
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Hannu Lyytikäinen

Designing Web Services for Location-
Aware Mobile Devices
Case: Traffic Monitoring Service

Master’s Thesis
Espoo, May 16, 2012

Supervisor: Professor Jukka K. Nurminen, Aalto University
Instructor: Jani Lammi, M.Sc. (Tech.), Gofore Oy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80704246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Hannu Lyytikäinen

Title:
Designing Web Services for Location-Aware Mobile Devices
Case: Traffic Monitoring Service

Date: May 16, 2012 Pages: viii + 89

Professorship: Data Communication Software Code: T-110

Supervisor: Professor Jukka K. Nurminen

Instructor: Jani Lammi, M.Sc. (Tech.)

Open remote programming interfaces and technologies that enable the develop-
ment of mashup applications have revolutionized the the way the World Wide
Web is used. The emergence of smartphones has provided a new platform for
which to build applications that people can use regardless of their location.
The location-aware features of smartphones have made it possible for the mo-
bile mashup applications to customize the content they provide for users based
on their location.

In this thesis I study how Web services should be designed and implemented
so that they would serve location-aware mobile mashup application in the best
possible way. I lay down the requirements that this sort of Web service has and
then look into different technological and architectural solutions that are available
to create a location-aware mobile-friendly Web service interface.

As the practical part of the thesis, I use the knowledge gathered from my theo-
retical study to implement a new Web service interface for a traffic monitoring
system. The new interface is created because the system currently lacks an in-
terface that is mobile-friendly and enables the customization of content based on
the location of the user.

To prove that the new interface solves the problem at hand, I implement a mobile
application that consumes the new Web service interface. The client application
is also used to measure sizes of responses returned by the new API, the time used
to process them and what kind of effect location-based optimization has on the
API.

Based on the results of the implementation process and the findings of the testing
phase, I propose a set of design guidelines that can be applied when developing
a Web service interface for mobile location-aware devices.

Keywords: mobile, location-aware, Web service, open data, REST,
SOAP, WSDL, Atom, RSS, traffic monitoring

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Hannu Lyytikäinen

Työn nimi:
Web-palveluiden suunnittelu sijaintitietoisille mobiililaitteille
Tapaus: liikenteenvalvontajärjestelmä

Päiväys: 16. toukokuuta 2012 Sivumäärä: viii + 89

Professuuri: Tietoliikenneohjelmistot Koodi: T-110

Valvoja: Professori Jukka K. Nurminen

Ohjaaja: Diplomi-insinööri Jani Lammi

Avoimet etäohjelmointirajapinnat sekä teknologiat, jotka mahdollistavat mashup-
sovellusten kehittämisen ovat mullistaneet tavan jolla käytämme World Wide We-
biä. Älypuhelimien yleistyminen on tarjonnut uuden alustan sovelluksille, joita ei
ole sidottu mihinkään paikkaan vaan ne kulkevat ihmisten mukana. Älypuhelinten
sijaintitietoiset ominaisuudet ovat mahdollistaneet mobiilien mashup-sovellusten
sisällön räätälöimisen käyttäjän sijainnin mukaan.

Tässä diplomityössä tutkin, miten Web-palveluita tulisi suunnitella ja toteut-
taa, jotta ne parhaalla mahdollisella tavalla palvelisivat sijaintitietoisia mashup-
sovelluksia mobiililaitteissa. Esitän vaatimukset, joita tällaisella Web-palvelulla
on sekä tutkin millaisia teknologisia sekä arkkitehtuurisia käytäntöjä on olemas-
sa mobiiliystävällisten sijaintitietoisten Web-palvelurajapintojen kehittämiseksi.

Työn käytännön osuudessa käytän teoreettista tutkimustani hyväkseni ke-
hittäessäni uuden Web-palvelurajapinnan liikenteenhallintajärjestelmälle. Uusi
rajapinta tarvitaan, sillä järjestelmästä puuttuu etäohjelmointirajapinta, joka
mahdollistaisi mobiilit käyttäjäsovellukset, joissa sisältö on räätälöity käyttäjän
sijainnin mukaan.

Todentaakseni, että uusi rajapinta ratkaisee olemassaolevan ongelman, toteutan
mobiilin käyttäjäsovelluksen, joka käyttää uutta rajapintaa. Käyttäjäsovelluksen
avulla myös mitataan rajapinnan palauttamien viestien kokoa, niiden proses-
soimiseen käytettävää aikaa sekä sitä millainen vaikutus lokaatiopohjaisella op-
timoinnilla on rajapinnan toimintaan.

Kehitystyön ja testitulosten pohjalta esitän joukon suosituksia, joita tulisi nou-
dattaa kun kehitetään sijaintitietoisille mobiilisovelluksille tarkoitettua Web-
palvelurajapintaa.

Asiasanat: mobiili, sijaintitietoinen, Web-palvelu, avoin tieto, REST,
SOAP, WSDL, Atom, RSS, liikenteenseuranta

Kieli: Englanti

iii

Acknowledgements

I would like to thank my supervisor, Professor Jukka Nurminen for his valu-
able advice and devoted attitude that helped and inspired me throughout
the process. I would also like to express my gratitude to my instructor Jani
Lammi for his technical advice and to Gofore Oy for providing me with the
freedom to influence the topic of this thesis.

Helsinki, May 16, 2012

Hannu Lyytikäinen

iv

Abbreviations and Acronyms

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
BEEP Blocks Extensible Exchange Protocol
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
JSONP JSON with padding
P2P Peer-to-peer
REST REpresentational State Transfer
ROA Resource-Oriented Architecture
RPC Remote Procedure Call
SOAP originally defined as Simple Object Access Protocol
UDDI Universal Description Discovery and Integration
WSDL Web Service Description Language
XML eXtensible Markup Language

v

Contents

Abbreviations and Acronyms v

1 Introduction 1
1.1 Digitraffic . 2
1.2 Problems With the Current API 4
1.3 Research Goals . 5
1.4 Structure of This Thesis . 5

2 Background 7
2.1 Mashups . 7
2.2 Location-Awareness and Mobility 10
2.3 Open Data . 11
2.4 Other Traffic Services . 12

2.4.1 Research . 12
2.4.2 Open Traffic Web Services 13

2.5 Conclusion . 14

3 Technology Evaluation 15
3.1 REST . 16

3.1.1 REST by Definition . 16
3.1.1.1 Client-Server 16
3.1.1.2 Stateless . 16
3.1.1.3 Caching . 17
3.1.1.4 Uniform Interfaces 17
3.1.1.5 Layered System 17
3.1.1.6 Code-On-Demand 18
3.1.1.7 Data Elements 18
3.1.1.8 Connectors 19
3.1.1.9 Components 20

3.1.2 REST Applied to Web 20
3.1.2.1 Resource-Oriented Architecture 20

vi

3.1.2.2 Resources And URIs 21
3.1.2.3 Addressability 21
3.1.2.4 Statelessness 22
3.1.2.5 Representations 22
3.1.2.6 General Interfaces 23
3.1.2.7 Method Safety 25

3.1.3 Applying to Digitraffic 26
3.1.3.1 Advantages 26
3.1.3.2 Disadvantages 28

3.2 WS Stack . 29
3.2.1 SOAP . 31

3.2.1.1 Messages . 31
3.2.1.2 Nodes . 34
3.2.1.3 Message Exchange 34
3.2.1.4 Protocol Binding 36

3.2.2 WSDL . 37
3.2.3 UDDI . 39
3.2.4 Extensions . 41
3.2.5 Applying to Digitraffic 42

3.2.5.1 Advantages 42
3.2.5.2 Disadvantages 44

3.3 Feeds . 46
3.3.1 RSS . 46
3.3.2 Atom . 48
3.3.3 Applying to Digitraffic 50

3.3.3.1 Advantages 50
3.3.3.2 Disadvantages 50

3.4 Other Possibilities . 51
3.4.1 XML-RPC and JSON-RPC 51
3.4.2 Twitter . 51
3.4.3 Custom Protocol . 52

3.5 Solution Comparison . 52

4 Implementation 55
4.1 New Traffic Data API . 55

4.1.1 Digitraffic Architecture And Technologies 55
4.1.2 RESTful Interface . 56
4.1.3 Spatial Query . 56
4.1.4 Traffic Data Query . 57
4.1.5 Response Generation 57
4.1.6 API Description . 57

vii

4.1.7 Lessons Learned . 60
4.2 Client Application . 61

4.2.1 Mobile Platforms . 61
4.2.1.1 Mobile Operating Systems 62
4.2.1.2 HTML5 . 62
4.2.1.3 PhoneGap . 62

4.2.2 Development Tools . 63
4.2.3 Application Description 63
4.2.4 Lessons Learned . 64

5 Testing 67
5.1 Test Environment . 67
5.2 Test Results . 69

5.2.1 Message Size . 69
5.2.2 Performance . 71
5.2.3 Client Application Development 72
5.2.4 Comparing to the Old Solution 72

6 Discussion 73
6.1 Reliability of the Test Results 73
6.2 Applicability of the Selected Solution 73
6.3 Optimizing the Response Messages 74
6.4 Visual Impacts of the Zoom Level 74
6.5 Improvement Ideas . 75

7 Conclusion 77

A Client source code 85

viii

Chapter 1

Introduction

The World Wide Web (from now on Web) constantly evolves to new direc-
tions. Originally it consisted of static Web sites that people could access
with their browsers. This meant that the information on a site could only be
accessed by navigating to that site with a browser. Other information had
to be gathered from other sites.

From that collection of individual sites the Web has evolved to what we
nowadays know as the programmable Web. This means that the resources
of the Web are no longer intended only to be consumed by humans but also
by computer programs. Nowadays many Web sites combine content from
multiple sources. This sort of applications are generally known as mashups.
The mashup applications and technologies used to create them have evolved
from screen scraping to well designed application programming interfaces
(APIs) that expose the resources of the Web to applications that can access
them, use them and combine them with other resources in ways that would
have not been possible with the model of the traditional human consumable
Web. The applications that provide a remote interface that can be accessed
over the internet are generally known as Web services.

Considering the architectural design of the Web and the applications that
run on top of it, a converge of the so called human Web and the programmable
Web can be observed. The gap between these two concepts is narrowing as
new Web technologies allow developers to create applications that produce
information in multiple forms. This means that the information can be ac-
cessed in human and machine readable way.

Another factor in the convergence of human Web and programmable
Web is the architectural style how Web applications are currently designed.
REST[20] is an architectural style that defines a set of constraints for the
architecture of a network based application. It has proven itself to be an ap-
plicable set of guidelines for a Web based application, regardless of whether

1

CHAPTER 1. INTRODUCTION 2

the application is intended to be accessed by humans with browsers or by
other applications calling its API.

As open APIs have become popular, mobile devices, especially smart-
phones, have started to gain foothold as a mashup client platform. The
decreased prices of smartphones have made them available to more people
and this has increased the popularity of mobile mashup applications. Mobile
operating systems have evolved to enable different kinds of new applications.
Application stores have made it easier for developers to publish their applica-
tions and users to find them. Furthermore, faster mobile internet connections
and large displays in mobile devices have enabled the development of new
innovative mobile mashup applications.

An interesting new aspect in mobile mashup development is location-
awareness. It means that mobile client devices can locate themselves and
this location information can be used by applications to provide better in-
formation for users.

The increasing popularity of location-aware mobile devices has placed
new requirements on Web services that are used to gather data for mashup
applications. Compared to desktop applications, mobile devices have less
bandwidth, limited processing power and smaller displays that set limita-
tions for mobile applications. These limitations induce new requirements for
the Web services that are used to create mobile mashup applications. Web
services should provide optimized responses in formats that can be transmit-
ted over slow connections and deserialized in the client side in an effective
manner. Furthermore, there is no use of the location-aware features of client
devices if Web services do not utilize the location information.

This thesis investigates how APIs should be designed so that they would
serve mobile location-aware mashup applications in best possible way. The
research is done by applying new ideas on a traffic monitoring service.

1.1 Digitraffic

Digitraffic is a system that provides information about traffic fluency on
roads. It has been developed by Gofore1 in cooperation with Infotripla2 for
the Finnish Transport Agency3 and its main objective is to provide the agency
with information about the current and past traffic fluency on different roads
in Finland. In addition to traffic data, Digitraffic also provides information
about weather conditions on the roads.

1http://www.gofore.com
2http://www.infotripla.fi
3http://portal.liikennevirasto.fi

CHAPTER 1. INTRODUCTION 3

The current system is used with a Web interface that presents a map
of Finland. On this map are drawn roads that are divided into segments,
also known as links. The links are drawn with different colors that represent
the fluency of traffic on each link. The fluency data is gathered to the sys-
tem by using infrared cameras that are spread along the monitored roads.
The cameras take pictures of cars’ license plates and when a car passes two
consecutive cameras, the system recognizes that the same license plate has
traveled a link and the speed for the car on the link can be calculated. With
observations of multiple cars, an average speed can be resolved for each link.

This traffic data is saved in a system called Traffic Data Service (TDS). A
background process built in Digitraffic polls the TDS data storage and saves
the traffic data into its own database. Figure 1.1 presents the relationship of
the cameras, TDC and the actual Digitraffic application.

Figure 1.1: Digitraffic

As can be seen in figure 1.1, Digitraffic provides different interfaces for
the fluency data. A Web interface is used by professionals from the Finnish
Transport Agency to see a map visualization of the current traffic status, road
weather information and photos of certain parts of the roads for condition
analysis. Traffic fluency data can also be accessed by using a SOAP[31]
interface. It provides traffic fluency data for third parties that want to use
the information in other applications.

CHAPTER 1. INTRODUCTION 4

1.2 Problems With the Current API

The SOAP interface was developed back in fall 2007 when Digitraffic was
originally created. The reason it was developed was the INSPIRE EU di-
rective4 which laid down rules about opening spatial data resources to the
public. The original purpose of the interface was to provide a low-level API
that can be used to fetch the traffic data for enhancement and further use.
Any specific purpose for the interface or support for different client devices
was not considered. It was just a standardized way to provide traffic infor-
mation for third parties.

In order to exchange messages, the current Digitraffic remote API uses
SOAP which is a Web service technology standardized by the W3C5. SOAP
relies on XML[12] as message serialization format. The problem with the
current low-level nature of the API is that it returns large SOAP messages
and SOAP itself is quite a verbose protocol. With the current popularity
of mashup applications and the possibilities to build applications for mo-
bile platforms, it is desired that the Digitraffic data can also be provided
straight to mobile devices because that way Digitraffic could provide new
kinds of possibilities for application developers and end-users. However, mo-
bile devices have different kinds of special requirements like limited process-
ing power and limited bandwidth. Real-time traffic data would be useful
for road users. However, people quite rarely bring their desktop computers
on road with them but most drivers nowadays carry a smartphone. The
problem with the SOAP interface regarding mobile clients is that it provides
large response messages because of the verbose SOAP format whereas lighter
solutions would be desired.

Furthermore, the current SOAP API does not support any sort of opti-
mization schemes for traffic data queries. When it comes to traffic fluency
data, the location of the end-user could be used to optimize queries in order
to return smaller messages by just returning data that is valid to the user.

Therefore, a new solution is required for the Digitraffic remote API, to
overcome the limitations of the current API. The practical benefit of a mo-
bile friendly Digitraffic API would be that it would enable different kinds
of new mashup applications that consume the API. New mobile Digitraffic
applications could then enable route planning for users while they are on the
road and not only while they are near a desktop computer.

The requirements of the new API design are as follows:

• Enable mobile client application development

4http://europa.eu/legislation summaries/environment/general provisions/l28195 en.htm
5http://www.w3.org

CHAPTER 1. INTRODUCTION 5

• Be mobile platform independent

• Support lightweight data formats

• Enable query optimization based on user location

1.3 Research Goals

In this thesis I study the architectural guidelines and technologies that ensure
the best results when designing and developing remote interfaces that are
consumed by location-aware mobile applications. Different possible solutions
are evaluated by analyzing their advantages and disadvantages regarding
mobile client use. The goal of the thesis is to answer these two questions:

• What are the technologies and design principles that should be used
when providing traffic fluency data for mobile devices?

• How location-awareness can be exploited in order to optimize mobile
traffic data applications?

Based on the theoretical study, I design and implement a new remote
programming interface for Digitraffic. In order to test the new interface, I
also implement a mobile client application that consumes the new API. The
client application is used to prove the suitability of the technical solution to
the problem at hand and to make quantitative measurements about the new
solution.

I only concentrate on how the traffic data should be provided to mobile
devices. I rule out both the task of collecting the traffic data and the different
mathematical models that are used to analyze the data.

The key contribution of this thesis is a design of a new remote program-
ming interface that is mobile-friendly and that exploits the location-aware
features of mobile client devices. Other contributions of this thesis are a
prototype implementation of the new API design, a mobile client application
that consumes the API prototype and the lessons learned from the imple-
mentation process.

1.4 Structure of This Thesis

Chapter 2 opens up the concepts related to the topic, presents solutions pro-
vided by others to the research problem and explains why the topics of this

CHAPTER 1. INTRODUCTION 6

thesis need to be studied. Chapter 3 analyzes the different possible technolog-
ical and architectural solutions. Chapter 4 presents the implementation that
is designed based on the findings of chapter 3. Chapter 5 presents the test
environment, test results and findings that were gathered from the testing
phase. Chapter 6 is for discussion about the results and further development
ideas. Chapter 7 provides a conclusion of the thesis, practical benefits and a
list the Web service design guidelines that are the main contribution of this
thesis.

Chapter 2

Background

Applications that draw content from multiple sources are a growing trend
in software development. These mashup applications can fetch data from
open APIs and use it in new ways and the location-aware features of mobile
client devices can be used to customize mobile mashup application content
for users. However, mashup applications that run in mobile devices have
certain limitations and special requirements due to the limited resources of
mobile handsets. Furthermore, the public sector is nowadays interested in
opening public data resources for application developers. This chapter de-
scribes how the masuhp paradigm, location-aware mobile client devices and
public sector’s interest towards open data motivate the research conducted in
this thesis. Furthermore, I present what kind of data distribution solutions
are implemented in other traffic monitoring services.

2.1 Mashups

Mashup is an application that draws content from multiple sources, processes
the information to be used for a new purpose and presents the information
in a new user interface. On top of content, mashups can also combine pre-
sentation and functionality from other applications[56]. The term originally
originates from music where it is used to describe a song that combines two
or more pre-recorded songs or compositions[33]. The growing number of
open APIs provided by different services have made mashup development
more interesting and therefore combining content from multiple sources has
become common for Web based applications. Mashup-based design usually
emphasizes using Web as platform[33] for applications that serve a special
situational and sometimes even short-lived need[56]. Mashup applications
rarely produce any data of their own but the value they bring to the existing

7

CHAPTER 2. BACKGROUND 8

data provided by other services is they way they process the data to be used
in a new context, how they combine it with content from other sources and
the user interface they provide for the processed data[33].

