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Measuring gene expression levels in the cell is an important tool in biomedical
sciences. It can be used in new drug development, disease diagnostics and many
other areas. Currently, two most popular platforms for measuring gene expression
are microarrays and RNA-sequencing (RNA-seq). Making the gene expression
results more comparable between these two platforms is an important topic which
has not yet been investigated enough.

In this thesis, we present a novel method, called PREBS, that addresses this
issue. Our method adjusts RNA-seq data computational processing in a way
that makes the resulting gene expression measures more similar to microarray-
based gene expression measures. We compare our method against two other
RNA-seq processing methods, RPKM and MMSEQ), and evaluate each method’s
agreement with microarrays by calculating correlations between the platforms.
We show that our method reaches the highest level of agreement among all of the
methods in absolute expression scale and has a similar level of agreement as the
other methods in differential expression scale.

Additionally, this thesis provides some background on gene expression, its mea-
surement and computational analysis of gene expression data. Moreover, it gives
a brief literature review on the past microarray-RNA-seq comparisons.
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CDF
DCPM
cDNA
DNA
FDR
FPKM

HIV
LIMMA
Log2FC
miRNA
MM probe
MPSS
mRNA
PCR

PM probe
PREBS
qPCR (qRT-PCR)
RMA
RNA
RNA-seq
RPKM
rRNA
SAGE
siRNA
SNP
TAR
tRNA

Chip Description File

Average depth of coverage per million reads
Complementary DNA

Deoxyribonucleic acid

False Discovery Rate

Fragments Per Kilobase of exon per Million fragments
mapped

Human Immunodeficiency Virus

Linear Models for Microarray Data

Log, Fold Change

MicroRNA

Mismatch probe

Massively Parallel Signature Sequencing
Messenger RNA

Polymerase chain reaction

Perfect match probe

Probe Region Expression Based on Sequencing
Quantitative real time PCR

Robust Multichip Average

Ribonucleic acid

RNA-sequencing

Reads Per Kilobase of exon per Million mapped reads
Ribosomal RNA

Serial Analysis of Gene Expression

Small interfering RNA

Single-nucleotide polymorphism
Transcriptionally Active Region

Transfer RNA
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Chapter 1

Introduction

1.1 Problem setting

Gene expression is a fundamental process in the cell during which the DNA
is transcribed to the corresponding RNA and the RNA is translated to the
corresponding protein. Gene expression levels can differ between different
cells, tissues or points in time. Measuring gene expression has proven to be a
very important tool in biomedical sciences, because it can be used for disease
diagnostics, search for new drug targets and for analysis of diseases, such as
cancer, Alzheimer’s disease, schizophrenia and HIV infection [1]. Therefore,
gene expression measurement has been of great interest to scientists and
many gene expression measurement methods have been developed.

Nowadays, two most popular gene expression measurement platforms are
RNA-seq (RNA-sequencing) and microarrays. RNA-seq is a newer and more
accurate technology [2, 3|, but microarrays are still popular because they are
cheaper and have a well established infrastructure [4]. On the other hand, it
is predicted that in the future RNA-seq might fully replace microarrays [5].
This is also supported by Table 1.1 which shows that the number of RNA-seq
experiments is rapidly increasing while the number of microarray experiments
is slowly decreasing. That shows that the scientists are increasingly turning
towards the newer gene expression measurement technology. However, even
if the RNA-seq technology fully replaces microarrays we will still want to
use the existing microarray data as a reference. There is a huge number
of microarray experiments available in gene expression databases, such as
ArrayExpress [6] or GEO [7], and therefore it is important to be able to
compare the newly conducted RNA-seq experiments with existing microarray
data in a meaningful way.

In the past, there have been many experimental RNA-seq—microarray
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2010 | 2011 | 2012
Microarray | 5796 | 5196 | 4724
RNA-seq 147 256 064

Table 1.1: Number of microarray and RNA-seq experiments in ArrayEx-
press [6] database in the last three years. Data for the year 2012 is extrapo-
lated based on the date when the query was made (June 25, 2012).

comparisons (they will be reviewed in Chapter 3). However, none of these
comparisons tried to make RNA-seq and microarray data more similar, or, in
other words, more comparable, by adjusting the computational processing of
the data. In this thesis, we describe a method called PREBS that processes
RNA-seq data in a way that the results become more similar to the microar-
ray gene expression results. We evaluate our method by calculating gene
expression correlations with microarrays and compare it against two other
RNA-seq processing methods—RPKM [8] and MMSEQ [9]. We show that
our method reaches the highest level of agreement with microarrays in abso-
lute expression scale and a similar level of agreement as the other methods
in differential expression scale.

1.2 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we provide the background
on gene expression, its measurement tools and analysis of the data. Two
gene expression measurement tools, microarray and RNA-seq, are described
in more detail.

In Chapter 3, we review past studies which were comparing or trying to
combine/visualize inter-platform gene expression data. This review helps to
get an understanding of the related work that has already been done.

In Chapter 4, we introduce our method and explain how it works. Addi-
tionally, we list all of the tools that were used for the implementation.

In Chapter 5, we compare our method against two other RNA-seq pro-
cessing methods: RPKM and MMSEQ. We demonstrate that our method
agrees better with microarrays than the other two methods.

Finally, Chapter 6 concludes our work. Section 6.1 summarizes the work
and Section 6.2 discusses the results and gives suggestions about possible
future work.



Chapter 2

Gene expression and its
measurement

In this chapter, we will review the necessary background that will be re-
quired to understand the rest of the thesis. In Section 2.1, we will explain
biological background of gene expression and, in Section 2.2, we will give a
brief overview of its measurement methods and data analysis. Additionally,
in Sections 2.3 and 2.4, we will look at the two currently most popular gene
expression measurement tools, microarrays and RNA-seq, in more detail.

2.1 Biology of gene expression

All of the genetic information of the cell is encoded into DNA, a long double-
stranded helical molecule composed of nucleotides. These nucleotides differ
among themselves because of their side chains which are also called bases. In
DNA there are four different bases: adenine (A), guanine (G), cytosine (C)
and thymine (T). The sequence of these four bases determines the genetic
information encoded into DNA.

In order to make use of the genetic information, DNA first has to be
transcribed to RNA. RNA chemical structure is very similar to DNA, except
that instead of thymine (T) base it has uracil (U) base. RNA can sometimes
be the final gene product, as it is in case of tRNA, rRNA, miRNA or siRNA.
However, most common type of RNA is mRNA (messenger RNA) that is
translated to proteins, molecules which are responsible for the most of the
functions of the cell. The whole process of transcribing the DNA to the RNA
and translating the RNA to the protein is called gene expression [10] (see
Figure 2.1).

A single DNA strand can be viewed as a long string of letters A, C, G,
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Transcription Translation

DNA > RNA > Protein

Figure 2.1: Basic scheme of gene expression. The DNA is first transcribed
to RNA and then the RNA is translated into a protein

T, each of which stand for the base of a particular nucleotide. Not all of the
DNA molecule is transcribed to RNA in a single transcription process, but
only a small part of it. The substring of DNA which codes for a single RNA
molecule is called a gene. During the process of transcription an enzyme
called RNA polymerase reads the gene portion of the DNA and transcribes
it to an RNA with complementary sequence. That is, adenine in the DNA is
replaced with uracil in an RNA, cytosine is replaced with guanine, guanine
is replaced with cytosine and thymine is replaced with adenine.

Before the mRNA can be translated into the protein, it undergoes post-
transcriptional modifications. During this phase, 5’ cap and 3’ poly-A tail
are added to the mRNA which protect the mRNA from degradation. More-
over, during splicing process the non-coding parts of mRNA, introns, are
removed and coding parts, ezons, are joined together. The exons can be of-
ten joined in a number of alternative ways, giving rise to different versions of
the same gene—gene isoforms. RNA splicing and other post-transcriptional
modifications occur only in eukaryotes, but not prokaryotes.

Next, during the translation phase the mRNA is translated into a protein.
A protein is also a long macro-molecule like DNA and RNA, except that
its subunits are not nucleotides, but amino acids. In most of organisms
proteins are composed of 20 types of amino acids. Some organisms might,
however, include two additional types of amino acids: selenocysteine and
pyrrolysine [11].

Every three nucleotides in the mRNA code for one amino acid in a protein.
During the translation phase, every three nucleotides in the mRNA are read
and corresponding amino acid molecule is added to the protein chain which
is being synthesized. After the whole protein is synthesized, it undergoes
some more post-processing steps and folds into the correct shape. Then, it is
transported to the appropriate place in the cell and can perform its function.

Gene expression does not happen for all of the genes at the same time.
If a gene is expressed at a particular point of time it is said to be active,
otherwise, it is said to be passive. The rate of gene expression can also be
different for different genes. If a lot of gene product is produced for a gene,
the gene is said to have a high expression level, if only a little product is
produced, the gene is said to have a low expression level.
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2.2 Gene expression measurement and data
analysis

In this section, we will review the available tools for gene expression mea-
surement. Moreover, we will provide an outline of the basic steps in gene
expression analysis.

2.2.1 Gene expression measurement methods

Gene expression is defined as the conversion of genetic information into
the actual protein [10]. Therefore, intuitively, gene expression level can be
thought of as the amount of the corresponding protein present in the cell.
There are some tools, such as Western Blot [12], which measure protein ex-
pression levels in the cell. However, mRNA quantification is technically an
easier task and it can be used as an approximation of the final gene product—
protein [13]. So for the purposes of this thesis we will define gene expression
level as the mRNA level and use these two terms interchangeably as it is also
done by other scientists [13].

