
AALTO UNIVERSITY
School of Science
Department of Media Technology

Kalle Juhani Säilä

UbiQloud: A Platform-as-a-Service for the
Web of Things

Master’s Thesis
Helsinki, June 25, 2012

Supervisor: Professor Petri Vuorimaa, D.Sc. (Tech.), Aalto University
Instructor: Markku Laine, M.Sc. (Tech.), Aalto University

AALTO UNIVERSITY ABSTRACT OF
School of Science MASTER’S THESIS
Degree Programme of Computer Science and Engineering

Author: Kalle Juhani Säilä
Title:
UbiQloud: A Platform-as-a-Service for the Web of Things

Date: June 25, 2012 Pages: xiii + 76
Professorship: Media Technology Code: T-111
Supervisor: Professor Petri Vuorimaa, D.Sc. (Tech.)
Instructor: Markku Laine, M.Sc. (Tech.)

Over the years, the World Wide Web (Web) has evolved from a simple
system for sharing static documents to a social and dynamic application
platform. In addition, the range of devices and input methods used to
interact with Web applications has increased. This evolution has opened
up new possibilities for application development as data from other appli-
cations and physical devices is now available for mashups through open
APIs. At the same time, however, the complexity of application develop-
ment has increased and the technologies at the foundation of the Web fail
to meet the requirements for modern Web applications.

The main objective of this Thesis was to study how the development of
modern Web applications can be facilitated leveraging third-party services
and modern technologies. Furthermore, the study focused on designing
and implementing a modern cloud-based platform, UbiQloud, offering a
wide range of essential services needed to develop social and location-aware
Web of Things applications with real-time communication capabilities.
The platform was validated by developing two sample applications on top
of it as well as by conducting a series of performance and stress tests.

The results show that it is possible to implement a scalable, high perfor-
mance cloud-based platform that offers a wide range of services essential
for modern Web application development and can be used with real ap-
plications in real world settings.

Keywords: UbiQloud, server push, Web of Things, positioning,
social media, cloud service, XMPP, WWW, Web

Language: English

ii

AALTO YLIOPISTO DIPLOMITYÖN
Perustieteiden korkeakoulu TIIVISTELMÄ
Tietotekniikan koulutusohjelma

Tekijä: Kalle Juhani Säilä
Työn nimi:
UbiQloud: Palvelualusta Esineiden Web -sovelluksille

Päiväys: 25. kesäkuuta 2012 Sivumäärä: xiii + 76
Professuuri: Mediatekniikka Koodi: T-111
Työn valvoja: Professori Petri Vuorimaa, TkT
Työn ohjaaja: DI Markku Laine

Vuosien saatossa World Wide Web (Web) on kehittynyt pöytäkoneilla käy-
tettävästä yksinkertaisesta dokumenttien jakojärjestelmästä sosiaaliseksi
ja dynaamiseksi ohjelmistoalustaksi, jota käytetään monenlaisilla pääte-
laitteilla eri yhteyksissä. Webin kehitys on luonut sovelluskehittäjille mah-
dollisuuden uudenlaisten sovellusten kehittämiselle, joissa hyötykäytetään
tietoa muista sovelluksista ja fyysisistä laitteista avointen rajapintojen
kautta. Samanaikaisesti sovelluskehitys on muodostunut entistä haasta-
vammaksi, koska Webin perustana toimivat teknologiat eivät enää pysty
vastaamaan nykyaikaisten sovellusten vaatimuksiin.

Tämän diplomityön tarkoituksena oli selvittää, kuinka nykyaikaisten Web-
sovellusten kehittämistä voitaisiin helpottaa kolmannen osapuolen palve-
luiden ja uusien teknologioiden avulla. Lisäksi diplomityöhön sisältyi nyky-
aikaisen pilvipohjaisen alustan, UbiQloudin, suunnittelu ja toteutus. Alus-
tan tarkoituksena on tarjota sovelluskehittäjille yhdestä paikasta suuri
määrä palveluita, joita tarvitaan reaaliaikaisten, sosiaalisten ja paikkatie-
toisten Web of Things -sovellusten kehittämiseksi. Alusta validoitiin kah-
den esimerkkisovelluksen avulla sekä suorittamalla joukko testejä alustan
suorituskyvyn mittaamiseksi.

Tuloksien pohjalta voidaan sanoa, että on mahdollista toteuttaa skaalau-
tuva ja suorituskykyinen pilvipohjainen alusta, joka tarjoaa suuren mää-
rän nykyaikaisille Web-sovelluksille tärkeitä palveluita. Lisäksi esimerkki-
sovellukset todistavat, että alusta soveltuu käytettäksi oikeiden sovellusten
kanssa oikeassa ympäristössä.

Avainsanat: UbiQloud, push-viestit, esineiden Web, paikantaminen,
sosiaalinen media, pilvipalvelu, XMPP, WWW, Web

Kieli: englanti

iii

Acknowledgments

I would like to thank the following persons:

M.Sc. Markku Laine at the Aalto University for his invaluable guidance
and support as the instructor of this Thesis. In addition to the formal in-
structor duties, I would like to thank Markku for the countless laughs and
inspiring work sessions that made the work feel like something else entirely.

Professor Petri Vuorimaa at the Aalto University for giving me the op-
portunity to work with inspiring topics close to my heart as well as patiently
guiding and supervising my Thesis.

MA in New Media Petri Saarikko, my closest co-worker and a friend,
at the Aalto University for making every work day interesting and different.
I would also like to thank Petri for all the insight and knowledge of graphics
and service design as well as for both the serious and hilarious conversations
on and off work.

Friends and family for their invaluable help and support through out the
years. Especially I would like to thank my mum, Heidi Nyman, and aunt,
Christel Nyman, for encouraging me to pursuit my dreams. In addition, I
would like to thank my late father, Pertti Säilä, who would have been so
proud of me.

Inka-Maria Karhunsuo, my beloved wife and best friend, who makes me
whole and has pushed me forward during the years. I love you!

Nooa Säilä, my little baby boy, whose smile continuously makes my world
a better place. I grow as a man as I watch him grow to a little human being.

Helsinki, June 25th, 2012

Kalle Säilä
kallesaila@me.com

iv

Abbreviations and Acronyms

API Application Programming Interface
AWS Amazon Web Services
BOSH Bidirectional-streams Over Synchronous

HTTP
CoAP Constrained Application Protocol
CSS Cascading Style Sheets
CSV Comma Separated Values
EAN International Article Number, formerly Euro-

pean Article Number
GPS Global Positioning System
GSM Global System for Mobile Communications
GUPSS Gateway-Based Ubiquitous Platform for

Smart Space
HMAC Hash-based Message Authentication Code
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IaaS Infrastructure-as-a-Service
IM Instant Messaging
IoT Internet of Things
IP Internet Protocol
ISBN International Standard Book Number
JID Jabber ID
JSON JavaScript Object Notation
LAN Local Area Network
MB2 Magic Broker 2
MIDE Multidisciplinary Institute of Digitalisation

and Energy
NFC Near Field Communication
OS Operating System
PaaS Platform-as-a-Service

v

RDBMS Relational Database Management System
REST Representational State Transfer
RFID Radio Frequency Identification
RPC Remote Procedure Call
RSS Really Simple Syndication
SaaS Software-as-a-Service
TCP Transmission Control Protocol
UDP User Datagram Protocol
UHF Ultra-High Frequency
UI User Interface
UPC Universal Product Code
URI Unified Resource Identifier
UTC Coordinated Universal Time
VoIP Voice over IP
W3C World Wide Web Consortium
Web World Wide Web
WLAN Wireless Local Area Network
WoT Web of Things
WSN Wireless Sensor Network
WWW World Wide Web
XEP XMPP Extension Protocol
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol,

