

at
io

n
to

th
e

or
ga

n
iz

er
so

sh
e

ca
n

se
le

ct
w

h
o

to
in

v
it

e
to

th
e

m
ee

ti
n

g.

U
se

r
gr

ou
p

d
a
ta

S
ch

ed
u

le
r

d
a
ta

b
a
se

In
fo

rm
a
ti

o
n

ab
ou

t
w

h
at

gr
ou

p
s

ex
is

t
in

th
e

M
S

S
an

d
w

h
ic

h
u

se
rs

ar
e

in
w

h
ic

h
gr

ou
p

.

O
rg

a
n

iz
er

U
I

p
re

se
n
ts

th
e

u
se

r
g
ro

u
p

s
to

th
e

or
-

ga
n

iz
er

so
sh

e
ca

n
se

le
ct

w
h

ic
h

g
ro

u
p

th
e

m
ee

ti
n

g
is

in
te

n
d

ed
to

.
U

se
r

ca
le

n
d
a
r

m
a
n

a
ge

r
u

se
s

th
is

in
fo

rm
at

io
n

to
se

le
ct

w
h

ic
h

av
ai

la
b

il
it

y
ru

le
s

to
ap

p
ly

w
h

en
fi
n

d
in

g
ti

m
e

p
er

io
d
s.

A
va

il
ab

il
it

y
ru

le
s

A
va

il
a
b

il
it

y
ru

le
st

o
ra

g
e

T
h

e
p

re
fe

re
n

ce
s

of
th

e
u

se
rs

ab
ou

t
w

h
at

ti
m

es
p

er
io

d
s

fr
om

th
ei

r
ca

le
n

d
ar

th
ey

w
an

t
to

m
ak

e
av

ai
la

b
le

to
w

h
ic

h
u

se
r

gr
ou

p
d

u
ri

n
g

th
e

m
ee

ti
n

g
sc

h
ed

u
li

n
g

p
ro

-
ce

ss
.

U
se

r
ca

le
n

d
a
r

m
a
n

a
ge

r
u

se
s

th
es

e
a
n

d
th

e
ca

le
n
-

d
ar

d
at

a
to

fi
n

d
av

ai
la

b
le

ti
m

e
p

er
io

d
s

fo
r

th
e

u
se

r.

T
im

e
p

er
io

d
S

ch
ed

u
le

r
d

a
ta

b
a
se

P
er

io
d

s
o
f
ti

m
e

w
h

en
a

si
n

gl
e

u
se

r
is

av
ai

l-
ab

le
fo

r
a

sp
ec

ifi
c

m
ee

ti
n

g.
M

ee
ti

n
g

sc
h
ed

u
le

r
u

se
s

ti
m

e
p

er
io

d
s

fr
om

al
l

in
-

v
it

ed
u

se
rs

to
fi

n
d

th
e

co
m

m
o
n

ti
m

e
p

er
io

d
s

fo
r

th
e

m
ee

ti
n

g.
C

om
m

on
ti

m
e

p
er

io
d

S
ch

ed
u

le
r

d
a
ta

b
a
se

P
er

io
d

s
o
f

ti
m

e
th

at
ar

e
av

ai
la

b
le

fo
r

al
l

th
e

in
v
it

ed
u

se
rs

of
th

e
m

ee
ti

n
g.

P
re

se
n
te

d
to

th
e

m
ee

ti
n

g
or

g
an

iz
er

in
th

e
O

rg
a
-

n
iz

er
U

I
to

al
lo

w
h

er
to

se
le

ct
a

su
it

ab
le

ti
m

e
sl

ot
fo

r
th

e
m

ee
ti

n
g
.

M
ee

ti
n

g
p

ro
p

os
a
l

S
ch

ed
u

le
r

d
a
ta

b
a
se

A
d

at
a

ob
je

ct
of

th
e

m
ee

ti
n

g
th

at
co

n
-

ta
in

s
o
n

ly
en

ou
gh

in
fo

rm
at

io
n

to
st

ar
t

th
e

sc
h

ed
u

li
n

g
p

ro
ce

ss
.

M
ee

ti
n

g
sc

h
ed

u
le

r
se

n
d

s
th

is
to

th
e

U
se

r
ca

le
n

d
a
r

m
a
n

a
ge

r
of

ea
ch

in
v
it

ed
u

se
r

to
te

ll
it

to
co

m
m

it
ti

m
e

p
er

io
d

s
fo

r
th

a
t

u
se

r.
M

ee
ti

n
g

re
-

q
u

es
t

S
ch

ed
u

le
r

d
a
ta

b
a
se

A
m

ee
ti

n
g

p
ro

p
os

al
w

h
ic

h
al

so
h

as
a

ti
m

e
sl

ot
.

S
en

t
to

in
v
it

ed
u

se
r

th
ro

u
g
h

th
e

N
o
ti

fi
ca

ti
o
n

a
ge

n
t

to
in

v
it

e
th

em
to

th
e

m
ee

ti
n

g
a
n

d
al

lo
w

th
em

to
re

sp
on

d
to

th
e

in
v
it

at
io

n
.

M
ee

ti
n

g
ev

en
t

S
ch

ed
u

le
r

d
a
ta

b
a
se

A
m

ee
ti

n
g

th
at

ap
p

ea
rs

in
th

e
ca

le
n

d
ar

of
th

e
u

se
rs

as
a

re
su

lt
of

th
e

sc
h

ed
u

li
n

g
p

ro
ce

ss
.

M
ee

ti
n

g
sc

h
ed

u
le

r
se

n
d

s
th

is
to

th
e

U
se

r
ca

le
n

d
a
r

m
a
n

a
ge

r
o
f

ea
ch

p
a
rt

ic
ip

a
n
t

so
th

at
th

e
ev

en
t

ca
n

b
e

ad
d

ed
to

th
ei

r
ca

le
n

d
ar

.

CHAPTER 4. ARCHITECTURAL VIEWS 52

4.4 Process sequence view

The purpose of this view is to clarify how the scheduling process unfolds
by showing the sequence of interaction between the different functional ele-
ments. This is important because the scheduling process is the fundamental
functionality of the MSS and it requires quite a specific order of interaction
between many different and varying components.

One important decision about the scheduling process is highlighted in
Table 4.5.

Table 4.5: Decision regarding the adding of the meeting event to calendars.

Decision Rationale

Meeting events are
added to the calen-
dar as soon as the
participant has ac-
cepted the invita-
tion.

Alternative solution is to wait for the organizer to
confirm the meeting and add it simultaneously to
all participants’ calendar. However, there is a dan-
ger that the participants’ calendar changes between
accepting the invitation and confirmation.

The operation of the MSS is divided into multiple individual scheduling
processes. Each scheduling process consists of all the actions needed to sched-
ule a single meeting, starting from the creation of the meeting and ending in
the meeting being in the participant’s calendars in a suitable time slot. There
can be multiple scheduling processes going on in the MSS simultaneously but
they all happen mostly in isolation from each other. Note, however, that in
this thesis we will not consider the management of the concurrency and trans-
actions of multiple simultaneous scheduling processes. This is because they
are not a trivial issue and are not related to our research questions.

Some of the functionality of the MSS also takes place outside of the
scheduling process, such as the editing of availability rules and managing the
information of groups and users.

The order of these tasks and the interaction between the functional ele-
ments during the scheduling process is described in a sequence diagram in
Figure 4.4. The functional elements User management UI, Group manage-
ment UI, Administrator UI and Availability rule editing UI are not visible in
the diagram because they are not used during the scheduling process. The
interactions between the elements happen over the various interfaces between
those elements. The functional elements and their interfaces can be seen in
the functional view in Section 4.2. The usage of the interfaces between the

CHAPTER 4. ARCHITECTURAL VIEWS 53

Organizer UI
Meeting

scheduler

Scheduler

database

User calendar

manager
User’s calendar

Availability rule

storage

Notification

agent

Get user and group info
Get user and group info

User and group info
User and group info

Send meeting info
Create meeting proposal

Save meeting proposal

Send meeting proposal

[Repeat for each calendar system]

Get calendar events

Calendar events

Get availability rules

Availability rules

Calculate available time periods

Commit available time periods

Save available time periods

Get available time periods

Available time periods

Save common time periods

Calculate common time periods

Get meeting info
Get meeting info

Meeting info
Meeting info

Send selected time slot

Save meeting request

Send meeting request

Create meeting request

[Repeat for each response]
Submit response

Save response

[response = Accept]

Get meeting info

Meeting info

Send meeting event
Add calendar event

loop

loop

opt

Beginning of task 1:
Creation and
sending of the
meeting proposal

Beginning of task 2:
Finding of available
time periods

Beginning of task 3:
Calculation of
common time periods

Beginning of task 4:
Creation and seding
of the meeting
request

Beginning of task 5:
Gathering the
responses to the
requests

Figure 4.4: A high-level sequence diagram showing the order of interaction
between the functional components during the scheduling process for a sin-
gle meeting. Some of the UI components are not included in the sequence
diagram since they are not required during a scheduling process.

CHAPTER 4. ARCHITECTURAL VIEWS 54

central system and the other elements is explained in more detail in Section
4.5.

4.5 Integration view

Integrating the MSS with external calendar systems is one of the key features
of the MSS that we identified in Section 3.1.The integration problem is two-
sided: First, the calendars that reside within the various calendar systems
of the users need to be integrated into the MSS so that it is possible to
read the calendar data from them, as stated in requirement R11. Second,
the calendar systems need to be integrated into the central system so that
they can exchange data, as stated in requirements R12 and R13. In this
integration view section, we describe how these two aspects of the problem
are handled in the architecture.

Integrating the calendars of the users into the MSS is mostly an implemen-
tation problem. The issue revolves around the Calendar interface through
which the User calendar manager reads data from the User’s calendar. How
this interface is provided in practice by the User’s calendar depends entirely
on the technical aspects of the calendar system in which the calendar resides.
Since the MSS is meant to support theoretically any kind of calendar system,
it is very difficult to determine the exact requirements for the calendar inte-
gration at the architectural level. Therefore, the problem must be solved at
the implementation level by implementing the User calendar manager sep-
arately for each different type of calendar system so that it can utilize the
provided Calendar interface.

We approached the second part of the integration problem - the inte-
gration of calendar systems to the central system - by providing the same
common interfaces from the central system to all calendar systems. Creating
only one set of interfaces for all calendar systems is considerably simpler than
creating customized interfaces for each possible calendar system. This is also
the obvious choice for us since we cannot know the technical specifications of
the possible calendar systems in advance so it is not even possible to design
interfaces for them. But, of course, requiring all the external calendar sys-
tems to conform to the same common interfaces means that some calendar
systems might not be able to do so due to their technological constraints that
we have no control over. However, we have decided that this is an acceptable
limitation and it can be mitigated with correct technological choices on the
central system’s side in the implementation phase.

The decisions regarding the integration of three types of calendar systems
into the MSS are summarized in Table 4.6.

CHAPTER 4. ARCHITECTURAL VIEWS 55

Table 4.6: Decisions regarding the integration capabilities of the MSS.

Decision Rationale

Personal calendar systems can be
integrated by implementing the
user device specific functional el-
ements on the calendar system.

We designed the architecture primar-
ily around this scenario because mo-
bile phones are a focus area of this the-
sis.

Multi-user calendar systems can
be integrated by utilizing the
Calendar action and Time period
interfaces.

This scenario is otherwise identical
to the personal calendar system sce-
nario except that the client compo-
nent might require additional features
to distinguish different users.

Web calendar services can be
integrated by creating a proxy
component between the inter-
faces of the MSS and the web ser-
vice.

Our focus in this thesis was to inte-
grate calendar systems, not web cal-
endar services. This is why the archi-
tecture is not designed to directly in-
tegrate web services.

There are three main types of calendar systems that could be integrated
into the MSS. The first one is a personal calendar system, such as a mobile
phone or a desktop calendar application. The second one is a multi-user
calendar system, such as a large CRM system or a calendar server. The
third one is a web calendar service, such as Google Calendar (Google, 2012b).
Personal and multi-user calendar systems can be integrated in a similar way
by implementing a client component of the MSS on the calendar system
itself. The client component reads data from the calendar and sends the
available times to the central system. The difference between the client
component of the personal and multi-user calendar systems is that multi-user
system’s client component must additionally perform some user management.
Integrating web services in this fashion is not possible in practice because
a client component cannot be installed to the service without cooperating
with the service provider. An alternative solution is to have a proxy server
between the MSS and the web service. The proxy functions otherwise like
a client component but uses the API provided by the web service to read
calendar data instead of accessing a calendar directly. These three use cases
are depicted in Figure 4.5.

As we explained in the functional view in Section 4.2, the interfaces on
the central system are provided by the Meeting scheduling component and it
provides three different interfaces: the Data editing interface, the Time period

CHAPTER 4. ARCHITECTURAL VIEWS 56

Web calendar
service

Personal calendar
system

MSS Central system

Calendar
MSS Client
component

Calendar
MSS Client
component

Calendar
Web service MSS

proxy

MSS MSS component Cal Calendar

User

Legend

Multi-user
calendar system

Web
calendar

API

API External API

Calendar system Example user device

Figure 4.5: Depiction of how three different types of calendar systems can be
integrated into the MSS. The symbols for the different devices indicate the
heterogeneous nature of the various calendar systems that can be directly
integrated into the MSS or can be otherwise involved with the MSS.

CHAPTER 4. ARCHITECTURAL VIEWS 57

interface and the Request response interface. The Data editing interface is
intended for the User management UI, the Group management UI and the
Organizer UI so that they can access the information that they present to
the users and send the changes or new data entered by the users. The
Time period interface allows the User calendar manager to commit the time
periods that it has gathered from the users’ calendar upon receiving a meeting
proposal. The Request response interface is intended for the Notification
agent to submit the responses to the meeting request it has received from
the invited users. In addition to these, the User calendar manager provides
a Calendar action interface to which the Meeting scheduler can connect to
to send meeting proposals and meeting events to the calendar systems. Also,
the Meeting scheduler connects to the Message delivery interface provided
by the Notification agent to send meeting requests to invited users.

The operation of the MSS during a scheduling process requires quite
a specific interaction sequence between the central system and the other
components through the different interfaces. Figure 4.6 shows a sequence
diagram of this interaction. The figure is the same as the scheduling process
sequence diagram in Figure 4.4 except that it shows only the messages that
go through the interfaces between the Meeting scheduler element and other
components.

CHAPTER 4. ARCHITECTURAL VIEWS 58

Organizer UI
Meeting

scheduler

User calendar

manager

Notification

agent

<DE> Get user and group info

<DE> User and group info

<DE> Send meeting info

<CA> Send meeting proposal

<TP> Commit time periods

<DE> Get meeting info

<DE> Meeting info

<DE> Send selected time slot

<MD> Send meeting request

<RR> Submit response

<CA> Send meeting event

Data editing interface

Time period interface

Calendar action interface

Message delivery interface
<DE>

<CA>

<TP>

<MD>

[Repeat for each
calendar system]

loop

[Repeat for each
response]

[response = Accept]

loop

opt

Request response interface
<RR>

Legend

Figure 4.6: A sequence diagram showing the order in which the interfaces
of the Meeting scheduler component are utilized during a meeting schedu-
ling process. The different colors of the texts in the messages denote which
interface the message goes through.

Chapter 5

Prototype Tool Implementation

To demonstrate the validity of the MSS architecture, we have developed a
prototype implementation of the MSS. In this chapter we describe how the
prototype functions and how we have implemented it.