There is a variety of technologies available for quantifying mRNA lev-
els in a cell. These technologies can be divided into two broad categories:
hybridization-based and sequencing-based. The difference between the two
is that hybridization-based technologies (Northern blot [14], ¢PCR [15], mi-
croarrays [16]) use hybridization probes—short sequences which are comple-
mentary to some part of expressed gene sequence. Designing these probes
requires prior knowledge about the transcriptome which is being analyzed.
On the other hand, sequencing-based technologies (RNA-seq [17], SAGE [18],
MPSS [19]) do not use probes for gene expression analysis. There, the prin-
ciple is to sequence the whole transcriptome and to determine the amount
of reads which originate from each of the gene regions and, in this way, to
evaluate gene expression levels.

Gene expression measurement technologies can also be divided into low-
throughput and high-throughput categories. Low-throughput technologies
can be used to analyze only from one up to several genes in the same exper-
iment. On the other hand, high-throughput technologies allow us to analyze
whole transcriptome—thousands of genes in the same experiment. All of the
mentioned sequencing-based technologies and one hybridization-based tech-
nology (microarrays) fall into the high-throughput category, while the rest
of the hybridization-based technologies (Northern blot, qPCR) fall into the
low-throughput category.

High-throughput technologies are particularly interesting because of the
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huge amount of genes that they can interrogate in one experiment. Mi-
croarrays used to be a dominant high-throughput gene expression measure-
ment platform, but nowadays RNA-seq is taking over its place [5]. Other
sequencing-based high-throughput technologies (SAGE, MPSS) can be con-
sidered as older variants of RNA-seq and are rarely used any more.

2.2.2 Analysis of gene expression measurement data

Gene expression data are often visualized as a gene expression matriz, a
table where rows represent different genes, columns represent different sample
conditions and each value represents the gene expression of a specific gene
under a specific condition. Sample conditions can correspond to a number
of different things, for example, different tissues, different disease states or
samples taken at different points of time. Genes in the table can represent
either all or some subset of the genes from the organism being analyzed [13,
20].

Gene expression measures inside the matrix can be either in an absolute
or a relative scale. In case of an absolute scale, the values in gene expression
matrix represent an absolute gene expression measurement in some abstract
units, while, in case of a relative scale, the values are gene expression ratios
between two conditions. The ratios of gene expression are often more inter-
esting to the scientists, because they show how much expression values differ
between two conditions of an experiment. Genes which have statistically sig-
nificant changes in expression are called differentially expressed genes [20)].

A natural way to analyze gene expression matrix is either to compare
rows or columns of the table. However, for a comparison we need to decide
what similarity measure to use. Most commonly used similarity measures
are Euclidean distance, Pearson correlation, Spearman correlation or mutual
information. It is difficult to tell which similarity measure is the best to use
and it can often depend on the type of experiment being conducted [13].

After choosing the similarity measure, there are two major ways to an-
alyze the data: supervised learning and unsupervised learning. In case of
supervised learning, the data rows or columns have to be associated with
some known features. It could be, for example, gene functions for rows or
disease states for columns. Then some sort of a classifier is built which is
trained to predict these features. Some of the popular methods used in gene
expression analysis for classification are linear discriminants, decision trees
and Support Vector Machines. After building a classifier, it can be used to
predict features for new data. Moreover, if a classifier is built with some rel-
atively simple classification rules, it can also be used to infer the underlying
biological mechanisms of the system [13].
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Affymetrix | Agilent | Illumina | Nimblegen | Other
Count | 13832 3091 1715 800 7456

Table 2.1: Number of experiments in ArrayExpress database for each mi-
croarray platform as of June 20, 2012

In unsupervised learning the aim is to group objects (genes or samples)
with similar properties. Some of the popular clustering methods that are
used are K-means, Hierarchical clustering and Self-organizing maps. These
methods can be, for example, used to cluster the genes with similar expres-
sion patterns in order to identify common transcription-control mechanisms.
Clustering genes can also help to infer function for an unknown gene, because
genes with similar expression patterns tend to share a similar function [13].
Furthermore, clustering of the samples, can, for example, be used to infer
new sub-classes of tumors as it was done by Alizadeh et al. [21].

2.3 Microarrays

Microarrays have evolved from Southern Blotting, a technique which is used
to identify a specific DNA sequence in DNA samples [22]. The first studies
that involved microarrays were published in 1980s, but the real microarrays
take-off began with a publication by Fodor et al. [23] from Affymax, a com-
pany which later changed its name to Affymetrix and became the market
leader for microarray technology. Fodor et al. described protein and nu-
cleotide microarrays, their uses and design principles. Since then microarray
technology became more and more popular and, in the beginning of 21st
century, one could hardly find a modern biology or genetics journal which
does not mention microarrays [16].

Nowadays, besides Affymetrix, the other popular platforms include Ag-
ilent, Illumina and Nimblegen. In order to see what are the approximate
market shares of the commercial microarray platforms in academic use, we
queried each platform name on ArrayExpress [6] database. The results are
displayed in Table 2.1. As the results show, Affymetrix is by far the most
popular platform and it takes up more than 50% of the whole market. There-
fore, in this thesis most emphasis will be put on the Affymetrix microarray
technology description and data analysis.

In this section we will shortly describe the basic principles of microarrays
and review different types of technology. In addition, we will give a brief
introduction to computational analysis of microarray data.
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2.3.1 Technical principles of microarray technology

Typically, a microarray consists of a large number microscopic DNA spots
attached to a solid surface. Each of the spots contains many short DNA
sequences called probes. All of the probes inside one spot have the same
sequence. Also, all of the probe sequences are complementary to a part of
the gene from an organism which is being analyzed. Different spots on the
microarray correspond to different genes, so the more spots a microarray has,
the more genes can be interrogated at the same time.

In order to conduct a microarray experiment, one has to extract RNA
from the cell and reverse transcribe it to cDNA (complementary DNA) (see
Figure 2.2). In this step, the reverse transcriptase enzyme synthesizes a DNA
molecule which has complementary sequence to the given RNA molecule.
The reason of doing this is that an RNA molecule is less stable than a DNA
molecule, so the molecule conversion helps to improve the stability without
losing the genetic information.

In the next step, the cDNA sample has to be fluorescently labeled (other
labeling methods are also possible). The labeled sample is poured on top of
the microarray and the cDNA molecules hybridize onto the microarray probes
based on their complementarity. The spots where cDNA molecules have
attached can be identified because of the fluorescent dye. The stronger the
signal (fluorescence intensity) is for a spot, the higher is the gene expression
level for the gene to which that spot corresponds.

The above described principles hold only for what is called gene expres-
sion microarrays [1]. The purpose of these microarrays is to measure gene
expression (mRNA) levels inside a cell. There are many other kinds of mi-
croarrays that can be used for different purposes. For example, antibody
microarrays [24] can be used to measure protein expression levels, SNP mi-
croarrays [25] can be used to detect Single Nucleotide Polymorphisms, tiling
microarrays [26] can be used for ChIP-on-chip [27] studies.

Tiling microarrays can also be used for gene expression profiling like gene
expression microarrays, but there are some important differences between
the technologies. The main difference is that the probe sequences for tiling
arrays are not selected from the genes being investigated, but instead they
are taken at regular intervals from the whole genome. In this way, there is
a possibility for new genes to be identified in the genome places which were
previously thought to be non-transcribed. However, tiling microarrays are
more expensive and are not as commonly used for gene expression profiling as
gene expression microarrays. In this thesis, we will concentrate on analyzing
only gene expression microarrays.

Gene expression microarrays can be further divided into two categories:
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RNA sample cDNA sample

VAVAVAVAVAVA

Reverse transcription

Scanning %é; 74

Figure 2.2: Microarray workflow scheme. First, RNA sample is reverse tran-
scribed to ¢cDNA. Then ¢cDNA sample is poured on top of the microarray
to allow probes with complementary sequence to hybridize. Finally, the
microarray is analyzed by a special machine to determine fluorescent dye
intensities (scanning)

spotted microarrays and oligonucleotide microarrays [1]. The main difference
between the two is that in spotted microarrays the probes usually consist of
long ¢cDNA molecules (several hundreds of base pairs) which are prepared
beforehand and are printed on the microarray by a robotic arm. In oligonu-
cleotide microarrays, the probes are short oligonucleotides (typically, 25-100
bp long) which are synthesized directly on the microarray plate.

Another important difference lies in the target preparation. In oligonu-
cleotide microarrays, the target is labeled by one fluorescent dye and, in order
to identify the differentially expressed genes, the signal intensity is compared
between two microarrays. However, the probe preparation procedure for
spotted microarrays is not as accurate as for oligonucleotide microarrays and
comparison between two separate microarrays would not be possible. There-
fore, for spotted microarrays two target samples are labeled by two different
fluorescent dyes (typically Cy3 and Cy5) and the differential gene expression
is identified by the ratio of two different signals on a single microarray [1].

Spotted microarrays are often termed in-house microarrays, because they
are prepared in individual labs [28]. For this type of microarrays, the re-
searchers conducting an experiment can decide which genes they want to
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interrogate and design a microarray suiting their needs. On the other hand,
oligonucleotide microarrays are usually called commercial microarrays, be-
cause they are mass-produced by industrial companies. These microarrays
usually aim to interrogate all known genes in the target organism transcrip-
tome. Spotted microarrays were more popular in the past, because they were
cheaper and more customizable. Nowadays, however, spotted microarrays
are rarely used any more, because oligonucleotide microarrays have become
more affordable and provide more accurate results [16]. Also, the design of
oligonucleotide microarrays became customizable via availability of custom
oligonucleotide arrays [29]. In this thesis we will analyze only oligonucleotide
microarrays.

2.3.2 Computational analysis of microarray data

Computational analysis of microarray data largely depends on the type of
microarray platform being used. Since, as we mentioned before, Affymetrix
is, at the moment, the dominant microarray platform, we will discuss the
data analysis only for this platform.