formerly Jabber

vi

Contents

Abbreviations and Acronyms v

1 Introduction 1

1.1 Organization of the Thesis . 3

2 Background 4

2.1 Server Push . 4

2.1.1 Publish/Subscribe . 5

2.1.2 XMPP . 6

2.1.3 WebSocket . 8

2.2 Internet of Things / Web of Things 9

2.2.1 Smart Object . 10

2.2.2 Smart Space . 10

2.2.3 Representational State Transfer 11

2.3 Positioning . 12

2.4 Social Media . 14

2.4.1 Social Login . 15

2.5 Cloud Computing . 16

3 State-of-the-Art 19

3.1 Related Research Activities 19

3.2 Existing Services . 20

3.2.1 Server Push Services 20

vii

3.2.2 Web of Things Services 22

3.2.3 Positioning Services . 23

3.2.4 Social Media Gateways 24

4 Research Aims 26

4.1 Research Objectives and Scope 26

4.1.1 4D-Space Project . 27

4.2 Research Questions . 27

4.3 Research Methods . 28

5 Platform Requirements 29

5.1 Terminals and Devices . 29

5.2 Users . 30

5.3 Objects . 32

5.4 Verification of the Requirements 32

5.5 Requirements . 32

5.5.1 R1: RESTful API . 34

5.5.2 R2: Server Push . 34

5.5.3 R3: User Profiles . 34

5.5.4 R4: Positioning . 35

5.5.5 R5: Object Recognition 35

5.5.6 R6: Sensor Integration 35

5.5.7 R7: Information Aggregation 36

5.5.8 R8: Social Sharing . 36

6 Implementation 37

6.1 UbiQloud Overview . 37

6.2 Server Components . 39

6.3 UbiQloud Application . 41

6.3.1 Recognize Module . 42

6.3.2 Locate Module . 43

viii

6.3.3 Connect Module . 44

6.3.4 Share Module . 45

6.4 Communication with UbiQloud 45

6.4.1 RESTful API . 46

6.4.2 Server Push Interfaces 48

6.4.3 Smart Gateway . 50

6.4.4 Social Gateway . 51

7 Sample Applications 53

7.1 Retail Context: FeedThroat 53

7.1.1 Integration to UbiQloud 55

7.1.2 User Tests . 56

7.2 Positioning Context: InView 57

7.2.1 Integration to UbiQloud 58

7.3 Conclusions . 58

8 Testing and Evaluation 60

8.1 Setup . 60

8.2 Tools . 61

8.3 Testing the Client Interface 63

8.4 Testing the Sensor Interface 64

8.5 Evaluation . 65

9 Conclusions 67

9.1 Research Objectives Revisited 67

9.2 Main Contributions . 67

9.3 Results . 68

9.4 Future Work . 69

ix

List of Tables

5.1 Requirements for the platform. 33

6.1 UbiQloud modules. 42

x

List of Figures

1.1 Service categories of the designed platform. 3

2.1 Comparison between a push-based and pull-based interaction
model. 5

2.2 The publish/subscribe interaction model. 6

2.3 The XMPP-based client/server interaction model. 7

2.4 The WebSocket-based client/server interaction model. 8

2.5 A Smart Gateway as mediator between an RFID reader com-
municating with TCP protocol and a Web application. 10

2.6 Terminal-based and network-based positioning systems. 13

2.7 Social Login steps with Facebook: authentication and appli-
cation authorization. 16

2.8 Cloud computing models. 17

3.1 Facebook chat accessed through the official Facebook iPhone
application and in the iChat desktop application. 21

3.2 Example of extending an existing system with an RFID mid-
dleware. 22

3.3 Position fingerprints on top of an indoor map. 24

3.4 Janrain Engage Social Login widget. 25

5.1 Different display types. 30

6.1 UbiQloud communication architecture. 38

6.2 Components of the UbiQloud platform. 40

6.3 Relations between the UbiQloud modules and requirements. . 43

xi

6.4 Example of using the UbiQloud APIs for pushing the location
information of a user. 44

6.5 Secure communication with the UbiQloud RESTful API. . . . 47

6.6 Six steps for Social Login through UbiQloud. 52

7.1 FeedThroat UI views in iOS application. 54

7.2 FeedThroat retailer view in the Web application. 55

7.3 InView UI views in Android and iOS devices. 57

8.1 Benchmark results for a single request response time against
the client interface of the single and scaled UbiQloud with 50
concurrent users and 10000 requests. 63

8.2 Benchmark results for a single request response time against
the sensor interface of the single and scaled UbiQloud with 50
concurrent users and 10000 requests. 64

8.3 Requests per second served during the tests. 66

xii

Listings

2.1 Minimal message stanza. 7

2.2 Message stanza with all attributes. 7

2.3 Initializing a WebSocket object with JavaScript. 9

2.4 Example of a REST URI. 12

2.5 Example of the JSON representation of a resource. 12

2.6 Example of the XML representation of a resource. 12

2.7 Example of using the W3C Geolocation API with JavaScript. 14

6.1 Example of the JSON representation of a resource 46

6.2 Example of the XML representation of a resource 46

6.3 Example of an XMPP publish/subscribe message. 50

6.4 Example of embedding the UbiQloud Social Login widget. . . 52

8.1 Example of an Apache Bench script. 62

8.2 Example of an Apache Bench console output. 62

xiii

Chapter 1

Introduction

Over the years, the World Wide Web (Web) has evolved from a simple system
for sharing static documents to a social and dynamic application platform [1].
According to Mikkonen and Taivalsaari [2], Web applications have numerous
benefits in comparison to binary end-user software, such as instant, world-
wide deployment; end-user independent upgrades; and platform independent
access to data.

As the Web has evolved, different terms have been introduced to describe the
current and future state of the Web. Murugesan [3] has divided the Web evo-
lution into four distinct generations, as follows: Information-centered (legacy,
Web 1.0), People-centered (current, Web 2.0), Machine-centered (upcoming,
Web 3.0), and Agent-centered (future, Web 4.0). At the beginning (Web
1.0), the Web was a platform for sharing static documents. The current
People-centered Web (Web 2.0) emphasizes Social Media and has somewhat
migrated the content providers and the content consumers to a single group
of Web users. The next generation (Web 3.0) emphasizes machine to ma-
chine communication and makes the Web more context-aware and collabo-
rative platform through data and device integration (i.e., the Web of Things,
WoT). The Agent-centered generation sees the Web evolving to an ubiquitous
environment seamlessly integrating both human and machine intelligence.

In addition to the evolution of the Web, the ways of interacting with Web
applications have also changed drastically. Traditionally, the Web was ac-
cessed from a personal computer via a Web browser and the applications were
controlled through standard input devices, such as a keyboard or a mouse.
Nowadays, the Web can be accessed with numerous ways with an increasing
range of different devices (e.g., smartphones and tablets) and input methods,
such as touch. These changes have introduced new requirements as well as

1

CHAPTER 1. INTRODUCTION 2

problems for Web applications and the Web itself [4]. Users and devices are
connected to the Web all the time and everywhere. In addition, data needs
to be (1) up-to-date (updates pushed in real-time), (2) context-aware, and
(3) personalized.

First of all, the problem is that in the Web, the communication has been
primary relying on pull-based protocols (e.g., HyperText Transfer Protocol,
HTTP [5]), where client always needs to request (pull) the data from a
server (i.e., the server cannot push updates not specifically requested by the
client). The pull-based approach is not sufficient enough for the near real-
time requirements of the modern Web applications [6].

Second of all, Web application data needs to be accessed and updated from
different devices and with different input methods [4], and thus, it is not
sufficient enough to provide a single Web User Interface (UI) for interact-
ing with the application. The application needs to provide an Application
Programming Interface (API) for accessing and updating the data in differ-
ent formats with different access rights (i.e., user specific data and public
data). Furthermore, as more and more physical devices are connected to the
Web, the data should be accessible in formats understandable to both human
and machine consumers (e.g., HyperText Markup Language (HTML) [7] for
humans and Extensible Markup Language (XML) [8] or JavaScript Object
Notation (JSON) [9] for machines).

Third of all, as Web applications are becoming more social and more con-
nected with other applications and physical devices, the complexity of the
application development increases. Developing a Web application without
any API dependencies is already a complex task as is [10], but developing
and maintaining a mashup application increases the complexity even more.
Firstly, the application developer needs an implementation for each of the
APIs used and secondly, the developer needs to keep track of changes in
third-party APIs to maintain a fully functional application.