5.1 Prototype functionality

The prototype contains most of the features of the MSS architecture design.
It is possible to perform a complete scheduling process with the prototype.
This includes allowing users to create new meetings, collecting suitable time
periods and presenting them to the organizer, sending meeting requests, al-
lowing participants to respond to the request and adding the meeting to
the participants’ calendars. The requirements that we did not implement as
features in the prototype are listed in Section 6.1.3.

The prototype consists of a web server and a script that is installed on the
users’ calendar systems, currently available only for the Nokia N950 mobile
phone. The web server allows users to create and manage meetings as well as
administrators to access the data in the system. The client script reads the
user’s calendar to find suitable meeting times and transmits the information
to the web server.

To have a N950 device participate in the MSS, the client script must be
running constantly on the device. This is required so that it can immediately
react to the meeting proposals and meeting events coming from the central
system. The script can be started through a terminal that is available when a
developer mode has been activated on the N950. The username and password
of the user who owns the device must be provided as parameters to the script
so that the user who owns the device can be identified. The script requires
no input from the user but it does print output about it’s actions into the

59

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 60

terminal window. A screenshot of the script running in the N950 terminal is
shown in Figure 5.1. The script runs until it is manually terminated by the
user.

Figure 5.1: A screenshot of the output produced by the client script running
on the N950.

New meetings can be created through an organizer website on the web
server. The website allows any user who logs in to the site to create a
new meeting by first entering the required information into a web form.
Immediately after the user has submitted the form, the MSS sends a meeting
proposal to the calendar systems of the invited users. The MSS waits until
all of the calendar systems have committed their time periods or a maximum
of ten seconds (the time limit is adjustable) before it calculates the common
time periods based on the time periods it has received. After the common
time periods are calculated, the organizer website redirects the user to a web
page where she is able to see the common time periods and select a time slot
for the meeting. If some calendar systems did not commit their user’s time
periods in time, the user is notified that information from some invited users
is missing. Figure 5.2 shows a screenshot of the meeting creation web form.

Once the time slot selection has been confirmed, the MSS automatically
sends a meeting request to the invited users via e-mail. The message displays
all of the information about the meeting so that the users can decide if they
want to participate in that meeting or not. The message also contains links

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 61

Figure 5.2: A screenshot of the meeting creation form on the organizer web-
site of the MSS prototype.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 62

Figure 5.3: A screenshot of the organizer website of the MSS prototype
showing the details of a meeting that already has a selected time slot. The
colored bars in the picture describe which invited users have responded to
the meeting request and what are their responses.

that the users can use to respond to the meeting request. The links point to
specific pages on the organizer site which each correspond to a different type
of response: accept, decline or request rescheduling. The users are identified
using a user- and meeting specific identifier strings included in the link so
that the users do not have to log in manually. Our decision to use e-mail to
send the requests, of course, requires that all the users of the system must
have a valid e-mail address included in their information.

Our organizer website also allows the users to see a list of all the meetings
that they are the organizer of and details about each meeting including how
each invited user has responded to the meeting request. Figure 5.3 shows a
screenshot of the meeting details page on the organizer website.

If an invited user sends an accepting response to the meeting request, the
meeting event is automatically added to the user’s calendar.

The prototype also has a web site that is intended for the administra-
tors of the MSS. The site allows users of the MSS, who have been given the
appropriate rights, to see and edit all data in the database. For example,
an administrator can add or remove users, add or remove user groups, re-
move meetings or remove individual request responses. A screenshot of the
administrator site is shown in Figure 5.4.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 63

Figure 5.4: A screenshot of the administrator site of the MSS prototype. The
picture shows a meeting data object being edited.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 64

5.2 Technology choices

The MSS prototype was almost entirely programmed with the Python pro-
gramming language. Both the central system and the calendar system client
component were done with Python utilizing some existing Python libraries
and frameworks. Because our central system is a web server, all of the UIs
were done with Hypertext Markup Language (HTML) and JavaScript.

We utilized the following libraries and frameworks in the prototype im-
plementation:

• Django, a web development framework for Python (Django
Software Foundation, 2012). Django enables the creation of web ap-
plications using Python. The entire central system of the MSS is built
using the Django framework. Django is released under BSD license.

• Tastypie, a web API framework for Django (Lindsley et al.,
2012). Tastypie simplifies the creation of Representation State Transfer
(REST) style interfaces for Django applications. We used it to imple-
ment the Data editing, Time period and Request response interfaces on
the central system. Tastypie is released under BSD license.

• Requests, a Hypertext Transfer Protocol (HTTP) library for
Python (Reitz, 2012). Requests greatly simplifies the making of HTTP
(Berners-Lee et al., 1996) requests in Python. We used it on the client
component to implement the User calendar manger’s communication
with the central system. Requests is released under ISC license.

• Unobtrusive Date-Picker Widget V5, a graphical JavaScript
date selector (McAllister, 2012). This date picker allows the selec-
tion of dates from a graphical calendar on a web page. We used it in
the Organizer UI to simplify the selection of a date range for a meet-
ing. Unobtrusive Date-Picker Widget V5 is released under Creative
Commons Attribution-ShareAlike license.

We developed a client component for the Nokia N950 mobile phone to
integrate it into the MSS. The N950 is a developer-only mobile device and
as such it is not available commercially. However, it is almost identical to
the Nokia N9 mobile phone which is available to the public. The biggest
difference between these two devices is that the N950 has a physical keyboard
while the N9 does not. The N950 runs the Linux-based Meego 1.2 Harmattan
operating system. Python environment is installable on the N950.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 65

Ubuntu

Apache PythonSQLite

Django Tastypie
Unobtrusive
Date-Picker

Operating system

Deployment

Libraries

MSS Central server

Meeting scheduler

Meeting creator

REST interface
Long polling

interface
Administrator

UI
Meeting
handler

Organizer UI E-mail sender

Meego
Harmattan

Operating system

Python

Deployment

Requests

Libraries

MSS Client component

Client logic
script

Calendar
reader script

Central system Calendar system

Figure 5.5: The solution stack of the MSS prototype showing what software
is used in the central system and the calendar system. The outer rectangles
are software categories or logical modules. Inner rectangles are the actual
software components. Software that is higher up in the picture depends on
some or all of the software blow it.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 66

The web server that acts as the central system of the MSS runs on Apache
HTTP Server and Ubuntu Linux operating system. The server uses an
SQLite database.

The software that is used in the prototype is visualized as a solution stack
in Figure 5.5. It shows the platforms that the prototype runs on, the libraries
we have used in the implementation as well as the modular structure of the
prototype itself. The top-most blue rectangles represent the modules of the
prototype.

5.3 Implementation of the functional elements

In this section we describe the details of how we have implemented the func-
tional elements of the architecture in the prototype and how they function.
Figure 5.6 shows which of the functional elements have been implemented in
the prototype and how the central system interfaces have been implemented.
This figure matches the functional elements and interfaces presented in Fig-
ure 4.2 in the functional view of the architecture.

5.3.1 Central system

As mentioned, the central system is a web server created with Python using
the Django framework. The central system includes the functional elements
Meeting scheduler, Scheduler database and Administrator UI. Also, the Or-
ganizer UI functional element has been implemented on the central system
in the prototype. An optional solution would have been to implement the
Organizer UI on the calendar system but we chose to do it on the central
system because constructing a separate user interface on the N950 would
have been much more difficult and time-consuming for us than creating a
web-based UI on the server with Django.

Django projects consist of one or more applications or ’apps’ which are
independent modules with their own functionality. The central server of
the MSS prototype consists of two Django apps. The first one is Meeting
scheduler which implements the central system itself - that is the Meeting
scheduler, the Scheduler database and the Administrator UI functional el-
ements (Note: While the Meeting scheduler Django app and the Meeting
scheduler functional element have the same names, they do not represent
entirely the same thing. The Django app implements the functional element
but also some other elements as well). The second one is Meeting creator
which implements the Organizer UI functional element. The Meeting sched-
uler app is self-sustained and could be copied to other Django projects if

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 67

<<central>>

Meeting scheduler

<<central>>

Organizer UI

<<external>>

Notification agent

<<external>>

User’s calendar

<<c>> Implemented on the central server

<<u>> Implemented on the N950 device

<<e>> External element

Connection to interface

<<client>>

User availability rule

storage

<<central>>

Scheduler database

<<client>>

User calendar
manager

<<not implemented>>

Group management

UI

<<central>>

Administrator UI

<<not implemented>>

Availability rule

editing UI

Provided interface

Database
interface

<<REST>>
Time period

interface

Calendar
interface

Availability rule
interface

<<SMTP>>
Message delivery

interface

<<REST>>
Request response

interface

<<REST>>
Data editing

interface

User device boundary

System boundary

<<Long polling>>
Calendar action

interface

<<n>> Not implemented

Legend

<<not implemented>>

User management UI

Figure 5.6: An adapted version of the functional view depicting which func-
tional elements of the architecture have been implemented in the prototype.
Also shows how the different interfaces of the Meeting scheduler element have
been implemented.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 68

desired but the Meeting creator app relies on the Meeting scheduler app to
function. These two apps can be seen in the solution stack of the central
system in figure 5.5.

The Django framework is based on the Model-View-Controller (MVC)
UI paradigm where the concerns of data, its presentation to the users and
the user input are separated from each other (Burbeck, 1987). The model
consists of the data and the business rules of the system (Reenskaug, 1979).
A view is one possible visual representation of some data in the model (Reen-
skaug, 1979). A controller handles the receiving of input from the user and
translates the input into appropriate commands for the model or the view
(Reenskaug, 1979). Django, however, uses its own set of terms that describe
the distribution of concerns within the system. These terms are Model-
Template-View but, apart from the term model, they do not directly corre-
spond to those of the MVC. In Django, the templates are text documents,
for example HTML documents, that act as the visual representation of the
data in the model while the views are functions that prepare the data that is
presented in the views. Together the templates and the views approximately
correspond to what the views are in the traditional MVC paradigm. The con-
troller in Django is the URL configuration that matches the HTTP requests
coming from the user into the appropriate views. Each Django application
can have its own model, views and templates.

In the prototype, the Meeting scheduler app has no templates since it does
not directly interface with the users. The app also has only one view which is
related to our implementation of the Calendar action interface. The imple-
mentation of the interfaces is explained in Section 5.4. However, the model of
the Meeting scheduler app is important as it represents the Scheduler da-
tabase functional element in its entirety. Django provides Object-Relational
Mapping (ORM) features that allow the definition and usage of a data model
directly with Python while the actual transactions between the database and
the program code are performed automatically. We used SQLite as the data-
base implementation, which is the default provided by Django. The database
could easily be replaced with another implementation, such as MySQL (Or-
acle Corporation, 2012) or PostgreSQL (PostgreSQL Global Development
Group, 2012). A database diagram of the Scheduler database is displayed in
Figure 5.7. Table 5.1 describes what type of information each of the database
tables contains.

The Meeting scheduler functional element is implemented in the pro-
totype mostly as a set of functions in the central system app that are called
when some data in the database changes. For example, when a new meeting
is added to the database by the Organizer UI (in the prototype the Orga-
nizer UI is able to access the Scheduler database directly), a function is called

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 69

Meeting

PK id

 topic
 location
 duration
 date_range_start
 date_range_end
FK1 organizer
FK2 invitees
FK3 group
 common_time_periods
 time_slot
 cancelled
 creation_date
 update_date
 cancellation_date

User

PK id

 username
 first_name
 last_name
 email
 password
 is_staff
 is_active
 is_superuser
 last_login
 date_joined
FK1 groups

Group

PK id

 name

TimePeriod

PK id

FK1 meeting
FK2 user
 time_periods

RequestResponse

PK id

FK1 meeting
FK2 user
 response

Figure 5.7: A database diagram of the Scheduler database. Shows the dif-
ferent tables in the database, their column names and the relations between
them.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 70

Table 5.1: Description of the information stored in the tables of the Scheduler
database.

Database table Content description

User Data about the users.
Group Data about the user groups.
TimePeriod Meeting specific time periods from different users.
RequestResponse Meeting specific responses to the meeting requests from

invited users.
Meeting Data about the meeting proposals, requests and events.

Each meeting also contains its common time periods.

which sends meeting proposals to the calendar systems, awaits the time pe-
riods to be committed and then calculates the common time periods. Also,
the interfaces provided by the Meeting scheduler element are implemented
in the Meeting scheduler app. These interfaces are described in more detail
in Section 5.4.

One task of the Meeting scheduler element is the calculation of common
time periods for a meeting. In the prototype, this happens with a simple
algorithm that the Meeting scheduler app performs on the invited users’
time periods. The time periods are received from the calendar systems and
saved to the database as a specifically formatted string. The string contains
a series of time periods separated by semicolons (;) and each time period
consists of a starting and ending time pair separated by a comma (,). The
starting and ending times are given with an accuracy of one minute. A time
period must have a length of over one minute but there is no upper limit for
the length. An example of a time period string is given below:

2012-06-18 08:00,2012-06-18 09:59;2012-06-18 12:00,2012-06-18 16:59;

2012-06-19 08:00,2012-06-19 16:59;2012-06-20 08:00,2012-06-20 08:59;

2012-06-20 09:45,2012-06-20 12:59;2012-06-20 15:00,2012-06-20 16:59;

2012-06-21 08:00,2012-06-21 10:59;2012-06-21 15:30,2012-06-21 16:59

The algorithm first parses these time period strings into Python datetime
objects so that they can be compared to each other easily. It then goes
through all of the starting and ending times to find those between which all
of the invited users are simultaneously available. Each of the starting and
ending time pairs found this way forms a single common time period and is
added to the list of common time periods. After all the common time periods
are found, they are saved to the database as an attribute of the meeting they
belong to, formatted similarly as the individual time periods.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 71

Another task of the Meeting scheduler element is the creation of meeting
proposals and meeting requests. The creation of meeting proposals is per-
formed very simply in the prototype. The Meeting scheduler app creates a
new meeting object based on the information received from the Organizer UI
after which the Django ORM adds it also to the database. Meeting requests
are also created simply by just adding the time slot information to the exist-
ing meeting proposals. The Meeting scheduler sends the meeting requests to
the calendar systems as soon as they are created by sending a proposal type
message through the long polling interface. The long polling interface and
the different types of messages are described in Section 5.4.3.

One task of the Meeting scheduler is the gathering of responses to meeting
requests. This is done by allowing users to submit the responses through
the REST interface. When a response is received, its content is checked
to see what the response is. If the response is ”accept”, the meeting event
information is sent in a sync type message through the long polling interface.
The responses are saved to the database so that it can be later known which
users have accepted the meeting request in case there are any changes that
need to be updated. If changes occur, a long polling message also of the type
sync is sent to all participants who accepted the request for that meeting.

The Administrator UI functional element is implemented as an admin-
istrator website that Django creates automatically for all projects.

As said, the Organizer UI functional element is implemented as a web
site in a separate Django app, the Meeting creator. The templates and views
of this app compose the different pages of the site, such as the meeting cre-
ation form and the meeting detail page. The Meeting creator app, however,
doesn’t have a data model that would be significant to the scheduling process.
The only data stored in the Meeting creator model are randomly generated
identifier strings that are used when the users respond to meeting requests
to make the responding more convenient.

As we explain in section 6.1.3, requirements R56 and R59 are not imple-
mented in the prototype. This means that it is not possible for the organizer
to change or cancel her meetings or send reminders to invited users through
the organizer website. If those feature were implemented, however, the orga-
nizer website would be the most rational place to allow the organizer to do
them.