Affymetrix microarrays consist of many 25 nucleotides long probes at-
tached to a solid surface [30]. There are of two types of probes: perfect match
(PM) and mismatch (MM). Perfect match probes are perfectly complemen-
tary to some part of a target gene which they are interrogating. Mismatch
probes, on the other hand, have the same sequence as perfect match probes,
but the middle nucleotide (13th) is changed. Some microarray methods use
mismatch probes to account for non-specific probe binding while other meth-
ods simply ignore the intensity values of the mismatch probe hybridization.

The probes are grouped into probe sets by the manufacturer. Typically,
a probe set contains 15-20 PM /MM probe pairs and it interrogates one tar-
get gene. The information about the probe sets is available in so called
Chip Description Files (CDFs). However, transcriptome annotations change
over time and some of the probes might appear to be mapping not to one,
but to several genes or do not correspond to any genes at all. The man-
ufacturer’s CDFs are rarely updated, therefore, many people prefer to use
custom CDFs [31] which account for the latest changes in the transcriptome
annotation. In these files, probes that do not map uniquely to a single gene
are filtered out and the rest of them are regrouped to new probe sets each of
which corresponds to a single gene in the latest transcriptome annotation.

In general, probes belonging to one probe set can give different hybridiza-
tion intensity values in an experiment. Furthermore, the microarray exper-
iments are often done with replicates—the same experiment is done several
times to reduce variability. The first step in microarray computational anal-



Chapter 2. Gene expression and its measurement 11

ysis is to summarize probe intensities from all probe sets and all microarray
replicates to get a single gene expression measure for each gene. Many algo-
rithms have been developed for this procedure, most popular of them being
RMA [30] and MAS5 [32]. RMA is open source software, while MAS5 is
Affymetrix proprietary method.

Both of these algorithms use some background-correction, normalization
and summarization procedures. During the background-correction phase the
probe intensity values are adjusted to account for technical noise, then, dur-
ing normalization phase, probe intensity values are normalized to be compa-
rable across different microarrays and, finally, during summarization phase,
probe intensities are converted to gene expression measures.

The main difference between RMA and MAS5 is that RMA uses only
values from PM probes while MAS5 uses values from both PM and MM
probes. In MAS5 algorithm, MM values are subtracted from PM values to
account for non-specific binding while RMA algorithm simply ignores MM
values. Another important difference is that MAS5 normalizes every mi-
croarray independently while RMA normalizes all microarrays at the same
time. Nowadays, RMA algorithm is more often used than MASb5, therefore,
for the rest of the thesis we will restrict ourselves only on analyzing results
with RMA.

Further analysis of microarray data often include identification of differ-
entially expressed genes. There are many tools for this task, but one of the
most popular of such tools is LIMMA [33]. Among other results, LIMMA
outputs logs fold change values. These values show how much gene expres-
sion has changed from one condition to another. They are determined, by
calculating the ratio of absolute gene expression measures in the two samples
and then taking base 2 logarithm of the ratio. In addition to that, LIMMA
uses moderated t-test to calculate p-values. A p-value is a probability, as-
suming that the null hypothesis is true, to obtain a statistic value at least as
inconsistent with the null hypothesis as the one observed [34]. In our case,
the null hypothesis says that the gene is not differentially expressed, there-
fore, p-value measures statistical significance of differentially expressed genes.
LIMMA also outputs adjusted p-values which are more commonly known as
False Discovery Rate (FDR) values. False Discovery Rate is a technique
which is used to account for multiple testing problem and it denotes the
percentage of false positives among the significant hypotheses [35].
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2.4 RNA-sequencing

For over a decade, microarrays were the dominant platform in the high-
throughput analysis of gene expression [36]. Sequencing-based methods,
such as SAGE or MPSS, used to be the major alternative methods. One
of the advantages of these methods is that they provided precise digital gene
expression measures instead of analog expression measures provided by mi-
croarrays!. These methods, however, were based on a conventional Sanger
sequencing, and they were not as efficient as later developed methods based
on next-generation sequencing [17].

There are several different technologies which correspond to the next-
generation sequencing, but all of them have one thing in common—
sequencing is done via massive parallelization. At the moment, three most
popular next-generation sequencing technologies are Roche/454, Tllumina
and AB SOLiD [36]. Their ability to sequence transcriptome cost-effectively
and in a high depth gave birth to a new technology for gene expression
measurement—RNA-sequencing (RNA-seq) [17].

In this section, we review the basic principles of the next-generation se-
quencing technologies and the steps needed to take in order to conduct an
RNA-seq experiment. Also, we give a brief overview of the computational
methods involved in RNA-seq data analysis.

2.4.1 Technical principles of RNA-seq technology

The first key step in the next-generation sequencing is sample preparation.
The procedure varies from technology to technology, but the basic princi-
ples remain the same: coding RNA (mRNA) has to be separated from the
rest of the sample, reverse transcribed, fragmented and amplified [17]. For
separation purposes, poly-A tail of the mRNA is often targeted by poly-T
oligonucleotides attached to a given substrate. Next, the mRNA is reverse-
transcribed to cDNA and fragmented into sizes required by the specific pro-
tocol. The amplification can be carried out in a few different ways: 454 and
SOLiD use emulsion PCR [39] while llumina uses bridge amplification [40].
The end result for any sample preparation is the same: a number of short
single-stranded cDNA molecules separated into clusters or microscopic wells
on a plate and ready to be sequenced [41].

The next-generation sequencing technology which was developed the first

1Some of the studies claim that another advantage of SAGE is the ability to detect
novel transcripts [37, 38]. However, one of the studies [8] explicitly state that SAGE is
not able to detect novel transcripts which is a little bit confusing.
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is Roche/454 [41, 42]. This sequencing method is based on sequencing by
synthesis methodology. Sequencing is done by synthesizing a complemen-
tary DNA strand for each of the oligonucleotides on a plate. During the
sequencing process, all four types of nucleotides (A, G, C, T) are added to
the sequencing reaction sequentially, one at a time. If some particular DNA
strand can be extended by the added nucleotide based on the complemen-
tarity principle, a DNA polymerase adds that nucleotide to the DNA strand
being synthesized. This causes a special reaction where an inorganic phos-
phate ion is released and a flash of light is observed. In case of repetitive
sequence, several nucleotides are added during one cycle and the intensity
of the light being released becomes proportionally stronger. Light intensi-
ties and positions on a plate are captured by a monitor. Unincorporated
nucleotides are washed away and the sequencing reaction becomes ready for
the next cycle. This reaction is repeated many times, until all of the oligonu-
cleotide sequences are determined.

[Nlumina uses a similar approach as 454 which is also based on sequencing
by synthesis [41, 40]. The main difference is that following Illumina tech-
nology, all four types of nucleotides are added at the same time. Each of
them, however, are labeled by a different fluorescent dye and have a termi-
nating group which prevents the chain extension by more than one nucleotide.
After each chain on a plate is extended by one nucleotide, unincorporated
nucleotides are removed and the types of incorporated nucleotides are deter-
mined by color imaging. Next, fluorescent dyes and terminating groups are
removed and the sequencing reaction is ready for the next cycle. As it was in
case of 454, the cycles are repeated until all of the sequences are determined.

SOLiD system is based on a different methodology which is called se-
quencing by ligation [41, 43]. First, a universal primer and 8-base long fluo-
rescently labeled oligonucleotide probes are added to the reaction. Of these
8 bases only the first two are meaningful, the rest of them are degenerate,
meaning that they can pair with any other base. The oligonucleotide probe
binds to the DNA strand being sequenced and a DNA ligase enzyme links
the oligonucleotide to the growing strand. The unlinked oligonucleotides are
washed away and the fluorescent label is read by a scanner. Next, three
trailing degenerate nucleotides are cleaved off and new oligonucleotides are
added. This process continues until the new strand is fully synthesized. After
this, the whole new strand is denaturated and the whole process is repeated
with the only difference that a new primer is one nucleotide shorter than the
previous one. As a result, new bases are read during the process. The whole
reaction is repeated five times, to ensure that each nucleotide on the strand is
interrogated twice. In this system, only 4 fluorescent colors are used to label
16 types of oligonucleotide probes, but this is sufficient, because the sequence
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can be later inferred based on a set of logical rules, known as 4-color coding
scheme [41].

After the sequencing is completed, the data has to be computationally
analyzed. The exact type of analysis depends on what kind of experiment we
want to conduct. In addition to gene expression profiling, RNA-seq data can
be used for non-coding RNA discovery and detection, transcript rearrange-
ment discovery or single-nucleotide variation profiling [44]. We, however, will
focus only on RNA-seq applications for the gene expression profiling.

2.4.2 Computational analysis of RNA-seq data

In the computational analysis description we will assume that the genome of
the species being investigated is known. In that case, the first step is to map
the sequencing reads to the reference genome in order to know where they
have originated from. This process is not complicated for individual reads,
but the problem arises because of the huge amount of reads that need to be
mapped. Conventional alignment programs such as BLAST or BLAT would
simply be too slow for this task [45]. Hence, new alignment tools have been
developed which are aimed at aligning a large amount of short read data.
One of the most popular tools used for this task is Bowtie [46], a program
which aligns the short reads in a very fast and memory efficient way.

Another problem for read mapping might be caused because of repetitive
regions in a genome. Reads originating from these regions usually cannot
be mapped unambiguously. In higher eukaryotic organisms, these regions
constitute almost 50% of the genome [45], so discarding all of those reads
would result in a substantial loss of the data. Therefore, many studies use
pair-ended reads. The idea is that a DNA fragment is sequenced from both
of its ends giving rise to two reads with approximately known gap length
between them. In this way, aligning one of the paired reads could help to align
the other one unambiguously. Nowadays, pair-ended reads are supported by
most of the sequencing platforms and alignment tools [45].