This Thesis focuses on addressing the aforementioned issues by presenting
a powerful and scalable cloud-based platform, UbiQloud, for implementing
real-time, context-aware, social and platform independent Web 3.0 applica-
tions. The platform allows developers to integrate physical devices to the
system; use existing social media services for user management, collabora-
tion, and sharing through unified APIs; and access as well as publish data
in real-time via modern push-based protocols. The services provided by the
platform can be divided into four distinct categories (i.e., server push, WoT,
positioning, and social media) as illustrated in Figure 1.1.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Service categories of the designed platform.

1.1 Organization of the Thesis

The rest of the Thesis is organized as follows. Chapter 2 covers the technical
and conceptual background information relevant to the topic at hand. In
Chapter 3, a state-of-the-art review of related research and existing imple-
mentations is presented. Next, the research aims, questions, scope, and set-
tings are introduced in Chapter 4. Then, the requirements for the platform
are presented in Chapter 5. Chapter 6 covers the proof-of-concept imple-
mentation of the platform, and Chapter 7 gives an overview of the sample
applications developed on top of the platform. In Chapter 8, the evalua-
tion tests are presented, and the results are analyzed and discussed. Finally,
Chapter 9 concludes the Thesis.

Chapter 2

Background

In this chapter, an introduction to the concepts and technologies relevant to
this Thesis is given. The first section describes the basics of server push and
gives an overview of modern server push technologies, including XMPP and
WebSocket. Then, the concept of the Web of Things (WoT) is presented
in detail, followed by the description of technologies and problems in posi-
tioning. Next, the social media and Social Login are covered, and lastly the
basics of cloud computing models are introduced.

2.1 Server Push

HyperText Transfer Protocol (HTTP) [5], which is the basis of communication
on the Web, is based on the request/response paradigm. This means that
all HTTP-based communication is based on request/response pairs always
initiated by the client. After each response, the connection is closed and a
new request must be made in order the receive new data. The server needs to
wait that the client requests new data, before it can be sent to the client. As
the Web has evolved from a simple document sharing system to a dynamic
application platform, the pull-based technique is no longer sufficient to fulfill
the requirements of modern Web applications [6].

To overcome the real-time limitations of HTTP, servers need to be able to
push data to the clients. Server push is not a protocol like HTTP but a
paradigm for techniques allowing robust communication between clients and
servers. Regardless of the implementation, the common factor in all server
push systems is the ability to push changes through permanent channel from
the server to the client as soon as the changes occur on the server [6]. In

4

CHAPTER 2. BACKGROUND 5

other words, server push allows clients to utilize real-time data channels from
a server to a client in parallel with the traditional information pull. Figure 2.1
demonstrates the difference between a push-based and a pull-based system.
Even though, the figure shows two different clients, they could also be the
same client utilizing both techniques. In addition, the permanent connection
between client and server can be either one-way or two-way channel (i.e.,
data can be sent only from server to client or both ways).

Client Client

Server Push Client Pull

Server

Request

Response

Request

Response

Initialize Channel

Data

Data
Data

Permanent Connection

Figure 2.1: Comparison between a push-based and pull-based interaction
model.

2.1.1 Publish/Subscribe

Publish/subscribe is an architecture in which the information is collected
from a number of sources (publishers) and delivered to a number of interested
consumers (subscribers) in an anonymous and asynchronous manner. In a
publish/subscribe system, a publisher(s) publishes data in a node(s) and the
data is then pushed to all subscribers of that node, if any. A publisher does
not need to know the identities of the subscribers or wait for subscribers
requests. The data is simply multicasted from a publisher to a number of
subscribers in real-time. [11] Figure 2.2 illustrates the interaction model
between publishers and subscribers in a publish/subscribe system. In the
figure, there are two publishers pushing weather information to four nodes.
One of the nodes is used by both of the publishers and the other three is
used by a one publisher only. There are also three clients subscribed to a
number of nodes. One of the nodes (Helsinki Weather) has no subscribers,
but new data is still pushed to it because the publisher is not aware of the
subscribers.

CHAPTER 2. BACKGROUND 6

Figure 2.2: The publish/subscribe interaction model.

2.1.2 XMPP

Extensible Messaging and Presence Protocol (XMPP) [12] is an XML-based,
application-level protocol for exchanging structured data between any net-
work entities in near real-time. XMPP was originally developed under the
name Jabber in the Jabber open-source community for instant messaging
(IM) and presence applications, such as chats with authenticated users [13].
Later, the core of the Jabber protocol was revised and formalized by the
Internet Engineering Task Force (IETF)1, and published under its current
name XMPP in their Request for Comments (RFC) series as RFC 6120 [14]
and RFC 6121 [15]. In addition, the XMPP Standards Foundation (XSF)2

has developed and published over 300 XMPP Extension Protocols (XEPs)3

to support a wide variety of application scenarios, such as XEP-0206: XMPP
Over BOSH, which is an HTTP binding for XMPP communications [16] and
XEP-0060: Publish-Subscribe [17] for publish/subscribe systems.

Similar to the Web, also XMPP is based on a decentralized client/(server
architecture. When an XMPP client wants to start a session with an XMPP
server, it opens an XML stream over a long-lived connection (e.g., Trans-

1Internet Engineering Task Force, http://www.ietf.org/
2XMPP Standards Foundation, http://xmpp.org/about-xmpp/xsf/
3XMPP Extension Protocols, http://xmpp.org/xmpp-protocols/xmpp-extensions/

CHAPTER 2. BACKGROUND 7

mission Control Protocol, TCP [18]) to the server. Next, the server opens
another XML stream to the client, resulting in two XML streams over a
single TCP socket, one in each direction. Figure 2.3 illustrates the XMPP
interaction model between the client and the server.

Figure 2.3: The XMPP-based client/server interaction model.

After the connections have been established, each entity can asynchronously
exchange an unbound number of special XML snippets over the streams.
These special XML snippets, called XML stanzas, define the basic units of
communication in XMPP and are as follows: message, presence, and iq
(Info/Query). The Message Stanza, which is the basis of client to client
message transfer in XMPP, consists of a root element called <message> and
a child element called <body>, the latter being a wrapper for the actual
message payload. In addition, the root element contains 1-5 attributes that
are: to (mandatory), from, id, type, and xml:lang. Listings 1 and 2 show
examples of an XMPP message with a minimum and maximum amount of
attributes.
<message to="{username}@{domain}">

<body>{payload}</body>
</message >

Listing 2.1: Minimal message stanza.

<message to="{username}@{domain }/{ resource}"
from="{username}@{domain }/{ resource}"
id="{messageId}"
type="{chat|error|groupchat|headline|normal}"
xml:lang="{xmlLang}">
<body>{payload}</body>

</message >

Listing 2.2: Message stanza with all attributes.

CHAPTER 2. BACKGROUND 8

Even though XMPP provides a rich set of features and is a widely used
protocol for real-time communication, it is hardly used on the traditional
Web environment. There is two main reasons for this: (1) Web browsers do
not provide native XMPP support and (2) regular XMPP communication is
usually blocked by firewalls and proxies. Nevertheless, XMPP can be used in
the Web with push techniques (e.g., BOSH [19]) supported by Web browsers.

2.1.3 WebSocket

WebSocket [20] is a new protocol for real-time communication on the Web.
The basic idea of the protocol is to provide a full-duplex, bi-directional com-
munication channel over a single TCP socket (cf. Figure 2.4). The Web-
Socket protocol can be used on a standard Web environment and by default
it uses the same ports as the HTTP communication. Although WebSocket
uses the same underlying Web infrastructure, it has very little to do with
the HTTP protocol. The only similarity is that the connection is established
with an HTTP Upgrade request. After the connection is established, there is
a permanent communication channel between the client and server through
out the session (i.e., no need to establish a new connection per request basis
as in the HTTP). WebSocket is designed to be as raw as possible to minimize
the network overhead and to allow more complex protocols, such as XMPP
[21], to be used on top of it.

Figure 2.4: The WebSocket-based client/server interaction model.

