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ginal posterior density. ARDEP was also compared to two other methods, which
integrated approximately over the original Laplace prior: LAEP approximated
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The resulting brain maps were consistent with previous studies for simpler
stimuli and suggested that the proposed model is also able to reveal additional
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predictive performance of the model was significantly above chance level for all ap-
proximate inference methods. Regardless of intensive pruning of features, ARDEP
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1 Introduction

The development of non-invasive imaging techniques, such as functional magnetic
resonance imaging (fMRI), has been revolutional for neuroscience, enabling mea-
surements of human brain activity without going inside the skull. A conventional
statistical treatment on these measurements is based on generative models explain-
ing the measured activity by a given experimental condition. These models are
usually mass-univariate in the sense that they treat the voxels in the brain response
image independent of each other, before combining the results into a statistical para-
metric map (SPM). A common choice is to use the general linear model (GLM) as
demonstrated by Friston et al. (1994). Even if these methods have revealed many
well interpretable results, they have limitations concerning sensitivity to the selec-
tion of the generative model and the significance levels used in hypothesis testing.
Since brain imaging data typically embodies complex, high-dimensional correlation
structures, it would often be more appropriate to use multivariate models.

During the recent ten years, there has been growing interest in utilisation of
pattern recognition methods for analysing brain imaging data (O’Toole et al. 2007;
Pereira et al. 2009). These classification methods represent an opposite way of
modelling compared to generative methods, by trying to predict the experimental
condition from a given activation pattern. In neuroscience literature, this discrimi-
native approach is often referred to as multi-voxel pattern analysis (MVPA). As a
multivariate and data-driven approach, MVPA overcomes many of the limitations
of mass-univariate generative methods, and thus it may reveal additional informa-
tion about how different cognitive states are encoded in the human brain. Decoding
cognitive states is particularly useful when developing practical applications, such
as brain-computer interfaces (Wolpaw et al. 2002) or new clinical markers for distin-
guishing disease (Klöppel et al. 2008). The possibility to make predictions enables
also validation of the model by testing it with new data or by cross-validation, which
is essentially important for practical applications.

Along with the benefits, multidimensionality brings also new challenges to the
analysis. If the number of parameters is high compared to the number of observa-
tions, it becomes difficult to reliably infer the parameters and make relevant con-
clusions based on the solution. Too high amount of adjustable parameters may also
lead to reduced predictive performance due to increased sensitivity to overfitting.
In addition, the complexity of computations increases proportionally to the third
power of the number of parameters, until it reaches the number of observations. For
all these reasons, there is a need for sparsified solutions through feature selection or
sparsity promoting priors. (Rasmussen et al. 2012)

The MVPA model used in this work is based on a linear binary classifier that
assigns a given activation pattern into the more probable one of two classes according
to a linear combination of the voxel activations. Bayesian inference on the voxel
weights leads to a multivariate posterior distribution, representing the contribution
of different brain locations to the classification and providing uncertainties on both
the parameters and the predictions. The prior distribution is chosen from the family
of Laplace distributions in order to promote sparsity in the final posterior solution.
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Even though using a tightly scaled Laplace-prior favours sparse solutions, a full
Bayesian treatment always retains some uncertainty on the parameters. Truly sparse
solutions, where the posterior probability mass is concentrated at zero for many of
the parameters, would require replacing the full posterior distribution with a point
estimate. Using the maximum a posteriori (MAP) estimate for the parameters would
be equivalent to L1-norm regularisation (Tibshirani 1996). In this work, absolutely
sparse solutions are obtained by implementing a type II point estimate method,
where the Laplace prior is decomposed into a mixture of zero-mean Gaussian priors
with separate scale parameters for each weight and these scales are optimised by their
approximate marginal MAP estimate. Since many of the scales reduce to zero, also
the corresponding voxel weights are forced to be equal to zero and thus pruned out
of the model. This approach utilises the idea of automatic relevance determination
(ARD), where the Gaussian scales are regarded as relevance hyperparameters to be
optimised by maximising their marginal likelihood (MacKay 1994; Neal 1994).

Since exact posterior inference is analytically intractable, approximate methods
are needed for summarising the posterior distribution. The implementation of the
ARD approach, denoted as ARDEP, is based on the algorithm introduced by Qi et
al. (2004), which approximates the posterior distribution as a multivariate Gaussian
distribution by using the expectation propagation (EP) procedure (Minka 2001).
The original algorithm is carefully rederived, modified for the Laplace prior and
implemented in a more efficient computational form. In addition, some practical
modifications are applied and alternative criteria for the relevance hyperparameter
selection considered to improve the applicability of the method. ARDEP is also
compared to two other methods, which integrate approximately over the original
Laplace prior. The LAEP solution, obtained by using an algorithm proposed by
van Gerven et al. (2010), approximates the posterior distribution as well by a mul-
tivariate Gaussian using an EP algorithm. The third approach (MCMC), in turn, is
a Markov Chain Monte Carlo simulation method, which generates random samples
to simulate the posterior distribution, implemented by using the idea of the Gibbs
sampler (Geman and Geman 1984).

The objective of this work is to study, whether the proposed MVPA model is
suitable for analysing fMRI activation patterns related to perceiving natural au-
diovisual stimuli and what kind of results are obtained by the three different ap-
proximate inference methods. The example data includes fMRI activation patterns
measured from the auditory cortex and some surrounding regions during audiovi-
sual and merely auditory perception of spoken and piano-played versions of popular
songs. In the first classification setting, the observations are labelled into piano and
speech classes in order to train a model that is able to predict whether a given ac-
tivation pattern is more probably related to musical or spoken stimuli. The second
setting labels the piano observations into auditory and audiovisual classes, aiming at
revealing activation patterns related to audiovisual input. The models obtained by
different approximate inference methods are compared with respect to both the dou-
ble-cross-validated predictive performance and the neuroscientifical interpretability
of the obtained parameter distributions. The results are also reflected to the previous
findings on auditory and audiovisual processing of simpler corresponding stimuli.
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2 Background

This chapter reviews some theoretical background that is necessary for understand-
ing this work. The first section serves as a neuroscientifical introduction to the two
example classification settings. The second section presents the basic principles of
magnetic resonance imaging and explains how functional brain images are acquired.
In the last section, I introduce the general idea of Bayesian classification as a basis
for the model used in this work.

2.1 Cortical Auditory Processing

Sound is essentially a mechanical wave of pressure propagating through a compress-
ible medium. The human auditory system is capable of perceiving sounds with a
frequency between about 20 Hz and 20 kHz. The processing of the original sound
begins already in the auricle, which selectively directs sounds coming from different
directions into the auditory canal. At the end of the canal, the sound wave vibrates
the tympanic membrane, which in turn affects the auditory ossicles transforming
the oscillations into a fluid wave in the cochlea. The cochlea is a spiral-shaped cav-
ity including a basilar membrane connected to sensory hair cells that convert the
membrane oscillations into neural signals. Since the natural frequency of the basilar
membrane depends on spatial location along the cavity, the sound frequency is spa-
tially encoded in neurons. This tonotopy is reserved, when the signals proceed along
the ascending pathways through the brainstem towards the auditory cortex. The
actual perception of the sound occurs in the cortex, where the neural signals are in-
terpreted by associating them with memories and information from other modalities,
such as vision. (Nicholls et al. 2001, pp. 366–376)

The human auditory cortex is located in the superior temporal gyrys (STG), just
below the Sylvian fissure (see figure 1 on the following page). The earliest cortical
region involved in auditory processing is the primary auditory cortex (AI), which is
located in the mediolaterally oriented Heschl’s gyri (HG). According to electrophys-
iological studies in non-human primates, AI and the surrounding secondary regions
include several tonotopic maps representing the cochlear frequency encoding (Kaas
et al. 2000), with directions orthogonal to the frequency gradients encoding other
properties, such as the amplitude of the sound (Read et al. 2002). Promising results
have been obtained also by some human studies, suggesting corresponding organ-
isation with frequency gradients along the mediolateral direction of Heschl’s gyri
(Talavage et al. 2004).

Interpretation of a natural acoustic environment requires much more compli-
cated processing than simply detecting frequencies. This involves both hierarchical
and parallel connections to various brain regions. Cortical auditory processing has
been illustrated by separating parallel pathways for different computational tasks,
originating from AI and proceeding hierarchically through the secondary auditory
regions. The ventral pathways, proceeding through the inferior auditory regions to-
wards the superior temporal sulcus (STS) and medial (MTG) and inferior temporal
gyrus (ITG), are suggested to be related to speech processing and non-speech audi-
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Figure 1: The temporal lobe, separated from the parietal and frontal lobe by the
Sylvian fissure (SF), consists of three major gyri: inferior (ITG), medial (MTG) and
superior temporal gyrus (STG). The primary auditory cortex is located in the medi-
olaterally oriented Heschl’s gyri (HG). Superior temporal sulcus (STS) between STG
and MTG and planum temporale (PT) posterior to HG are suggested to be involved
in multi-modal integration.

tory object processing. The dorsal pathways, in turn, proceed through the superior
auditory regions towards premotor and prefrontal cortices, and they are suggested
to be involved in spatial and audiomotor processing. (Zatorre and Schönwiesner
2011)

This work deals with activation patterns measured from the auditory cortex and
some surrounding regions in the superior parts of the temporal lobes during au-
diovisual and merely auditory perception of spoken and piano-played versions of
popular songs. The first classification setting aims at discriminating piano- and
speech-related activation patterns. Previous studies, mainly for simpler stimuli,
have shown that activated regions during music and speech perception are largely
overlapping in STG. However, for example Tervaniemi et al. (2006) have demon-
strated more lateral and inferior STG activation for speech sounds compared to
music sounds, supporting the special role of ventral pathways and STS in speech
processing. Several studies have also observed asymmetry between the hemispheres:
right dominance of music-related and especially left dominance of speech-related
processing. These effects have been explained by regions specialised for temporal
and spectral resolution. (Zatorre and Schönwiesner 2011; DeWitt and Rauschecker
2012)

The second classification setting deals only with the piano observations, trying
to discriminate activation patterns related to perception of audiovisual (AV) and
merely auditory piano-playing. Previous studies have found many multisensory
cortical and sub-cortical convergence zones and even direct connections between
primary sensory cortices (Driver and Noesselt 2008; Koelewijn et al. 2010). One
possible region to show enhanced activation related to visual perception of hands
playing piano is STS, which is commonly regarded to be involved, e.g., in biological
motion processing and audiovisual integration (Hein and Knight 2008). Another
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region suggested to be involved in multi-modal integration is the planum temporale
(PT), located posterior to HG. PT is usually larger in the left hemisphere, where it
has been found to be activated even during silent lipreading (Calvert et al. 1997).
Similar activation has been reported also for silent piano-playing, suggesting that
PT is related to learned sensory-motor associations (Hasegawa et al. 2004; Baumann
et al. 2005).

2.2 Functional Magnetic Resonance Imaging

2.2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a medical imaging technique based on a physi-
cal phenomenon called nuclear magnetic resonance (NMR), which emerges for nuclei
with non-zero spin. Since the human body is mostly water, the particle responsible
for the phenomenon in practice is the nucleus of the dominant hydrogen isotope,
simply consisting of one proton without any neutrons. When a proton gets into
a magnetic field, its spin is quantised into two possible states with energy differ-
ence directly proportional to the strength of the external magnetic field. Thus, a
photon with a frequency corresponding to this energy difference can be absorbed
or re-emitted by the proton, causing a swap between the spin states. This nuclear
magnetic resonance phenomenon is utilised in magnetic resonance imaging to control
the net magnetisation of a group of protons caused by their spins.

Even if spin is a quantum mechanical property, unexplained by classical physics,
it is easier to understand the principles of MRI by imaging spin as intrinsic angular
momentum of a charged particle, described by a spin vector pointing to a random
direction in free space. A spinning charge gives rise to magnetic moment, as well
described by a vector directed parallel to the spin vector. Thus, when placed in
a magnetic field, the particle tends to precess around the direction of the external
magnetic field. The two spin quantum states of a proton can now be pictured as
states of precession at a certain angle away from the direction of the external field
(parallel state) and from the opposite direction (antiparallel state), with a frequency
equal to the resonance frequency of NMR, known as the Larmor frequency.

When a group of protons is in a magnetic field, their spins are distributed be-
tween the two states according to probabilities depending on the strength of the
external field and the temperature. At equilibrium, the components of spin vectors
and magnetic moments perpendicular to the external field cancel each other out.
Consequently, since the parallel state is more probable than the antiparallel state,
the sum of the magnetic moments can be described as a net magnetisation vector
directed parallel to the external field. This net magnetisation can be measured,
but it is virtually impossible in the direction of the external field, usually denoted
as z-axis. Thus, MRI measures instead the magnetic field in the transverse plane,
achieved by a 90◦ radiofrequency pulse (RF-pulse). By generating a magnetic field
rotating at the Larmor frequency in the plane perpendicular to the static external
field, also the net magnetisation is enforced to precess, or nutate, towards this plane.
By switching this rotating field off at a correct moment, the net magnetisation has
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been tilted 90 degrees to rotate in the transverse plane around its original direc-
tion. An important thing to notice is also, that the spins responsible for the net
magnetisation are now all in phase with respect to z-axis. (Levitt 2008, pp. 5–38)

After the RF-pulse, the net magnetisation starts to precess back to the equi-
librium, i.e., towards the direction of the static external field. It is this relaxation
process, what is particularly interesting with respect to imaging, because the char-
acteristics of the process depend on the properties of the tissue where it occurs. The
time constant that determines how fast the z-component of the net magnetisation
recovers, while the protons lose their energy, is denoted as the longitudinal relax-
ation time T1. Transverse relaxation, in turn, is caused by the loss of coherence
between the precession phases of individual spins, due to small differences in the
magnetic field they experience and thus in their Larmor frequencies. These differ-
ences arise from both the spin-spin interactions (spin-spin relaxation time T2) and
the inhomogenities in the external magnetic field. The actual transverse relaxation
time takes both of these effects into account, and it is denoted as T ∗

2 . (Huettel et
al. 2004, pp. 70–73)

In MRI, the structure of interest is placed in a device consisting of three main
components. The largest of the components is a powerful magnet, which produces a
static magnetic field. Inside the magnet, there are gradient coils, which are used to
adjust the strength of the static magnetic field as a function of some spatial dimen-
sion, and RF-coils, which produce the RF-pulses and receive the MR-signal emitted
back by the spins. (McRobbie et al. 2007, pp. 167–191) By using an appropriate
sequence of gradient pulses and RF-pulses, an image representing the desired relax-
ation time as a function of spatial coordinates can be resolved from the acquired
MR-signals. The contrasts in the fMRI data used in this work are based on differ-
ent T ∗

2 relaxation times of oxygen-rich and oxygen-poor blood, exposed by a fast
echo-planar imaging (EPI) sequence.

2.2.2 Acquisition of T ∗
2 -weighted Contrast

In a typical MRI setting, a three-dimensional image is obtained slice by slice, by
exciting only a thin volume of the structure during each MR-signal acquisition. The
slice selection is controlled by applying a one-dimensional gradient pulse simultane-
ously with the RF-pulse. Since the Larmor frequency depends on the strength of
the external magnetic field, the RF-pulse is able to excite only the spins lying inside
a restricted range in the direction of the gradient. The gradient pulse causes also
some differences in the precession phase between the spins near the edges of this
region. This dephasing is compensated by applying an opposite gradient pulse right
after the RF-pulse.

The remaining two dimensions are typically encoded by using sequences, where
the phase of the received signal depends on another one of the dimensions and the
frequency on the other one. The phase encoding is achieved by applying a one-
dimensional gradient pulse between the RF-pulse and the signal acquisition into
each sequence. During this short pulse, the precession frequencies of spins with
different coordinates along the gradient dimension differ from each other, leading to
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dephasing. The frequency encoding, in turn, is achieved by applying a gradient pulse
along the remaining dimension during the signal acquisition. The signal samples
received during the sequences are collected into a two-dimensional grid, and the final
two-dimensional image is then obtained by using the Fourier transform. (McRobbie
et al. 2007, pp. 108–136)

When trying to expose T2- or T
∗
2 -weighted contrasts, the time between the RF-

pulse and the signal acquisition has to be long enough for the spins to dephase.
On the other hand, it must be short enough to still retain some of the transverse
magnetisation. The two most common MRI sequence types, gradient-echo and spin-
echo sequences, provide a solution for this problem by generating an echo of the
original signal and using this echo for the signal acquisition. The time between
the 90◦ RF-pulse and the center of the echo is called the echo time (TE), which
is an essential parameter to adjust when exposing different contrasts. Another
important parameter is the repetition time (TR) of subsequent 90◦ RF-pulses, which
has to be long enough for the full recovery of the longitudinal magnetisation, in
order to minimise the effect of differences in T1 on the following sequences. The
difference between spin-echo and gradient-echo is, that spin-echo sequences invert
the net magnetisation by a 180◦ RF-pulse, whereas gradient-echo is produced by
using a negative gradient pulse before the signal acquisition. Since the additional
RF-pulse eliminates the effect of field inhomogenities, gradient-echo is the choice for
T ∗
2 -weighted imaging and spin-echo for T2-contrast. (Huettel et al. 2004, pp. 99–110)
When imaging rapid changes in the structure of interest, such as brain activity,

the speed requirements of the image acquisition become crucial. Echo-planar imag-
ing (EPI) is a fast technique, especially suitable for T ∗

2 -weighted imaging, allowing
an entire two-dimensional image to be acquired by a single RF-pulse. The technique
speeds up the gradient-echo approach by rapidly applying subsequent negative and
positive gradient pulses and applying a perpendicular phase-encoding pulse between
each of them. By collecting MR-signal throughout the sequence, the whole acquisi-
tion grid becomes filled. To prevent additional artifacts, this raw signal must also
be sorted and realigned, before the reconstruction of the final image through the
Fourier transform. As a price for the high acquisition speed, the spatial resolution
and signal-to-noise ratio are significantly reduced. (Huettel et al. 2004, pp. 120–123)
For this reason, functional experiments are usually preceded by acquisition of high-
resolution structural images for better identification of the structural components
in the EPI images.