Mashups use different techniques to retrieve their content from the Web.
They can use various XML formats, RESTful APIs, feeds like RSS and Atom
or even screen scraping[56]. Screen scraping is a method where a markup file
intended to be viewed by humans is analyzed an processed by machines. In
the context of Web this basically means crawling through HTML documents
and extracting information from them to be used in an other context. The
downside is that it requires a significant reverse-engineering effort[29].

Another, somewhat less manual, way of developing mashup applications
is using designated mashup tools that aggregate and manipulate content from
other sources. Applications like Yahoo Pipes1, IBM Mashup Center2, Intel
Mash Maker[17] and BU Studio[55] can be used to create mashup applications
without programming skills. Therefore, these applications enable mashup
development for non-technical Web users. However, currently there seems
to be problems in the adoption of these kind of systems, for example, in the
time of writing this, two big mashup tool projects, Google Mashup Editor
and Microsoft Popfly, have been deprecated. This is a shame since a truly
liberating tool for end-user could enrich user experience and result in truly
innovative systems[42] and therefore enable proper user-driven innovation
regarding Web applications.

Mashup application development is often compared to enterprise level in-
tegration work where more heavyweight technologies like BPEL, WSCI and
Java portlets are commonly used. Using these technologies requires intimate
knowledge about schemes and semantics of data sources or business proto-
col conventions for message exchange. Therefore, building solutions with
these technologies has been a rigid and slow process that requires profes-
sional programmers and domain experts. Furthermore, the systems tend to
be very server-centric and thus do not fully utilize the processing power and
storage capabilities of client devices and applications.[56][55] Lighter mashup
technologies significantly reduce the complexity and entry barrier of heavier
technology stacks[29]. The division between light Web application technolo-
gies and heavier enterprise integration technologies seems to be quite clear
nowdays. The reason that the heavier technologies are still around is that
enterprise processes tend to have a wide set on nonfunctional requirements,
such as security and reliability, that are met by enterprise technologies but
rarely encountered with mashup applications[56]. Current trend where the

1http://pipes.yahoo.com/pipes/
2http://www-01.ibm.com/software/info/mashup-center/

CHAPTER 2. BACKGROUND 9

mashup technologies vary from traditional integration tool has reduced entry
barrier for application development and application complexity in general.
It has also enabled mashup applications to be more Web-based, re-usable,
lightweight and customer centric.[29]

If we concentrate on mashup applications, we can divide them into to
main categories: client-side and server-side mashups. Characteristic for
client-side mashups, as the name implies, is that data fetching, processing
and application logic is all located in the client application. This can be a
native application in a mobile device or a Web site. Server-side mashups
on the other hand, retrieve data in the server, process it for the needs of
the mashup and then provide it for the client application. In this model
the client only acts as a user interface for the data provided by the server.
It seems that pure client-side mashups are more common in native applica-
tions, for instance in mobile phones. Reasoning for this is provided by the
Same Origin Policy, which prevents AJAX calls to foreign domains from Web
applications. AJAX (Asynchronous JavaScript and XML) is a set of Web de-
velopment technologies that can be used to perform asynchronous calls from
a Web site to server. It is an essential technique for developing modern re-
sponsive Web-based user interfaces. However, the emerging collection of new
Web technologies known as HTML5 enables cross-domain AJAX calls, thus
making client-side mashups easier to be developed for browsers. This can
improve chances for HTML5 to become a popular mashup platform, because
it reduces the problems regarding portability to different kinds of devices and
operating systems, which appears to be a major problem with native client
applications.[6]

Even though mashup development is getting easier and faster, still multi-
ple challenges stand in the way of many good ideas to be realized as innovative
applications. Ironically, as content is the ingredient that makes mashup ap-
plications so great, it is also the origin of many of the challenges that mashup
development faces. For one, there exists many legal issues when consuming
content from external sources. This usually means that users of a mashup
application have to accept terms of use in order to use the application.[24]
Accepting terms of use to use data from unknown sources might raise the
barrier for some users to start using an application. In addition to legal is-
sues, problems can also be encountered with data pollution. Many mashups
use content that is basically public user input and therefore there is no guar-
antee on the content the application receives from external sources. Using
public input also causes other problems, such as that there is no guarantee of
the trustworthiness of data.[29] Therefore, the data may not work as the best
content for business critical applications. This sort of lack in accountability
has seriously slowed down the adoption of mashups in the enterprise when

CHAPTER 2. BACKGROUND 10

compared to the Web, for instance[24]. Another reason preventing wider
use of mashups in the enterprise is the lack of a widely dominant model for
integrating different components, although Ye et al. propose a new inte-
gration pattern for mashups based on component and connector models[55].
Furthermore, lack for common semantics between data elements from mul-
tiple sources can cause problems when integrating multiple components in
an application[29]. This means that for instance the concept ”price” can
have different meanings in different systems, like for example in a situation
where some definition of ”price” includes VAT and some other does not.
When developing applications with a long lifespan, the continuity of the sup-
port of different APIs can raise problems[33]. Finally, Salo et al. bring out
the fact that heavy computing due to information processing in the client
end can cause problems with battery life on mobile devices. They also pro-
pose a MapReduce-based computing model that can be used to process large
amounts of data on the server-side before passing it on to the client[43].

Despite the long list of challenges that developers have to encounter,
mashup applications have become a de facto way of combining content from
multiple sources in the Web. Websites like ProgrammableWeb3 collect a
comprehensive list of open APIs to be used in mashup applications. The
absence of proper integration patterns has not stopped developers from con-
suming these sources to provide Web users with innovative applications. The
emergence of smartphones and tablet PCs has brought new possibilities of
running a program in the location context of the user, but it has also placed
new challenges for mashup applications. Chapter 2.2 discusses the aspects of
mashup development from the point of view of location-aware mobile devices.

2.2 Location-Awareness and Mobility

Lowered prices and constantly improving mobile operating systems have
hugely increased popularity of new mobile devices, especially smartphones.
Together with improved wireless connections, these devices provide a good
platform for mashup development. The fact that they can also use numerous
ways to locate themselves brings an interesting new concept into mashup de-
velopment, location-awareness. It can be used to add the context of location
to the user experience of an application. A typical location-aware mobile ap-
plication is a map application which consumes an external map API to view
information retrieved from other APIs on a map. The user location can be
used, for example, in a way that the application can show data that is related

3http://www.programmableweb.com

CHAPTER 2. BACKGROUND 11

to locations near to the whereabouts of the user. In order to determine the
location, a mobile device can use IP address, GPS, MAC address in a WLAN
network, GSM network or cell phone ID[6].

When designing location-aware mobile applications and the APIs that
they consume, a few guidelines have to be remembered. They key is to
provide efficient data structures and optimized queries. This kind of design
can allow fast queries which then again are essential with location-based
services since the the locations and states of different objects can change
in a fast pace and therefore data can quickly become obsoleted.[32] Other
things to keep in mind are remixability, loose coupling, scalability and ease
of deployment[46]. Main issues with mobile devices are usability, connec-
tivity and performance[42] which are caused by small displays, low network
bandwidth and limited processing power. Besides connectivity, low band-
width also affects usability as longer response times from APIs induce longer
response times for end-users.

Despite the challenges of mobile application development, mobile devices
have become a popular platform for end-user application development. How-
ever, when considering Web and the location-aware features of mobile de-
vices, more problems are emerging. The main issue is that even though the
devices used by people are location-aware, the Web is not. Basically this
means that there occurs mismatches between location concepts in different
services. For instance, one service can provide spatial information with radius
based semantics while an other service provides same kind of information but
with a square based solution.[30] These challenges can lead to tightly coupled
integration of map services.

2.3 Open Data

Public governments store huge amounts of data that could be useful for
different kinds of mashup applications. The problem standing in the way
of innovative applications merging public data is the fact that usually these
government administered data storages can only be accessed by authorities.

Open data means information that is produced by public funding and can
be openly accessed[37]. This can be any kind of information gathered by a
public sector organization. Previously access to this kind of data has been
limited but the emergence of varying internet technologies could enable more
open data policies[37].

According to Poikolainen et al.[37] more open public data policies could
contribute to the following:

• Transparency of democracy and administration

CHAPTER 2. BACKGROUND 12

• Creation of new innovations and markets

• Increase efficiency within the government

At the time of writing this, Finland has taken a significant step towards
open data policies on government level. A clear indication of this is that
providing public data openly has been added to the new government public
policy[4]. Here is what it states:

Data reserves produced with public funding are to be opened to
the use of citizens and companies. The goal is to provide digital
resources of public sector to be utilized by citizens, companies,
communities, authorities and educational as well as research or-
ganizations via computer networks in an easily reusable form.

This shows that the number of open data sources can be increasing in the
following years also in Finland as it has been in many other countries[37].

2.4 Other Traffic Services

Here I present other traffic surveillance systems and see how they have solved
the problems that are studied in this thesis.

2.4.1 Research

A lot of academic research has been conducted in the field of traffic monitor-
ing services. However, most of the research studies different ways to collect
the traffic data, making traffic estimations based on the data and different
privacy issues that are related to collecting the data but the distribution of
the data to third parties has had less attention. Luckily few researches have
also covered the topic.

One interesting research project on traffic surveillance is Mobile Millen-
nium4 which is developed in cooperation by California Center for Innovative
Transportation, Nokia Research Center and the University of California in
Berkeley. They used GPS enabled smartphones to collect the traffic fluency
data straight from the cars that are driving on roads. This system also in-
cludes a mobile client application that can be used to monitor traffic fluency.
The client applications uses a Navteq5 Navstreets digital map to visualize

4http://traffic.berkeley.edu
5http://www.traffic.com

CHAPTER 2. BACKGROUND 13

traffic fluency in the client end.[53] Navteq developer resources6 allow traffic
data access for their customers. Currently their traffic data API provides
information in XML format and binary feed. Previously they have provided
a SOAP API and JavaScript library for traffic data access but these resources
are deprecated for new users.

Lin et al.[28] propose a traffic surveillance system relying on a paradigm
called Service-Oriented Dynamic Data Driven Application System (SOD-
DDAS). Their architecture relies heavily on technologies of the WS stack.
Therefore, also they also use SOAP and WSDL to provide access to the traf-
fic data gathered by their system which, like Mobile Millennium, uses moving
sensors to gather traffic data. However, their research does not consider con-
suming the public interface form mobile devices or using location-context to
optimize traffic data queries.

An interesting solution to gathering and distributing traffic information is
provided by Yang et al.[54] with their peer-to-peer approach. They propose
a traffic information system where each vehicle is is presented as a node and
information is shared between the nodes without a centralized data center.
Each node makes traffic observations and broadcasts them to a selected set of
nodes that are elected to be supernodes. The supernodes generate traffic re-
ports from the information they have received. This data is then provided to
all the other nodes by using a peer-to-peer network that the vehicles can con-
nect to using WiFi, WiMAX or 3G. In their simulation environment, Yang et
al. used Gnutella as their peer-to-peer implementation. This kind of decen-
tralized approach is an interesting aspect in the world of traffic surveillance
systems where almost every system seems to rely on some sort of centralized
traffic data storage. In this study the simulation environment also included
a mobile client application built on a PDA device so this kind of traffic data
distribution model has also been tested in mobile context.

In the papers published about traffic systems, the ways to provide the
data for client applications vary a lot. Some papers propose interesting new
solutions, like Yang et al. with their peer-to-peer proposal. This shows that
different means can be used to access traffic information.

2.4.2 Open Traffic Web Services

Here are listed some open APIs that any developer can consume to develop
traffic related applications.

511 Driving Times7 is a RESTful XML-based Web service that provides
traffic information in the San Francisco Bay Area.

6http://www.nn4d.com/site/global/developer resources/apis sdks/p apis sdks.jsp

CHAPTER 2. BACKGROUND 14

GovHG Data.One8 is a service provided by the Hong Kong government.
It offers traffic speed information, journey time indicators and special
traffic news from a RESTful interface in XML format.

Bing Traffic9 provides traffic incident data as a part of Microsoft’s map
service. It uses RESTful approach and provides responses in JSON
and XML. Bing traffic does not give traffic fluency information but the
queries can be optimized with location parameters.

MapQuest Traffic10 is a RESTful Web service that supports XML, JSON
and JSONP for cross-domain requests. Queries can be narrowed down
by providing bounding coordinates as parameters and the service re-
turns traffic fluency data as map images that visualize the traffic situ-
ation.

In the world of open traffic APIs, the most common way to design in-
terfaces is a RESTful approach with XML or JavaScript Object Notation
(JSON)[1] as data format. Therefore, using a RESTful design and lightweight
data formats is something that should be looked into when thinking about
how the Digitraffic data could be provided to third parties.

2.5 Conclusion

This chapter presented concepts that motivate the research of Web service
technologies and the development of new remote API for Digitraffic. The
combination of the emergence of mashup applications and the requirements
brought by mobile client devices have clearly changed the way remote pro-
gramming interfaces are used. Location-awareness also brings an interesting
new ingredient to the equation. The interest of public sector in open data
promotes that publicly owned services, like Digitraffic, should have proper
programming interfaces so that the data can be accessed in an appropriate
way. Most of the public traffic interfaces in the Web are implemented in some
other way than the current Digitraffic Web service interface. Therefore, it
is important to study new solutions that could be applied to Digitraffic in
order to provide traffic data for mashup applications in a better way.

Chapter 3

Technology Evaluation

This chapter takes a look at different ways to design and implement a new
API for Digitraffic. Basic information about the solutions will be given and
the advantages and disadvantages of a solution are then compared in con-
trast to Digitraffic and its requirements. The three selected solutions are
REST, WS stack and feeds. Also other possibilities for technical solution
are presented but I take a deeper look into the three first ones. The reason
for this is that the WS stack is the current implementation technology and
REST and feeds seem like the two most prominent challengers to it.

About naming conventions, in this thesis REST means an architectural
style, RESTful and ROA are synonyms for an architecture that is designed
by following the guidelines of REST. WS stack means the standardized Web
service technology stack that consists of SOAP, WSDL, UDDI and the WS-*
extension family.

One paradox with comparing WS stack, REST and feeds is that they
are completely different concepts. After all, REST is an architectural de-
sign, WS stack is a collection of technologies that work together to integrate
systems and feeds, in this case Atom and RSS, are individual technologies
that can be used to subscribe to content on the Web. However, this bunch
of buzzwords is present in the conversation, when developers and companies
figure out solutions for open APIs. One possibility would be to compare two
widely adopted architectural paradigms, REST and SOA (Service Oriented
Architecture). However, the scope of these designs is on completely different
abstraction level, so that they could be compared in a rational way. Also
SOA targets the question of how enterprise systems are designed, developed
and integrated in the long run and therefore it is out of the scope of this
thesis, which mainly focuses on mobile mashup applications. Furthermore,
the argument ”REST vs SOAP” blossoms in the blogsphere and also in the
academic papers, so it seems like a adequate question to be discussed here.

15

CHAPTER 3. TECHNOLOGY EVALUATION 16

Adding feeds to the comparison can be reasoned by the fact that they are
essential technologies in today’s Web mashup development and there already
exists research in applying feeds to spatial services[30].

Different solutions are compared in a way that first the solution and its
features are described. Then the applicability of the solution to the research
problem is evaluated by studying the research made on this topic. Finally,
different solutions are evaluated against the requirements that were proposed
for the new Digitraffic API in chapter 1.2.

3.1 REST

In this chapter I will present the REST architectural style for network based
computer applications. Chapter 3.1.1 describes the formal definition of the
style and chapter 3.1.2 describes how this style is applied in the Web context.
Finally I will discuss the applicability of REST to the research problem of
the thesis.

3.1.1 REST by Definition

REST is an architectural style for network based computer applications.
It defines a set of constraints that describe how an architecture should be
designed. This chapter presents REST as it is described in Roy Fielding’s
dissertation[20].

3.1.1.1 Client-Server

REST style is intended for a system with client-server architectural style.
Idea behind this constraint is the separation of concerns. Practically this
means that user interface is separated from data storage and business logic.
This kind of style improves portability of client applications, simplicity of
components and independent deployment of components.

3.1.1.2 Stateless

This constraint means that the server does not hold the state of a session.
Therefore, the session data is completely stored and maintained in the client.
All the requests sent by the client must contain all the information the server
needs in order to understand and process the request. Statelessness improves
scalability since servers are able to quickly free resources and, furthermore, it
simplifies server side implementation because servers do not need to manage
session state between requests.

CHAPTER 3. TECHNOLOGY EVALUATION 17

The disadvantage of statelessness is that it might decrease network per-
formance, since all the information regarding application state has to be
included in every request and it can not be stored in the server. Also the
server has no control over the implementation of the client which might lead
to inconsistent behavior of applications. Then again, in Web it might also
be considered as an advantage that different applications can use provided
data in different ways.

3.1.1.3 Caching

REST style requires that all server response messages must include a label
that implicitly or explicitly tells if the information contained in the message
can be cached in the client for later use. Caching can partially or completely
remove some interactions, improve efficiency and give better response times
to the end user. However, the trade-off of caching is that the information
presented by client application might sometimes be invalid or outdated.

3.1.1.4 Uniform Interfaces

REST strongly emphasizes designing uniform interfaces between compo-
nents. This kind of design is simple and it improves the visibility of in-
teractions. Uniform interfaces help a system to be simpler and component
interactions to be more visible. It also enables decoupled components and
independent component deployment. The disadvantage of uniformity of in-
terfaces is that it reduces system efficiency. Instead of standardized inter-
faces, unstandardized interface design that meets the specific needs of an
application might provide better efficiency. Then again REST is designed to
be a common architecture of the Web, which means it is designed to handle
large-grain hypermedia data transfer.

3.1.1.5 Layered System

To improve scalability, REST adds a constraint that addresses layered sys-
tem architecture. With a layered design, systems can be composed from
hierarchical layers which can hide complexity from other components. By ab-
stracting system logic and complexity from other components overall system
complexity can be reduced and component independence can be increased.
Another advantage of layers is that they can also be used to encapsulate
legacy systems and to enable the use of legacy clients for new services.

The trade-off of layers is that they increase overhead and latency in re-
quests over network. In the client end this can appear as longer response
times. This latency can be reduced by caching data between the layers.

CHAPTER 3. TECHNOLOGY EVALUATION 18

3.1.1.6 Code-On-Demand

Code-on-demand allows clients to extend their functionality with code down-
loaded from the server and executed in the client. This kind of design sim-
plifies client implementations and provides a chance to add new features to
previously deployed client applications. The disadvantage of code-on-demand
is that it reduces visibility. Therefore, it is only an optional constraint in the
REST style.