Yet another problem is caused by reads originating from the locations
of splice junctions. These reads cannot be straightforwardly mapped to the
original genome, because the read sequence is split into two parts and sepa-
rated by an intron sequence in the original genome. Some of the alignment
programs take into consideration the existing transcriptome annotations or
even try to find novel splice junctions in order to map such reads. One of
the most popular program among these is TopHat [47]. Original Bowtie soft-
ware was not able to deal with such reads, but the problem is addressed in
Bowtie 2 [48], a new version of the tool which is currently under the devel-
opment.
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After the reads are mapped, the gene expression levels can be inferred
simply by counting how many mapped reads fall into the regions of known
genes [8]. In the fragmentation step, longer genes get more fragments for
sequencing, therefore, the counts for each gene have to be normalized by
gene lengths. Moreover, these counts have to be normalized by the total
number of mapped reads for a sample, because some samples might have
more mapped reads than the others which would result in a sample bias.
A popular gene expression measure which follows these principles is called
RPKM (Reads Per Kilobase of exon model per Million mapped reads) [§].
It normalizes read counts by gene lengths in kilobases and by millions of
mapped reads for a sample.

More advanced methods, such as Cufflinks [49], MMSEQ [9] or Bit-
Seq [50], measure gene expression levels not on the gene level, but on the
isoform level. Since gene isoform sequences are very similar, many reads can
often be mapped to several gene isoforms. If we discarded all of those reads,
it would be difficult to estimate the expression levels for separate isoforms.
Therefore, a statistical model has to be created which aims to tell how many
of these reads originate from each of the isoform. Parameters of the model
are usually adjusted by looking at the reads which map to the distinct parts
of the isoforms. Having isoform level expressions, gene expressions can be
derived by summing up all of the isoform expressions belonging to a single
gene.

As it was in the case of microarrays, the downstream analysis often include
identification of differentially expressed genes. One of the most popular tools
used for this task are DESeq [51] and edgeR [52]. Similarly to microarray
differential expression analysis tool LIMMA, DESeq and edgeR calculate
logs fold change values, p-values and FDR values. However, unlike LIMMA,
for calculating p-values these tools use a statistical test that is based on a
negative binomial distribution.



Chapter 3

Inter-platform gene expression
data comparisons

RNA-seq technology offers many advantages over conventional microarrays,
such as a low background signal, a possibility to detect novel transcripts and
an increased dynamic range of measurements [2, 17]. Therefore, RNA-seq
has already become a popular alternative to microarrays and it is likely that
in the future it will fully replace microarrays [5]. However, there are some im-
portant practical considerations which favor microarrays: lower cost, known
biases and well-established experimental pipelines [4]. Thus, microarrays still
remain a popular technology for dealing with gene expression data.

Naturally, there is a need to compare microarray experiments against
RNA-seq experiments. Previously, such comparisons usually aimed at eval-
uating the reliability of RNA-seq technology [2, 3], but in the future such
comparisons might more often be used in order to retrieve similar microarray—
RNA-seq experiment pairs and get more insight on a particular study. These
comparisons will still be relevant even if microarrays are fully replaced by
RNA-seq, because there are big databases of microarray experiments avail-
able [6, 7] and they could be used as a reference.

In order to make these comparisons more effective, we have to find a way,
how to convert the measurements of microarrays and RNA-seq or how to
change the processing of their raw data in order to make these measurments
more similar or more ”comparable”. However, to the best of our knowledge,
there are no past studies which would had been aiming at doing that. On the
other hand, there were previous studies that are 1) comparing the platforms
in order to estimate their accuracy, 2) performing the same experiment on
two platforms in order to validate results, 3) visualizing data from the two
platforms 4) combining the data from two platforms in order to extract some
new information about the experiment. In this chapter, we will first present

16
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the studies which were comparing the two platforms (1 and 2) and then we
will give a short overview of the studies which were combining or visualizing
data from the two platforms (3 and 4).

3.1 Microarray-RNA-seq comparisons

One of the earliest and most prominent microarray-RNA-seq comparisons
was done by Marioni et al. [2]. This study evaluated RN A-seq technical repro-
ducibility and compared the RNA-seq and microarray gene expression mea-
surements. The RNA-seq platform used in the study was Illumina Genome
Analyzer and the microarray platform was Affymetrix U133 Plus 2. RNA-seq
and microarray experiments were done using the same samples taken from
human kidney and liver. Sequencing was done in 2 runs, each of the runs was
using 7 lanes where some of the lanes contained kidney samples while the
other lanes contained liver samples. Microarray experiment was done with 3
technical replicates for each kidney and liver sample.

RNA-seq data was shown to be highly reproducible and the technical
variance across the lanes was very small. In addition, RNA-seq gene expres-
sion measures were found to agree with microarray gene expression measures
rather well both on an absolute and differential gene expression scale. The
Spearman correlation was 0.75 for kidney, 0.73 for liver and 0.73 for log, fold
changes between the two conditions (Fig. 3.1). 11493 genes were found dif-
ferentially expressed at FDR of 0.1% according to RNA-seq and 8113 genes
according to microarray technology. Among these, the majority (6534) were
found to be differentially expressed according to both platforms. In order
to find out which of the platforms gives more accurate results, they were
compared against the third technology—qRT-PCR. The results of qRT-PCR
were found to agree better with RNA-seq giving an indication that RNA-seq
is a more sensitive method at detecting differentially expressed genes.

Another prominent study by Fu et al. [3] compared microarrays and RNA-
seq with the third dataset coming from an independent source—proteomics.
Sequencing platform used was I[llumina’s Solexa Sequencer, microarray plat-
form was Affymetrix Human Exon 1.0 ST and protein expression levels were
measured by 2D LC-MS/MS system. Absolute gene expression measure-
ments of a human brain sample were calculated for both platforms. The
Pearson correlation between RN A-seq and microarray measurements was rea-
sonably good: r = 0.67 for 8441 genes. For a subset of 520 genes RNA-seq
and microarrays were compared against proteomics. The Pearson correla-
tion was of a moderate level, but it was better for RNA-seq than microarrays
(r = 0.36 for RNA-seq and r = 0.24 for microarrays). Hence, RNA-seq was
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Figure 3.1: A comparison of logy fold changes between Affymetrix and Illu-
mina platforms by Marioni et al. [2]. Differentially expressed genes having
more than 250 reads are colored red and genes having less than 250 reads are
colored green. Reads that are not differentially expressed at FDR of 0.1%
are colored black.

concluded to be a more precise method for an absolute gene expression level
estimation.

A particularly interesting inter-platform comparison was done by Agar-
wal et al. [53] comparing tiling arrays against Solexa/Illumina sequencing
technology. Tiling arrays are the only type of microarrays which is able to
detect novel transcripts. Therefore, RNA-seq and tiling arrays were com-
pared not only by their gene expression measurements, but also by their
ability to detect known transcriptionally active regions (TARs). The de-
tected TARs were compared with a gold standard set—known transcriptome
annotations. RNA-seq was found to be in a better agreement with known
transcriptome annotations, hence, it was suggested that RNA-seq could be
used to calibrate tiling arrays for detecting unknown transcripts.

An another interesting study was done by Bradford et al. [54]. Expression
measurements of human breast cell lines were compared between SOLiD
sequencing platform and Affymetrix Human Exon 1.0 ST microarrays. The
difference between this study and the previously mentioned studies is that in
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this study, expression measures were compared not on a gene level, but on
an exon level. The Pearson correlations were » = 0.55 for MCF-10a cell line
and r = 0.53 for MCF-7 cell line. The logs fold change correlation for the
exons expressed in both conditions was r = 0.59.

All of the above mentioned and some of the other microarray—RNA-seq
comparisons are listed in Table 3.1. The list is not exhaustive, but includes
most of the published comparisons up to this date. As we can see, most of the
comparisons were done on human samples, but there were some comparisons
on mouse, yeast and other organisms. Most of the studies compared Illumina
sequencing platform against Affymetrix microarray platform, but there were
some comparisons between other types of platforms, too. For many of the
studies, the inter-platform comparison and evaluation of RNA-seq platform
reliability was the major purpose, however, some of the studies were aimed at
biology-related questions and the comparisons were done just as an additional
validation of experimental results [55, 56].

Most of the studies calculated either absolute gene expression measure-
ment or logs fold change correlation between the two platforms. Both abso-
lute gene expression and logs fold change correlations varied between studies.
For example, in Beane et al. [55] logs fold change correlation between Illumina
sequencing and Affymetrix HGU133A 2.0 microarray was only 0.16, while in
Marioni et al. [2] it was 0.73. The correlation levels rarely depend on which
type, Pearson or Spearman, correlation measurement is used. However, they
depend a lot on the way experiment samples are prepared. If the exact same
experiment samples are being used for both RNA-seq and microarray studies
and the sample preparation protocol is very similar, the correlation between
the two platforms is significantly better. For log, fold change correlations
there is an another important factor: the similarity of the two sample con-
ditions. If the conditions are very similar, log, fold change values are very
small and the two platforms are not able to measure them precisely because
of the noise. Therefore, in this case, the two platforms do not agree as well
as in the case of where two sample conditions are very different. Finally,
one should remember that the correlation significance largely depends on the
number of points being correlated [57]. Therefore, in general, one could ex-
pect a lower correlation coefficient if the correlation is calculated for a large
number of genes and a higher correlation coefficient if it is calculated for a
small number of genes.

