
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Antony J.R. Meyn

Browser to Browser Media Streaming
with HTML5

Master’s Thesis
Espoo, June 30, 2012

Supervisors: Professor Jukka K. Nurminen, Aalto University
Professor Christian W. Probst, Technical University of Den-
mark

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80705047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Antony J.R. Meyn

Title:
Browser to Browser Media Streaming with HTML5

Date: June 30, 2012 Pages: 88

Professorship: Data Communication Software Code: T-110

Supervisors: Professor Jukka K. Nurminen
Professor Christian W. Probst

Video on demand services generate one of the largest portions of Internet traffic
every day and their use is constantly increasing. Scaling up the infrastructure to
meet this demand with the current model of Internet video delivery over HTTP,
is proving to be very costly for service providers. An alternative model for video
content delivery is the need of the hour to meet this challenge.

Peer-to-peer streaming is a viable alternative model that is highly scalable
and can meet this increasing demand. The emerging HTML5 standard intro-
duces APIs that give Web browsers the ability to communicate directly with each
other in real-time. This also allows web browsers to behave as Peer-to-peer nodes.

In this thesis, we utilize these new APIs to develop a Video on demand
service within the Web browser. The goal of this being, to determine the
feasibility of such a solution and evaluate the usage of these APIs. We hope to
aid the HTML standardization process with our findings.

Keywords: HTML5, P2P, WebRTC, Browser, Video on demand, Media,
Streaming

Language: English

2

Acknowledgments

I thank Prof. Jukka K. Nurminen, from Aalto University, for his guidance
and supervision in all phases of this thesis work. His knowledge and advice
have been invaluable throughout the course of this work. I would also like
to thank Prof. Christian W. Probst, Denmark Technical University, for co-
supervising this thesis work.

I am grateful to Justin Uberti and Eric Bidelman from Google, for their
guidance in helping me understand the various new HTML5 APIs and for
their contributions via discussion and emails in furthering my understanding
of the concepts involved. I would also like to thank Jouni Mäenpää from Er-
icsson Research Labs for introducing me to the related work that was being
done at the labs, which was crucial during the early stages of this thesis work.

I thank all my friends who have provided their time and computational re-
sources to help test the various modules from different geographical locations.

Last but not the least, I would like to thank my family for their constant
support.

Espoo, June 30, 2012

Antony J.R. Meyn

3

Abbreviations and Acronyms

API Application Programming Interface
DNS Domain Name System
DOM Document Object Model
DTLS Datagram Transport Layer Security
FIFO First In First Out
HTML HyperText Markup Language
HTTP HyperText Transport Protocol
HTTPS HyperText Transfer Protocol Secure
ICE Interactive Connectivity Establishment
IDE Integrated development environment
IETF Internet Engineering Task Force
IPv4 Internet Protocol version 4
JSEP Javascript Session Establishment Protocol
JSON JavaScript Object Notation
MIC Message Integrity Code
NAT Network Address Translator
P2P Peer-to-Peer
PKI Public Key Infrastructure
RFC Request for Comments
ROAP RTCWeb Offer/Answer Protocol
SCTP Stream Control Transmission Protocol
SDP Session Description Protocol
SGML Standard Generalized Markup Language
SIP Session Initiation Protocol
SMTP Simple Mail Transfer Protocol
STUN Session Traversal Utilities for NAT
TCP Transmission Control Protocol
TURN Traversal Using Relays around NAT
UDP User Datagram Protocol
URL Uniform Resource Locator

4

VOD Video on Demand
W3C World Wide Web Consortium
WHATWG Web Hypertext Application Technology Working

Group
WWW World Wide Web
XML Extensible Markup Language

5

Contents

Abbreviations and Acronyms 4

1 Introduction 8
1.1 Research goals . 10
1.2 Problem statement . 10
1.3 Structure of the thesis . 12

2 Related Work 13
2.1 Video streaming . 13
2.2 Peer-to-Peer streaming technology 14

2.2.1 BitTorrent . 14
2.2.1.1 Streaming . 15

2.2.2 VOD solutions . 16
2.2.2.1 Native applications 16
2.2.2.2 Browser based solutions 17

3 HTML5 19
3.1 Evolution . 20
3.2 HTML5 and JavaScript . 21
3.3 The <video> tag . 24
3.4 File API . 25
3.5 IndexedDB API . 26
3.6 Web Workers . 28
3.7 Web Sockets . 28
3.8 Additional libraries . 29

3.8.1 jQuery . 29
3.8.2 WebToolKit MD5 . 30

4 WebRTC 31
4.1 Peer-to-peer connections . 32

4.1.1 NAT traversal mechanisms 33

6

4.2 Specification and implementation 34
4.3 Data API . 37
4.4 Standardization influence . 38

5 Design 39
5.1 Network architecture . 39
5.2 Video publishing . 41

5.2.1 Browser storage . 43
5.3 Video consumption . 43
5.4 Media playback . 44
5.5 Peer-to-Peer communication 45

6 Implementation & Evaluation 48
6.1 Development environment . 49
6.2 Video publishing . 49
6.3 Video consumption . 52
6.4 Peer-to-Peer communication 54
6.5 Evaluation . 55

6.5.1 Integrity check module 55
6.5.2 File storage limitations 55
6.5.3 Multiple peer connections evaluation 55

7 Discussions 58
7.1 Homogeneous & heterogeneous P2P 58
7.2 Mobile platforms . 59
7.3 Security concerns . 60
7.4 Security API proposal . 61

8 Conclusion 62
8.1 Future work . 63

A HTML5 JavaScript Source Code 70
A.1 Video hashing & storage . 70
A.2 Video conferencing . 81

A.2.1 Tracker implementation - Server-side with node.js . . . 81
A.2.2 Client side implementation 84

7

Chapter 1

Introduction

The transmission of video and audio information is without doubt one of
the greatest inventions the world has witnessed. The ability to see and hear
events occurring far away, from the comfort of our homes was indeed a huge
step forward. Thus, with the advent of what can be called the greatest com-
munication network ever built, i.e. the Internet, it was only a matter of time
before people were looking for ways to transmit and receive audio and video
media over it.

The ‘World Wide Web’ (WWW)[7] or the ‘Web’ as it is more commonly
known as, is the biggest part of the Internet, and a web browser is the
software application that is used to retrieve, transmit and traverse informa-
tion resources on the web. Web pages are designed using a language known
as ‘HyperText Markup Language’ (HTML). Web pages or HTML documents
are just plain-text documents containing HTML elements, which are tags en-
closed in angle brackets within the web page content. These web pages reside
on servers and are delivered to client devices (on request) via the ‘HyperText
Transport Protocol’ (HTTP)[14]. As various vendors started implementing
the web browser, HTML started to evolve as a language.

In its original form, HTML was only intended to build and display static
web pages. However as the web evolved, browser vendors started looking
for ways to make web pages more engaging and dynamic. As a step in this
direction an interpreted client-side language now known as JavaScript was
introduced. JavaScript quickly gained acceptance as a client-side scripting
language for web pages and was soon adopted by all major browser ven-
dors. HTML5 is the latest version of HTML and apart from extending the
markup for HTML documents, it also introduces ‘application programming
interfaces’ (APIs) that can be used with JavaScript to design rich web appli-

8

CHAPTER 1. INTRODUCTION 9

cations.

The protocol used to deliver web pages from a web server to a web browser is
HTTP, which is a client/server protocol. A web browser (client) initiates a
request by establishing a ‘Transmission Control Protocol’ (TCP) connection
to a web/HTTP server and requests a web page from the server. The server
then responds by transmitting the contents of the requested web page over
the TCP connection. The web browser uses the contents of the web page i.e.
the HTML tags to interpret and render the contents of the web page on the
clients browser.

In contrast to the centralized client/server networking model, there is also
a decentralized peer-to-peer (P2P) networking model. “Peer-to-peer sys-
tems are distributed systems consisting of interconnected nodes able to self-
organize into network topologies with the purpose of sharing resources such as
content, CPU cycles, storage and bandwidth, capable of adapting to failures
and accommodating transient populations of nodes while maintaining accept-
able connectivity and performance, without requiring the inter-mediation or
support of a global centralized server or authority.”[47].

Simply put P2P systems are networks where the connected computers can
act as both a client and a server, sharing their resources without the need for
a central server. Each computer in a P2P network is referred to as a node. A
P2P network requires that all nodes use the same or a compatible program
to connect to each other on the network and share resources. It’s interesting
to note that the original vision for the WWW was closer to a P2P model, in
that it assumed each user would actively edit and contribute to the content
on the web, which is in contrast to the current broadcasting like structure of
the web[6].

As mentioned previously, HTML5 introduces a number of new APIs that
could change the way the Internet works. Until recently web browsers could
only support the client/server network model, which meant that web browsers
could only communicate with web servers. One of these new HTML5 APIs
known as the ‘Web Real-Time Communication’ API (WebRTC API)[3],
introduces the capability of web browsers to communicate with other web
browsers, i.e. it introduces P2P capabilities in the web browser.

The introduction of the capability of P2P communication or rather Browser-
to-browser communication, has led to new use cases. The WebRTC API is
currently being drafted by the ‘World Wide Web Consortium’ (W3C), but

CHAPTER 1. INTRODUCTION 10

has already been implemented in the latest version of the major browsers
such as Google Chrome, Firefox and Opera. Along with the WebRTC API
there are several other newly introduced HTML5 APIs that facilitate the role
of a web browser as a P2P media streaming node.

1.1 Research goals

Video on Demand (VOD) is a very popular online service as can be observed
from the success of websites such as YouTube1, Hulu2 etc. The traditional
way to implement these media streaming services has been to host the media
files on a mini-cluster or a distributed system of servers. This helps main-
tain high-performance and high-availability of the media stream, but is a
huge investment in hardware infrastructure for content storage and delivery.
One possible way of reducing the bandwidth consumption and load on this
back-end infrastructure would be to implement the streaming service with a
WebRTC P2P streaming framework.

In this thesis, we look at an alternative method of streaming media on the
Internet. Specifically a use case of Browser-to-browser streaming, and pro-
viding a VOD streaming service in the context of the new HTML5 WebRTC
API. We attempt to implement a Browser-to-browser video streaming ser-
vice using the newly introduced HTML5 APIs, to understand how a resource
intensive application like media streaming can be designed to run completely
within the web browser without the need for any native plugins. We also
discuss the limitations encountered in this endeavor.

1.2 Problem statement

Consumer demand for streaming of video and audio on the Internet is con-
tinuously increasing. In the U.S. alone it is estimated that by 2015 movie
downloads, IPTV and video streaming services could account for an annual
total of several hundreds of exabytes.[51] An exabyte is 10 to the 18th power
(one quintillion) bytes or one million terabytes. In general, multimedia con-
tent has a large volume, so media storage and transmission costs are still
significant. Bandwidth consumption by online video streaming services such
as YouTube is only increasing. To ensure high availability, media streaming
services host these audio and video files in clusters or distributed system of

1http://www.youtube.com
2http://www.hulu.com

http://www.youtube.com
http://www.hulu.com

CHAPTER 1. INTRODUCTION 11

servers.

Below are a few citations from white papers that scientifically predict the
problems that would be created with video on the Internet, especially Video-
on-Demand (VOD) services.
“It is estimated that in the United States by 2015, movie downloads and P2P
file sharing could be 100 exabytes. Video calling and virtual windows could
generate 400 exabytes. This roughly shows that in a period of 9 years the load
on the Internet is expanding to about 50 times, and of course infrastructure
would have to meet this growing demands, to avoid a crisis.”[51]

Cisco systems have made their independent predictions in their white pa-
per ‘Entering the Zettabyte Era’[9]

• “Global Internet video traffic surpassed global peer-to-peer
(P2P) traffic in 2010, and by 2012 Internet video will ac-
count for over 50 percent of consumer Internet traffic.” As
anticipated, as of 2010 P2P traffic is no longer the largest Internet traf-
fic type, for the first time in 10 years. Internet video was 40 percent of
consumer Internet in 2010 and will reach 50 percent by year-end 2012.

• “It would take over 5 years to watch the amount of video
that will cross global IP networks every second in 2015.”
Every second, 1 million minutes of video content will cross the network
in 2015.

• “Video-on-demand traffic will triple by 2015.” The amount of
VOD traffic in 2015 will be equivalent to 3 billion DVDs per month.

In view of the above predictions it is clear that if media streaming services
continue to be delivered in the traditional way, the coming data flood will
require increasingly huge investments in infrastructure to keep up with the
demand. However as this is something we anticipate, we could definitely
prepare for it. A closer look at VOD streaming service, allows us to make
the following observations,

• It is a popular service via the browser.

• It is currently served over the client/server architecture, which makes
it a very costly service from the server perspective.

• Distributing the load on a P2P topology would help reduce the cost on
the server side.

CHAPTER 1. INTRODUCTION 12

Having identified a solution, in the next chapter we look into existing works
that have tried to address this problem, and then conclude on how our solu-
tion would be different when implemented.

This thesis focuses on the feasibility of implementing a P2P based media
streaming solution native to the browser using the available HTML5 APIs.
We attempt to aid the community behind the standardization, by imple-
menting and analyzing each module using only HTML5 related technologies.

1.3 Structure of the thesis

The rest of the thesis is organized as follows. Chapter 2 gives an overview
of the related research and development in the field of P2P media stream-
ing. Chapter 3 introduces HTML5 and then briefly talks about the various
HTML5 APIs that are used in the implementation of our a P2P based media
streaming solution. Chapter 4 gives a detailed description of the ‘Web Real-
Time Communication’ (WebRTC) specification, and introduces the various
working groups and APIs it covers. Chapter 5 describes the design of the var-
ious modules of our video streaming application, we then introduce the design
of a video conferencing web application for the purpose of measuring the var-
ious experimental browser implementations of the new HTML5 APIs. Chap-
ter 6 describes the HTML5 and JavaScript implementations of the various
modules, and also evaluates their performance on the web browser. Chapter
7 discusses our findings and views of P2P with HTML5 from our experience
of the implementation and evaluation. Finally in Chapter 8 we conclude the
thesis and talk about the future work involved. The HTML5 and JavaScript
source code of our implementations can be found in Appendix A.

Chapter 2

Related Work

In this chapter we look at previous work on media streaming solutions and
solutions that have tried video streaming with P2P.

2.1 Video streaming

It is almost impossible today to find an Internet user who has not heard of
the video sharing website YouTube1. YouTube popularized the concept of
sharing user generated videos, which could be viewed by anyone with an In-
ternet connection (before YouTube it was usually website owners who would
provide the content). This impact of this concept is enormous. It offers a
chance for anyone to become a celebrity overnight, almost literally. Eyewit-
ness videos transform ordinary people into reporters, amateur movie makers
have a platform where they can reach millions, and more importantly mil-
lions logon daily to be view these videos and be entertained. Even political
parties have started using these sites in their campaigns[55]. The prolifer-
ation of affordable cameras, camera phones and availability of inexpensive
tools for video editing and publishing also contribute to the success of the
YouTube phenomenon.

Today YouTube is one of the most popular sites on the Internet. In fact
as per the Alexa2 traffic rankings, it is the third most viewed site globally.
However hosting a site like this comes at a high cost. It was estimated that
YouTube spends roughly $1 million a day just for server bandwidth in 2008[2].
This cost is only increasing daily, and is mainly due to the client/server ar-
chitecture that it runs on. P2P delivery of videos has been considered as

1http://www.youtube.com
2http://www.alexa.com

13

http://www.youtube.com
http://www.alexa.com

CHAPTER 2. RELATED WORK 14

an alternative[57] to alleviate this problem. We discuss existing P2P im-
plementations that have tried to address this issue in the remainder of this
chapter.

2.2 Peer-to-Peer streaming technology

In the client/server architecture a file is hosted by a server for download. The
server has to serve every client download request by uploading the file within
the constraints of its available upload bandwidth. Thus the available upload
bandwidth is an upper limit in the design of the system, which becomes a
bottleneck as the number of client requests increase. P2P file sharing proto-
cols like BitTorrent are designed to overcome this problem.

Designing such a distributed system comes with a unique set of challenges,
which include the unreliability of client infrastructure, participation, ensur-
ing fairness to clients and the overhead of computation on the clients. But
if a system is designed to overcome these challenges, there are a lot of ben-
efits, such as quicker downloads and removal of bottlenecks on any central
infrastructure.

2.2.1 BitTorrent

BitTorrent is a P2P file sharing protocol that can be used to reduce the server
and network impact of distributing large files. It allows users to join a swarm
of hosts where download and upload of the file happens simultaneously. The
file is divided into small chunks known as pieces. A user who downloads a
piece then becomes a source for upload of that piece to the other users. Thus
the task of uploading the file is distributed among the clients who are also
downloading the file[11]. BitTorrent is one of the most successful implemen-
tations of a P2P file sharing service, and as the BitTorrent protocol forms
the underlying concept of our P2P Video streaming approach, it would help
to understand its design.

When a file is to be hosted the owner of the file first goes through a publish-
ing process using the BitTorrent client (a standalone software application).
This process results in the creation of another small file which is called the
“torrent” file. The torrent file contains meta-data of the file being shared,
such as file length, name, hash for each piece and the tracker (the computer
that co-ordinates the file distribution) Uniform Resource Locators (URL).
The torrent file is usually then hosted on a regular web server for download.

CHAPTER 2. RELATED WORK 15

Clients interested in downloading the file, download the respective torrent
file and open it with their BitTorrent client. The BitTorrent client contacts
the tracker to get a list of peers who have already downloaded the file com-
pletely or partially, and then connects to the various peers and requests the
pieces of the file. Since the file is downloaded from many sources it is impor-
tant to check the integrity of each downloading piece before merging it into
the main file, the hash information for each piece is used for this this purpose.

BitTorrent redistributes the cost of upload to the downloaders, thus making
hosting a file with a potentially unlimited number of downloaders affordable.
It has been attempted by researchers before to find practical techniques for
P2P file sharing before[8], however it was not previously deployed on a large
scale because of the logistical and robustness problems involved. Figuring out
which peers have what parts of the file and where the pieces should be sent
is difficult to do without incurring a huge overhead. In addition, peers rarely
connect for more than a few hours, and frequently for only a few minutes.
Finally, there is the general problem of fairness. These issues are addressed
by BitTorrent. A tracker addresses the problem of peers finding each other
by providing a random list of peers (who are downloading the file) to a newly
joined peer, and downloaders can make use of this to connect to each other.
Peers maximize their download rates using a variant of tit-for-tat. To coop-
erate peers upload and to not cooperate they ‘choke’ peers (‘choking’ is a
temporary refusal to upload). This also ensures fairness[10].