In the MSS prototype, we use an e-mail server as the Notification agent
functional element. We decided to use e-mail since most of our potential users
likely already use it actively and many of the existing scheduling systems
also utilize e-mail to notify their users about meetings. The prototype’s
communication with the e-mail server is implemented in the Meeting creator
app.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 72

The User management UI and the Group management UI func-
tional elements are not implemented at all in our prototype. Instead, the
editing of user and group information can be done using the administrator
site. It is also possible to edit the data manually through our implementation
of the Data editing interface. This interface is explained in Section 5.4.2.

5.3.2 Calendar system

The client component that runs on the N950 consists of two Python script
files: Calendar reader and Client logic. Together the scripts implement the
functionality of the User calendar manager functional element. The Client
logic script file contains about 390 line of code including comments and blank
lines and the Calendar reader script file contains about 240 lines of code. This
indicates that both scripts are fairly simple and we estimate that developing
a similar client component for other calendar systems should not be any more
complicated.

The Calendar reader script handles only the reading and writing of data
to the User’s calendar. The Client logic script contains all of the actual logic
of the User calendar manager. The Client logic script continuously monitors
for incoming meeting proposals and meeting events from the central system
and reacts accordingly when they are received. If a meeting proposal is
received, the Client logic script asks the Calendar reader script to read the
free time periods from the calendar. The Client logic script combines the free
times with the availability rules and sends them to the central system. If a
meeting event is received, the Client logic script asks the Calendar reader
script to enter a matching calendar entry to the user’s calendar.

The User’s calendar is the default, built-in calendar application on the
N950. The calendar data is stored in an SQLite database on the device. The
database contains the individual events that appear in the device’s calendar
and also some other data that is not related to the calendar. The Calendar
reader script reads and writes calendar events to the calendar database by
executing SQL queries.

We implemented the Availability rule storage as a simple text file
on the device. The file specifies the periods of time that the user wants to
make available for meetings with each group for each week day. The rules
of different groups are identified by the group name. The file also contains
default availability rules that are used if no applicable available rules are
present for the group that the meeting is intended for. Additionally, since
it is possible to have multiple calendars on the N950, the file specifies by
name which of those calendars are used in finding the available times for the
meeting. The availability rule file is formatted in a specific way that allows

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 73

the Client logic script to read it automatically but also so that it can be
easily understood by a human reader. An example of the file format is given
below:

Calendars = Personal, Private

#default

Monday = 08:00-17:00

Tuesday = 08:00-17:00

Wednesday = 08:00-17:00

Thursday = 08:00-17:00

Friday = 08:00-15:00

#Testgroup

Monday = 10:00-14:00

Wednesday = 08:00-12:00

Thursday = 12:30-16:00

Friday = 09:00-11:00

We did not implement any specific Availability rule editing UI in
the MSS prototype. Instead, the users can use any text editor to edit the
availability rule file manually.

5.4 Design and implementation of the inter-

faces

In the architecture design, the MSS has five interfaces between the central
system and the other components: Data editing interface, Time period in-
terface, Request response interface, Calendar action interface and Message
delivery interface. These interfaces and the technologies that they have been
implemented with can be seen in figure 5.6. In this section, we describe how
each of these interfaces is implemented in the prototype.

5.4.1 E-mail interface

As mentioned in Section 5.3.1, we use e-mail to send the meeting requests.
This means that the Message delivery interface is implemented by sending
the messages over Simple Mail Transfer Protocol (SMTP) (Postel, 1982) from
the organizer website app to the e-mail server.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 74

Table 5.2: A list of HTTP request methods that the REST interface accepts
and the actions they result in.

Method Target Action

GET Single object Returns the object information.
GET Object list Returns the information of all objects in the

resource.
POST Single object N/A
POST Object list Creates a new object.
PUT Single object Updates all information fields of the object.
PUT Object list N/A
PATCH Single object Updates only the given information fields of the

object.
PATCH Object list N/A
DELETE Single object Removes the object from the database.
DELETE Object list N/A

5.4.2 REST interface

We have combined Data editing interface, Time period interface and Request
response interface into one single interface in the prototype. This is done
with a REST interface on the central web server that allows users to see and
edit data in the central database using ordinary HTTP requests.

Each of the tables in the database is presented in the REST interface
as a resource. Different resources and objects in each resource have unique
Universal Resource Locators (URLs) which are used to identify them. For
example, the URL <server addresss>/rest/v1/meeting/ belongs to the
Meeting resource and presents a list of all the meeting objects in the resource.
A URL for a single meeting is <server addresss>/rest/v1/meeting/11/

where the number 11 is an identifier for the meeting. To access or edit the
resources, users must make an HTTP request to the URL of the resource. The
method of the request determines what action is taken upon the resource.
Table 5.2 lists the methods that are accepted in the prototype and their
corresponding actions. Not all of the methods are usable on every resource.

Requests that have the method POST, PUT or PATCH must include the
data that is sent to the server within them. All the data that is received or
sent through the REST interface is serialized in JavaScript Object Notation
(JSON) (Crockford, 2006) format and the request must have the ’Content-
Type’ header set to ’application/json’. Support for other formats could be
implemented as well if necessary.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 75

All of the requests to the REST interface must identify the user who
makes that request. This is done with HTTP basic access authentication
by providing the username and password of the user in the request. The
authorization to see and edit data through the interface is restricted based
on the user identity. Users are only able to see and edit the data that is
relevant to them. For example, user can see the user data of all users but
edit only the data about themselves. Also, the details about a meeting can
only be seen by the users who are invited to that meeting and edited only
by the organizer.

An example of an HTTP request sent to the interface and the returned
response is displayed below. The top two lines of the example are the re-
quest made by the user and the following lines are the response from the
server. The example was made using a command-line network application
called cURL (Stenberg, 2012) on Windows (Microsoft Corporation, 2012b)
operating system. The request is authenticated by a user with the username
’testuser’ and and also the password ’testuser’. The purpose of the request
is to get the details about testuser herself.

C:\cURL>curl.exe --dump-header - -u testuser:testuser

http://kurre.soberit.hut.fi:8000/rest/v1/user/2/

HTTP/1.1 200 OK

Date: Fri, 20 Jul 2012 13:39:41 GMT

Server: Apache/2.2.20 (Ubuntu)

Transfer-Encoding: chunked

Content-Type: application/json; charset=utf-8

{

"email": "example@email.net",

"first_name": "Test",

"groups": ["/rest/v1/group/1/", "/rest/v1/group/2/"],

"id": "2",

"last_name": "User",

"resource_uri": "/rest/v1/user/2/",

"username": "testuser"

}

The first set of rows in the response represents the headers of the response.
The actual data of the response is within the curly brackets.

An example of a request that sends data to the server is displayed below.
This request creates a new meeting into the MSS. The user who sends the
request is automatically made the organizer of the meeting. References to
other objects, such as groups and users, are given as the URLs of those
objects. URLs of each object are included in their data.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 76

C:\cURL>curl.exe --dump-header - -u testuser:testuser

-X POST -H "Content-Type: application/json"

--data "{

\"topic\": \"Quarterly review\",

\"location\": \"Seminar hall\",

\"duration\": 180,

\"date_range_start\": \"2012-07-06\",

\"date_range_end\": \"2012-07-12\",

\"group\": \"/rest/v1/group/1/\",

\"invitees\": [\"/rest/v1/user/2/\", \"/rest/v1/user/3/\"]

}"

http://kurre.soberit.hut.fi:8000/rest/v1/meeting/

HTTP/1.1 201 CREATED

Date: Mon, 14 May 2012 12:07:11 GMT

Server: Apache/2.2.20 (Ubuntu)

Location: http://kurre.soberit.hut.fi:8000/rest/v1/meeting/2/

Vary: Accept-Encoding

Content-Length: 0

Content-Type: text/html; charset=utf-8

Since the request was made to create send new data and not to request
existing data, the response contains only headers. Of particular interest is
the ’Location’ header which specifies the URL of the newly created meeting.

Details about the REST interface resources including their URLs, data
fields and accepted HTTP methods can be seen in Appendix A.

5.4.3 Long polling interface

We have implemented the Calendar action interface using the ’long polling’
technique. Long polling allows the emulation of pushing information from
server to clients using standard HTTP requests. In long polling, the client
sends a request to the server but, if there is no new content on the server,
the server does not immediately send back a response. Instead, the server
waits until new content becomes available (or until a predetermined timeout).
When new content becomes available, the content is sent to the client as a
response and the client immediately sends a new request to the server. In
this way, there is a constant connection between the server and the client.
The connection is also real-time since the server always sends the content to
the client as soon as it is made available.

Because of this implementation decision, the central system of the proto-
type provides the interface to which the calendar systems connect to. This
is contrary to our architecture design where the client component provides
the interface.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 77

A connection to the interface can be made by sending a HTTP POST
request to the URL <server address>/longpoll/. The username and the
password of a user must be provided as POST parameters with the request.
Also, a parameter that specifies the date and time of the previous request
made by this client should be provided. If a new meeting proposal or meeting
event is available on the server or after a set time limit has been reached,
the server sends back a response that contains the necessary information as
a JSON formatted string.

The response string contains two attributes: ’type’ and ’payload’. Type
describes the purpose of the response and the payload contains the actual
data of the response. Table 5.3 lists the different possible types of the re-
sponses, their description and content of the payload as well as what the
client component should do after receiving this type of response. Note that,
regardless of the response, the client component should always send a new
request to the server immediately.

Table 5.3: The different types of responses sent by the central server via the
long polling interface.

Type Description Payload Expected action

empty There is no new content
on the server and the re-
sponse was sent because
the fail-safe time limit
was reached.

String ’No new
content’.

Nothing.

proposal A new meeting has been
created where the user is
invited.

Details about
the meeting.

The client component
should gather the avail-
able time periods from
the user’s calendar and
commit them to the
scheduler using the
REST interface.

sync The user has accepted a
request for a meeting or
an existing meeting has
been updated.

Details about
all the updated
meetings.

The client component
should update the events
in the user’s calendar.

error There was a problem
with the long polling re-
quest, such as a miss-
ing parameter or authen-
tication failure.

String describ-
ing the error.

The client component
should send a valid re-
quest next time.

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 78

An example of a response to a request sent to the long polling interface
using cURL is shown below. The response type is sync, meaning that a new
meeting event has become available or has been updated. The payload is a
Python dictionary containing the information of one meeting that has been
updated since the last_checked parameter of the request.

C:\cURL>curl.exe --dump-header - -X POST

--data "username=testuser&password=testuser

&last_checked=2012-07-20T10:40:00"

http://kurre.soberit.hut.fi:8000/longpoll/

HTTP/1.1 200 OK

Date: Mon, 23 Jul 2012 09:38:21 GMT

Server: Apache/2.2.20 (Ubuntu)

Vary: Accept-Encoding

Transfer-Encoding: chunked

Content-Type: text/html; charset=utf-8

{"type": "sync", "payload": [{

"update_date": "2012-07-20T10:41:52.908200",

"response_uri": "/rest/v1/meeting/7/response/",

"response_count": 1,

"group": {

"users": ["/rest/v1/user/3/", "/rest/v1/user/2/"],

"resource_uri": "/rest/v1/group/1/",

"id": "1",

"name": "Testgroup"

},

"time_period_uri": "/rest/v1/meeting/7/timeperiod/",

"duration":180,

"date_range_start": "2012-08-06",

"time_slot": "2012-08-07T10:00:00",

"date_range_end": "2012-08-12",

"creation_date": "2012-07-20T10:41:36.440774",

"topic": "Quarterly review",

"cancellation_date": null,

"id": "7",

"location": "Seminar hall",

"cancelled": false,

"committed_time_period_count": 1,

"organizer": "/rest/v1/user/2/",

"resource_uri": "/rest/v1/meeting/7/",

"common_time_periods": "2012-08-06 08:00,2012-08-06

16:59;2012-08-07 08:00,2012-08-07 16:59;2012-08-08

13:00,2012-08-08 16:59;2012-08-09 08:00,2012-08-09

16:59;2012-08-10 08:00,2012-08-10 14:59",

"invitees": ["/rest/v1/user/2/"]

}]}

CHAPTER 5. PROTOTYPE TOOL IMPLEMENTATION 79

5.4.4 Interface usage sequence

The REST interface and the long polling interface allow any third party
system to connect to the central system of the prototype as designed in the
architecture. The sequence diagram in Figure 5.8 shows examples of the
messages that the Organizer UI and the User calendar manager functional
elements would have to send to the central system if they were implemented
in a third-party system. Notification agent is also included in the sequence for
clarity. The notification agent could also be implemented as part of a third-
party meeting management system but the current MSS prototype that we
have implemented only supports sending meeting requests via SMTP to the
e-mail server.

Organizer UI Central system
User calendar

manager

Notification

agent

GET /rest/v1/group/

200 OK [group list]

GET /rest/v1/user/

200 OK [user list]

POST /rest/v1/meeting/ [meeting data]

<LP> POST /longpoll/

<LP> 200 OK [type: proposal]

POST /rest/v1/meeting/<id>/timeperiod/ [time periods]

201 CREATED [time period uri]

<LP> POST /longpoll/

201 CREATED [meeting uri]

GET /rest/v1/meeting/<id>/

200 OK [meeting data]

PATCH /rest/v1/meeting/<id>/ [time slot]

202 ACCEPTED

<SMTP> Meeting request

POST /rest/v1/meeting/<id>/response/ [response]

201 CREATED [response uri]

<LP> 200 OK [type: sync]
[response = Accept]

opt

REST interface

Long polling interface

Message delivery interface

message

<LP>

<SMTP>

Legend

Get the user and
group resource
URIs which are
needed in meeting
creation

Create the meeting

Commit time
periods

Get meeting to see
common time
periods

Select time slot

Submit user
response

Add meeting event
to the calendar

Figure 5.8: A sequence diagram showing the detailed messages sent through
the REST and long polling interfaces during a meeting scheduling process in
our prototype.

Chapter 6

Evaluation

Evaluation is an important part of good research. The results of the research
should be evaluated through experience or systematic analysis to build con-
fidence in their validity (Shaw, 2002). In this chapter we verify and validate
(IEEE, 2012) the architecture and the prototype to ensure that the MSS is
designed according to the specification and that is fulfills the user needs. We
have used three different methods of evaluation: First, we traced the design
decisions that we have made in the prototype and the architecture back to
the requirements and research questions to verify that they are consistent.
Second, we compared the scheduling process of the MSS to that of some other
existing meeting scheduling applications to see if the MSS is more effortless
to use than they are. Effortlessness was evaluated because it is one of the
key success factors for the MSS. Third, we held an evaluation session with
a group of experts at IPSS so that they could assess the feasibility of the
architecture and validate that the MSS provides value to the users.

6.1 Traceability from research questions to

implementation

In this section we verify (IEEE, 2012) the architecture. Verification means
ensuring that the system that has been built matches the specification that
was set for it beforehand. In other words, we ensure that the system has
been built correctly. We do this by tracing the features that we have im-
plemented in the MSS prototype and the architecture design back to the
research questions. The research questions are the starting point of the MSS
specification.

80

CHAPTER 6. EVALUATION 81

6.1.1 From research questions to requirements

The goal of the MSS architecture and the prototype tool is to help us answer
the research questions of this thesis. In Section 3.1 we formulated five high-
level requirements for the MSS in collaboration with IPSS. The requirements
were selected on the basis that if the MSS is able to fulfill them it would also
provide answers for the research questions. We expanded these high-level
requirements into numerous detailed requirements which are listed in Section
3.4. In that section, the requirements are divided into multiple categories and
for each category it is explained how those requirements relate to the different
research questions. All of the four research questions have been taken into
account in the requirements.