In addition to the WebSocket protocol, there is a WebSocket API [22] de-
signed in conjunction with the protocol by the World Wide Web Consortium
(W3C). The WebSocket API provides a JavaScript interface through which
a client can interact with the browser’s implementation on WebSocket.

Listing 2.3 shows an example of initializing a WebSocket object and attaching

CHAPTER 2. BACKGROUND 9

event listeners to it. On the first line, the WebSocket object is initialized
with two parameters: (1) the URL of the connection endpoint, and (2) the
protocol (e.g., XMPP) used on top of the WebSocket connection. The URL
format is otherwise similar to HTTP, but it uses ws(s) instead of http(s)
as the URL schema. The protocol parameter is optional, but can be used for
example in the server side to only accept connections using certain protocols.
The rest of the example shows how to listen when the connection is opened,
an error has occurred, or a message is received. Although the interface is
designed for JavaScript, it can be implemented in other languages as well.
var socket= new WebSocket("ws:// example.com", "xmpp");
socket.onopen = function () {

alert("WebSocket Open!");
};
socket.onerror = function () {

alert("WebSocket Error!");
};
socket.onmessage = function (data) {

alert("WebSocket Message: " + data);
};

Listing 2.3: Initializing a WebSocket object with JavaScript.

2.2 Internet of Things / Web of Things

According to Krannenburg [23], the Internet of Things (IoT) is an informa-
tion architecture that extracts data from a network of devices and objects.
On the other hand, IoT semantically is

"a world-wide network of interconnected objects uniquely addressable, based
on standard communication protocols." [24]

In short, IoT is a goal in which things — that is, physical objects or devices
— constitute a network capable of communicating and interacting with each
other.

The Web of Things (WoT) can be viewed as a step towards reaching the
Internet of Things vision and it basically means using the Web and Web
technologies as means of connecting smart objects with the existing Web en-
vironment [25]. Using Web standards to interconnect objects raises the prob-
lem that in order to establish a connection, the object needs to understand
these standards. In the future, it is possible that most smart objects have

CHAPTER 2. BACKGROUND 10

an embedded web server, but for constrained objects we need a mediator,
referred as a Smart Gateway [25], that is capable of communicating with the
object through proprietary/non-Web protocols and with the outside world
through Web-based protocols. Figure 2.5 demonstrates a situation in which
an Radio Frequency Identification (RFID) reader capable of communication
via TCP is exposed to a Web application through a Smart Gateway.

Smart Gateway

RFID Reader Web Application

TCP HTTP

Figure 2.5: A Smart Gateway as mediator between an RFID reader commu-
nicating with TCP protocol and a Web application.

2.2.1 Smart Object

Kortuem et al. [26] define a Smart Object as autonomous object that pos-
sesses sensing, processing, and networking capabilities. On the other hand,
a Smart Object can be considered as an object with a unique addressing
schema capable of interacting and cooperating with each other [27]. Based
on these definitions, a Smart Object can be something as simple as a plain
object equipped with a RFID tag or something ’smarter’, such as a Wireless
Sensor Network (WSN), an embedded device, or a smartphone. All in all,
the key thing is that the object can be uniquely identified and is capable of
autonomous interaction with other objects through a medium, such as the
Web.

2.2.2 Smart Space

According to Kawashima et al. [28], a Smart Space is a physical environment
equipped with sensing devices and actuation devices for contextual informa-
tion collecting and context-aware responses. In general, a Smart Space is
a space capable of autonomous, context-aware actions based on condition
events generated by interconnected Smart Objects. For example, a smart
home could autonomously adjust lightning and heating based on weather

CHAPTER 2. BACKGROUND 11

conditions (e.g., summer day or winter night), or a car could adjust seats
and mirrors based on the driver identified by the car key.

2.2.3 Representational State Transfer

In order to connect physical objects as part of the Web, there needs to
be a way to represent and access these objects on the Web environment.
One viable method [29] is to utilize a concept called Representational State
Transfer (REST) [30]. REST is a client/server architecture, in which a server
contains resources with unique identifiers. When a client requests a resource
from the server, the server responds with a representation of that resource.
When the client moves from one representation to another, it also moves to
a different state. The REST architectural style is based on six principles as
follows:

Uniform Interface
Implementations are decoupled from the services they provide,

Client/Server
There is a clear separation (i.e., uniform interface) between clients and
servers,

Stateless
No client context is stored on the server,

Cache
Responses must be labeled as cacheable or non-cacheable,

Layered System
A client cannot tell whether it is connected to the end server or to an
intermediary, and

Code-On-Demand (Optional)
Servers are able to extend client functionality by transferring executable
code (e.g., JavaScript).

HTTP-based Web services that follow the principles of REST (potentially
excluding the Code-On-Demand constraint) are referred as RESTful Web
services. In RESTful Web services, all resources are identified with a Unified
Resource Identifier (URI) and accessed with common HTTP methods GET,
POST, PUT, and DELETE.

CHAPTER 2. BACKGROUND 12

• GET is for retrieving a resource,

• POST is for creating a resource without existing identifier,

• PUT is for creating or modifying a resource with known identifier, and

• DELETE is for removing a resource.

A representation of a resource can vary based on the request (e.g., HTML for
a Web browser and JSON for a server). For example, consider a Smart Space
environment where users can control lamps through a RESTful interface.
Each lamp is identified with an unique URI as follows:

http:// example.com/lamp/{ identifier}

Listing 2.4: Example of a REST URI.

The {identfier} is a unique property that distinguishes one lamp from an-
other. So executing the following request:

HTTP GET: http://example.com/lamp/3

could result the following response in JSON:
{
"lamp" :

{
"id" : 3,
"on" : true
}

}

Listing 2.5: Example of the JSON representation of a resource.

or in XML:
<lamp>

<id>3</id>
<on>true</on>

</lamp>

Listing 2.6: Example of the XML representation of a resource.

2.3 Positioning

Positioning objects can be achieved with a wide variety of technologies, in-
cluding Global Positioning System (GPS), Global System for Mobile Com-
munications (GSM), Wireless Local Area Network (WLAN), and Bluetooth.

CHAPTER 2. BACKGROUND 13

The accuracy of each technology is highly dependable of the environment it
is used and there is no single technology capable of accurate positioning both
indoors and outdoors. For example, GPS is capable of positioning objects
with a 10 meter accuracy most of the time outdoors, but is almost unusable
indoors because it requires a line of sight to the satellites. [31]

Figure 2.6: Terminal-based and network-based positioning systems.

Positioning systems can be divided into two categories [31], Terminal-based
systems and Network-based systems, as illustrated in Figure 2.6. In the
Terminal-based systems, the location is calculated on the terminal (e.g.,
smartphone) itself by using radio measurements and predefined antenna lo-
cations (e.g., GPS satellite or WLAN base stations). The Network-based
positioning systems, on the other hand, use a dedicated positioning server
attached to a network of antennas to calculate the terminal location. The
latter is usually more accurate since the positioning server possesses more
fine grained data of antennas. However, the solution does not scale well,
because it relies on a fixed network of antennas.

While outdoor positioning is achieved relatively easy with GPS, indoor po-
sitioning is much harder in general. The biggest issue in indoor positioning
is usually the physical facility because these facilities often contain places
hard or impossible to detect using positioning technologies (e.g., no line of
sight, reflecting surfaces, and thick walls). [32] These obstacles can be cir-
cumvented by installing enough hardware, but it is often too expensive and
the solution is tied to a particular location. At the moment, the most accu-

CHAPTER 2. BACKGROUND 14

rate indoor positioning systems (e.g., Skyhook4) use a hybrid approach by
combining multiple positioning technologies.