BitTorrent has also been found to be very effective in handling flashcrowds,
a phenomenon in which a single file suddenly gains in popularity[35].

2.2.1.1 Streaming

BitTorrent at the basic level is focused on P2P file sharing rather than VOD
streaming. It thus provide no guarantees about the order and timeliness of
pieces to be downloaded. In VOD streaming however it is crucial that the
pieces arrive in order and it time (before the media player has to display
it). Also for online viewing of video (VOD), browsers are usually the choice
of medium and requiring a separate software application or a plugin, which
users would need to install for this purpose, hinders the user experience. We
discuss these issues and some of the existing implementations of streaming
solutions in the next section.

CHAPTER 2. RELATED WORK 16

2.2.2 VOD solutions

To address the limitations of the basic BitTorrent protocol with regard to
video streaming, several protocols have been introduced that extend the basic
BitTorrent protocol. These solutions along with the implementations of these
protocols are discussed here. They can be classified as ‘Native applications’
and ‘Browser based solutions’.

2.2.2.1 Native applications

Tribler[36] is a BitTorrent based client application that has Video on De-
mand support. It is supported by the European Union 7th framework re-
search program3, with prior funding through research grants of the I-Share
project, STW project and P2P-Next.

Tribler uses an overlay network for content searching, which makes it indepen-
dent of external websites. The platform that Tribler uses was developed by
P2P-Next and enables P2P based delivery of VOD and live streaming[30][29].
The Give-to-Get VOD algorithm used here discourages free-riding by reward-
ing peers which forward data to others. The peers that forward the most data
will be provided with a better quality of service by their neighbours.The Give-
to-Get algorithm also includes a piece-picking policy in which sets of pieces
required for playback are divide into three subsets: high, medium and low
priority. This allows a graceful transition between downloading pieces re-
quired on the short-term and those required on the long term with a distinct
piece-picking policy within each priority set[28].

Spotify[24] is a streaming music service that uses P2P techniques. Data
is streamed from both servers and a P2P network. One of the distinguishing
features of the Spotify client is the low playback latency. It uses a proprietary
client and protocol. Audio streams are encoded using ‘Ogg Vorbis’ with a
default quality of q5, which has variable bitrate averaging roughly 160 kbps.
The protocol is unsuitable for live broadcasts. A client cannot upload a track
unless it has the whole track, this removes the overhead involved with com-
municating what parts of the track a client has. Clients use TCP between
pairs of hosts and keep a connection open to the Spotify server. Using TCP
simplifies the protocol design and implementation as TCP is reliable and in-
cludes congestion control.

Spotify uses two mechanism to locate peers. The first uses a tracker deployed

3http://cordis.europa.eu/fp7/home_en.html

http://cordis.europa.eu/fp7/home_en.html

CHAPTER 2. RELATED WORK 17

in the Spotify back-end, this is similar to a BitTorrent tracker in function-
ality, the second mechanism uses a query in the overlay network. When a
client asks for peers who have a track, the tracker replies with a maximum
of 10 peers who are currently online. As clients keep a TCP connection open
to a Spotify server, the tracker has a list of peers who are online at any given
moment. Clients also send search requests to the overlay network, similar to
the method used in Gnutella[41].

2.2.2.2 Browser based solutions

Most web browsers support the ability to add specific functionality via plug-
ins or add-ons. One such plugin that implements P2P video streaming in a
browser is the SwarmPlugin4. This is a plugin available for ‘Firefox’ and
‘Internet Explorer’ browsers, that is based on the VLC media player and the
Tribler software (a European Union funded project). The SwarmPlugin has
been put to use by the ‘Wikimedia Foundation’[4].

Here the concept of P2P sharing brings in an additional advantage of dis-
tributing the content, rather than having it stored on a central server, thereby
reducing the cost of back-end infrastructure. An overview of the system is
presented in the Figure 2.1.

Figure 2.1: Architecture overview [4]

4http://trial.p2p-next.org/Beta

http://trial.p2p-next.org/Beta

CHAPTER 2. RELATED WORK 18

The design of this P2P solution addresses two key shortcomings of the
earlier BitTorrent design with regards to VOD.

• Low delay in getting the initial few pieces.

• Placing the implementation within the browser.

Since the browser is the main target for VOD streaming, creating a plugin
to implement this functionality is a step in the right direction. This plu-
gin has been developed (initially only for the Mozilla browser) based on the
P2P-Next[32] platform. The video player used is the HTML5 <video> tag,
which uses the native implementation of video player within the browser.
Although using a plugin is much more simpler than asking users to install a
native application, the drawback of this is that the plugin needs to be imple-
mented for every browser separately, and as a fallback the video would have
to be streamed over HTTP in the traditional way. Effectively this means
that users would need to install the plugin only to participate in the P2P
functionality. A more desirable approach would be have this functionality
implemented within the browser so that it is available by default.

With HTML5, browsers are making a concerted effort to be more standard-
ized, and are attempting to move away from plugins, and towards building
web applications that could be as powerful as native applications. If the
functionality that was previously offered by a plugin becomes part of the
functionality available in the browser itself, it is no longer considered a plu-
gin. For example, Microsoft has decided to move to a plugin-free browser
with the release of their ‘Windows 8’ operating system, and since Adobe
Flash is a heavily used plugin they have decided to incorporate the imple-
mentation of Adobe Flash into the browser code base. In order to get cross
browser support for native functionality, it is important to have a standard
in place and this is the role of HTML5.

To conclude, it is quite clear now that one solution to reduce the network
traffic load on VOD streaming servers would be to employ a P2P approach
to distribute the network traffic among the nodes. However currently there
exist no solutions that support this functionality fully within the web browser
(which is the main medium used for viewing videos online) independent of
third-party plugins (which as mentioned before require user intervention to
install). In this thesis we attempt to design and implement an alternative
solution inside a web browser using only currently available HTML5 APIs to
achieve video streaming with P2P functionality.

Chapter 3

HTML5

In this chapter we look at the latest version of the ‘HyperText Markup Lan-
guage’ (HTML) which is known as HTML5. This is the fifth revision of the
HTML standard and is currently under development. HTML5 is intended to
subsume the following three specifications,

• HTML 4.01 (HTML4)[19]

• eXtensible HTML 1.1 (XHTML1)[56]

• DOM Level 2 HTML (DOM2HTML)[16]

HTML5 also standardizes many of the features that have been used by web
developers for years, but have not been formally documented by a standards
committee. For instance the ‘window’ object which has been implemented
by all web browsers has not been formally documented before the advent of
HTML5.

HTML5 like its predecessors is platform independent as it is implemented
within the web browser. The term HTML5 has been misunderstood, as it
has sometimes been referred to as a platform and sometimes as a standard
that is being designed and drafted. It is important to note that HTML5 is
a collection of individual features, certain of these features are still in very
early stages of being drafted. Therefore statements such as ‘HTML5 sup-
ported browsers’ are misleading, as most modern browsers support only a
portion of these individual HTML5 features currently. As per the World
Wide Web Consortium (W3C), in contrast to earlier HTML specification de-
velopment models, the HTML5 specification will not be considered finished
before there are at least two complete implementations of the specification.
The goal of this change is to ensure that the specification is implementable,
and usable by authors once it is finished.

19

CHAPTER 3. HTML5 20

HTML documents consists of elements and text, elements are usually repre-
sented as tags. HTML user agents namely web browsers, parse these doc-
uments to form the ‘Document Object Model’ (DOM). This is the internal
data structure that represents a HTML document. The public interface of
a DOM is specified in its ‘application programming interface’ (API). These
DOM APIs can be used to inspect or modify the Web page dynamically
within the browser by another programming language such as JavaScript.
Unlike earlier specifications, the APIs and DOM are fundamental parts of
the HTML5 specification. In addition to many new syntactical features such
as a number of new tags, HTML5 also introduces several new APIs for de-
velopment of complex web applications.

3.1 Evolution

HTML was initially considered to be an application of ‘Standard Gener-
alized Markup Language’ (SGML) and was formally defined as such by the
‘Internet Engineering Task Force’ (IETF). The IETF is an open standards or-
ganization that develops and promotes Internet standards. The IETF closed
its ‘HTML Working Group’ in 1996 after which the HTML specifications
have been maintained (with inputs from commercial software vendors) by
the ‘World Wide Web Consortium’ (W3C), which is the main standards or-
ganization for the World Wide Web.

In 2004, a majority of the W3C members voted against continuing work
on HTML and decided to abandon it in favor of XML based technologies.
In response to this a community of people interested in evolving HTML
and related technologies, formed the ‘Web Hypertext Application Technol-
ogy Working Group’ (WHATWG), which continued on the task of evolving
HTML to what we now know as ‘HTML5’. Later on in 2006, the W3C indi-
cated interest in joining the HTML5 evolution and in 2007 started to work
together with the WHATWG. The HTML5 specification was adopted as the
starting point of the work of the new ‘HTML Working Group’ of the W3C.

Although the specification by and large is still being drafted and would take
a few more years to complete (‘Last Call’ was in May 2011 and 2014 is the
current target for ‘Recommendation’), quite a few of the sections are stable.
User agent browser vendors have started implementing most of these sections,
and some of the vendors have even implemented certain sections which are
not stable and still being drafted, for the purpose of providing feedback to

CHAPTER 3. HTML5 21

the authors of the specification. It has been debated, as to whether the
specification should be completed before implementation or vice-versa. It
has been decided that they have to go along with each other, as complet-
ing the specification first, is quite likely to have implementation issues and
the implementation feedback is important to modify the specification. And
having the implementation done first, restricts the specification from being
redesigned, as applications which rely on these implementations might stop
working.[33]

3.2 HTML5 and JavaScript

JavaScript has been around much before HTML5 and is one of the most
popular programming languages on the web today. It was originally de-
signed as a lightweight interpreted client-side language that would appeal
to non-professional programmers, and complement Sun Microsystem’s ‘Java’
programming language. Because it runs at the client-side (usually a web
browser), it can respond quickly to user actions making the application more
responsive. The increasing speed of JavaScript engines has also added to the
success of the language.

JavaScript is also one of the most misunderstood programming languages
and was initially not taken seriously by many professional programmers.
This misunderstanding is only exacerbated by its name. The prefix Java
incorrectly suggests it is related to Java and the Script suffix suggests it is
not a real programming language. Also the initial versions of the language
did not have a lot of functionality such as error handling, inheritance and
inner functions. Although these are supported now and the current version
of the language is a complete object-oriented language, the previous versions
created a low opinion about the language’s capability. JavaScript was also
known for some of its major design flaws, this had given room to a lot of
bad programming, which added to the languages bad reputation and these
bad designs cannot be easily removed, as applications depending on those
flaws might fail. The literature on the language is also of very poor quality.
There are in fact very few good books, which actually portray the language
the right way.

Despite its flaws, at its core JavaScript is a very powerful, expressive pro-
gramming language. It has also emerged as the only language that most pop-
ular web browsers share support for. It is the language of the web browser
and now with HTML5 it is the only scripting language endorsed by the draft.

CHAPTER 3. HTML5 22

One of the main reasons JavaScript is popular as a browser language is
because of its support for asynchronous execution of code. Although this
feature slightly complicates the readability of the code, it brings in quite a
few advantages which make up for this. For example from a user experience
(UX) perspective this is important to ensure that web pages are responsive
and take as little time to execute. The asynchronous features of JavaScript
ensures this with function callbacks. A ‘function callback’ is a programming
feature where methods may be passed to another method as an argument.
This allows programmers to specify methods that can to be called on any
event. This does require additional effort in understanding the code flow due
to its non-linear execution path and hence a proper understanding of this pro-
gramming paradigm is important for a developer to be able to write robust
code. To better understand this let us look at the following code example,
setTimeout() is an in-built JavaScript method that accepts two arguments,

1 setTimeout(function() { console.log(’Hello’); }, 3000);

the first being a function callback and the second a duration in milliseconds.
This method invokes the function specified in the first argument, after a time
period equal to the duration specified in the second argument.

With the above code, the string ‘Hello’ is displayed after a delay of 3 sec-
onds. If we now introduce another statement to display an additional string
as shown below, we notice a difference in the output, This now prints the

1 setTimeout(function() { console.log(’Hello’); }, 3000);

2 console.log(’ World’);

string ‘ World’ first and then ‘Hello’ after a delay of 3 seconds. Thus the delay
does not affect the code following it and execution proceeds. This example
highlights the asynchronous nature of execution in JavaScript. This asyn-
chronous or non-blocking feature of JavaScript is not to be confused with
concurrency. Since the browser implementation decides how non-blocking
code actually works, JavaScript is usually implemented as a single thread.
Later on in this chapter we look at how multi-threading is implemented in
JavaScript with the newly introduced HTML5 Web workers API.

CHAPTER 3. HTML5 23

In order to store and transmit information between web server and clients, we
need to define a data interchange format. This brings us to another impor-
tant in-built feature of JavaScript. JavaScript brings with it the ‘JavaScript
Object Notation’ (JSON)[12], which is a lightweight human-readable data
interchange format. It is as the name suggests, derived from the JavaScript
language. Despite this it is a language-independent format, with parsers
available in most of the commonly used languages. The JSON format is
used for serializing and transmitting data over a network connection, and
is primarily used between web servers and clients replacing XML. A JSON
representation is basically a collection of name-value pairs. The names and
values are separated by the semi-colon character (:). An example of a JSON
representation of an object that describes a person is shown below,

1 {

2 "firstName": "John",

3 "lastName" : "Doe",

4 "age" : 26,

5 "address" :

6 {

7 "streetAddress": "Baker Street, 5 C 391",

8 "city" : "Espoo",

9 "country" : "Finland",

10 "postalCode" : "02150"

11 },

12 "phoneNumber":

13 [

14 {

15 "type" : "home",

16 "number": "358 456-7890"

17 },

18 {

19 "type" : "fax",

20 "number": "358 123-4567"

21 }

22]

23 }

CHAPTER 3. HTML5 24

HTML5 consists of numerous individual features and in the remainder of
this chapter we introduce those HTML5 features which are significant to our
P2P VOD streaming implementation. These include the following,

• The <video> element, to allow native video playback within the HTML
user agent.

• The File API, to access the file system.

• The IndexedDB API, to maintain and organize an index of the files
and application settings.

• The Web workers API, that enables multi-threading.

• The Web sockets API, that allows bi-directional communication be-
tween the client and servers.

• The WebRTC API, that enables browser-to-browser communication.

• JavaScript helper libraries to parse the HTML DOM and to perform
Message Integrity Checks.

One of the major challenges of dealing with HTML5 at this stage with regards
to writing this thesis, is the immaturity of the implementations and changes
in the API due to the ongoing standardization process.

3.3 The <video> tag

The video element is an important addition to HTML. It has been intro-
duced for the purpose of playing videos and movies and to replace the <ob-
ject> element, which was earlier used among other things to embed video
content into web pages. The introduction of this element means that browsers
would need to implement native video players so that videos can be played
without the need for any plugins. Even though the video tag is a work in
progress, it has been implemented by almost all major browsers to date. To
demonstrate the media API and media events, the W3C has published a page
1, which when viewed with a browser that supports the <video> element,
displays the properties, events and media types it supports.

When we talk about video players embedded in the browser, the next nat-
ural question would be which video formats are supported. This however is

1http://www.w3.org/2010/05/video/mediaevents.html

http://www.w3.org/2010/05/video/mediaevents.html

CHAPTER 3. HTML5 25

not clear at the moment as the current HTML5 draft does not specify which
video formats browsers should support. Video formats are comprised of a
combination of containers and codecs. Video containers are the file formats
which contain the video stream and other related information, such as the
meta-data of the video file, the title of the video, a thumbnail picture pre-
view, the video stream bit rate, audio files with markers for synchronization
and so on. Video codecs are the implementation of the algorithms used for
rendering the video streams. Although it would be ideal if every browser sup-
ports a standard set of video formats, this is currently not the case. For this
reason the video tag accepts multiple source URLs, and the browser plays
the first resource that it supports. The online resource ‘Dive Into HTML5’2

details the browser support for the various video formats[33], and since this
is constantly changing (and will continue to do so until standardized), it is
important that developers are aware of this information.

3.4 File API

The HTML5 File API specification[37] is still being drafted by the W3C Web
Applications (WebApps) Working Group. The implementation of this API
within the browser would allow HTML5 applications to handle files via the
browser in a standardized way. It has been designed to allow the web browser
to create a sandboxed filesystem for each web domain, which means if we had
two domains say www.yahoo.com and www.google.com, the files created by
each of these domains would not be accessible to each other. The JavaScript
code could request two types of filesystem storage, namely temporary and
persistent storage. In temporary storage the files stored can be removed
at the browser’s discretion and in persistent it can only be removed by the
application. Of course, neither of these would stop the user from manually
removing these files from the hard disk if they so desired. The latter storage
requires the user to grant access to the application.

It is important to note that the File API cannot be used to access the file
system outside the browsers sandboxed filesystem. Providing such access
needs to be debated and designed carefully, as it brings up security concerns.
As depicted in the Figure 3.1, each browser that supports the HTML5 File

API will have a separate sandboxed filesystem even if they are of the same
domain. Files within each of these sandboxed filesystem cannot reference
files that are outside their respective filesystem. This would mean that each

2http://diveintohtml5.info/video.html

http://diveintohtml5.info/video.html

CHAPTER 3. HTML5 26

Figure 3.1: An overview of the HTML5 browser filesystem.

last node in the Figure 3.1 would not be able to reference files outside the
respective node. This would not even be possible from the temporary to the
persistent filesystem for the same domain within the same browser. Appli-
cations could be designed to allow the moving and copying of files within
the temporary and persistent filesystem of the same domain and browser. In
order to do this with different browsers, the domain web server would have
to be used to relay the data.

The currently published version of the File API draft[?] has been im-
plemented by major browser vendors.