2.2.3 Blood Oxygenation Level Dependent Brain Imaging

Hemoglobin is an iron-containing metalloprotein, which is responsible of oxygen-
transportation in red blood cells. As its oxygenated form, hemoglobin is diamag-
netic, i.e., essentially non-magnetic, whereas deoxygenated hemoglobin is paramag-
netic. The greater magnetic susceptibility of deoxygenated blood increases local
field inhomogenities and thus leads to a shorter T ∗

2 relaxation time. This effect, first
demonstrated by Thulborn et al. (1982), provides the theoretical basis for functional
brain imaging by MRI.
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Only a small increase in local neuronal activity is required to significantly in-
crease the energy demand and oxygen consumption in a brain region. Thus, right
after the activation, the consentration of deoxygenated hemoglobin increases in the
local veins. However, by a lag of a few seconds, the increased need of oxygen is
overcompensated by a disproportionate increase in blood perfusion, leading instead
to decreased venous consentration of deoxygenated hemoglobin and thus to an in-
creased signal intensity in T ∗

2 -weighted images.
This blood oxygenation level dependent (BOLD) signal is utilised in functional

MRI (fMRI) to study the activation of different brain regions during a certain stim-
ulus or task. A typical experimental design consists of several blocks separated by
rest periods to restore and determine the reference level of activation. The activa-
tions due to the stimuli are assumed to elicit a signal that follows a hemodynamic
response function (HRF), which models the physiological lags occuring before the
blood perfusion responds to the change in neuronal activation. After the initial lag,
the signal increases rapidly to its maximum and then decreases on a stable level,
which is held as long as the stimulus continues. After the presentation of the stimu-
lus ends, there is again a lag of a few seconds in the signal before descending on the
rest level. At both ends of the stimulus, the signal should actually fall below the
rest level for a moment. The initial dip before the increase of the blood perfusion is
not usually observed, but the undershoot after the stimulus is instead visible even
with standard EPI techniques. (Huettel et al. 2004, pp. 159–184)

At low field strengths, the contrasts caused by the oxygenation level differences
are quite subtle. In addition to a strong magnet, separating the effect of stimulus-
correlated neural activation from other effects requires further processing of the
acquired data. In order to make generalised conclusions, the same experiment must
also be repeated for several subjects. Even if the brain volumes of different subjects
are co-registered anatomically, they may still show significant functional differences,
which brings challenges to the interpretation of the results.

The conventional way to analyse fMRI data is to take the activation time-series of
one voxel at a time from each subject and model them, e.g., as a linear combination of
the assumed hemodynamic response functions caused by different stimuli or stimulus
features. The parameter estimates for different conditions, or their contrasts, are
then combined into a statistical parametric map (SPM) to represent the desired
activation patterns (Friston et al. 1994). In this work, the conventional general
linear model (GLM) is used as a reference method to validate the results obtained by
an inversely directed classification model, which instead predicts the stimulus class
from an individual activation pattern by dealing with all voxels at the same time.
In neuroscience literature, this discriminative approach is often referred to as multi-
voxel pattern analysis (MVPA). As a multivariate and data-driven approach, MVPA
may reveal additional information about the complex correlation structure of the
activation patterns representing different cognitive states without being restricted
by the choice of the generative model.
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2.3 Bayesian Classification

2.3.1 Basics of Probability Theory

This subsection briefly presents some basic concepts of probability theory encoun-
tered in this work. For more thorough definitions, I refer to the textbook by Shiryaev
(1996). Consider X as a random variable following a discrete probability distribu-
tion with a countable amount of possible values x. The probability distribution of
X is determined by a probability mass function p(x), which defines the probability
for X to have a value x:

P(X = x) = p(x). (1)

Thus, the probability for X to have a realisation from a closed interval between x1

and x2, where x1 ≤ x2, is defined by the sum

P(X ∈ [x1, x2]) =
∑

x∈[x1,x2]

p(x). (2)

If X is instead a continuous random variable, its mass function would be zero for
all values. In this case, the probability distribution has to be determined by a
probability density function, denoted here as well by p(x). The probability for X to
have a realisation between x1 and x2 is now defined by the integral

P(X ∈ [x1, x2]) =

∫ x2

x1

p(x) dx. (3)

Note, that throughout this work, p(x) is generally called a probability distribution,
regardless of whether it refers to a discrete random variable or a continuous one.
Even if this may seem confusing, it does not cause problems, as long as the different
natures of discrete and continuous distribution functions are acknowledged.

The expected value or the mean of a discrete random variable X is defined by
the sum over all possible values x weighted by the probabilities P(X = x):

E[X] =
∑
x

(p(x)x). (4)

For a continuous random variable, the sum is again replaced by an integral:

E[X] =

∫
x

p(x)x dx. (5)

The variance of X, in turn, is defined as the expected squared difference between X
and its expected value:

Var[X] = E[(X − E(X))2] = E[X2]− (E[X])2. (6)

A more intuitively scaled measure, standard deviation, is obtained by taking the
square root of variance. (Ross 2000, pp. 23–46)

Suppose now, that there are two random variables X and Y . The joint distribu-
tion of X and Y is determined by a two-dimensional distribution function p(x, y),
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which defines the probability of a realisation (X = x, Y = y) or the corresponding
probability density in the continuous case. This joint distribution determines also
the marginal distributions p(x) and p(y). For example, the marginal distribution
p(x) is obtained by summing

p(x) =
∑
y

p(x, y) (7)

or integrating

p(x) =

∫
y

p(x, y) dy (8)

over all possible values y. The conditional distribution of X given Y = y, in turn,
is defined as

p(x|y) = p(x, y)

p(y)
. (9)

Rewriting this for both p(x|y) and p(y|x) gives the product rule

p(x, y) = p(x|y)p(y) = p(y|x)p(x), (10)

which, in turn, leads to the following expression for the conditional distribution:

p(x|y) = p(y|x)p(x)
p(y)

. (11)

This equation, known as the Bayes’ theorem, describes an important relationship
between the conditional distributions p(x|y) and p(y|x). It is also an essential tool
for Bayesian inference, which is introduced in the following subsection.

The rules above generalise as well for multiple random variables, which are often
gathered together in vectors. For multidimensional probability distributions, the
expected value and variance are replaced by a mean vector including the expected
values of the marginal distributions and a covariance matrix, where the covariance
between two random variables X and Y is defined as

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])], (12)

expressing their linear dependence. (Bishop 2006, pp. 12–20)
The Gaussian distribution is a commonly used continuous probability distribu-

tion, parametrised by its mean and variance. The density function of the Gaussian
distribution is

p(x) = N (x;µ, s2) =
1

s
√
2π

e
(x−µ)2

2s2 , (13)

where µ is the expected value and s the standard deviation of the distribution. For
a D-dimensional random vector x, the density function is given by

p(x) = N (x;µ,Σ) = (2π)−
D
2 |Σ|−

1
2 e−

1
2
(x−µ)TΣ−1(x−µ), (14)

where µ is the mean vector and Σ the covariance matrix of the distribution. (Bishop
2006, p. 78)
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2.3.2 Bayesian Inference

The concept of probability has several different interpretations. Frequentists de-
fine the probability of an event strictly as the limit of the relative frequency of its
occurrence, when repeating a random and well-defined experiment. The Bayesian
interpretation provides a broader point of view by regarding probability as a degree
of belief, which can be updated based on evidence.

Consider a statistical model that assumes a random vector y to follow a probabil-
ity distribution p(y|θ) parametrised by an unobservable parameter vector θ. With
respect to modelling, the essential difference between Bayesian inference and the
traditional frequentistic statistical inference lies in the way they treat the model pa-
rameters. Whereas frequentists try to determine fixed values, i.e., a point estimate,
for the parameters, perhaps with some confidence intervals to describe the uncer-
tainty, Bayesians model also the uncertainty on the parameters with a probability
distribution.

In the Bayesian framework, p(θ) is a prior distribution assigned on θ, reflecting
a priori beliefs on the parameter vector. After receiving an observation on y, the
distribution over θ is updated according to the Bayes’ theorem (equation 11):

p(θ|y) = p(y|θ)p(θ)
p(y)

. (15)

The updated distribution p(θ|y) is called the posterior distribution of θ, reflecting
a posteriori beliefs on the parameter vector. The conditional probability (density)
p(y|θ) as a function of θ is called the likelihood function. Since p(y) depends only
on the fixed y, the posterior is directly proportional to the product of the likelihood
and the prior:

p(θ|y) ∝ p(y|θ)p(θ). (16)

The remaining term p(y) can be simply thought of as a normalisation constant for
the posterior distribution. Another interpretation is to regard it as the marginal
likelihood for the whole model, obtained by integrating over all possible θ:

p(y) =

∫
θ

p(y|θ)p(θ) dθ. (17)

The posterior distribution is used also, when making predictions on future ob-
servations. Consider y∗ as an observation vector that has not yet been observed.
Marginalising θ out from the joint posterior distribution of y∗ and θ leads to

p(y∗|y) =
∫
θ

p(y∗,θ|y) dθ =

∫
θ

p(y∗|θ,y)p(θ|y) dθ =

∫
θ

p(y∗|θ)p(θ|y) dθ, (18)

where p(y∗|θ) is the observation model for y∗ and p(θ|y) is the posterior distribution
of θ. The distribution p(y∗|y) determines the predictive distribution of y∗ condi-
tional on the observed y, and it is thus called the posterior predictive distribution.
(Gelman et al. 2004, pp. 3–14)
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2.3.3 Classification

In statistics and machine learning, classification refers to assigning a given obser-
vation into one of a countable set of discrete classes, based on its characteristic
features described as an input vector x. As a distinction to unsupervised clustering,
which divides a group of feature vectors into subgroups using only the similarities
between them, classification is a form of supervised learning based on a training
set of labelled observations with both the feature vector xi and the corresponding
target class ti known. The learning process produces a discriminant function, which
defines decision boundaries between different classes, enabling classification of any
given feature vector.

In Bayesian classification, inference and decision stages are separated by first
determining the posterior predictive probability distribution for the class t∗ of a
given feature vector x∗ and then using this distribution to make decisions. This way
also the uncertainties on the decisions become modelled. Consider a training data set
with N labelled feature vectors gathered in a matrix X = (x1, . . . ,xN)

T and the cor-
respondent target classes gathered in a vector t = (t1, . . . , tN)

T. The discriminative
approach models directly the conditional dependence of class t on feature vector
x by a probability distribution p(t|x,θd) parametrised by θd. Applying a prior
distribution on θd leads to a posterior predictive distribution

p(t∗|x∗, t,X) =

∫
θd

p(t∗|x∗,θd)p(θd|t,X) dθd, (19)

where p(θd|t,X) ∝ p(t|X,θd)p(θd) is the posterior distribution of θd.
Another alternative would be the generative approach, which models instead

the dependence of feature vector x on class t by a class-conditioned distribution
p(x|t,θg) with a parameter vector denoted by θg. Applying a prior distribution on
θg leads to a generative posterior distribution for x∗ conditional on t∗:

p(x∗|t∗, t,X) =

∫
θg

p(x∗|t∗,θg)p(θg|t,X) dθg. (20)

The posterior predictive distribution for t∗ conditional on x∗ is obtained by

p(t∗|x∗, t,X) ∝ p(x∗|t∗, t,X)p(t∗|t), (21)

where

p(t∗|t) =
∫
θt

p(t∗|θt)p(θt|t) dθt (22)

is the posterior predictive distribution for t∗ prior to observing x∗, resulting from
modelling the prior distribution of t by p(t|θt) with a separate parametrisation and
applying a prior distribution on θt. (Bishop 2006, pp. 179–220)

In principle, both of these two alternatives are correct Bayesian approaches for
a classification problem. Since the discriminative approach models directly what is
desired with respect to classification, it typically has less parameters to deal with
and thus becomes more feasible in practice. Furthermore, determining the class-
conditional densities may be a difficult problem, especially when there is a large
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amount of features in x to model, and incorrect assumptions on the distributions
often result in reduced predictive performance. However, in the case of inadequate
training data with missing values or outliers, it may be useful to have also access
to the distribution of x, provided by the generative approach. One more significant
argument for the choice may be obtained by considering which one of the approaches
is better supported by the available prior information. (Rasmussen and Williams
2006, p. 35) In this work, the more straightforward discriminative Bayesian approach
is used to classify a given brain activation pattern x, including fMRI activation values
from several hundreds of brain locations, into one of two stimulus classes.
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3 Data

The fMRI data used in this work was collected as a part of a practical course on
non-invasive brain imaging (Aalto University course Tfy-99.3760), and it is used also
in other projects. All the experiments were carried out at the Advanced Imaging
Centre of Aalto University.

3.1 Experimental Design

16 subjects (6 women, age 21–40 years, average age 27.5 years) were listening to spo-
ken, sung and piano-played versions of three popular songs: Kesäyö (Summertime),
Kulkuset (Jingle Bells) and Oi niitä aikoja (Those Were the Days). Both audiovi-
sual and merely auditory versions of all these nine combinations were presented in
a counterbalanced order, separated by rest periods of five secods. In the auditory
versions, the visual stimulus of speaking or singing head or piano-playing hands was
replaced by a fixation cross, which was shown also during the rest periods and for a
period of ten seconds in the beginning of the experiment. The experiment included
also mixtures of the auditory singing and piano versions, but the measurements
related to them were not included in the data set used in this work.

3.2 Data Collection

Brain activation during the experiment was measured using a 3.0 T MRI scanner
with an eight-channel head coil. Blood oxygenation level dependent (BOLD) fMRI
signal was acquired using an echo-planar imaging (EPI) sequence with a repetition
time of TR = 2.0 s and an echo time of TE = 32 ms. 34 near-horizontal slices were
collected, with the position slightly inclined to be parallel to the plane penetrating
cerebellum and prefrontal cortex. An acquisition matrix of 64 x 64 pixels and a
field of view (FOV) of 22 cm x 22 cm in slice directions, with a slice thickness
of 4.0 mm, give a spatial resolution of 3.4 mm x 3.4 mm x 4.0 mm. A total of
1160 three-dimensional fMRI samples was acquired from each subject during the
experiment.

3.3 Preprocessing

The raw fMRI data was preprocessed following the steps proposed for the analysis
tool FEAT in FMRIB Software Library (Smith et al. 2004). To ensure the stability
of magnetisation, five samples from each subject were removed from the beginning
of the experiment. Motion correction between different samples of the same subject
was carried out by ridig-body transformations, allowing head movement of less than
1 mm in any direction. After motion correction, the brain was extracted by removing
other tissues from the images. To remove low frequency artefacts, highpass temporal
filtering was applied. For noise reduction, every individual sample was also smoothed
spatially with a full width half maximum (FWHM) of 10 mm. Finally, a two-step
registration process was carried out to align the images of different subjects with
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each other and a standard brain. Before the functional experiment, high-resolution
structural images were recorded from each subject. Transformations from these
structural images to an ICBM–152 standard image (Mazziotta et al. 2001) and
from the functional images to the structural images were first determined, and these
transformations were then combined to register the functional images to the standard
space.

To reduce the amount of data for this work, the region of interest was restricted to
comprise only the auditory cortex and some surrounding volumes related to auditory
processing. In addition, every second voxel in each spatial dimension was removed
from the region of interest, justified by the spatial smoothing. The masked 4D-
images were then standardised by setting the mean of each individual time-series
to zero and by scaling its standard deviation to be one. After removing the last
samples of the singing and piano versions of the song Kulkuset to even the amounts
of samples with the speech versions, the final data set included the preprocessed
and standardised fMRI activation values of D = 707 voxels from K = 16 subjects
recorded at 157 time-points of each of the six stimulus types (auditory piano, audi-
tory speech, auditory singing, audiovisual piano, audiovisual speech and audiovisual
singing).