To ease the development of location-aware applications, W3C has proposed
a standard [33] for a Geolocation API. The idea is to provide a standardized
interface for developers to access location data. W3C does not guarantee the
accuracy of the location data gained through the API, since the device imple-
menting the API is responsible for providing the data, and the technologies
for gaining location data vary as stated above. The interface itself is quite
simple. It extends the Navigator object with a geolocation attribute, which
in turns implements the Geolocation interface that has methods for gaining a
current position, watching position changes, and canceling a watch. Listing
2.7 illustrates the use of the Geolocation API with JavaScript. In the exam-
ple, two location related functions are executed at application startup. First,
the current location is determined, and second, a listener that continuously
watches the position is initialized.
window.onload = function () {

var geoprovider = navigator.geolocation;
geoprovider.getCurrentPosition(function(position) {

var lat = position.coords.latitude;
var lon = position.coords.longitude;
alert("Started from location: " + lat + " " + lon);

});

geoprovider.watchPosition(function(position) {
var lat = position.coords.latitude;
var lon = position.coords.longitude;
alert("Current location: " + lat + " " + lon);

});
};

Listing 2.7: Example of using the W3C Geolocation API with JavaScript.

2.4 Social Media

Mayfield [34] describes social media as a group of online media sharing similar
characteristics, such as participation, conversation, and community. Based
on the characteristics, he has divided the social media into six distinct groups
as follows: social networks, blogs, wikis, podcasts, forums, and content com-
munities. As described in Chapter 1, the current phase (Web 2.0) in the
Web evolution is People-centric and social media is one massive example of

4Skyhook, http://www.skyhookwireless.com/

CHAPTER 2. BACKGROUND 15

that (e.g., Facebook had 526 million active daily users on average in March
20125). In general, social media has provided the ability for the content con-
sumers to become content providers on the Web and allowed users to build
themselves a digital identity that can be used in the digital world.

2.4.1 Social Login

Identifying users is a vital part of social media. As social media has became
such a popular phenomena, the number of social media applications and
social networks has increased drastically [35]. Using different credentials in
every social service is a major problem for both the users and developers of
social Web applications. From a user’s point of view, it is tedious to manage
multiple different user accounts that often leads to security risks because
same passwords are used in many services. From a developer’s point of view,
creating a new social network has became harder, since users are not willing
to create yet another user profile. [36]

The problem of managing multiple user accounts has inspired a number of
solutions to reduce the need of creating a new account for every social me-
dia service. The first solution was to use an ID management system (e.g.,
OpenID6), which allowed a user to authenticate to a Web service through a
third-party authentication provider [36]. OpenID-like systems do solve the
problem of managing credentials for multiple services, but these systems are
only focused on authentication and lack other vital aspects of social media,
such as creating and maintaining social graphs (e.g., friend connections). To
allow a centralized Social Login — that is, authentication and authorization
(e.g., OAuth7) — many of the popular social media services have started to
provide services that allow developers to use their service both as an authen-
tication provider and as a profile management system [37]. In other words,
through Social Login services developers are able to utilize the existing profile
and social graph of a user, which eliminates the need for a developer to pro-
vide a custom profile management system, and the need for a user to create
a new profile and to build a new social network. Figure 2.7 illustrates the
workflow of the Social Login with Facebook. First, the user needs to login
to Facebook, and second, the user needs to give permissions to a third-party
application to use the user’s profile data.

5Facebook Key Facts, http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
6OpenID, http://openid.net/
7OAuth, http://oauth.net/

CHAPTER 2. BACKGROUND 16

Figure 2.7: Social Login steps with Facebook: authentication and application
authorization.

2.5 Cloud Computing

Cloud computing is a broad term used to describe different things in different
contexts. Böhm et al. [38] discuss about the problems of giving a precise
definition for cloud computing. In their research, they have conducted a list
of common characteristics for cloud services, and based on that they have
defined cloud computing as an

"IT deployment model, based on virtualization, where resources, in terms
of infrastructure, applications and data are deployed via the internet as a
distributed service by one or several service providers. These services are
scalable on demand and can be priced on a pay-per-use basis."

CHAPTER 2. BACKGROUND 17

In comparison, Mirashe and Kalyankar [39] define cloud computing as an
inter-connected cluster of computers and servers hosting applications and
files accessible through the Web . Cloud computing can be viewed from the
hardware point of view (the infrastructure that enables the cloud computing)
or from the software point of view (the services provided as cloud services). In
general, cloud computing means that applications and data used to be stored
locally on a single computer are now stored in a scalable remote location,
which can be accessed through the Web.

Platform-as-a-Service

Infrastructure-as-a-Service

Software-as-a-Service

Fully customizable
computing environment
in the cloud.

Controlled platform for developing and
deploying applications in the cloud.

Applications hosted in the
cloud and used over the Web.

Layer
of

Abstraction

Figure 2.8: Cloud computing models.

As cloud computing as a term has maturated, cloud-based services have been
divided into different categories. The most common division include three
categories as follows:

1. Infrastructure-as-a-Service (IaaS),

2. Platform-as-a-Service (PaaS), and

3. Software-as-a-Service (SaaS). [40]

The categories can be viewed as the layers of abstraction in cloud com-
puting [38] as illustrated in Figure 2.8. IaaS refers to a service providing
a whole computing infrastructure including computational resources, data
storage, and communication. Virtual Machines (e.g., Amazon Elastic Com-
pute Cloud, Amazon EC28), are good examples of IaaS. Where IaaS offered a

8Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/

CHAPTER 2. BACKGROUND 18

fully controllable infrastructure, PaaS offers a scalable but restricted platform
to develop and possibly deploy applications. The platform usually provides
APIs, authentication services, communication services, libraries and UI com-
ponents for application development and often a runtime environment for
application deployment. Google App Engine9 is a widely used example of
PaaS. The topmost category, SaaS, refers to a service providing desktop-like
applications through the Web. A good example of SaaS is Microsoft Office
36510 that provides a Web-based version of its widely used Office software
suite.

9Google App Engine, https://developers.google.com/appengine/
10Microsoft Office 365, http://office365.microsoft.com

Chapter 3

State-of-the-Art

In this chapter, the concepts and technologies discussed in Chapter 2 are
covered in more detail by introducing current research activities and existing
services related to each topic. First, research concentrating on platforms for
WoT and mobile applications are covered. Then, existing services offering
features from one or many of the topics covered so far (i.e., server push, WoT,
positioning, and Social Login) are introduced.

3.1 Related Research Activities

The Web of Things can be considered as a relatively new concept in research,
although, for example, Ljungstrand et al. proposed a way to link physical
objects to the Web over a decade ago [41]. However, the older research mostly
concentrated on creating a virtual representation of real-world objects rather
than actually integrate smart objects as part of the Web.

Recently there has been more research on creating solutions capable of con-
trolling smart objects through Web-based protocols. For example, there has
been a proposal for a RESTful architecture for the Web of Things [29] and
a publish/subscribe-based solution for RESTful messaging for devices [42].
Both of these solutions provide a way to control smart objects, represented
as resources, through a RESTful interface with common HTTP methods.

Blackstock et al. [43] proposed a MAGIC Broker (MB2) architecture for the
Internet of Things. The MB2 is a publish/subscribe architecture based on
the OSGi framework. Blackstock et al. also discuss how the MB2 architecture
can be interconnected to social web services. They used available social Web
APIs and created, for example, Facebook applications for real-world objects.

19

CHAPTER 3. STATE-OF-THE-ART 20

In other words, the MB2 acts as a gateway between social Web applications
and real-world objects.

Kawashima et al. have implemented a Gateway-Based Ubiquitous Platform
for Smart Space (GUPSS), which is a general platform for Smart Spaces
consisting of Smart Space gateways, Smart Space applications and a Smart
Space server [28]. GUPSS focuses more on providing a centralized server to
manage Smart Spaces rather than exposing smart objects to the Web.

Springer et al. [44] presented Mobilis, which is a middleware platform for
collaborative mobile applications. The platform provides a set of collabo-
rative services that are Context Management service, Geolocation service,
Multimedia Sharing service, Group Chat service, Collaborative Drawing ser-
vice, Group Management service, and Multimedia Tagging service. The com-
munication architecture of the platform is based on the publish/subscribe
paradigm and realized using the XMPP protocol and related XEPs. Mobilis
can be used [45, 46] for developing collaborative location-based Android1 mo-
bile applications that integrate existing social media networks. For extending
the support of Mobilis platform beyond Android-based applications, Jansen
[47] has introduced a Web gateway for the platform that supports BOSH for
real-time communication between Mobilis and Web-based applications.