3.5 IndexedDB API

The Indexed Database (IndexedDB) API[27] is another specification by the
W3C Web Applications (WebApps) Working Group. The W3C group has re-
cently been looking into the option of having a client side persistent database

CHAPTER 3. HTML5 27

within the browser. This would give applications the ability to save in-
formation within the browser, so that they may access information even
when offline. The WebSQL API was introduced so that information could
be recorded and retrieved based on well established Structured Query Lan-
guage (SQL) statements, however towards the end of the 2010 the W3C group
decided that introducing SQL statements within JavaScript, was not a very
compatible design and dropped it. This was then replaced by the IndexedDB
API, which has a more JavaScript related API which deals with with data in
the form of the JavaScript Object Notation (JSON). The HTML5 IndexedDB
API allows applications to have a persistent storage of information locally
within the browser. The availability of this stored offline information is the
same as the File API discussed previously, where the information is saved
separately for different domains and browsers.

The indexed database consists of object stores, these are the data structures
that contain all the data. In relational databases these are known as tables.
The indexed database consists of three types of transaction modes which
allow access and modification to the object stores, they are ’readonly’, ’read-
write’ and ’versionchange’ transactions. The ’readonly’ transactions where
data is not modified, can have many instances running in parallel, as these
instances would not have any impact on each other. The ’readwrite’ trans-
action on the other hand can only have one instance accessing a given object
store running at a time, in order to ensure that transactions are mutually
exclusive. It is also important to note that the object store schema cannot be
modified in this transaction mode. Finally the ’versionchange’ transaction
mode is the only one in which the object store schema can be modified.

The IndexedDB API brings in a unique problem as to how the browser should
handle the data when the object store schema has been updated. We should
remember that when a new version has been deployed, all previous versions
would be available with the user base, so if the designed application cannot
afford to lose previously stored data, it would have to write code that han-
dles the smooth transition of data from all the previous versions to the new
object store schema. This is a problem that is specific to having a database
on the client side, as server side databases would only have to be migrated
from one schema version to another and would be reflected globally. This is
also where the ’versionchange’ transaction mode becomes important.

CHAPTER 3. HTML5 28

3.6 Web Workers

The Web Workers API[18] is another specification by the W3C Web Ap-
plications (WebApps) Working Group. One of the obstacles to porting of
server-heavy applications to client-side JavaScript is the single-threaded en-
vironment of JavasScript. JavaScript does allowing asynchronous execution
but this does not necessarily mean concurrency. As the asynchronous non-
blocking code need not necessarily mean that threads are employed. In order
to handle computationally intensive tasks, the HTML5 Web Workers API
was introduced. This specifies an API to spawn background scripts in web
applications.

With this it is now possible to run separate JavaScript files concurrently.
Workers can utilize thread-like message passing ,to pass strings or JSON ob-
jects to JavaScript code that spawned the worker. Workers are meant for
resource intensive task and are not meant to be used in large numbers as
it could hog up the users system resources. It should ideally be used for
CPU intensive scripts that would otherwise keep the application from being
responsive.

It is important to free the worker by calling the close() method after it has
completed its task. If not this might keep the allocated resources from being
used. Workers are not thread safe, and for this reason they have some re-
strictions, such as accessing the DOM or the document object. Workers can
spawn other workers, this can help break down resource intensive tasks to
complete faster. Employing workers is an important design decision, which
can help make heavy client-side computation quicker.

3.7 Web Sockets

The Web Sockets API[17] is also a specification maintained by the W3C Web
Applications (WebApps) Working Group. A server push and a client pull are
means of delivering content from a server computer (web server) to a client
computer (browser). Unitl now browsers only supported client pull mecha-
nisms, and server push was not directly provided to web developers. This is
a major drawback, as servers were not able to inform clients when they had
any updated information.

There have been several workarounds in achieving server push mechanisms
they are namely Pushlets, Long polling, Browser plug-ins and third party

CHAPTER 3. HTML5 29

JavaScript libraries. Some of the best practices of abusing the HTTP proto-
col such as long polling have been discussed in RFC 6202[25]. The HTML5
WebSocket API is the first standardization to help browsers implement a
common mechanism of server push delivery.

The WebSocket protocol[13] has been designed for the the WebSocket API,
this protocol helps with bi-directional communication i.e. allowing a server
to communication with a client and vice-versa. It helps to achieve this by
using a single Transmission Control Protocol (TCP)[34] connection, rather
than by creating a new TCP connection each time the server or client want to
communicate with each other. This protocol is an independent TCP-based
protocol, and is treated as a HTTP upgrade during the handshake procedure.
Just like HTTP, it can work on the default port 80, and for secure connection
it works on port 443 which is based on the Transport Layer Security (TLS)
protocol[38].

Unlike most of the previously discussed HTML5 APIs, this Web Sockets API
requires support from a server component as well. Hence it is not enough if
the browser alone implements the Web Sockets API, the server would also
have to implement the protocol to support this communication. There are a
number of server side implementations of the Web Socket protocol in most
of the well known languages like Python, C sharp, Java and even JavaScript.
It might be a little surprising to know that JavaScript is used outside the
browser, however this has been around for some time now (in fact it has
been available soon after JavaScript was released for the browser in 1994).
Node.js3 is one recent notable example of a server-side implementation of
JavaScript.

3.8 Additional libraries

In addition to the above discussed API’s our HTML5 implementation of
the Browser-to-browser video streaming application uses a few JavaScript
libraries that are briefly described here.

3.8.1 jQuery

jQuery is a JavaScript library designed to simplify client-side scripting of
HTML, It is designed to make it easy to navigate and manipulate the DOM,

3http://nodejs.org/

http://nodejs.org/

CHAPTER 3. HTML5 30

select DOM elements and handle events (among several others things). It
simplifies web application development on the client-side and makes the
JavaScript code more readable. We make use of this library to ease the
development of our video streaming web application.

3.8.2 WebToolKit MD5

In our implementation of video streaming over a P2P network, we need to
ensure the integrity of the pieces of the video stream received by a peer from
another host on the network. One way to do this is with use of Message
Integrity Codes (MIC). A MIC algorithm ensures that a given message will
always produce the same MIC, assuming the same algorithm is used at both
ends.

The MD5 Message-Digest Algorithm is a widely used cryptographic hash
function that produces a 128-bit hash value[42]. MD5 is commonly used to
check data integrity. An MD5 hash is typically expressed as a 32-character
hexadecimal number. The WebToolKit MD5 script is a JavaScript imple-
mentation of the MD5 algorithm, and is used to process a variable length
message into a fixed-length output of 128 bits. We make use of this JavaScript
library to generate a MIC for each piece of the video stream received by the
web browser.

The list of HTML5 APIs discussed in this chapter, is by no means ex-
haustive. HTML5 offers many more APIs for development of rich web ap-
plications. We have confined our discussion to the HTML5 features / APIs
that are relevant to the implementation of our P2P VOD solution.

Chapter 4

WebRTC

In this chapter we take an in-depth look at the new HTML5 ‘Web Real Time
Communication’ (WebRTC) API that plays a key role in Browser-to-Browser
communication. The WebRTC API introduces UDP based communication
within the web browser, which is known for TCP based communication.
This API has a separate W3C Working Group, known as the ‘Web Real-
Time Communications Working Group’. The API aims to allow Real-Time
communication in Web browsers. Although the specification is in the stages
of being a draft[5], experimentation is encouraged to help improve the specifi-
cation. This thesis is part of one such experimentation, where we investigate
how this API along with other HTML5 JavaScript APIs, can be used to build
a P2P based VOD service, within the web browser.

Establishing Real-Time communication over the Internet is an existing con-
cept, and proprietary software achieving this has been around for some time
now. The WebRTC API aims to bring about the first specification to achieve
inter-operability among Web browsers. To help achieve this, the specifica-
tion is divided into two parts, the first being a protocol specification and the
second a JavaScript API specification. The working group in charge of the
protocol specification is the IETF Real-Time Communication Web working
group (RTCWEB) and the working group in charge of the JavaScript API
specification is the W3C WebRTC working group. The WebRTC working
group continues the preliminary work done by the WHATWG on the Peer-
Connection API.

The API was first proposed by the WHATWG as the PeerConnection API,
and it was later moved to the W3C when the WebRTC working group was
formed in April 2011. The WebRTC working group had initially focused on
a single use case, namely video conferencing, and for this reason the HTML5

31

CHAPTER 4. WEBRTC 32

Media Capture Task Force comprises of both the WebRTC Working Group
in addition to the Device APIs Working Group.

The client-side technologies that currently fall under the charter of the We-
bRTC Working Group are as follows[1],

• To explore media device capabilities (camera, microphone, speakers).

• To capture media from the above devices.

• To process the media streams captured i.e. encoding and decoding.

• To establish direct peer-to-peer connections, including firewall/NAT
traversal.

• To handle incoming media streams

• Delivery of the media streams to users.

The first three items shown above relate to the ‘Stream API’, and as VOD
services do not involve live streaming from devices but rather streaming from
static files, we only briefly describe the Stream API.

The ‘Stream API’ uses a MediaStream interface to represent streams of me-
dia data, such as the audio and video content from a camera device. Each
MediaStream object can contain a number of audio or video tracks, with
markers to enable synchronization when rendered by a user agent. A Medi-
aStream object also has an input (for instance a local camera or a remote
peer) and an output (for instance a HTML video element, a file or a remote
peer). The JavaScript API to generate a MediaStream object from a camera
or microphone is getUserMedia().

4.1 Peer-to-peer connections

Until recently, Web browsers have been known as applications that only need
to initiate outgoing connections. The introduction of the P2P paradigm to
web browsers now introduces the need for them to become accessible over the
network. In order for web browsers to have direct bi-directional communica-
tion with each other i.e. the ability to communicate without an intermediate
server, we need to first understand how P2P connections are established over
the Internet.

CHAPTER 4. WEBRTC 33

In order to identify a client on the Internet, an unique Internet Protocol
(IP) address is allocated to it. The IP version 4 (IPv4) provides a little
more than 4 billion such addresses, which is far less than the total number
of connected devices to the Internet today. A popular tool for alleviating the
consequence of IPv4 address exhaustion is ‘Network Address Translation’
(NAT)[48], which is a way to hide an entire address space behind a single
IP address. This is achieved by modifying the IP address information in
the IP packet headers while the packet is in transit across a traffic routing
device (which performs the translation). The routing device performing this
translation maintains a table to correctly handle the translation of the return
packets. Using NAT a single IPv4 address can be shared by several clients
behind the NAT while they are all connected to the Internet. However a
NAT also makes it difficult for systems behind the NAT to accept incoming
connections, which is a important step in P2P communication.

In a P2P network, nodes need to be able to connect directly to each other.
However in some cases nodes may be located behind a NAT, which makes
the establishment of a connection a little more tricky. There is no single
guaranteed way to connect directly to peers in the presence of NAT’s. ‘NAT
Traversal’ is the general term used to describe the set of techniques that help
peers create direct paths to each other in the presence of NAT’s. To setup
a connection peers usually make use of a signaling channel, which is used
to exchange control messages that help setup the data session between the
peers. Signaling channels are indirect connections between the two nodes,
and can be used only to pass control messages between them (not data). The
data session is then established using an offer/answer mechanism in the form
of Session Description Protocol (SDP)[15] offers and answers[45]. We now
discuss the NAT Traversal mechanisms in more detail.

4.1.1 NAT traversal mechanisms

NAT Traversal Mechanisms are required to create a direct communication
path between nodes, if one or both of the nodes are behind a NAT. NAT’s
were implemented and used widely before they were standardized, this fur-
ther complicates establishing connections through NAT’s, as no single mech-
anism is guaranteed to work. For this reason, several NAT traversal mech-
anisms need to be used before a direct connection can be established. One
such mechanism is ‘Session Traversal Utilities for NAT’ (STUN)[44].

STUN is a standardized set of methods used by applications like real-time
voice, video and messaging and other interactive IP communications. The

CHAPTER 4. WEBRTC 34

STUN protocol allows applications to obtain the public IP address and port
number that the NAT has allocated for connections to remote hosts. This
protocol requires assistance from a third party server (STUN server) located
usually in the public Internet. The basic STUN protocol operates as follows.
The client (inside a private network), sends a binding request to a STUN
server. The STUN server sends a success response that contains the IP ad-
dress and port as observed by it (this result is usually XOR mapped to avoid
translation of the packets contents). Once a client has discovered its public
IP address it can use this for communicating with peers by sharing this ad-
dress, rather than the private address which is not reachable from peers on
the public network.

Addresses obtained by STUN may not be usable by all peers. The addresses
may or may not work depending on the network topology. Therefore STUN
by itself cannot provide a complete NAT traversal solution. A complete so-
lution requires a way by which clients can obtain a transport address from
which it can receive data from any peer which can send packets to the pub-
lic Internet (accomplished by relaying data through a server that resides on
the public Internet). ‘Traversal Using Relay NAT’ (TURN)[26] is a
protocol that allows a client to obtain IP addresses and ports from such a
relay. Although TURN almost always provide connectivity to a client, it is
obviously at a high cost to the TURN server. Hence it is desirable to only
use TURN as a last resort, preferring other mechanisms whenever possible.

To identify the optimal means of connectivity, the ‘Interactive Connectiv-
ity Establishment’ (ICE)[43] methodology can be used. In the beginning
of the ICE process both nodes are assumed to be ignorant about their network
topologies, they might be behind a NAT or several NATs or even accessible
directly. ICE allows the nodes to discover their topologies, thereby allowing
them to discover one or more paths between them. In case there are no direct
paths a TURN mechanism would always work as a last resort.

4.2 Specification and implementation

The WebRTC specification is going through several rounds of drafts and im-
plementations within user agents. It was designed to have full control over
the media plane, and to allow the JavaScript application to have control
over the signaling plane. The reason behind this design was to allow the
application developer to choose the protocol to be used for establishing the
session, such as Session Initiation Protocol (SIP)[46] or the Jingle signaling

CHAPTER 4. WEBRTC 35

protocol [50] or even an application specific protocol. In these protocols what
gets sent across is the multimedia session description which contains all the
necessary media and transport configuration details in order to establish the
direct media connection between the two nodes.

The initial WebRTC P2P specification attempted to implement the signal-
ing mechanism independent of the signaling protocol being used. This was
done by exchanging SDP blobs via the signaling protocol. As a result of ex-
perimentation with this approach, a few disadvantages were observed. One
shortcoming was that the user agent did not have sufficient context to de-
termine the meaning of the SDP blob, i.e. to determine if the blob via the
signaling channel was an offer or an answer or if it was a re-transmitted mes-
sage.

The RTCWeb Offer/Answer Protocol (ROAP) specification[20] attempted
to resolve the issues with additional structure in the messaging i.e. creat-
ing a generic signaling protocol to specify how the browser state machine
should operate. ROAP messages are encoded in JSON, and it assumes that
the signaling protocol would be implemented by the browser and the browser
API would allow the application to request creation insertion of the messages
into the state machine. ROAP was designed to be closely aligned with the
PeerConnection API defined in the RTCWeb API specification.

Figure 4.1 illustrates a sample implementation that was implemented in
Google Chromium web browser (other web browsers have also implemented
the ROAP protocol for early experimentation of the specification), and is now
referred as the webkitDeprecatedPeerConnection() API. We look into the
reason about the name ‘Deprecated’ later. The Javascript API of this imple-
mentation worked as follows:

1 var PeerConnectionObj = webkitDeprecatedPeerConnection(

2 ICE_STUN_TURN_DETAILS,

3 function(sdp_object){});

The above method returns a PeerConnection object, and also has a func-
tion callback as the second parameter. The first parameter passed in is the
ICE/STUN/TURN details. Once the user agent communicates with the
STUN server, it receives the configuration details that need to be sent to
the other user agent it intends to communicate with. An OFFER SDP blob

CHAPTER 4. WEBRTC 36

Figure 4.1: WebRTC: RTCWeb Offer/Answer Protocol (ROAP)

is then created and passed to the function callback, the JavaScript applica-
tion developer has to then pass this to the other user agent via the signaling
channel.

1 PeerConnectionObj.processSignalingMessage(sdp_object);

The PeerConnection object has a method called the processSignalingMessage(),
which takes the SDP object received via the signaling channel and after pro-
cessing it, invokes the callback defined in the webkitDeprecatedPeerConnection()
method, by generating and passing the next SDP message.

JavaScript Establishment Protocol (JSEP) [53]: Even though the ROAP
protocol abstracts the signaling interactions, the state machine forces a least
common denominator approach. For example, in the Jingle protocol the
call initiator can provide additional ICE candidates after the initial offer

CHAPTER 4. WEBRTC 37

has been sent, which allows the offer to be sent immediately for quicker call
startup. However, in the browser state machine there is no notion of sending
an updated offer before the initial offer has been responded to, making this
impossible. The main reason this mechanism is inflexible is because it embeds
a signaling state machine within the browser. Since the browser generates
the session descriptions on its own, and fully controls the possible states
and advancement of the signaling state machine, modification of the session
descriptions or use of alternate state machines becomes difficult or impossi-
ble. To resolve these issues, the ‘Javascript Session Establishment Protocol’
(JSEP)[53] has been proposed. This pulls the signaling state machine out of
the browser and into Javascript.

4.3 Data API

The Data API introduces the possibility of passing arbitrary data between
browsers via a P2P connection, this is also an important feature to allow P2P
VOD streaming, as it would allow streaming of the video directly from peer to
peer. A general consensus has been reached at the RTCWeb working group
to use ‘Stream Control Transmission Protocol’ (SCTP)[49] encapsulated on
Datagram Transport Layer Security (DTLS)[40] protocol to send arbitrary
data. ‘The encapsulation of SCTP over DTLS over ICE/UDP provides a
NAT traversal solution together with confidentiality, source authenticated,
integrity protected transfers. This data transport service operates in paral-
lel to the media transports, and all of them can eventually share a single
transport-layer port number.’ [21].

This API has several interesting potential use cases such as, exchanging real-
time game information like position and object state, file transfers between
people while chatting, proxy-browsing (where a browser uses data channels
of a peer to send and receive HTTP/HTTPS requests and data) etc.