3.1.1.7 Data Elements

Data elements have a key role in REST. They address many of the most
important architectural characteristics defined by the design style. In REST
components transfer representations of resource states between each other.
Representations are serialized in a standardized format that is dynamically
selected based on the capabilities and preferences of the recipient and the
nature of data.

The most important data element in REST is resource. The definition
of a resource is anything that can be identified. That might be a Web site,
an image, a document, a person, the top ten records in the charts, a set of
resources and so on. The important thing to remember is that there has to
be a clear way to identify the resource from other resources. Some resources
have a static state in a way that their value set stays constant over time. An
example of this kind of resource might be ”version X” of a document. Other
resources have a more dynamic value, for example, ”the latest version” of a
document. Value of ”the latest version” changes over time whenever there is
a new latest version but the value of the ”version X” stays always the same.
However, even if the the value of a resource is dynamic, it’s identifier must
always stay the same.

A specific resource is identified with a resource identifier. REST relies
on a naming authority to maintain the validity of the resource identifier over
time. Even though an authority maintains the identifier, the author of a
resource is expected to choose the resource identifier. This way the resource
identifier describes the semantics of the resource.

In REST, resources are passed between components as representations.
Representations capture the current or intended state of a resource. They
consist of data, metadata describing the data and occasionally metadata
describing the metadata. Metadata can include representation metadata,
resource metadata or control metadata, weather the data describes the rep-
resentation itself, the resource it captures or the way the representation is to
be handled in a component interaction. The data format of a representation

CHAPTER 3. TECHNOLOGY EVALUATION 19

is known as media type. It is decided during the interaction according to the
capabilities and preferences of the requesting application. Some media types
might suite to be rendered and viewed by a user, other might suite better
to be processed by computer programs. REST also stresses that media type
should enable processing and rendering of the data before it is completely
received. This sort of behavior enhances user-perceived performance.

3.1.1.8 Connectors

REST defines multiple connector types to provide activities and transfer re-
source representations between components. The connector interface design
emphasizes generality and clean separation of concerns. This kind of de-
sign improves simplicity by providing an abstract interface that hides the
underlying implementation of resources and processing mechanisms. Gen-
eral interfaces also allow the implementation to be substituted by another
without causing any inconvenience to the clients.

All interactions in REST are stateless. This means that every request
holds all the information that is needed to execute that action. This sort of
restriction is added to achieve four functions:

1. Removing the need for the server to hold the application state releases
resources and improves scalability.

2. Stateless requests allow the requests to be made in parallel so that the
server does not need to understand the semantics of the request.

3. Intermediaries may view and understand a request in isolation which
may be necessary if services are dynamically rearranged.

4. Every request includes information that might effect the decision of
using a cached response in the server.

REST defines five different connector types. The two main types are
client and server. From these two, client is the one that sends the initial
request. Server listens for requests, processes them and sends responses.

Third connector type is cache connector. It can be used to cache responses
to be reused on later interactions. The cache can be located in both client
and server interface. In the client end it can be used to reduce network
communication and in the server end it can be used to avoid the need of
repeating the process of producing a response. A cache can be shared which
means that cached responses can also be sent to clients that did not originally
send the request that led to the processing and caching of the response.

CHAPTER 3. TECHNOLOGY EVALUATION 20

However, this sort of shared caching can lead to errors if the cached response
is not the response that was anticipated by the client.

The two final connector types are resolver and tunnel. A resolver is used
to translate partial or complete resource identifiers into network addresses.
In the context of the Web this could be a DNS server for example. A tunnel
is needed when network communication has to be relayed over some network
boundary. This kind of boundary can be a firewall or a network gateway.
Tunnel connector type is added to REST in case some components want
to dynamically switch from active component behavior to using a tunnel.
Otherwise it could have been left to the network infrastructure to take care
of tunnels.

3.1.1.9 Components

Components use the different connectors to complete the REST architecture
style. A user agent is a component that uses the client connector to access
resources. In the Web context the most common user agent is a Web browser
which sends requests and renders the responses.

Origin server uses the server connector to control a resource that is re-
quested by user agents. Each origin server provides all the needed retrieval
and modification methods to resources that it hosts. The implementation of
each method is hidden behind a generic interface. One Web example of an
origin serve is an application server.

Last two components are intermediary of type and they both act as a
client and as a server. A proxy is an intermediary component selected by a
client to provide interface encapsulation of other services, data translation,
performance enhancement or security protection. A gateway provides the
same services but is controlled by a server. The main difference between
these two is that a proxy is the only one that is selected by the client.

3.1.2 REST Applied to Web

3.1.2.1 Resource-Oriented Architecture

An architecture that follows the principles of the REST architectural style is
called RESTful. A RESTful architecture is also known as Resource-Oriented
Architecture (ROA)[39]. In ROA components, interfaces and interactions are
designed and implemented in a RESTful way. This sort of architecture en-
ables scalability, simple system design, generic interface design, independent
deployment of components and it places no restrictions on the technologies
that are used to implement different components.

CHAPTER 3. TECHNOLOGY EVALUATION 21

3.1.2.2 Resources And URIs

In ROA, resources are identified with Universal Resource Identifiers (URI)[10].
URIs are the ”addresses” of the Web so they are the logical identifiers for
resources in ROA. In a well designed system, URIs describe the resources
they identify, for example:

• www.example.com/pictures/hello.png

• www.example.com/defects/3434

• www.example.com/users/8736

Every URI designates only one resource. On the other hand, one re-
source can be designated by one or multiple URIs. For example, fetching
company sales numbers from www.example.com/sales/2011/Q1 might re-
sult in same byte stream as a resource at www.example.com/sales/2011 Q1.
Even though these URIs are different they represent the same resource.

Also note that multiple resources can represent the same data. One ex-
ample of two resources representing the same data might for example be a
case, where different versions of a software application are modeled as re-
sources. In that case two valid URIs might be www.example.com/software

/application/versions/1 1 10.tgz and www.example.com/software

/application/versions/latest. These two URIs might point to the same
file but the ideas behind them are completely different. One points to a spe-
cific version of an application and the other points to the latest version of
the same application. Therefore, the URIs point to different resources.

3.1.2.3 Addressability

A ROA concept closely related to the URI is addressability. It means that a
Web service or a Web site provides every significant piece of information as
a resource. So anything that a Web service user might want from a service
can be accessed with a URI.

From a Web site point of view addressability can be thought in a way
that in an addressable architecture, every site can be bookmarked for later
reference. If a system is not built to be addressable, users should download
the pages they view so that they could reference them later on.

Addressability also allows completely new ways of consuming resources.
For example HTTP proxy services or translation Web sites might take URLs
as a parameter when accessing a resource.

CHAPTER 3. TECHNOLOGY EVALUATION 22

3.1.2.4 Statelessness

Just like in the REST definition in chapter 3.1.1, statelessness is also a major
part of ROA. In the Web context it means that every single HTTP request
is made in isolation from other requests. If addressability means that every
meaningful piece of information in a service is provided as a resource and
can be accessed with a URI, statelessness means that every server state can
be accessed with a URI. This means that also sessions can be provided as
resources[27].

In a stateless system, client applications do not need to worry about the
order of the requests. The server side does not hold a state, so clients provide
all the information needed in every HTTP request. Therefore, there is no
need for complex session handling in the server side.

On top of that, statelessness actually makes a Web service more address-
able, it also enables more ways to run and maintain a service. The load that
is directed to a service can be distributed to multiple servers. In the current
trend where horizontal scalability and scaling out are common solutions to
growing number of requests, stateless requests fit in perfectly. This way in a
system that runs on multiple servers any server can handle any request since
previous requests have no effect on new requests.

In order to scale, stateful systems need to replicate every session to every
machine the application is running on. Alternatively stateful systems need
session affinity, which means that every request in a client session needs to
be routed to the same server.

Stateless architecture also makes caching easier. An application can de-
cide weather or not to cache the response of a HTTP request based only on
that one response. The application does not have to resolve if the server
state has en effect in the response and the response would be different with
the next equivalent request.

Some technologies have been proposed in order to add sessions to RESTful
architecture, for example, Erenkrantz et al.[18] propose cookies as a way to
add sessions to RESTful interactions. However, Richardson and Ruby regard
cookies as a non-RESTful technique and that they do no follow the guidelines
of ROA[39].

3.1.2.5 Representations

A resource represents a piece of data provided by a Web service. It’s data
about something but there really is not much else to it. In order for a client
to be able to use the data, the service has to provide a representation of the
resource. So a representation is sort of the format in which the resource is

CHAPTER 3. TECHNOLOGY EVALUATION 23

presented and it defines how the client processes the data. A resource can
be thought of a changing data set but a representation is like on image of a
resource in a certain point of time and in a certain format.

One obvious question here is that which representation a server provides
for each client request. There are a few ways the client and the server can ne-
gotiate the correct representation. A simple way is to include info about the
required representation into the URI. Another way is to include the informa-
tion in the HTTP request headers. Including it in the URI is recommended
since this way the URI holds as much information about the requested re-
source as possible. Also URIs get passed around as links and this way the
representation info stays alive longer, whereas HTTP request headers tend
to die after the request is committed. The downside in adding the info in
the URI is that it increases the number of URIs per one resource which can
cause URI dilution. However, the trend in most open APIs nowadays seems
to be to add the representation request in the resource URI.

From pure Web service point of view the main question regarding the
representation is in which format the requested data is presented in the re-
sponse. The two most popular formats are JSON and XML. From these two,
JSON is currently gaining more popularity in open APIs. One reason for
this is that JSON objects are easy to construct and parse in JavaScript and
dynamic languages, which are becoming increasingly popular techniques to
develop web service clients. Other reason is that JSON is fast to parse, for
example when compared to XML[51].

3.1.2.6 General Interfaces

Interface generality is one of the most important principles of REST. In ROA
this means that different functions that Web services provide are limited to
the HTTP methods: GET, PUT, DELETE, POST, HEAD and OPTIONS.
These methods are used to access resources in RESTful systems. Following
examples use a blog service www.fooblog.com to illustrate the function of
each HTTP method in ROA.

GET is used to retrieve data. Sending a GET to a server returns a rep-
resentation of some specific resource. For example, a client can retrieve a
blog post with id 1234 from the blog service by sending a GET request to
www.fooblog.com/blogs/myblog/posts/1234.

PUT creates a resource. If our blog service identifies blog posts by their
topic, a client can create a new blog post by sending a PUT request that
contains a representation of a blog post to www.fooblog.com/blogs/myblog

CHAPTER 3. TECHNOLOGY EVALUATION 24

/posts/post-about-my-day. PUT can also be used to modify existing re-
sources. By sending a PUT request to a URI of an existing resource, it
can be overridden with new data. For example, to update blog post, a
client can send a PUT containing the updated post to the existing resource
www.fooblog.com/blogs/myblog/posts/post-about-my-day.

POST, just like PUT, also has two functions in ROA and one of them
is adding new resources. The difference between adding new resources with
POST and PUT, is that with PUT the client has control over the identifier
of the new resource. Like we saw in the PUT example, the client gets to
decide the identifier of the new post (post-about-my-day). With POST,
the server is in charge of assigning an identifier to the new resource. For
example, a POST to www.fooblog.com/blogs/myblog/posts creates a new
resource where the id can for example be the database key. If 1234 was the
id that the server resolved for the new blog post, the URI of the created re-
source would be www.fooblog.com/blogs/myblog/posts/1234. The other
function of POST is to append an existing resource with additional infor-
mation. In the blog service example this could for example mean adding
comments to existing blog posts. If a client uses POST to send some data
to www.fooblog.com/blogs/myblog/posts/1234, that data would be ap-
pended to the post as a comment. To clear the relationship between PUT
and POST, their use cases have been listed in table 3.1.

DELETE removes resources. To remove blog post with id 1234, DELETE
request is sent to www.fooblog.com/blogs/myblog/posts/1234.

HEAD returns metadata about a resource without downloading a com-
plete representation of the resource. In other words, HEAD provides an
easy way of checking if there exists a resource that corresponds to some URI.
Especially in mobile devices clients can save bandwidth and reduce power
consumption by using HEAD instead of GET. With the blog service this
means that clients can check if a specific post still exists by sending a HEAD
to www.fooblog.com/blogs/myblog/posts/1234.

OPTIONS lets clients know what methods does a server provide for differ-
ent URIs. For example sending an OPTIONS request to www.fooblog.com

/blogs/myblog/posts/1234 would return GET, PUT, POST, DELETE and
HEAD but sending the request to www.fooblog.com/blogs/myblog would
only return GET and HEAD. Also different header fields in the HTTP re-
quest can affect the set of possible operations returned by an OPTIONS call.
For instance, sending a proper value in Authorization header field can in-

CHAPTER 3. TECHNOLOGY EVALUATION 25

crease the number of possible actions from read-only operations like HEAD
and GET to resource altering operations like PUT, POST and DELETE.

Table 3.1: PUT and POST actions
Resource PUT (new re-

source)
PUT (existing
resource)

POST

/blogs N/A (resource al-
ready exists)

No effect Create a new blog

/blogs/myblog Create a new blog Modify this blog’s
settings

Create a new blog
post

/blogs/myblog
/posts/1234

N/A Edit this blog post Add a comment to
this blog post

When committing an action in a resource-oriented system, the operation
should always be defined by the HTTP action and the scope of the opera-
tion should be defined by the URI. Many system designs fail here by using
GET action for multiple different operations. However, correct use of HTTP
methods is the key to a uniform interface design which is important when
building systems for the Web scale.

3.1.2.7 Method Safety

In addition to correct method behavior, method safety also has an important
role in ROA. Methods that have no effect on the state of any resource in
the server side are called safe. GET and HEAD are generally safe HTTP
methods. Clients can safely commit these methods to APIs as many times
as they like and they can rely on that the resources behind the APIs hold
their state. However, it is to be noted that even though there would be no
changes in resource state, these methods can have some side effects. Some
URIs can work as hit counters that count the number of invocations in Web
services and most services log invocations that are made to their APIs. So
safe operations can have some effects in services but the main idea is that
they do not change the actual resources.

An other term closely related to method safety is idempotence. Idempo-
tent operations can be invoked one or more times and the effect is always the
same as if the operation had been invoked only once. The term originally
describes mathematical operations so it can easily be demonstrated with a
math example. In math, multiplying with zero is an idempotent operation:
5×0×0×0 has the same result as 5×0. So in ROA, invoking an idempotent
action on a resource for the second time leaves the resource in the same state
as invoking the action for the first time. From the HTTP method catalog,

CHAPTER 3. TECHNOLOGY EVALUATION 26

PUT and DELETE are idempotent. For instance, a client uses DELETE to
delete a resource, the resource is removed. When the client uses DELETE to
remove the resource again, the resource is still just as removed as it was after
the first invocation. If a client uses HTTP PUT to create a new resource,
the resource is still the same when a new PUT with the same data is invoked
to that URI. Respectively, updating a resource with PUT leaves the resource
in the same state regardless of the number of method invocations.

Safety and idempotence of interface functions have a major role in REST-
ful API design and they are one of the main advantages of the uniform inter-
face paradigm. Correct use of HTTP methods in interfaces, allows clients to
know which operations have no effects to the state of a resource and which
operations should be invoked only when the state of a resource should be
altered.

3.1.3 Applying to Digitraffic

3.1.3.1 Advantages

To figure out how RESTful design principles fit into the case of Digitraffic,
we have to lay out the pros and cons of RESTful architecture in a system
that is aimed for location-aware mobile handsets.

The qualities that we are looking for are good scalability, optimized per-
formance and also message format and platform independence . The entry
barrier for client application development should be low as well as the devel-
opment work should be relatively easy. Of course the interface should also
enable the development of complex client applications but the initial learning
curve isn’t desired to be too steep.

The RESTful approach of ROA meets these requirements particularly
well. Client development for this kind of system requires minimal tooling
and also the client testing is easy since the most simple functionalities can
be tested with a Web browser[36]. Since no heavy enterprise tools are needed,
to start developing client applications the development can be done basically
with any kind of setup which lowers the barrier for developing client appli-
cations.

The general interface design of RESTful systems increases loose coupling
between system components, unlike RPC-based system design which usually
result in tight coupling[47]. The use of HTTP methods for the possible ac-
tions restricts the number of possible actions to be performed[36] but general
operations take the whole concept of interface contract out of the client-server
interaction[48]. This means that client-side developers do not have to study
the methods that different services provide as the methods are always the

CHAPTER 3. TECHNOLOGY EVALUATION 27

same. Everything the client developers need to worry about is the data con-
tract which defines what is included in the request and response messages.
General interfaces where actions are limited to HTTP methods also help
clients to figure out what the operations do to the resources and if invoking
the actions can have irreversible implications[26]. Apart from POST, every
HTTP method used in RESTful interface design is either safe or idempotent.
Therefore, if an operation fails to return a desired response, it can always
be invoked again[39] without a fear of changing resource state in the server
side. Also the generic interface design tends to reveal less about the under-
lying technologies and implementation than specific interfaces. This means
that changes to the implementation can require changes also to the interface
which can lead to expensive modifications to client applications[48].

The fact that the Digitraffic API is also intended to be used by mo-
bile clients, rises new requirements. Mobile devices have strict bandwidth,
memory, processing power and battery life constraints compared to desk-
top clients [51]. This means that an easily processable lightweight payload
format would be optimal for resource representations. RESTful architec-
ture allows any kind of media format to be used as a representation of a
resource. Whereas for example SOAP is limited to using XML in message
serialization, RESTful service can use lighter representation formats, like
JSON. Compared to XML, JSON provides smaller message size, optimized
performance[36][51] and therefore enhanced response times for the end user.
Erenkrantz et al. found that querying a JSON API can be up to six times
faster that querying a SOAP API[18]. Decision on an API interaction for-
mat can also be affected by the technologies used to implement the client
applications. JSON is based on a subset of the JavaScript[1] programming
language, which makes parsing and constructing JSON objects very easy in
JavaScript. JavaScript is a popular technology for implementing browser-
based applications and browser is currently the platform for many mashup
applications in mobile and desktop devices. Furthermore, JSON is well sup-
ported by dynamic programming languages that are gaining popularity in
server side development of Web applications. RESTful APIs have means to
provide support for response caching[36] which reduces the amount of needed
requests to be sent by clients to the server. As Fielding points out, the least
bandwidth-consuming request is the one that is not made[20] so this sort
of behavior reduces the use of bandwidth which can be observed as better
response times for the end user as well as improved battery life.

On top of all, RESTful interface design provides features that help build-
ing scalable systems. Stateless resources allow load balancing and clustering[36].
RESTful design principles are appropriate for horizontal scaling where re-
sources can be added just by adding more server machines to process re-

CHAPTER 3. TECHNOLOGY EVALUATION 28

quests. Scaling stateful systems would mean duplicating the session to each
server or making sure that all the requests of a session are processed by the
same machine. A stateless system provides all the information needed about
the state of a resource in the resource identifying URI so any server in the
back-end system can process any request.