3.2 Existing Services

This section provides an overview of existing commercial platforms providing
services for server push, WoT, positioning, and social media integration. The
separation of the platforms is made based on the core services provided,
although some platforms would fit under multiple topics.

3.2.1 Server Push Services

As mentioned in Section 2.1, the future of the Web is likely to be more and
more push-based rather than pull-based. Especially the maturing HTML5
[7] and associated specifications, along with WebSocket implementations in
Web browsers, have generated new kinds of services relying on real-time data.
These new kinds of services vary from asynchronously updated user interfaces
and simple chats to cloud-based services offering server push to third-party
applications.

1Android, http://www.android.com/

CHAPTER 3. STATE-OF-THE-ART 21

Pusher [48] is one of the WebSocket-based services offering APIs to add real-
time functionality to third-party applications. Pusher allows developers to
create authenticated publish/subscribe channels for real-time event notifi-
cations and a REST-based publishing mechanism. According to Pusher’s
website, there are already several well-known services using its push service,
including Groupon2 and Slideshare3.

Many Web applications have also added real-time communication features as
part of their applications. For example, Facebook [49] has also added real-
time functionality, including a chat, as part of their service. In addition to
using the chat through an official Facebook application (e.g., Web applica-
tion or iPhone application), there is also an API for third-party applications
willing to access the chat. The chat API4 enables integration of the Facebook
chat to other instant messaging services through an XMPP gateway. Figure
3.1 shows the Facebook chat in the native Facebook iPhone application and
in the iChat desktop application.

Figure 3.1: Facebook chat accessed through the official Facebook iPhone
application and in the iChat desktop application.

2Groupon, http://www.groupon.com
3Slideshare, http://www.slideshare.net
4Facebook Chat API, https://developers.facebook.com/docs/chat/

CHAPTER 3. STATE-OF-THE-ART 22

3.2.2 Web of Things Services

Many kinds of services can be consider WoT related. The main thing in
common with all the services provided under the term is that there are ob-
jects connected to the Web. One of the most simple forms of WoT-based
services is an RFID platform capable of identifying RFID tags. For example,
LogicAlloy’s ALE Server [50] is an RFID middleware for integrating RFID
hardware with existing systems. It has support for the leading RFID readers
and tag standards. In addition, it provides a SOAP [51] API for an easy in-
tegration with pre-existing systems. Figure 3.2 demonstrates the basics of an
RFID middleware capable of communicating with RFID readers, processing
RFID tag data, and mediating that data through APIs.

Figure 3.2: Example of extending an existing system with an RFID middle-
ware.

Cosm [52] is a Web-based platform, to which users can connect different
kinds of sensors and the sensor data is then pushed into dedicated channels
in real-time. The main goal of Cosm is to facilitate the development of IoT
applications by acting as a data broker between smart objects and applica-

CHAPTER 3. STATE-OF-THE-ART 23

tions. It provides push-based and pull-based APIs for accessing the data in
different formats (e.g., XML and JSON) as well as ready-made applications,
gadgets, and tools leveraging its APIs.

3.2.3 Positioning Services

There is a wide variety of platforms on the Web (e.g., Google Maps5 and
Bing Maps6) that offer services for developing location-based applications.
Common features of these services include map tiles, geocoding (converting
textual data, such as street address, to coordinates), and reverse geocoding
(converting coordinates to textual data, such as street address). These plat-
forms rely on internal map data and external input data (e.g., an address
typed in by a user or a latitude/longitude pair captured by a smartphone
through GPS), which makes these services a viable solution for outdoor,
location-based applications where it is enough to position within a ten meter
radius.

As stated before, it is much harder to provide indoor positioning services,
because usually there is no publicly available maps of indoor locations and the
current positioning solutions are not accurate enough indoors. However, to
overcome the problems of indoor positioning systems, new kinds of platforms
using hybrid positioning techniques and user generated data have emerged
on the Web. For example, Qubulus [53] is a platform where developers can
import indoor maps, fingerprint (cf. Figure 3.3) a physical location with a
dedicated recording tool, and enable radio mapping based indoor positioning
in that location. Google has also started7 to add indoor maps and indoor
location services to their positioning platform. These kind of approaches
make it possible to develop accurate, location-based applications for indoor
environments. However, the downside is that the developer needs map every
location separately.

5Google Maps Developer Site, https://developers.google.com/maps/
6Bing Maps Developer Site, http://www.microsoft.com/maps/developers/web.aspx
7Google’s announcement of indoor maps, http://googleblog.blogspot.com/2011/11/

new-frontier-for-google-maps-mapping.html

CHAPTER 3. STATE-OF-THE-ART 24

Location fingerprints
(i.e., position in a building mapped to a coordinate system)

Figure 3.3: Position fingerprints on top of an indoor map.

3.2.4 Social Media Gateways

The most popular social media services (e.g., Facebook8 and Twitter9) offer
a Social Login (cf. Section 2.4.1) to third-party applications. From a devel-
oper’s point of view, the problem is that the structure of the APIs and the
ways to interact with those APIs differ per social media service basis, mean-
ing that if a developer wants to support a variety of social media services,
each of the APIs need a separate, and potentially really different, implemen-
tation. To overcome the problem of the different implementations of the
Social Login systems, some service providers have started to provide Social
Media Gateways that offer an unified mechanism to integrate multiple social
media services to an application.

Gigya [54] and Janrain [55] are both services that act as a gateway between
an application and a range of social media services. Both Gigya and Janrain
provide user management, JavaScript-based widgets (common social media
activities, such as login and sharing, through a UI) that can be embedded to
a Web application, and an unified API-level access to social media services.
Figure 3.4 shows a Social Login widget10 provided by Janrain.

8Facebook, http://www.facebook.com/
9Twitter, https://twitter.com/

10Janrain Engage Social Login widget, http://janrain.com/wp-
content/uploads/2012/03/Janrain-Engage-01.png

CHAPTER 3. STATE-OF-THE-ART 25

Figure 3.4: Janrain Engage Social Login widget.

For any application developer that wishes to integrate one or multiple social
media services into their application, Social Media Gateways provide a fast
and relatively easy way to reach a massive amount of users and viable profile
data associated to those users.

Chapter 4

Research Aims

In this Chapter, the research settings of this Thesis are covered. First, the
research objectives and scope are introduced. Then, the research problems
are presented and the research questions are formulated. Last, the methods
used for the research are demonstrated.

4.1 Research Objectives and Scope

The main research objective of this Thesis is two-fold. Firstly, the objective is
to research the current solutions for controlling and creating Smart Spaces as
well as the possibilities of integrating existing devices and objects as part of
Smart Space controlling platforms. Secondly, the objective is to implement
a proof-of-concept cloud-based platform for developing social Smart Space
applications. In addition, the usefulness and the performance of the platform
is tested by developing two sample applications on top of it as well as by
measuring the performance of the platform with a series of automated test
runs.

Two kinds of premises have been used as a basis for Smart Spaces in this re-
search, although the platform is designed for applications used in any kind of
Smart Space. The primary Smart Space context of this research is a shopping
center (Iso Omena1 shopping center for user tests) and the secondary Smart
Space is a living lab at Aalto Design Factory2. The requirements analysis
for the platform is based on the shopping center as a Smart Space and both
contexts are used for the evaluation of the platform. The shopping center

1Iso Omena, http://www.isoomena.fi/
2Aalto Design Factory, http://aaltodesignfactory.fi/

26

CHAPTER 4. RESEARCH AIMS 27

is considered as an environment complex enough to cover a wide variety of
Smart Space application scenarios, but the requirements may not be fully
transferable to all Smart Space contexts.

4.1.1 4D-Space Project

This Thesis has been made as part of the research conducted in the 4D-Space
[56] project under theMultidisciplinary Institute of Digitalisation and Energy
(MIDE) research program at the Aalto University. The aim of the 4D-Space
project is to research and implement novel retail services in collaboration
with both customers and retailers. Given the research goals of the project,
the cloud-based platform developed within this Thesis focuses on providing
facilities for retail-centric services, although it is designed to scale outside
the retail context.