3.4 Labelling of Observations for Different Classification
Settings

Subsets of the final preprocessed data set are used as two different classification
settings. The first one compares the 707-voxel fMRI activation patterns from all the
5024 speech time-points (both auditory and audiovisual) with the data from the 5024
piano time-points, whereas the other one compares the 2512 auditory piano time-
points with the 2512 audiovisual piano time-points. The compared observations are
labelled into different target classes, denoted here as t = −1 and t = 1, resulting
in samples (xi, ti) consisting of 707-dimensional feature vectors xi and their target
classes ti.
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4 Model

The analysis methods used in this work aim at revealing activation patterns related
to certain conditions, e.g., listening to speech, by trying to construct a discrim-
inative model that predicts the condition based on an observed fMRI activation
pattern. The model parameters represent the contribution of different locations to
the predictions, and their posterior probability distribution can also be used to test
the classifier with new data. Three different methods are used for the approximate
inference, but the underlying Bayesian model is similar for all of them: a linear
binary classifier for the selected two conditions and univariate Laplace priors on the
weights of the classifier.

4.1 Linear Binary Classifier

A linear binary classifier classifies a given feature vector xi into either one of two
classes based on a linear combination wTxi, where w is a vector of the feature
weights. To add uncertainty into the classification, consider ti to be generated by a
noisy latent variable ui distributed around wTxi according to the following model:

ui = wTxi + ϵi, (23)

ti =

{
1, when ui > 0,

−1, when ui < 0,
(24)

where ϵi are independent noise terms. Assuming ϵi to be Gaussian noise with the
unit standard deviation (ϵi ∼ N (0, 1)) leads to the probit model, which defines the
probability for a feature vector xi to belong to class ti = 1 as

P(ti = 1|w,xi) = Ψ(wTxi), (25)

where Ψ is the standard Gaussian cumulative distribution function transforming the
real-valued linear combination wTxi into probability range (0, 1). Since the class
probabilities must sum to one, the probability for xi to belong to class ti = −1, is
given by

P(ti = −1|w,xi) = 1−Ψ(wTxi) = Ψ(−wTxi). (26)

The probit model is used as a default choice in this work, because of its computa-
tional convenience. One of the approximate inference methods (see 5.2 Expectation
Propagation on Laplace Prior), though, uses instead the logit model by replacing
the probit activation function Ψ by the logistic one. After rescaling the horizontal
axis these two functions become closely similar, differing mainly by the asymptotical
behaviour. In theory, the logistic activation function may be considered more robust
with respect to outliers, but in practice they usually produce quite similar results
(Nickisch and Rasmussen 2008).
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4.2 Bayesian Inference on the Weights

Given a training data set {(x1, t1), . . . , (xN , tN)}, where the samples are assumed to
be independent and identically distributed, the likelihood of a weight vector w can
be written as

p(t|w,X) =
N∏
i=1

p(ti|w,xi) =
N∏
i=1

Ψ(tiw
Txi), (27)

where t = (t1, . . . , tN)
T and X = (x1, . . . ,xN)

T. Applying a prior distribution
p(w|λ) with a constant hyperparameter λ and using the Bayes’ theorem, the poste-
rior distribution over w is obtained by

p(w|t,X, λ) =
p(t|w,X)p(w|λ)

p(t|X, λ)
∝

N∏
i=1

Ψ(tiw
Txi)p(w|λ), (28)

where the normalisation constant p(t|X, λ) =
∫
w
p(t|w,X)p(w|λ) dw is the margin-

al likelihood for the selected hyperparameter value λ.
Exact inference on the posterior distribution is often intractable, but it can be

approximated by different computational methods. The three approximate inference
methods used in this work are described in the following chapter. Mapping the ob-
tained posterior distribution into the brain, for example by presenting the marginal
probabilities for wj to be positive or negative according to some colour scale, may
reveal information about the activation patterns more related to either of the two
stimulus classes.

To appropriately test the model and measure its predictive performance, some
new data is needed. Given a test sample x∗, the posterior predictive distribution
over t∗ is

p(t∗|x∗, t,X, λ) =

∫
w

p(t∗|w,x∗)p(w|t,X, λ) dw. (29)

If the posterior over w has been approximated as a multivariate Gaussian distri-
bution p(w|t,X, λ) = N (mw,Vw), the distribution over its linear transformation
f ∗(w) = wTx∗ becomes also Gaussian with parameters E[f ∗(w)] = mT

wx
∗ and

Var[f ∗(w)] = (x∗)TVwx
∗. Consequently, according to Rasmussen and Williams

(2006, p. 74), the predictive distribution can be written in a simple form:

p(t∗|x∗, t,X, λ) =

∫ ∞

−∞
p(t∗|f ∗(w))p(f ∗(w)|t,X, λ) df ∗(w)

=

∫ ∞

−∞
Ψ(t∗f ∗(w))N (E[f ∗(w)],Var[f ∗(w)]) df ∗(w)

= Ψ

(
t∗mT

wx
∗√

1 + (x∗)TVwx∗

)
. (30)

To classify the test sample x∗, the more probable one of the two classes is chosen for
the prediction t̂∗. Given a labelled test data set {(x∗

1, t
∗
1), . . . , (x

∗
N∗ , t∗N∗)} with the

correct classes t∗i known, the proportion of correct predictions, where t̂∗i = t∗i , can
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be calculated to describe the predictive classification accuracy (CA). Since the more

probable class t̂∗i depends here only on the sign of
mT

wx∗
i√

1+(x∗
i )

TVwx∗
i

, CA(t∗,X∗|t,X, λ)

can be written as

CA(t∗,X∗|t,X, λ) =
1

N∗

N∗∑
i=1

H

(
t∗im

T
wx

∗
i√

1 + (x∗
i )

TVwx∗
i

)

=
1

N∗

N∗∑
i=1

H
(
t∗im

T
wx

∗
i

)
, (31)

where H is the Heaviside step function, defined as follows:

H(x) =


0, if x < 0,
1
2
, if x = 0,

1, if x > 0.

(32)

Another measure for the goodness of the model, taking also the uncertainty on the
predictions into account, can be obtained by calculating the mean log predictive
probability (MLPP) for the correct classes t∗i :

MLPP(t∗,X∗|t,X, λ) =
1

N∗

N∗∑
i=1

ln p(t∗i |x∗
i , t,X, λ)

=
1

N∗

N∗∑
i=1

lnΨ

(
t∗im

T
wx

∗
i√

1 + (x∗
i )

TVwx∗
i

)
. (33)

4.3 Laplace Prior Distribution

Through the selection of the prior distribution p(w|λ), a priori beliefs about the
feature weights w can be included into the model. In this work, the shape of the
prior is chosen to promote sparsity in the final posterior distribution. Each individual
weight wj is given here a univariate Laplace prior distribution

p(wj|λ) =
1

2λ
e

−|wj |
λ , (34)

where λ > 0 is a constant scale hyperparameter limiting the magnitude of the weights
and at the same time the amount of weights of a relevant magnitude. Without any a
priori assumptions about the dependencies between the individual weights, the full
prior distribution p(w|λ) is the product of the individual univariate priors. Thus,
the posterior distribution becomes

p(w|t,X, λ) ∝ p(t|w,X)
D∏
j=1

p(wj|λ). (35)

Figure 2 illustrates the sparsity promoting effect of the Laplace prior compared to
the Gaussian prior in a toy example of two features. As noticed, the Laplace prior
enforces the mode of the posterior distribution onto another one of the weight axes.
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Figure 2: A toy example of the effect of the Laplace prior to the posterior distribu-
tion with two features and six toy observations. The upper contour plots describe the
likelihood function p(t|w,X), the Laplace prior p(w|λ) with 2λ2 = 1 and their prod-
uct, which directly proportional to the resulting posterior distribution p(w|t,X, λ).
The lower contour plots describe the standard Gaussian prior and the resulting un-
normalised posterior using the same likelihood function as above.

Besides the sparsity promoting shape, another useful property of the univariate
Laplace distribution is the possibility to present it as an infinite mixture of zero-mean
Gaussian distributions with variances vj distributed according to an exponential

distribution E
(
vj;

1
2λ2

)
= 1

2λ2 e
−

vj

2λ2 , where vj > 0 (Andrews and Mallows 1974):

p(wj|λ) =
∫ ∞

0

N (wj; 0, vj) E
(
vj;

1

2λ2

)
dvj. (36)

Noticing that the exponential distribution is equal to the χ2 distribution with two
degrees of freedom, i.e., the distribution of the sum of squares of two independent
standard Gaussian random variables (van Gerven et al. 2010), the decomposition
can be written in an alternative form:

p(wj|λ) =
∫ ∞

−∞

∫ ∞

−∞
N (wj; 0, µ

2
j + ν2

j )N (µj; 0, λ
2)N (νj; 0, λ

2) dµj dνj. (37)

These decompositions make it easier to computationally approximate the posterior
distribution, and either one of the forms is utilised by each of the three approximate
inference methods used in this work. One of the methods (see 5.1 Automatic Rel-
evance Determination by Expectation Propagation), based on automatic relevance
determination (ARD), actually takes the use of equation 36 even further by regard-
ing the Gaussian auxiliary variances vj as model hyperparameters representing the
relevance of the corresponding feature in the model. By optimising these relevance
hyperparameters, the ARD method enforces many of the weights to be zero and
thus includes only the most relevant features in the final model.
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Sparse solutions are favourable in neuroscience and multi-voxel pattern analysis,
because too large amount of adjustable parameters compared to the amount of
available observations may reduce the predictive performance and especially the
neuroscientifical interpretability of the model (Rasmussen et al. 2012). Using a
sparsity promoting prior, such as the Laplace prior with a small enough λ, may
alleviate this problem by reducing the effect of irrelevant input features. However,
even if the Laplace prior favours sparse solutions, a full Bayesian treatment always
retains some uncertainty on the parameters and leads to a truly sparse posterior
distribution only with an infinite amount of training data. Solutions with part of
the weights exactly reducing to zero would require using a point estimate on the
weight vector w, such as the maximum a posteriori (MAP) estimate

wMAP = argmax
w
{p(w|t,X, λ)}, (38)

instead of inferring the full posterior distribution. When using the Laplace prior,
MAP estimation is equivalent to L1-norm regularisation (Tibshirani 1996). The
previously mentioned ARD approach can be regarded as a type II point estimate
method, because it uses a marginal MAP estimate for the relevance hyperparameter
vector v = (v1, . . . , vD)

T, leading as well to a truly sparse solution with many zero
weights. The final posterior solution concerning the remaining non-zero weights,
however, includes also the uncertainties on them, like with both of the other ap-
proximate inference methods used in this work.
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5 Approximate Inference

Three different methods are used to carry out the approximate inference on the
posterior distribution over the weights of the classifier: automatic relevance deter-
mination by expectation propagation (ARDEP), expectation propagation on the
original Laplace prior (LAEP) and a Markov chain Monte Carlo method using the
Gibbs sampler (MCMC). In the following, the abbreviations ARDEP, LAEP and
MCMC stand for the particular algorithms used in this work, as a distinction from
general concepts and other implementations. Both ARDEP and LAEP use an ex-
pectation propagation (EP) algorithm to approximate the posterior as a multivariate
Gaussian distribution. The difference between these two methods is, that ARDEP
decomposes the Laplace prior into a Gaussian scale mixture and optimises these
scales by maximising their marginal posterior density. As a result, the solution
produced by ARDEP will be truly sparse, with many of the features pruned out
of the model. The smoother LAEP approximation, integrating over the original
Laplace prior, becomes actually closer to the MCMC solution, which, as a widely
acknowledged golden standard solution, should approach the accurate posterior of
the original model, if enough samples are drawn from the posterior, but consumes
more time than the EP methods. A proper value of the hyperparameter λ is deter-
mined separately for all the three methods by testing the models with different λ in
a cross-validation scheme, where one subject at a time is removed from the training
data.

5.1 Automatic Relevance Determination by Expectation
Propagation

5.1.1 Automatic Relevance Determination

Automatic relevance determination is a commonly used Bayesian method for feature
selection and sparse learning (MacKay 1994; Neal 1994). The key idea in ARD is
to give the feature weights wj, or more generally groups of them, independent zero-
mean Gaussian priors

p(wj|vj) = N (wj; 0, vj), (39)

where the variances vj are hyperparameters representing the relevance of the particu-
lar feature. This prior, often called the ARD prior, restricts the weights of irrelevant
features from getting far from zero by controlling their variances. In the conven-
tional ARD, the relevance hyperparameter vector v = (v1, . . . , vD)

T is optimised by
maximising its marginal likelihood

p(t|X,v) =

∫
w

p(t,w|X,v) dw, (40)

obtained by integrating out the weight vector w. This optimisation leads to a
sparse v with many of the prior variances vj reducing to zero, meaning that also
the corresponding feature weights wj are forced to be equal to zero. Ideally, this
means that irrelevant features are automatically pruned out of the model, leading
to a truly sparse posterior distribution.
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5.1.2 ARDEP

The ARDEP algorithm implemented for this work is based on the algorithm intro-
duced by Qi et al. (2004). To approximate the integral appearing in the expression
of the marginal likelihood for a given relevance hyperparameter vector v (equation
40), they modify an algorithm from the expectation propagation family developed
by Thomas Minka (2001). An EP run produces an approximation for the posterior
distribution over the weights, given v, and as a side product, offers also an approxi-
mation for the marginal likelihood. To find the optimal hyperparameter vector that
maximises the marginal likelihood, they use a fast sequential updating scheme based
on the analysis by Faul and Tipping (2002).

Maximising the marginal likelihood is equivalent to finding a maximum a pos-
teriori estimate for v with a uniform prior over each hyperparameter vj. My imple-
mentation is as well trying to find a MAP estimate for v, but the uniform hyperprior
is replaced by an exponential hyperprior according to

p(vj|λ) = E
(
vj;

1

2λ2

)
, (41)

where λ is a constant scale parameter common for each vj. The optimal v is now ob-
tained by maximising the product of the marginal likelihood and the new hyperprior:

vMAP = argmax
v
{p(v|t,X, λ)} = argmax

v
{p(t|X,v)p(v|λ)}. (42)

By adjusting λ, the complexity of the model can be controlled to reduce overfit-
ting to the training data. Selecting a small enough value for the hyperparameter λ
favours small values of vj, and thus limits the amount of features considered relevant
in the model, which also significantly lightens the computation during the algorithm.
Notice also, that when the exponential hyperprior is combined with the ARD prior,
a scale mixture presentation of the Laplace prior (equation 36) is obtained. Conse-
quently, ARDEP can be interpreted as one kind of an approximate solution for the
model introduced in the previous chapter.

In the following two subsections, I briefly describe the implementation of the
ARDEP algorithm without further compromises. At first, Qi’s presentation of EP
for the probit model with ARD prior is reformed in a computationally more efficient
way. To confirm the validity of this EP application, I carefully derive it through in
appendix A. After that, I renew the optimisation rules for the relevance hyperpa-
rameters, taking the additional hyperprior into account. These are derived in detail
in appendix B, correcting also several misprints in the original paper by Qi et al.
(2004). Finally, I present some practical modifications for ARDEP improving the
applicability of the method to the fMRI data used in this work. In the last sub-
section, I also discuss alternative ways to select v from the configurations visited
during the iterations.