As a conclusion, the advantages of RESTful interface design almost all
count as advantages of an interface that is designed to be consumed by mobile
devices. Message format and platform independence enable client applica-
tion development for multiple different mobile platforms and also for mobile
browsers. Stateless design works well with mobile clients because the con-
nection to the server can be lost from time to time especially in the case of
Digitraffic where the mobile client devices are usually moving in vehicles and
therefore vulnerable to connection breaks. That is why it is an advantage
that there is no session to be lost. For the same reason method idempotence
and safety are valuable features in mobile environment because they allow
resending requests again in the case of possible connection problems. Fur-
thermore, a location-aware system can be implemented in a RESTful way
as the location is always checked in the client end and never saved in the
server-side.

3.1.3.2 Disadvantages

Despite all the good qualities of RESTful approach to Web services, there
are also some use cases where the RESTful design does not cover all require-
ments. Common criticism on RESTful Web services is the lack of agreed
standards regarding service interface description and service discovery. Fur-
thermore, RESTful interface design is problematic for systems that are not
content-centric[18]. There is no trivial way to model a process-centric sys-
tem with resources. Also the constraint of statelessness can be regarded as a
downside because in business-critical applications it necessarily leaves some
of the business-critical processing to the client applications[27].

RESTful Web services lack a way of formally describing their interfaces.
APIs are commonly described with informal HTML documents but there are
no widely adopted standards about the formal description of RESTful Web
services. This also means that there is no formal description of the data
types used with requests and responses. Even though there is no widespread
technology to describe RESTful interfaces, multiple technologies have been
proposed to be used for this task. Some of the proposed description tech-
nologies like WRDL[38], NSDL[50], SMEX-D[11], Resdel[15], RSWS[44] and
WDL[35] seem to be more or less ad-hoc intentions to solve some specific
problem, but have not been updated or developed in years. The most promi-

CHAPTER 3. TECHNOLOGY EVALUATION 29

nent proposals currently are hRESTS[25] and WADL[22].[26] Pautasso et al.
also observe that machine processable interface descriptions would enable
compiler level check for client applications[36]. However, the most popular
way to describe a RESTful interface is an HTML document that defines what
methods can be used to which resource and what kind of data formats and
structures are used in requests and responses.

There has also been some criticism on the general interface paradigm of
REST. Firstly, the lack of formal interface descriptions leaves clients in un-
certainty about which methods can be applied to which resources. Secondly
the use of all the HTTP methods can be problematic since some firewalls are
only open to GET and POST by default. Also most of the methods carry
all the parameters in the URI which sets size limitations for the parame-
ters because currently most implementations limit the size of the URI to 4
kilobytes.[36]

Finally, the main concern of RESTful systems and the ROA architec-
ture is its ability to describe systems that provide business-critical services.
Mainly this is because of the lack of best practices and agreed standards for
discovering new services, orchestrating the services and describing the pro-
cesses they handle. The REST definition does not include service security
and reliability, not to talk about end-to-end security and other quality of
service features.[26][36][26] The absence of these qualities have prevented the
wider adoption of RESTful system design in enterprise system development.
However, none of these features are required when developing mashup appli-
cations. They don’t promote anarchic scalability, low entry barrier or loosely
coupled components, all of which would be desired qualities when building a
mobile friendly interface for a system like Digitraffic.

The disadvantages of RESTful system design mostly concern the lack
of support for enterprise system integration. The fact that there is no for-
mal way to model business processes is not necessarily a disadvantage when
developing a scalable system for mobile devices.

3.2 WS Stack

This chapter presents a Web service technology stack that consists of three
main standards: SOAP, WSDL and UDDI. These technologies, also known
as the first generation Web service standards[19], are maintained by organiza-
tions like W3C and OASIS1 and they cover the main aspects of implementing,
providing and consuming Web services. The purpose of each technology is

1http://www.oasis-open.org

CHAPTER 3. TECHNOLOGY EVALUATION 30

as follows:

SOAP Messaging protocol that defines how different components commu-
nicate with each other.

WSDL Description of services so that clients know how services are sup-
posed to be invoked.

UDDI Discovery of new services.

Figure 3.1 presents the relationships between the three technologies. From
it can be seen how the server, ie. the actual Web service, publishes the service
endpoint in an UDDI registry and how the client finds the service from the
registry. The service describes itself to the client with WSDL and the client
and the server then communicate using SOAP.

Figure 3.1: Web service technology stack

SOAP, WSDL and UDDI all have released multiple versions that cover
varying selection of features and have seen varying levels of adoption. To
ensure interoperability of these technologies, the OASIS Web Services In-
teroperability Organization (WS-I) Member Section2 provides a set of best
practice guidelines called WS-I Basic Profile, which defines the different ver-
sions of Web service technologies that should be applied together. In this

2www.ws-i.org

CHAPTER 3. TECHNOLOGY EVALUATION 31

thesis I will cover the versions of SOAP, WSDL and UDDI that are mentioned
in the latest WS-I Basic Profile version, 2.0[14].

3.2.1 SOAP

SOAP[31] (previously stood for Simple Object Access Protocol) is an XML
based one-way message exchange paradigm standardized by the W3C. It is
used to describe messages that perform procedure calls between remote sys-
tems. Originally it was created by Microsoft and later on Developmentor,
IBM, Lotus and UserLand have also committed to the development work[16].
SOAP is independent of platform, programming language and transport pro-
tocol. Regardless of SOAP’s one-way nature, also more complex messaging
patterns can be implemented by combining one-way exchanges and the fea-
tures of an underlying protocol and/or application-specific information.

3.2.1.1 Messages

A SOAP message is an XML document that has a root element called enve-
lope. The envelope element’s sub-elements are optional header element and
mandatory body element. The structure is modeled in figure 3.2.

CHAPTER 3. TECHNOLOGY EVALUATION 32

Figure 3.2: Soap message structure

The header element contains meta information about the message. It
plays a major role in many architectures and even though its use is optional,
it is rarely left out due to to the extension possibilities it provides. The
information in the header element is divided into parts that are called header
blocks.[19]

Header blocks provide SOAP with message independence and they in-
crease extensibility of the protocol. They include rules and instructions on
how a SOAP message should be routed and processed when it comes into
contact with any system component. Examples of information contained
in a header blocks are processing instructions for intermediaries, routing or
work flow information, security measures, reliability rules, correlation infor-

CHAPTER 3. TECHNOLOGY EVALUATION 33

mation and also context and transaction management information. This way
header blocks can provide a large amount of accessory information on how to
transmit and process message content. In addition to processing and routing
information, header blocks also provide extensibility for SOAP messages. In
fact, practically all WS-* extensions (discussed in chapter 3.2.4) are imple-
mented in header blocks.[19]

The body element is the actual payload of the message and it holds the
main end-to-end information of the message.

<env:Envelope

xmlns:env="http ://www.w3.org /2003/05/ soap -envelope">

<env:Header >

<m:specialRequest xmlns:m="http :// www.example.com/

traffic/specialRequest"

env:role="http ://www.w3.org /2003/05/ soap -envelope/

role/next"

env:mustUnderstand="true">

<m:priority >HIGH </m:priority >

</m:specialRequest >

</env:Header >

<env:Body >

<p:TrafficFluencyRequest

xmlns:p="http ://www.example.com/traffic/fluency">

<p:coordinates >

<p:latitude >60.190780088420645 </p:latitude >

<p:longitude >24.945144653320312 </p:longitude >

</p:coordinates >

</p:TrafficFluencyRequest >

</env:Body >

</env:Envelope >

Example 3.1: SOAP message

Example 3.1 shows a SOAP message that is sent to a traffic data ser-
vice, just like Digitraffic. It has the env:Header and env:Body elements
inside the top level element env:Envelope. The env:Header element in-
cludes information about how to process the message. The env:role at-
tribute in the m:specialRequest element and its value indicate that the
m:specialRequest element must be processed in the next intermediary on
the path instead of processing it in the final receiving node. The env:Body

element contains the actual payload of the message. It is processed by the
final receiving SOAP node. In this example the env:Body element contains
coordinate information that is sent to a traffic service in order to receive
traffic fluency data around the location defined by those coordinates.

CHAPTER 3. TECHNOLOGY EVALUATION 34

3.2.1.2 Nodes

System components that are responsible for sending, receiving, forwarding
and processing SOAP messages are called SOAP nodes. Nodes are labeled
with node types based on the role of the node in a specific message exchange.

SOAP sender SOAP node that transmits a message

SOAP receiver SOAP node that receives a message

SOAP intermediary SOAP node that receives and transmits a messages,
and optionally also processes the message prior to passing it on

Initial SOAP sender First SOAP node to send a message in a given mes-
sage exchange

Ultimate SOAP receiver Last SOAP node to receive a message in a given
message exchange

The SOAP intermediaries can also be divided into forwarding interme-
diaries and active intermediaries. Forwarding intermediaries can process a
message according to processing logic described in header blocks of the mes-
sage before transmitting the message to the following SOAP node. Active
intermediaries do not limit the processing they perform to the processing
logic described in the headers but also might perform other processing as
well.[19]

3.2.1.3 Message Exchange

SOAP is a messaging framework which can be used to exchange XML-based
messages between a SOAP sender and a SOAP receiver. Complex use-cases
can be achieved by combining these kind of request-response exchanges to
more complex transactions. Messages can also be modeled as remote pro-
cedure calls (RPC) in case some sort of programmatic function needs to be
invoked by the exchange. Even though the RPC-nature of SOAP is often
emphasized, it is also important to remember that SOAP can also be used
for a simple request-response message exchange.

Message exchanges that use SOAP as a messaging framework to send and
receive XML-based messages are called conversational message exchanges.
Following example presents a response to the message in the example 3.1.

CHAPTER 3. TECHNOLOGY EVALUATION 35

<?xml version=’1.0’ ?>

<env:Envelope xmlns:env="http :// www.w3.org /2003/05/ soap -

envelope" xmlns:xsd="http ://www.w3.org /2001/ XMLSchema"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance">

<env:Header />

<env:Body >

<p:TrafficFluencyResponse xmlns="http :// www.example.com

/traffic/fluency" xmlns:p="http ://www.example.com/

traffic/fluency">

<p:timestamp >

<p:utc >2008 -10 -09 T10 :06:49Z</p:utc >

</p:timestamp >

<p:laststaticdataupdate >2008 -09 -30 T21 :00:00Z</p:

laststaticdataupdate >

<p:linkdynamicdata >

<p:linkstat >

<p:linkno >0</p:linkno >

<p:measurementtime >

<p:utc >2008 -10 -09 T10 :06:00Z</p:utc >

</p:measurementtime >

<p:midspeednow >54.108 </p:midspeednow >

<p:fluencyclassnow >5</p:fluencyclassnow >

</p:linkstat >

<p:linkstat >

<p:linkno >1</p:linkno >

...

</p:linkstat >

</p:linkdynamicdata >

</p:TrafficFluencyResponse >

</env:Body >

</env:Envelope >

Example 3.2: SOAP response

In example 3.2 again the env:Body element contains the primary infor-
mation processed by the application. Here it includes traffic data returned
in response to message described in example 3.1.

More complex functionalities where the request is intended to invoke some
action at the SOAP receiver can be implemented by modeling the messages as
RPCs. With RPCs the request message includes the method that is invoked
and the information that is given as parameter to the method. According
to [31], the following information is needed in order to perform an RPC
invocation:

1. The address of the target SOAP node

2. The procedure or method name

CHAPTER 3. TECHNOLOGY EVALUATION 36

3. The parameters that are required by the method being invoked

4. A clear separation between the arguments that define the target of the
RPC and the information about how the message should be processed.

5. The message exchange pattern and the HTTP method that are to be
used.

6. Optionally, data which may be carried as a part of SOAP header blocks.

The receiving SOAP node can provide this information by using a formal
service description language, like WSDL, which is described in chapter 3.2.2.

3.2.1.4 Protocol Binding

SOAP messages can be carried between nodes by using an underlying pro-
tocol. The specification that defines how a protocol is used to transmit the
SOAP message is called a SOAP binding. The binding is not required to
be the same through out the whole passage of a message. If the message
goes through intermediaries on its way, each intermediary can use a different
carrier protocol to pass on the message.

In addition to providing a carrier platform for the SOAP messages, the
underlying protocol also provides mechanisms to enable additional features
for SOAP messages. These features, also known as extensions, can add extra
functionality to the basic SOAP specification. If a feature is not provided
by an underlying protocol, it can also be built into to SOAP header blocks.
Features carried this way in the SOAP message are also called SOAP modules.
Since every intermediary on the way from the sender to the receiver can use
different carrier protocol, all the hops between nodes might not support the
same set of features. The missing features in underlying protocols can be
compensated by including the missing features in SOAP modules. Additional
SOAP features are discussed in more detail in chapter 3.2.4. Furthermore,
it’s for the SOAP binding to define which features of an underlying protocol
are enabled for the SOAP applications. Also the message exchange pattern
must be specified in the biding.

The most commonly used protocol binding used with SOAP is the HTTP
binding. The SOAP specification also contains a description of an email
binding but it’s presented more as a mere example of an alternative carrier
protocol to HTTP.

CHAPTER 3. TECHNOLOGY EVALUATION 37

3.2.2 WSDL

Web Services Description Language (WSDL)[13] is an XML-based language
used to describe Web services and their functionalities. It can be used to
model the operations and data types used by a service and how the service
communicates with other components. WSDL provides an abstract descrip-
tion of a service interface. It is independent of message formats and network
protocols, however, it is bound to a certain protocol in order to provide an
endpoint for a service. A common way of accessing WSDL is binding it to
SOAP that is transmitted over HTTP.

A WSDL document consists of the following elements:

Types Data type definitions described by some type system (XSD[49] for
example)

Message Describes the data that is being communicated

Operation Describes an action that is provided by the service

Port Type Lists the operations that are supported by on or more endpoints

Binding Defines the protocol and data format that are used

Port Service location described as a network location and a protocol binding

Service A collection of service endpoints

A WSDL document can be observed in example 3.3. It describes an inter-
face that can be used to access traffic fluency information. The types element
provides data types TrafficFluencyRequest, TrafficFluencyResponse and
LinkStatType that are used to provide traffic fluency information to clients
that consume the service. The two message elements describe the messages
that are used to communicate with the service and the messages are then
used by the GetTrafficFluency operation. The operation is listed under
the TrafficFluencyPort portType element. The portType is then bind to
SOAP protocol and so on.

<definitions name="TrafficFluencyProvider"

targetNamespace="http :// example.com/trafficfluency.wsdl"

xmlns:tns="http :// example.com/trafficfluency.wsdl"

xmlns:xsd1="http :// example.com/traffic/fluency.xsd"

xmlns:soap="http :// schemas.xmlsoap.org/wsdl/soap/"

xmlns="http :// schemas.xmlsoap.org/wsdl/">

<types >

CHAPTER 3. TECHNOLOGY EVALUATION 38

<schema targetNamespace="http :// example.com/traffic/

fluency.xsd"

xmlns="http ://www.w3.org /2000/10/ XMLSchema"

xmlns:p="http ://www.example.com/traffic/

fluency">

<element name="TrafficFluencyRequest">

<complexType >

<all >

<element name="latitude" type="string"/>

<element name="longitude" type="string"/>

</all >

</complexType >

</element >

<element name="TrafficFluencyResponse">

<complexType >

<sequence >

<element name="laststaticdataupdate" type

="xsd:dateTime" />

<element name="linkdynamicdata">

<complexType >

<sequence >

<element maxOccurs="unbounded

" name="linkstat" type="p:

LinkStatType"/>

</sequence >

</complexType >

</element >

</sequence >

</complexType >

</element >

<complexType name="LinkStatType">

<sequence >

<element name="linkno" type="xsd:

nonNegativeInteger"/>

<element name="measurementtime" type="xsd:

dateTime"/>

<element name="journeytimenow" type="xsd:

string"/>

<element name="fluencyclassnow" type="xsd:

nonNegativeInteger"/>

</sequence >

</complexType >

</schema >

</types >

<message name="TrafficFluencyInput">

<part element="xsd1:TrafficFluencyRequest" name="body"

/>

</message >

<message name="TrafficFluencyOutput">

CHAPTER 3. TECHNOLOGY EVALUATION 39

<part element="xsd1:TrafficFluencyResponse" name="body"

/>

</message >

<portType name="TrafficFluencyPort">

<operation name="GetTrafficFluency">

<input message="tns:TrafficFluencyInput"/>

<output message="tns:TrafficFluencyOutput"/>

</operation >

</portType >

<binding name="TrafficFluencyBinding" type="tns:

TrafficFluencyPort">

<soap:binding style="document" transport="http ://

schemas.xmlsoap.org/soap/http"/>

<operation name="GetTrafficFluency">

<soap:operation soapAction="http :// example.com/

GetTrafficFluency"/>

<input >

<soap:body use="literal"/>

</input >

<output >

<soap:body use="literal"/>

</output >

</operation >

</binding >

<service name="TrafficService">

<documentation >Traffic Service </ documentation >

<port name="TrafficFluencyPort" binding="tns:

TrafficFluencyBinding">

<soap:address location="http :// example.com/

trafficfluency"/>

</port >

</service >

</definitions >

Example 3.3: WSDL service description

3.2.3 UDDI

The Universal Description, Discovery and Integration (UDDI)[9] completes
the Web service stack by providing an XML-based protocol for publishing
and discovering Web services. An UDDI registry can be public, revealing
services to all interested clients in the internet or it can be private, exposing
services internally inside an organization. Registries’ main functionality is
to provide data and metadata about Web services. Therefore, they provide
means to classify, catalog and manage services[2]. UDDI is standardized by
the Organization for the Advancement of Structured Information Standards

CHAPTER 3. TECHNOLOGY EVALUATION 40

(OASIS)3.
OASIS presents the following as the main use cases for UDDI[2]:

• Publish information about Web services

• Find publicly or privately published Web services against a certain
criteria

• Provide a specification of security and transport protocols that are sup-
ported by a Web service and also provide information about parameters
that are required by a service

• Insulate applications from failures in invoked services

The UDDI data model consists of four different data types: businessEn-
tity, businessService, bindingTemplate and tModel. They provide information
about Web services so that service consumers know which services answer to
their needs. The main purpose of each data type is as follows:

businessEntity Information about a business or an organization that pro-
vides a service

businessService Information about a Web service

bindingTemplate Technical details of a service

tModel Information about how the service behaves, what conventions it
follows and what standards it complies with

The relationships between different data models are presented in figure
3.3. It shows that each businessEntity can contain multiple businessServices
and that each businessService can contain multiple bindingTemplates. Fur-
thermore, each bindingTemplate can contain references to multiple tModel
entites.