4.2 Research Questions

As demonstrated in Chapter 3, there is a wide variety of platforms providing
services for integrating real-time communication, physical objects, position-
ing, and social media as part of a Web application. However, most of these
platforms offer features related to only one topic (e.g., platform independent
server push or social media integration) meaning that in order to utilize the
functionality of several platforms, a developer needs an implementation for
each platform separately and is dependable on several third-party services.
To study and overcome this problem, the main research question of the The-
sis has been formulated as follows:

Q1: How to integrate server push, Smart Object integration, posi-
tioning, and Social Login services under a single cloud-based
platform?

In addition to the main research question, this Thesis aims to give an answer
to other related questions as well. These secondary research questions are:

Q2: How to transform indoor environments to Smart Spaces by
utilizing the existing plain and smart objects?

CHAPTER 4. RESEARCH AIMS 28

Q3: How to seamlessly integrate digital services as part of the
everyday physical activities?

The main research question of the Thesis aims to solve a more general prob-
lem from the service and developer’s point of view, whereas the secondary
research questions focus more on the broad concepts (e.g., WoT and ubiqui-
tous environments) of the Web 3.0 generation. In other words, the secondary
research questions focus on bridging the gap between the current and the
next generation of the Web by discovering ways to interconnect constrained
objects with Web technologies and finding out ways for an environment to
autonomously adjust as well as perform actions based on the changes and
events in that environment. By giving tools for the developers to create social
applications that integrate digital and physical world with Web technologies,
potentially any environment could be transformed into a Smart Space.

4.3 Research Methods

The research strategy for this Thesis consists of five steps. First, a state-of-
the-art review of research, services, technologies, and best practices regarding
to the concepts of the current and the next generation of the Web (i.e., Web
2.0 and Web 3.0) is conducted. Second, a requirements analysis for the
platform is made by analyzing the results from the state-of-the-art review
as well as the results [57, 58] gained from the previous research in the 4D-
Space project. Third, a proof-of-concept prototype platform is designed and
implemented. Fourth, the usefulness of the platform is tested by creating
two sample applications, which are tested with real-world users. Last, the
performance of the platform is evaluated by running a series of automated
test runs in the laboratory environment.

Chapter 5

Platform Requirements

In order to find all the requirements for the platform, the Smart Space context
(the shopping center environment, cf. Chapter 4) was examined from three
aspects as follows:

• Terminals and devices,

• Users, and

• Objects.

Each aspect is covered in detail in the following sections. Then, the require-
ments derived from analyzing the aspects are compared against the results
obtained from empirical studies. Finally, the list of requirements for the
platform is conducted from the analysis.

5.1 Terminals and Devices

Nowadays, information should be accessible through a wide variety of devices.
Users possess private terminals, such as smartphones, tablets, and laptops;
and both indoor and outdoor environments are full of info kiosks, large in-
formation displays, and shared computers. For the requirement analysis, the
displays are divided into three categories:

29

CHAPTER 5. PLATFORM REQUIREMENTS 30

1. Public displays,

2. Semi-public displays, and

3. Private displays.

In order to support all the different display types (cf. above and Figure 5.1),
the platform should be accessible from all kinds of devices and should provide
information based on the context of use as well as based on the privacy level
of both the user (e.g., anonymous user or logged in user) and the display
(e.g., smartphone or public information display).

Public screens e.g., info kiosks

Semi-public e.g., public PCs

Private e.g., mobile

Figure 5.1: Different display types.

5.2 Users

Google’s division of Mobile Users [59] was used as a basis for analyzing
the users. Although, Google’s analysis focuses on mobile phone users and
not users in general, it fits well on the Smart Space context with a variety of
different terminals and dynamic user groups. According to Wellman, Google1

divides Mobile Users into three distinct categories that are:
1Google, http://www.google.com/about/company/

CHAPTER 5. PLATFORM REQUIREMENTS 31

1. Repetitive Now,

2. Urgent Now, and

3. Bored Now.

The Repetitive Now user type wants repetitive information from well-defined
sources regularly. For example, a user might check the latest news from
dedicated mobile applications from time to time. To satisfy the needs of
Repetitive Now users, the platform needs to provide access to information
with pull-based methods (i.e., the data must be stored and be accessible
later).

The Urgent Now user type wants relevant, personalized, and context-aware
information in real-time. For example, a customer in a hurry inside a shop-
ping center needs to know where is the nearest restaurant serving the food
she likes, and where is the friend she is supposed to eat with. In order to
fully serve the Urgent Now user type, the platform needs to be able to push
information in real-time, know the preferences as well as social connections
of a user (i.e., the social media profiles), and be able to locate the user both
indoors and outdoors. Traditional positioning methods do not work or are
not accurate enough indoors, so in order to provide indoor location informa-
tion, the service also needs to support the integration of different sensors to
track individuals and their movements.

The Bored Now user type does not need any specific information. This type of
a mobile user has some spare time and wants to be entertained. For example,
a user waiting for a bus has a couple of minutes and wants to play a game
with her mobile phone. In the context of this Thesis, the Bored Now user
type is considered the least important, because of the information-centric
nature of Smart Spaces.

In addition to the users/visitors of any space, there are also other stake-
holders, such as administrators of the space and employees (e.g., cleaners
and janitors). For these type of users, it is important that the space can
autonomously perform actions and signal conditions (e.g., open locks to re-
stricted areas when a valid identity card is shown or calculate and show the
number of free parking slots). To meet the needs of these users, the platform
must support the integration of various types of sensors in addition to the
sensors related to indoor positioning.

CHAPTER 5. PLATFORM REQUIREMENTS 32

5.3 Objects

Different environments, especially shopping centers, are full of different ob-
jects with pre-existing identifiers, such as Universal Product Codes (UPC) on
products and International Standard Book Numbers (ISBN) on books. To
provide a digital representation of these objects, the platform must recognize
objects based on different codes.

5.4 Verification of the Requirements

To verify the requirements with real shopping center users, three workshops
in the Iso Omena shopping center were organized to collect ideas and opinions
about the future of shopping centers [57, 58]. The workshops resulted to ap-
proximately 450 ideas. The majority of the ideas reflected the requirements
presented above. For example, the participants of the workshops wanted to
gain more information on products (e.g., carbon footprint) with their mobile
phones. They also felt that advertisements should be personal as well as
location-aware and the information should be aggregated to a single shop-
ping center UI. In addition, the customers hoped that there would be a
bi-directional channels between customers, retailers, and administrators to
share ideas and information. Furthermore, the participants also wished that
they could share information to other services, which is a common practice in
modern Web applications. Based on the above, the platform should also sup-
port aggregating information from various information sources and sharing
information to social media.

5.5 Requirements

Based on the workshops, state-of-the-art review, and requirements analysis,
a list of requirements (cf. Table 5.1) for the platform was conducted. Each
requirement is covered more thoroughly in the following sub-sections.

CHAPTER 5. PLATFORM REQUIREMENTS 33

ID Name Description

R1 RESTful API

The platform must provide ac-
cess to data in pull-based meth-
ods as well as provide representa-
tions and manipulation of physi-
cal objects through a uniform in-
terface.

R2 Server push
The platform must be able to
push data to clients in real-time
regardless of the client device.

R3 User profiles

The platform must be able to
identify users based on their ex-
isting profiles and other identi-
fiers as well as to provide infor-
mation on users preferences and
social connections.

R4 Positioning

The platform must be able to
provide and process location in-
formation both outdoors and in-
doors.

R5 Object recognition

The platform must be able to
identify objects based on dif-
ferent identifiers, such as bar-
codes or Near Field Communica-
tion (NFC) enabled tags.

R6 Sensor integration

It must be possible to integrate
different sensors to the platform
in order to facilitate Smart Spaces
and indoor positioning.

R7 Information aggregation

The platform must be able to
aggregate information from con-
nected applications, information
services, and social media.

R8 Social sharing
The platform must provide means
for sharing information to social
media.

Table 5.1: Requirements for the platform.