6.1.2 From requirements to architecture

The requirements are the basis of the architecture design. All of the re-
quirements that we elicited for the MSS have been taken into account when
designing the architecture. That said, not all of the requirements are archi-
tecturally significant and, as such, are not explicitly specified in the archi-
tecture documentation. However, the MSS architecture is designed so that
these requirements can be satisfied in the implementation.

Requirements R11-R14 are about the interfaces that enable calendar sys-
tems to communicate with the MSS. The interfaces in the architecture design
are visible in the functional view Figure 4.2 and documented in Section 4.5.
Requirements R15 and R16 are about protecting the privacy of the users’
calendar data. Privacy issues in the architecture are documented in the in-
formation view in Section 4.3 and in the User calendar manager element’s
documentation in the functional view in Section 4.2.

Requirements R21-R24 regard the user groups. The groups are specified
as user group data element in the information view. The users’ possibility to
join, leave and customize the groups is enabled by the Group management UI
functional element in the functional view. Requirements R25-R27 are about
the user’s possibility to customize their available time based on the user
groups. These are satisfied in the availability rules which are documented in
the information view. Availability rule storage and Availability rule editing
UI functional elements are also present in the functional view.

The process of creating new meetings before the actual scheduling starts
is specified in requirements R31-R36. Most of these requirements are not
architecturally significant but the Organizer UI functional element makes it
possible to take them all into account in the implementation.

The design of the Organizer UI functional element also supports require-

CHAPTER 6. EVALUATION 82

ments R41, R45, R46 and R47 which are about selecting a time slot for the
meeting. Requirements R42-R44 and R48 are about reading the users calen-
dar to find out the suitable time periods. In the functional view it is specified
that the User calendar manager handles these responsibilities.

Requirements R51-R53 are about sending and responding to meeting re-
quests. The external Notification UI functional element handles these tasks,
as is documented in the functional view. Requirements R54-R511 specify
how the meetings can be altered and how they change in the user’s calendar
if they have already been added there. These requirements are not architec-
turally significant, but features that satisfy them could be implemented in
the Organizer UI and the User’s calendar manager functional elements.

6.1.3 From architecture to implementation

The prototype of the MSS contains all of the key features that we identified in
Section 3.1. This includes most of the detailed requirements listed in Section
3.4 but, to reduce the amount of effort required to create the prototype, we
decided to omit some of the less important detailed requirements. Table 6.1
lists the requirements that have not been implemented in the prototype or
that have been implemented only partially. All of the rest of the detailed
requirements specified in Section 3.4 have been implemented in the prototype.

All of the omitted requirements are about features that increase the ease-
of-use or usefulness of the MSS, giving more options to group management
and meeting organizing. Some of them are simple nice-to-have features with
a low priority while others are of medium priority because they are quite
important in providing a good user experience in a fully implemented MSS.
However, none of the requirements are architecturally significant and are
not part of the key functionality of the MSS which is why we felt that it is
acceptable to omit them in the prototype.

Most of the functional elements in the architecture are implemented in the
prototype. The elements that are not implemented are User management UI,
Group management UI and Availability rule editing UI. These user interface
elements were omitted because the data that they edit can also be edited by
other means. User and group data can be edited through the Administrator
UI and the availability rules can be edited directly in the text file. All public
interfaces on the central system are implemented in the prototype. Figure
5.6 visualizes what functional elements are implemented in the prototype and
how the interfaces are implemented. Finally, all of the information elements
in the architecture are utilized in the prototype.

Table 6.2 shows how the different steps of the scheduling process are done
in the MSS prototype as compared to the architecture design. The table

CHAPTER 6. EVALUATION 83

Table 6.1: Omitted requirements in the prototype.

ID Description Priority

R23 The MSS shall allow group members to set their group to
be joinable by everyone or just invited users.

Low

R24 The MSS shall allow group members to set their group to
be valid for only a certain period of time.

Low

R47 When the MSS has completed the scheduling process for a
meeting and if no common time periods have been found,
the MSS presents to the organizer a set of the time periods
when the highest amount of invited participants are able
to attend.

Medium

R56 When the MSS has notified the invited participants about
the proposed meeting, the MSS shall allow the organizer
to change the details of the proposed meeting or cancel the
proposed meeting at any point.

Medium

R57 When the organizer has canceled the meeting event, the
MSS shall remove the meeting event from the calendars of
the participants.

Medium

R58 When the organizer has changed details of a meeting event,
the MSS shall change the meeting events in participants’
calendars accordingly.

Medium

R59 While the MSS has notified the invited participants about
the proposed meeting, the MSS shall allow the organizer to
send reminders to the invited participants about respond-
ing.

Low

R510 When the MSS has created a meeting event, the MSS shall
allow each participant to exclude herself from the meeting
event.

Low

R511 When a participant has excluded herself from a meeting
event, the MSS shall remove that participant from the
meeting event’s list of participants as well as remove the
meeting event from that participant’s calendar.

Medium

CHAPTER 6. EVALUATION 84

uses the same format as Table 2.1 where a number of existing scheduling
applications are compared against each other. As is apparent in the table,
the only difference between the MSS prototype and the MSS architecture
regarding these process steps is that the possibility to reschedule a meeting
has not been implemented in the prototype.

Table 6.2: Comparison of how different steps of the scheduling process are
done in the MSS architecture versus in the MSS prototype.

Application Selecting par-
ticipants

Finding free times Agreeing on a
time

Adding the
event to a
calendar

MSS Ar-
chitecture
design

Organizer se-
lects from a
list of regis-
tered users.

The system automatically finds avail-
able time periods from the users’ cal-
endars according to the availability
rules. Time periods which are avail-
able to everyone are presented to the
organizer.
+ Supports heterogeneous calendars
+ Very little effort required from the
organizer and none from participants
+ Free times are found immediately
- Users’ calendars must always be con-
nected to the system

Organizer
selects a time
slot which the
participants
can accept,
decline or
request
rescheduling.
Possible to
reschedule.

Automatically
added to par-
ticipants’
calendars.
+ No man-
ual effort re-
quired

MSS Pro-
totype

Organizer se-
lects from a
list of regis-
tered users.

The system automatically finds avail-
able time periods from the users’ cal-
endars according to the availability
rules. Time periods which are avail-
able to everyone are presented to the
organizer.
+ Supports heterogeneous calendars
+ Very little effort required from the
organizer and none from participants
+ Free times are found immediately
- Users’ calendars must always be con-
nected to the system

Organizer
selects a time
slot which the
participants
can accept,
decline or
request
rescheduling.
- Reschedul-
ing not imple-
mented

Automatically
added to par-
ticipants’
calendars.
+ No man-
ual effort re-
quired

6.2 Comparison to other existing scheduling

applications

A large part of the motivation behind this thesis and the MSS were the prob-
lems with the currently existing scheduling applications. Additionally, the
first success factor for the MSS that we identified in Section 1.2 was that
the MSS should provide easier scheduling between heterogeneous calendar
system than existing applications. In this section, we compare the schedu-
ling process of the MSS to those of some of the popular existing meeting
scheduling applications to see if the MSS is more effortless to use.

CHAPTER 6. EVALUATION 85

In Section 2.1, we analyzed some of the existing scheduling applications
that are available today. Perhaps the most popular of those that support
scheduling between people with heterogeneous calendars is Doodle (Doodle
AG, 2012). The scheduling process with Doodle involves the meeting orga-
nizer guessing good suggestions for a meeting time and then waiting for the
participants to respond. To respond, the participants must check their own
calendars and mark which times are suitable for them. This requires quite
a lot of effort from both the organizer and the participants. Much simpler
scheduling features are available in, for example, Microsoft Exchange calen-
dar (Microsoft Corporation, 2011) and Google Calendar (Google, 2012b). In
these applications, the organizer is provided automatically with suggestions
for suitable meeting times and is also able to see the availability of all partici-
pants directly. This allows the organizer to make an educated decision about
the meeting time without having to interact with the participants manually.
However, the organizer is not able to see the availability of those participants
who use different calendar systems.

The scheduling process in the MSS prototype is quite similar to that of
Microsoft Exchange calendar and Google Calendar. The prototype auto-
matically finds out possible suitable meeting times and presents them to the
meeting organizer. The times are not presented graphically in the prototype
as they are in Exchange and Google Calendar but such a feature could be
added to the prototype. After the organizer has selected a meeting time, the
prototype notifies the participants about the meeting via e-mail. Meeting
notifications are done similarly in the other applications. Both the proto-
type and the other applications also add the meeting to the participants’
calendar automatically. Unlike Exchange and Google Calendar, however,
the MSS prototype allows heterogeneous calendar systems to participate in
the scheduling process by providing interfaces that the calendar systems can
connect to. The Nokia N950 device has been successfully integrated with the
prototype to verify this.

The differences in the scheduling process between the MSS architecture,
the MSS prototype and the existing scheduling applications that we have
inspected are described in Table 6.3. This table contains exactly the same
information as the application comparison table 2.1 and the MSS architecture
and prototype table 6.2 and is merely a combination of them.

To summarize, the scheduling process in the MSS prototype is roughly
as simple as in the most popular competing applications. These applications
cannot schedule between heterogeneous calendar systems while the MSS can.
Based on these observations we can say with confidence that the MSS proto-
type is more effortless to use in scheduling meetings between heterogeneous
calendar systems than existing applications.

CHAPTER 6. EVALUATION 86
T

ab
le

6.
3:

C
om

p
ar

is
on

of
h
ow

d
iff

er
en

t
st

ep
s

of
th

e
sc

h
ed

u
li
n
g

p
ro

ce
ss

ar
e

d
on

e
in

so
m

e
of

th
e

ex
is

ti
n
g

m
ee

ti
n
g

sc
h
ed

u
li
n
g

sy
st

em
s

as
w

el
l

as
in

th
e

M
S
S

ar
ch

it
ec

tu
re

d
es

ig
n

an
d

p
ro

to
ty

p
e.

A
p
p
li
c
a
ti

o
n

S
e
le

c
ti

n
g

p
a
rt

ic
ip

a
n
ts

F
in

d
in

g
fr

e
e

ti
m

e
s

A
g
re

e
in

g
o
n

a
ti

m
e

A
d
d
in

g
th

e
e
v
e
n
t

to
a

c
a
le

n
d
a
r

M
ic

ro
so

ft
E

x
c
h
a
n
g
e

A
n
y

e
-m

a
il

a
d
d
re

ss
.

C
a
le

n
d
a
rs

o
f

o
th

e
r

M
ic

ro
so

ft
E

x
c
h
a
n
g
e

u
se

rs
w

h
o

a
re

in
th

e
sa

m
e

d
o
m

a
in

a
re

v
is

ib
le

to
th

e
o
rg

a
n
iz

e
r

so
sh

e
is

a
b
le

to
se

le
c
t

a
su

it
a
b
le

ti
m

e
.

T
h
e

a
p
p
li
c
a
ti

o
n

a
ls

o
su

g
g
e
st

s
ti

m
e
s.

+
N

o
e
ff

o
rt

n
e
e
d
e
d

fr
o
m

p
a
rt

ic
ip

a
n
ts

+
F
re

e
ti

m
e
s

a
re

fo
u
n
d

im
m

e
d
ia

te
ly

-
N

o
h
e
lp

fo
r

sc
h
e
d
u
li
n
g

w
it

h
p

e
o
p
le

w
h
o

a
re

n
o
t

in
th

e
sa

m
e

d
o
m

a
in

o
r

u
se

a
d
iff

e
re

n
t

a
p
p
li
c
a
ti

o
n

-
M

u
st

sh
a
re

a
t

le
a
st

fr
e
e

ti
m

e
s

fr
o
m

th
e

w
h
o
le

c
a
le

n
d
a
r

O
rg

a
n
iz

e
r

se
le

c
ts

a
ti

m
e
.

M
e
e
ti

n
g

in
v
it

a
ti

o
n

is
se

n
t

v
ia

e
-m

a
il

in
iC

a
le

n
d
a
r

fo
r-

m
a
t

w
h
ic

h
th

e
p
a
rt

ic
ip

a
n
ts

c
a
n

a
c
c
e
p
t,

a
c
c
e
p
t

te
n
ta

-
ti

v
e
ly

o
r

d
e
c
li
n
e
.

P
o
ss

ib
le

to
re

sc
h
e
d
u
le

.

A
d
d
e
d

a
u
to

m
a
ti

c
a
ll
y

b
y

M
ic

ro
so

ft
E

x
c
h
a
n
g
e

a
n
d

p
o
ss

ib
ly

o
th

e
r

a
p
p
li
c
a
-

ti
o
n
s

b
a
se

d
o
n

a
n

iC
a
le

n
d
a
r

fi
le

in
-

c
lu

d
e
d

in
th

e
e
-m

a
il
.

+
N

o
m

a
n
u
a
l

e
ff

o
rt

re
q
u
ir

e
d

G
o
o
g
le

C
a
le

n
d
a
r

A
n
y

e
-m

a
il

a
d
d
re

ss
.

C
a
le

n
d
a
rs

o
f

o
th

e
r

G
o
o
g
le

C
a
le

n
d
a
r

u
se

rs
w

h
o

h
a
v
e

sh
a
re

d
th

e
m

a
re

v
is

ib
le

to
th

e
o
rg

a
n
iz

e
r

so
sh

e
is

a
b
le

to
se

le
c
t

a
su

it
a
b
le

ti
m

e
.

T
h
e

a
p
p
li
c
a
ti

o
n

a
ls

o
su

g
g
e
st

s
ti

m
e
s.

+
N

o
e
ff

o
rt

n
e
e
d
e
d

fr
o
m

p
a
rt

ic
ip

a
n
ts

+
F
re

e
ti

m
e
s

a
re

fo
u
n
d

im
m

e
d
ia

te
ly

-
N

o
h
e
lp

fo
r

sc
h
e
d
u
li
n
g

w
it

h
p

e
o
p
le

w
h
o

h
a
v
e

n
o
t

sh
a
re

d
th

e
ir

G
o
o
g
le

c
a
le

n
d
a
rs

-
M

u
st

sh
a
re

a
t

le
a
st

fr
e
e

ti
m

e
s

fr
o
m

th
e

w
h
o
le

c
a
le

n
d
a
r

O
rg

a
n
iz

e
r

se
le

c
ts

a
ti

m
e
.

M
e
e
ti

n
g

in
v
it

a
ti

o
n

is
se

n
t

v
ia

e
-m

a
il

in
iC

a
le

n
d
a
r

fo
r-

m
a
t

w
h
ic

h
th

e
p
a
rt

ic
ip

a
n
ts

c
a
n

a
c
c
e
p
t,

a
c
c
e
p
t

te
n
ta

-
ti

v
e
ly

o
r

d
e
c
li
n
e
.

P
o
ss

ib
le

to
re

sc
h
e
d
u
le

.

A
d
d
e
d

a
u
to

m
a
ti

c
a
ll
y

b
y

G
o
o
g
le

C
a
l-

e
n
d
a
r

a
n
d

p
o
ss

ib
ly

o
th

e
r

a
p
p
li
c
a
ti

o
n
s

b
a
se

d
o
n

a
n

iC
a
le

n
d
a
r

fi
le

in
c
lu

d
e
d

in
th

e
e
-m

a
il
.