3www.oasis-open.org

CHAPTER 3. TECHNOLOGY EVALUATION 41

Figure 3.3: UDDI data model

3.2.4 Extensions

The technology stack presented in this chapter provides means for describ-
ing, discovering, exposing and consuming Web services. These protocols can
be used to cover basic use cases when it comes to invoking distributed ap-
plication components over the internet. But what if an application needs to
provide more complicated features or have a better support for measurable
qualities, such as security? To tackle these questions, W3C and OASIS have
released a set of specifications that define how topics such as transactions and
security should be handled when implementing Web services. As opposed to
the first generation label that characterizes SOAP, WSDL and UDDI, these
extensions are generally known as the second generation of Web service stan-
dards. A subset of these extensions and the functionalities they provide are
listed in table 3.2.[19]

CHAPTER 3. TECHNOLOGY EVALUATION 42

Table 3.2: WS-* extensions
Extension Purpose
WS-Addressing Provides means to identify Web service endpoints and secure

end-to-end endpoint identification in messages.
WS-Policy Provides means to describe service’s requirements and capa-

bilities.
WS-ReliableMessaging Allows SOAP messages to be delivered reliably between nodes.
WS-Security Provides quality of protection through message integrity, mes-

sage confidentiality, and single message authentication.
WS-
MetadataExchange

Provides mechanisms to retrieve metadata about a Web service
endpoint.

WS-
AtomicTransaction

Defines protocols for ensuring automatic activation, registra-
tion propagation and atomic termination of Web services.

WS-BusinessActivity Provides means for systems to interoperate across trust bound-
aries and vendor implementations.

WS-Coordination Provides protocols that coordinates actions of distributed ap-
plications.

WS-Notification Provides a protocol for a notification-based interaction pattern.
Web Services Resource
Transfer

Provides means for resource access and manipulation.

Web Services Resource
Framework

Provides a set of operations that Web services can implement
in order to become stateful.

WS-Enumeration Enables enumerating object instances based on a given filter.
Web Services for Re-
mote Portlets

Enables communication between remote portlets.

WS-Agreement Specifies an agreement between two parties, such as a service
provider and consumer.

WS-Unified Manage-
ment

Provides means for handling distributed resources between ser-
vices.

3.2.5 Applying to Digitraffic

3.2.5.1 Advantages

As the previous sections in this chapter have proven, the Web service technol-
ogy stack standardized by W3C and OASIS is quite complex and the entry
barrier for building a system with these technologies might get pretty high.
Nonetheless, these standards provide many features that come in handy when
designing and implementing a distributed system where the components com-
municate with each other over the internet. The remaining question is that
does the advantage gained from these features exceed the complexity of the
framework when regarding mobile client devices and their requirements.

A centric advantage of using SOAP pointed out by Pautasso et al.[36]
is that it is transparent and independent when it comes to transmission
protocol. In other words, a SOAP message can be transported over multiple

CHAPTER 3. TECHNOLOGY EVALUATION 43

middleware systems, which may rely on HTTP or other protocols. Also
quality of service (QoS) aspects, such as encryption and reliable transfer,
can be declared in SOAP headers so it does not matter if the carrier protocol
changes on the way. However, despite the fact that these features are desired
in any sort of distributed application, they are not exactly the main target
when looking for a mobile client friendly solution for the Digitraffic API.
Other valuable advantages are reliability, security, transactions and service
composition[36] that can be achieved by using specific WS-* extensions. The
main concern with the use of extensions is that the collection of different
extensions is extremely vast and some of the extensions have overlapping
features. Therefore, all the service providers and consumers must be using
the same extension to achieve a certain functionality in order to co-operate
smoothly. As for security and authentication in mobile friendly Web services,
many APIs that are consumed with mobile applications use technologies like
OAuth4 to ensure security without using heavy enterprise standards.

Perhaps the main advantage gained by using WSDL is machine-processable
definitions of remote requests and responses[36]. This means that errors due
to invalid message formats can be caught in compile time and they do not
need to be tested individually. From the point of view of mobile mashup
applications, this would help the most applications that are developed with
static programming languages. For example in browser development this
would not help but this would be an advantage when developing native ap-
plications and server-side mashups where a static language, like Java5, is
used.

Also with WSDL, a single abstract interface can be tied to different trans-
mission protocols, thus making it more reusable. Pautasso et al.[36] also
remind that in addition to communication protocol, WSDL also helps to
abstract the underlying serialization details, operating system and program-
ming language. On the other hand, despite the fact that a wide range of
tools that can be used to hide the complexity of WSDL from the system
developer[36], Richardson and Ruby[39] point out that different tools often
produce slightly different WSDL files. Therefore, the client is commonly
tied to the same technology stack as the server, thus leaving the components
highly coupled.

Even though SOAP and WSDL do not seem like the perfect technology
choice for the Digitraffic API, what geospatial services could use is the service
discovery provided by UDDI. A properly working service discovery system
could help Web service consumption regardless of the platform or architec-

4http://oauth.net/2
5http://www.oracle.com/us/technologies/java/overview/index.html

CHAPTER 3. TECHNOLOGY EVALUATION 44

tural style. A machine processable, service semantics providing API could
remove the manual work now being required to find a Web service to satisfy
service consumers’ needs. This means that client developers would not have
to manually browse through Web sites like Programmableweb6 to find APIs
to consume but some sort of automatic process could be used. Descriptions
of service interface semantics could in Digitraffic’s case help for example with
distance units and velocity measurements (freeflow, average, median etc.). If
the semantics of the Web service were clear to the service consumers, there
would be no misconceptions if different services are using miles or kilometers
or if a velocity is announced as an average or a median value.

The best use case for technologies like SOAP, WSDL and UDDI seems to
be found from the enterprise ecosystem where more strict quality of service
requirements commonly occur. Since WSDL can model service interfaces for
synchronous and asynchronous interaction patterns, it can be used to build
gateways for different kinds of legacy systems. The multiple additional fea-
tures provided by the WS-* extensions allow them to work well in enterprise
systems that commonly are built on a varying heterogenous technology envi-
ronment. All in all, despite their complexity, SOAP and WSDL have gained
popularity as gateway technologies providing interoperability of middleware
systems.[36] However, many of the enterprise qualities of the WS stack are
not the ones that are desired for an API that is consumed by mobile appli-
cations.

3.2.5.2 Disadvantages

As mentioned before, technologies like SOAP and WSDL have gained a strong
foothold in enterprise system implementations. They have managed to do so
due their comprehensive feature set provided by the WS-* extensions and the
flexibility of the core technologies. Also the complexity if the RPC interaction
pattern is better suited for middleware[47] but when it comes to applications
that are targeted for the whole Web, these technologies have not been able
to meet the necessary requirements.

The main disadvantages of these technologies regarding the mobile clients,
and Digitraffic, is the complexity and low scalability of the solutions that they
provide. The complexity issue has lead to a situation where developers have
to use heavy tools in order to create service descriptions. Different tools
produce slightly different WSDL files, so the service consumers are therefore
force to use the same tool set as the server side uses.[39] Also the used tools
can reveal the implementation technology of the service[36]. Furthermore,

6http://www.programmableweb.com

CHAPTER 3. TECHNOLOGY EVALUATION 45

what also adds into the complexity of the technologies, is that every SOAP
interface establishes its own communication protocol[47]. The components
communicating with each other need to negotiate an interface contract and
a data contract whereas for example with a generic RESTful interface the
clients only need to understand the data contract[48]. An extra level of
abstraction generated by the interface contract increases the complexity of
the system and raises the entry barrier for developing client applications
against the service.

The RPC-based approach, which is the case with SOAP, usually results in
tight coupling between components[47]. This sort of behavior is not desired
when building applications for the Web where the client application develop-
ers rarely have any knowledge about the implementation of the server side.
The specific interfaces may reveal more about the underlying implementation
when compared to generic interfaces and therefore a varying implementation
behind a specific interface may also require changes to client applications.
The changes to clients can become very expensive to implement[48] and as
the number of client applications grow, they can affect the popularity of the
API.

The three technologies in this chapter are tied to using XML for markup.
The downside with this constraint is the verbosity of XML which results in
large messages that require a lot of bandwidth and are slow to process when
compared to lighter solutions like JSON[51]. Also it should be noted that
an XML description might not match seamlessly with the nowadays popular
object-oriented programming languages and that the expressiveness of XML
Schema can make it hard to model messages and interface structures in a
way that is fully supported by SOAP or WSDL[36].

At this point it seems that the most prominent technology presented in
this chapter is UDDI. A repository providing service semantics that could
be used to query a correct Web service to be consumed would be useful.
However, regardless of its maturity as a technology, UDDI has failed to gain
widespread adoption in any sort of environment[36] and it is generally re-
garded only as part of the first generation of Web service standards[19],
whereas SOAP and WSDL are still being used along the second generation
known as the WS-* extensions.

To sum up the downsides of the technology stack presented in this chapter,
the main problem seems to be that they try to work against the grain of
the Web. They are not addressable, well connected of cacheable[39]. The
specific interface model adds to the complexity of the services which then
again guide the development into direction where heavy tools are required
and the entry barrier for client development is high. While HTTP would
provide a communication protocol, SOAP builds a new protocol on top of

CHAPTER 3. TECHNOLOGY EVALUATION 46

that and uses HTTP as a mere tunneling protocol[36]. When considering
mobile client applications, the biggest disadvantages are heavy tooling and
libraries used for development, verbose communication protocol and message
format dependent to XML.

3.3 Feeds

Web feeds are data formats that can be used to publish information. Sites
can publish their content, or part of it, as feeds that people can access by
using a feed reader application. Feeds make it easier for people to find the
latest and most significant piece information in the vast amount of content
available in the Web. The reader applications can be used to aggregate
multiple feeds as an easily accessible way. Web feeds are a popular way to
follow news and blogs which usually have frequently updated content that
can be easily followed, by subscribing to a feed provided by the news or blog
site.

As discussed in chapter 2.1, Web feeds can also be used to gather content
into a mashup application. In mashups the feed is parsed in the application
and the received information can be presented to the end-user. In this chapter
I present two commonly used feed formats, RSS and Atom, and discuss how
they could be used to develop a new Digitraffic interface.

3.3.1 RSS

RSS (Really Simple Syndication) is a lightweight XML format that is used
for Web feeds. It has a diverse and somewhat confusing history. RSS was
originally developed by Netscape for their My.Netscape.com portal in 1999.
Back then the version number was 0.97 and the acronym stood for RDF
Site Summary, RDF (Resource Description Framework) being an XML-based
language for describing Web resources and their semantics, developed by
W3C. The RDF-based syntax was soon found to be too complicated and the
RDF parts were dropped in favor of a cleaner syntax for version 0.918. At
this point the name was changed to Rich Site Summary. The development of
the RDF-based RSS has led to version 1.0[8] which is currently maintained
by W3C. Development of the RFD-less RSS is currently going on in version
2.09. 2.0 is also the version that will be covered in this theses as, according

7http://www.rssboard.org/rss-0-9-0
8http://www.rssboard.org/rss-0-9-1-netscape
9http://www.rssboard.org/rss-specification

CHAPTER 3. TECHNOLOGY EVALUATION 47

to Syndic810, it is by far the most widely adopted version.[21][45]
The element structure of an RSS document is presented in figure 3.4.

Figure 3.4: RSS structure

The root element in RSS is rss. It contains a single sub-element, channel,
which contains more sub-elements that describe the content and purpose of
the document. The most essential elements are listed in table 3.3.

10www.syndic8.com

CHAPTER 3. TECHNOLOGY EVALUATION 48

Table 3.3: RSS elements
Element Purpose
channel/title Name of the channel
channel/link URL of the corresponding Web site
channel/description Description of the channel
channel/language Language of the channel
channel/copyright Copyright notice for the material published in the

channel
channel/pubDate Date when the channel has been last updated
channel/generator Implies what application has been used to create the

feed
channle/ttl Indicates the time that the channel can be cached

before it has to be refreshed
channel/textInput Specifies a text input area that can be contained in

the channel
channel/textInput/title Label on the Submit button in the text input area
channel/textInput/description Describes the purpose of the text input area
channel/textInput/name Name of the text object in the input area
channel/image Specifies an image file that can be contained in the

channel
channel/image/url Resource locator of the image
channel/image/title Title of the image, can be used as the alt attribute

of and tag if the channel is rendered in HTML
channel/item An item in the feed, for example a blog post or a

piece of news in a newspaper site
channel/item/title Title of the item
channel/item/link URL of the item
channel/item/description Actual content of the item

3.3.2 Atom

Just like RSS, Atom Syndication Format[34] is an XML format that is used
to publish information in the Web. It’s development was originally started
by Sam Ruby of the IBM Emerging Technologies group in June 2003[45] with
the original goal to be completely vendor neutral, implemented by everybody,
freely extensible by everybody and properly specified[41].

The structure of an Atom feed is presented in figure 3.5.

CHAPTER 3. TECHNOLOGY EVALUATION 49

Figure 3.5: Atom structure

Atom has solved some XML encoding issues encountered with RSS. Espe-
cially the extensible content element enables the inclusion of different kinds
of XML content into feed entries. Another difference when compared to RSS
is the higher number of required elements. Furthermore, Atom requires an
unique identifier for each entry, which prevents clients from listing duplicates
when entries are updated.[45] A list of required and recommended elements
is presented in table 3.4.

Table 3.4: Atom elements
Element Purpose
feed/id Permanent URI that identifies the feed
feed/title Human readable title for the feed
feed/updated Date when the feed is last updated
feed/author Name of the author of the feed
feed/link Link to a related Web page
feed/entry Single entry in the feed
feed/entry/id Permanent URI that identifies the entry
feed/entry/title Human readable title for the entry
feed/entry/updated Date when the entry was last modified in a significant way
feed/entry/author Name of the author of the entry
feed/entry/content Actual content of the entry
feed/entry/link Link to a related Web page
feed/entry/summary Short summary of the entry

CHAPTER 3. TECHNOLOGY EVALUATION 50

3.3.3 Applying to Digitraffic

3.3.3.1 Advantages

Evaluating the applicability of feeds to Digitraffic is somewhat challenging
task, when comparing to other design paradigms and technologies that are
present in this thesis. The amount of research about using feeds in this
sort of system design is much smaller than for example with REST or the
standardized WS stack. However, the features of feeds and how they are
generally used make them a serious option when figuring out the technology
that is best suited in this case. After all, feeds are usually used to retrieve
information that is regularly updated, like news for example. In the same
way they could be used to retrieve traffic information which is updated on
regular basis.

One thing that promotes the use of feeds for geospatial systems is the
research by Liu and Wilde[30] on Tiled Feed Model, which describes how lo-
cation data can be accessed using feeds. Liu and Wilde use an Atom feed to
model tiles that can be divided into smaller tiles. Each tile is published as
a single feed with simple spatial extensions. For the client implementations,
they have used a standard Atom reader component, which reduces the loose
coupling between the service and the client. Some overlapping with compet-
ing paradigms might also exist because Liu and Wilde describe Atom as a
”RESTful access to collections of resources”. However, in this thesis feeds
and RESTful architectures are divided into their own paradigms.

3.3.3.2 Disadvantages

The general disadvantages of feeds as an integration tool are pretty much
the same as with any other lightweight technology or design paradigm. The
lack of features like end-to-end security, transactions, reliability, service com-
position and service discovery is present also in the case of feeds. However,
in the context of Digitraffic, none of these qualities are the main objective.
What is is desired is a technology that provides a lightweight access to data
on the Web.

A more serious issue with feeds is that they always provide data in
XML format. As mentioned earlier in this thesis, more lightweight for-
mats, like JSON, are faster to process which is an advantage when regarding
performance[36][51]. Less verbose data formats also optimize the use of band-
width, which is critical in a mobile environment.

CHAPTER 3. TECHNOLOGY EVALUATION 51

3.4 Other Possibilities

Here I list some technologies that could be used to solve the problem of this
thesis but that do not appear to be promising enough for a more detailed
study.

3.4.1 XML-RPC and JSON-RPC

XML-RPC[52] is a remote procedure call protocol which tries to enable the
use of complex structures but still maintain simplicity of use. It uses HTTP
POST to send XML encoded messages between client and server. The mes-
sages have a simple structure that describes the method being called and the
parameters given to the method.

Similiar to XML-RPC is JSON-RPC[3] which, as the name suggests, uses
JSON to serialize the procedure calls. Otherwise it is much like XML-RPC
with a simple structure that can be used to model service requests and re-
sponses.

These two RPC-style protocols could provide an interface solution much
like REST for Digitraffic. The biggest difference is that they do not promote
general interfaces as the message is always carried in HTTP POST payload.
This adds the interface contract on top of the data contract in the client server
interaction. Also there would be some overhead in message sizes compared
to REST as the request and response message structure is defined by both
protocols. It is to be noted, that even though neither protocol is independent
of the encoding format, a XML and JSON interface could be provided by
implementing the interface with both protocols. However, this is not as
smart way of providing support for different formats for example compared
to the RESTful way where the format of the response is announced by the
client in the request.

3.4.2 Twitter

Twitter11 is a social microblogging service that allows users to publish short
update status messages, i.e. tweets, and subscribe to status updates pub-
lished by other users. With its current 140 million active users and 340
tweets per day[5] it has an architecture that scales for large queries and
massive data traffic.

Twitter also provides a RESTful API12 that can be used to post and

11www.twitter.com
12https://dev.twitter.com

CHAPTER 3. TECHNOLOGY EVALUATION 52

query tweets. This could be applied to Digitraffic by making each road link
a Twitter user and the last status update of that user could include the
current traffic situation on that the link represented by the Twitter account.

The downside of this solution is that Twitter limits status update to
140 characters as it wast originally designed to be SMS-based. Therefore,
the polyline data should be retrieved elsewhere and the tweets would only
include the traffic fluency information.

3.4.3 Custom Protocol

One possibility could be to design a custom protocol. One way to do this
would be to design a new message protocol that is optimized for traffic data.
This would include designing some sort of interface contract that the client
and server would apply to and the message structure that can be used to
pass information between the system components. The emphasis should be
in serializing traffic data.

Another possibility is to design the protocol straight to the application
layer. One way to do this is to use Blocks Extensible Exchange Protocol
(BEEP)[40]. It is a network application framework that enables designing
application layer protocols that can be used in network based systems. In
other words it can be used to design alternatives to HTTP and other appli-
cation layer protocols. BEEP could be used, for example, to create a carrier
protocol for SOAP. It could also be used to design a network protocol that
applies to the constraints of REST. Anyhow, designing a custom protocol
for the application layer could enable efficiency that can not be achieved by
designing the protocol on top of the application layer.