The main reason for the long duration in drafting this specification are the
security concerns involved, we discuss this in the chapters dealing with the
evaluation. The specification of this API, is still in the very early stages of
being drafted, and a completed implementation is expected within a year
from now.

CHAPTER 4. WEBRTC 38

4.4 Standardization influence

This thesis started with an investigation on how we could implement a P2P
based VOD service completely within the browser without any third-party
plugins. The design and implementation of this have been quite challeng-
ing because most of the required functionality are still in the early stages
of standardization and are changing constantly. Implementing modules to
better understand the P2P paradigm of the browser has been like chasing a
moving target. It has led to code that worked on one day, not working the
very next day due to a change in the browsers code.

As an example, we initially used the PeerConnection API in Google Chrome,
but this was deprecated and is now known as DeprecatedPeerConnection1,
which is again expected to change (or be dropped) as soon as JSEP is im-
plemented in the browser.

1http://www.webrtc.org/blog/peerconnectionisnowdeprecatedpeerconnection

http://www.webrtc.org/blog/peerconnectionisnowdeprecatedpeerconnection

Chapter 5

Design

In this chapter, we discuss the design of the P2P VOD system that we at-
tempt to implement. We make use of the HTML5 technologies discussed in
the previous chapters, along with the knowledge gained from analysis of ex-
isting systems, to design a P2P VOD system within the browser that works
with the WebRTC API. As this implementation is part of our thesis work
with the goal of understanding the new HTML5 APIs and determining feasi-
bility of a browser based solution, we focus on creating a robust application,
that is quick and responsive with a minimum amount of processing overhead.

The design of our P2P VOD system can be divided into two distinct sec-
tions, namely the process of publishing videos and the process of their de-
livery or consumption. Since the features of HTML5 used are at various
stages of implementation, we implement each of these sections individually
and then evaluate the related aspects of the same. We found the most ad-
vanced HTML5 user agent (i.e. Web browser) to be provided by a company
named Google, and have used its Web browser named ‘Chrome’ as the testing
platform for our HTML5 implementations. We briefly introduce this Web
browser in the section describing the implementation.

5.1 Network architecture

The three major entities involved in the design of our P2P VOD network are,

1. The Tracker

2. The Seeder (HTTP Server)

3. The Peers

39

CHAPTER 5. DESIGN 40

Figure 5.1: Network Architecture of our P2P VOD service

The Figure 5.1 shows the communication between these entities.

The Tracker is a server deployed on the cloud similar in functionality to a
BitTorrent Tracker and keeps track of all the peers and their video content.
It is used to store the video information i.e. the meta-data of each video file.
These attributes are stored and delivered in the JSON format. The tracker
supports bi-directional communication with each browser that is connected
to it, and hence is also used as a signaling gateway to enable P2P communi-
cation between browsers.

The Seeder is a server, which stores all the videos provided by the VOD
service. It is used to minimize start-up latency of playing videos by the client
Web browsers (while P2P connections are being established), and also serves
as a fallback mechanism to serve in video delivery. It is named the Seeder,
and performs a role similar to an always available Seeder in the BitTorrent
network. It would always be available to clients over the Internet i.e. on the

CHAPTER 5. DESIGN 41

cloud.

The Peers are the client Web browsers that playback the video. They
load and execute the web application that facilitates the P2P VOD stream-
ing. Each browser instance is considered a distinct peer, this means that two
browsers running on the same device would also be considered as individual
peers, as their file systems are not accessible to each other. Introducing a
user authentication module to store user information on the cloud is beyond
the scope of this implementation.

Having looked at the overview of out network, we move on to describe a
more detailed design of the above mentioned entities in the context of the
video publishing and consumption processes.

5.2 Video publishing

The video publishing process begins with a user starting the web application
(i.e. browsing to a web page that contains our video publishing code) and se-
lecting a video that they would like to share from a secondary storage device,
such as their hard disk. We use a HTML input element to allow this selec-
tion, although this could be made more user-friendly with JavaScript code
to allow drag-and-drop functionality, we have not implemented it as such in
the interest of keeping our application simple and easy to understand.

Once a video file is selected, the web application has to process it for P2P
consumption. This involves generating the meta-data of the video file for the
tracker and moving the file to a location accessible to the web application
i.e. the Web browser storage space. Below is the algorithm used to generate
the meta-data of the video file,

CHAPTER 5. DESIGN 42

Algorithm 1 Video file meta-data generation

Require: videoF ile
numPieces := 0
fileSize := getF ileSize(videoF ile)
remainingBytes := fileSize
while remainingBytes > 0 do

if remainingBytes > 64kB then
pieceSize← 64kB

else
pieceSize← remainingBytes

end if
pieceF ile = videoF ile.read(videoF ile.seek(numPieces ∗

64kB), pieceSize)
mic← computeMIC(pieceF ile)
micArray.push(mic)
numPieces← noPieces + 1
remainingBytes← remainingBytes− pieceSize

end while
fileName← computeMIC(micArray)
attributes.file mic array = micArray
attributes.fileName = fileName
attributes.fileMimeType = videoF ile.codec
attributes.fileDuration = videoF ile.duration
attributes.fileSize = fileSize

As seen in the algorithm we use a piece size of 64 kB. This choice of size
is based on two factors, the first being that it is an optimal file size to share
pieces across a P2P overlay and the second is that the ‘Message Integrity
Code’ (MIC) determination can complete in a reasonable amount of time
for a file of size 64kB. It is important to ensure that the total time taken
to determine the MIC for the pieces is minimum, as this is computationally
intensive. The MIC serves a purpose similar to the hash of pieces in a Bit-
Torrent file distribution. The file name by which the file is referred to in
our P2P solution is the MIC of all the piece’s MIC’s. This ensures a unique
file name across all the nodes in the P2P network, as long as the hashing
algorithm used to determine the MIC is collision resistant.

CHAPTER 5. DESIGN 43

5.2.1 Browser storage

The HTML5 File API plays a important part in the publishing process as
it used for storage and distribution of the video file. The video publishing
process requires storage space in the browser’s file system to store the video
file, as this is the only place from where the web application will be able
to access it. Also the publishing device is a potential peer source for the
same video. As mentioned in chapter 3, the HTML5 File API provides two
types of filesystem storage, namely temporary and persistent. In temporary
storage the files stored may be removed at the browser’s discretion, but in
persistent storage they are removed only when explicitly requested. Writing
to the browser’s persistent storage, requires consent from the user.

Initially the video file is written to the browser’s temporary storage and pro-
cessing is carried out from there, this is to avoid any conflict with existing
videos files in the application’s storage space (which is in the browser’s per-
sistent storage). It is not a problem if it overwrites another file with the same
name in the temporary storage area. Once processing is completed and the
video file meta-data is generated, the video file is ready for sharing. At this
point the video file is written to the browser’s persistent storage area and the
meta-data is stored as a JSON object by the browser using the IndexedDB
API. The use of the IndexedDB API allows faster querying/retrieval of the
video information. The video is now available to our P2P web application
for any further processing, without being affected by external factors, such
as deletion or modification of the video file in the secondary storage device.

To make the video available to others the user chooses the publish option,
at which point the computed meta-data is forwarded to the Tracker and the
video file is uploaded to the ‘Seeder’.

5.3 Video consumption

We now look at the design of the delivery or consumption system of the
video files that are shared with our P2P solution. The main network entities
involved in this are the ‘Tracker’ and the ‘Seeder’. As mentioned previously
the Tracker functions in a manner similar to a BitTorrent tracker, it is a Web
server that contains the list of user published videos and the meta-data of
those videos.

When a user launches our web application i.e. visits the Tracker (which is

CHAPTER 5. DESIGN 44

a Web server) and requests a video, the meta-data of the video file is down-
loaded to the user’s browser along with a list of peers who currently have the
video available (which would initially be ‘Seeder’ and the publisher). The
web application then attempts to connect to each of the peers and start
downloading the pieces of the video file from them. The MIC from the meta-
data is used to verify each piece of the video file as it is downloaded. Once
the entire video download is completed the meta-data (in JSON format) is
saved in the web browser’s database (IndexedDB) and the Tracker adds the
details of the new peer to the list of available peers for that video. The video
can now be played by the user’s browser using the HTML5 <video> element.

All video files are first downloaded to the browser’s temporary storage space,
the reason we do not use the persistent storage space for this is because each
time a video has to be stored by the application the user would be asked for
permission. The user will be provided with an option for each viewed video
to be available offline. If the user chooses to make it available offline then
the video file would be transferred from the temporary to the persistent file
storage. HTML5 also introduces the ‘Offline Application Caching’ API[54],
which can be used to load and execute a copy of the HTML5 JavaScript
code stored on the client, even when the web browser is not connected to the
Internet. This would allow viewing of the videos that were made available
offline by the user even when they are not connected to the Internet.

5.4 Media playback

Media Playback within the web browser is taken care of by the HTML5
<video> element, which can be used to render content from the browsers file
system. As mentioned in the earlier chapter on HTML5, the video codecs and
containers are currently not standardized, which means that each browser
vendor can support a different set of video formats. This introduces two
major problems for a P2P based VOD service, the first being, that a portion
of the videos shared on the network, might not be possible to be rendered
by certain user agents. Secondly, having different formats of the same video
divides the peers based on all the available formats. For example if a video
is uploaded in 2 different formats, the peers sharing videos in one format will
not be able to share the video with web browsers that require it in the other
available format.

We suggest converting all video files that are intended to be published to
the most commonly available video format supported by leading browser

CHAPTER 5. DESIGN 45

vendors. This can also be done within the web application, since it would
directly affect the video information details, and it also offloads the computa-
tion which would otherwise have be carried out on a central server. However
this is beyond the scope of this thesis.

5.5 Peer-to-Peer communication

We introduced Browser-to-browser communication in chapter 4 on WebRTC.
As mentioned previously, the HTML5 WebRTC API is fairly new and is still
in the very early stages of implementation within leading browsers. The We-
bRTC Data API (of the WebRTC family of APIs) is what we require for our
VOD P2P implementation, but as this API was only recently drafted, it has
still not been implemented by any browser vendor as yet.

The WebRTC working group had initially focused on a single use case with
the WebRTC API, which was video calls, for this reason the APIs related
to this use case such as the WebRTC Stream API are fairly mature and
have undergone several draft iterations. Some of these drafts have also been
implemented for the sake of experimentation. In the WebRTC chapter, we
also described how browsers can communicate with each other using the
‘RTCWeb Offer/Answer Protocol’ (ROAP). In the case of our P2P VOD so-
lution, each browser would have to communicate with one or more browsers
to get a single video file. This would mean that a browser would have to
keep several peer connections open at the same time.

In the absence of the WebRTC Data API, to evaluate the browsers per-
formance with several simultaneous peer connections open, we designed and
implemented a P2P based video conferencing service using the WebRTC
Stream API. This offers a close parallel to our use case and was the only way
we could evaluate the browsers performance with multiple simultaneous peer
connections.

As the Tracker has the list of currently active peers and supports bi-directional
communication with each browser, we use it to setup the data sessions be-
tween the browsers by exchanging the Session Description details to create
the peer connections between them.

The tracker has a unique connection ID to identify each web browser’s con-
nection to it. It has been implemented to receive three type of messages from
web browsers that are connected to it, they are

CHAPTER 5. DESIGN 46

1. CREATE ROOM REQUEST: The tracker generates a ROOM ID
and responds to the web browser that sent this request.

2. JOIN ROOM REQUEST: The tracker adds the web browser’s CON-
NECTION ID to the ROOM mentioned in the request, and responds
with the list of remaining web browser CONNECTION ID(s) which are
present in the room.

3. B TO T: (Browser To Tracker)This is the P2P Signalling Message sent
from one web browser to another, the tracker redirects the message to
the specified destination web browser.

The web application has been implemented to receive the following messages
from the tracker,

1. CREATE ROOM RESPONSE: The web browser receives the ROOM
ID and can share it with other web browsers that would like to join the
video conference. This sharing is done manually.

2. JOIN ROOM RESPONSE: On receiving the list of web browsers in
the room, the web browser creates a Peer Connection for each browser
and starts sending P2P Signalling Messages to each of them via the
tracker, in the form of B TO T described above.

3. T TO B: (Tracker To Browser) The web browser is expected to process
these signalling messages sent by other web browsers via the tracker.

The Figure 5.2 shows the sequence of steps followed by three browsers in
connecting to a conference hosted with our P2P based video conferencing
service, It is important to note that a browser that intends to join a room,
initiates the connections to all existing browsers in the room rather than the
other way around. This is to avoid flooding the newly connected browser
with connect requests, which it may not be able handle simultaneously.

Having seen the design of the various modules of our HTML5 P2P solu-
tion, in the next chapter we discuss the implementation and evaluation of
each of these modules.

CHAPTER 5. DESIGN 47

Figure 5.2: Message Sequence for Video Conferencing (Channel Mixing)

Chapter 6

Implementation & Evaluation

We now describe the implementation of our HTML5 P2P VOD streaming
web application, based on the design discussed in the previous chapter. Our
web application is written in JavaScript using the HTML5 APIs discussed
in the earlier chapters. We also evaluate the performance of some of these
modules that are implemented, and analyze the results. We also discuss some
of the security concerns related to these modules.

Implementing a web application using HTML5 today is quite challenging,
this has not so much to do with the technology itself but more to do with
the fact that the HTML5 features, such as the WebRTC standard are not
yet finalized. As we have seen, the HTML5 specification is still an evolving
standard, and each of its feature and their associated APIs evolve indepen-
dently. Since most of these features are still ‘work in progress’ drafts, the
available Web browser implementations of these features are experimental.
This means that our application’s implementation is built on a constantly
changing software layer, and this would be the case until all the individual fea-
tures have a finalized specification and are implemented by all Web browsers.

Although HTML5 aims to bring about platform standardization for Web
browsers, this is dependent on the fact that all Web browser vendors imple-
ment the feature specifications, this will however take a few more years, given
the fact that most of the specifications are still being drafted and discussed
by the individual working groups.

48

CHAPTER 6. IMPLEMENTATION & EVALUATION 49

6.1 Development environment

Our choice of ‘Development Environment’ was the ‘Visual Studio’1 Integrated
Development Environment (IDE) from Microsoft, as it eases the overall de-
velopment process and also has a really good IntelliSense2 implementation
for JavaScript.

The Web browser we chose for the testing and evaluation of our HTML5
P2P VOD application, is from the browser vendor Google. Their user agent
implementation was found to have the highest number of HTML5 features
implemented at the inception of our thesis work. Google offers a public ver-
sion of their browser implementation called “Chrome”3. Google also offers a
‘Developer Preview’ version of their user agent called “Canary”4 and a third
(and final) open-source version called “Chromium”5. We make use of all
three versions, in the implementation and evaluation of each of the modules
of our HTML5 P2P application.

6.2 Video publishing

We first describe the JavaScript implementation of the content publishing
module’s design. The data structure used to store the video information is
shown in listing 1.

1http://www.microsoft.com/visualstudio/
2http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.71).aspx
3http://www.google.com/chrome/
4https://tools.google.com/dlpage/chromesxs/
5http://www.chromium.org/Home

http://www.microsoft.com/visualstudio/
http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.71).aspx
http://www.google.com/chrome/
https://tools.google.com/dlpage/chromesxs/
http://www.chromium.org/Home

CHAPTER 6. IMPLEMENTATION & EVALUATION 50

1 var movie_object = {

2 "file_mic_array" : [],

3 "slices": 0,

4 "fileSize": 0,

5 "fileName": "",

6 "fileMimeType": "",

7 "fileDuration": 0,

8 "fileID": ""

9 }

Listing 1: Video file meta-data

Here the file mic array is an array to store the hash of each piece of
the file. slices stores the number of pieces of the video file, this also in-
cludes the last piece which may be 64 kB or less. The remaining attributes
are self explanatory. In order to slice the file, the HTML5 File API provides
a slice() method that takes the start and end byte values as parameters.
Since this API is not yet finalized, it is known by different names depend-
ing on the Web browser being used, for example it is currently known as
webkitSlice() in Google’s web browser implementations and mozSlice()

in Mozilla FireFox, another Web browser implementation.

After slicing the file we have to calculate the Message Integrity Code (MIC)
of each piece. Unfortunately HTML5 doesn’t specify any JavaScript API
for performing these computationally intensive task, which means that the
browser doesn’t perform these tasks natively. For this reason make use of
the new HTML ‘WebWorkers’ API to spawn threads to calculate the MIC
for each piece. We use the third-party JavaScript library ‘WebToolKit MD5’
to perform the MD5 calculation.

In order to communicate with threads the ‘WebWorkers’ API provides a
message passing functionality, we use this to pass a JSON object containing
the piece number and its content. On completion of each thread (i.e. com-
putation of the MIC for a piece) the worker updates the file mic array

with the computed MIC. After the MIC of every piece is computed, we com-
pute the MIC of all the MIC’s in the file mic array and rename the file
with this resulting MIC. This name is used to uniquely identify the video
file on the P2P network. A reference to this file is then added to the Web

CHAPTER 6. IMPLEMENTATION & EVALUATION 51

browser’s database using the IndexedDB API. Adding the video information
(meta-data) to the Web browser’s database using the IndexedDB API is easy
since it stores them in the form of JSON objects, so the movie object data
structure can be saved.

The code listing 2 shows the implementation of the WebWorkers thread that
is spawned to compute the MIC.

1 var worker = new Worker(’../scripts/md5/md5_check.js’);

2 var input = {

3 ’slice’: piece_pos,

4 ’plain_text’: evt.target.result

5 };

6 worker.postMessage(input);

7 worker.addEventListener(’message’, function (e) {

8 movie_object.file_md5_array[e.data.slice] = e.data.md5;

9 if (md5_complete_counter === movie_object.slices) {

10 renameFileAndAddToDb();

11 }

12 }, false);

Listing 2: Invoking WebWorker md5 check.js

CHAPTER 6. IMPLEMENTATION & EVALUATION 52

1 importScripts(’../md5/webtoolkit.md5.js’);

2

3 self.addEventListener(’message’, function(e) {

4 var input = e.data;

5 var md5 = MD5(input.plain_text, input.plain_text.length);

6 var output = {

7 ’slice’: input.slice,

8 ’md5’:md5

9 }

10 self.postMessage(output);

11 close();

12 }, false);

Listing 3: md5 check.js: MIC calculation of a piece

The code in listing 3, shows the MD5 (i.e. MIC) calculation for a piece
of the video file (it returns a JSON object with the MIC and piece number,
using message passing with the WebWorkers thread API). MD5() is a method
from the third-party JavaScript ‘WebToolKit MD5’ library that we use for
this computation.