+
N

o
m

a
n
u
a
l

e
ff

o
rt

re
q
u
ir

e
d

D
o
o
d
le

S
h
a
re

a
li
n
k

b
y

a
n
y

m
e
a
n
s.

A
ls

o
p

o
ss

ib
le

to
se

n
d

e
-m

a
il

d
ir

e
c
tl

y
fr

o
m

th
e

se
rv

ic
e
.

+
F
re

e
d
o
m

to
c
h
o
o
se

h
o
w

to
sh

a
re

th
e

li
n
k

O
rg

a
n
iz

e
r

c
re

a
te

s
d
a
te

a
n
d

ti
m

e
su

g
g
e
st

io
n
s.

P
a
rt

ic
ip

a
n
ts

m
a
rk

w
h
ic

h
ti

m
e
s

a
re

su
it

a
b
le

fo
r

th
e
m

.
+

P
a
rt

ic
ip

a
n
ts

d
o

n
o
t

n
e
e
d

to
sh

a
re

c
a
le

n
d
a
rs

-
O

rg
a
n
iz

e
r

m
u
st

g
u
e
ss

g
o
o
d

su
g
g
e
st

io
n
s

-
P

a
rt

ic
ip

a
n
ts

h
a
v
e

to
m

a
n
u
a
ll
y

c
h
e
c
k

a
n
d

m
a
rk

th
e
ir

fr
e
e

ti
m

e
s

-
C

o
u
ld

ta
k
e

a
lo

n
g

ti
m

e
fo

r
p
a
rt

ic
ip

a
n
ts

to
re

sp
o
n
d

w
h
il
e

si
tu

a
ti

o
n

m
ig

h
t

c
h
a
n
g
e

O
rg

a
n
iz

e
r

se
le

c
ts

o
n
e

o
r

m
o
re

o
f

th
e

su
g
g
e
st

e
d

ti
m

e
s.

P
o
ss

ib
le

to
c
h
a
n
g
e

se
le

c
ti

o
n

la
te

r.

M
a
n
u
a
ll
y
.

P
o
ss

ib
le

to
a
ls

o
e
x
p

o
rt

a
n

iC
a
le

n
d
a
r

fi
le

w
h
ic

h
h
a
s

th
e

m
e
e
t-

in
g

d
a
ta

.
P

o
ss

ib
le

to
a
d
d

d
ir

e
c
tl

y
to

G
o
o
g
le

C
a
le

n
d
a
r.

P
o
ss

ib
le

to
a
d
d

d
i-

re
c
tl

y
to

M
ic

ro
so

ft
O

u
tl

o
o
k

o
r

A
p
p
le

iC
a
l

v
ia

p
lu

g
-i

n
s.

-
R

e
q
u
ir

e
s

m
a
n
u
a
l

e
ff

o
rt

o
r

p
lu

g
-i

n
s

M
e
e
ti

n
.g

s
A

n
y

e
-m

a
il

a
d
d
re

ss
.

O
rg

a
n
iz

e
r

c
re

a
te

s
d
a
te

a
n
d

ti
m

e
su

g
g
e
st

io
n
s.

P
a
rt

ic
ip

a
n
ts

m
a
rk

w
h
ic

h
ti

m
e
s

a
re

su
it

a
b
le

fo
r

th
e
m

.
+

P
a
rt

ic
ip

a
n
ts

d
o

n
o
t

n
e
e
d

to
sh

a
re

c
a
le

n
d
a
rs

-
O

rg
a
n
iz

e
r

m
u
st

g
u
e
ss

g
o
o
d

su
g
g
e
st

io
n
s

-
P

a
rt

ic
ip

a
n
ts

h
a
v
e

to
m

a
n
u
a
ll
y

c
h
e
c
k

a
n
d

m
a
rk

th
e
ir

fr
e
e

ti
m

e
s

-
C

o
u
ld

ta
k
e

a
lo

n
g

ti
m

e
fo

r
p
a
rt

ic
ip

a
n
ts

to
re

sp
o
n
d

w
h
il
e

si
tu

a
ti

o
n

m
ig

h
t

c
h
a
n
g
e

O
rg

a
n
iz

e
r

se
le

c
ts

o
n
e

o
f

th
e

su
g
g
e
st

e
d

ti
m

e
s.

P
o
ss

ib
le

to
c
h
a
n
g
e

se
le

c
ti

o
n

la
te

r.

M
a
n
u
a
ll
y
.

P
o
ss

ib
le

to
a
ls

o
e
x
p

o
rt

a
n

iC
a
le

n
d
a
r

fi
le

w
h
ic

h
h
a
s

th
e

m
e
e
t-

in
g

d
a
ta

.
P

o
ss

ib
le

to
a
d
d

d
ir

e
c
tl

y
to

G
o
o
g
le

C
a
le

n
d
a
r.

-
R

e
q
u
ir

e
s

m
a
n
u
a
l

e
ff

o
rt

M
S
S

A
rc

h
it

e
c
-

tu
re

d
e
si

g
n

O
rg

a
n
iz

e
r

se
le

c
ts

fr
o
m

a
li
st

o
f

re
g
is

te
re

d
u
se

rs
.

T
h
e

sy
st

e
m

a
u
to

m
a
ti

c
a
ll
y

fi
n
d
s

a
v
a
il
a
b
le

ti
m

e
p

e
ri

o
d
s

fr
o
m

th
e

u
se

rs
’

c
a
le

n
d
a
rs

a
c
c
o
rd

in
g

to
th

e
a
v
a
il
a
b
il
it

y
ru

le
s.

T
im

e
p

e
ri

o
d
s

w
h
ic

h
a
re

a
v
a
il
a
b
le

to
e
v
e
ry

o
n
e

a
re

p
re

se
n
te

d
to

th
e

o
rg

a
n
iz

e
r.

+
S
u
p
p

o
rt

s
h
e
te

ro
g
e
n
e
o
u
s

c
a
le

n
d
a
rs

+
V

e
ry

li
tt

le
e
ff

o
rt

re
q
u
ir

e
d

fr
o
m

th
e

o
rg

a
n
iz

e
r

a
n
d

n
o
n
e

fr
o
m

p
a
rt

ic
ip

a
n
ts

+
F
re

e
ti

m
e
s

a
re

fo
u
n
d

im
m

e
d
ia

te
ly

-
U

se
rs

’
c
a
le

n
d
a
rs

m
u
st

a
lw

a
y
s

b
e

c
o
n
n
e
c
te

d
to

th
e

sy
st

e
m

O
rg

a
n
iz

e
r

se
le

c
ts

a
ti

m
e

sl
o
t

w
h
ic

h
th

e
p
a
rt

ic
ip

a
n
ts

c
a
n

a
c
c
e
p
t,

d
e
c
li
n
e

o
r

re
q
u
e
st

re
sc

h
e
d
u
li
n
g
.

P
o
ss

ib
le

to
re

sc
h
e
d
u
le

.

A
u
to

m
a
ti

c
a
ll
y

a
d
d
e
d

to
p
a
rt

ic
ip

a
n
ts

’
c
a
le

n
d
a
rs

.
+

N
o

m
a
n
u
a
l

e
ff

o
rt

re
q
u
ir

e
d

M
S
S

P
ro

to
ty

p
e

O
rg

a
n
iz

e
r

se
le

c
ts

fr
o
m

a
li
st

o
f

re
g
is

te
re

d
u
se

rs
.

T
h
e

sy
st

e
m

a
u
to

m
a
ti

c
a
ll
y

fi
n
d
s

a
v
a
il
a
b
le

ti
m

e
p

e
ri

o
d
s

fr
o
m

th
e

u
se

rs
’

c
a
le

n
d
a
rs

a
c
c
o
rd

in
g

to
th

e
a
v
a
il
a
b
il
it

y
ru

le
s.

T
im

e
p

e
ri

o
d
s

w
h
ic

h
a
re

a
v
a
il
a
b
le

to
e
v
e
ry

o
n
e

a
re

p
re

se
n
te

d
to

th
e

o
rg

a
n
iz

e
r.

+
S
u
p
p

o
rt

s
h
e
te

ro
g
e
n
e
o
u
s

c
a
le

n
d
a
rs

+
V

e
ry

li
tt

le
e
ff

o
rt

re
q
u
ir

e
d

fr
o
m

th
e

o
rg

a
n
iz

e
r

a
n
d

n
o
n
e

fr
o
m

p
a
rt

ic
ip

a
n
ts

+
F
re

e
ti

m
e
s

a
re

fo
u
n
d

im
m

e
d
ia

te
ly

-
U

se
rs

’
c
a
le

n
d
a
rs

m
u
st

a
lw

a
y
s

b
e

c
o
n
n
e
c
te

d
to

th
e

sy
st

e
m

O
rg

a
n
iz

e
r

se
le

c
ts

a
ti

m
e

sl
o
t

w
h
ic

h
th

e
p
a
rt

ic
ip

a
n
ts

c
a
n

a
c
c
e
p
t,

d
e
c
li
n
e

o
r

re
q
u
e
st

re
sc

h
e
d
u
li
n
g
.

-
R

e
sc

h
e
d
u
li
n
g

n
o
t

im
p
le

-
m

e
n
te

d

A
u
to

m
a
ti

c
a
ll
y

a
d
d
e
d

to
p
a
rt

ic
ip

a
n
ts

’
c
a
le

n
d
a
rs

.
+

N
o

m
a
n
u
a
l

e
ff

o
rt

re
q
u
ir

e
d

CHAPTER 6. EVALUATION 87

6.3 Expert evaluation

In this section we present the findings from an architecture evaluation session
that we held with a group of experts at IPSS. The primary goal of the session
was to validate (IEEE, 2012) the architecture and the prototype. Validation
means ensuring that the system that has been built is suitable for its purpose
and fulfills the needs of the users. In other words, we ensure that we have
built the correct system.

6.3.1 Evaluation procedure

The expert group consisted of four persons. Three of the group members
were software developers, including one integration specialist, who were not
previously familiar with the architecture. The fourth member was the ex-
ecutive director of IPSS who has been assisting us in designing the MSS
architecture from the beginning.

Because most of the experts were not previously familiar with the MSS,
in the beginning of the session we presented the MSS architecture design
and the prototype implementation to them. This way, they could get an
understanding on what kind of design decisions we have made. The experts
then evaluated the architecture and provided us with feedback on how well
they think that the architecture achieves its goals.

We conducted the presentation by first describing the problem area and
motivation as well as the key requirements for the MSS. Then we showed a
demo video about the usage of the MSS prototype and explained on a high
level how the prototype functions. After this, we described the architecturally
significant decisions that we had made during the design process and the
reasoning behind them. The experts asked questions about the architecture
and the prototype throughout the presentation. Additionally, at the end of
the presentation we requested them to evaluate the architecture based on our
research questions.

To help us analyze the results from the evaluation, we recorded the audio
of everything that was said in the session. After the session, we transcribed
that audio into text. We analyzed the text and the notes that we had taken
ourselves during the session to extract the important points and comments
about the architecture and the prototype. From these points we picked the
most important ones regarding the strengths and weaknesses of the archi-
tecture. We organized these points based on which research question they
relate to the most. The points are presented in the following sections.

CHAPTER 6. EVALUATION 88

6.3.2 Evaluation of effortlessness

Research question RQ1 is about how to make scheduling between hetero-
geneous calendars more effortless than with currently existing applications.
Effortlessness refers to how little and what kind of tasks the users have to do
manually to successfully use the system. We asked the experts to evaluate
how effortless the MSS seems to be compared to their experiences with other
scheduling tools.

The experts unanimously agreed that the MSS appears to be more ef-
fortless to use than the other existing scheduling applications that they have
used. They commented that a significant positive factor that contributes to
this is that, when creating a new meeting, the MSS only takes the meeting de-
tails and the desired date range as input. This demands much less effort than,
for example, Doodle (Doodle AG, 2012) because Doodle requires that the or-
ganizer manually selects each of the time slot suggestions for the meeting.
The experts also pointed to another factor which is that, as output, the MSS
only shows the periods of time which are available for all participants. This
allows the organizer to easily select the time slot that she believes is suitable.
In contrast, applications that allow the sharing of calendars between users,
such as Microsoft Exchange (Microsoft Corporation, 2011), show the calen-
dars of the meeting participants side-by-side.This can make it difficult for
the organizer to find a suitable time slot if the calendars are heavily booked.
It should be noted, however, that at least Microsoft Exchange and Google
Calendar do have a feature that suggests meeting times for the organizer but
the experts did not comment on this.

Overall, the approach of having the scheduling process of the MSS be
semi-automated was deemed a good one by the experts. Semi-automated
means that some parts of the process are automated while others must be
manually performed. This is suitable because automating even some tasks
reduces the amount of effort required from the users, which makes the MSS
more pleasant to use. However, creating a completely automated process that
produces satisfying results would be a too difficult problem to be tackled in
the scope of this thesis.

The most significant feature of the MSS according to the experts, however,
is that it supports scheduling meetings across different organizations. Be-
cause there are no other tools that would enable this as easily, the MSS should
significantly reduce the amount of effort required in inter-organizational sche-
duling. The experts’ opinion was that even connecting two different compa-
nies together via the MSS would be a large boon for the users.

CHAPTER 6. EVALUATION 89

6.3.3 Evaluation of the scheduling results

Research question RQ2 is about how to ensure that the scheduling results
from the MSS are satisfactory to the users. If the MSS provides meeting
times that are not actually suitable to the participants, then the results are
unsatisfactory.

The discussion about satisfaction revolved mostly around the accuracy
and the availability of the user’s calendar data because actually assessing
whether the results are satisfying or not is impossible without proper user
testing. The accuracy and availability of the calendar data contribute to-
wards getting satisfying results from the MSS because utilizing good quality
data in the scheduling process results in more accurate meeting time sugges-
tions.

Based on the experts’ experience, it is common for people to forget to
put some of their appointments into their calendar. It is then possible that,
when a new meeting is scheduled using the MSS, it conflicts with the un-
marked appointment. In this case, the participant would have to decline the
meeting request or ask the organizer to reschedule. Some of the experts were
concerned that finding a new time for a meeting that has been rejected is too
cumbersome at least in the prototype. They suggested some features that
could help in rescheduling a meeting. One feature idea was that the partic-
ipants could still update their calendar after they have received a meeting
request and initiate the rescheduling process without the organizer having
to do it manually. Other ideas were the possibility for the participants to
leave a comment on why they rejected a suggested time and also that the
system would automatically not suggest a certain time to the organizer dur-
ing rescheduling if that time was rejected previously. On the other hand, one
of the experts was strongly of the opinion that it is always the organizer’s
responsibility to select a suitable time even when rescheduling a meeting.
The expert also thought that the currently existing feature of displaying who
has accepted and who has rejected the request is enough for the organizer to
make an educated decision about a new meeting time.

One feature of the MSS that the experts recognized to be beneficial to-
wards receiving satisfying results is that it uses the latest calendar data di-
rectly from the calendar systems of the users. This is better than reading the
data from some secondary source, such as a server where the user’s calendar
data has been synchronized, because based on the experts’ experience there
are often problems with synchronization. This means that the data on the
server could often be out-of-date and, thus, inaccurate. Reading the data di-
rectly from the calendar system where the user edits it is a way to ensure that
the latest data is used in scheduling. Relating to this, however, the experts

CHAPTER 6. EVALUATION 90

also proposed an idea that a user could have more than one calendar data
source which would be synchronized together and prioritized by the MSS.
The data sources with higher priority would have the latest calendar data
but the sources with lower priority would have better availability. During
the meeting scheduling process, the MSS would use the highest priority data
source that is available. The opinion was that even if the data on the low
priority data source is out-of-date, it is sill more useful to have out-of-date
data in the scheduling process than none at all.