5.1.3 Expectation Propagation

When looking at the equation 27 (p. 17), it is noticed that the likelihood p(t|w,X)
is a product of N simple terms gi(w) = Ψ(tiw

Txi) representing the effect of each
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observation. The expectation propagation algorithm used in ARDEP approximates
these terms by unnormalised Gaussians

g̃i(w) = ςie
− 1

2σi
(tiw

Txi−ρi)
2

. (43)

Since the posterior disribution p(w|t,X,v) is proportional to the product of the
likelihood and the Gaussian ARD prior, the approximate posterior q̃(w) becomes
also Gaussian

p(w|t,X,v) ≈ q̃(w) = N (w;mw,Vw) (44)

with a covariance matrix

Vw = (ΦTΛ−1Φ+V−1)−1 (45)

and a mean vector
mw = VwΦ

TΛ−1ρ, (46)

where I denote V = diag(v), Φ = (t1x1, . . . , tNxN)
T, ρ = (ρ1, . . . , ρN)

T and
Λ = diag(σ1, . . . , σN). The parameters for the approximate likelihood terms g̃i(w)
are efficiently computed by the following iterative procedure, derived in detail in
appendix A:

EP (for the probit model with ARD prior)

Input: data matrix Φ, hyperparameter vector v including the ARD prior
variances

Output: approximate likelihood term parameters (ρi, σi, ςi) for i = 1, . . . , N ,
approximate posterior parameters mw and Vw for the probit model with ARD
prior

1. Initialise:

ρi = 0, σi =∞ and ςi = 1 for all i = 1, . . . , N

mw = 0 and Vw = diag(v)

2. Repeat until (ρi, σi, ςi) for all i = 1, . . . , N converge:

For i = 1, . . . , N :

A. Compute scalars ai and bi corresponding to the mean and vari-
ance of the marginal distribution over linear transformation fi(w) =
wTtixi using the current approximate posterior q̃(w):

ai = mT
wtixi

ci = Vwtixi

bi = tix
T
i ci

B. Remove the approximate term g̃i(w) from q̃(w) to obtain the
leave-i-out posterior q̃\i(w) ∝ q̃(w)/g̃i(w). Compute the parameters

a
\i
i and b

\i
i for the corresponding marginal distribution over fi(w):
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b
\i
i = bi +

b2i
σi−bi

a
\i
i = ai +

b
\i
i (ai−ρi)

σi

c
\i
i = ci

(
1 + bi

σi−bi

)
C. Replace the removed approximate term g̃i(w) with the accu-
rate term gi(w) to obtain a target posterior approximation q̂(w) ∝
gi(w)q̃\i(w), and choose then the new term approximation g̃i

∗(w) to
minimise the Kullback-Leibler divergence between q̂(w) and the new
posterior approximation q̃∗(w) ∝ g∗i (w)q̃\i(w). For updating q̃(w)
and g̃i(w), compute the following auxiliary variables related to the
target distribution q̂(w):

zi =
a
\i
i√

1+b
\i
i

αi =
N (zi;0,1)

Ψ(zi)

√
1+b

\i
i

a∗i = a
\i
i + αib

\i
i

D. Update parameters for q̃(w)← q̃∗(w):

Vw ← V∗
w = Vw +

(
1

σi−bi
− αi(a

∗
i+αi)

1+b
\i
i

(
1 + bi

σi−bi

)2)
cic

T
i

mw ←m∗
w = mw +

(
ai−ρi
σi

+ αi

)
c
\i
i

E. Update parameters for g̃i(w)← g̃i
∗(w):

σi ← σ∗
i =

1+b
\i
i

αi(a∗i+αi)
− b

\i
i

ρi ← ρ∗i = a
\i
i + αib

\i
i + αiσ

∗
i = a∗i + αiσ

∗
i

ςi ← ς∗i = Ψ(zi)

√
1 +

b
\i
i

σ∗
i
e

1
2
αi

1+b
\i
i

a∗
i
+αi

After convergence, an approximation for an expression that is directly propor-
tional to the marginal posterior over v can be written with respect to the obtained
parameters by multiplying the approximation of the marginal likelihood p(t|X,v),
derived in appendix A (equation A37), by the hyperprior p(v|λ):

p(v|t,X, λ) ∝ p(t|X,v)p(v|λ)

≈

(
N∏
i=1

ςi

)
|V|−

1
2 e−

1
2
(ρTΛ−1ρ−mT

wV−1
w mw)|Vw|

1
2

D∏
j=1

1

2λ2
e−

vj

2λ2 . (47)

A numerical value for the above expression can be computed efficiently as

ln (p(t|X,v)p(v|λ)) ≈
N∑
i=1

ln ςi −
1

2

D∑
j=1

ln vj − ln |L1|

+
1

2

(
(LT

1mw)
T(LT

1mw)−
N∑
i=1

ρ2i
σi

)
− 1

2λ2

D∑
j=1

vj −D ln (2λ2), (48)
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where L1L
T
1 is the Cholesky decomposition (Press 2002, pp. 99–101) of V−1

w =
ΦTΛ−1Φ+V−1.

5.1.4 Fast Sequential Optimisation of Relevance Hyperparameters

As described in the previous subsection, each EP run produces an approximation
for the posterior distribution over the weights w, when the hyperparameter vector
v and the data matrix Φ = (t1x1, . . . , tNxN)

T have been given as input. Thus,
to figure out the final posterior approximation, we only have to find the optimal
hyperparameter vector v according to some criterion. In ARDEP, the optimal v is
defined as the MAP estimate vMAP, which maximises the posterior density over v.
This maximum point is searched for by sequentially maximising the approximate
expression of p(t|X,v)p(v|λ) produced by EP with respect to each vj and running a
new EP with the obtained v. After vj for all j = 1, . . . , D have converged, the result
of the last EP run, i.e., the one with the optimal input vector vMAP, is selected as
the final posterior approximation.

The update rules for a single hyperparameter vj are derived in detail in ap-
pendix B by analysing the approximate expression of p(t|X,v)p(v|λ) in equation
47 with respect to vj. Denoting the mth column of the data matrix Φ as ϕm =
(t1[x1]m, . . . , tN [xN ]m)

T and separating the terms dependent on vj from the loga-
rithm L(v) of the approximate p(t|X,v)p(v|λ) lead to

L(v) = L(v\j)− 1

2
ln (1 + rjvj) +

h2
j

2

vj
(1 + rjvj)

− 1

2λ2
vj, (49)

where rj = ϕT
j (Ω

\j)−1ϕj, hj = ϕT
j (Ω

\j)−1ρ and Ω\j = Λ +
∑

m̸=j ϕmvmϕ
T
m. The

maximum point v∗j of the above expression with respect to vj ≥ 0 depends on the
sign of ηj = h2

j − rj − 1
λ2 as follows:

v∗j =

−λ2

2
− 1

rj
+

√
λ4

4
+

λ2h2
j

r2j
, if ηj > 0,

0, if ηj ≤ 0.

(50)

When maximising the posterior density over v, many of the hyperparameters
vj tend to reduce to zero, which is equivalent to a model with the corresponding
features j removed. Thus, in practice, each EP is run with sparsified input hyper-
parameter vector v̄ (or V̄ as a diagonal matrix form) and data matrix Φ̄ including
only features m ∈ F , where F = {m : vm > 0}. The existence of the extra features
in the original model has to be taken into account only when computing a value for
p(t|X,v)p(v|λ), since it depends on the total feature amount D through the hyper-
prior. The reduction of dimension speeds up also the hyperparameter updates, since
scalars rj and hj can be computed efficiently by using the current value of vj and
scalars Rj and Hj written with respect to the sparsified posterior parameters m̄w

and V̄w. Ignoring the practical modifications that are discussed in the following sub-
section, the ARDEP algorithm can now be summarised according to the following
pseudocode:
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ARDEP (without practical modifications)

Input: data matrix Φ, Laplace prior hyperparameter λ

Output: sparsified approximate posterior parameters m̄w and V̄w for the
probit model with Laplace prior

1. Initialize the hyperparameter vector v to the mean of the hyperprior p(v|λ):

vj = 2λ2 for all j = 1, . . . , D

j ∈ F for all j = 1, . . . , D

2. Repeat until vj for all j = 1, . . . , D converge:

A. Run EP (for the probit model with ARD prior):

Input: sparsified Φ̄, v̄ including only features j ∈ F

Output: ρ, Λ, m̄w, V̄w

B. For j = 1, . . . , D:

I. Compute:

Rj = ϕT
j Λ

−1ϕj − ϕT
j Λ

−1Φ̄V̄wΦ̄
TΛ−1ϕj

Hj = ϕT
j Λ

−1ρ− ϕT
j Λ

−1Φ̄m̄w

II. Compute:

rj =
Rj

1−vjRj

hj =
Hj

1−vjRj

ηj = h2
j − rj − 1

λ2

III. Update vj:

vj ← v∗j =

−λ2

2
− 1

rj
+

√
λ4

4
+

λ2h2
j

r2j
, if ηj > 0

0, if ηj ≤ 0

IV. Update F :

j ∈ F , if vj > 0

j /∈ F , if vj = 0

5.1.5 Practical Modifications

In practice, the converging of the sequential optimisation of the hyperparameters
may be hopelessly slow for large multidimensional models with many correlated
features. When applied to the fMRI data used in this work, the algorithm described
above is not able to find the maximum of p(v|t,X, λ) with respect to the whole
hyperparameter vector v, but insted alternates between feature configurations by
setting a group of parameters to zero and taking them back into the model during
the following iteration. The reason for this behaviour is, that each hyperparameter
vj is optimised separately by keeping the others constant, without updating the
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expression of p(t|X,v)p(v|λ) according to the change of v within an iteration. The
correct way would be to rerun EP after each individual hyperparameter update, but
this would be too slow, since it would cost D EP runs at each iteration of v. In
this work, the problem is solved by update rule modifications that damp the change
of vj (in item III in the algorithm description) in half, which significantly aids the
convergence and speeds up the algorithm.

The drawback of damping is, that it prevents the hyperparameters from ever
becoming exactly zero, thus keeping all the features included in the model. With
a large amount of features, running EP gets slow, which is why the model has
to be pruned by limiting the amount of features and removing the ones with the
smallest vj. In this work, the amount of features is limited in 300 features out of
the total amount D = 707. For tight Laplace priors with a small value of the scale
hyperparameter λ, the limiting is necessary also in the sense that the optimisation
procedure may get rid of all the features, if the algorithm is initialised by a constant
vj for all j = 1, . . . , D. To appropriately choose the initial 300 features, a preliminary
EP with a small λ (here 2λ2 = 10−12) is run and the features are ordered by v̂j,
defined in appendix B (equation B13), accepting also negative values.

5.1.6 Alternative Criteria for Selection of the Final Relevance Hyper-
parameter Vector

According to the original paper by Qi et al. (2004), the ARD framework of max-
imising the marginal likelihood suffers from a mixture of two kinds of overfitting.
Firstly, a large amount of features included in the model may lead to overcompli-
cated classifiers and thus to worse generalisability and predictive performance. At
the same time, some generally relevant features may still be pruned out of the model,
in case the model happens to fit the data as well without them. This overfitting
typically means, that during the hyperparameter optimisation, the true predictive
performance increases in the beginning, but at some point starts to decrease towards
the converged level.

In ARDEP, the effect of overfitting is minimised through the hyperprior by se-
lecting a proper value of hyperparameter λ using cross-validation (Stone 1974) before
constructing the final model (see 5.4 Hyperparameter Selection). To examine the
progress of the true predictive performance during the relevance hyperparameter
optimisation with the fMRI data, I apply a similar cross-validation scheme, where
one subject at a time is left out of the training data set and the obtained model is
tested with the removed subject according to the measures introduced in equations
31 and 33. Denote the leave-Sk-out training data as t\Sk and X\Sk , where the ob-
servations i ∈ Sk belonging to subject k have been removed and gathered in tSk

and
XSk

. The leave-one-subject-out CA and leave-one-subject-out MLPP are obtained
by averaging over test subjects k = 1, . . . , K:

CAloso =
1

K

K∑
k=1

CA(tSk
,XSk

|t\Sk ,X\Sk , λ), (51)
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MLPPloso =
1

K

K∑
k=1

MLPP(tSk
,XSk

|t\Sk ,X\Sk , λ). (52)

Figure 3 presents an example of the progress of these average measures during
the relevance hyperparameter optimisation as a function of the number of iteration
rounds. Even if the figure is obtained by using an optimally selected hyperparameter
λ, it indeed seems that the model loses some of its predictive power, while the
algorithm converges towards a stable, sparse relevance hyperparameter vector vMAP.
The effect appears larger with smaller and larger values of λ, but apparently the
adjustment of the hyperparameter does not fully remove the overfitting.
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Figure 3: An example of the average progress of CA(tSk
,XSk

|t\Sk ,X\Sk , λ) and
MLPP(tSk

,XSk
|t\Sk ,X\Sk , λ) over a cross-validation scheme, where each subject k =

1, . . . ,K at a time is left out of the training data, presented as a function of the
number of iteration rounds in ARDEP.

To amend the algorithm due to this unfavourable reduction of predictive power,
Qi et al. suggest keeping track of an estimate for predictive performance provided
by each EP during the optimisation precedure. In the end, instead of choosing
the relevance hyperparameter vector producing the maximum marginal likelihood,
they select the one with the highest estimated predictive performance for the final
posterior approximation. In particular, they try to estimate the corresponding leave-
one-out CA and leave-one-out MLPP, defined by using a cross-validation scheme,
where only one observation at a time is left out of the training data set, but without
carrying out the actual cross-validation. These estimates for CAloo and MLPPloo

are obtained by using the auxiliary variables zi obtained during the site updates in
EP (see item C in the algorithm description on p. 24), according to equations A39
and A40 in appendix A:

C̃Aloo =
1

N

N∑
i=1

H(zi), (53)

˜MLPPloo =
1

N

N∑
i=1

lnΨ(zi). (54)
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The validity of removing only one observation at a time is questionable for data
with several observations from the same subject, like the fMRI data used in this
work. Because the observations belonging to the same subject may be correlated,
the training data still includes information about the removed observation. Thus, a
better way to simulate testing with new data would be to leave all the observations
of one subject at a time out of the training set, as described above, and use the leave-
one-subject-out measures CAloso and MLPPloso. The selection of the hyperparameter
λ is carried out by this kind of cross-validation. Also for this reason, it is natural
to replace the EP estimates C̃Aloo and ˜MLPPloo with the corresponding leave-one-
subject-out estimates:

C̃Aloso =
1

N

K∑
k=1

∑
i∈Sk

H(z\Sk

i ), (55)

˜MLPPloso =
1

N

K∑
k=1

∑
i∈Sk

lnΨ(z
\Sk

i ). (56)

Unlike for the leave-one-out estimates, the corresponding auxiliary variables z
\Sk

i

for the leave-one-subject-out estimates require some extra computation as derived
in appendix A (equations A41–A45).

Even though using the EP estimates described above sounds tempting, in prac-
tice they do not seem to work with the fMRI data. Figure 4 presents an example
of the progress of these estimates during the relevance hyperparameter optimisa-
tion with all observations included in the training data. If the estimates performed
properly, C̃Aloso and ˜MLPPloso should correspond to the cross-validation measures
CAloso and MLPPloso presented in figure 3. However, the EP estimates do not show
a clear maximum after a few iteration rounds, but instead keep the maximum levels
after reaching it along the maximisation of the posterior of v. The shape of the
true predictive performance is followed only, when λ is so small that the hyperprior
enforces almost all features to be pruned out, causing that the model cannot fit
even the training data. A possible explanation for this kind of behaviour would
be, that removing approximate likelihood terms from the posterior approximation
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Figure 4: An example of the progress of EP estimates C̃Aloo, C̃Aloso and ˜MLPPloso

presented as a function of the number of iteration rounds in ARDEP.
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does not fully remove the effect of the corresponding observations on the cavity ap-
proximations, which would lead to overoptimistic estimates. Since the EP estimates
do not follow the true predictive performance, I hold on to the original criterion
of choosing the MAP estimate vMAP as the final relevance hyperparameter for the
primary ARDEP. For reference, I denote these alternative ARDEP algorithms as
loo-ARDEP, loso-ARDEP and mlpp-ARDEP.

5.2 Expectation Propagation on Laplace Prior

For the LAEP solution, I use an algorithm implemented in the multivariate module
of the FieldTrip toolbox (Oostenveld et al. 2011) by Marcel van Gerven. His algo-
rithm is developed for a similar binary classification task as the one studied in this
work, but it accepts also multivariate Laplace priors with desired couplings between
the weights (van Gerven et al. 2010). By using a diagonal prior covariance matrix
with a constant hyperparameter for all the weights, the model reduces to the one
used in this work, with the exception that the activation function Ψ of the probit
model is replaced by the logistic activation function l−1:

l−1(fi) =
1

1 + e−fi
. (57)

By matching the derivatives at the origin, these two functions become practically
similar, leading to an approximation l−1(fi) ≈ Ψ(

√
π
8
fi) (Bishop 2006, p. 219).

Since the scale of the linear transformation fi = tiw
Txi passed to the activation

function is proportional to λ2, the logit model corresponds approximately to the
probit model after multiplying the scale hyperparameter corresponding to λ2 by a
factor 8

π
:

θλ =
8

π
λ2. (58)

For posterior inference, LAEP utilises a scale mixture of the Laplace prior in
equation 37, which is here presented with respect to the scaled hyperparameter θλ:

p(wj|λ) =
∫ ∞

−∞

∫ ∞

−∞
N (wj; 0, µ

2
j + ν2

j )N (µj; 0, θλ)N (νj; 0, θλ) dµj dνj. (59)

Recall from the previous subsection, that the ARDEP algorithm uses a correspond-
ing scale mixture by regarding the scale parameters vj = µ2

j + ν2
j as relevance

hyperparameters to be optimised by maximising their marginal posterior density. As
a distinction to ARDEP, LAEP does not use point estimates for the scale parameters,
but instead approximates the posterior distribution over the whole set of latent
variables (w,µ,ν):

p(w,µ,ν|X, t, λ) ∝

(
D∏
j=1

N (wj; 0, µ
2
j + ν2

j )N (µj; 0, θλ)N (νj; 0, θλ)

)
N∏
i=1

l−1(tiw
Txi).

The posterior distribution over the weights w is then obtained by marginalising µ
and ν out from the joint posterior approximation. Because of this marginalisation,
the result is much smoother than in ARDEP.
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For the approximations, LAEP uses an expectation propagation algorithm with a
similar idea as in the one used in ARDEP. The likelihood terms gi(w) = l−1(tiw

Txi)
are approximated by

g̃i(w) = ew
Txiϱ

g
i−

1
2
wTxiκ

g
i x

T
i w, (60)

where ϱgi and κg
i are scalar parameters. Respectively, the auxiliary variable terms

fj(ωj) = N (wj; 0, µ
2
j + ν2

j ) are approximated by

f̃j(ωj) = eω
T
j ϱ

f
j−

1
2
ωT

j κ
f
jωj , (61)

where ωj = (wj, µj, νj)
T and ϱf

j and κf
j are the corresponding three-dimensional

parameter vector and matrix. Since the prior terms for µj and νj are already in
a proper Gaussian form, the whole posterior can now be approximated as a multi-
variate Gaussian distribution. As in the EP algorithm used in ARDEP, the term
approximations are found by an iterative procedure that updates their parameters
term by term to minimise the Kullback-Leibler divergence between a target distri-
bution that uses the accurate term and the new posterior approximation. For a
detailed description and derivation, I refer to the original paper by van Gerven et
al. (2010).