These code snippets give an overview of how the module is implemented,
the complete code can be found in appendix A.1 for a better understanding
of the implementation.

6.3 Video consumption

We now look at the implementation of the video consumption i.e. the down-
loading and viewing of a video from within the browser. We have used
multiple servers that host the same video file, since the Data API of We-
bRTC has not been implemented by any currently available web browser.
First the video information object is downloaded from the tracker, and then
the tracker provides a list of servers instead of peers that have the video
file. The web browser then starts picking pieces of the file from the list of
servers, in a round robin style, and in case any of the downloaded pieces do
not match their respective MIC, the web browser attempts to download it
from another server from the list. This implementation doesn’t help from the

CHAPTER 6. IMPLEMENTATION & EVALUATION 53

P2P perspective, but it helps understand how the web browser can handle
the video file locally, in order to get a proper play back using the HTML5
video tag.

In this implementation it is important to note that although VOD streaming
requires the pieces in sequence, JavaScript can only be used to request for
each piece in sequence the call back mechanism doesn’t guarantee that the re-
quests are processed in a FIFO style, this brings in a challenge of assembling
the file within the web browsers file system because it would be impossible
to append a piece, unless all the pieces before it are first assembled. To
overcome this problem, we first create a file with meaningless data, for the
complete size of the original video file, it is then easy to seek the location
of a piece after it has been verified and overwrite the dummy data with the
valid piece data. It is important to monitor the download completion status
of each piece, as VOD requires the initial few pieces of the video to have
the valid video content. Similar to video publishing we use the WebWorkers
API for performing the MIC verification and IndexedDB API to keep track
of downloaded videos.

We let the video tag, play the video file from the browser’s file system, only
after a reasonable number of the initial pieces are downloaded and verified,
to ensure that the video playback has a high probability of playing without
interruption which is an important UX for VOD services. This reasonable
number of pieces is dependent on the time required to download the com-
plete video file. The time can only be predicted and not precise, as certain
factors are dependent on external computing resources over the network. For
our initial implementation we have taken the following into account, the lat-
est known download bandwidth of the client(B), the size of a file piece(s),
the total video file size(S) and video duration(d) which forms the video bit
rate, we then calculate the approximate number of pieces that are need to
be downloaded (N) with the following formula,

N = ((S/B)− d)B)/s (6.1)

It is important to note that the first N pieces have to be downloaded, and
not just N number of pieces, this is why we need to monitor the status of
each piece in real time. The algorithm used to predict the time for download
completion would differ in the case of a P2P network, as in that case, factors
such as the number of peers sharing the video file is an important factor to
determine the the time required to download the file.

CHAPTER 6. IMPLEMENTATION & EVALUATION 54

Having looked at the basic implementation of video publishing and consump-
tion, we now perform some measurements on these implementations and try
to analyze the results.

6.4 Peer-to-Peer communication

As mentioned in chapter 5.5, the HTML5 ‘WebRTC Data’ API which is re-
quired for the actual P2P data transfer of files, is not implemented by any
Web browser vendor as yet. Hence to evaluate Browser-to-browser communi-
cation we implemented a video conferencing application, using the WebRTC
Stream API (which is implemented in Google Chrome). We use two HTML5
APIs, the WebSocket API and the WebRTC API. The bi-directional com-
munication between the Tracker and the browsers is implemented using the
WebSocket API, and the communication between web browsers is imple-
mented to be P2P using the WebRTC API.

As explained earlier in the design the current implementations within the
browser are based on ROAP, but in order to implement a video conferencing
application, the signaling server which in our case is the tracker has to en-
sure that the web browsers exchange Session Description Protocol messages
correctly, this process is know as mixing i.e. multi-channel support. We have
used ‘node.js’ to implement the server side signaling that uses a WebSocket
JavaScript implementation. The messages that are passed between the sig-
naling server and Web browser are JSON objects, which does not require
any special formatting as both the server and client are implemented using
JavaScript.

The Tracker generates a unique connection ID to identify each web browser’s
connection to it. Its implementation allows it to receive and handle the three
types of messages (CREATE ROOM REQUEST, JOIN ROOM REQUEST
and B TO T) from web browsers that connect to it. In the case of our VOD
application the Tracker would have to pool web browsers based on video files
being shared, just like it is now pooling them based on rooms.

CHAPTER 6. IMPLEMENTATION & EVALUATION 55

6.5 Evaluation

6.5.1 Integrity check module

In this section we measure the JavaScript implementation of MD5 hashing,
that is used extensively for piece verification in our VOD design. We compare
it to a native implementation and measure the difference in time taken by
each of these solutions.

File Size JavaScript Native
15 MB 7 seconds 0.3 seconds
30 MB 26 seconds 1.3 seconds

Table 6.1: MD5 computation time in JavaScript vs Native implementation

As can be surmised from the above, the native implementation of the MD5
hashing algorithm performs much faster than its JavaScript counterpart. In
chapter 7 we propose an addition to HTML5 that could help address this
computationally intensive task.

6.5.2 File storage limitations

Although the HTML5 specification does not limit the size of the file that can
be handled within the web browser’s file system. In our implementation we
identified that the web browser crashes unpredictably as the file size increases.
This means that we cannot precisely measure the file storage limitations. We
have been able to process video files for upto 60 MB after which the browsers
behavior becomes unpredictable (In times we have beeen able to process files
of larger sizes). One way of working around this would be to redesign the
processing of the file as smaller chunks. As these APIs are not in the stable
release of the browser we have reported a bug6 to the browser vendor for
further investigations, to better understand a solution.

6.5.3 Multiple peer connections evaluation

In this section we evaluate the WebRTC Stream API, using the implemen-
tation of video conferencing application. Since video conferencing enables
continuous video streams to be exchanged between browsers, they would
generate significant network traffic and CPU utilization. We measure these
values for various scenarios, on three different devices.

6Issue 94589 of the Google Chromium Browser, URLhttp://crbug.com

CHAPTER 6. IMPLEMENTATION & EVALUATION 56

Since all these video streams are continuous, we can assume that they utilize
the maximum network capacity of each Peer Connection object.

Scenario 1: We first measure the rise in CPU utilization and network traf-
fic, when the browser on the device starts video conferencing with another
browser. This means that each browser would have two connections open
per peer, one for the incoming video stream and another for the outgoing
video stream.

M1 : PC running the Windows 8 operating system.
M2 : Mac operating system.
M3 : Laptop with Windows 7 operating system.

Device Increase in CPU utilization Increase in network traffic
M1 9% 4.1 Mbps
M2 9.19% Not Available
M3 15% 5 Mbps

Table 6.2: Measurements of resource utilization in Scenario 1

Scenario 2: In this scenario we similarly measure the device perfor-
mance from switching from the previous scenario to accommodate another
web browser. This would mean that each browser would have four peer con-
nections i.e. two incoming video streams and two outgoing video streams.

Device Increase in CPU utilization Increase in network traffic
M1 35% 2.2 Mbps
M2 4% Not Available
M3 22% 3.4 Mbps

Table 6.3: Measurements of resource utilization in Scenario 2

Figure 6.1 shows the CPU utilization of Scenario 2 on the left and Sce-
nario 1 on the right, for the device M1.

The results clearly indicate that each peer connection incurs significant CPU
utilization when used for continuous streaming. This is a concern for the
use case of P2P Video Conferencing, as the application would require several
simultaneously open peer connections. In the case of P2P VOD streaming
we would need to ensure that the CPU utilization of the WebRTC Data API
would be reasonably close to its client/server counterpart.

CHAPTER 6. IMPLEMENTATION & EVALUATION 57

Figure 6.1: M1: Scenario 2 and Scenario 1, CPU utilization

Chapter 7

Discussions

In this chapter we discuss a few topics in relation to our implementation
experience and results.

7.1 Homogeneous & heterogeneous P2P

The design and implementation of our proposed VOD system would be able
to share video content over a homogeneous P2P network, since web browsers
would be able to communicate with only other web browser running the same
HTML5 and JavaScript code. In other words, they cannot share content
with existing P2P networks such as BitTorrent and vice versa. A heteroge-
neous implementation would naturally be desirable to gain access to the huge
archives of video content that is already available on well established P2P
networks, such as implementing a BitTorrent client with JavaScript that runs
within the web browser, but since P2P has only recently been introduced to
web browsers, we found it easier to aim for a homogeneous design and im-
plementation.

In this section we discuss the reasons a heterogeneous P2P implementation is
not yet quite possible. We have already talked about HTML5 and JavaScript
bringing platform in-dependency to applications, as they can be developed
once and then work on any modern web browser that conforms to the stan-
dards. This makes the web browser move into the direction of being a virtual
machine. The role of the HTML5 specifications of the various features, limits
the capability of such a platform, for good reasons such as steady browser
inter-operability and security concerns. Let us take an example of a Bit-
Torrent implementation within the browser. In order to implement such a
HTML5 client, the protocol would have to be first be implemented within

58

CHAPTER 7. DISCUSSIONS 59

the web browser before which a working group would have to create a spec-
ification of the protocol, specific to the web browser. Only after this would
a JavaScript API to this interface allow it to be possible to implement an
application that uses the BitTorrent client. It should clearly be noted that
this is not a limitation of the JavaScript language, as this language could
still be used to implement a BitTorrent client to work on ‘node.js’, which is
server side JavaScript environment.

An alternate way of getting access to the video content would be to have
a heterogeneous P2P client running on the always on ‘Seeder’ of our existing
design, this would help provide access to the huge archives of video content,
but not the benefits of P2P to the web browser.

7.2 Mobile platforms

Mobile platforms have gained huge popularity with the advent of ‘smart-
phones’, tablets and laptops. These devices come in various hardware de-
nominations and software platforms. They are a testimony to Moore’s law on
the computer hardware, written in 1965 ’whereby the number of transistors
that can be placed inexpensively on an integrated circuit doubles approxi-
mately every two years’[31].

Several multinational companies such as Microsoft, Apple, Google are com-
peting to build more of these powerful mobile hardware and software plat-
forms for the general public. This is leading to a huge network of heteroge-
neous mobile devices in the market. Although these mobile platforms are of
different operating systems, one thing in common they all have is the ‘Web
browser’. This makes applications built using HTML5 and JavaScript ap-
plications and ideal choice for these platforms. Eventually when HTML5
is standardized and all these Web browsers conform to it, web applications
would work on all of these platforms.

One of our initial goals was to build a VOD P2P service for mobile de-
vices such as smartphones, but after more research building it with HTML5
appeared to be a better choice, as the service would eventually work on the
smartphones and mobile platforms too. We have also managed to tested
parts of our implementation on Microsoft’s ‘Windows 8’ tablet operating
system that can run Google’s Chrome Web browser.

CHAPTER 7. DISCUSSIONS 60

7.3 Security concerns

Another important aspect of HTML5 is security, as Web browsers are a con-
stant target for attackers who are always attempting to benefit from every
single vulnerability of the Web browser. Security is a main concern for the
W3C working groups as well. The HTML5 community is very responsive on
this front and would like to ensure that security concerns are not left entirely
to the web browser vendors. Also, HTML5 applications have more restricted
access to system resources than with Flash. We look at few of the major se-
curity concerns related to the HTML5 APIs that we used in our application.

With the advent of the networking APIs in HTML5 such as WebSockets
and WebRTC, one possible attack is the cross protocol attack. ’These are
attacks in which the attacking script generates traffic which is acceptable to
some non-Web protocol state machine.’cite For example If a user has access
to an Simple Mail Transfer Protocol(SMTP)[22, 23] server to send emails.
An attacker could gain access to this restricted service by hosting a web
page with JavaScript code to communicate with the SMTP server and send
an email. When legitimate user of the SMTP server opens this web page
on a web browser, the script could perform the attack. A more detailed il-
lustration of this attack has been described in the paper ‘The HTML Form
Protocol Attack’[52]. ’In order to resist this form of attack, WebSockets in-
corporates a masking technique intended to randomize the bits on the wire,
thus making it more difficult to generate traffic which resembles a given pro-
tocol.’ This security concern is also applicable to the WebRTC Data API,
which is still in its early stages of being drafted[39].

Another attack is the Cross Directory Attack, in this attack web applications
gain access to the sandboxed HTML5 file system of another web application.
Web browsers are built to create a sandboxed file system for each web do-
main. This means that a JavaScript application hosted on www.abc.com
cannot access the filesystem of another application hosted on www.xyz.com.
There are two simple ways this security mechanism can be compromised, one
method would be to spoof the Domain Name Service (DNS) of a website, this
way the browser would give the attacker’s application access to the victim’s
file system. Another way is not really an attack, but rather an interesting
loop hole in the security mechanism. If both the attacker and victim have
web applications hosted on the same domain. For example, on a free web
hosting service, such as ‘DropBox’1 (which allows users to host pages of their

1www.dropbox.com

www.dropbox.com

CHAPTER 7. DISCUSSIONS 61

own in public folders), since the domain for the applications is the same (i.e.
DropBox in this case), they would share a common file system on a client’s
web browser.

7.4 Security API proposal

HTML5 is the first step forward, to building powerful web applications to
match native implementations. As we have clearly understood HTML5 is
collection of many individual features. In the previous chapter we compared
the performance of a MIC algorithm, implemented in JavaScript to a native
implementation , the results clearly indicate that the native implementation
performs much faster for this CPU intensive piece of code. The question now
arises as to how we could achieve the same level of speed and efficiency in a
web application.

Most (if not all) modern Web browsers, contain implementations of the vari-
ous security algorithms that provide functionality such as hashing, encryption
and decryption. These libraries are present within the we browser in order to
support protocols such as HTTPS, certificate verification in the ‘Public Key
Infrastructure’ (PKI) etc. However they are not accessible to web developers
for use in their applications via JavaScript. We would like to propose that
these APIs be made available to web developers, along with a standard set of
security algorithms to avoid having to implement these security algorithms
in JavaScript. This would be an great addition to the features that will be
made available with the HTML5 APIs.

Chapter 8

Conclusion

We investigated the use case of a VOD service over a P2P network topology
within the web browser, using only HTML5 which comes along with libraries
of individual features as JavaScript APIs. The design required a clear un-
derstanding of the WebWorkers, WebSockets and WebRTC APIs. We then
designed, implemented and evaluated the modules and used this informa-
tion to investigate alternatives to improve the performance of modules that
required processor intensive tasks. We then looked into the new feature of
Broswer-to-browser communication using the WebRTC API. The WebRTC
API introduces UDP based communication within the web browser.

As the specific API (WebRTC Data API) within the WebRTC is in the
early stages of being drafted and not yet implemented (even experimentally)
by any of the Web browser vendors to date, we used an alternate use case
(video conferencing application) to design and evaluate the simultaneous peer
connections within the web browser.

Unlike native applications, currently building a HTML5 based solution is
quite challenging, given the ongoing standardization process with changing
specifications and experimental browser implementations. This thesis has
focused on the feasibility of implementing a P2P based media streaming so-
lution native to the browser using the available HTML5 APIs. We attempt
to aid the community behind the standardization i.e. the working groups, by
implementing and analyzing each module using only HTML5 related tech-
nologies. We realize that building a complete browser based solution of a P2P
VOD solution requires some more time, as the working groups and browser
vendors work on designing and implementing the HTML5 standard. We also
discuss of the HTML5 specific issues in browser-to-browser media streaming.

62

CHAPTER 8. CONCLUSION 63

8.1 Future work

It is quite evident, that building a P2P based VOD service using only the
HTML5 standard has a longer roadmap, as it involves several stake holders,
which includes working groups and web browser vendors. In order for one
to proceed further in implementing a complete working solution, it would
be important to join the related working groups, and help shape the future
of the Internet usage by participating in the discussions that help draft the
specifications. These discussions are officially done through mailing groups
that are publicly archived.

JavaScript was initially designed as a client-side language that would appeal
to non-professional programmers, this has led to a huge group of program-
mers, who would find the new HTML5 JavaScript capabilities quite hard to
understand and use the right way. For this reason the more talented group
of programmers create open source third party JavaScript libraries, that ab-
stracts the core implementation and gives an easy to use interface for the
application developer. The HTML5 APIs such as the IndexedDB API and
WebRTC API provide a good case for building such libraries, so that they
can be used by application developers easily. For example, in the WebRTC
API it would be possible to expose it as a third party JavaScript library,
where the application developer does not need to get into the complexities
of NAT traversal.

Efficient algorithms for the tracker have to be designed specific to the HTML5
P2P VOD service. This work does not end by implementing a P2P based
solution for media streaming, measuring and analyzing the performance is
important to see how it would work on all the various platforms. The partic-
ipation of mobile platforms would be an interesting research area, once there
are stable HTML5 supported Web browsers for these platforms.

Bibliography

[1] Web Real-Time Communications Working Group Charter. http://www.
w3.org/2011/04/webrtc-charter.html.

[2] YouTube looks for the money clip. http://tech.fortune.cnn.com/2008/
03/25/youtube-looks-for-the-money-clip, March 2008.

[3] Alvestrand, H. T. Overview: Real Time Protocols for
Brower-based Applications - IETF, June 2012. Work in progress.
Expires December, 2012 http://datatracker.ietf.org/doc/

draft-ietf-rtcweb-overview/.

[4] Bakker, A., Petrocco, R., Dale, M., J., G., V., G., D.,
R., and J., P. Online video using bittorrent and html5 applied to
wikipedia. In Peer-to-Peer Computing (P2P), 2010 IEEE Tenth Inter-
national Conference on (aug. 2010), pp. 1 –2.

[5] Bergkvist, A., Burnett, D. C., Jennings, C., and Narayanan,
A. WebRTC 1.0: Real-Time communication Between Browsers, Febru-
ary 2012. Work in progress. http://www.w3.org/TR/webrtc/.

[6] Berners-Lee, T. WorldWideWeb, the first Web client. http://www.
w3.org/People/Berners-Lee/WorldWideWeb.html.