An interesting comment from one expert was that because the calendar
data is utilized directly from the users’ calendars it might motivate them to
more rigorously maintain their calendar. This is because the users will know
that the more accurate calendar data they can provide, the more suitable
meeting time suggestions they receive from the MSS.

6.3.4 Evaluation of integration capabilities

Research question RQ3 is about how to make it possible to integrate a wide
variety of calendar systems to the MSS. The challenge is the ”wide variety”
criterion because different calendar systems are based on different technolo-
gies and the MSS should have a way to support all of them.

The experts stated that it is difficult to estimate solely based on the
architecture design and the current prototype how easy it is to integrate new
calendar systems into the MSS. However, they believed that the interfaces
in the architecture design and their implementation in the prototype should
be suitable for integrating a wide range of calendar systems to the MSS.

The challenges in integrating new calendar systems into the MSS are
not only technical but also related to privacy concerns. The experts believed
that people and especially companies are not willing to install the MSS client
component into their own or their employees’ calendar systems if they do not
trust that the MSS will not read more data than they have agreed to. On
the other hand, since the interfaces of the MSS allow anyone to develop their
own client component, the companies could also create one for themselves.
This would allow them to verify how the integration works and what data is
sent out to the central system. The companies might also be willing to adopt
an existing integration solution if it has been certified by a trusted party.

The iCalendar standard (Dawson and Stenerson, 1998) was very briefly
inspected during the session and the experts believed that it would be suit-
able to be used in the MSS for sending the meeting events to the participants.
The experts were willing to see the standard being used in the future because
it would allow the MSS to take advantage of the features of the calendar sys-
tems that are build around the iCalendar standard. For example, Microsoft

CHAPTER 6. EVALUATION 91

Outlook (Microsoft Corporation, 2012a) allows users to accept or reject iCal-
endar meeting invitations through a graphical UI.

The experts also had some comments about the integration features of
the MSS prototype specifically. There was concern that the long polling
technique that is used to communicate with the calendar systems might be
quite demanding for the calendar systems especially regarding power con-
sumption. Additionally, it is not possible to estimate how many long polling
connections the central server is able to maintain simultaneously which is a
cause for concern. On the other hand, long polling was considered suitable
for the current prototype due to its simplicity. It was agreed that the long
polling protocol should be changeable to something else if a more suitable
communication protocol becomes available. The experts also believed that
it might be a better choice to send the meeting requests via SMS or using
iCalendar format because the currently used plain e-mail messages might be
easily missed by people who receive a lot of e-mail.

On the positive side, the experts observed that since the client component
in the prototype is done with only several hundred lines of Python code it
suggests that the client component should be simple to implement for any
device.

The amount of data traffic that the MSS generates should not be a prob-
lem because the experts estimated that the MSS will most likely be used to
schedule meetings that have 5 to 10 participants. Smaller meetings are likely
so easy to schedule informally that users do not bother to use the MSS.
Large meetings, on the other hand, are rarely scheduled by agreeing on a
time with all participants but instead the organizer just dictates the meeting
time directly. Also, in the prototype, the size of each message between the
central system and the calendar systems is quite small so a large number of
messages is required before they become a problem.

6.3.5 Evaluation of privacy protection

Research question RQ4 is about how to prevent the private calendar data of
the users from leaking to other users. Of course, the MSS must access and
share some calendar data to be able to schedule meetings, so an important
question is how strictly do the users want to protect their calendar data.

We asked the experts about their opinions on what is an acceptable
amount of calendar data that they would be willing to share to the cen-
tral server. They all agreed that they are willing to divulge their free times
but only to a limited group of people that they have voluntarily joined. They
also want to be able to detach themselves from this group and stop sharing
their calendar information at any point.

CHAPTER 6. EVALUATION 92

The experts highlighted the user groups as a privacy concern. The user
groups that exist in the system should not be visible to every other user but
instead to only those who are members of these groups. In this case, new
users could only join groups by being invited by existing members.

These privacy concerns are not present as requirements for the MSS and
they have not been taken specifically into account in the architecture design.
However, the current architecture design does not prevent these issues to be
corrected in the implementation. Currently in the prototype, every user is
able to see every other user and user group that exists in the system. Every
user is also able to organize a meeting and invite anyone. This basically
allows the organizer to see the free times of any user that she desires. Based
on the feedback from the experts, these issues should be corrected in future
versions.

6.3.6 Other evaluation findings

During the session, the experts also gave some other comments about the
MSS that do not specifically relate to any of the research question topics.

They remarked that assumption AS01, which states that each user only
has one calendar, is actually quite realistic. Based on the experts’ experience,
people often have only one master device that they primarily use. If they have
more than one device, they can be expected to handle the synchronization
between those devices themselves.

One expert asked us if we had thought about the ease of installation of
the client application that integrates a calendar system with the MSS. While
we recognize that this is an important issue since a complicated installation
process makes the MSS unappealing to new users, this is not an architec-
turally significant problem. It also is not within the scope of this thesis, as
we outlined in Section 1.3. There was also some discussion about includ-
ing the location context when searching for available times for a user. This
would mean that the physical location of the user would impact her avail-
ability. However, we have also left the location context out of our scope, as
stated in Section 1.3.

The experts had many small improvement suggestions for the prototype.
Especially the user and user group management features could be improved
in many ways. There was even some discussion about integrating the MSS
with large external user management systems. However, one of the experts
was of the opinion that the MSS will most likely be used among a small circle
of people and not with a large number of unknown people. For this reason,
the integration of external user management systems is unnecessary. Also
in other respects the user and user group management are not interesting

CHAPTER 6. EVALUATION 93

to us in the context of this thesis since they are not specifically related to
meeting scheduling or any architectural issues of the MSS. One expert also
pointed out that new features should always be added with caution because
the increase the complexity of the MSS.

6.3.7 Expert evaluation summary

The following list summarizes the most important points made by the experts
in the evaluation of the architecture.

• They were certain that the MSS is more effortless to use than existing
scheduling applications thanks to the simple input and clear output.

• Possibility to schedule meetings between different organizations is a
great advantage compared to existing scheduling applications.

• The fact that the calendar data is read just-in-time directly from the
calendar should result in accurate meeting time suggestions.

• Some concern that rescheduling a meeting time that some participants
have rejected is cumbersome.

• Difficult to estimate how easy it is to integrate new calendar systems
to the MSS but the current interfaces should be helpful in this regard.

• Currently privacy issues with the visibility of time periods and user
groups in the prototype. Correcting these is possible within the current
architecture design, however.

Chapter 7

Discussion

In this chapter we discuss the results of our research. Most importantly we
summarize the answers to our research questions. We also identify the issues
that could threat the validity or accuracy of our results.

7.1 Answers to the research questions

In this section we return to the foundation of the research in this thesis by
answering the research questions that we set in section 1.2.

RQ1. How to enable the scheduling of meetings between people
who use heterogeneous calendar systems in a way that is more
effortless than with currently existing tools or methods?

The problem with scheduling meetings between heterogeneous calendar
systems using the currently available tools and methods is that they require
significant manual effort from the participants to pin down and communi-
cate their own availability. This is because the calendar systems themselves,
where the users store their calendar information, are not utilized directly at
all. In traditional methods, such as negotiating over e-mail or phone, it is the
participants who are responsible for knowing and communicating their avail-
ability to others. Whether they want to use some calendar system or keep it
all in their memory is up to them. Even the software applications that can
help in scheduling meetings between heterogeneous calendar systems, such
as Doodle (Doodle AG, 2012), still leave it up to the users to mark their own
available times. The only thing these tools can do to help schedule meetings
is to reduce the amount of communication required between the participants.

The software applications that remarkably simplify the meeting schedu-
ling process are those that directly utilize the calendars of the participants.

94

CHAPTER 7. DISCUSSION 95

For example, Microsoft Exchange (Microsoft Corporation, 2011) allows the
organizer to see the calendars of all participants which allows her to make an
educated decision about a suitable meeting time. The problem with these
systems is that they do not support heterogeneous calendar systems.

Based on these observations, the solution to simplifying meeting sche-
duling between heterogeneous calendar systems is to find a way to directly
access the calendar data in all of these heterogeneous systems. There does
not seem to be any scheduling applications available currently that would do
this. We have designed an architecture and implemented a prototype of an
application that is capable of integrating into and reading the calendar of
heterogeneous calendar systems.

RQ2. How to ensure that the scheduled meeting times are satis-
factory to the users?

As we mentioned when discussing satisfaction as a success factor for the
MSS in section 1.2, a way to increase satisfaction with the results of the
scheduling process is to allow the participants to provide input for the sche-
duling process while still taking most of the manual effort away from them
with automation. In the MSS architecture, the finding of possibly suitable
meeting times is done automatically so that the users don’t have to manually
check their own availability or communicate it to others. But the MSS also
allows the users to influence the scheduling results in two ways.

First, they can decide which times in their calendars are considered free
by the automatic scheduling algorithm by specifying availability rules. This
allows users to easily avoid having meetings proposed at times when they
certainly do not want to have one. The rules are also user group specific so
that the users can adjust their time preferences based on the social context
of the meeting.

Second, the automatic scheduling algorithm only proposes possible meet-
ing times instead of selecting one automatically. This allows the organizer
to make the final time slot selection. The organizer might have some knowl-
edge about what times are actually suitable for a meeting that the automatic
scheduling algorithm does not have, so allowing her to select the time slot
personally should help avoid the non-satisfactory time slots that the auto-
matic algorithm might produce. Additionally, after the organizer has selected
the time slot, the MSS still allows the individual participants to notify the
organizer whether the selected time slot is suitable for them or not. This is
because the participants of course have better knowledge about what times
are suitable for them personally than the organizer.

Although this arrangement could result in similar problems that are pos-
sible in manual scheduling, such as participants keeping constantly rejecting

CHAPTER 7. DISCUSSION 96

the time slot suggestions of others, we believe that allowing the participants
to make the final decision about the meeting time is the best way to ensure
satisfaction.

RQ3. How to enable the MSS to take advantage of a wide variety
of existing calendar systems?

The difficulty in utilizing the various calendar systems that people might
be using is that they are running on different technologies. Some systems
might be offering a public interface that can be used to read and write data
into their calendar but most calendar systems probably do not. For example,
Google Calendar (Google, 2012b) is a web calendar service that does offer
an interface for outsiders to utilize. In contrast, the calendar on the Nokia
N950 mobile phone is an SQLite database that cannot be easily accessed
from outside of the device. Because the calendar systems that could possibly
be used with the MSS are so widely different, there is no way for us to
know in the designing phase what kind of calendar system specific integration
solutions we would need. At best, we could select a few different calendar
systems and integrate the MSS with only those but this would not qualify as
taking advantage of a ”wide variety” of existing calendar systems.

What we did to solve this problem was to shift the responsibility of inte-
grating the various calendar systems away from us and to the owners of those
systems. In other words, we did not develop an integration to any calendar
system specifically but we provided the means for any calendar system to be
integrated into the MSS. This, of course, makes it more difficult for users of
new calendar systems to take advantage of the MSS because someone must
first develop the client component for that calendar system. Still, we think
this is the only way to realistically integrate the MSS into a wide variety
of calendar systems. Also, the experts who evaluated the MSS architecture
in Section 6.3.4 agreed that the interfaces should be helpful in integrating
different types of calendar systems.

In the MSS architecture design, we have made the integration of devices
possible by providing common interfaces from the central system that anyone
can use to take advantage of the scheduling and meeting organizing features
of the MSS. How these interfaces are implemented in practice is another issue,
however, because, as said, the various calendar systems are based on different
technologies so it might be difficult to implement the interfaces in such a way
that they would support all of these calendar systems. While it might be
impossible to support all systems, we believe that it is possible to make
educated choices about the implementation of the interfaces to maximize the
number of calendar systems that can take advantage of them. In the MSS

CHAPTER 7. DISCUSSION 97

prototype implementation, we chose to use interfaces that work using HTTP
requests, due to the pervasiveness of HTTP and the high likelihood that any
given calendar system will support it.

RQ4. How to avoid exposing too much user’s private calendar
information to other users while allowing the MSS to function
effectively?

In the expert evaluation of the architecture in Section 6.3.5, we asked the
experts about what is an acceptable amount of calendar data to be shared.
Their opinion was that it is acceptable to share free times but only to a
limited group of users. In the MSS architecture and prototype, users can
only access the available times of other users because the complete calendar
data of the users is never sent to the central system. It is the responsibility
of the client component, which is installed on the user’s calendar system,
to read the calendar data and extract the free times; combine the free times
with the availability rules; and send the available times to the central system.

Additionally, in the prototype, the visibility of the available times on
the central system is limited to only the user herself and the organizer of
the meeting for which the times have been sent. However, to fully satisfy
the requirement of limiting the visibility of the free times, it should also be
possible to limit who is able to organizer meetings for which participants.
Currently this is not possible in the prototype but it is not restricted by
the architecture design. Currently, the prototype also allows the users to
see every user group in the MSS. According to the expert evaluation, this is
a privacy problem that should be corrected. Changing the visibility of the
groups is also permitted by the current architecture design.

7.2 Threats to the validity of the results

The results of this thesis are the architecture design and the prototype im-
plementation of the MSS. In this section we identify some issues that might
undermine the validity and accuracy of the results.

The main method of verifying the feasibility of the architecture design is
through the prototype implementation that we have made. The prototype
includes all of the features that are essential to the functionality of the MSS
including meeting creation, gathering of available time periods, sending and
responding meeting requests etc. However, due to time constraints, the inte-
gration to external calendar systems was done for only one type of device: the
Nokia N950. Integrating only one type of calendar system to the MSS is not

CHAPTER 7. DISCUSSION 98

adequate to concretely display that the architecture can support integration
to a wide range of heterogeneous calendar systems. Theoretically there is no
reason why such integration would not be possible but, again, the prototype
fails to prove it in practice. To properly evaluate the integration capabili-
ties of the architecture, the prototype integration should be extended to at
least a few different calendar systems that are based on different technolo-
gies. For example, an integration could be created for the Microsoft Outlook
(Microsoft Corporation, 2012a) desktop application and the Google Calendar
(Google, 2012b) web application in addition to the N950 integration that we
have already made.

Mostly due to the lacking integration support and also the overall un-
polished state of the prototype, it is difficult to conduct any thorough user
testing with it in real-world situations. For this reason we have not been able
to properly assess the usefulness of the MSS prototype or the architecture in
practice. This is a problem because we chose design science as our research
methodology and the usefulness of the design science artifacts is the best
criterion to measure the results of the research. The best way to fix this
would be to continue developing the prototype to get it into a state where it
can be used for user testing and to gather feedback from the users. However,
we have evaluated the architecture and the prototype in Chapter 6 by com-
paring the effortlessness of its use against that of other meeting scheduling
applications. Effortlessness is an important factor in the usefulness of a sys-
tem like the MSS. We also verified and validated our results by tracing the
prototype and the architecture back to the specification and by allowing a
group of experts to evaluate the architecture. These evaluation efforts should
give at least some confidence that the architecture design and the prototype
are useful.

Chapter 8

Conclusions

In this chapter we conclude the thesis. We also discuss some ideas for how
the research made in this thesis could be expanded upon in the future.