5.3 Markov Chain Monte Carlo

5.3.1 Posterior Simulation

Monte Carlo simulation methods provide a completely different approach for ap-
proximate inference compared to the previous EP methods. Instead of estimating
parameters for some tractable parameteric distributions, they generate random sam-
ples to represent the posterior distribution. The more samples drawn, the more the
distribution of the samples should resemble the accurate solution for the original
model. After generating samples from the posterior distribution of the weights, also
the predictive distribution can be easily simulated and summarised by using the
obtained samples with the new inputs.

When direct simulation from the posterior is not feasible, one solution is to use
Markov chain Monte Carlo methods with each draw depending on the previous one.
Even if the early samples in the Markov chain are dependent on the initialisation,
the chain can be constructed to converge towards the target distribution along the
procedure. One of the most widely used Markov chain Monte Carlo methods is
the Gibbs sampler (Geman and Geman 1984), which is specifically intended for
multivariate distributions. The Gibbs sampler simulates a target distribution of
several parameters by sequentially drawing each subset of parameters conditional
on the others. Thus, one cycle through all the parameters forms one component in
the Markov chain.

5.3.2 MCMC

The MCMC algorithm implemented for this work is a modified version of an algo-
rithm implemented by Mark Schmidt (2006) for sampling from the probit model
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based on the article by Albert and Chib (1993). It uses the idea of the Gibbs sam-
pler to simulate the posterior distribution over the weights w and auxiliary variables
u = (u1, . . . , uN)

T, where ui is the latent variable generating class ti of observation i
according to equations 23 and 24. To apply the Laplace prior to the model, I extend
the algorithm to sample also over v = (v1, . . . , vD)

T, where vj is the scale parameter
of the Laplace prior decomposition in equation 36. Note here, that even though
this is the same scale mixture as utilised by ARDEP, vj is here treated as a latent
variable, like the scale parameters µj and νj in LAEP. Since both MCMC and LAEP
preserve the original Laplace prior without further sparsification of features, they
produce smoother solutions than ARDEP, which optimises v by a point estimate.

In MCMC, sampling over the latent variable ui replaces the likelihood term.
Thus, by using the scale mixture for the Laplace prior, the posterior distribution
over u, w and v can be written as

p(u,w,v|X, t, λ) ∝ p(t|u)p(u|w,X)p(w|v)p(v|λ). (62)

Since u appears only in the first two terms, the posterior distribution over u condi-
tional on w and v becomes

p(u|w,v,X, t, λ) ∝ p(t|u)p(u|w,X) =
N∏
i=1

p(ti|ui)N (ui;w
Txi, 1). (63)

Since p(ti|ui) with a fixed ti simply allows ui to get only values with the sign ti,
the conditional posterior over ui is a standard Gaussian distribution centered at
wTxi and truncated from the origin. Truncated distributions could obviously be
simulated by drawing samples from the complete distribution until a sample from
the acceptable range is obtained. This is, however, computationally too expensive,
when the acceptance probability is low. Thus, to sample ui, MCMC uses a more
efficient accept-reject algorithm introduced by Christian Robert (1995), based on
sampling from an optimal envelope distribution.

Also the weight vector w appears only in two terms in the joint posterior. Thus,
the posterior distribution overw conditional on u and v becomes Gaussian according
to

p(w|u,v,X, t, λ) ∝ p(u|w,X)p(w|v) =

(
N∏
i=1

N (ui;w
Txi, 1)

)
D∏
j=1

N (wj; 0, vj)

∝ N (w;VGX
Tu,VG), (64)

where VG = (diag(v) +XTX)−1.
The posterior distribution over v conditional on u and w, however, turns out to

be of a more inconvenient form:

p(v|u,w,X, t, λ) ∝ p(w|v)p(v|λ) =
D∏
j=1

N (wj; 0, vj)E
(
vj;

1

2λ2

)
. (65)

For convenience, the sampling is carried out over the inverse of vj. If vj follows
a gamma distribution, v−1

j follows an inverse gamma distribution with the same
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parameters. Since the exponential distribution is equal to the gamma distribution
with the unit scale, the conditional posterior over v−1

j becomes

p(v−1
j |u,w,X, t, λ) ∝ N

(
wj; 0,

1

v−1
j

)
Inv−Γ

(
v−1
j ; 1,

1

2λ2

)
∝ (v−1

j )−
3
2 e−

w2
j
2
v−1
j − 1

2λ2
(v−1

j )−1

. (66)

To sample from the above distribution, MCMC uses a method called slice sampling
(Neal 2003), which is applicable for distributions of almost any form. Slice sam-
pling utilises the fact that sampling from a probability distribution is equivalent to
sampling from the area under the curve of its density function y = f(x). As a first
step, a vertical value y∗ is sampled uniformly from the interval [0, f(x∗)] according
to the previous sample x∗. The value of y∗ assigns then a horizontal slice including
the values of x that meet the requirement of f(x) ≥ y∗, and the new value of x∗

is sampled uniformly from this horizontal slice. The efficient implementation of the
slice sampling used by MCMC belongs to the GPstuff toolbox (Vanhatalo et al.
2011).

After sequentially sampling from the posterior distributions over z, w and v
conditional on the latest samples, it is important to check that the Markov chain
has converged to the desired distribution (Gelman et al. 2004, pp. 294–299). To
suppress the effect of the initial values of w and v, the early samples are discarded
as a burn-in. Since the remaining chain of samples is still more or less autocorrelated,
the effective number of samples is much smaller than the total amount drawn. Thus,
the Markov chain can be also thinned by skipping a constant amount of samples
after each one that is selected into the final set. In this work, I use a burn-in of 500
and a thinning interval of 10 samples. To sum up the whole MCMC algorithm, I
present the sampling procedure as the following pseudocode:

MCMC

Input: data matrix X, label vector t, Laplace prior hyperparameter λ

Output: 1000 samples of w drawn approximately from the posterior distri-
bution p(w|X, t, λ) according to the probit model with Laplace prior

1. Initialise w to zero and v to the mean of p(v|λ):

w0
j = 0 and v0j = 2λ2 for all j = 1, . . . , D

2. For s = 1, . . . , 10500

A. Sample us from p(u|ws−1,vs−1,X, t, λ):

For i = 1, . . . , N :

Draw z > 0, so that p(z) ∝ N (z; tiw
Txi, 1).

us
i = ti|z|
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B. Sample ws from p(w|us,vs−1,X, t, λ):

VG = (diag(vs−1) +XTX)−1

Draw z, so that p(z) = N (z;VGX
Tu,VG).

ws = z

C. Sample vs from p(v|us,ws,X, t, λ):

For j = 1, . . . , D:

Draw z > 0, so that p(z) ∝ z−
3
2 e−

(ws
j )

2

2
z− 1

2λ2
z−1

.

vsj =
1
z

3. Select every tenth sample ws from iterations s > 500 for the output set.

5.4 Hyperparameter Selection

5.4.1 Cross-validation

A proper value of the hyperparameter λ is selected separately for each approximate
inference method, by using a similar cross-validation (Stone 1974) scheme as already
described, when illustrating the overfitting of ARDEP (see 5.1.6 Alternative Criteria
for Selection of the Final Relevance Hyperparameter Vector). A group of candidate
values for λ is selected, and CAloso and MLPPloso are computed for each value ac-
cording to equations 51 and 52, by leaving one subject at a time away from the
training set and testing the model with the removed subject. Depending on which
one of the measures of predictive performance has been chosen as the hyperparam-
eter selection criterion, the candidate value with the best CAloso or with the best
MLPPloso is selected as the final hyperparameter λ̂. In this work, I use MLPPloso

as the selection criterion, since it takes also uncertainties of the predictions into
account. For clarity, I present the hyperparameter selection procedure for a given
approximate inference method as the following pseudocode:

HYPERPARAMETER SELECTION

Input: data matrix X and label vector t including observations from K sub-
jects

Output: selected hyperparameter λ̂ for the Laplace prior

1. For 2λ2 = 10−6, 10−5, . . . , 100:

A. For k = 1, . . . , K:

I. Divide X and t in two separate parts:

XSk
, tSk

including observations i ∈ Sk belonging to subject k

X\Sk , t\Sk including the remaining observations i /∈ Sk

II. Train a model with X\Sk , t\Sk and λ.

III. Test the model by computing MLPP(tSk
,XSk

|t\Sk ,X\Sk , λ).
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B. Compute cross-validated predictive performance for λ:

MLPPloso(λ) =
1
K

∑K
k=1MLPP(tSk

,XSk
|t\Sk ,X\Sk , λ)

2. Select λ with the best cross-validated predictive performance as λ̂:

λ̂ = argmaxλ{MLPPloso(λ)}

Figures 5 and 6 present CAloso and MLPPloso as a function of λ, for the two
different classification settings: piano vs. speech and auditory vs. audiovisual. In the
latter case, the selected hyperparameter value is 2λ̂2 = 10−4 for all the approximate
inference methods, and the result would be the same, even if CAloso was used as a
selection criterion. In the case of piano vs. speech setting, the selected value is 2λ̂2 =
10−5. If CAloso was used, the only exception would be MCMC with 2λ̂2 = 10−6.
All in all, the cross-validated predictive performance measures seem to behave quite
similarly for all methods and lead to consistent decisions. Both of the measures show
the effect of overfitting with large hyperparameter values and on the other hand the
effect of underfitting with small values of λ, although the latter effect appears more
clear with CAloso.
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Figure 5: CAloso and MLPPloso obtained from a cross-validation scheme for piano
vs. speech classification setting, presented as a function of λ.
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Figure 6: CAloso and MLPPloso obtained from a cross-validation scheme for auditory
vs. audiovisual classification setting, presented as a function of λ.
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5.4.2 Alternative Considerations

Cross-validation is a reliable way to find a proper hyperparameter value, but com-
putationally it is quite expensive, since it requires the approximate inference to
be run K times for each hyperparameter. Furthermore, using cross-validation for
hyperparameter adjustment invalidates the measures of predictive performance pro-
duced by the cross-validation. Thus, the comparison of the predictive performance
between different approximate inference methods must be carried out by a double-
cross-validation, which means even K(K − 1) runs for each hyperparameter. For
these reasons, it would be useful, if the hyperparameter could be reliably selected
during the approximate inference algorithm without the expensive cross-validation.

For ARDEP, a possible solution to consider could be to use the EP estimates
for CAloso, MLPPloso or ln (p(t|X,v)p(v|λ)). However, when applying these esti-
mates to the fMRI data, none of them manages to identify a proper hyperparameter
value. Figure 7 presents an example of a typical behaviour of the estimates as
a function of λ. As noticed, the approximation of ln (p(t|X,v)p(v|λ)) increases
with decreasing λ, regardless of the underfitting. When the hyperprior is tightened
enough, the marginal likelihood term p(t|X,v) should be reduced towards a chance
level, but since the hyperprior density p(v|λ) keeps peaking higher and higher along
the tightening, it dominates the measure. The EP estimates C̃Aloso and ˜MLPPloso,
instead, show opposite behaviour by increasing with increasing λ. When compar-
ing the EP estimates to the true cross-validation measures, it is noticed that the
looser the hyperprior is, i.e., the more freedom is given to the classifier to fit the
data, the more overoptimistic the EP estimates become. This observation supports
the conclusion made earlier, that removing approximate likelihood terms from the
posterior approximation is not sufficient to remove the effect of the corresponding
observations on the cavity approximations, and thus the EP estimates obtained this
way cannot properly penalise overfitting. As noticed from the leftmost graph, the
leave-one-subject-out estimate C̃Aloso actually remains closer to the corresponding
leave-one-out estimate C̃Aloo (presented by the red curve) instead of following the
true cross-validation measure CAloso.
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Figure 7: An example of EP estimates C̃Aloo, C̃Aloso and ˜MLPPloso and EP approxi-
mation for ln (p(t|X,v)p(v|λ)) produced by ARDEP as a function of λ. For reference,
the true CAloso and MLPPloso obtained by cross-validation are presented as dashed
lines.

For LAEP, a similar solution would be to use an approximation of the log mar-
ginal likelihood ln p(t|X, λ) for λ, provided by the algorithm. Unfortunately this
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measure suffers from the same problem as C̃Aloso and ˜MLPPloso in ARDEP. As
noticed from figure 8, the approximate ln p(t|X, λ) keeps increasing with increasing
λ, and thus favours overfitting.
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Figure 8: An example of an approximation of the log marginal likelihood ln p(t|X, λ)
for λ, produced by LAEP, presented as a function of λ. For reference, MLPPloso ob-
tained by cross-validation is presented as a dashed line in the contiguous graph.

In the case of MCMC, an alternative for selecting a fixed value for the hyper-
parameter λ would be to state a hyperprior p(λ) and sample λ from the posterior
distribution p(λ|u,w,v,X, t) as a part of the Gibbs sampler. When applying this
strategy to the fMRI data by using a similar idea of slice sampling as for w, it is
noticed that the samples of λ escape towards the upper limit of the sampling range.
Since the increase of λ does not seem to be properly constrained by any sensibly
formed prior distribution, also this alternative has to be discarded.

For the fMRI data used in this work, cross-validation seems to be the only
reliable way to optimise the value of λ, in the case of any of the three approximate
inference methods. If, however, there turns out to be no resources for such a heavy
procedure, it would be worthwhile to have some hunch of a generally applicable value
for the scale hyperparameter. A natural approach arises from a desire to avoid the
possibility, that a constant shift in xi would be able to change the classification
result from almost certain t = −1 to almost certain t = 1, or vice versa (Gelman et
al. 2008). From this perspective, it would be appropriate to scale wTxi according
to the scale of the probit activation function. Since 2λ2 corresponds to the prior
variance of the feature weights wj, matching the prior variance of wTxi averaged
over observations i = 1, . . . , N with the unit variance of the standard Gaussian
distribution leads to∑N

i=1

(∑D
j=1 ([xi]j)

22λ2
)

N
= 2λ2

D∑
j=1

∑N
i=1 ([xi]j)

2

N
= 1. (67)

Since the fMRI data used in this work has been standardised over each set of obser-
vations obtained from one voxel of one subject,

∑N
i=1 ([xi]j)

2

N
can be approximated as

one also for the classification subsets. For the feature amount D = 707 this leads to

2λ2 =
1

D
≈ 0.0014 ≈ 10−2.8. (68)



38

As noticed from figures 5 and 6, this prior scale does not quite match with the
optimal choices for the particular classification settings, but the predictive perfor-
mance still remains near the maximum. Thus, it may be regarded as a heuristic for
a sufficiently safe and uninformative choice of the hyperparameter, which, however,
utilises information about the scale and the dimension of the data.
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6 Results

The final classification model is the approximate posterior distribution of the feature
weights, obtained by carrying out the approximate inference with the whole training
data including all subjects. The distribution is visualised by presenting the marginal
probabilities for the individual weights to be positive or negative, mapped into the
corresponding brain locations. Since the whole data has been used in the inference
stage, the predictive performance of this model model cannot be directly tested.
Furthermore, because the hyperparameter λ has been adapted using cross-validation,
a similar cross-validation is neither appropriate for testing the final model. Thus, the
comparison between the predictive performances of the three different approximate
inference methods is carried out by a double-cross-validation scheme, where one
subject at a time is first left out of the data and then both the hyperparameter
selection and the final approximate inference are performed without using the test
subject.

6.1 Brain Maps for Piano vs. Speech Setting

To illustrate the final classification model, i.e., the approximate posterior distribu-
tion of the feature weight vector w, the marginal distributions of individual weights
wj are mapped back to the brain by presenting the probability P(wj > 0) for each
feature j at the corresponding brain location. In the brain maps presented in this
chapter, high probabilities are represented by bright yellow colour, indicating that
high activations in these locations tend to move the classification result towards
label t = 1. Low probabilities, in turn, are represented by dark red colour, indicat-
ing greater sensitivity to the condition labelled as t = −1. Neutral locations with
P(wj > 0) ≈ 0.5 are presented by orange.

Since the original data was thinned by removing every second voxel in each
spatial dimension, filling the exact volumes corresponding to the features would not
be too illustrative, as noticed from the left-hand map in figure 9. To produce better
visualised maps, the gaps between the remaining voxels are filled by interpolating
from the neighbouring voxels, as done in the right-hand map.