From the mobile point of view, a custom protocol could be used to achieve
more optimized request and response transmission. When considering Dig-
itraffic, the serious downside would be that it would be really hard to gain
widespread adoption among client application developers. The new protocol
should first establish itself as a known solution for transmitting traffic data
and maybe then it could be used to provide Digitraffic data to third parties.

3.5 Solution Comparison

In table 3.5 I have listed the technologies presented in this chapter. They
are evaluated against the requirements presented in chapter 1.2.

CHAPTER 3. TECHNOLOGY EVALUATION 53

Table 3.5: Solution comparison
Mobile
friendly

Platform
Indepen-
dent

Format In-
depenent

Location-
Aware

REST x x x x
WS Stack x
Feeds x x x
XML-RPC &
JSON-RPC

x x x

Twitter x x
Custom Pro-
tocol

x x x x

Table 3.5 presents the features of each presented solution. The mobile
friendliness measures how well a technology can be used in mobile develop-
ment environment. REST, XML-RPC, JSON-RPC and Twitter only require
that the platform is able to perform HTTP calls. Feeds are also consid-
ered mobile friendly as feed readers are extensively used in mobile phones.
The WS stack requires heavy libraries in order to work and is therefore not
considered mobile friendly.

Platform independence goes hand in hand with mobile friendliness. HTTP
calls can be made from any mobile device with an internet connection. WS
stack is mainly targeted for enterprise integration and is therefore not opti-
mized, for example, for browser-based client applications.

REST does not set any limits for the data format used in the client-
server interaction. Other options are limited to XML (WS stack, feeds and
XML-RPC) or JSON (JSON-RPC, Twitter).

All the technologies can be used to design an API that is location-aware
as this is a question of parameters that the API takes. Twitter also sup-
ports location information in tweets but not in a way intended by a traffic
monitoring system.

Custom protocol was left out of the above analysis even though it has all
the qualities that are desired from the new API solution. However, creating
a custom protocol would significantly harm the adoption of the traffic service
API.

Based on this comparison, the new Digitraffic API will be designed by
following the REST design principles. The generic interfaces and resource
oriented design paradigm can be used to model an API that provides traffic
fluency information. In order to minimize message sizes, JSON will be used

CHAPTER 3. TECHNOLOGY EVALUATION 54

to serialize server responses. It is also well supported by client application
technologies.

Chapter 4

Implementation

In this chapter I describe the practical part of this thesis. Based on the tech-
nological studies of chapter 3 I implemented a new remote API for Digitraffic
and a client applications that consumes the API. First I describe how the
API was developed and what kind of problems did I have to overcome during
the process. Then I describe the client application development process and
what kind of new API requirements did it induce.

4.1 New Traffic Data API

4.1.1 Digitraffic Architecture And Technologies

Digitraffic consists of five main components:

CORE Includes data access objects, database queries and data processing.

WEB Web and SOAP interfaces.

DAEMON Polls traffic fluency data form Traffic Data Center to the Digi-
traffic database.

DATABASE Contains traffic fluency data for each link, does not hold spa-
tial data.

MAP SERVER Contains geospatial information about the links. In other
words, knows the shape and location of the links.

55

CHAPTER 4. IMPLEMENTATION 56

The system is written in Java1 on the Spring framework2. The map server
is an Esri3 ArcGIS server. It holds all the spatial information in the system
whereas the actual Digitraffic takes care of the traffic data.

4.1.2 RESTful Interface

The new RESTful interface was added to the Web layer in the system ar-
chitecture. I chose to use the Jersey4 framework to for implementation as it
was easy to add to the existing Spring application.

Using the Jersey implementation, I exposed two resources that provide
representations to links and their traffic fluency data. The resources are de-
scribed in chapter 4.1.6. Digitraffic Web interface obviously has user authen-
tication but I disabled the authentication for the RESTful interface because
the authentication methods of a RESTful interface are out of the scope of
this thesis.

4.1.3 Spatial Query

Adding a RESTful interface to Digitraffic was relatively easy but working
with the map server turned out to be full of different obstacles. My origi-
nal intention was to retrieve the links the same way that the Web interface
does. This turned out to be problematic as the Web interface uses ArcGIS
JSF5 components that can be passed on to the map server. This was not
possible with the RESTful interface. Also the existing SOAP interface gave
no clues because it creates its traffic reports using batch processes, not dy-
namic queries. Therefore, I ended up implementing the spatial queries using
a low-level ArcObjects API.

Another problem encountered while working with the map server were co-
ordinate systems. The ArcGIS server used by Digitraffic relies on a Finnish
coordinate standard called Karttakoordinaattijärjestelmä (KKJ, Map Coor-
dinate System) which is a close relative Universe Traverse Mecator system
(UTM). However, most map services, like Google Maps for example, use the
World Geodetic System (WGS). Therefore, I had to make coordinate con-
versions when passing the query parameters to the map server and when
receiving the link geometries.

1http://www.oracle.com/us/technologies/java/overview/index.html
2http://www.springsource.org
3http://www.esri.com
4http://jersey.java.net
5http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

CHAPTER 4. IMPLEMENTATION 57

Finally, resolving the points of a polyline object returned by the ArcGIS
server turned out to be quite problematic. As an efficient solution was not
found and this made the spatial queries really slow, I implemented a cache
that holds the polylines (links) in WGS format. This way the polyline is
resolved only the first time it is retrieved from the map server. So, when a
spatial query is executed, the map server returns a set of polylines that mach
the query criteria. Then the cache is checked against the IDs of the polylines
and if a polyline is not found form the cache, its points are resolved from
map server and saved to the cache. The cache never expires as the roads
practically never change. If the cache needs to be flushed, the server can be
booted.

4.1.4 Traffic Data Query

When the links that correspond to the given query criteria are fetched from
the map server, their traffic fluency information has to be fetched from the
Digitraffic database. This was done by using Digitraffic core components.

4.1.5 Response Generation

To form a JSON representation I designed a traffic data Java object that
holds the information required by the Web service invocation. To serialize
this object to JSON I used the Gson framework6.

4.1.6 API Description

The new Digitraffic API consists of two resources that are described here.
The first one represents traffic fluency.

GET /traffic/fluency

This is the main traffic fluency method. It takes the latMin, lngMin,
latMax and lngMax parameters that define an extent which narrows down
the area where the returned road links are located. In other words, those
coordinates define a spatial query that can be used to reduce the retrieved
data to apply to the road links that are located near to the user. The
includePolylines can be set to true or false. By changing this value the
client can control if only the fluency data is returned from the server or if

6http://code.google.com/p/google-gson

CHAPTER 4. IMPLEMENTATION 58

also the actual polylines are also included in the response. Parameters and
their purposes are listed in table 4.1.

Table 4.1: Fluency method parameters
Parameter Purpose
latMin Minimum latitude value
lngMin Minimum longitude value
latMax Maximum latitude value
lngMax Maximum longitude value
includePolylines Indicates if the actual poly-

lines should be included in
the response

The method returns a list of JSON objects that contain a polyline, basic
info and the latest traffic fluency data. An example JSON snippet is dis-
played in Example 4.1.

[

{

"polyline":

{

"linkId":24,

"points":

[

[24.82207 ,60.18085] ,

[24.82104 ,60.18126] ,

...

[24.81936 ,60.21171] ,

[24.81939 ,60.21195]

]

},

"linkId":24,

"length":3830 ,

"name":"Otaniemi -Perkkaa",

"averageSpeed":46.424 ,

"medianTravelTime":297,

"fluencyClass":

{

"lowerLimit":0.75 ,

"upperLimit":0.9,

"code":4,

"name":"Liikenne jonoutunut"

}

},

CHAPTER 4. IMPLEMENTATION 59

...

]

Example 4.1: Fluency resource response

The example snippet presents a list of traffic fluency objects (here only
the first of the list is shown) with the link ID, the points that build up the
polyline, basic link info and the fluency class object which then again contains
info about the current fluency class on that link. The fluency class is an
integer between one and five and it indicates the fluency of the traffic on a
link. This kind of response can be received by setting the includePolylines
parameter to true. Otherwise the response will be exactly the same but the
polyline field will be left out of the JSON objects.

The other method in the new API is as follows:

GET /traffic/link/{link id(s)}

This method returns the polylines that correspond to the given link IDs.
Multiple IDs can be given in the URL by delimiting the with a comma, for
example http://www.digitraffic.com/traffic/link/101,102,103. An
example response message is presented in example 4.2.

[

{

"linkId":8,

"points":[

[24.85097 ,60.23037] ,

[24.85196 ,60.23057] ,

...

[24.93048 ,60.24083] ,

[24.93108 ,60.2409]

]

},

...

]

Example 4.2: Link resource response

The division between these two methods allows clients to use different
kinds of caching schemes with the road links and their fluency data. For
example, a client can always retrieve the polyline data when fetching the
fluency information by setting includePolylines parameter to true in the
first method. This ways the client always gets the polyline data with each

CHAPTER 4. IMPLEMENTATION 60

request and therefore this kind of fluency data handling is easy and simple
to develop. In order to use more efficient caching, client applications can
leave the polylines out of the fluency request and fetch polylines separately
with the link resource identifier. As this resource can be cached, clients
can cache the polylines and only retrieve new polylines that have not been
retrieved previously. HTTP header fields of the /traffic/link resource are
presented in example 4.3 and as can be observed, the max-age value is given
in the Cache-Control field.

HTTP /1.1 200 OK

Server: Apache -Coyote /1.1

Set -Cookie: JSESSIONID =85 CBF039280F837B2B42DA2F77B1AFBA; Path

=/ sujuvuus

Cache -Control: no -transform , max -age =2592000

Content -Type: application/json;charset=UTF -8

Transfer -Encoding: chunked

Date: Wed , 25 Apr 2012 14:47:13 GMT

Example 4.3: Link resource response HTTP header

Both resources also support gzip compressed response messages. The
compressed responses can be fetched by setting the Accept-Encoding HTTP
request header field to gzip. A HTTP header of a compressed response mes-
sage can be seen in example 4.4.

HTTP /1.1 200 OK

Server: Apache -Coyote /1.1

Set -Cookie: JSESSIONID=CB68500BE35886EF830B665BD90AB094; Path

=/ sujuvuus

Content -Encoding: gzip

Content -Type: application/json;charset=UTF -8

Content -Length: 20

Date: Mon , 14 May 2012 04:55:55 GMT

Example 4.4: Compressed response HTTP header

4.1.7 Lessons Learned

Releasing a RESTful API usign the Jersey framework was a straightforward
process. By using annotations and few configuration changes, an interface
was added to the Digitraffic Web layer in no time. The most time consuming
part of the server side implementation was integrating the REST API with
the ArcGIS server that holds the link geometries and their locations.

CHAPTER 4. IMPLEMENTATION 61

One problem with the ArcGIS server was the coordinate system mis-
match. The number of standards is huge and there really is work to be done
to unify different systems and the coordinates they use. Luckily the WGS
sees to be getting a foothold in application development as most map services
use it. I strongly suggest that geospatial systems developed in the future use
WGS coordinates. However, I don’t think that migrating Digitraffic to WGS
is worth the effort as too many things might break.

Another problem with the ArcGIS integration was the complexity of the
ArcObjects API that was used to access the polyline information. The API is
hard to use and its documentation is hard to read. One real annoying feature
are the error stack traces which give no clue of the problem whatsoever.
Implementing spatial queries form scratch was the most time consuming part
of the server-side development. Future work should try to take advantage
of libraries, like the JSF-based library used by the Digitraffic Web interface,
that ease the ArcGIS server integration work.

One unsolved problem with the ArcGIS server API was resolving the
points of a polyline. The only way I was able to do this was loop through
all the points in a polyline and request point coordinates from the ArcGIS
server one by one. As mentioned in chapter 4.1.3, this problem was solved
by caching the polylines. In future development a better solution for this
should be found.

4.2 Client Application

As part of the thesis I also designed and implemented a client application
that consumes the new Digitraffic API. The main idea was to concentrate
on the design and implementation of a new remote API but the client also
serves a purpose as it can be used to prove that the new API actually works
on practical level in a real life use case

The implemented client is a mobile location-aware map application that
visualizes the traffic fluency on roads located close to the user. It locates the
user and then uses bounding coordinates of the map to send an optimized
traffic fluency data query to Digitraffic.

4.2.1 Mobile Platforms

One main task when developing the client side was to choose the mobile
platform the application was to be built on. Currently native application
platforms compete with mobile browsers for application share. Both solutions
provide advantages and disadvantages from the point of view of developers

CHAPTER 4. IMPLEMENTATION 62

and end users. Here present different options that are available when it
comes to mobile application platforms and justify the decision I made with
the mobile application platform for the Digitraffic client.

4.2.1.1 Mobile Operating Systems

The two most prominent mobile operating systems I considered to be used
for the client are Apple’s iOS7 and Google’s Android8. Using native plat-
forms for mobile application development has it’s up- and downsides. Native
applications run efficiently and can easily use all features provided by the
platform like camera and accelerometer for example.

The downside with native applications is that every application has to be
implemented separately for each and every platform. This is time consuming
and requires knowledge of all the platforms that an application is intended
to run on.

4.2.1.2 HTML5

An interesting new mobile platform is the Web browser ie. HTML59. HTML5
is the newest version of the Web markup language but is usually used as an
umbrella term to cover new versions of technologies like HTML, CSS and
JavaScript. The advantage in developing browser based applications is that
a single application can be run in any modern smartphone. Browsers in new
mobile devices usually have a good support for HTML5-related technologies
so the problem of supporting older browsers is not such an issue as it is
with applications intended for desktop browsers. It is a lot easier to gain
good skills in Web application development than to learn to develop native
applications for every major mobile platform. This makes the browser a
considerable mobile platform choice.

The downside of browser based applications is their lower performance
when compared to native applications. They also can not use all phone
features like native applications can.

4.2.1.3 PhoneGap

To combine the good sides of native mobile applications and the ease of de-
velopment of mobile Web applications, I chose PhoneGap10 as the platform

7www.apple.com/ios
8www.android.com
9www.w3.org/html/wg

10www.phonegap.com

CHAPTER 4. IMPLEMENTATION 63

for the Digitraffic client application. PhoneGap is a mobile application de-
velopment framework that allows applications to be developed using Web
standards and to be deployed into phones as native applications. To achieve
this, PhoneGap provides a JavaScript interface that can be used to access
the native features of a device. An application developed with browser tech-
nologies can then be packaged and installed as a native application on any
major mobile platform, in my case Android.

4.2.2 Development Tools

As mentioned, the client application was developed on top of PhoneGap.
The target phone where the application was to be deployed was a HTC
Desire Android phone. So the development environment was an Eclipse IDE
bundled with Android SDK.

Biggest concern when developing the application was to pick up the best
tools and make the work together. Table 4.2 lists the used JavaScript libraries
and their purposes.

Table 4.2: JavaScript libraries
Library Purpose
PhoneGap Phonegap JavaScript library that provides the use of the

phones native features and enables the PhoneGap develop-
ment all together.

jQuery JavaScript library that simplifies Web development
jQuery Mobile A JavaScript library optimized for mobile applications.

Also provides templates for the user interface
Google Maps Provides ways to load and handle a Google map component
jquery-ui-map Eases the use of Google Maps with jQuery Mobile
jquery.toastmessage.js Used for visual notifications

4.2.3 Application Description

The client application is quite simple. When it launches, the location of the
device is determined. The map is centered at this position and a query is sent
to the Digitraffic server, giving the coordinates of the corners of the map view
as parameters. The returned traffic fluency data is then visualized on the
map by drawing the links on it. Colors of the links depend on the fluency
class of each road link. Red indicates that the traffic is jammed whereas
green indicates fluent traffic. Orange, blue and yellow colors indicate the
fluency classes in between. The traffic data on the display can be updated
by pressing Refresh button.

The visualized road links can be seen in figure 4.1.

CHAPTER 4. IMPLEMENTATION 64

Figure 4.1: Mobile client application

4.2.4 Lessons Learned

Even though the application was deployed as native Android application, it
was still developed using Web technologies. While programming the AJAX
calls by using the jQuery AJAX API, I started to think about the cross-
domain AJAX calls that previously have been problematic to perform.

The cross-domain AJAX call is a problem with all kinds of Web-based
mashup applications. The problem is that due to the same-origin policy[7],
Web sites can only fetch content from the domain where they are hosted.
Web browsers implement the same-origin policy to prevent a security defect
called cross-site scripting. The problem is modeled in figure 4.2.

CHAPTER 4. IMPLEMENTATION 65

Figure 4.2: Problem of cross-domain AJAX requests

In the figure the mobile phone represents a mobile Web application
(mydomain.com/app.html) that is hosted at mydomain.com. The Web site
is allowed to make AJAX calls to the mydomain.com server but not other
servers, like the digitraffic.com presented here. One way to overcome
this problem is to change the application design into a server-side mashup
(described in chapter 2.1). This means that the call to the other domain
is performed in the server. However, this solution has its limitations. Call-
ing other services in the server-side increases the workload of the back-end.
Furthermore, some open APIs have limitations for the number of calls made
from same IP address in a given time. If digitraffic.com had this kind of
a limitation, the limit could easily be exceeded as all the API calls required
by mydomain.com/app.html would come form the same IP address. If the
digitraffic.com calls could be made straight from the Web site, the origin
IP would be the client device IP.

Even though the reference client is a native application, it would be de-
sired that also mobile Web clients could use the new API. This enables the
use of the API from mobile browsers which seem to be becoming a more and
more popular application platform for mobile applications. I mentioned in
chapter 2 that HTML5 enables cross-domain AJAX calls[6], but browser sup-
port for the cross-site calls provided by HTML5 is varying so now I started
to look into different ways to enable them in the new Digitraffic API.

While looking into different options to enable cross-domain calls, I came
across a technique called JSONP11. The acronym originates from ”JSON
with padding” and the idea is to exploit the <scritp> HTML tag by giving
a callback function name as an extra parameter to the Web service. The
Web service then wraps the response JSON into a function of this name and
the response can be retrieved as it was dynamic JavaScript that was added
to that page.

To enable JSONP for the new Digitraffic API, I implemented a callback
method check to each resource. If a callback parameter is given with an API

11http://www.json-p.org

CHAPTER 4. IMPLEMENTATION 66

call, the response is wrapped in a method of the name defined by the callback
parameter.

Chapter 5

Testing

In this chapter I present and analyze the results that were gained by testing
the new Digitraffic API. I also describe the testing environment that was
used to perform the tests.

5.1 Test Environment

The new Digitraffic API was tested by retrieving three different resources.
Each resource was retrieved 10 times and the invocations were made with
the client application. The three request sets differed in a way that in each
set, the map zoom level was different. Different zoom levels are presented in
figure 5.1. In each test case traffic data was retrieved for the road links that
are visible in the map. Therefore, by decreasing the zoom level, a bigger area
on the map was exposed and therefore the traffic data was retrieved for a
bigger number of links.