8.1 Conclusions

Finding a suitable time for a meeting between multiple people is often a
cumbersome and a time-consuming task. The difficulty with meeting sche-
duling is that individual meeting participants initially only have full knowl-
edge of their own schedule and not of the schedules of the other participants.
The meeting scheduling process involves the participants sharing information
about their available times with each other or otherwise negotiating possible
meeting times. Depending on the method used in the sharing or the nego-
tiation, the process can take a long time and involve numerous transactions
between the participants. Many software applications exist that seek to make
the meeting scheduling process more effortless for the participants. For ex-
ample, some applications allow users to share calendar information directly
with each other so that it is easy for one user to see when every participant is
available. Some other applications provide tools that are meant to simplify
the negotiation about meeting times. However, these applications often have
shortcomings that make then unsatisfying to use or unusable in some use
cases. For example, negotiating meeting times using the provided tools can
still be too cumbersome to be satisfying. The sharing of calendar informa-
tion is limited to withing a single domain and domains often encompass only
single organizations. This means that scheduling meetings between people
from different organizations must still be done manually.

In this thesis we designed a new meeting scheduling system that enables
inter-organizational meeting scheduling in an effortless way. More specifi-

99

CHAPTER 8. CONCLUSIONS 100

cally, we designed a system that automates parts of the meeting scheduling
process between people who use heterogeneous calendar systems by directly
reading the calendar data from those calendar systems. A calendar system
is any type of device or system that contains a person’s calendar informa-
tion, such as a mobile phone; a desktop calendar application; or a calendar
server. Solving the problem of enabling scheduling between heterogeneous
calendar systems in an effortless way is one of the research questions of this
thesis. Other research questions focus on how to ensure that the scheduling
results are satisfying, how to extend the integration support to a wide range
of heterogeneous systems and how to protect the privacy of the user’s calen-
dar information. The design science approach was selected as the research
methodology for this thesis. The contributions of this thesis are a software
architecture for a meeting scheduling system (MSS) that embodies the an-
swers to these research questions and a prototype of the MSS based on the
architecture design.

The architecture is divided into two main types of components. There is
a single central system component that contains most of the logic and data
that is needed in the meeting scheduling process. The other components are
the calendar systems. The calendar systems contain the calendar information
of the users which is automatically read during a meeting scheduling process
to find out the time periods when that user is available for a meeting. The
calendar systems are connected to the central system so that the time periods
from multiple users can be gathered to the central system. Due to privacy
concerns, the calendar information never leaves the calendar system as-is.
Instead, only the available time periods, which are calculated by combining
thee calendar events and the availability rules, are sent to the central system.
Based on the time periods from all participants, the central system is able
to calculate what times are available to all participants simultaneously and
suggest suitable meeting times. However, there are some factors that might
affect the suitability of some time slots that the automated scheduling algo-
rithm cannot take into account, such as events that have not been marked
to the calendar. For this reason, the meeting organizer is required to make
the final selection of the meeting time based on the suitable times calculated
by the MSS. Additionally, the other participants of the meeting are asked
to accept or reject this time slot selection. These manual steps are taken to
ensure that the meeting time that eventually gets selected will be satisfactory
to the participants.

Connecting a calendar system to the central system requires that a client
component of the MSS is integrated into the calendar system. The client
component reads the calendar information from the user’s calendar and sends
the available time periods to the central system. The calendar systems con-

CHAPTER 8. CONCLUSIONS 101

nect to the central system via generic interfaces which are also open to third
parties. This allows third party developers to create a client components for
any calendar system that they wish. In this way, the MSS can be integrated
to any calendar system regardless of its type.

The prototype contains all of the key features of the architecture. It is
possible to perform an entire meeting scheduling process with the prototype.
The only missing features relate to user group management and meeting
management that happens after the meeting has been scheduled. The central
system in the prototype is a web server. The web server allows registered
users to organize new meetings and view information about the meetings that
they have organized previously. The interfaces between the server and the
calendar systems are implemented as HTTP-based REST- and long polling
interfaces. One type of calendar system is integrated into the prototype:
the Nokia N950 mobile phone. The client component is implemented on
the phone as a script file. The participants receive notifications about new
meetings via e-mail and can accept, reject or request rescheduling for the
meeting by clicking links in the message.

The architecture and the prototype were evaluated in three ways. We
traced the prototype implementation and the architecture design back to the
requirements and research questions to verify that the design matches the
original specification. It was found that all of the concerns in the research
questions and requirements were taken into account in the architecture and
the prototype. We compared the prototype to other existing meeting sche-
duling applications to ensure that the prototype enables scheduling between
heterogeneous calendar systems more effortlessly than the other applications.
This was found to be the case. Finally, we allowed a group of experts to eval-
uate the architecture and the prototype to validate that they fulfill the needs
of the users that are the motivation behind the MSS. The experts agreed
that the prototype is more effortless to use than other scheduling applica-
tions. They were also optimistic that the interfaces in the prototype should
be suitable for integrating heterogeneous calendar systems into the MSS, al-
though they stated that it is difficult to estimate this accurately based on
the current prototype. It was also found that the experts’ privacy criteria
are not entirely matched by the current prototype but these issues can be
corrected and are not restricted by the architecture design.

8.2 Future work

Many of the threats to the validity of the results in this thesis could be ad-
dressed by continuing to work on the prototype implementation in the future.

CHAPTER 8. CONCLUSIONS 102

Developing an integration support for more systems than just the N950 would
provide more insight into if and how the architecture could be improved in
the future to better support different heterogeneous calendar systems. Our
focus in this thesis was on mobile phones but the requirements to integrate,
for example, web services or desktop applications differ somewhat from those
that we have identified. Especially integrating the MSS with large external
CRM systems that govern the calendar data of dozens of users is a topic that
should be studied in practice. Some of the implementation decisions that
we have made in the prototype should also be studied in more detail. For
example, our decision to use the long polling technique for communication
between the central system and the calendar systems sets some requirements
to both systems that we have not studied. Having a better understanding
of the implications of these implementation decisions would be helpful in
creating future versions of the MSS. Additionally, improving the prototype
in other ways as well could allow it to be used in users testing. Feedback
from the users would be valuable in refining the perceptions about what are
the success factors for this kind of a meeting scheduling system. A better
understanding of the success factors might lead to different approaches in
designing the architecture for future systems.

One challenging topic for future work is to improve the automatic schedu-
ling process to make it more ”intelligent”. In our architecture, the automatic
scheduling process takes into account user preferences by allowing the users
to limit their calendar availability based on the user group of the meeting.
The user group could be seen as the social context of the meeting. But as we
discussed already in section 1.3, meetings can also have other contexts, such
as location or topic, that might influence whether invited users want to or are
able to participate in that meeting. For example, the location context could
indicate how long it takes for a user to get from her previous appointment to
the meeting that is being scheduled. The scheduling algorithm would then
not suggest such time slots to the organizer that would leave too little time
for the participants to travel to the meeting. The topic context, on the other
hand, could allow users to set preferences about when they want to partici-
pate in meetings about certain topic, or if they even want to participate at
all. The challenges in taking these contexts into account in the automatic
scheduling process is to identify what are the relevant contexts that should
be acknowledged (is topic a meaningful context?), how can these contexts be
classified; measured; or tracked (what different topics there are?), and what
kind of preferences are the users able to specify for these contexts (accept or
reject invitations automatically based on the topic or some kind of priority
system?). The benefit of making the scheduling process more intelligent is
that it provides results that the users are satisfied with. Additionally, some

CHAPTER 8. CONCLUSIONS 103

of the burden of decision making can be taken away from the users as they
can rely more on the automatic process.

The social context which we have taken into account in our architecture
design could be considered more carefully in future work. In our design, the
social context is based only on the user groups but an alternative is to regard
the meeting participants as individuals. This would give the users more re-
fined control over their preferences about who to meet with and when. The
handling of the social context could also be expanded in other ways. For ex-
ample, it could be useful to be able to prioritize the importance of different
participants already when creating the meeting. Some participants might
be required attend while other non-essential participants could be optional.
The automatic scheduling algorithm would then suggest all of the times when
there required participants have free time even if all of the optional partici-
pants do not.

Bibliography

Apple Inc. Apple OS X operating system product website, 2012a. [online]
Available at: http://www.apple.com/osx/ [Accessed 8.8.2012].

Apple Inc. Apple iOS mobile device operating system product website, 2012b.
[online] Available at: http://www.apple.com/ios/ [Accessed 20.9.2012].

T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –
HTTP/1.0. RFC 1945 (Informational), May 1996.

I. Bilogrevic, M. Jadliwala, P. Kumar, S. S. Walia, J.-P. Hubaux, I. Aad,
and V. Niemi. Meetings through the cloud: Privacy-preserving scheduling
on mobile devices. Journal of Systems and Software, 84(11):1910 – 1927,
2011. ISSN 0164-1212. doi: 10.1016/j.jss.2011.04.027.

A. E. Blandford and T. R. G. Green. Group and individual time management
tools: What you get is not what you need. Personal Ubiquitous Comput.,
5(4):213–230, Jan. 2001. ISSN 1617-4909. doi: 10.1007/PL00000020.

S. Burbeck. Applications Programming in Smalltalk-80: How to Use Model-
View-Controller (MVC). Softsmarts, Incorporated, 1987.

D. Crockford. The application/json media type for JavaScript Object Nota-
tion (JSON). RFC 4627 (Informational), July 2006.

F. Dawson and D. Stenerson. Internet calendaring and scheduling core ob-
ject specification (iCalendar). RFC 2445 (Proposed Standard), Nov. 1998.
Obsoleted by RFC 5545.

L. Dent, J. Boticario, J. McDermott, T. Mitchell, and D. Zabowski. A per-
sonal learning apprentice. In Proceedings of the tenth national conference
on Artificial intelligence, AAAI’92, pages 96–103. AAAI Press, 1992. ISBN
0-262-51063-4.

104

http://www.apple.com/osx/
http://www.apple.com/ios/

BIBLIOGRAPHY 105

Django Software Foundation. Django web framework for Python website,
2012. [online] Available at: https://www.djangoproject.com/ [Accessed
20.9.2012].

Doodle AG. Doodle scheduling service website, 2012. [online] Available at:
http://www.doodle.com [Accessed 8.8.2012].

S. F. Ehrlich. Social and psychological factors influencing the design of office
communications systems. SIGCHI Bull., 17(SI):323–329, May 1986. ISSN
0736-6906. doi: 10.1145/30851.275651.

C. Glezer. A conceptual model of an interorganizational intelligent meeting-
scheduler (IIMS). The Journal of Strategic Information Systems, 12(1):47
– 70, 2003. ISSN 0963-8687. doi: 10.1016/S0963-8687(02)00034-3.

Google. Android mobile device operating system product website, 2012a.
[online] Available at: http://www.android.com/ [Accessed 20.9.2012].

Google. Google Calendar feature overview website, 2012b. [online]
Available at: http://www.google.com/intl/en/googlecalendar/about.

html [Accessed 8.8.2012].

S. Gregor and D. Jones. The anatomy of a design theory. Journal of the
Association for Information Systems, 8(5):312–335, 2007.

T. Haynes, S. Sen, N. Arora, and R. Nadella. An automated meeting
scheduling system that utilizes user preferences. In Proceedings of the
first international conference on Autonomous agents, AGENTS ’97, pages
308–315, New York, NY, USA, 1997. ACM. ISBN 0-89791-877-0. doi:
10.1145/267658.267733.

Hello Industries, Inc. Hello Scheduling employee scheduling software prod-
uct website, 2010. [online] Available at: http://www.helloscheduling.com

[Accessed 8.8.2012].

A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in infor-
mation systems research. MIS Quarterly, 28(1):pp. 75–105, 2004. ISSN
02767783.

K. Higa, B. Shin, and V. Sivakumar. Meeting scheduling: An experimental
investigation. In Systems, Man, and Cybernetics, 1996., IEEE Interna-
tional Conference on, volume 3, pages 2023 –2028 vol.3, oct 1996. doi:
10.1109/ICSMC.1996.565442.

https://www.djangoproject.com/
http://www.doodle.com
http://www.android.com/
http://www.google.com/intl/en/googlecalendar/about.html
http://www.google.com/intl/en/googlecalendar/about.html
http://www.helloscheduling.com

BIBLIOGRAPHY 106

IEEE. IEEE standard for system and software verification and validation.
IEEE Std 1012-2012 (Revision of IEEE Std 1012-2004), pages 1 –223, 25
2012. doi: 10.1109/IEEESTD.2012.6204026.

W. S. Jeong, J. S. Yun, and G. S. Jo. Cooperation in multi-agent system
for meeting scheduling. In TENCON 99. Proceedings of the IEEE Region
10 Conference, volume 2, pages 832 –835 vol.2, dec 1999. doi: 10.1109/
TENCON.1999.818547.

J. F. Kelley and A. Chapanis. How professional persons keep their calen-
dars: Implications for computerization. Journal of Occupational Psychol-
ogy, 55(4):241–256, 1982. ISSN 2044-8325. doi: 10.1111/j.2044-8325.1982.
tb00098.x.

C. M. Kincaid, P. B. Dupont, and A. R. Kaye. Electronic calendars in the
office: An assessment of user needs and current technology. ACM Trans.
Inf. Syst., 3(1):89–102, Jan. 1985. ISSN 1046-8188. doi: 10.1145/3864.
3868.

R. Kozierok and P. Maes. A learning interface agent for scheduling meet-
ings. In Proceedings of the 1st international conference on Intelligent user
interfaces, IUI ’93, pages 81–88, New York, NY, USA, 1993. ACM. ISBN
0-89791-556-9. doi: 10.1145/169891.169908.

D. Lindsley, C. Soyland, M. Croydon, J. Bohde, and I. Kelly. Tastypie
web API framework for Django website, 2012. [online] Avail-
able at: http://django-tastypie.readthedocs.org/en/latest/index.

html [Accessed 20.9.2012].

S. T. March and G. F. Smith. Design and natural science research on in-
formation technology. Decision Support Systems, 15(4):251 – 266, 1995.
ISSN 0167-9236. doi: 10.1016/0167-9236(94)00041-2.

A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy Approach to
Requirements Syntax (EARS). In Requirements Engineering Conference,
2009. RE ’09. 17th IEEE International, pages 317 –322, 31 2009-sept. 4
2009. doi: 10.1109/RE.2009.9.

B. McAllister. Unobtrusive Date-Picker Widget V5 JavaScript calendar UI
widget, 2012. [online] Available at: http://www.frequency-decoder.com/

2009/09/09/unobtrusive-date-picker-widget-v5 [Accessed 20.9.2012].

Meetin.gs Ltd. Meetin.gs meeting organizing service website, 2012. [online]
Available at: http://www.meetin.gs [Accessed 8.8.2012].

http://django-tastypie.readthedocs.org/en/latest/index.html
http://django-tastypie.readthedocs.org/en/latest/index.html
http://www.frequency-decoder.com/2009/09/09/unobtrusive-date-picker-widget-v5
http://www.frequency-decoder.com/2009/09/09/unobtrusive-date-picker-widget-v5
http://www.meetin.gs

BIBLIOGRAPHY 107

Microsoft Corporation. Microsoft Exchange Server and Exchange Online
website, 2011. [online] Available at: http://www.microsoft.com/exchange/
en-us/default.aspx [Accessed 24.7.2012].

Microsoft Corporation. Microsoft Office Outlook e-mail and calendar appli-
cation website, 2012a. [online] Available at: http://office.microsoft.

com/en-us/outlook/ [Accessed 11.9.2012].