Figure 9: An example of the visual effect of interpolation.
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Figure 10: Interpolated brain maps obtained by different approximate inference
methods for piano vs. speech setting, where negative and positive feature weights
mean that activation in the corresponding voxel tend to move the classification result
towards piano and speech, respectively. The colour scale from dark red (0) to bright
yellow (1) represents the probability for the corresponding feature weight to be pos-
itive. Orange colour indicates neutral probability P(wj > 0) ≈ 0.5. The rightmost
slices present the locations, where activation is most related to temporal regularity,
spectral irregularity and amplitude of the stimulus.
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Figure 10 presents five horizontal slices of the interpolated brain maps for piano
vs. speech setting, obtained by each of the three approximate inference methods.
The most immediate observation concerns the sparseness of the ARDEP solution
compared to the LAEP and MCMC solutions. As predicted earlier, ARDEP prunes
most of the features effectively out of the model, resulting in a truly sparse solution
with only about one hundred out of D = 707 weights being more probably on either
side of the origin. As illustrated in the leftmost histogram in figure 11, a great deal
of the remaining weights are almost certainly positive or almost certainly negative.
The LAEP and MCMC solutions are spatially more continuous with smoother shifts
between nearby voxels, and hence P(wj > 0) is more often somewhere between the
neutral 0.5 and the extremes 0 and 1.
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Figure 11: Histograms of P(wj > 0) for j = 1, . . . , D, obtained by different approx-
imate inference methods for piano vs. speech setting.

The most discriminative locations between piano and speech in the region of
interest are the same with each of the approximate inference methods, even though
ARDEP prunes out some of the details. When looking generally, speech-related
regions seem to be more inferior and lateral than piano-related regions. The most
noticeable piano-related regions are located in the medial parts of superior temporal
gyri (STG). The most probable piano-related voxels are in the right hemisphere,
where the piano-related regions are also wider than in the left hemisphere, spread-
ing also to the lateral parts of STG. The most probable speech-related voxels, in
turn, are in the lateral parts of the left middle temporal gyrus (MTG) and superior
temporal sulcus (STS). A corresponding speech-related region is noticed also in the
left hemisphere, but it is smaller and restricted on the most posterior parts of the
region of interest.

To support the interpretation of the results, the obtained patterns are compared
to a separate analysis, where the fMRI signal was modelled as a sum of components
related to the characteristics of the stimuli (Salmi et al. 2012). The locations, where
activation is most related to temporal regularity (pink), spectral irregularity (green)
and amplitude (transparent blue) of the stimulus, are presented in the rightmost
slices of figure 10. The larger piano-related region in the right hemisphere seems to
be connected with enhanced sensitivity to temporal regularity in the lateral parts of
the right STG. The regions most sensitive to spectral irregularity, in turn, seem to
match quite well with the most posterior speech-related regions in MTG and STS.
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6.2 Brain Maps for Auditory vs. Audiovisual Setting

Figure 12 presents three horizontal slices of the interpolated brain maps for auditory
(piano) vs. audiovisual (piano) setting, obtained by each of the three approximate
inference methods. The general impression of the characteristic differences between
the solutions is the same as in piano vs. speech setting. The sparseness of the
ARDEP solution compared to the smoother LAEP and MCMC solutions becomes
apparent also by looking at the histograms in figure 13. In this case, the ARDEP
solution contains only a few dozen relevant voxels with most of them almost certainly
positive or almost certainly negative.

Figure 12: Interpolated brain maps obtained by different approximate inference
methods for auditory (piano) vs. audiovisual (piano) setting, where negative and pos-
itive feature weights mean that activation in the corresponding voxel tend to move
the classification result towards auditory and audiovisual, respectively. The colour
scale from dark red (0) to bright yellow (1) represents the probability for the corre-
sponding feature weight to be positive. Orange colour indicates neutral probability
P(wj > 0) ≈ 0.5. The rightmost slices present the locations, where the contrast of
activation during audiovisual (piano) compared to activation during auditory (piano)
is most significant according to a separate GLM analysis.
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Figure 13: Histograms of P(wj > 0) for j = 1, . . . , D, obtained by different approx-
imate inference methods for auditory vs. audiovisual setting.

In spite of even more effective pruning of features, ARDEP maintains all of the
most discriminative regions obtained by LAEP and MCMC also for auditory (piano)
vs. audiovisual (piano) setting. However, ARDEP loses the more specific shape of
the regions by representing them as one or more smaller spots. The most noticeable
regions related to audiovisual (AV) input are located in the medial parts of the right
MTG and STS and in the left planum temporale (PT), which is the most superior
part of the region of interest. Smaller AV-related regions are noticed also in the
most posterior parts of the region of interest up in the right STG and down in the
left lateral MTG.

The rightmost slices of figure 12 present the locations, where the contrast of
activation during audiovisual piano-playing compared to activation during auditory
piano-playing is most significant according to a separate multi-level general linear
model (GLM) obtained by the analysis tool FEAT (Beckmann et al. 2003) in FMRIB
Software Library. The GLM analysis distinguishes the same regions as mentioned
in the superior parts of the region of interest, but does not show significant contrast
in the more inferior regions.

6.3 Predictive Performance for Piano vs. Speech Setting

The predictive performance of the final model is evaluated by a double-cross-val-
idation scheme, where the observations of one subject at a time are first left out
of the data and then both the hyperparameter selection and the final approximate
inference are carried out without using the removed observations. The removed
subject is used as a test subject to compute CA and MLPP as defined in equations
31 and 33. The double-cross-validated measures CAdouble−loso and MLPPdouble−loso

are obtained by averaging over different test subjects. For clarity, I present the
double-cross-validation procedure for a given approximate inference method as the
following pseudocode:

DOUBLE-CROSS-VALIDATION

Input: data matrix X and label vector t including observations from K sub-
jects

Output: predictive performance measures CAdouble−loso and MLPPdouble−loso
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1. For k = 1, . . . , K:

A. Divide X and t in two separate parts:

XSk
, tSk

including observations i ∈ Sk belonging to subject k

X\Sk , t\Sk including the remaining observations i /∈ Sk

B. Run HYPERPARAMETER SELECTION using leave-Sk-out data:

Input: X\Sk and t\Sk including observations from K − 1 subjects

Output: λ̂\Sk

C. Train a model with X\Sk , t\Sk and λ̂\Sk .

D. Test the model by computing CA(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk) and

MLPP(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk).

2. Compute double-cross-validated predictive performance:

CAdouble−loso =
1
K

∑K
k=1CA(tSk

,XSk
|t\Sk ,X\Sk , λ̂\Sk)

MLPPdouble−loso =
1
K

∑K
k=1MLPP(tSk

,XSk
|t\Sk ,X\Sk , λ̂\Sk)

Figure 14 presents CAdouble−loso and MLPPdouble−loso obtained by different ap-
proximate inference methods for piano vs. speech setting. The round spots repre-
sent CAdouble−loso and MLPPdouble−loso and the line segments are 95 % confidence
intervals for classification accuracy and mean log predictive performance. The con-
fidence intervals for classification accuracy are obtained analytically by assuming the
amount of correct predictions to be binomially distributed and applying a uniform
prior distribution for the probability of a single prediction to be correct (Bolstad
2007, pp. 141–143). The confidence intervals for mean log predictive probability
are obtained by generating 1000 Bayesian bootstrap replicates of the set of the log
predictive probabilities for the correct classes (Rubin 1981).
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Figure 14: CAdouble−loso and MLPPdouble−loso with 95 % confidence intervals for
piano vs. speech setting. The confidence interval for classification accuracy is ob-
tained by assuming the amount of correct predictions to be binomially distributed.
The confidence interval for mean log predictive probability is obtained by Bayesian
bootstrap.
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The chance levels for classification accuracy and mean log predictive probability
are 0.5 and ln 0.5 ≈ −0.69, respectively. For all approximate inference methods,
CAdouble−loso and MLPPdouble−loso are significantly higher: CAdouble−loso is above 0.70
and MLPPdouble−loso above -0.58. In the case of ARDEP, the confidence interval
for classification accuracy lies approximately between 0.70 and 0.72, whereas the
corresponding intervals for LAEP and MCMC lie between 0.72 and 0.74. A similar
difference between LAEP and MCMC compared to ARDEP is observed in mean log
predictive probabilities, with the performance of MCMC slightly above LAEP.

For reference, also the predictive performances of the alternative modifications
of ARDEP are presented in the same figure. Even if loo-ARDEP and mlpp-ARDEP
seem to perform better than the converged ARDEP, it is important to remember
that the EP estimates they lean on do not properly follow the true predictive perfor-
mance, as illustrated in the previous chapter. Due to the overfitting during the ARD
framework, choosing any of the earlier iterations after a few initial ones may lead to
a better performance on average, no matter which criterion is used for the selection.
Note also, that the effect is not as significant with the predictive performance for
loso-ARDEP, even if it uses a more properly defined EP estimate than loo-ARDEP.
Thus, I argue that the better performance for loo-ARDEP and mlpp-ARDEP in
this case is more of an illusion than a result of truly worthwhile modifications.

The individual predictive performance measures CA(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk)

and MLPP(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk) for each test subject k = 1, . . . , 16 are pre-
sented in figure 15. The individual classification accuracies vary from below 0.60
above 0.80, and the mean log predictive performances behave quite similarly. The
most noticeable differences between the approximate inference methods occur for
test subjects k = 10 and k = 15, with significantly lower predictive performance
for ARDEP compared to LAEP and MCMC. When looking at the selected hyper-
parameters for each training set, it is noticed that the reduced predictive perfor-
mance for these test subjects is due to overfitting caused by larger hyperparameters
2(λ̂\S10)2 = 2(λ̂\S15)2 = 10−4 selected for ARDEP. The larger hyperparameter is
selected also for λ̂\S13 for both ARDEP and LAEP, which similarly reduces the
classification accuracy compared to MCMC.
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Figure 15: CA(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk) and MLPP(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk) for
test subjects k = 1, . . . , 16 with 95 % confidence intervals for piano vs. speech setting.
The confidence intervals for classification accuracies are obtained by assuming the
amount of correct predictions to be binomially distributed. The confidence intervals
for mean log predictive probabilities are obtained by Bayesian bootstrap.
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Figure 16 presents the predictive probabilities p(ti|xi, t
\Sk ,X\Sk , λ̂\Sk) for the

correct classes ti of the individual test observations i ∈ Sk. The observations of all
test subjects k = 1, . . . , 16 are presented in the same graph, where the probabilities
for correspondent observations obtained by different approximate inference methods
are plotted pairwise against each other. As noticed, the individual probabilities are
highly correlated between different methods. In the rightmost graphs, the core of
the point cloud forms a gentle S letter, due to the more audacious predictions by
MCMC. Most of the points outside the core are overoptimistic predictions for test
subjects k = 10, k = 13 and k = 15, due to overfitting caused by the larger selected
hyperparameters for the corresponding training data sets.
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Figure 16: Predictive probabilities p(ti|xi, t\Sk ,X\Sk , λ̂\Sk) for the correct classes
ti, where i ∈ Sk, in piano vs. speech setting. The probabilities for correspondent
observations obtained by different approximate inference methods are plotted pairwise
against each other.

By determining 95 % confidence intervals for the mean difference of correspon-
dent predictive probabilities between two approximate inference methods, it is con-
firmed that the differences between their predictive performances are significant.
The confidence interval for the mean difference between LAEP and ARDEP is
[0.0037, 0.0057], between MCMC and ARDEP [0.0169, 0.0191] and between MCMC
and LAEP [0.0125, 0.0142].

6.4 Predictive Performance for Auditory vs. Audiovisual
Setting

Figure 17 presents CAdouble−loso and MLPPdouble−loso obtained by different approxi-
mate inference methods for auditory (piano) vs. audiovisual (piano) setting. Both
of the predictive performance measures are lower than for piano vs. speech setting,
but still significantly above the chance levels. In addition, the uncertainties on the
classification accuracies are a little higher than in the first setting, which is natural
with less available observations. In the case of ARDEP, the confidence interval for
classification accuracy lies approximately between 0.66 and 0.69, whereas the corre-
sponding interval for LAEP lies between 0.68 and 0.71. The classification accuracy
for MCMC is slightly lower than for LAEP, even if their mean log predictive proba-
bilities are at the same level. The alternative modifications of ARDEP do not show
considerable differences compared to the converged ARDEP.



47

0.66 0.665 0.67 0.675 0.68 0.685 0.69 0.695 0.7 0.705

MCMC

LAEP

mlpp−ARDEP

loso−ARDEP

loo−ARDEP

ARDEP

Double−cross−validation for auditory vs. audiovisual setting

CA
double−loso

−0.63 −0.62 −0.61 −0.6 −0.59 −0.58 −0.57

MCMC

LAEP

mlpp−ARDEP

loso−ARDEP

loo−ARDEP

ARDEP

MLPP
double−loso

Double−cross−validation for auditory vs. audiovisual setting

Figure 17: CAdouble−loso and MLPPdouble−loso with 95 % confidence intervals for
auditory vs. audiovisual setting. The confidence interval for classification accuracy is
obtained by assuming the amount of correct predictions to be binomially distributed.
The confidence interval for mean log predictive probability is obtained by Bayesian
bootstrap.

The individual predictive performance measures CA(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk)

and MLPP(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk) for each test subject k = 1, . . . , 16 are pre-
sented in figure 18. The variability between the individual measures is at the same
level as for piano vs. speech setting. The uncertainties on most of them are, how-
ever, are noticeably higher than in the first case. In auditory vs. audiovisual setting,
the selected hyperparameters are the same for each training set, with the exception
of 2(λ̂\S14) = 10−3 for ARDEP. In this case, the larger hyperparameter does not
stand out of the predictive performance measures.
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Figure 18: CA(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk) and MLPP(tSk
,XSk

|t\Sk ,X\Sk , λ̂\Sk) for
test subjects k = 1, . . . , 16 with 95 % confidence intervals for auditory vs. audiovisual
setting. The confidence intervals for classification accuracies are obtained by assum-
ing the amount of correct predictions to be binomially distributed. The confidence
intervals for mean log predictive probabilities are obtained by Bayesian bootstrap.

Figure 19 presents the predictive probabilities for the correct classes of the in-
dividual test observations, plotted pairwise against different approximate inference
methods. The gentle S letter due to the more audacious predictions by MCMC
stands out also for auditory vs. audiovisual setting. Otherwise the point clouds are
more regularly shaped, since there are no such differences between the methods as
caused by the deviant hyperparameters in piano vs. speech setting.
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Figure 19: Predictive probabilities p(ti|xi, t\Sk ,X\Sk , λ̂\Sk) for the correct classes ti,
where i ∈ Sk, in auditory vs. audiovisual setting. The probabilities for correspon-
dent observations obtained by different approximate inference methods are plotted
pairwaise against each other.

By determining 95 % confidence intervals for the mean difference of correspon-
dent predictive probabilities between two approximate inference methods, a con-
flicting order is obtained between them, when compared to the predictive perfor-
mance measures. The confidence interval for the mean difference between LAEP
and ARDEP is [0.0082, 0.0120], between MCMC and ARDEP [0.0170, 0.0207] and
between MCMC and LAEP [0.0069, 0.0103]. These suggest significant differences
between the methods in the same order as in piano vs. speech setting, even if LAEP
has slightly higher classification accuracy and mean log predictive performance than
MCMC for auditory vs. audiovisual setting. Since the mean difference does not
penalise the variability of the predictive probabilities, it favours the audacious pre-
dictions of MCMC. Even if the amount of false predictions is larger with MCMC
than with LAEP, the higher predictive probabilities for the majority of the correct
predictions overrides the effect of the false ones.
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7 Discussion

In this work, Bayesian linear binary classification models with sparsity promoting
Laplace priors were applied to analyse multi-voxel fMRI patterns related to nat-
ural audiovisual stimuli. The approach represents an opposite way of modelling
compared to conventional generative methods by trying to predict the experimen-
tal condition from a given activation pattern. The parameters of the model, i.e.,
the classifier weights, represent the contribution of different brain locations to the
result of the classification. Performing Bayesian inference on the parameters leads
to a multivariate posterior distribution, which is assumed to reveal relevant infor-
mation about the complex activation patterns related to different cognitive states.
To carry out the approximate inference, three different methods were used: auto-
matic relevance determination by expectation propagation (ARDEP), expectation
propagation on the original Laplace prior (LAEP) and a Markov chain simulation
method using the Gibbs sampler (MCMC). An appropriate scale hyperparameter
for the Laplace prior controlling the sparsity of the model was adjusted by cross-val-
idation separately for each method. The models obtained by different approximate
inference methods were compared with respect to both the double-cross-validat-
ed predictive performance and the neuroscientifical interpretability of the obtained
parameter distributions.