In the past, there were also many studies which compared gene expres-
sion measurements across different microarray platforms (28, 69, 70, 37]. In
some of these studies, the correlation between different microarray platforms
is even worse than the correlations between RNA-seq and microarray in the
above mentioned studies. For example in Liu et al. [37], the absolute gene
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Article Organism | Sequencing pl. | Microarray pl.
Marioni et al. [2] Human [Nlumina Affymetrix

Fu et al. [3] Human [lumina Affymetrix
Beane et al. [55] Human [lumina Affymetrix
Cheung et al. [56] | Human [umina Affymetrix
Sultan et al. [58] Human [umina [Mlumina
Bradford et al. [54] | Human SOLiD Affymetrix
Labaj et al. [59] Human SOLiD Affymetrix
Cloonan et al. [60] | Mouse SOLiD [Mlumina
Mortazavi et al. [8] | Mouse [lumina Affymetrix
Tang et al. [61] Mouse SOLiD Affymetrix
Rathil et al. [62] Mouse [umina Affymetrix
Bottomly et al. [63] | Mouse [umina Affymetrix

Su et al. [64] Rat [lumina Affymetrix
Wang et al. [17] Yeast [lumina Affymetrix
Wilhelm et al. [65] | Yeast [lumina Affymetrix
Arino et al. [66] Yeast 454 2-color microarray
Bloom et al. [67] Yeast [lumina 2-color microarray
Agarwal et al. [53] | Roundworm | Illumina Affymetrix
Malone et al. [4] Fruit fly [Mlumina Nimblegen

Liu et al. [68] Chimpanzee | [llumina HJAY

Table 3.1: Publications that compare RNA-seq — microarray gene expression

data
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expression measurement correlations between different microarray platforms
ranged only from 0.42 to 0.60. This is an another indication that we can-
not expect a perfect correlation between different platforms, especially given
different sample preparation protocols. However, we can still look for the
ways to reduce the gene expression measurement differences by computa-
tional analysis and aim at increasing the inter-platform correlation as we will
be doing in this thesis.

3.2 Methods that combine or visualize
inter-platform data

There have been a few studies which developed tools for combined microarray—
RNA-seq gene expression data processing, visualization and statistical analy-
sis [71-73]. The common feature of these tools is that they all support several
different RNA-seq and microarray platforms, employ traditional gene expres-
sion data processing algorithms and have a few different ways of visualizing
the data.

Among these tools, probably the most universal and well-known tool is
Mayday SeaSight [71] which is an extension of an older version of the tool
Mayday [74, 75]. The main new feature of the extension is the ability to
handle sequencing data, in addition to microarray data. As sequencing data
input SeaSight takes a mapped reads file in SAM or BAM format while as
microarray data input it takes raw output files from GenePix, Affymetrix,
Agilent or ImaGene platforms. Alternatively, it can take generic tabular for-
mat files as sequencing or microarray data input. SeaSight has a number of
different possible data processing methods both for microarray (background
correction, two-channel array normalization, inter-array normalization and
summarization) and sequencing (RPKM, DCPM and locus-dependent func-
tions). Also, the original Mayday software offers many plugins which can be
used for data clustering, filtering, classification and for finding significantly
differentially expressed genes. Finally, the data can be visualized in a num-
ber of different ways: scatter plots, box plots, profile plots or enhanced heat
maps.

Some of the past studies created methods that combine gene expression
measurements from several microarray platforms in order to get some addi-
tional information about the experiment [76, 77]. Warnat et al. [76] has used
gene expression data from several different microarray platforms to classify
the samples between three different diseases: prostate cancer, breast cancer
and acute myeloid leukemia. The gene expression measurements were trans-
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formed using either Median Rank Score or Quantile discretization algorithm
in order to make them more comparable and then they were used as an
input for Support-Vector-Machine-based classifier. In another study, Wang
et al. [77] used factor analysis to unify gene expression data from several
microarray platforms. The factor analysis was performed either on gene ex-
pression level or probe expression level. The method accuracy was evaluated
by comparing it to an independent dataset—gene expression measurements
from SAGE platform.

To the best of our knowledge, so far there have not been any attempts to
combine gene expression data from microarray and sequencing platforms or
from two different sequencing platforms. There was one study which com-
bined results from two RNA-seq experiments, but the study was concerned
not with the gene expression measurements, but with the transcriptome an-
notation [77]. The two experiment results were combined in order to identify
more novel transcripts and splice sites. On the other hand, combination of
RNA-seq and microarray gene expression results is possible in principle and
might be done in the future. This could be another motivation to make
RNA-seq and microarray gene expression measurements more comparable,
as we are aiming in this thesis.
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Methods

In this chapter, we present our method that aims to make microarray and
RNA-seq gene expression data more comparable. Section 4.1 explains the
main idea of our method, Section 4.2 gives the details about the statistical
model which we used to infer expression levels and Section 4.3 provides the
information about the tools used for implementation.

4.1 Basic idea of the method

One of the fundamental differences between microarrays and RNA-seq is that
RNA-seq measures gene expression based on the whole gene sequence while
microarrays rely only on the sub-portion of the gene where the microarray
probe sequences are located. The idea of our method is to eliminate this
difference, by calculating gene expression for RNA-seq using only the gene
regions where probe sequences are located.

The basic idea of our method is illustrated in the Figure 4.1. Usually, in
RNA-seq technology, gene expression is calculated based on the number of
mapped reads overlapping with gene regions. We, on the other hand, counted
the number of reads overlapping with probe regions. Probe region locations
were retrieved from Custom CDF probe annotation files [31].

Based on the read counts we estimated probe region expressions using
a probabilistic approach (more details on this step will be provided in Sec-
tion 4.2). As a result, we got probe region expressions using the sequencing
data. Each probe region expression has a corresponding probe expression
in the microarray. Therefore, from this point we treated probe region ex-
pressions the same way as probe expressions are treated in microarray data
analysis. That is, we applied one of the most popular algorithms for microar-
ray data analysis—RMA.

23
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Figure 4.1: Counting reads overlapping with probe regions. Genel and Gene2
denotes gene regions, while PR1-PR7 denotes probe regions inside the gene
regions.

The RMA algorithm (which was also discussed in Section 2.3.2 of Chap-
ter 2) consist of three steps: background-correction, normalization and sum-
marization. During background-correction step, technical noise is removed,
during normalization step, the expression values from different microarray
replicates are normalized and, finally, during summarization step, probe-level
expressions are converted to gene-level expressions. Since sequencing data
contains very little technical noise [17], we skipped background-correction
step and applied only the two latter steps of RMA.

We call our method PREBS—Probe Region Expression Based on Se-
quencing. The basic pipeline for the whole method is depicted in Figure 4.2.
In short, we count read overlaps with probe regions to get probe region ex-
pressions and then we apply RMA to get gene expressions. This type of
sequencing data processing resembles microarray data processing and, as we
will see later, the gene expression results which we get this way are more
similar to microarray gene expression results.

Count reads
overlapping

with probe regions . Apply RMA
Probe region """V Gene

data expressions expressions

Figure 4.2: Basic pipeline to get gene expression measurements using PREBS
method
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4.2 Expression level inference

Counting the number of reads that overlap with regions of interest (probe
regions or gene regions) is a stochastic process. As a result, there is a lot of
uncertainty about the observed counts for these regions, especially, when the
counts are small. In order to account for the uncertainty, we decided to use
a probabilistic approach.

We use Bayesian inference [78] which is based on Bayes rule:

E|H) - P(H)
P(E)

paE) = 2 ~ P(E|H) - P(H). (4.1)
Bayes rule says that the posterior P(H|FE) is equal to the likelihood P(E|H)
times prior P(H) divided by the evidence P(E). We can often choose to
ignore the normalizing factor (evidence) and then we get that the posterior
is proportional to the likelihood times the prior. In our case, the evidence E
will be the number of mapped reads that overlap with the region of interest
in a genome and the hypothesis H will be the distribution of those reads.

Each sampled read has two possibilities: either it overlaps with the re-
gion of interest or it does not. Therefore, read sampling can be modeled as
a Bernoulli process and the read distribution converges to a Poisson distri-
bution as the number of reads approaches infinity [79]. The number of reads
k mapped to the region of interest depends on the Poisson distribution with
a rate parameter A and it can be modeled by

Aree=A
Kl

p(k|X) = Poisson(k; \) = (4.2)
where \ parameter can be viewed as the gene expression level of the region
of interest or, in other words, the rate by which reads are sampled from that
region.

Equation (4.2) will be our likelihood P(E|H). In order to select the prior
P(H), we have to select a distribution for A parameter. In this case, the
most convenient distribution for the prior is the Gamma distribution

p(A) = Gamma(\; a, f) = %)\O‘_le_w, (4.3)
because it is conjugate to the Poisson distribution. That means, if the like-
lihood is a Poisson distribution and the prior is a Gamma distribution then
the posterior P(H|FE) will also be a Gamma distribution [80]. If we have a
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single measurement of k, it can be shown that posterior will be

pOIE) = Zp(RNp()

1
= EPOisson(k; A)Gamma(\; «, )
= Gamma(\;a + k, 5+ 1), (4.4)

where Z = p(k) = [ p(k|\)p(A)dA.

The prior distribution can be viewed as the expression level distribution
before we see any evidence (number of counts for a region of interest). The
posterior distribution can be viewed as the expression level distribution, after
we observe the evidence. Therefore, in order to estimate expression level
for a region of interest we will calculate an expected value of the posterior
distribution. The expected value of Gamma distribution is equal to the ratio
of its scale parameter and rate parameter, therefore, in our case, it is

o+ k
B+1

E[p(Alk)] = (4.5)

We have estimated o and 8 parameters, by comparing cumulative dis-
tribution functions for read counts and Gamma (Figure 4.3). We found out
that the best values for a and § parameters were (0.2, 0.03) and (0.17, 0.01)
for Marioni et al. and Cheung et al. data sets respectively.