Microsoft Corporation. Microsoft Windows operating system product web-
site, 2012b. [online] Available at: http://windows.microsoft.com/en-US/

windows/home [Accessed 8.8.2012].

Mimosa Software Ltd. Mimosa scheduling software product website, 2012.
[online] Available at: http://www.mimosasoftware.com [Accessed 8.8.2012].

J. Mosier and S. Tammaro. When are group scheduling tools useful? Com-
puter Supported Cooperative Work (CSCW), 6(1):53–70, 1997.

Oracle Corporation. MySQL open source database website, 2012. [online]
Available at: http://www.mysql.com/ [Accessed 25.9.2012].

S. J. Payne. Understanding calendar use. Hum.-Comput. Interact., 8(2):
83–100, June 1993. ISSN 0737-0024. doi: 10.1207/s15327051hci0802 1.

K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design
science research methodology for information systems research. Journal of
Management Information Systems, 24(3):45 – 77, 2007. ISSN 07421222.

J. Postel. Simple mail transfer protocol. RFC 821 (Standard), Aug. 1982.
Obsoleted by RFC 2821.

PostgreSQL Global Development Group. PostgreSQL open source database
website, 2012. [online] Available at: http://www.postgresql.org/ [Ac-
cessed 25.9.2012].

T. Reenskaug. Models-views-controllers. Technical note, Xerox PARC, 1979.

K. Reitz. Requests HTTP library for Python website, 2012. [online] Available
at: http://docs.python-requests.org/en/latest/index.html [Accessed
20.9.2012].

E. Rogers. Diffusion of Innovations. Marketing/Social science / The Free
Press. Free Press, 1995. ISBN 9780029266717.

http://www.microsoft.com/exchange/en-us/default.aspx
http://www.microsoft.com/exchange/en-us/default.aspx
http://office.microsoft.com/en-us/outlook/
http://office.microsoft.com/en-us/outlook/
http://windows.microsoft.com/en-US/windows/home
http://windows.microsoft.com/en-US/windows/home
http://www.mimosasoftware.com
http://www.mysql.com/
http://www.postgresql.org/
http://docs.python-requests.org/en/latest/index.html

BIBLIOGRAPHY 108

N. Rozanski and E. Woods. Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley, 2011.
ISBN 9780321718334.

A. Sell. Mobile digital calendars in knowledge work. International Journal
of Mobile Communications, 6(6):696–713, 2008.

A. Sell and P. Walden. Mobile digital calendars: An interview study. In
System Sciences, 2006. HICSS ’06. Proceedings of the 39th Annual Hawaii
International Conference on, volume 1, page 23b, jan. 2006. doi: 10.1109/
HICSS.2006.349.

S. Sen and E. Durfee. On the design of an adaptive meeting scheduler.
In Artificial Intelligence for Applications, 1994., Proceedings of the Tenth
Conference on, pages 40 –46, mar 1994. doi: 10.1109/CAIA.1994.323694.

M. Shaw. The coming-of-age of software architecture research. In Proceedings
of the 23rd International Conference on Software Engineering, ICSE ’01,
pages 656–, Washington, DC, USA, 2001. IEEE Computer Society. ISBN
0-7695-1050-7.

M. Shaw. What makes good research in software engineering? International
Journal on Software Tools for Technology Transfer, 4(1):1–7, Oct. 2002.

M. Shaw. Writing good software engineering research papers: Minitutorial. In
Proceedings of the 25th International Conference on Software Engineering,
ICSE ’03, pages 726–736, Washington, DC, USA, 2003. IEEE Computer
Society. ISBN 0-7695-1877-X.

T. E. Starner, C. M. Snoeck, B. A. Wong, and R. M. McGuire. Use of mobile
appointment scheduling devices. In CHI ’04 extended abstracts on Human
factors in computing systems, CHI EA ’04, pages 1501–1504, New York,
NY, USA, 2004. ACM. ISBN 1-58113-703-6. doi: 10.1145/985921.986100.

D. Stenberg. cURL open source data transfer application website, 2012.
[online] Available at: http://curl.haxx.se/ [Accessed 10.8.2012].

B. van den Hooff. Electronic coordination and collective action: Use and ef-
fects of electronic calendaring and scheduling. Information & Management,
42(1):103 – 114, 2004. ISSN 0378-7206. doi: 10.1016/j.im.2003.12.006.

D. Wu and M. Tremaine. Knowledge worker adoption of time management
tools: Satisfaction and perceived effectiveness. In AMCIS 2004 Proceed-
ings, Paper 433, 2004.

http://curl.haxx.se/

Appendix A

REST Interface Methods and Fields

This appendix lists the details of the resources of the REST interface in the
MSS prototype. The included details are the unique URL of each resource or
object, the HTTP methods accepted by each resource and the data fields of
each resource. The usage of the REST interface is described in Section 5.4.

Table A.1 displays the URL of each resource (object list) and object.
The URLs are used to access the resources by sending HTTP requests to
them. The bracketed portions of the URL, such as <meeting_id>, are to be
replaced with integers that identify the object in question.

Table A.1: REST interface resource URLs.

Resource URL

Meeting list /rest/v1/meeting/

Meeting /rest/v1/meeting/<meeting_id>/

Time period list /rest/v1/meeting/<meeting_id>/timeperiod/

Time period /rest/v1/meeting/<meeting_id>/timeperiod/

<time_period_id>/

Request response list /rest/v1/meeting/<meeting_id>/response/

Request response /rest/v1/meeting/<meeting_id>/response/

<response_id>/

User list /rest/v1/user/

User /rest/v1/user/<user_id>/

Group list /rest/v1/group/

Group /rest/v1/group/<group_id>/

Table A.2 lists the actions that are taken on the resources based on dif-
ferent HTTP methods. Not all methods are supported by all resources. The

109

APPENDIX A. REST INTERFACE METHODS AND FIELDS 110

result can also depend on the what the authenticated user’s relationship to
that object is.

Table A.2: REST interface methods for each resource.

Resource Method Authentication Result

Meeting list GET Any user Get a list of meetings that the
user is invited in or is the orga-
nizer of. Common time periods of
a meeting can only be seen from
meetings where the user is the or-
ganizer.

Meeting list POST Any user Create a new meeting. The user
is set as the organizer for that
meeting.

Meeting GET Invited user,
Organizer

Get the meeting details. Only
the organizer can see the common
time periods of that meeting.

Meeting PUT Organizer Update the meeting details (all
fields).

Meeting PATCH Organizer Update the meeting details (only
given fields).

Time period list GET Invited user Get the time periods committed
by the user for the meeting.

Time period list GET Organizer Get the time periods committed
by all the invited users of the
meeting.

Time period list POST Invited user Commit the user’s time periods
to the meeting. Only one commit
per user allowed.

Time period GET Time period
owner

Get the time period.

Time period GET Organizer Get the time period.
Request response
list

GET Invited user Get the response submitted by
the user for the meeting.

Request response
list

GET Organizer Get all the responses submitted
by all invited users of the meet-
ing.

Request response
list

POST Invited user Submit a new response to the
meeting by the user. Only one
response per user allowed.

Request response GET Response owner,
Organizer

Get the response.

Request response PUT Response owner Change the response.
User list GET Any user Get a list of users.
User list POST Outsiders Add a new user.
User GET Any user Get the details of a user.

APPENDIX A. REST INTERFACE METHODS AND FIELDS 111

Table A.2: REST interface methods for each resource. (continued)

Resource Method Authentication Result

User PUT User herself Update user (all fields)
User PATCH User herself Update user (some fields)
User DELETE User herself Remove the user
Group list GET Any Get a list of groups.
Group list POST Any Add a new group.
Group GET Any Get the details of a group.
Group PUT Group member Change the details of the group.
Group PATCH Group member Change some details of the group
Group DELETE Group member Remove the group.

Table A.3 and the following tables describe the data fields of each re-
source. These fields are received when requesting a resource with the GET
method and sent with the POST, PUT and PATCH methods. The informa-
tion for each field includes name, data type, and a description of the data
that the field contains. There are also notes on most fields the specify any
limitations regarding that field. Read only fields are only received in a re-
sponse but cannot be sent with a request. Write only fields can only be sent
but are not visible in responses. Required fields must be sent when creating
a new object.

Table A.3: Data fields of the Meeting REST resource.

Field Type Notes Description

id integer read only Unique identifier for the meeting.
Automatically set.

topic string required Topic or name of the meeting.
location string required Where the meeting is held. Cur-

rently this is only a string but
if in the future it would be de-
sirable to take the location into
account in the scheduling process
this field should also probably in-
clude some additional informa-
tion, such as GPS coordinates.

duration integer required Length of the meeting in minutes.
date range start date

(YYYY-MM-DD)
required The start of the range of dates

between which possible time slots
will be searched and suggested by
the system. The given date is in-
cluded in the range.

APPENDIX A. REST INTERFACE METHODS AND FIELDS 112

Table A.3: Data fields of the Meeting REST resource. (continued)

Field Type Notes Description

date range end date
(YYYY-MM-DD)

required The end of the range of dates be-
tween which possible time slots
will be searched and suggested by
the system. The given date is in-
cluded in the range.

organizer User read only The user who created the meeting
and is allowed to change it and
select the time slot. This is auto-
matically set to be the user who
creates the meeting and can not
be changed manually.

group Group required The group of users that par-
ticipate in the meeting. Used
in the scheduling process by the
clients to select the appropriate
availability rules to apply when
searching for available times. As
an exception to other relation-
ship fields, this field returns the
full details of the group, not just
a URI of the related Group re-
source to reduce the number of
required requests.

invitees list of Users required List of users who are invited to
the meeting. Does not have to
match the member list of the se-
lected group.

common time
periods

string read only The periods of time that are
available to all users, calculated
during the scheduling process
from the individual time periods
of invited users. The periods are
presented as single string format-
ted in a specific way: The dif-
ferent periods are separated by
a semicolon (;) and each period
consists of the starting and end-
ing time of that period, separated
by a comma (,). Both the start-
ing and ending times are format-
ted YYYY-MM-DD HH:MM and
are included in the period. Only
visible to the organizer.

APPENDIX A. REST INTERFACE METHODS AND FIELDS 113

Table A.3: Data fields of the Meeting REST resource. (continued)

Field Type Notes Description

time slot datetime
(YYYY-MM-
DDTHH:MM:SS)

- The date and time when the
meeting is held.

cancelled boolean - Shows wether the meeting is can-
celled or not.

creation date datetime
(YYYY-MM-
DDTHH:MM:SS.ms)

read only The date and time when the
meeting instance was created.
Automatically set.

update date datetime
(YYYY-MM-
DDTHH:MM:SS.ms)

read only The date and time when the
meeting instance was last up-
dated. Automatically set.

cancellation date datetime
(YYYY-MM-
DDTHH:MM:SS.ms)

read only The date and time when the
meeting was canceled. Automat-
ically set and null if the meeting
isn’t cancelled.

committed time
period count

integer read only The number of users that have
committed their available time
periods for this meeting.

response count integer read only The number of users that have
submitted their response to the
meeting request.

time period uri string read only URI where a list of submitted
time periods for this meeting can
be retrieved or new time periods
committed.

response uri string read only URI where a list of responses for
this meeting can be retrieved or
new responses submitted.

resource uri string read only The REST URI that points to
this resource.

Table A.4: Data fields of the Time Period REST resource.

Field Type Notes Description

id integer read only Unique identifier for the time pe-
riods. Automatically set.

meeting Meeting read only The meeting where these time pe-
riods have been committed to.
This is set automatically based
on the meeting id given in the url.

APPENDIX A. REST INTERFACE METHODS AND FIELDS 114

Table A.4: Data fields of the Time Period REST resource. (continued)

Field Type Notes Description

user User read only The user who committed these
time periods. Set automatically
based on the user who made the
request.

time periods string required The periods of time from the user
that are available for the meet-
ing. The periods are presented as
single string formatted in a spe-
cific way: The different periods
are separated by a semicolon (;)
and each period consists of the
starting and ending time of that
period, separated by a comma
(,). Both the starting and ending
times are formatted YYYY-MM-
DD HH:MM and are included in
the period.

commit date datetime
(YYYY-MM-
DDTHH:MM:SS.ms)

read only The date and time when these
time periods were committed.
Automatically set.

resource uri string read only The REST URI that points to
this resource.

Table A.5: Data fields of the Request Response REST resource.

Field Type Notes Description

id integer read only Unique identifier for the re-
sponse. Automatically set.

meeting Meeting read only The meeting where this response
has been submitted to. This is set
automatically based on the meet-
ing id given in the url.

user User read only The user who submitted this re-
sponse. Set automatically based
on the user who made the re-
quest.

response string required The actual response. A single
character and one of three op-
tions: ’A’ for ’accept invitation’,
’R’ for ’request rescheduling’ or
’D’ for ’decline invitation.

APPENDIX A. REST INTERFACE METHODS AND FIELDS 115

Table A.5: Data fields of the Request Response REST resource. (continued)

Field Type Notes Description

response date datetime
(YYYY-MM-
DDTHH:MM:SS.ms)

read only The date and time when this re-
sponse was submitted. Automat-
ically set.

resource uri string read only The REST URI that points to
this resource.

Table A.6: Data fields of the User REST resource.

Field Type Notes Description

id integer read only Unique identifier for the user.
Automatically set.

username string required Unique name for the user. Used
to authenticate to the system.

password string required,
write
only

User’s password. Notice that this
field can only be written, not
read.

first name string - User’s first name.
last name string - User’s last name.
email string (e-email for-

matted)
required,
write
only

User’s e-mail address.

groups list of Groups - List of groups that the user is a
member of.

resource uri string read only The REST URI that points to
this resource.

Table A.7: Data fields of the Group REST resource.

Field Type Notes Description

id integer read only Unique identifier for the group.
Automatically set.

name string required The name of the group.
users list of Users - List of users who are part of this

group.
resource uri string read only The REST URI that points to

this resource.

	Cover page
	Abbreviations and Acronyms
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Research goals and questions
	1.3 Scope
	1.4 Research methodology
	1.5 Structure of the thesis

	2 Previous Work
	2.1 Existing scheduling applications
	2.2 Previous research

	3 Requirements
	3.1 Important features
	3.2 Terminology
	3.3 Assumptions
	3.4 Detailed requirements

	4 Architectural Views
	4.1 Context diagram
	4.2 Functional view
	4.3 Information view
	4.4 Process sequence view
	4.5 Integration view

	5 Prototype Tool Implementation
	5.1 Prototype functionality
	5.2 Technology choices
	5.3 Implementation of the functional elements
	5.3.1 Central system
	5.3.2 Calendar system

	5.4 Design and implementation of the interfaces
	5.4.1 E-mail interface
	5.4.2 REST interface
	5.4.3 Long polling interface
	5.4.4 Interface usage sequence

	6 Evaluation
	6.1 Traceability from research questions to implementation
	6.1.1 From research questions to requirements
	6.1.2 From requirements to architecture
	6.1.3 From architecture to implementation

	6.2 Comparison to other existing scheduling applications
	6.3 Expert evaluation
	6.3.1 Evaluation procedure
	6.3.2 Evaluation of effortlessness
	6.3.3 Evaluation of the scheduling results
	6.3.4 Evaluation of integration capabilities
	6.3.5 Evaluation of privacy protection
	6.3.6 Other evaluation findings
	6.3.7 Expert evaluation summary

	7 Discussion
	7.1 Answers to the research questions
	7.2 Threats to the validity of the results

	8 Conclusions
	8.1 Conclusions
	8.2 Future work

	A REST Interface Methods and Fields