67

CHAPTER 5. TESTING 68

(a) (b) (c)

Figure 5.1: Zoom levels

In case a the zoom level is relatively high and only parts of some local
highways around Helsinki area can be seen. In case b the zoom level is
decreased and most roads around Helsinki area are presented in the map.
In c the zoom level is decreased even more and three major cities, Helsinki,
Tampere and Turku are present in the map. These three different cases
are used to demonstrate how the location-awareness affects API response
message sizes and furthermore, how the message size affects the time used to
parse the results in the client device.

Each request set consisted of ten API calls. The retrieved resource was
/traffic/fluency and the includePolylines parameter was set to true so
every polyline was also returned with each API call. As a reminder, polylines
are geometries that define the road links that are under traffic surveillance.
Knowing the link geometries enables the visualization of the traffic fluency in
client applications. The client application was run in a HTC Desire phone.
Test results were collected from the phone and by emulating the client calls to
the server from command line. For example, processing times were measured
by logging the time it takes to process the responses in the phone but the
message sizes were measured by logging the query parameters at the server
side and then emulating the same calls with curl command on command
line. Since the query parameter coordinates were the same as with the calls
from the client application, the responses were exactly the same.

CHAPTER 5. TESTING 69

5.2 Test Results

Table 5.1 presents the results of the API calls that correspond to the three
different zoom levels. The number of polylines found by Digitraffic, message
size the API call induces and processing time were measured. In the case of
the number of found polylines and response message size, the values were the
same on each API call within a request set as the query extent sent by the
client application to the API was always the same between calls of a single
zoom level. With processing time slight variance was naturally encountered
and therefore, a median time is used.

Table 5.1: Test results
Zoom level Links Message size Processing time (median)

(a) 56 77KB 555 ms
(b) 128 220KB 1245 ms
(c) 413 1.2MB 5053 ms

As mentioned, the results in table 5.1 were obtained by fetching the
/traffic/fluency resource with the includePolylines set to true. To
see the effects of proper caching and response compression, I also performed
the test API calls with the includePolylines parameter set to false and
with the response compression enabled. This comparison can be seen in table
5.2

Table 5.2: Message size comparison
Zoom level w/ polylines w/ polylines,

gzip
w/o poly-
lines

w/o poly-
lines, gzip

(a) 77KB 18KB 8.3KB 246B
(b) 220KB 57KB 18KB 2.4KB
(c) 1.2MB 322KB 63KB 7.9KB

5.2.1 Message Size

Response message sizes increase drastically as the zoom level is decreased.
The closest zoom level in case a clearly produces the smallest response mes-
sage, as expected. Case b, where the main roads in Helsinki area can be seen
on the map, produces a slightly larger message of 220 kilobytes. In the case
c the message size is over one megabyte, which starts to be quite a large
response to be received by a mobile device.

This test shows that an interface that enables location-awareness truly can
make applications more responsive for the end user as bandwidth is usually

CHAPTER 5. TESTING 70

limited when it comes to mobile devices. When the user can be located
and the location information can be used to make queries more efficient,
interfaces can return data that is more relevant to the user and that data
can be consumed in a faster manner by mobile client applications. Case c
where the traffic situation of three major cities is visualized at once is clearly
not an important use case in a mobile traffic application. Case a provides a
good look on a local traffic situation for a user on the road and the case b
provides a overview on the traffic on main roads around Helsinki. In cases a
and b the message size stays in tolerable limits.

An other important finding is the effect that caching and response com-
pression have on the response message size. The impact of these two methods
is huge and they can effectively be used to increase the mobile-friendliness on
an API. As can be seen in table 5.2, by applying polyline caching in the client
and response compression in the server the case a response message size is
reduced to 246 bytes and the case c to 7.9 kilobytes. These are significantly
smaller messages than the ones that are returned without polyline caching
and compression.

To tell what amount of data is too much in mobile environment would of
course require the consideration of the bandwidth used. I have not included
the transmission times of the messages with different connection bandwidths
as the bandwidths are somewhat difficult to explicitly measure. My mo-
bile internet provider Elisa1 reports that the maximum bandwidth in the 3G
network is 15 MB/s which sees like quite a lot when considering how my
mobile connection normally works, say for web browsing, with good connec-
tivity. I also tried a mobile connection speed measuring application called
Speedtest2 to test the actual bandwidth of my mobile internet connection. It
reported that my bandwidth is slightly higher than 5 MB/s. That is far less
than the number announced by my operator but still quite high for a mobile
broadband. The true bandwidth also changes depending on how loaded the
network is. Also the available bandwidth is reduced in areas where the 3G
network is not available and the device has to load the data using slower
connections. Due to these reasons I did not include transmission times to
the explicit test results table. However, it is safe to say that the message
retrieved in cases a and b can be transmitted in satisfactory amount of time
with the mobile internet connections that are currently available.

One observation that led to a change in the API implementation during
the tests was the message size and how the precision of the points that
compose the polylines affect it. Originally the precision of the coordinates

1www.elisa.fi
2www.speedtest.net

CHAPTER 5. TESTING 71

was 14 fractional digits. This precision was the result of the coordinate
conversions after the spatial query was conducted. It meant that most of
the content of each response message was composed of the fractional digits.
By observing the client application interface and the sharpness of the traffic
fluency visualization, I was able to reduce the precision of the coordinates to
five digits before any negative effects could be seen in the client application.
This procedure reduced the sizes of the response messages roughly to half of
the original.

5.2.2 Performance

Processing time gives a view on how much the zoom level affects the user
perceived responsiveness after the response message has been received by
the client device. The time measured here is how long it takes to parse the
response message, create polyline objects that can be passed to the map,
resolve the correct color for each polyline according to the traffic fluency
class and finally draw the polylines on the map.

The processing time in case a is about half a second so it has no drastic
effects on the responsiveness of the application. The time it takes to process
the response in cases b and c show that location-awareness and optimized
queries are important also when it comes to how fast the retrieved data can
be processed in a mobile device.

If compressed responses were used, also the message decompression should
be taken into consideration regarding processing times. As the response
compression was not implemented in the client side, there are no precise
numbers on the decompression performance in the test device. However,
the message size reduction accomplished with compressed responses is so
significant that it is safe to say that it compensates the lack of performance
caused by the decompression.

The performance is highly dependent on the phone where the application
is used as the processing power varies between phone models. The phone
used for these tests is almost two years old but with its 1 GHz processor it
still provides valid results. Also the number of applications that run simulta-
neously can have an effect on the processing time. Therefore, it is difficult to
measure an explicit processing time even though it has to be noted that all
the performance tests were run in the same phone so the benefits of location-
awareness can be observed.

CHAPTER 5. TESTING 72

5.2.3 Client Application Development

One main target in the new Digitraffic API design was to enable simple client
applications. This does not mean that the provided traffic data could not
be used in complex use cases but that basic applications consuming the data
would be simple to implement and would not require heavy enterprise tools.
Here I will evaluate the simplicity of the client application implementation.

One way to measure the complexity of client application is simply the
number of lines of code used to implement the basic functionalities. As
mentioned, the application is implemented using PhoneGap, which means
that the implementation consists of HTML, CSS and JavaScript. The main
procedures of the Digitraffic client are locating the device, initializing the
map, retrieving traffic data from Digitraffic, parsing the data and drawing
the links on the map. All this is performed with approximately 160 lines
on JavaScript code. Most of the lines are used to initialize the map and
resolve the traffic fluency classes of retrieved road links. Parsing the retrieved
data requires practically no effort since the interface returns JSON which is
automatically parsed into valid JavaScript objects.

The client implementation source code is presented in appendix A.

5.2.4 Comparing to the Old Solution

Comparing the new API to the old one is not trivial. One reason is that the
new interface does not correspond to the old interface because, the use case of
the new interface is different. However, the old interface provides a method
called trafficFluency that returns traffic fluency data for each link in the
Digitraffic system. The size of an example response from this method is 276
kilobytes. It is to be noted that this response only includes the traffic data
but not the link geometry information. As for comparison, retrieving traffic
data for every link in Digitraffic and excluding the link geometries from the
response by setting the includePolylines to false, the new RESTful API
returns a response of 97 kilobytes. So by using the new API a decrease of
64.9% in message size can be achieved. By using the location based query
optimization features provided by the new API, fetching only the fluency
data would lead into even smaller responses in real life use cases.

Chapter 6

Discussion

In this chapter I discuss the meaning of the test results and the succeeding
of the implementation. I also present possible improvement ideas.

6.1 Reliability of the Test Results

The test results do not provide any drastic surprises. Reducing the zoom level
leads to a bigger amount of links to process and this led to bigger response
sizes. Some skepticism though has to practiced when analyzing the processing
times. The processing time can vary based on the processing power of the
phone that is used. Also different background processes running in the phone
can affect these values. Anyhow, I believe that ten measurements and the
use of median time give a good impression on how well the location context
and spatially optimized queries affect the processing time.

The reliability of the results is slightly reduced by the lack of measure-
ments about the transmission times of different message sizes on different
bandwidths and the lack of measurements about the gzip decompression
performance of the test phone. Especially the decompression measurements
would have been a good addition to the test result set.

6.2 Applicability of the Selected Solution

The RESTful approach and the use of the JSON format proved to be a good
choice for the new API implementation. The general REST interface allows
the development of lightweight client applications that suite form mobile
client devices. Using JSON was a good choice regarding the client devel-
opment as practically no code lines had to be used to parse the responses.
JSON format enables the use of JSONP in which the response message is

73

CHAPTER 6. DISCUSSION 74

wrapped as a JavaScript function in the server. It enables cross-domain
AJAX calls from Web sites and therefore has a huge positive impact on the
client independence of the new API.

6.3 Optimizing the Response Messages

As can be seen in the message size comparison in table 5.2, a proper caching
scheme and response compressing can seriously improve the response message
size. From the client point of view, implementing the polyline caching would
mean using both /traffic/fluency and /traffic/link resources. The
/traffic/fluency resource would be retrieved with the includePolylines

parameter set to false and missing link information would be retrieved by
fetching the /traffic/link resource for those links that are not saved in
client application cache. This would require some extra design and imple-
mentation work in the client-end. The response compression could be easily
added to the client end as it could be handled by a JavaScript framework.

One question about the cache control is how long the link data is valid.
Roads are practically static data so the link geometry information can stay
valid for years or even longer. Currently the cache control is set to 30 days,
but maybe it could be extended from this. Then again, if a road is changed,
the changes should be visible in traffic fluency applications instantly. I pro-
pose that 30 days is a good validity time for a link geometry.

Another way to decrease the amount of transmitted data on each update
would be to use a better server-client interaction model. Currently the API
and the client rely on traditional request-response model, where the server
sends a response each time the client calls it. The problem with this design is
that it does not recognize changes in resource state. When the client retrieves
a resource, the resource state might be the same as the last time the client
retrieved it. In other words, when the client updates the traffic fluency data,
the update call is unnecessary if the traffic status has not changed. One
way to tackle this problem would be to use a push-technology to initialize
the client-server interaction from the server-side whenever there is a change
in the traffic situation. One possible push solution could be WebSocket[23]
which is part of the HTML5 standards.

6.4 Visual Impacts of the Zoom Level

One observation that can be made for example from figure 5.1 is the way
the links are drawn in the current client implementation. When the spatial

CHAPTER 6. DISCUSSION 75

query is conducted behind the REST API, an offset is given to the links that
go to opposite directions. This way the lanes are not drawn on top of each
other. The width of a link is always constant in the client and this leads
to a behavior where the lanes are hard to distinguish from each other when
the zoom level gets lover. However, in order to fix this, the client has to
be improved as the links always have to be spatially same when they are
returned from the API.

6.5 Improvement Ideas

One possible improvement could be to provide different kinds of resources
with the API. Currently only fluency and link data can be retrieved but
Digitraffic holds also other kinds of data like road conditions. Also the traffic
fluency data could be provided in other ways like reports of previous traffic
information and different kinds of calculations about the data.

In the client side, some major improvements could be conducted by im-
plementing automatic data refreshing. Now the user has to manually refresh
the application by pushing the Refresh button. A better behavior would be
if the traffic situation was automatically updated in a regular interval. The
question here is that how often information should be updated i.e. how fast
does traffic fluency data become obsolete. On some road blocks it could hap-
pen in minutes so an interval of 5-10 minutes would be optimal. Then again,
in that time the driver might drive so far from the location where the data
was previously updated that the new traffic information is received too late
to have an impact on the routes the driver chooses.

Another improvement idea related to this is the tracking of the user. Now
the application does not track the user, but the user has to define the location
for which the traffic fluency data is fetched, except for when the application is
started and the location is resolved by the application. If a person is driving
down a road, it would be desired that the map was always focused in the
location of the user. Also it would come in handy if the location of the user
was pointed out in the map.

GPS navigators and many map services provide route planning which
helps the users to decide which is the best route to reach their destinations.
Route planning could also bring great additional value to Digitraffic and
its mobile client. Unfortunately Digitraffic does not provide this kind of
information. So the way to add the planning info to the client would be to
create a mashup that retrieves the traffic fluency data from Digitraffic and
the route planning information from some other source. However, this would
increase the amount of processing in the client when it would combine these

CHAPTER 6. DISCUSSION 76

two information sources and calculate the best routes. One solution would be
that Digitraffic retrieves the planning data from a third party API, combines
it with the traffic data and the provides the traffic-aware route planning
through its API. However, this would slightly alter the original purpose of
Digitraffic.

Chapter 7

Conclusion

This thesis studied different ways of providing traffic data to location-aware
mobile devices. Based on the results I implemented a new remote program-
ming interface to an existing traffic surveillance system.

The technologies and architectural designs I looked into were REST, Web
service standard stack, feeds, XML-RPC, JSON-RPC, Twitter and custom
protocols. The first three ones were studied in detail because they were the
most prominent technological solutions for the problem at hand.

From these possibilities, REST was selected as the approach to be used
when developing a new traffic fluency data API. Based on this decision I
implemented a new RESTful API that provides JSON representations of
traffic fluency and road link resources. The new API provides location-based
query optimization and a caching scheme for road link information.

To test the new interface, I implemented a mobile client application. The
client was used to show that the new API works and to measure the perfor-
mance of the API. The test results showed that optimizing traffic data queries
improves the responsiveness of a mobile traffic monitoring application.

The practical benefits of this work include the possibility to use the data
provided by Digitraffic in mobile phones. The real production version of
Digitraffic does not yet include this interface but the results gained with the
prototype described in this thesis show that a RESTful API can be used to
distribute the traffic data to mobile phones. This thesis also shows that the
use of location data can make data queries more efficient and therefore make
the system more mobile-friendly.

Based on this thesis work, I propose the following guidelines for a Web ser-
vice that is intended to be mobile-friendly and take advantage of the location-
aware features of client devices.

77

CHAPTER 7. CONCLUSION 78

• Design the interface according to RESTful architectural guidelines.
This way the Web service provides a generic interface that can be ac-
cessed from any kind of application platform that supports internet
connection.

• JSON format can be applied to describe varying data structures. It en-
ables compact messages and is widely supported by client technologies.
Using JSON as data format enables the use of JSONP for cross-domain
data transfer in browser-based client applications. JSONP is supported
by every browser that implements the <script> HTML tag so it is more
widely adopted than other cross-domain methods.

• Provide response customization based on user location. In order to sup-
port map components used by client applications, prefer internationally
standardized coordinate systems like WGS rather than national coor-
dinate systems.

• Provide cache-control information for static data. Divide resources so
that static and non-static data can be retrieved separately.

• Provide request and response compression in order to optimize message
sizes.

These guidelines can be applied in future projects at Gofore. They apply
for systems that hold spatial information and where client applications need
to be deployed in mobile environment.

Bibliography

[1] ECMAScript Language Specification. , ECMA International,
1999. http://www.ecma-international.org/publications/standards/

Ecma-262.htm.

[2] Introduction to UDDI: Important Features and Functional Concepts. ,
OASIS, 2004. http://uddi.org/pubs/uddi-tech-wp.pdf.

[3] Json-rpc 2.0 specification. , JSON-RPC Working Group, 2009.
http://www.simple-is-better.org/json-rpc/jsonrpc20.html, Cited:
20.4.2012.

[4] Pääministeri Jyrki Kataisen hallituksen ohjelma. , Valtioneuvos-
ton kanslia, 2011. http://www.vn.fi/hallitus/hallitusohjelma/

pdf332889/fi.pdf.

[5] Twitter turns six. , Twitter Blog, 2012. http://blog.twitter.com/

2012/03/twitter-turns-six.html, Cited: 25.4.2012.

[6] Aghaee, S., and Pautasso, C. Mashup development with html5.
In Proceedings of the 3rd and 4th International Workshop on Web APIs
and Services Mashups (2010), ACM.

[7] Barth, A. The Web Origin Concept. 6454, IETF, 2011. http://www.

ietf.org/rfc/rfc6454.txt.

[8] Bedge-Dov, G., Brickley, D., Dornfest, R., Davis, I., Dodds,
L., Eisenzopf, J., Galbraith, D., Guha, R., MacLeod, K.,
Miller, E., Swartz, A., and van der Vlist, E. Rdf site summary
(rss) 1.0. http://web.resource.org/rss/1.0/spec, 2000.

[9] Bellwood, T., Capell, S., Clement, L., Colgrave, J.,
Dovey, M. J., Feygin, D., Hately, A., Kochman, R., Ma-
cias, P., Novotny, M., Paolucci, M., von Riegen, C.,
Rogers, T., Sycara, K., Wenzel, P., and Wu, Z. Uddi

79

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://uddi.org/pubs/uddi-tech-wp.pdf
http://www.simple-is-better.org/json-rpc/jsonrpc20.html
http://www.vn.fi/hallitus/hallitusohjelma/pdf332889/fi.pdf
http://www.vn.fi/hallitus/hallitusohjelma/pdf332889/fi.pdf
http://blog.twitter.com/2012/03/twitter-turns-six.html
http://blog.twitter.com/2012/03/twitter-turns-six.html
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6454.txt
http://web.resource.org/rss/1.0/spec

BIBLIOGRAPHY 80

version 3.0.2. UDDI Spec Technical Committee Draft, OASIS,
2004. http://www.oasis-open.org/committees/uddi-spec/doc/spec/

v3/uddi-v3.0.2-20041019.htm.

[10] Berners-Lee, T., Fielding, R., and Masinter, L. Uniform re-
source identifier (uri): Generic syntax. , Network Working Group, 2005.
http://tools.ietf.org/html/rfc3986.

[11] Bray, T. Smex-d (simple message exchange descriptor). http://www.

tbray.org/ongoing/When/200x/2005/05/03/SMEX-D, Cited: 15.5.2012,
2005.