The analysed data included fMRI activation patterns measured from auditory
cortex and some surrounding regions in the superior parts of temporal lobes during
audiovisual and merely auditory perception of spoken and piano-played versions of
popular songs. In the first classification setting, the observations were labelled into
piano and speech classes in order to train a model that is able to predict whether a
given activation pattern is more probably related to musical or spoken stimuli. The
posterior distribution of the voxel weights was visualised by mapping the marginal
probabilities for the individual weights to be positive or negative back into the cor-
responding brain location. According to these brain maps, speech-related regions
seemed to be located generally in more inferior and lateral parts of the region of in-
terest than piano-related regions. This finding is consistent with the results obtained
for simpler stimuli by Tervaniemi et al. (2006). Furthermore, the results showed also
differences between the hemispheres, suggesting left dominance of speech-related and
right dominance of piano-related processing, which has been a common observation
in neuroscientifical studies, best explained by regions specialised for temporal and
spectral resolution (Zatorre and Schönwiesner 2011; DeWitt and Rauschecker 2012).
This perspective was supported by a separate analysis (Salmi et al. 2012), where
the fMRI signal was modelled as a sum of components related to the characteristics
of the stimuli. According to these results, the larger piano-related region in the
right hemisphere seemed to be connected with enhanced sensitivity to temporal reg-
ularity in the lateral parts of the right superior temporal gyrus (STG). The regions
most sensitive to spectral irregularity, in turn, seemed to match quite well with the
most posterior speech-related regions in middle temporal gyrus (MTG) and superior
temporal sulcus (STS).
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The second setting dealt only with the piano observations, dividing them into
auditory and audiovisual classes in order to train a model that is able to discriminate
between activation patterns related to perception of audiovisual and merely auditory
piano-playing. The most noticeable regions related to audiovisual input were located
in the medial parts of the right MTG and STS and in the left planum temporale
(PT). STS is a multifunctional region commonly regarded to be involved, e.g., in
biological motion processing and audiovisual integration (Hein and Knight 2008).
According to the results of piano vs. speech setting with the right dominance of
piano-related processing, it feels natural that the effect of audiovisual input is more
distinguishable in the right STS. The left PT has also been suggested to be involved
in multi-modal integration, and it has been found to be activated even during silent
lipreading (Calvert et al. 1997). Similar activation has been reported also for silent
piano-playing, suggesting that PT is related to learned sensory-motor associations
(Hasegawa et al. 2004; Baumann et al. 2005). In addition to right STS and left PT,
smaller AV-related regions were found also in the most posterior parts of the region
of interest up in the right STG and down in the left lateral MTG. The brain maps
were also compared to the results obtained by a separate multi-level general linear
model (GLM). The conventional GLM analysis distinguished the same regions as
mentioned in the superior parts of the region of interest, but did not show significant
contrast in the more inferior regions.

In conclusion, the effects exposed by the brain maps were promising, suggesting
that the proposed model is able to provide additional information about the brain
activation patterns related to natural audiovisual stimuli. However, the visualisa-
tion of the marginal probabilities regarding the sign of the individual weights is a
crude simplification of the multivariate posterior distribution. More sophisticated
analyses of the correlation structure could reveal even more profound information
about how different cognitive states are encoded in the brain. The predictive per-
formance was significantly above chance level for both of the classification settings,
importantly indicating the generalisability of the results. For speech vs. piano set-
ting, the classification accuracy was a few percentage units above and for auditory
vs. audiovisual setting a few units below 70 %, which is quite a good result for a
joint model, considering that there may be significant differences in the functional
and anatomical organisation of the brain between different subjects.

When comparing the models produced by the different approximate inference
methods, there were relatively small differences between the predictive performances.
For both classification settings, the classification accuracy for ARDEP was less than
two percentage units worse than for LAEP and MCMC, which performed quite
evenly. A similar behaviour was observed in the mean log predictive probabilities for
the correct classes. Also the individual predictive probabilities were highly correlated
between the different methods.

The LAEP and MCMC solutions turned out to be almost similar also with re-
spect to the marginal probabilities of the weight parameter signs. Regardless of the
Gaussian approximation used by LAEP, it is difficult to distinguish the brain maps
produced by these two methods from each other. Thus, at this level of examination,
the LAEP approximation seems to be accurate enough to replace the computation-
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ally expensive MCMC solution. Whereas LAEP and MCMC produced smooth solu-
tions with natural spatial correlation between neighbouring voxels, ARDEP pruned
most of the voxels out of the model, resulting instead in truly sparse solutions with
less than one hundred relevant voxels out of the total amount of D = 707. This
difference occurs, because ARDEP decomposes the Laplace prior into an exponen-
tially distributed scale mixture of individual Gaussian priors on each parameter and
regards these scales as relevance hyperparameters to be optimised by maximum a
posteriori (MAP) estimation based on approximate marginal likelihood. Due to this
optimisation, most of the voxel relevances reduce to zero, forcing also the corre-
sponding weights to be equal to zero.

Sparse solutions are favoured in neuroscience and multi-voxel pattern analysis,
because too large amount of adjustable parameters compared to the amount of avail-
able observations may reduce the predictive performance and the neuroscientifical
interpretability of the resulting model (Rasmussen et al. 2012). Using a tightly
scaled Laplace prior for the parameters may alleviate this problem by reducing the
effect of irrelevant input features. Even though the Laplace prior promotes sparsity,
a full Bayesian treatment always retains some uncertainty on the parameters, keep-
ing all features included in the model. The idea of ARDEP is to automatically select
only the relevant features to reduce dimensions and avoid the challenging integration
over all uncertainty.

If the objective of the model is only to classify, a truly sparse model with slightly
reduced predictive performance may still be desirable due to its frugal form. When
it comes to neuroscientifical interpretability, the question is more ambiguous. For
both of the classification settings, ARDEP was able to maintain all of the most
discriminative regions obtained by LAEP and MCMC. However, ARDEP lost the
more specific shape of the regions by representing them as one or more smaller spots.
On one hand, the sparse maps may help to distinguish the most relevant regions from
the complex pattern, but on the other hand, they may also hide relevant information
by oversimplifying the interpretation.

The major problem in ARDEP concerns the treatment of correlated features.
Even if one of two correlated voxels happens to explain the training data as well
as the two voxels together, pruning another one of them out of the model may still
reduce predictive performance for new data, and especially distort the interpretation
of the resulting voxel patterns. This effect represents another type of overfitting,
which may occur simultaneously with the conventional overfitting or underfitting.
This typically means that during the relevance hyperparameter optimisation, the
true predictive performance increases in the beginning, but at some point starts to
decrease towards the converged level.

Even if the effect of overfitting was minimised by adjusting the hyperprior, it did
not fully disappear. Thus, the algorithm produced better predictive performance,
if an earlier iteration was selected instead of the converged MAP estimate for the
relevance hyperparameters. To detect the optimal iteration, EP estimates for pre-
dictive performance were tested as alternative criterions. However, these estimates
were not able to properly simulate testing with new data, and thus they did not
follow the true predictive performance. One approach for the problem of correlated
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voxels would be to define additional spatial dependencies or other prior information
based on neuroscientifical knowledge. Another solution would be to use frameworks
that automatically couple correlated variables to be included in the model or exluded
from it together (Zou and Hastie 2005; Qi and Yan 2011).

The example settings used in this work comprised only voxels from a restricted
region of interest. However, it has been suggested that one region, e.g., superior tem-
poral sulcus, may support several different functions depending on the activation of
a wider network (Hein and Knight 2008). Thus, extending the region of interest
to comprise the whole brain may be rewarding for future projects. Increasing the
amount of voxels while keeping a constant amount of observations inevitably brings
further challenges regarding the generalisability and the interpretability of the re-
sulting models. To obtain the best possible interpretability, the mere predictive
performance may not generally be the optimal criterion for the selection of the scale
hyperparameter. As demonstrated by Rasmussen et al. (2012), a better solution
could possibly be to balance a trade-off between the predictive power and the spa-
tial reproducibility of the model.
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A Expectation Propagation for the Probit Model

with ARD Prior

Expectation propagation (EP) is a family of algorithms for approximate Bayesian
inference, developed by Thomas Minka (2001). The original introduction demon-
strates that the technique can be applied also for the probit model with a spherical
Gaussian prior. To be able to utilise EP as a part of an automatic relevance deter-
mination (ARD) framework, Qi et al. (2004) present a corresponding EP algorithm
with an ARD prior, but without detailed derivation. In this appendix, I derive Qi’s
presentation of the algorithm in detail and reform it in a computationally efficient
way, as it is used in the ARDEP approximate inference method (see 5.1 Automatic
Relevance Determination by Expectation Propagation).

Approximations

To begin with, recall equation 27 (p. 17) for the probit model likelihood p(t|w,X) =∏N
i=1Ψ(tiw

Txi) and equation 39 (p. 21) for the ARD prior p(w|v) =
∏D

j=1N (0, vj).

This EP algorithm approximates the likelihood terms gi = Ψ(tiw
Txi) by unnor-

malised Gaussians
g̃i(w) = ςie

− 1
2σi

(tiw
Txi−ρi)

2

. (A1)

Consequently, the approximation q̃(w) of the posterior distribution p(w|t,X,v)
becomes also Gaussian:
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where
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V = diag(v), (A3)

Φ = (t1x1, . . . , tNxN)
T, (A4)

ρ = (ρ1, . . . , ρN)
T, (A5)

σ = (σ1, . . . , σN)
T, (A6)

Λ = diag(σ), (A7)

Vw = (ΦTΛ−1Φ+V−1)−1, (A8)

mw = VwΦ
TΛ−1ρ, (A9)
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Parameter Iteration

As already described in subsection 5.1.3, EP finds the approximations g̃i for the
likelihood terms gi by iteratively updating the site parameters (ρi, σi, ςi) term by
term. After initialising the approximate posterior q̃ to converge with the ARD prior,
i.e., setting mw = 0, Vw = diag(v) and g̃i = 1 for all i = 1, . . . , N , an approximate
term g̃i is removed from the approximate posterior and replaced first by the accurate
term gi to obtain a target posterior approximation q̂. The new term approximation
g̃i

∗ is then chosen to minimise the Kullback-Leibler divergence between q̂ and the
new posterior approximation q̃∗. The same is done for the other terms, respectively,
using the updated posterior approximation q̃∗ as the initial q̃, and the procedure is
repeated until the site parameters (ρi, σi, ςi) for all i = 1, . . . , N converge.

Cavity Parameters

I begin the derivation of the parameter update rules by denoting the corresponding
variables for Φ, ρ, σ and Λ including only the observations i ∈ S by ΦS, ρS, σS

and ΛS, respectively. By extracting observations i ∈ S from equations A8 and A9
and using the Woodbury formula (Press et al. 2002, pp. 78–80), the parameters for
the leave-S-out posterior approximation q̃\S(w) ∝ q̃(w)/

∏
i∈S g̃i(w) are obtained

according to the following formulas:
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These formulas are used also later to estimate the leave-one-subject-out predictive
performance of the classifier. To obtain the leave-i-out posterior approximation
q̃\i(w) ∝ q̃(w)/g̃i(w) needed for expectation propagation, select S = {i}:

V\i
w = Vw +

(Vwtixi)(Vwtixi)
T

σi − tixT
i Vwtixi

, (A13)

m\i
w = mw + (V\i

w tixi)σ
−1
i (tix

T
i mw − ρi). (A14)

For further calculations, however, it is more convenient to deal with a linear trans-
formation fi(w) = tiw

Txi = wTtixi. Since the leave-i-out posterior approximation

q̃\i(w) = N (w;m
\i
w ,V

\i
w ) is a multivariate Gaussian over w, the corresponding mar-

ginal distribution over fi(w) is also Gaussian with parameters E[fi(w)] = a
\i
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Thus, at this point it is only necessary to store scalars a
\i
i and b

\i
i , which can be cal-

culated directly in terms of ai = mT
wtixi and bi = tix

T
i Vwtixi by rewriting equations

A13 and A14:
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Minimisation of KL-divergence

Because the posterior approximation q̃(w) is constrained to be Gaussian, minimising
the Kullback-Leibler divergence

DKL(q̂(w) ∥ q̃∗(w)) =

∫
w

q̂(w)
q̂(w)

q̃∗(w)
dw (A18)

between the target distribution

q̂(w) =
1

Zi

gi(w)q̃\i(w) =
1

Zi

Ψ(tiw
Txi)N (w;m\i

w ,V
\i
w ) (A19)

and the new posterior approximation

q̃∗(w) = N (w;m∗
w,V

∗
w) =

1

Zi

g̃i
∗(w)q̃\i(w) (A20)

is equivalent to matching the first two moments of the distributions by setting m∗
w =

Eq̂[w] and V∗
w = Covq̂[w] (Rasmussen and Williams 2006, pp. 203–204). To avoid

working out multivariate integrals over w, I use again the linear transformation
fi(w), ending up in

q̃∗(w) dw = N (w;m∗
w,V

∗
w) dw = N (fi(w); a∗i , b

∗
i ) dfi(w), (A21)
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where a∗i = (m∗
w)

Ttixi = (Eq̂[w])Ttixi and b∗i = tix
T
i V

∗
wtixi = tix

T
i (Covq̂[w])tixi.

Thus, to figure out the optimal new term approximation g̃i
∗(w), it is sufficient to

only derive expressions for a∗i , b
∗
i and Zi. The normalisation constant Zi is first ob-

tained from
∫
w
q̂(w) dw = 1 by using the same formula as for equation 30, derived

in the book by Rasmussen and Williams (2006, p. 74):

Zi =

∫
w

Ψ(tiw
Txi)N (w;m\i

w ,V
\i
w ) dw =

∫ ∞

−∞
Ψ(fi(w))N (fi(w); a

\i
i , b

\i
i ) dfi(w)

= Ψ

 a
\i
i√

1 + b
\i
i

 = Ψ(zi), (A22)

where

zi =
a
\i
i√

1 + b
\i
i

. (A23)

Scalars a∗i and b∗i are obtained, respectively, by using further derivations by Ras-
mussen and Williams (2006, p. 75):

a∗i = (Eq̂[w])Ttixi =

∫
w

1

Zi

Ψ(tiw
Txi)N (w;m\i

w ,V
\i
w )w

Ttixi dw

=

∫ ∞

−∞

1

Zi

Ψ(fi(w))N (fi(w); a
\i
i , b

\i
i )fi(w) dfi(w) = a

\i
i +

b
\i
i N (zi; 0, 1)

Ψ(zi)

√
1 + b

\i
i

= a
\i
i + αib

\i
i , (A24)

b∗i = tix
T
i (Covq̂[w])tixi = tix

T
i

(
Eq̂[wwT]− (Eq̂[w])(Eq̂[w])T

)
tixi

=

∫
w

1

Zi

Ψ(tiw
Txi)N (w;m\i

w ,V
\i
w )tix

T
i wwTtixi dw − tix

T
i (Eq̂[w])(Eq̂[w])Ttixi

=

∫ ∞

−∞

1

Zi

Ψ(fi(w))N (fi(w); a
\i
i , b

\i
i ) (fi(w))2 dfi(w)− (a∗i )

2

= b
\i
i −

(b
\i
i )

2N (zi; 0, 1)

(1 + b
\i
i )Ψ(zi)

(
zi +

N (zi; 0, 1)

Ψ(zi)

)

= b
\i
i −

(b
\i
i )

2N (zi; 0, 1)

(1 + b
\i
i )Ψ(zi)

 a
\i
i√

1 + b
\i
i

+
(1 + b

\i
i )N (zi; 0, 1)√

1 + b
\i
i Ψ(zi)

√
1 + b

\i
i


= b

\i
i −

(b
\i
i )

2

(1 + b
\i
i )

N (zi; 0, 1)

Ψ(zi)

√
1 + b

\i
i

a
\i
i +

b
\i
i N (zi; 0, 1)

Ψ(zi)

√
1 + b

\i
i

+
N (zi; 0, 1)

Ψ(zi)

√
1 + b

\i
i


= b

\i
i −

(b
\i
i )

2

(1 + b
\i
i )

αi (a
∗
i + αi) , (A25)

where

αi =
N (zi; 0, 1)

Ψ(zi)

√
1 + b

\i
i

. (A26)
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New Site Parameters

The new term approximation g̃i
∗(w) and expressions for the new site parameters

(ρ∗i , σ
∗
i , ς

∗
i ) are now obtained by using equations A20, A21 and A15:

g̃i
∗(w) =

Ziq̃
∗(w)

q̃\i(w)
=

Ziq̃
∗(w) dw

q̃\i(w) dw
=

ZiN (fi; a
∗
i , b

∗
i ) dfi(w)

N (fi; a
\i
i , b

\i
i ) dfi(w)

=
ZiN (fi; a

∗
i , b

∗
i )

N (fi; a
\i
i , b

\i
i )

=
Zi

1√
2πb∗i

e−
1
2
(b∗i )

−1(fi−a∗i )
2

1√
2πb

\i
i

e−
1
2
(b

\i
i )−1(fi−a

\i
i )2

= Zi

√
(b∗i )

−1

(b
\i
i )

−1
e
− 1

2

((
(b∗i )

−1−(b
\i
i )−1

)
f2
i −2

(
(b∗i )

−1a∗i−(b
\i
i )−1a

\i
i

)
fi+(b∗i )

−1(a∗i )
2−(b

\i
i )−1(a

\i
i )2

)

= Zi

√
(b∗i )

−1

(b
\i
i )