[7] Berners-Lee, T., and Fischetti, M. Weaving the Web. Harper-
Collins, 2000, p. 23.

[8] Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A.,
Rowstron, A., and Singh, A. Splitstream: High-bandwidth content
distribution in cooperative environments. In Proceedings of IPTPS03
(Feb 2003).

[9] CISCO Visual Networking Index. Entering the Zettabyte Era.
Tech. rep., CISCO, June 2011.

64

http://www.w3.org/2011/04/webrtc-charter.html
http://www.w3.org/2011/04/webrtc-charter.html
http://tech.fortune.cnn.com/2008/03/25/youtube-looks-for-the-money-clip
http://tech.fortune.cnn.com/2008/03/25/youtube-looks-for-the-money-clip
http://datatracker.ietf.org/doc/draft-ietf-rtcweb-overview/
http://datatracker.ietf.org/doc/draft-ietf-rtcweb-overview/
http://www.w3.org/TR/webrtc/
http://www.w3.org/People/Berners-Lee/WorldWideWeb.html
http://www.w3.org/People/Berners-Lee/WorldWideWeb.html

BIBLIOGRAPHY 65

[10] Cohen, B. Incentives build robustness in bittorrent. In Workshop on
Economics of Peer-to-Peer systems (2003), vol. 6, pp. 68–72.

[11] Cohen, B. The BitTorrent Protocol Specification, Version 11031. http:
//www.bittorrent.org/beps/bep_0003.html, Jan. 2008.

[12] Crockford, D. The application/json Media Type for JavaScript Ob-
ject Notation (JSON). RFC 4627 (Informational), July 2006.

[13] Fette, I., and Melnikov, A. The WebSocket Protocol. RFC 6455
(Proposed Standard), Dec. 2011.

[14] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and Berners-Lee, T. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616 (Draft Standard), June 1999. Updated by RFCs
2817, 5785, 6266, 6585.

[15] Handley, M., and Jacobson, V. SDP: Session Description Protocol.
RFC 2327 (Proposed Standard), Apr. 1998. Obsoleted by RFC 4566,
updated by RFC 3266.

[16] Hégaret, P. L., Hors, A. L., and Stenback, J. Docu-
ment Object Model (DOM) Level 2 HTML Specification. W3C
recommendation, W3C, Jan. 2003. http://www.w3.org/TR/2003/

REC-DOM-Level-2-HTML-20030109.

[17] Hickson, I. The WebSocket API- W3C Working Draft, May 2012.
Work in progress. http://www.w3.org/TR/websockets/.

[18] Hickson, I. Web Workers - W3C Candidate Recommendation, May
2012. Work in progress. http://www.w3.org/TR/workers/.

[19] Jacobs, I., Raggett, D., and Hors, A. L. HTML 4.01 Specifica-
tion. W3C recommendation, W3C, Dec. 1999. http://www.w3.org/TR/

1999/REC-html401-19991224.

[20] Jennings, C., Rosenberg, J., Uberti, J., and Jesup, R.
RTCWeb Offer/Answer Protocol (ROAP) - IETF, October 2011.
Work in progress. Expires May, 2012 http://tools.ietf.org/html/

draft-jennings-rtcweb-signaling-01.

[21] Jesup, R., Loreto, S., and Tuexen, M. RTCWeb Datagram
Connection, March 2012. Work in progress. Expires September, 2012
http://tools.ietf.org/html/draft-ietf-rtcweb-data-channel-00.

http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/workers/
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://tools.ietf.org/html/draft-jennings-rtcweb-signaling-01
http://tools.ietf.org/html/draft-jennings-rtcweb-signaling-01
http://tools.ietf.org/html/draft-ietf-rtcweb-data-channel-00

BIBLIOGRAPHY 66

[22] Klensin, J. Simple Mail Transfer Protocol. RFC 2821 (Proposed
Standard), Apr. 2001. Obsoleted by RFC 5321, updated by RFC 5336.

[23] Klensin, J. Simple Mail Transfer Protocol. RFC 5321 (Draft Stan-
dard), Oct. 2008.

[24] Kreitz, G., and Niemela, F. Spotify – large scale, low latency, p2p
music-on-demand streaming. In Peer-to-Peer Computing (P2P), 2010
IEEE Tenth International Conference on (aug. 2010), pp. 1 –10.

[25] Loreto, S., Saint-Andre, P., Salsano, S., and Wilkins, G.
Known Issues and Best Practices for the Use of Long Polling and Stream-
ing in Bidirectional HTTP. RFC 6202 (Informational), Apr. 2011.

[26] Mahy, R., Matthews, P., and Rosenberg, J. Traversal Using
Relays around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN). RFC 5766 (Proposed Standard), Apr. 2010.

[27] Mehta, N., Sicking, J., Graff, E., Popescu, A., and Orlow,
J. Indexed Database API - W3C Working Draft , May 2012. Work in
progress. http://www.w3.org/TR/IndexedDB/.

[28] Mol, J. “Free-riding Resilient Video Streaming in Peer-to-Peer Net-
works”. PhD thesis, Department of Software Technology, Delft Univer-
sity of Technology, Delft, Jan 2010.

[29] Mol, J., Bakker, A., Pouwelse, J., Epema, D., and Sips, H.
“The design and deployment of a bittorrent live video streaming solu-
tion”. In IEEE International Symposium on Multimedia, 2009 (Dec
2009).

[30] Mol, J., Pouwelse, J., Meulpolder, M., Epema, D., and Sips,
H. “Give-to-Get: Free-riding Resilient Video-on-demand in P2P Sys-
tems”. In Multimedia Computing and Networking conference (Proceed-
ings of SPIE Vol. 6818) (Jan 2008).

[31] Moore, G. E. Cramming more components onto integrated circuits.
Electronics Magazine, volume 38 (April 1965).

[32] P2P Next News. Eu sponsors p2p tv with 14m eu-
ros, 2008. http://www.p2p-next.org/index.php?page=news&id=

FFC9AD9FC7E0072EA5D96ED4E1D1636E (in English). Accessed 19.2.2008.

[33] Pilgrim, M. HTML5: Up and Running. O’Reilly Media, Inc, 2010.

http://www.w3.org/TR/IndexedDB/
http://www.p2p-next.org/index.php?page=news&id=FFC9AD9FC7E0072EA5D96ED4E1D1636E
http://www.p2p-next.org/index.php?page=news&id=FFC9AD9FC7E0072EA5D96ED4E1D1636E

BIBLIOGRAPHY 67

[34] Postel, J. Transmission Control Protocol. RFC 793 (Standard), Sept.
1981. Updated by RFCs 1122, 3168, 6093, 6528.

[35] Pouwelse, J., Garbacki, P., Epema, D., and Sips, H. The bit-
torrent p2p file-sharing system: Measurements and analysis. In Peer-
to-Peer Systems IV, M. Castro and R. van Renesse, Eds., vol. 3640 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005,
pp. 205–216. 10.1007/1155898919.

[36] Pouwelse, J. A., Garbacki, P., Wang, J., and Bakker, A.
Tribler: a social-based peer-to-peer system. In Concurrency and Com-
putation: Practice and Experience (feb. 2008), vol. 20, pp. 127 –138.

[37] Ranganathan, A., and Sicking, J. File API - W3C Working Draft,
October 2011. Work in progress. http://www.w3.org/TR/FileAPI/.

[38] Rescorla, E. HTTP Over TLS. RFC 2818 (Informational), May 2000.
Updated by RFC 5785.

[39] Rescorla, E. Security Considerations for RTC-Web, October 2011.
Work in progress. Expires December, 2012 http://tools.ietf.org/

html/draft-ietf-rtcweb-security-01.

[40] Rescorla, E., and Modadugu, N. Datagram Transport Layer Se-
curity Version 1.2. RFC 6347 (Proposed Standard), Jan. 2012.

[41] Ripeanu, M. Peer-to-peer architecture case study: Gnutella network.
In Peer-to-Peer Computing, 2001. Proceedings. First International Con-
ference on (aug 2001), pp. 99 –100.

[42] Rivest, R. The MD5 Message-Digest Algorithm. RFC 1321 (Informa-
tional), Apr. 1992. Updated by RFC 6151.

[43] Rosenberg, J. Interactive Connectivity Establishment (ICE): A Pro-
tocol for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols. RFC 5245 (Proposed Standard), Apr. 2010. Updated by RFC
6336.

[44] Rosenberg, J., Mahy, R., Matthews, P., and Wing, D. Session
Traversal Utilities for NAT (STUN). RFC 5389 (Proposed Standard),
Oct. 2008.

[45] Rosenberg, J., and Schulzrinne, H. An Offer/Answer Model with
Session Description Protocol (SDP). RFC 3264 (Proposed Standard),
June 2002. Updated by RFC 6157.

http://www.w3.org/TR/FileAPI/
http://tools.ietf.org/html/draft-ietf-rtcweb-security-01
http://tools.ietf.org/html/draft-ietf-rtcweb-security-01

BIBLIOGRAPHY 68

[46] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and Schooler, E.
SIP: Session Initiation Protocol. RFC 3261 (Proposed Standard), June
2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630,
5922, 5954, 6026, 6141.

[47] S. Androutsellis-Theotokis and D. Spinellis. A survey of con-
tent distribution technologies. acm computing surveys, vol. 36, no. 4,
December 2004.

[48] Srisuresh, P., and Holdrege, M. IP Network Address Translator
(NAT) Terminology and Considerations. RFC 2663 (Informational),
Aug. 1999.

[49] Stewart, R. Stream Control Transmission Protocol. RFC 4960 (Pro-
posed Standard), Sept. 2007. Updated by RFCs 6096, 6335.

[50] Suzuki, Y., and Ogashiwa, N. Real-time web communication by
using xmpp jingle, Feb 2012. Work in progress. Expires July, 2012
http://tools.ietf.org/html/draft-suzuki-rtcweb-jingle-web-00.

[51] Swanson, B., and Gilder, G. Estimating the Exaflood. Tech. rep.,
Discovery Institute’s Technology and Democracy Project, Januray 2009.

[52] Topf, J. The HTML Form Protocol Attack, 2001. http://www.remote.
org/jochen/sec/hfpa/hfpa.pdf.

[53] Uberti, J., and Jennings, C. Javascript Session Establishment Pro-
tocol - IETF, June 2012. Work in progress. Expires December, 2012
http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-01.

[54] van Kesteren, A., and Hickson, I. Offline Web Applications -
Offline Application Caching APIs, May 2008. Work in progress. http:
//www.w3.org/TR/offline-webapps/#offline.

[55] Wallsten, K. “Yes We Can”: How Online Viewership, Blog Discus-
sion, Campaign Statements, and Mainstream Media Coverage Produced
a Viral Video Phenomenon. Journal of Information Technology & Pol-
itics 7, 2-3 (2010), 163–181.

[56] Wugofski, T., Stark, P., Ishikawa, M., Baker, M., Ya-
makami, T., and Matsui, S. XHTMLTM Basic 1.1. W3C
recommendation, W3C, July 2008. http://www.w3.org/TR/2008/

REC-xhtml-basic-20080729.

http://tools.ietf.org/html/draft-suzuki-rtcweb-jingle-web-00
http://www.remote.org/jochen/sec/hfpa/hfpa.pdf
http://www.remote.org/jochen/sec/hfpa/hfpa.pdf
http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-01
http://www.w3.org/TR/offline-webapps/#offline
http://www.w3.org/TR/offline-webapps/#offline
http://www.w3.org/TR/2008/REC-xhtml-basic-20080729
http://www.w3.org/TR/2008/REC-xhtml-basic-20080729

BIBLIOGRAPHY 69

[57] Xu, D., Hefeeda, M., Hambrusch, S., and Bhargava, B. On
peer-to-peer media streaming. In Distributed Computing Systems, 2002.
Proceedings. 22nd International Conference on (2002), pp. 363 – 371.

Appendix A

HTML5 JavaScript Source Code

A.1 Video hashing & storage

1 <html>

2 <head>

3 <title>Video on Demand using P2P & HTML5</title>

4 <link href="../scripts/videojs/video-js.min.css" rel="stylesheet" type="text/css">

5 <script type="text/javascript" src="../scripts/jquery/jquery-1.7.1.js">

6 </script>

7 <script type="text/javascript" src="../scripts/videojs/video.min.js">

8 </script>

9 <script type="text/javascript" src="../scripts/md5/webtoolkit.md5.js">

10 </script>

11 <!--The javascript libraries are loaded above-->

12 <script type="text/javascript">

13 var SPACE_IN_BYTES = 0;

14 var CHUNK_SIZE = 5 * 1024 * 1024;//5MB

15 var MAX_FILE_SIZE = 67108864;//64MB

16 var SLICE_SIZE = 65536;//64kB

17 localStorage["start"] = 50; //how many slices downloaded before video playback

18 var GRANTED_BYTES;

19 var movie_object = {

20 "file_md5_array": [],

21 "slices": 0,

22 "fileSize": 0,

23 "fileName": "",

24 "fileURL": "",

25 "fileMimeType": "",

26 "fileDuration": "",

27 "fileID": ""

28 };

29

30 var torrent = {}; //Current torrent being downloaded

31

32 function clearMovie_object() {

33 movie_object.file_md5_array = [];

34 movie_object.slices = 0;

35 movie_object.fileName = "";

36 movie_object.fileURL = "";

37 movie_object.fileMimeType = "";

38 movie_object.fileID = "";

70

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 71

39 movie_object.fileDuration = "";

40 }

41 var md5_complete_counter_counter;

42

43 var movie_list = {};

44 var indexedDB = window.indexedDB || window.webkitIndexedDB || window.mozIndexedDB;

45 if (’webkitIndexedDB’ in window) {

46 window.IDBTransaction = window.webkitIDBTransaction;

47 window.IDBKeyRange = window.webkitIDBKeyRange;

48 }

49 movie_list.indexedDB = {};

50 movie_list.indexedDB.db = null;

51 movie_object.fileURL

52 movie_list.indexedDB.onerror = function (e) {

53 console.log(e);

54 };

55 function errorHandlerF(e) {

56 var msg = ’’;

57

58 switch (e.code) {

59 case FileError.QUOTA_EXCEEDED_ERR:

60 msg = ’QUOTA_EXCEEDED_ERR’;

61 break;

62 case FileError.NOT_FOUND_ERR:

63 msg = ’NOT_FOUND_ERR’;

64 break;

65 case FileError.SECURITY_ERR:

66 msg = ’SECURITY_ERR’;

67 break;

68 case FileError.INVALID_MODIFICATION_ERR:

69 msg = ’INVALID_MODIFICATION_ERR’;

70 break;

71 case FileError.INVALID_STATE_ERR:

72 msg = ’INVALID_STATE_ERR’;

73 break;

74 default:

75 msg = ’Unknown Error’;

76 break;

77 };

78

79 console.log(’Error: ’ + msg);

80 }

81

82 $(document).ready(function () {

83 movie_list.indexedDB.open();

84 populateTorrents();

85 $(’#torrents’).delegate(’input’, ’click’, function (e) {

86 $.get("http://html5p2p-1.cs.hut.fi/tracker/GetTorrentServlet",

87 "torrent_id=" + this.id,

88 function (data) {

89 torrent = JSON.parse(data);

90 console.log("Torrent details", torrent);

91

92 var data = [];

93 for (var i = 0; i < CHUNK_SIZE; i++) {

94 data.push(’0’);

95 }//Created a empty slice of ’0’s

96 var bb = new WebKitBlobBuilder();

97 bb.append(data.join(’’));

98 var blob = bb.getBlob(torrent.fileMimeType);

99

100 var last_slice_size = torrent.fileSize % CHUNK_SIZE;

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 72

101 data = [];

102 for (var i = 0; i < last_slice_size; i++) {

103 data.push(’0’);

104 }//Created a empty slice of ’0’s

105

106 var bb_last = new Blob();

107 bb_last.append(data.join(’’));

108 var last_blob = bb_last.getBlob(torrent.fileMimeType);

109

110 console.log(’Generated ’ + SLICE_SIZE + ’byte chunk’);

111 window.webkitRequestFileSystem(window.TEMPORARY,

112 torrent.fileSize,

113 function (fs) {

114 fs.root.getFile(torrent.fileName, {

115 create: true,

116 exclusive: false

117 },

118 function (fileEntry) {

119 fileEntry.remove(function () {

120 console.log(’File removed.’);

121 }, errorHandlerF);

122

123 fs.root.getFile(torrent.fileName, {

124 create: true,

125 exclusive: true

126 },

127 function (fileEntry) {

128 var count = 0;

129 fileEntry.createWriter(function (fw) {

130 fw.onwriteend = function (e) {

131 if (fw.length < torrent.fileSize) {

132 if (fw.length < torrent.fileSize - last_slice_size) {

133 fw.write(blob);

134 console.log("SLICE");

135 } else {

136 fw.write(last_blob);

137 console.log("END");

138 }

139 } else {

140 console.log(’Ready to download;’);

141 $(’#process’).append(’<progress id="download_progress"/>’);

142 console.log(’Downloading File...’);

143 $(’#download_progress’).attr({

144 ’value’: ’0’,

145 ’max’: torrent.slices,

146 });

147 $(’#process’).append(’<progress id="md5_check_progress"/>’);

148 console.log(’MD5 verification...’);

149 $(’#md5_check_progress’).attr({

150 ’value’: ’0’,

151 ’max’: torrent.slices,

152 });

153 $(’#process’).append(’<progress id="slice_write_progress"/>’);

154 console.log(’Writing slices...’);

155 $(’#slice_write_progress’).attr({

156 ’value’: ’0’,

157 ’max’: torrent.slices,

158 });

159 torrent.file_download_status_array = [];

160 for (var i = 0; i < torrent.slices; i++) {

161 torrent.file_download_status_array[i] = new Boolean(0);

162 downloadPiece(i, fileEntry);

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 73

163 }

164 }

165 };

166 fw.onerror = function (e) {

167 console.log(’Write failed: ’ + e.toString());

168 };

169 fw.write(blob);

170 }, errorHandlerF);

171 }, errorHandlerF);

172 }, errorHandlerF);

173 }, errorHandlerF);

174 });

175 });