[12] Bray, T., Paoli, J., Maler, E., Yergeau, F., and Sperberg-
McQueen, C. M. Extensible markup language (XML) 1.0 (fifth edi-
tion). W3C Recommendation, W3C, 2008. http://www.w3.org/TR/

2008/REC-xml-20081126.

[13] Christensen, E., Curbera, F., Meredith, G., and Weer-
awarana, S. Web Service Definition Language (WSDL). W3C Note,
2001. http://www.w3.org/TR/wsdl.

[14] Chumley, R., Durand, J., Pilz, G., and Rutt, T. Ws-i ba-
sic profile version 2.0. , WS-I, 2010. http://www.ws-i.org/Profiles/

BasicProfile-2.0-2010-11-09.html.

[15] Cowan, J. Resdel. http://recycledknowledge.blogspot.com/2005/

05/resedel.html, Cited: 15.5.2012, 2005.

[16] Curbera, F. b., Duftler, M. b., Khalaf, R. b., Nagy, W.,
Mukhi, N. b., and Weerawarana, S. b. Unraveling the Web ser-
vices Web: An introduction to SOAP, WSDL, and UDDI. IEEE Dis-
tributed Systems Online 3, 4 (2002).

[17] Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., and
Gandhi, P. Intel mash maker: join the web. SIGMOD Rec. 36 (2007).

[18] Erenkrantz, J. R., Gorlick, M., Suryanarayana, G., and
Taylor, R. N. From representations to computations: the evolu-
tion of web architectures. In Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (2007), ACM.

[19] Erl, T. Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, 2005.

http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://tools.ietf.org/html/rfc3986
http://www.tbray.org/ongoing/When/200x/2005/05/03/SMEX-D
http://www.tbray.org/ongoing/When/200x/2005/05/03/SMEX-D
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/wsdl
http://www.ws-i.org/Profiles/BasicProfile-2.0-2010-11-09.html
http://www.ws-i.org/Profiles/BasicProfile-2.0-2010-11-09.html
http://recycledknowledge.blogspot.com/2005/05/resedel.html
http://recycledknowledge.blogspot.com/2005/05/resedel.html

BIBLIOGRAPHY 81

[20] Fielding, R. T. REST: Architectural Styles and the Design of
Network-based Software Architectures. Doctoral dissertation, University
of California, Irvine, 2000.

[21] Garofalakis, J., and Stefanis, V. Using rss feeds for effective
mobile web browsing. Universal Access in the Information Society 6
(2007).

[22] Hadley, M. Web application description language. http://www.w3.

org/Submission/wadl, Cited: 15.5.2012, 2009.

[23] Hickson, I. The web sockets API. W3C Working Draft, W3C, 2009.
http://www.w3.org/TR/2009/WD-websockets-20091222.

[24] Joe, Z., and Pavlovski, C. Towards accountable enterprise mashup
services. Proceedings - ICEBE 2007: IEEE International Conference on
e-Business Engineering - Workshops: SOAIC 2007; SOSE 2007; SOKM
2007 (2007).

[25] Kopecký, J., Gomadam, K., and Vitvar, T. hrests: An html
microformat for describing restful web services. In Proceedings of the
2008 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology - Volume 01 (2008), IEEE Computer
Society.

[26] Lanthaler, M., and Gütl, C. Towards a restful service ecosys-
tem: Perspectives and challenges. 4th IEEE International Conference on
Digital Ecosystems and Technologies - Conference Proceedings of IEEE-
DEST 2010, DEST 2010 (2010).

[27] Li, L., and Wu, C. Design patterns for restful communication web
services. ICWS 2010 - 2010 IEEE 8th International Conference on Web
Services (2010).

[28] Lin, S.-Y., Chao, K.-M., and Lo, C.-C. Service-oriented dynamic
data driven application systems to urban traffic management in resource-
bounded environment. SIGAPP Appl. Comput. Rev. 12, 1 (2012).

[29] Liu, X., Hui, Y., Sun, W., and Liang, H. Towards service compo-
sition based on mashup. 2007 IEEE Congress on Services (2007).

[30] Liu, Y., and Wilde, E. Scalable and mashable location-oriented web
services. In Proceedings of the 10th international conference on Web
engineering (2010), ICWE’10, Springer-Verlag.

http://www.w3.org/Submission/wadl
http://www.w3.org/Submission/wadl
http://www.w3.org/TR/2009/WD-websockets-20091222

BIBLIOGRAPHY 82

[31] Mitra, N., and Lafon, Y. SOAP version 1.2 part 0: Primer (second
edition). W3C Recommendation, W3C, 2007. http://www.w3.org/TR/

2007/REC-soap12-part0-20070427.

[32] Mokbel, M., Aref, W., Hambrusch, S., and Prabhakar, S.
Towards scalable location-aware services: Requirements and research
issues, 2003.

[33] Murugesan, S. Understanding web 2.0. IT Professional 9, 4 (2007).

[34] Nottingham, M., and Sayre, R. The atom syndication format.
http://www.ietf.org/rfc/rfc4287.txt, 2005.

[35] Orchard, D. Wdl (web description language). http://www.

pacificspirit.com/Authoring/WDL, Cited: 15.5.2012.

[36] Pautasso, C., Zimmermann, O., and Leymann, F. Restful web
services vs. ”big”’ web services: making the right architectural decision.
In Proceeding of the 17th international conference on World Wide Web
(2008), WWW ’08, ACM.

[37] Poikola, A., Kola, P., and Hintikka, K. A. Public Data - an
introduction to opening information resources. Edita Prima Oy, 2010.

[38] Prescod, P. Web resource description language (”word-dul”). http:

//www.prescod.net/rest/wrdl/wrdl.html, Cited: 15.5.2012.

[39] Richardson, L., and Ruby, S. Restful web services, first ed. O’Reilly,
2007.

[40] Rose, M. The blocks extensible exchange protocol core. http://tools.
ietf.org/html/rfc3080, Cited: 20.4.2012, 2001.

[41] Ruby, S. Roadmap. , The Atom Wiki. http://www.intertwingly.

net/wiki/pie/RoadMap, Cited: 15.5.2012.

[42] Salminen, A., Kallio, J., and Mikkonen, T. Towards mobile mul-
timedia mashup ecosystem. IEEE International Conference on Commu-
nications (2011).

[43] Salo, J., Aaltonen, T., and Mikkonen, T. Mashreduce - server-
side mashups for mobile devices. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 6646 LNCS (2011).

http://www.w3.org/TR/2007/REC-soap12-part0-20070427
http://www.w3.org/TR/2007/REC-soap12-part0-20070427
http://www.ietf.org/rfc/rfc4287.txt
http://www.pacificspirit.com/Authoring/WDL
http://www.pacificspirit.com/Authoring/WDL
http://www.prescod.net/rest/wrdl/wrdl.html
http://www.prescod.net/rest/wrdl/wrdl.html
http://tools.ietf.org/html/rfc3080
http://tools.ietf.org/html/rfc3080
http://www.intertwingly.net/wiki/pie/RoadMap
http://www.intertwingly.net/wiki/pie/RoadMap

BIBLIOGRAPHY 83

[44] Salz, R. Really simple web service descriptions. http://www.xml.com/

pub/a/ws/2003/10/14/salz.html, Cited: 15.5.2011, 2003.

[45] Sayre, R. Atom: the standard in syndication. Internet Computing,
IEEE 9, 4 (2005).

[46] Trifa, V., and Guinard, D. Design of a web-based distributed
location-aware infrastructure for mobile devices. 2010 8th IEEE In-
ternational Conference on Pervasive Computing and Communications
Workshops, PERCOM Workshops 2010 (2010).

[47] Vinoski, S. Putting the ”web” into web services: Web services inter-
action models, part 2. IEEE Internet Computing 6, 4 (2002).

[48] Vinoski, S. Rest eye for the soa guy. IEEE Internet Computing 11, 1
(2007).

[49] Walmsley, P., and Fallside, D. C. XML schema part 0: Primer
second edition. W3C recommendation, W3C, Oct. 2004. http://www.

w3.org/TR/2004/REC-xmlschema-0-20041028.

[50] Walsh, N. Witw: Nsdl. http://norman.walsh.name/2005/03/12/nsdl,
Cited: 15.10.2011, 2005.

[51] Wang, Q., and Deters, R. Soa’s last mile connecting smartphones to
the service cloud. CLOUD 2009 - 2009 IEEE International Conference
on Cloud Computing (2009).

[52] Winter, D. Xml-rpc specification. http://xmlrpc.scripting.com/

spec, Cited: 20.4.2012, 1999.

[53] Work, D., and Bayen, A. Impacts of the mobile internet on trans-
portation cyberphysical systems: Traffic monitoring using smartphones.
National Workshop for Research on High-Confidence Transportation
Cyber-Physical Systems: Automotive, Aviation and Rail (2008).

[54] Yang, Y. C., Cheng, C. M., Lin, P. Y., and Tsao, S. L. A
real-time road traffic information system based on a peer-to-peer ap-
proach. In Computers and Communications, 2008. ISCC 2008. IEEE
Symposium on (2008).

[55] Ye, W., Hu, W., Zhao, W., Gao, X., Zhang, S., and Wang,
L. Towards lightweight application integration based on mashup. SER-
VICES 2009 - 5th 2009 World Congress on Services (2009).

http://www.xml.com/pub/a/ws/2003/10/14/salz.html
http://www.xml.com/pub/a/ws/2003/10/14/salz.html
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028
http://norman.walsh.name/2005/03/12/nsdl
http://xmlrpc.scripting.com/spec
http://xmlrpc.scripting.com/spec

BIBLIOGRAPHY 84

[56] Yu, J., Benatallah, B., Casati, F., and Daniel, F. Understand-
ing mashup development. IEEE Internet Computing 12, 5 (2008).

Appendix A

Client source code

<!--

Copyright 2012 Gofore Oy

3
Web based mobile Digitraffic client.

Author: Hannu Lyytik ä inen

-->

8 <!DOCTYPE html>

<html>

<head>

<title></title>

13 <meta name="viewport" content="width =480px; height =700px;

user -scalable=no" />

<meta http -equiv="Content -type" content="text/html; charset=utf -8">

<link rel="stylesheet" href="css/style.css" />

18 <link rel="stylesheet" href="css/jquery.mobile -1.0. min.css" />

<link rel="stylesheet" href="css/jquery.toastmessage.css" />

<!-- Google Maps API -->

<script src="http :// maps.google.com/maps/api/js?sensor=false"

type="text/javascript"></script >

23 <!-- jQuery -->

<script src="js/lib/jquery -1.7.1. min.js" type="text/javascript"></script >

<!-- The actual client app -->

<script src="js/traffic.js" type="text/javascript"></script >

<!-- jQuery Mobile -->

28 <script src="js/lib/jquery.mobile -1.0. min.js"

type="text/javascript"></script >

<!-- Phonegap -->

<script type="text/javascript" charset="utf -8"

src="js/lib/phonegap.js"></script >

33 <!-- jquery -ui -map plugin -->

<script src="js/lib/jquery.ui.map.full.min.js"

type="text/javascript"></script >

<!-- toast message plugin for notifications -->

<script src="js/lib/jquery.toastmessage.js" type="text/javascript"></script >

38
</head>

<body>

<div data -role="page" id="page -map">

85

APPENDIX A. CLIENT SOURCE CODE 86

43
<div data -role="header">

Refresh

<h1>Traffic </h1>

</div>

48
<div data -role="content" id="map -content">

<div id="map_canvas"></div>

</div><!-- /content -->

53 </div>

</body>

<script >

58 $(traffic.init());

</script >

</html>

Example A.1: Client application HTML source code

/*

* Copyright 2012 Gofore Oy

*

* Web based mobile Digitraffic client.

5 *

* Author: Hannu Lyytik äinen

*/

// traffic object that provides map and traffic fluency related

functionality

10 var traffic = {};

traffic.map = (function () {

var mapOptions = {

15 ’panControl ’ : false ,

’mapTypeControl ’ : false ,

’streetViewControl ’ : false ,

’zoom’ : 12,

’mapTypeId ’ : google.maps.MapTypeId.ROADMAP ,

20 ’zoomControlOptions ’ : {’position ’ : google.maps.ControlPosition

.LEFT_BOTTOM ,

’style’ : google.maps.ZoomControlStyle.DEFAULT}

};

25 function locationSuccess(position) {

var latLng = new google.maps.LatLng(position.coords.latitude ,

position.coords.longitude);

mapOptions.center = latLng;

30
// initialize google map

$(’#map_canvas ’).gmap(mapOptions);

}

35 function locationError(error) {

// can’t get location , show error

$().toastmessage(’showErrorToast ’, "Error occured while resoloving

APPENDIX A. CLIENT SOURCE CODE 87

location");

}

40 // traffic fluency ajax success call

function trafficSuccess(data) {

$(’#map_canvas ’).gmap(’clear ’, ’overlays ’);

// iterate the links

45 for (x in data) {

var points = data[x]. polyline.points;

var gLatLngs = new Array(points.length);

// iterate the points in a link , create

50 // new google LatLng onbjects and draw the polyline

for (y in points) {

gLatLngs[y] = new google.maps.LatLng(points[y][1],

points[y][0])

}

55 var fluencyCode;

if (data[x]. fluencyClass === undefined) {

// fluency class not found

fluencyCode = -1;

60 }

else {

fluencyCode = data[x]. fluencyClass.code;

}

65 var colorCode = "";

// resolve link color from the fluency class

switch (fluencyCode) {

case 1:

70 colorCode = "#FF0000";

break;

case 2:

colorCode = "#FF8000";

break;

75 case 3:

colorCode = "#FFFF00";

break;

case 4:

colorCode = "#0040 FF";

80 break;

case 5:

colorCode = "#00 FF00";

break;

case -1:

85 colorCode = "#6 E6E6E";

break;

}

$(’#map_canvas ’).gmap(’addShape ’, ’Polyline ’,

90 {

’editable ’: false ,

’path’: gLatLngs ,

’strokeColor ’: colorCode ,

’strokeOpacity ’: 1.0,

95 ’strokeWeight ’: 3

});

}

}

APPENDIX A. CLIENT SOURCE CODE 88

100 function jqxhrError (data , status , xhr) {

$().toastmessage(’showErrorToast ’, "Error occured while retrieving

traffic data");

}

function jqxhrComplete (data , status , xhr) {

105 $.mobile.hidePageLoadingMsg ();

}

return {

init: function () {

110
$.mobile.loadingMessage = "Loading traffic data";

// configure toast messages

$().toastmessage ({

115 sticky : false ,

position : ’middle -center ’

});

if (navigator.geolocation) {

120 navigator.geolocation.getCurrentPosition(locationSuccess ,

locationError);

}

else {

// can’t get location , show error

$().toastmessage(’showErrorToast ’, "Error occured while

resoloving location");

125 }

},

refresh: function () {

// retreive traffic data

130 // and draw polylines

$.mobile.showPageLoadingMsg ();

var bounds = $(’#map_canvas ’).gmap(’get’, ’map’).getBounds ();

135 var params =

{

latMin : bounds.getSouthWest ().lat(),

lngMin : bounds.getSouthWest ().lng(),

latMax : bounds.getNorthEast ().lat(),

140 lngMax : bounds.getNorthEast ().lng(),

includePolylines : "true"

}

var url = "http :// www.digitraffic.com/rest/traffic/fluency?

callback =?";

145
var jqxhr = $.getJSON(url , params , trafficSuccess)

.success(function () {})

.error(jqxhrError)

.complete(jqxhrComplete);

150 }

};

}());

traffic.addEvents = function () {

155 $(’#page -map’).live(’pageinit ’, traffic.map.init);

$(’#refresh ’).click(traffic.map.refresh);

APPENDIX A. CLIENT SOURCE CODE 89

};

traffic.init = function () {

160 traffic.addEvents ();

};

Example A.2: Client application JavaScript source code

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Digitraffic
	1.2 Problems With the Current API
	1.3 Research Goals
	1.4 Structure of This Thesis

	2 Background
	2.1 Mashups
	2.2 Location-Awareness and Mobility
	2.3 Open Data
	2.4 Other Traffic Services
	2.4.1 Research
	2.4.2 Open Traffic Web Services

	2.5 Conclusion

	3 Technology Evaluation
	3.1 REST
	3.1.1 REST by Definition
	3.1.1.1 Client-Server
	3.1.1.2 Stateless
	3.1.1.3 Caching
	3.1.1.4 Uniform Interfaces
	3.1.1.5 Layered System
	3.1.1.6 Code-On-Demand
	3.1.1.7 Data Elements
	3.1.1.8 Connectors
	3.1.1.9 Components

	3.1.2 REST Applied to Web
	3.1.2.1 Resource-Oriented Architecture
	3.1.2.2 Resources And URIs
	3.1.2.3 Addressability
	3.1.2.4 Statelessness
	3.1.2.5 Representations
	3.1.2.6 General Interfaces
	3.1.2.7 Method Safety

	3.1.3 Applying to Digitraffic
	3.1.3.1 Advantages
	3.1.3.2 Disadvantages

	3.2 WS Stack
	3.2.1 SOAP
	3.2.1.1 Messages
	3.2.1.2 Nodes
	3.2.1.3 Message Exchange
	3.2.1.4 Protocol Binding

	3.2.2 WSDL
	3.2.3 UDDI
	3.2.4 Extensions
	3.2.5 Applying to Digitraffic
	3.2.5.1 Advantages
	3.2.5.2 Disadvantages

	3.3 Feeds
	3.3.1 RSS
	3.3.2 Atom
	3.3.3 Applying to Digitraffic
	3.3.3.1 Advantages
	3.3.3.2 Disadvantages

	3.4 Other Possibilities
	3.4.1 XML-RPC and JSON-RPC
	3.4.2 Twitter
	3.4.3 Custom Protocol

	3.5 Solution Comparison

	4 Implementation
	4.1 New Traffic Data API
	4.1.1 Digitraffic Architecture And Technologies
	4.1.2 RESTful Interface
	4.1.3 Spatial Query
	4.1.4 Traffic Data Query
	4.1.5 Response Generation
	4.1.6 API Description
	4.1.7 Lessons Learned

	4.2 Client Application
	4.2.1 Mobile Platforms
	4.2.1.1 Mobile Operating Systems
	4.2.1.2 HTML5
	4.2.1.3 PhoneGap

	4.2.2 Development Tools
	4.2.3 Application Description
	4.2.4 Lessons Learned

	5 Testing
	5.1 Test Environment
	5.2 Test Results
	5.2.1 Message Size
	5.2.2 Performance
	5.2.3 Client Application Development
	5.2.4 Comparing to the Old Solution

	6 Discussion
	6.1 Reliability of the Test Results
	6.2 Applicability of the Selected Solution
	6.3 Optimizing the Response Messages
	6.4 Visual Impacts of the Zoom Level
	6.5 Improvement Ideas

	7 Conclusion
	A Client source code