−1
e
− 1

2

(
(σ∗

i )
−1fi(w)2−2(σ∗

i )
−1ρ∗i fi(w)+(b∗i )

−1(a∗i )
2−(b

\i
i )−1(a

\i
i )2

)

= Zi

√
(b∗i )

−1

(b
\i
i )

−1
e
− 1

2

(
(b∗i )

−1(a∗i )
2−(b

\i
i )−1(a

\i
i )2−(σ∗

i )
−1(ρ∗i )

2
)
e−

1
2
(σ∗

i )
−1(fi(w)−ρ∗i )

2

= ς∗i e
− 1

2σ∗
i
(tiw

Txi−ρ∗i )
2

, (A27)

where

σ∗
i =

(
(b∗i )

−1 − (b
\i
i )

−1
)−1

=
b
\i
i b

∗
i

b
\i
i − b∗i

=

b
\i
i

(
b
\i
i −

(b
\i
i )2

(1+b
\i
i )
αi(a

∗
i + αi)

)
b
\i
i −

(
b
\i
i −

(b
\i
i )2

(1+b
\i
i )
αi(a∗i + αi)

)
=

1 + b
\i
i

αi(a∗i + αi)
− b

\i
i , (A28)

ρ∗i = σ∗
i

(
(b∗i )

−1a∗i − (b
\i
i )

−1a
\i
i

)
= σ∗

i

((
(b

\i
i )

−1 + (σ∗
i )

−1
)
(a

\i
i + αib

\i
i )− (b

\i
i )

−1a
\i
i

)
= a

\i
i + αib

\i
i + αiσ

∗
i = a∗i + αiσ

∗
i , (A29)

ς∗i = Zi

√
(b∗i )

−1

(b
\i
i )

−1
e
− 1

2

(
(b∗i )

−1(a∗i )
2−(b

\i
i )−1(a

\i
i )2−(σ∗

i )
−1(ρ∗i )

2
)

= Ψ(zi)

√√√√(b
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−1 + (σ∗
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−1

(b
\i
i )

−1
e
− 1

2

((
(b

\i
i )−1+(σ∗

i )
−1
)
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2−(b
\i
i )−1(a∗i−αib

\i
i )2−(σ∗

i )
−1(a∗i+αiσ

∗
i )

2
)

= Ψ(zi)

√
1 +

b
\i
i

σ∗
i

e
1
2

(
α2
i b

\i
i +α2

i σ
∗
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)
= Ψ(zi)

√
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b
\i
i

σ∗
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e
1
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(
α2
i b

\i
i +α2
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(
1+b

\i
i

αi(a
∗
i
+αi)

−b
\i
i
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= Ψ(zi)

√
1 +

b
\i
i

σ∗
i

e
1
2
αi

1+b
\i
i

a∗
i
+αi . (A30)
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New Posterior Parameters

Finally, to update parameters for the posterior approximation, the new term approx-
imation g̃i

∗(w) is put back together with the leave-i-out posterior approximation
q̃\i(w). An expression for the new variance V∗

w is obtained in a similar way as equa-
tion A13 by adding observation i back into equation A8 and using the Woodbury
formula (Press et al. 2002, pp. 78–80):

V∗
w =

(
V\i

w + tixi(σ
∗
i )

−1tix
T
i

)−1
= V\i

w −
(V

\i
w tixi)(V

\i
w tixi)

T

σ∗
i + tixT

i V
\i
w tixi

. (A31)

The new mean m∗
w can be directly solved from equation A24 by substituting a

\i
i =

(m∗
w)

Ttixi and b∗i = tix
T
i V

∗
wtixi:

m∗
w = m\i

w + αiV
\i
w tixi. (A32)

These can be computed efficiently by defining the following auxiliary vectors, con-
nected by rewriting equation A13:

ci = Vwtixi, (A33)

c
\i
i = V\i

w tixi = ci +
cibi

σi − bi
= ci

(
1 +

bi
σi − bi

)
. (A34)

The parameters V∗
w and m∗

w can now be written in the following forms:

V∗
w = Vw +

cic
T
i

σi − bi
− c

\i
i (c

\i
i )

T

σ∗
i + b

\i
i

= Vw +
cic

T
i

σi − bi
− cic

T
i

1+b
\i
i

αi(a∗i+αi)
− b

\i
i + b

\i
i

(
1 +

bi
σi − bi

)2

= Vw +

(
1

σi − bi
− αi(a

∗
i + αi)

1 + b
\i
i

(
1 +

bi
σi − bi

)2
)
cic

T
i , (A35)

m∗
w = mw + c

\i
i (σi)

−1(ai − ρi) + αic
\i
i = mw +

(
ai − ρi
σi

+ αi

)
c
\i
i . (A36)

Marginal Likelihood

After the algorithm has converged and found stable parameters for the approx-
imations of the likelihood and the posterior, an approximation for the marginal
likelihood can be computed as the normalisation constant Z̃P in equation A2:

p(t|X,v) =
p(t|w,X)p(w|v)
p(w|t,X,v)

= ZP

≈ Z̃P =

(
N∏
i=1

ςi

)
|V|−

1
2 e−

1
2
(ρTΛ−1ρ−mT

wV−1
w mw)|Vw|

1
2 . (A37)
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This can be computed efficiently by using the Cholesky decomposition (Press et
al. 2002, pp. 99–101) of V−1

w = ΦTΛ−1Φ + V−1 = L1L
T
1 and taking the natural

logarithm:

p(t|X,v) ≈

(
N∏
i=1

ςi

)(
D∏
j=1

vj

)− 1
2

|V−1
w |−

1
2 e

1
2
(mT

wV−1
w mw−

∑N
i=1

ρ2i
σi

)

=

(
N∏
i=1

ςi

)(
D∏
j=1

vj

)− 1
2

|L1L
T
1 |−

1
2 e

1
2

(
mT

w(L1LT
1 )mw−

∑N
i=1

ρ2i
σi

)

=

(
N∏
i=1

ςi

)(
D∏
j=1

vj

)− 1
2

|L1|−1e
1
2

(
(LT

1mw)T(LT
1mw)−

∑N
i=1

ρ2i
σi

)
, (A38)

ln p(t|X,v) ≈
N∑
i=1

ln ςi −
1

2

D∑
j=1

ln vj − ln |L1|+
1

2

(
(LT

1mw)
T(LT

1mw)−
N∑
i=1

ρ2i
σi

)
.

Estimates for Predictive Performance

In addition to the marginal likelihood, EP offers also an opportunity to estimate the
leave-one-out predictive performance without carrying out the actual cross-valida-
tion. The two measures introduced in section 4.2, predictive classification accuracy
(equation 31) and mean log predictive probability (equation 33), are now applied
for the training data itself by using the corresponding leave-i-out posterior approx-
imation for each observation i. The following estimates for leave-one-out CA and
leave-one-out MLPP require only the auxiliary variables zi, for each observation
i = 1, . . . , N :

C̃Aloo =
1

N

N∑
i=1

H

 ti(m
\i
w )Txi√

1 + xT
i V

\i
wxi

 =
1

N

N∑
i=1

H(zi), (A39)

˜MLPPloo =
1

N

N∑
i=1

lnΨ

 ti(m
\i
w )Txi√

1 + xT
i V

\i
wxi

 =
1

N

N∑
i=1

lnΨ(zi). (A40)

If the data includes several observations from each subject, it is more appro-
priate to replace C̃Aloo and ˜MLPPloo with the corresponding leave-one-subject-out
estimates. Denote Sk as the set of observations i that belong to subject k and use
equations A11 and A12 to obtain the leave-Sk-out posterior approximation param-
eters V

\Sk
w and m

\Sk
w for each subject k = 1, . . . , K. The computation is enhanced

by defining CSk
= ΦSk

Vw and by using again the Cholesky decomposition (Press
et al. 2002, pp. 99–101) of ΛSk

−ΦSk
VwΦ

T
Sk

= ΛSk
−CSk

ΦT
Sk

= L2L
T
2 :

V\Sk
w = Vw +VwΦ

T
Sk
(ΛSk

−ΦSk
VwΦ

T
Sk
)−1ΦSk

Vw

= Vw +CT
Sk
(L2L

T
2 )

−1CSk
= Vw + (L−1

2 CSk
)T(L−1

2 CSk
), (A41)

m\Sk
w = mw +V\Sk

w ΦT
Sk
Λ−1

Sk
(ΦSk

mw − ρSk
). (A42)
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The estimates for leave-one-subject-out CA (equation 51) and leave-one-subject-out
MLPP (equation 52) can be now computed:

C̃Aloso =
1

N

K∑
k=1

∑
i∈Sk

H

 ti(m
\Sk
w )Txi√

1 + xT
i V

\Sk
w xi

 =
1

N

K∑
k=1

∑
i∈Sk

H(z\Sk

i ), (A43)

˜MLPPloso =
1

N

K∑
k=1

∑
i∈Sk

lnΨ

 ti(m
\Sk
w )Txi√

1 + xT
i V

\Sk
w xi

 =
1

N

K∑
k=1

∑
i∈Sk

lnΨ(z
\Sk

i ), (A44)

where

z
\Sk

i =
ti(m

\Sk
w )Txi√

1 + xT
i V

\Sk
w xi

. (A45)
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B MAP Estimate for a Single Relevance Hyper-

parameter in ARDEP

The fast sequential hyperparameter optimisation scheme used in the ARDEP ap-
proximate inference method (see 5.1 Automatic Relevance Determination by Expec-
tation Propagation) searches for a MAP estimate for the relevance hyperparameter
vector v by maximising p(t|X,v)p(v|λ) with respect to one hyperparameter at a
time, using the approximate expression produced by the previous EP run. In this
appendix, I derive in detail the update rules for a single hyperparameter vj.

As described in subsection 5.1.4, ARDEP runs EP with sparsified input hyper-
parameter vector v̄ (or V̄ as a diagonal matrix form) and data matrix Φ̄ including
only features m ∈ F , where F = {m : vm > 0}. When deriving the optimal vj
below, however, I stick to dealing with all the D features, assuming that they are
all positive, but may still be infinitesimal with the same effect as being equal to
zero. This effect is easily seen by denoting the mth column of the data matrix Φ as
ϕm = (t1[x1]m, . . . , tN [xN ]m)

T and rewriting p(t|X,v)p(v|λ) with respect to

Ω = Λ+ΦVΦT = Λ+
D∑

m=1

ϕmvmϕ
T
m → Λ+

∑
m∈F

ϕmvmϕ
T
m = Λ+Φ̄V̄Φ̄T = Ω̄. (B1)

Using the Woodbury formula (Press et al. 2002, pp. 78–80) and equation 45, the
inverse of Ω becomes

Ω−1 = (Λ+ΦVΦT)
−1

= Λ−1 −Λ−1Φ(ΦTΛ−1Φ+V−1)
−1
ΦTΛ−1

= Λ−1 −Λ−1ΦVwΦ
TΛ−1, (B2)

and the approximate expression for p(t|X,v)p(v|λ) can be rewritten from equation
47:

p(t|X,v)p(v|λ) ≈

(
N∏
i=1
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)
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1
2 e−
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1
2 e−

1
2
ρTΩ−1ρ

D∏
j=1

e−
vj

2λ2 . (B3)

To separate the terms depending on vj, decompose Ω into

Ω = Λ+
∑
m̸=j

ϕmvmϕ
T
m + ϕjvjϕ

T
j = Ω\j + ϕjvjϕ

T
j , (B4)
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where
Ω\j = Λ+

∑
m̸=j

ϕmvmϕ
T
m. (B5)

The inverse and logarithm of Ω decompose, respectively, as follows:

Ω−1 = (Ω\j + ϕjvjϕ
T
j )

−1 = (Ω\j)−1 −
(Ω\j)−1ϕjϕ

T
j (Ω

\j)−1

v−1
j + ϕT

j (Ω
\j)−1ϕj

, (B6)

ln |Ω| = ln |Ω\j + ϕjvjϕ
T
j | = ln

(
|Ω\j|

(
1 +

ϕT
j (Ω

\j)−1ϕj

v−1
j

))
= ln |Ω\j|+ ln

(
1 + ϕT

j (Ω
\j)−1ϕjvj

)
. (B7)

Maximising p(t|X,v)p(v|λ) is equivalent to maximising its logarithm, which can
now be written in the following form:

L(v) =
N∑
i=1

ln ςi +
1

2
ln |Λ| −D ln (2λ2)− 1

2
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vj, (B8)

where

rj = ϕT
j (Ω

\j)−1ϕj, (B9)

hj = ϕT
j (Ω

\j)−1ρ. (B10)

To analyse L(v) with respect to a single hyperparameter vj, I calculate first the
corresponding gradient:

∂L(v)
∂vj

= −rj
2

1

(1 + rjvj)
+

h2
j

2

(1 + rjvj)− vjrj
(1 + rjvj)2

− 1

2λ2

=
−λ2rj − λ2r2jvj + λ2h2

j − 1− 2rjvj − r2jv
2
j

2λ2(1 + rjvj)2

=
(−r2j )v2j + (−λ2r2j − 2rj)vj + (−λ2rj + λ2h2

j − 1)

2λ2(1 + rjvj)2
. (B11)



68

Since the nominator of the above expression is a parabola opening downward and
the denominator always positive, the gradient ∂L(v)

∂vj
is positive between its roots and

negative before and after them. To find the roots, the gradient is set to be equal to
zero:

∂L(v)
∂vj

= 0⇐⇒

vj =
−(−λ2r2j − 2rj)±

√
(−λ2r2j − 2rj)2 − 4(−r2j )(−λ2rj + λ2h2

j − 1)

2(−r2j )

=
−λ2r2j − 2rj ±

√
λ4r4j + 4λ2r3j + 4r2j − 4λ2r3j + 4λ2r2jh

2
j − 4r2j

2r2j

= −λ2

2
− 1

rj
±

√
λ4

4
+

λ2h2
j

r2j
. (B12)

BecauseΩ\j is a symmetric and positive-definite matrix, rj = ϕT
j (Ω

\j)−1ϕj is always

positive. Thus, −λ2

2
− 1

rj
−
√

λ4

4
+

λ2h2
j

r2j
is always negative. Since vj can have only

positive values, there are now two possible alternatives for the global maximum of
L(v), depending on the sign of

v̂j = −
λ2

2
− 1

rj
+

√
λ4

4
+

λ2h2
j

r2j
, (B13)

which is determined by the following inequality:

v̂j = −
λ2

2
− 1

rj
+

√
λ4

4
+

λ2h2
j

r2j
> 0⇐⇒ λ4

4
+

λ2h2
j

r2j
>

λ4

4
+

λ2

rj
+

1

r2j
⇐⇒

h2
j − rj −

1

λ2
> 0. (B14)

If h2
j − rj − 1

λ2 > 0, L(v) has its maximum at vj = v̂j = −λ2

2
− 1

rj
+

√
λ4

4
+

λ2h2
j

r2j
. If

instead h2
j−rj− 1

λ2 ≤ 0, L(v) increases monotonically as vj decreases and approaches
its maximum at the limit vj → 0.

In practice, rj and hj can be computed efficiently by using the current value of
vj and variables Rj = ϕT

j Ω
−1ϕj → ϕT

j Ω̄
−1ϕj and Hj = ϕT

j Ω
−1ρ→ ϕT

j Ω̄
−1ρ. Using

equations B2 and 46, these can be written directly with respect to the sparsified m̄w

and V̄w, produced by an EP run with the sparsified input hyperparameter vector v̄
and data matrix Φ̄:

Rj → ϕT
j Ω̄

−1ϕj = ϕT
j Λ

−1ϕj − ϕT
j Λ

−1Φ̄V̄wΦ̄
TΛ−1ϕj, (B15)

Hj → ϕT
j Ω̄

−1ρ = ϕT
j Λ

−1ρ− ϕT
j Λ

−1Φ̄V̄wΦ̄
TΛ−1ρ

= ϕT
j Λ

−1ρ− ϕT
j Λ

−1Φ̄m̄w. (B16)
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By using the decomposition in equation B6, we get

Rj = ϕT
j Ω

−1ϕj = ϕT
j (Ω

\j)−1ϕj −
(
ϕT

j (Ω
\j)−1ϕj

)2
v−1
j + ϕT

j (Ω
\j)−1ϕj

= rj −
vjr

2
j

1 + vjrj
⇐⇒

Rj + vjRjrj = rj + vjr
2
j − vjr

2
j ⇐⇒ rj =

Rj

1− vjRj

(B17)

and

Hj = ϕT
j Ω

−1ρ = ϕT
j (Ω

\j)−1ρ−
ϕT

j (Ω
\j)−1ϕjϕ

T
j (Ω

\j)−1ρ

v−1
j + ϕT

j (Ω
\j)−1ϕj

= hj −
vjrjhj

1 + vjrj

= hj −
vj

Rj

1−vjRj
hj

1 + vj
Rj

1−vjRj

= hj − vjRjhj ⇐⇒ hj =
Hj

1− vjRj

. (B18)

If the current vj has been set equal to zero and removed from the model, it is
noticed both from the above expressions and directly from equation B4, that rj and
hj reduce to Rj and Hj.