176

177 function downloadPiece(i, fileEntry) {

178 var start_time = new Date().getTime();

179 var xhr0 = new XMLHttpRequest();

180 xhr0.open(’GET’,

181 ’http://html5p2p-1.cs.hut.fi/tracker/GetVideoPieceServlet?slice_no=’ +

182 i + ’&file_name=’ + torrent.fileName,

183 function (e) {

184 console.log(e);

185 },

186 null,

187 null);

188 xhr0.responseType = ’arraybuffer’;

189 xhr0.onload = function (e) {

190 var bb = new window.WebKitBlobBuilder();

191 bb.append(xhr0.response);

192 var reader = new FileReader();

193 reader.onloadend = function (e) {

194 var worker = new Worker(’../scripts/md5/md5_check.js’);

195 var input = {

196 ’slice’: i,

197 ’plain_text’: reader.result

198 };

199

200 worker.postMessage(input);

201 worker.addEventListener(’message’, function (e) {

202 $(’#md5_check_progress’).val($(’#md5_check_progress’).val() + 1);

203 var md5 = e.data.md5;

204 if (md5 === torrent.file_md5_array[i]) {

205 fileEntry.createWriter(function (fileWriter) {

206 fileWriter.onerror = function (e) {

207 console.log(’Error’ + e);

208 };

209 fileWriter.onwriteend = function (e) {

210 $(’#slice_write_progress’).val($(’#slice_write_progress’).val() + 1);

211 torrent.file_download_status_array[i] = Boolean(1);

212

213 if (i === 0) {

214 var speed = SLICE_SIZE / (new Date().getTime() - start_time);

215 var start = Math.round((((torrent.fileSize / speed) -

216 (torrent.fileDuration * 1000)) *

217 speed) / SLICE_SIZE);

218 if (start > localStorage["start"]) {

219 localStorage["start"] = start;

220 }

221 console.log(’Start’, localStorage["start"],

222 ’size’, torrent.fileSize,

223 ’speed’, speed, ’duration’,

224 torrent.fileDuration * 1000,

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 74

225 ’Slice’, SLICE_SIZE);

226 } else if (i + 1 === torrent.slices) {

227 console.log(’Completed’, torrent.fileID);

228 openPlayer(fileEntry.toURL(), torrent.fileMimeType);

229 setTimeout(function () {

230 $(’#slice_write_progress’).remove();

231 $(’#md5_check_progress’).remove();

232 $(’#download_progress’).remove();

233

234 }, 2000);

235 } else if (i == localStorage["start"]) {

236

237 }

238 };

239

240 //move the file pointer to the EOF for APPENDING

241 fileWriter.seek(i * SLICE_SIZE);

242 fileWriter.write(bb.getBlob(torrent.fileMimeType));

243 }, errorHandlerF);

244 } else {

245 console.log(md5, "re attempt", i);

246 }

247 }, false);

248 };

249 var blob = bb.getBlob(torrent.fileMimeType);

250 reader.readAsText(blob);

251 $(’#download_progress’).val($(’#download_progress’).val() + 1);

252 };

253 xhr0.send();

254 }

255

256 $(’#File1’).bind(’change’, function (evt) {

257 $(’#File1’).attr("disabled", true);

258 $(’#process’).html(’’);

259 $(’#output’).html(’’);

260 $(’#db’).html(’’);

261

262 movie_object.fileSize = $(’#File1’)[0].files[0].size;

263 movie_object.fileMimeType = $(’#File1’)[0].files[0].type;

264 if (movie_object.fileMimeType.substring(0, 5) == ’video’ &&

265 movie_object.fileSize < MAX_FILE_SIZE) { //64MB

266 SPACE_IN_BYTES += movie_object.fileSize;

267 handleFileSelect(evt);

268 movie_object.slices = movie_object.fileSize / SLICE_SIZE;

269

270 movie_object.slices = Math.ceil(movie_object.slices);

271 $(’#process’).append(’<progress id="md5_progress"/>’);

272 console.log(’Calculating MD5...’);

273 md5_complete_counter = 0;

274 $(’#md5_progress’).attr({

275 ’value’: md5_complete_counter,

276 ’max’: movie_object.slices

277 });

278 console.log(movie_object.slices);

279

280 for (var i = 0; i < movie_object.slices; i++) {

281 var fnc = function (y) { return function () { readBlob(y); } }(i);

282 setTimeout(fnc, 90 * i);

283 }

284

285 } else {

286 $(’#output’).text(’Since the slice API is not yet standardized, ’ +

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 75

287 ’for now we handle only mp4 videos of 64MB and less..’);

288 $(’#File1’).removeAttr("disabled");

289 setTimeout(function () {

290 $(’#output’).text(’’);

291 }, 4000);

292 }

293 });

294 $(’#drop_zone’).bind(’drop’, handleFileSelect, false);

295 $(’#drop_zone’).bind(’dragover’, function (evt) {

296 handleDragOver(evt);

297 }, false);

298

299 });

300

301 movie_list.indexedDB.open = function () {

302 var request = indexedDB.open("movie_records");

303

304 request.onsuccess = function (e) {

305 var v = "7.00";

306 movie_list.indexedDB.db = e.target.result;

307 var db = movie_list.indexedDB.db;

308 // We can only create Object stores in a setVersion transaction;

309 if (v != db.version) {

310 var setVrequest = db.setVersion(v);

311

312 // onsuccess is the only place we can create Object Stores

313 setVrequest.onerror = movie_list.indexedDB.onerror;

314 setVrequest.onsuccess = function (e) {

315 if (db.objectStoreNames.contains("movie_record")) {

316 db.deleteObjectStore("movie_record");

317 }

318 var store = db.createObjectStore("movie_record",

319 {

320 keyPath: "fileID"

321 });

322 movie_list.indexedDB.getAllMovieItems();

323 };

324 }

325 else {

326 movie_list.indexedDB.getAllMovieItems();

327 }

328 };

329 request.onerror = movie_list.indexedDB.onerror;

330 }

331

332 movie_list.indexedDB.getAllMovieItems = function () {

333 $(’#db’).html(’’);

334

335 var db = movie_list.indexedDB.db;

336 var trans = db.transaction(["movie_record"], IDBTransaction.READ_WRITE);

337 var store = trans.objectStore("movie_record");

338 SPACE_IN_BYTES = 0;

339 // Get everything in the store;

340 var keyRange = IDBKeyRange.lowerBound(0);

341 var cursorRequest = store.openCursor(keyRange);

342 cursorRequest.onsuccess = function (e) {

343 var result = e.target.result;

344 if (!!result == false)

345 return;

346 renderMovie(result.value);

347 result.continue();

348 };

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 76

349

350 cursorRequest.onerror = movie_list.indexedDB.onerror;

351 };

352

353 movie_list.indexedDB.viewMovie = function (id) {

354

355 $(’#db’).html(’’);

356

357 var db = movie_list.indexedDB.db;

358 console.log(’IDBTransaction.READ_WRITE’, IDBTransaction.READ_WRITE);

359 var trans = db.transaction(["movie_record"], IDBTransaction.READ_WRITE);

360

361 var store = trans.objectStore("movie_record");

362

363 // Get everything in the store;

364 var keyRange = IDBKeyRange.lowerBound(0);

365 var cursorRequest = store.openCursor(keyRange);

366 cursorRequest.onsuccess = function (e) {

367 var result = e.target.result;

368

369 if (!!result == false)

370 return;

371 if (result.value.fileID === id) {

372 console.log(result.value.fileURL);

373 openPlayer(result.value.fileURL, result.value.fileMimeType);

374 }

375 result.continue();

376 };

377

378 movie_list.indexedDB.getAllMovieItems();

379 cursorRequest.onerror = movie_list.indexedDB.onerror;

380 };

381

382 movie_list.indexedDB.deleteMovie = function (id) {

383 var db = movie_list.indexedDB.db;

384 var trans = db.transaction(["movie_record"], IDBTransaction.READ_WRITE);

385 var store = trans.objectStore("movie_record");

386

387 var request = store.delete (id);

388

389 request.onsuccess = function (e) {

390 movie_list.indexedDB.getAllMovieItems();

391 };

392

393 request.onerror = function (e) {

394 console.log("Error Adding: ", e);

395 };

396 };

397

398 function renderMovie(row) {

399 var li = document.createElement("li");

400 var v = document.createElement("a");

401 var d = document.createElement("a");

402 var p = document.createElement("a");

403 var u = document.createElement("a");

404 var t = document.createTextNode(row.text);

405 SPACE_IN_BYTES += row.fileSize;

406 v.addEventListener("click", function () {

407 movie_list.indexedDB.viewMovie(row.fileID);

408 }, false);

409 d.addEventListener("click", function () {

410 movie_list.indexedDB.deleteMovie(row.fileID);

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 77

411 window.requestFileSystem = window.requestFileSystem || window.webkitRequestFileSystem;

412 window.requestFileSystem(window.PERSISTENT, GRANTED_BYTES, function (fs) {

413 fs.root.getFile(row.fileName, { create: false }, function (fileEntry) {

414 fileEntry.remove(function () {

415 console.log(row.fileName, ’ File removed.’);

416 }, errorHandlerF);

417 }, errorHandlerF);

418 }, errorHandlerF);

419 }, false);

420 p.addEventListener("click", function () {

421 console.log("Uploading torrent to server");

422 $.post("http://html5p2p-1.cs.hut.fi/tracker/PublishServlet", "torrent=" +

423 JSON.stringify(row), function (data) {

424 console.log("Server returned", JSON.parse(data));

425 populateTorrents();

426 //li.appendChild(u);

427 //£(’a’, ’#db’).css(’cursor’, ’pointer’);

428 });

429 }, false);

430

431 v.textContent = " [View]";

432 d.textContent = " [Del]";

433 p.textContent = " [Publish]";

434 // u.textContent = " [Upload]";

435 li.appendChild(v);

436 li.appendChild(p);

437 li.appendChild(d);

438 li.appendChild(t);

439

440

441 $(’#db’).append(li)

442 $(’a’, ’#db’).css(’cursor’, ’pointer’);

443 }

444

445 function populateTorrents() {

446 $(’#torrents’).html("");

447 $.get("http://html5p2p-1.cs.hut.fi/tracker/GetTorrentsServlet", "", function (data) {

448 $(’#torrents’).html(data);

449 });

450 }

451

452 function renameFileAndAddToDb() {

453 var fileName = movie_object.fileName;

454 var fileMimeType = movie_object.fileMimeType;

455 var fileDuration = movie_object.fileDuration;

456 movie_object.fileName = "";

457 movie_object.fileURL = "";

458

459

460 var extension = movie_object.fileMimeType.substring(movie_object.fileMimeType.lastIndexOf(’/’) + 1,

461 movie_object.fileMimeType.length);

462 movie_object.fileMimeType = "";

463 movie_object.fileDuration = "";

464 var unique_movie_object_string = JSON.stringify(movie_object);

465 movie_object.fileID = MD5(unique_movie_object_string, unique_movie_object_string.length);

466 movie_object.fileName = movie_object.fileID + "." + extension;

467 movie_object.fileMimeType = fileMimeType;

468 movie_object.fileDuration = fileDuration;

469 window.requestFileSystem = window.requestFileSystem || window.webkitRequestFileSystem;

470 window.requestFileSystem(window.PERSISTENT, GRANTED_BYTES, function (fs) {

471 rename(fs.root, fileName, movie_object.fileName);

472 function rename(cwd, src, newName) {

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 78

473 cwd.getFile(src, {}, function (fileEntry) {

474 fileEntry.moveTo(cwd, newName);

475 var fileURL = fileEntry.toURL();

476 movie_object.fileURL = fileURL.substring(0,

477 fileURL.lastIndexOf(’/’)) +

478 ’/’ + newName;

479 var data = $.extend(true, {}, movie_object);

480 data.text = fileName;

481 console.log("Renamed ", fileName, " to ", newName);

482 movie_list.indexedDB.addMovie(data);

483 }, errorHandlerF);

484 }

485 }, errorHandlerF);

486 }

487

488 movie_list.indexedDB.addMovie = function (data) {

489 var db = movie_list.indexedDB.db;

490 var trans = db.transaction(["movie_record"], IDBTransaction.READ_WRITE);

491 var store = trans.objectStore("movie_record");

492

493 var request = store.put(data);

494 request.onsuccess = function (e) {

495 clearMovie_object();

496 $(’#File1’).removeAttr("disabled");

497 movie_list.indexedDB.getAllMovieItems();

498 };

499

500 request.onerror = function (e) {

501 console.log("Error Adding: ", e);

502 };

503 };

504

505 function openPlayer(url, mimeType) {

506 $(’#output’).html(’’);

507 var loaded_video = Date.now().toString();

508 $(’#output’).append(’<video id="’ + loaded_video + ’"><source src="’ +

509 url + ’" type="’ + mimeType + ’"></video>’);

510 $(’video’, ’#output’).addClass(’video-js vjs-default-skin’);

511 $(’video’, ’#output’).attr({

512 ’width’: ’640’,

513 ’height’: ’264’,

514 ’controls’: ’true’,

515 ’preload’: ’auto’,

516 ’autoplay’: ’true’,

517 });

518

519 _V_(loaded_video).ready(function () {

520 var myPlayer = this;

521 myPlayer.addEvent("loadstart", function (e) {

522 console.log(’Player’, ’loadstart’);

523 });

524 myPlayer.addEvent("play", function (e) {

525 console.log(’Player’, ’play’);

526 });

527 myPlayer.addEvent("error", function (e) {

528 console.log(’Player’, ’Error @ ’, myPlayer.currentTime());

529 openPlayer(url, mimeType);

530 });

531 myPlayer.addEvent("progress", function (e) {

532 console.log(’Player’, ’progress’, e);

533 });

534

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 79

535 myPlayer.addEvent("durationchange", function (e) {

536 movie_object.fileDuration = myPlayer.duration();

537 console.log(’Player’, ’durationchange’, e, ’Duration’, myPlayer.duration());

538 });

539 });

540 }

541

542

543 function handleFileSelect(evt) {

544 evt.stopPropagation();

545 evt.preventDefault();

546

547 movie_object.fileName = $(’#File1’)[0].files[0].name;

548 window.requestFileSystem = window.requestFileSystem || window.webkitRequestFileSystem;

549

550 window.webkitStorageInfo.requestQuota(window.PERSISTENT,

551 SPACE_IN_BYTES + MAX_FILE_SIZE,

552 function (grantedBytes) {

553 GRANTED_BYTES = grantedBytes;

554 window.requestFileSystem(window.PERSISTENT, GRANTED_BYTES,

555 function onInitFs(fs) {

556 fs.root.getFile(movie_object.fileName, { create: true },

557 function (fileEntry) {

558 // Create a FileWriter object for our FileEntry (log.txt).

559 fileEntry.createWriter(function (fileWriter) {

560 fileWriter.onerror = function (e) {

561 console.log(’Write failed: ’ + e);

562 };

563 fileWriter.onwritestart = function (e) {

564 // Reset progress indicator on new file selection.

565 $(’#process’)

566 .append(’<progress id="file_select_progress"’ +

567 ’ value="0" max="0"/>’);

568 console.log(’Copying File...’);

569 $(’#file_select_progress’).attr({

570 ’value’: ’0’,

571 ’max’: e.total,

572 });

573 }

574 fileWriter.onprogress = function (e) {

575 $(’#file_select_progress’).attr({

576 ’value’: e.progress

577 });

578 };

579 fileWriter.onwriteend = function (e) {

580 // Ensure that the progress bar displays 100% at the end.

581 $(’#file_select_progress’).attr({

582 ’value’: ’1’,

583 ’max’: ’1’,

584 });

585 movie_object.fileURL = fileEntry.toURL();

586 openPlayer(movie_object.fileURL, movie_object.fileMimeType);

587 setTimeout(function () {

588 $(’#file_select_progress’).remove();

589 }, 2000);

590 };

591 // Create a new Blob

592 var bb = new window.WebKitBlobBuilder();// in Chrome 12.

593 if (evt.type === ’change’) {

594 bb.append(evt.target.files[0]);

595 } else {

596 bb.append(evt.dataTransfer.files[0]);

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 80

597 }

598 fileWriter.write(bb.getBlob(movie_object.fileMimeType));

599 }, errorHandlerF);

600 }, errorHandlerF);

601 }, errorHandlerF);

602 }, function (e) {

603 console.log(’requestQuotaError’, e);

604 });

605 }

606

607 function readBlob(piece_pos) {

608 var file = $(’#File1’)[0].files[0];

609

610 var opt_startByte = piece_pos * SLICE_SIZE;

611 if (opt_startByte > file.size - 1) {

612 opt_startByte = -1;

613 }

614 var opt_stopByte = opt_startByte + SLICE_SIZE - 1;

615 if (opt_stopByte > file.size - 1) {

616 opt_stopByte = file.size - 1;

617 }

618

619 var start = opt_startByte;

620 var stop = opt_stopByte;

621

622 var reader = new FileReader();

623 // If we use onloadend, we need to check the readyState.

624 reader.onloadend = function (evt) {

625

626 if (evt.target.readyState == FileReader.DONE) { // DONE == 2

627 var worker = new Worker(’../scripts/md5/md5_check.js’);

628 var input = {

629 ’slice’: piece_pos,

630 ’plain_text’: evt.target.result

631 };

632 //console.log(input.plain_text);

633 worker.postMessage(input);

634 worker.addEventListener(’message’, function (e) {

635 movie_object.file_md5_array[e.data.slice] = e.data.md5;

636 console.log(e.data.md5);

637 $(’#md5_progress’).attr({

638 ’value’: ++md5_complete_counter,

639 });

640 if (md5_complete_counter === movie_object.slices) {

641 renameFileAndAddToDb();

642 setInterval(function () {

643 $(’#md5_progress’).remove();

644 }, 2000);

645 }

646 }, false);

647 }

648 };

649

650 if (file.slice) {

651 var blob = file.slice(start, stop + 1);

652 } else if (file.mozSlice) {

653 var blob = file.mozSlice(start, stop + 1);

654 } else if (file.webkitSlice) {

655 var blob = file.webkitSlice(start, stop + 1);

656 } else {

657 console.log(’Problem’);

658 }

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 81

659

660 reader.readAsText(blob, ’UTF-8’);

661 }

662

663 function handleDragOver(evt) {

664 evt.stopPropagation();

665 evt.preventDefault();

666 evt.dataTransfer.dropEffect = ’copy’; // Explicitly show this is a copy.