4.3 Tools used for implementation

Affymetrix microarray data were processed using Affy package [81] from
R/Bioconductor [82] and custom CDF files [31]. Microarray expression val-
ues were summarized using RMA algorithm [30].

Sequencing data was converted from .sra format to .fastq format using
SRA Toolkit version 2.1.9 [83]. Next, sequencing data was processed using
three different methods: MMSEQ [9], RPKM [8] and PREBS.

To get MMSEQ gene expression measures, MMSEQ software (version
0.9.18) was used. Bowtie software (version 0.12.7) [46] was used to map the
reads to the transcriptome, as recommended by MMSEQ manual. MMSEQ
options were set to default and Bowtie options were set as recommended by
MMSEQ (-a --best --strata -S -m 100 -X 400). Homo Sapiens tran-
scriptome version GRCh37.65 from Ensembl database was used. SAMtools
(version 0.1.18) [84] was used for alignment format conversion.

For the RPKM method, reads were mapped by TopHat software (ver-
sion 1.4.1) [47]. Option --transcriptome-only was used for TopHat to get
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Figure 4.3: Comparison of read count and Gamma cumulative distribution
function

read alignments only to known transcriptome annotations. Ensembl GTF
annotation file (version GRCh37.65) was used along with the genome file
of the same version. Next, Ensembl genomic annotations were downloaded
using GenomicFeatures package and read overlaps with gene regions were
calculated using GenomicRanges package [85]. Then, RPKM values were
calculated and base 2 logarithm values were taken.

PREBS values were calculated using the same tools as for RPKM values,
but the read overlaps were calculated not for genes, but for probe regions
taken from custom CDF file annotations. RMA algorithm was applied us-
ing Affy package [81] slightly modified to accept custom probe expression
measures.

All necessary data processing tasks were done using R, Perl and Python
scripts. Script running was coordinated by Bash scripts. Additionally, some
Unix shell utilities, such as grep, awk and sed, were used.
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Results

In this chapter, we will introduce the results of the PREBS method and com-
pare it against two other methods: MMSEQ and RPKM. In order to evaluate
the methods, we will compare each of the method results against microar-
ray results and calculate correlations. The methods will be tested in three
different categories: absolute expression (Section 5.2), differential expression
(Section 5.3) and cross-platform differential expression (Section 5.4). In ad-
dition, we will have a look at some more technical results: we will examine
our method performance using manufacturer’s CDF files instead of custom
CDF files (Section 5.5) and we will calculate the differential expression for
microarray replicates (Section 5.6).

5.1 Data sets

In our study we used two data sets: Marioni et al. [2] and Cheung et al [56].
These data sets were selected, because they were easily accessible, used
popular sequencing and microarray platforms (Illumina and Affymetrix re-
spectively). An additional advantage was that most of the samples in both
datasets had microarray technical replicates which makes the data more re-
liable.

The Marioni et al. [2] data set consisted of two samples: human kidney
and liver. The sequencing was done using Illumina Genome Analyzer se-
quencer for two runs where each of the runs was using 7 lanes. Some of
the lanes contained 3 pM concentration while the others contained 1.5 pM
concentration samples from human kidney or liver. We used only data from
the lanes that contained 3 pM concentration. Altogether, there were 5 such
lanes for the kidney sample and 5 such lanes for the liver sample. Each of
these lanes gave 12.9-14.7 million 32 nucleotides long reads. The microarray

28
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experiment was done using Affymetrix U133 Plus 2 platform. 3 microarray
technical replicates were used for kidney and 3 for liver sample. Microarray
and sequencing experiments were done on exactly the same samples using
as similar sample preparation protocols as possible. The microarray data
set is available in the GEO database [7] under accession number GSE11045
and sequencing data is available in NCBI short read archive under accession
number SRA000299.

The Cheung et al. [56] data set consisted of 41 samples of B-cells taken
from CEPH HapMap individuals. Illumina Genome Analyzer sequencer was
used giving around 40 million 50 nucleotides long reads for each of the sam-
ple. Microarray experiments were done using Affymetrix Human HG-Focus
Target Array. 25 out of 41 samples had two microarray technical replicates
while the rest of the samples did not have any microarray technical replicates.
Sequencing and microarray samples were taken from the same individuals,
hence, they were biological replicates. The data is available in the GEO
database [7] under accession numbers GSE16921 and GSE16778 for sequenc-
ing and microarray data, respectively.

We tried to find more coupled microarray—-RNA-seq data sets, but it
proved to be a difficult task. Most of the ones we found had some problems,
for example, the microarray and RNA-seq samples were prepared in very
different ways, old type of sequencing platforms were used or the data was
not easily accessible. Therefore, in this thesis, we will only use the two
aforementioned data sets.

5.2 Absolute expression comparison

We have processed the RNA-seq data using 3 different methods: MMSEQ),
RPKM and PREBS. Then, we processed microarray data for the same sam-
ples using a single method—RMA. In order to find out which one of the
3 methods agrees best with microarray gene expression measurements, we
have calculated Pearson and Spearman correlations and made scatter plots
of microarray-RNA-seq data. We used 2 data sets: Marioni et al. [2] and
Cheung et al. [56]. The scatter plots for all of the samples in each of the data
sets looked similar, therefore, here we provide the scatter plots only for first
sample in each data set: kidney sample in the Marioni et al. and GMO06985
sample in the Cheung et al. data set (see Figure 5.1). On the other hand, the
performance tables include the average correlations among all of the samples
(see Tables 5.1, 5.2, 5.3 and 5.4).

For evaluation we used only those genes that were present on all of the
RNA-seq processing methods and microarrays. Moreover, we filtered points
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that had FPKM < 0.3 according to the MMSE(Q method. The reason we
did this is because MMSEQ measurements for low expressed genes are not
very reliable and they decrease the correlation with microarrays quite a lot
(see Figure 5.2). We also tried to filter low expression genes in RPKM and
PREBS methods, but the correlation stayed virtually unaffected (data not
shown), so we decided to include unfiltered results for these methods. In
order to make the comparison fair, the three methods were evaluated on the
exactly same set of genes.

From the scatter plots and the tables it is evident that PREBS agrees best
with microarray data both in terms of Pearson and Spearman correlations.
For the kidney sample in the Marioni et al. data set the Pearson correlations
were 0.74, 0.68 and 0.83 for MMSEQ, RPKM and PREBS respectively (see
Figures 5.1a, 5.1c and 5.1e). Similarly, for a GM06985 sample in the Cheung
et al. data set the Pearson correlations were 0.76, 0.71 and 0.81. Thus,
PREBS performs best on both samples. The improvements in the correlation
are just as evident when we look at Tables 5.1 and 5.2 where the correlations
are averaged over all samples in the data sets (2 samples for the Marioni
et al. data set and 41 samples for the Cheung et al. data set). Pearson
correlations for PREBS are 0.84 and 0.8, while for MMSEQ they are 0.7
and 0.76, for the Marioni et al. and the Cheung et al. data sets respectively.
RPKM correlations are the lowest among all of the methods for both data
sets.

Tables 5.3 and 5.4 show the correlation improvements of PREBS com-
pared to other methods. The calculation formula for improvements was
e StiER  100%, where PREBS s the correlation of PREBS vs mi-
croarray and OTHER is the correlation of the other method vs microarray.
The normalizing factor (1 — OTHER) was chosen, because it corresponds to
a total amount of how much correlation can be improved up until the perfect
correlation.

Both for the Marioni et al. and the Cheung et al. data sets, PREBS
reached reasonable amounts of improvement over the other two RNA-seq
processing methods, but the improvement was bigger for the Marioni et al.
data set. The reason for that might have been, because RNA-seq and mi-
croarray experiments for the Marioni et al. data set were conducted on ex-
actly the same samples using very similar protocols, while for the Cheung et
al. data set the RNA-seq and microarray samples were biological replicates
which might have caused more differences in the expression levels. There-
fore, the Marioni et al. data set is better suited for RNA-seq vs microarray
comparisons and it is easier to reach some improvement in correlation using
a novel method.

In Figures 5.1a and 5.1e, there are some low MMSEQ and PREBS values
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that have high microarray values (in the upper left corner). This effect is
more evident for the Marioni et al. data set than the Cheung et al. data
set. It is hard to tell what is the cause and it would require some further
investigation. Interestingly, RPKM seems to be the only method for which
this effect is not evident.

Moreover, in the plots for the Marioni et al. data set (Figures 5.1a, 5.1c
and 5.1e) we see that expression values based on sequencing can go up even af-
ter microarray values reach the saturation level. This suggests that RNA-seq
has a larger dynamic range than microarrays. However, we cannot see such
behaviour in the scatter plots for the Cheung et al. data set (Figures 5.1b,
5.1d and 5.1f).
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Figure 5.1: RNA-seq expressions plotted against microarray expressions.
Kidney sample was used for the Marioni et al. dataset and GM06985 sam-
ple was used for the Cheung et al. dataset. Points with FPKM < 0.3 were
filtered. The legend contains Pearson correlation (r), Spearman correlation
(s) and the number of genes (n).
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MMSEQ | RPKM | PREBS
Pearson 0.70 0.66 0.84
Spearman | 0.68 0.64 0.83

Table 5.1: Absolute expression correlations for Marioni et al. dataset.

MMSEQ | RPKM | PREBS
Pearson 0.76 0.71 0.80
Spearman | 0.76 0.72 0.81

Table 5.2: Absolute expression correlations for Cheung et al. dataset.

PREBS-MMSEQ

PREBS-RPKM

Pearson

44.93%

51.73%

Spearman

45.08%

51.08%

Table 5.3: Absolute expression correlation improvements comparing PREBS

against MMSEQ and RPKM on Marioni et al. dataset.