667 }

668

669 </script>

670 </head>

671 <body>

672 <div id="drop_zone">

673 <div id="input">

674 Select an MP4 Video file, it would get copied into the PERMANENT

675 HTML5 FileSystem, and played within the browser:

676 <input accept="video/*" id="File1" type="file" />

677 <p>

678 </div>

679 <div id="process"></div>

680 <div id="output"></div>

681 <div id="db"></div>

682 <p>

683 <div id="torrents"></div>

684 </div>

685 </body>

686 </html>

A.2 Video conferencing

A.2.1 Tracker implementation - Server-side with node.js

1 #!/usr/bin/env node

2 var WebSocketServer = require(’websocket’).server;

3 var http = require(’http’);

4 var rooms=[];

5 var connections=[];

6 var connection_id_counter=0;

7 var room_id_counter=0;

8

9 var server = http.createServer(function(request, response) {

10 console.log((new Date()) + ’ Received request for ’ + request.url);

11 response.writeHead(404);

12 response.end();

13 });

14 server.listen(8080, function() {

15 console.log((new Date()) + ’ Server is listening on port 8080’);

16 });

17

18 wsServer = new WebSocketServer({

19 httpServer: server,

20 // You should not use autoAcceptConnections for production

21 // applications, as it defeats all standard cross-origin protection

22 // facilities built into the protocol and the browser. You should

23 // *always* verify the connection’s origin and decide whether or not

24 // to accept it.

25 autoAcceptConnections: false

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 82

26 });

27

28 function originIsAllowed(origin) {

29 // put logic here to detect whether the specified origin is allowed.

30 console.log(’The origin is’,origin);

31 return true;

32 }

33

34 wsServer.on(’request’, function(request) {

35 if (!originIsAllowed(request.origin)) {

36 // Make sure we only accept requests from an allowed origin

37 request.reject();

38 console.log((new Date()) + ’ Connection from origin ’ + request.origin + ’ rejected.’);

39 return;

40 }

41

42 var con = request.accept(’meyn’, request.origin);

43 var connection = {};

44 connection.id = ++connection_id_counter;

45 connection.con = con;

46 connections.push(connection);

47

48 var msgCONNECTION_ID = {};

49 msgCONNECTION_ID.msg_type = ’CONNECTION_ID’;

50 msgCONNECTION_ID.connection_id = connection.id;

51 connection.con.send(JSON.stringify(msgCONNECTION_ID));

52 console.log((new Date()) + ’ Connection accepted.’);

53

54 con.on(’message’, function(message) {

55 if (message.type === ’utf8’) {

56 processMessageFromClient(con,message.utf8Data);

57 }

58 else if (message.type === ’binary’) {

59 console.log(’Received Binary Message of ’ + message.binaryData.length + ’ bytes’);

60 }

61 });

62 Array.prototype.contains = function(obj) {

63 var i = this.length;

64 while (i--) {

65 if (this[i] === obj) {

66 return true;

67 }

68 }

69 return false;

70 }

71 function processMessageFromClient(con,message){

72 var msg = JSON.parse(message);

73 console.log(msg.msg_type);

74 switch(msg.msg_type)

75 {

76 case "CREATE_ROOM_REQUEST":

77 var msgCREATE_ROOM_RESPONSE ={};

78 msgCREATE_ROOM_RESPONSE.msg_type = ’CREATE_ROOM_RESPONSE’;

79 msgCREATE_ROOM_RESPONSE.room_id = ++room_id_counter;

80 msgCREATE_ROOM_RESPONSE.room_key = randomPassword(8);

81 var room = {};

82 room.room_id = msgCREATE_ROOM_RESPONSE.room_id;

83 room.room_key = msgCREATE_ROOM_RESPONSE.room_key;

84 room.connection_ids = [];

85 rooms.push(room);

86 con.send(JSON.stringify(msgCREATE_ROOM_RESPONSE));

87 break;

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 83

88 case "JOIN_ROOM_REQUEST":

89 var msgJOIN_ROOM_RESPONSE ={};

90 msgJOIN_ROOM_RESPONSE.msg_type = ’JOIN_ROOM_RESPONSE’;

91 msgJOIN_ROOM_RESPONSE.status = ’Failure’;

92 for(var i in rooms){

93 if(rooms[i].room_id==msg.room_id && rooms[i].room_key==msg.room_key){

94 msgJOIN_ROOM_RESPONSE.status = ’Success’;

95 var cid = connectionId(con);

96 if(!rooms[i].connection_ids.contains(cid)){

97 rooms[i].connection_ids.push(cid);

98 }

99 msgJOIN_ROOM_RESPONSE.connection_ids = rooms[i].connection_ids;

100 break;

101 }

102 }

103 console.log(rooms);

104 con.send(JSON.stringify(msgJOIN_ROOM_RESPONSE));

105 break;

106 case "PEER_INFO_CLIENT":

107 //setTimeout(function(){

108 var msgPEER_INFO_SERVER = {};

109 msgPEER_INFO_SERVER.msg_type = ’PEER_INFO_SERVER’;

110 msgPEER_INFO_SERVER.from_connection_id = connectionId(con);

111 console.log(msgPEER_INFO_SERVER.from_connection_id,"->",msg.to_connection_id);

112 msgPEER_INFO_SERVER.data = msg.message_data;

113 for(var i in connections){

114 if(connections[i].id==msg.to_connection_id){

115 connections[i].con.send(JSON.stringify(msgPEER_INFO_SERVER));

116 break;

117 }

118 }

119 //},6000);

120 break;

121 default:

122 console.log(’DEFAULT’);

123 }

124 }

125 function connectionId(con){

126 for(var i in connections){

127 var connection = connections[i];

128 if(con==connection.con){

129 return connection.id;

130 }

131 }

132 return 0;

133 }

134 function randomPassword(length){

135 chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";

136 pass = "";

137 for(x=0;x<length;x++)

138 {

139 i = Math.floor(Math.random() * 62);

140 pass += chars.charAt(i);

141 }

142 return pass;

143 }

144 con.on(’close’, function(reasonCode, description) {

145 console.log((new Date()) + ’ Peer ’ + con.remoteAddress + ’ disconnected.’);

146 var connection_id = connectionId(con);

147 for(var i in connections) {

148 var value = connections[i];

149 if(connections[i].id===connection_id){

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 84

150 connections.splice(i,1);

151 for(var j in rooms){

152 for(var k in rooms[j].connection_ids){

153 if(rooms[j].connection_ids[k]==connection_id){

154 rooms[j].connection_ids.splice(k,1);

155 if(rooms[j].connection_ids.length==0){

156 rooms.splice(j,1);

157 }

158 }

159 }

160 }

161 break;

162 }

163 }

164 });

165 });

A.2.2 Client side implementation

1 <html>

2 <head>

3 <link rel="canonical" href="client.html" />

4 <link rel="StyleSheet" href="css/style.css" type="text/css" media="screen">

5 <script type="text/javascript" src="js/jquery-1.7.1.js">

6 </script>

7 <script type="text/javascript">

8 var localStream;

9 var socket;

10 var my_connection_id;

11 var channelReady = false;

12 var peer_connections = [];

13 var remoteVideoHtml = ’<video width="50%" height="50%" id="remoteVideoId"’ +

14 ’ autoplay="autoplay" style="opacity: 1; -webkit-transition: opacity 2s;">’;

15 $(document).ready(function () {

16 console.log(’Ready’);

17 getUserMedia();

18 $(’#create_room’).bind(’click’, function () {

19 if (channelReady) {

20 console.log(’Sending a CREATE_ROOM_REQUEST via the WebSocket to the server’);

21 var msgCREATE_ROOM_REQUEST = {};

22 msgCREATE_ROOM_REQUEST.msg_type = ’CREATE_ROOM_REQUEST’;

23 socket.send(JSON.stringify(msgCREATE_ROOM_REQUEST));

24

25 } else {

26 console.log(’Web Socket Not Yet established..So cannot create room’);

27 }

28 });

29 $(’#connect’).bind(’click’, function () {

30 if ($(’#room_id’).val() && $(’#room_key’).val()) {

31 $(’#remote’).html(’’);

32 console.log(’Sending a JOIN_ROOM_REQUEST via the WebSocket to the server’);

33 var msgJOIN_ROOM_REQUEST = {};

34 msgJOIN_ROOM_REQUEST.msg_type = ’JOIN_ROOM_REQUEST’;

35 msgJOIN_ROOM_REQUEST.room_id = $(’#room_id’).val();

36 msgJOIN_ROOM_REQUEST.room_key = $(’#room_key’).val();

37 socket.send(JSON.stringify(msgJOIN_ROOM_REQUEST));

38 } else {

39 console.log(’No room_key and id combination to send to the WebSocket’);

40 }

41 });

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 85

42 });

43

44 openChannel = function () {

45 console.log("Opening channel.");

46 socket = new WebSocket(’ws://82.130.14.187:8080’, ’meyn’);

47 socket.onopen = function () {

48 console.log(’Channel opened.’);

49

50 };

51

52 socket.onerror = function (error) {

53 console.log(’Channel error.’, error);

54 };

55

56 socket.onclose = function () {

57 console.log(’Channel close.’);

58 };

59

60 // Log messages from the server

61 socket.onmessage = function (e) {

62 var msg = JSON.parse(e.data);

63 switch (msg.msg_type) {

64 case "CONNECTION_ID":

65 my_connection_id = msg.connection_id;

66 channelReady = true;

67 break;

68 case "CREATE_ROOM_RESPONSE":

69 console.log(’Recieved a CREATE_ROOM_RESPONSE via the WebSocket’);

70 $(’#room_id’).val(msg.room_id);

71 $(’#room_key’).val(msg.room_key);

72 break;

73 case "JOIN_ROOM_RESPONSE":

74 console.log(’Recieved a JOIN_ROOM_RESPONSE via the WebSocket’);

75 if (msg.status == ’Success’) {

76 for (var i in msg.connection_ids) {

77 if (msg.connection_ids[i] != my_connection_id) {

78 var peer_connection = {};

79 peer_connection.connection_id = msg.connection_ids[i];

80 peer_connection.pc =

81 createPeerConnection(peer_connection.connection_id, true);

82 peer_connections.push(peer_connection);

83 $(’#remote’).prepend(remoteVideoHtml

84 .replace(’remoteVideoId’, ’peer’ +

85 peer_connection.connection_id));

86 }

87 }

88 } else {

89 console.log(’JOIN_ROOM_RESPONSE : Status:’, msg.status);

90 }

91 break;

92 case "PEER_INFO_SERVER":

93 var new_connection = true;

94 console.log(’Recieved a PEER_INFO_SERVER via the WebSocket from ’,

95 msg.from_connection_id, msg);

96 if (msg.from_connection_id != my_connection_id) {

97 for (var i in peer_connections) {

98 if (peer_connections[i].connection_id == msg.from_connection_id) {

99 new_connection = false;

100 break;

101 }

102 }

103 if (new_connection) {

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 86

104 console.log(’New Peer Connection’);

105 var peer_connection = {};

106 peer_connection.connection_id = msg.from_connection_id;

107 peer_connection.pc = createPeerConnection(peer_connection.connection_id,

108 false);

109 peer_connections.push(peer_connection);

110 $(’#remote’).prepend(remoteVideoHtml.replace(’remoteVideoId’, ’peer’ +

111 peer_connection.connection_id));

112 }

113 //Now process the SDP JSON Blob received

114 for (var i in peer_connections) {

115 if (peer_connections[i].connection_id == msg.from_connection_id) {

116 peer_connections[i].pc.processSignalingMessage(msg.data);

117 break;

118 }

119 }

120 } else {

121 console(’Why is the server sending me my own message???’);

122 }

123

124 break;

125 default:

126 console.log(’DEFAULT’);

127 }

128 };

129 }

130 createPeerConnection = function (connection_id, initiator) {

131 if (initiator) { console.log(’INITIATOR’); }

132 //var STUN_OR_TURN = "TURN 193.234.219.124:3478";

133 var STUN_OR_TURN = "STUN stun.l.google.com:19302";

134 if (typeof (webkitPeerConnection00) === ’undefined’) {

135 alert("webkitPeerConnection00");

136 }

137 try {

138 pc = new webkitDeprecatedPeerConnection(STUN_OR_TURN, function (message) {

139 onSignalingMessage(connection_id, message);

140 });

141 console.log("Created webkitDeprecatedPeerConnnection with config ", STUN_OR_TURN);

142 } catch (e) {

143 try {

144 console.log("Failed to create webkitDeprecatedPeerConnection, exception: " + e.message);

145 pc = new webkitPeerConnection00(STUN_OR_TURN, function (message) {

146 onSignalingMessage(connection_id, message);

147 });

148 console.log("Created webkitPeerConnection00 with config ", STUN_OR_TURN);

149

150 } catch (e) {

151 console.log("Failed to create webkitPeerConnection00, exception: " + e.message);

152 try {

153 pc = new webkitPeerConnection(STUN_OR_TURN, function (message) {

154 onSignalingMessage(connection_id, message);

155 });

156 console.log("Created webkitPeerConnnection with config ", STUN_OR_TURN);

157 } catch (e) {

158 console.log("Failed to create webkitPeerConnection, exception: " + e.message);

159 alert("Cannot create PeerConnection object; tried webkitPeerConnection"+

160 " and webkitDeprecatedPeerConnection");

161 return;

162 }

163 }

164 }

165 pc.addStream(localStream);

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 87

166 pc.onconnecting = function (msg) {

167 console.log(’onSessionConnecting’);

168 }

169 pc.onopen = function (msg) {

170 console.log(’onSessionOpened’);

171 }

172 pc.onaddstream = function (event) {

173 console.log(’onRemoteStreamAdded add the remote peers video stream.’);

174 var url = webkitURL.createObjectURL(event.stream);

175 $(’#peer’ + connection_id).attr({

176 src: url

177 });

178 }

179 pc.onremovestream = function (msg) {

180 console.log(’onRemoteStreamRemoved’);

181 }

182 return pc;

183 }

184 onSignalingMessage = function (connection_id, message) {

185 var msgPEER_INFO_CLIENT = {};

186 msgPEER_INFO_CLIENT.msg_type = ’PEER_INFO_CLIENT’;

187 msgPEER_INFO_CLIENT.to_connection_id = connection_id;

188 msgPEER_INFO_CLIENT.message_data = message;

189 console.log(new Date().getTime(), ": C(", my_connection_id, ")->S(",

190 msgPEER_INFO_CLIENT.to_connection_id, ")", msgPEER_INFO_CLIENT);

191 socket.send(JSON.stringify(msgPEER_INFO_CLIENT));

192 }

193 getUserMedia = function () {

194 try {

195 navigator.webkitGetUserMedia({ video: true, audio: true }, onUserMediaSuccess,

196 onUserMediaError);

197 console.log("Requested access to local media.");

198 } catch (e) {

199 alert("webkitGetUserMedia() failed. Does your broser support WebRTC?");

200 console.log("webkitGetUserMedia failed with exception: " + e.message);

201 }

202 }

203 onUserMediaSuccess = function (stream) {

204 console.log("User has granted access to local media.");

205 openChannel();

206 var url = webkitURL.createObjectURL(stream);

207 $(’#localVideo’).attr({

208 src: url

209 });

210 localStream = stream;

211 }

212 onUserMediaError = function (error) {

213 console.log("Failed to get access to local media. Error code was " + error.code);

214 alert("Failed to get access to local media. Error code was " + error.code + ".");

215 }

216

217 </script>

218 </head>

219 <body>

220

221 <div id="container">

222 <div id="room_details">

223 <input type="button" id="create_room" value="Create room" />

224 <label for="room_id_l">Room ID</label>

225 <input type="text" id="room_id" />

226 <label for="room_key_l">Room Key</label>

227 <input type="text" id="room_key" />

APPENDIX A. HTML5 JAVASCRIPT SOURCE CODE 88

228 <input type="button" id="connect" value="Connect to room" />

229 </div>

230 <div id="local">

231 <video width="50%" height="50%" id="localVideo"

232 autoplay="autoplay" style="opacity: 1;

233 -webkit-transition: opacity 2s;">

234 </video>

235 </div>

236 <div id="remote">

237 </div>

238 <div id="footer">

239 </div>

240 </div>

241

242 </body>

243 </html>

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Research goals
	1.2 Problem statement
	1.3 Structure of the thesis

	2 Related Work
	2.1 Video streaming
	2.2 Peer-to-Peer streaming technology
	2.2.1 BitTorrent
	2.2.1.1 Streaming

	2.2.2 VOD solutions
	2.2.2.1 Native applications
	2.2.2.2 Browser based solutions

	3 HTML5
	3.1 Evolution
	3.2 HTML5 and JavaScript
	3.3 The <video> tag
	3.4 File API
	3.5 IndexedDB API
	3.6 Web Workers
	3.7 Web Sockets
	3.8 Additional libraries
	3.8.1 jQuery
	3.8.2 WebToolKit MD5

	4 WebRTC
	4.1 Peer-to-peer connections
	4.1.1 NAT traversal mechanisms

	4.2 Specification and implementation
	4.3 Data API
	4.4 Standardization influence

	5 Design
	5.1 Network architecture
	5.2 Video publishing
	5.2.1 Browser storage

	5.3 Video consumption
	5.4 Media playback
	5.5 Peer-to-Peer communication

	6 Implementation & Evaluation
	6.1 Development environment
	6.2 Video publishing
	6.3 Video consumption
	6.4 Peer-to-Peer communication
	6.5 Evaluation
	6.5.1 Integrity check module
	6.5.2 File storage limitations
	6.5.3 Multiple peer connections evaluation

	7 Discussions
	7.1 Homogeneous & heterogeneous P2P
	7.2 Mobile platforms
	7.3 Security concerns
	7.4 Security API proposal

	8 Conclusion
	8.1 Future work

	A HTML5 JavaScript Source Code
	A.1 Video hashing & storage
	A.2 Video conferencing
	A.2.1 Tracker implementation - Server-side with node.js
	A.2.2 Client side implementation