PREBS-MMSEQ

PREBS-RPKM

Pearson

16.49%

29.48%

Spearman

18.35%

30.01%

Table 5.4: Absolute expression correlation improvements comparing PREBS

against MMSEQ and RPKM on Cheung et al. dataset.
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5.3 Differential expression comparison

In this section, we will compare differential expression measures between
RNA-seq and microarray platforms. More precisely, we will compare differ-
ences in logy fold changes between the two platforms. We will not compare
p-values or False Discovery Rate values, because these values in each platform
are calculated in different ways and therefore they are not as comparable as
log, fold change values.

For the Marioni et al. data set logs fold changes were calculated between
liver and kidney samples. For the Cheung et al. data set we calculated log,
fold changes for several pairs of samples, but they were all quite similar, so
we will include the results only for the pair of first two samples in the data
set (GM06985 and GM06993).

MMSEQ and RPKM vs microarray scatter plots (Figures 5.3a and 5.3c)
look rather similar to the original scatter plot from the Marioni et al. publi-
cation (Figure 3.1 on page 18). The Spearman correlations (0.74 and 0.75)
are also similar to the one reported by the authors (0.75). MMSEQ and
RPKM methods perform similarly both with respect to Pearson and Spear-
man correlations. Unfortunately, the PREBS method (Figure 5.3¢) did not
significantly improve the differential expression correlations with microarray.
Compared to RPKM, there is a small improvement for Pearson correlation
(from 0.74 to 0.75), but there is no improvement for Spearman correlation.

Scatter plots for the Cheung et al. data set (Figures 5.3b, 5.3d and 5.3f)
do not look as diagonal as the Marioni et al. scatter plots and the correlations
between RNA-seq and microarray platforms are much smaller. One reason
for this might be because the expression changes between the conditions are
much smaller in the Cheung et al. data set. As we can see in Table 5.9, the
95% quantiles of absolute log, fold change values are smaller in the Cheung et
al. data set than in the Marioni et al. data set both for microarrays and RNA-
seq. Smaller changes in gene expression are harder to detect by both of the
platforms, and therefore there is less agreement between the two platforms.

Tables 5.5, 5.6, 5.7 and 5.8 include differential expression correlations
and correlation improvements for the same samples which were used for the
scatter plots. From these tables we can see that PREBS does not reach any
significant improvement on the Marioni et al. dataset and performs slightly
worse than the other two methods on Cheung et al. data set. It is hard to tell
why PREBS does not improve differential expression results even though it
significantly improves absolute expression results. One of the reasons might
be that differential expression measures have more ”degrees of freedom” than
absolute expression measures, that is, differential expression of a single gene
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depends on expressions of that gene in two samples instead of one. Therefore,
there is more room for errors and it is harder to achieve as accurate results.
Furthermore, the bad PREBS performance on the Cheung et al. data set can
be attributed to that the low expression changes in the Cheung et al. data
set. When the expression changes are low, the noise level compared to the
signal is high and therefore it is hard to create a computational method that
interprets the data precisely.

Finally, we present Venn diagrams of differentially expressed genes accord-
ing to PREBS, MMSEQ and microarrays (see Figures 5.4 and 5.5). RPKM
method was not included here, because, as we already saw, it is inferior to
MMSEQ method in terms of agreement with microarrays. The genes were
regarded as differentially expressed if their logs fold change value was bigger
than log,(1.5) or smaller than —log,(1.5) (a similar criteria for identifying
differentially expressed genes was used by Beane et al. [55]).

In Figure 5.4 we can see that the number of differentially expressed genes
that are found only by MMSEQ is bigger than the number of differentially
expressed genes that are found only by PREBS (3076 vs 1174). This is
probably because PREBS uses only a part of the gene regions for counting
overlapped reads, and therefore it is less sensitive in detecting differentially
expressed genes. On the other hand, we want to create an RNA-seq process-
ing method which is similar to the less sensitive microarray method, so the
loss of sensitivity is probably inevitable. Moreover, even at lower sensitivity,
the number of overlapping differentially expressed genes between PREBS and
microarrays is bigger than the number of overlapping differentially expressed
genes between MMSEQ and microarrays (622 vs 574, excluding differentially
expressed genes that are found by all of the 3 methods). The situation for the
Cheung et al. data set is rather similar to what we discussed for the Marioni
et al. data set. However, the numbers of differentially expressed genes for
the Cheung et al. data set are much smaller according to all three methods,
once again confirming the fact that gene expression levels do not differ much
between the samples in the Cheung et al. data set.
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Figure 5.3: RNA-seq Log2FC plotted against microarray Log2FC. Kidney

and liver samples were used for Marioni et al.

dataset, GMO06985 and

GMO06993 were used for Cheung et al. dataset. Points with FPKM < 0.3 were
filtered. The legend contains Pearson correlation (r), Spearman correlation

(s) and the number of genes (n).
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MMSEQ | RPKM | PREBS
Pearson 0.82 0.82 0.83
Spearman | 0.74 0.75 0.75

Table 5.5: Differential expression correlations for Marioni et al. dataset.

MMSEQ | RPKM | PREBS
Pearson 0.42 0.43 0.39
Spearman | 0.40 0.40 0.38

Table 5.6: Differential expression correlations for Cheung et al. dataset.

PREBS-MMSEQ | PREBS—-RPKM
Pearson 2.91% 6.11%
Spearman | 1.91% -1.25%
Table 5.7:

Differential expression correlation improvements comparing

PREBS against MMSEQ and RPKM on Marioni et al. dataset.

PREBS-MMSEQ | PREBS-RPKM
Pearson -5.06% -7.22%
Spearman | -2.72% -2.86%
Table 5.8: Differential expression

correlation improvements comparing

PREBS against MMSEQ and RPKM on Cheung et al. dataset.

Microarray | MMSEQ | RPKM | PREBS
Marioni et al. | 2.24 3.03 3.40 3.75
Cheung et al. | 1.09 2.33 2.18 2.75

Table 5.9: 95% quantiles for absolute logy fold change values in Marioni et

al. and Cheung et al. datasets.
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Figure 5.4: Venn diagram of differentially expressed genes for Marioni et al.
dataset
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Figure 5.5: Venn diagram of differentially expressed genes for Cheung et al.
dataset
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5.4 Cross-platform differential expression

As the third category of RNA-seq methods evaluation, we compared cross-
platform differential expressions. That is, instead of calculating differential
expression between two microarray or two RNA-seq samples, we calculated
differential expression between one microarray and one RNA-seq sample.
Such differential expression calculation can be useful in some cases and it
can be seen as one further step in microarray and RNA-seq data integration.
To evaluate which of the three methods performs best in this category, we
compared cross-platform log, fold changes with microarray—microarray logs
fold changes and calculated the correlations as before (Figure 5.7).

The problem with calculation of microarray-RNA-seq logs fold change
values is that dynamic ranges of the two platforms are very different and
therefore such values are hard to interpret. To overcome this problem, we
assigned ranks for microarray and RNA-seq gene expression measurements
from the highest expressed to the lowest expressed. To avoid equal ranks
we used random tie breaking method for genes with equal expression lev-
els. Then, we replaced the RNA-seq gene expression values by microarray
gene expression values from the second sample with corresponding ranks.
That way, we achieved that RNA-seq dynamic range is exactly the same
as microarray dynamic range and the plots became easier to interpret. This
rank replacement method was applied for making cross-differential expression
plots (see Figure 5.7). Additionally, to get an idea how absolute expression
plots look like after rank replacement, we can have a look at the Figure 5.6.

In the cross-platform differential expression scatter plots for the Marioni
et al. data set (Figures 5.7a, 5.7c and 5.7e) we can see that there are two
clusters of genes: those that agree well between the platforms and those
that have very low microarray—microarray logs fold changes, but rather high
microarray-RNA-seq logs fold changes (this effect seem to be stronger for the
MMSEQ and RPKM methods than PREBS). Such behavior can probably be
explained by the fact that RNA-seq is a more sensitive technology and it can
detect expression of the genes that are below microarray noise floor. Since
we calculated logs fold changes as a ratio of RNA-seq expression divided by
microarray expression, those genes, whose expression levels are detected only
by RNA-seq, will have a high logs fold change according to cross-platform
evaluation, but small log, fold change according to microarray—microarray
evaluation. Another question is why the two clusters are so well-separated
and there is no continuity of the points joining the two clusters. This question
requires some extra analysis which is out of scope of this thesis.

In the correlation tables for the Marioni et al. data set (Tables 5.10
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and 5.12) we can see that PREBS clearly outperforms MMSEQ and RPKM
methods. On the other hand, PREBS performs the worst among the three
methods on the Cheung et al. data set (Tables 5.11 and 5.13). However,
we already saw that the Cheung et al. data set is not as well suited for our
analysis as Marioni et al. data set.

Overall, the correlations of microarray—microarray vs microarray—RNA-
seq logy fold change values (Section 5.4) were worse than the correlation
between microarray-microarray vs RNA-seq—RNA-seq logs fold change val-
ues (Section 5.3). For example, MMSEQ method had Pearson correlation
equal to 0.82 for regular differential expression, but only 0.56 for cross-
platform differential expression in the Marioni et al. dataset (see Tables 5.5
and 5.10). That suggest us that logs fold change values calculated within
platform (RNA-seq—RNA-seq) are more accurate than the logs fold change
values calculated between different platforms (microarray-RNA-seq). How-
ever, it is still good to know that we are able to reach reasonable cross-
platform vs within-platform log, fold change correlations which suggests that
cross-platform log, fold change correlations can be meaningful.
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RNA-seq—microarray Log2FC plotted against microarray—

microarray Log2FC. Kidney and liver samples were used for Marioni et al.
dataset, GM06985 and GM06993 were used for Cheung et al. dataset. Points
with FPKM < 0.3 were filtered. The legend contains Pearson correlation (r),
Spearman correlation (s) and the number of genes (n).
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MMSEQ | RPKM | PREBS
Pearson 0.56 0.58 0.70
Spearman | 0.47 0.50 0.57

Table 5.10: Cross-platform differential expression correlations for Marioni et
al. dataset.

MMSEQ | RPKM | PREBS
Pearson 0.30 0.26 0.24
Spearman | 0.26 0.21 0.18

Table 5.11: Cross-platform differential expression correlations for Cheung et
al. dataset.

PREBS-MMSEQ | PREBS-RPKM
Pearson 31.82% 28.57%
Spearman | 18.87% 14.00%

Table 5.12: Cross-platform differential expression correlation improvements
comparing PREBS against MMSEQ and RPKM on Marioni et al. dataset.

PREBS-MMSEQ | PREBS-RPKM
Pearson -8.57% -2.70%
Spearman | -10.81% -3.8%

Table 5.13: Cross-platform differential expression correlation improvements
comparing PREBS against MMSEQ and RPKM on Cheung et al. dataset.
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5.5 Manufacturer’s CDF

So far, all of the microarray data in the results we provided were processed
using custom CDF files [31]. Even though, as we mentioned in Section 2.3.2,
custom CDF files provide more accurate results, some of the people might
still want to use manufacturer’s CDF files. For this reason, we tested how
PREBS compares to microarray data processed with manufacturer’s CDF.

When custom CDF files are used to process microarray data, expression
estimates grouped by a chosen type of gene identifiers are obtained as an
output (for example, we used Ensembl gene identifiers). On the other hand,
when manufacturer’s CDF files are used, expression estimates are obtained
for probe set identifiers defined by the manufacturer. In order to get gene
expression measurements using manufacturer’s CDF files, probe set identi-
fiers have to be further mapped to genes identifiers. However, we decided
to stick with probe set identifiers when comparing PREBS and microarrays
processed using manufacturer’s CDF. Since PREBS uses microarray process-
ing tools, it was easy to get PREBS values for microarray probe sets just by
changing custom CDF files to manufacturer’s CDF files in PREBS process-
ing pipeline. However, such values would be harder to get using MMSEQ
or RPKM methods, so we decided to exclude these methods in this step of
analysis.

The scatter plots of PREBS vs microarray gene expression values using
manufacturer’s CDF are provided in Figure 5.8. The correlation for kidney
sample in the Marioni et al. data set using manufacturer’s CDF (Figure 5.8a)
is worse than the correlation for the same sample using custom CDF (Fig-
ure 5.1e). The reason for this is probably because Figure 5.8a (54613) in-
cludes many more points than Figure 5.1e (14709) and as we discussed in
Section 3.1, the correlation depends on the number of points being examined.
The number of points in the two figures is different, because the number of
probe set identifiers in manufacturer’s CDF largely exceeds the number of
gene identifiers in custom CDF. On the other hand, for GM06985 sample in
the Cheung et al. data set, the correlation is better when manufacturer’s
CDF files are used (Figure 5.8c and 5.1f). The reason of this is not clear.
However, the the number of points in this case does not differ so much, be-
cause another microarray platform is used (8746 points in Figure 5.8¢ and
5480 points in Figure 5.1f).

Differential expression correlations using manufacturer’s CDF files are
also slightly worse than differential expression correlations using custom CDF
both for the Marioni et al. data set and the Cheung et al. data set (com-
pare Figures 5.8b and 5.8d against Figures 5.3e and 5.3f). The differences
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in differential expression correlations can again be attributed to the larger
amount of points in manufacturer’s CDF scatter plots.

The shapes of output scatter plots using manufacturer’s CDF files (Fig-
ure 5.8) is similar to the ones using custom CDF files (Figures 5.1 and 5.3),
except that the former one has more points. Similar scatter plot shapes and
the fact that correlation levels are comparable suggest that PREBS can be
successfully used with manufacturer’s CDF files in addition to custom CDF
files.

Microarray expression
Microarray Log2FC

PREBS_RMA value PREEBS Log2FC

(a) Absolute expression, Marioni et al.  (b) Differential expression, Marioni et
dataset al. dataset

Microarray expression
Microarray Lag2FC

PREBS_RMA valus PREES Log2FC

(c¢) Absolute expression, Cheung et al.  (d) Differential expression, Cheung et
dataset al. dataset

Figure 5.8: Absolute and differential expression plots for PREBS vs microar-
ray using manufacturer’s CDF files.
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5.6 Differential expression in microarray
technical replicates

Since PREBS correlations for differential expression estimates were not as
good as for absolute expression estimates, we wanted to find out what is
the best possible correlation for differential expression estimates that any
method could reach. For that we analyzed differential expression in microar-
ray replicates from both of the data sets. We calculated differential expres-
sion between two samples for two pairs of microarray replicates and then
plotted logy fold changes according to the first pair of replicates against the
second pair of replicates (Figure 5.9). Obviously, the correlation of log, fold
changes between microarray replicates should be better than the correlation
of logs fold changes between microarray and RNA-seq platforms. Therefore,
microarray replicate logs fold change can be seen as the ceiling of the best
microarray—RNA-seq logs fold change correlation we could achieve.

We found out that the correlation between technical replicates was much
better for the Marioni et al. data set than the Cheung et al. data set. This
again confirms the fact that differential expression calculation for the Cheung
et al. data set is more difficult. Spearman correlation for the Cheung et al.
data set is particularly low—0.59. Knowing that this within-platform corre-
lation is basically the ceiling of the inter-platform correlation gives some jus-
tification of low inter-platform correlations which we saw earlier (Figure 5.3
and 5.7). As we mentioned before, the low differential expression correlations
on the Cheung et al. data set are probably the result of the fact that gene
expression changes in this data set are very small and the measurements are
strongly affected by the noise.
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Conclusion

This is the concluding chapter for this thesis. In this chapter, the thesis
contents are summarized and obtained results are discussed. Also, some
ideas about the future work are provided.

6.1 Summary

This thesis addressed the issue of gene expression comparison for two plat-
forms: microarrays and RNA-seq. A novel computational method, called
PREBS, was developed that adjusts RNA-seq data processing in a way that
the results are more comparable to microarray results. PREBS results were
compared to two other RNA-seq processing methods, RPKM and MMSEQ.
PREBS was shown to have the best agreement with microarrays in absolute
expression comparison, and have a similar level of agreement with the other
methods in differential expression and cross-platform differential expression
comparisons.

Additionally, this thesis provided a brief background on gene expression
and its measurement. Several different gene expression measurement tools
were presented and two of them, RNA-seq and microarrays, are explained in
more detail. This thesis also gave an overview of the past microarray-RNA-
seq comparisons and studies which were combining/visualizing the inter-
platform data.

6.2 Discussion and future work

Measuring gene expression is an important tool for biomedical sciences. Gene
expression measurements can be applied to disease diagnostics, new drug de-
velopment and other areas [1]. Two most popular platforms for measuring

49
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gene expression, RNA-seq and microarrays, give results that are not com-
pletely consistent [2, 3]. Therefore, it is important to compare these two
platforms and understand their differences.

In the past, there have been studies that made such comparisons experi-
mentally, however, none of them addressed the issue of developing computa-
tional methods for making RNA-seq and microarray data more comparable.
We have developed and presented a novel method, called PREBS, that ad-
dresses this issue. We compared our method against two other RNA-seq
processing methods, MMSEQ and RPKM, and we showed that our method
has the best correlation with microarrays in absolute expression scale and
has similar levels of correlation in differential and cross-platform differential
expression scale.

It is difficult to tell why our method cannot reach any correlation improve-
ment in differential expression, even though it reaches a big improvement in
absolute expression. One reason could be that differential expression calcula-
tion is more complicated because it includes measurements from two samples
instead of one, so there is more room for errors and it hard to achieve ac-
curate results. However, it is clear that the future work for our method
should concentrate on increasing differential expression correlations, as it is
the weakest point of our method.

Other future work for our method could include testing it on more datasets.
However, as we mentioned before, good datasets with paired microarray
and RNA-seq experiments are hard to find. Moreover, implementing a user
friendly version of our method is quite important. The best way for this
would probably be to make it available from Bioconductor [82]. Finally, one
more thing we could do for our method is to make the dynamic range of
PREBS more comparable with microarray dynamic range. At the moment,
even though the correlations of PREBS and microarrays are good, the abso-
lute values are still not directly comparable. If we could find a way to make
the dynamic ranges more similar, it would extend the number of possible
applications of our method.

One of the possible applications of our method could be retrieval of sim-
ilar microarray-RNA-seq experiments. Microarrays were the dominant gene
expression measurement platform for more than a decade, so we have large
microarray experiment databases available. One way to reuse that data is to
develop a method which for a query microarray experiment retrieves microar-
ray experiments with similar gene expression patterns as was done by Caldas
et al. [86]. Using PREBS we could extend such method by allowing queries
or results to be RNA-seq experiments in addition to microarray experiments.

Another application could be for machine learning related tasks. Let
us assume someone is developing a machine learning model which aims to
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predict drug response. He wants to train the model on microarray data,
because there is more such data available at the moment, but he wants to
make predictions also on RNA-seq data in addition to microarray data. In
this case, he can use PREBS to process RNA-seq data in order to make
input RNA-seq values for machine-learning-based predictor more similar to
microarray values. However, in this case, our method could work better, if
we could make dynamic ranges of the two platforms more similar.

Potentially, there could be many other types of applications for our method.
Together with increasing popularity of RNA-seq technology the need for
microarray—RNA-seq experiment comparisons is likely to increase, too. There-
fore, in the future, researchers might find new ways of integrating RNA-
seq—microarray data and our method might play an important role in their
research.
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