CHAPTER 5. PLATFORM REQUIREMENTS 34

5.5.1 R1: RESTful API

As stated earlier, some users (i.e., the Repetitive Now user type) wish to
access specific type of information on-demand, at a time most suitable to
them. These users know what they want and when they want it. To serve
these users, the platform should provide access to historical data through an
API. In addition, the physical objects need to be represented and accessed
in the digital context as well. To support these requirements, the platform
should provide an API-level access for the digital counterparts of physical
objects.

5.5.2 R2: Server Push

In comparison to the Repetitive Now type users, the Urgent Now type users
want context-aware information to be pushed to them at all times. These
users want their preferred information to be pushed to them even if they
are not actively concentrated on the topic of information at that particular
moment. In order to satisfy these users, the platform needs to be able to push
information in real-time, regardless of the context, end device, or location.
Furthermore, in the Smart Space context, some actions are autonomously
performed based on events triggered by Smart Objects. In order to function
seamlessly, the events have to be transmitted in real-time.

5.5.3 R3: User Profiles

To fulfill the requirements R1 and R2, the information provided should vary
per user basis. In order to provide personalized information, the platform
must provide user information (i.e., user profiles and social connections). In
addition, it is crucial for Smart Space environments to be able to separate
a user from another in order to adjust the space and perform actions based
on a particular user. To accomplish the above requirements, the platform
must provide the ability to integrate existing social media as well as custom
profiles to users (e.g., an NFC identity for performing actions within a Smart
Space).

CHAPTER 5. PLATFORM REQUIREMENTS 35

5.5.4 R4: Positioning

For Smart Spaces and location-based applications, it is vital to be able to
locate objects and people accurately. Positioning in a shopping center envi-
ronment is especially important because it is full of both indoor and outdoor
areas providing different kinds of services, some more relevant than others,
to a particular person. From a customer’s point of view, it is important
that both the customer and the services she is interested in are accurately
positioned. From an administrator’s point of view, it is important to be able
to track movements inside a space in order to spot which areas are more
crowded than others and to utilize that data in further planning. To satisfy
these requirements, the platform must provide accurate location information
of individual users both indoors and outdoors as well as the flow of people
inside the space.

5.5.5 R5: Object Recognition

In a Smart Space environment, objects must contain some kind of an identifier
so that these objects can be mapped to a correct digital representation. The
importance of identifying an object varies based on the characteristics of
it. Even with a plain object not capable of performing any autonomous
actions, it is valuable to have a digital representation. The representation
can be used to store information that cannot be embedded to the physical
representation, such as the carbon footprint of a product or the amount of
loans for a particular library book. In order to identify also plain objects,
the platform must be able to recognize objects based on different codes.

5.5.6 R6: Sensor Integration

As discussed earlier, positioning in indoor environments is not an easy task
since the most used positioning techniques (e.g., GPS) do not work indoors
or do not provide accurate enough information. In order to provide usable
location information in Smart Spaces, a room level accuracy should be con-
sidered to be the minimum requirement. To be able to provide such an
accurate indoor location information, different kinds of sensing devices are
needed in different spaces.

In addition to indoor positioning, sensors can provide valuable information
for Smart Space administrators. For example, anonymous people flow track-
ing provides information about the most popular or crowded areas of the

CHAPTER 5. PLATFORM REQUIREMENTS 36

space, sensors can keep track of the available rooms or parking slots in the
area, or an electricity consumption as well as the state of individual elec-
tronic appliances can be easily monitored and controlled. To satisfy all kinds
of sensor-based activities, the platform must support the integration of dif-
ferent kinds of sensors.

5.5.7 R7: Information Aggregation

In a Smart Space, there is usually many information sources providing dif-
ferent information valuable for the users in that space. For example, in a
shopping center a particular visitor might want to know where her friend is
(personal information), a shop could advertise clothing for women (informa-
tion targeted to a group), and a shopping center might want to inform all
customers that the center is going to be closed in fifteen minutes (common
information). The more information sources there are, the harder it is for the
users to gain access to all the important information. To be able to deliver all
the relevant information, the platform must be able to aggregate information
from various information sources.

5.5.8 R8: Social Sharing

The Web 2.0 era and the emergence of social media have made it possible
for users to become content providers on the Web. The users have become
accustomed to be able to share information from almost any kind of Web
application to social networks. To be able to facilitate these actions, the
platform must provide means for sharing information to social networks,
such as Facebook.

Chapter 6

Implementation

In this Chapter, a proof-of-concept implementation, the UbiQloud platform,
is described. First, a brief overview of the platform is presented. Next, the
server-side architecture of the platform is introduced. Then, the internal
architecture of the UbiQloud application is described in detail, and last, the
communication methods and protocols used to interact with the platform are
covered.

6.1 UbiQloud Overview

UbiQloud is a cloud-based PaaS facilitating rapid development of social,
location- and context-aware, real-time applications for smart indoor spaces.
The platform provides a Web-based UI for developers, in which they can
register applications and gain necessary resources to interact with UbiQloud.
Figure 6.1 represents the overall communication architecture of UbiQloud.
The platform can be divided into three kinds of interfaces that are (1) client
APIs, (2) a Smart Gateway, and (3) a Social Gateway. Clients (i.e., the appli-
cations developed on top of UbiQloud) can communicate with the pull-based
APIs using HTTP protocol and with the push-based APIs using XMPP (mo-
bile applications) or XMPP over WebSocket (Web applications). The Smart
Gateway is responsible for communicating with integrated sensors. The
UbiQloud/sensor communication is established over HTTP or TCP Socket.
The Social Gateway consist of a set of APIs and a widget that can be used
to integrate multi-service Social Login to client applications.

37

CHAPTER 6. IMPLEMENTATION 38

Social
Gateway

Client
APIs

Sensors

TCPHTTP

Q
Mobile

Web

XMPP over WebSocket
HTTP

HTTP
XMPP

Smart
Gateway

HTTP

Figure 6.1: UbiQloud communication architecture.

From a service point of view, UbiQloud provides mechanisms for developers
to:

• Integrate sensors,

• Manage users,

• Access user data on social media services,

• Use and extend a shared database of objects, and

• Store and access data with both pull- and push-based methods.

UbiQloud does not restrict the type of sensor to be integrated. However, for
parsing and manipulating the sensor data on the cloud before pushing it for-
ward, a dedicated driver should be implemented. At the moment, UbiQloud
only contains drivers for two types of sensors that are (1) a custom Wireless
Sensor Network (WSN), RealSense, for monitoring people flow and (2) Feig
LRU Ultra-High Frequency (UHF) reader. The data coming from sensors
lacking a driver is pushed as is. Each sensor has its own dedicated channel
where to the data is pushed in real-time. Sensors can communicate with
UbiQloud either through an HTTP interface or a raw TCP socket.

Each UbiQloud user contains an ID and XMPP credentials, which are shared
with all UbiQloud applications. In addition, a user object can possess any

CHAPTER 6. IMPLEMENTATION 39

number of application-specific profiles (e.g., a Facebook or NFC profile).
The profiles are application specific in order to protect users’ privacy (i.e.,
a user must authorize an application to use a particular profile). For the
authorization of social media profiles, UbiQloud provides a JavaScript widget
that can be embedded to an application.

Similar to the users, UbiQloud also hosts a database for objects. Each object
has public properties, such as an identifier (e.g., UPC or ISBN), a set of tags
for textual representation of the object, and a set of images. In addition to the
public properties, each object has a set of application-specific activities (e.g.,
likes, comments, and ratings) to be used in an application-specific context.
Furthermore, each activity is related to one application and one user.

Both users and objects in UbiQloud have also application-specific location
feeds. An application can send coordinates (a latitude/longitude pair) to
UbiQloud, which in turn converts the coordinates to a textual representation.

Data in UbiQloud is accessible with both pull- and push-based methods. In
most cases, the data is processed in similar way. First, UbiQloud receives a
request (e.g., a sensor sends new data or a user comments an object through
an application UI) that affects on the data. Second, the data is stored in a
database for later access through pull-based APIs, and third, the new data
is pushed to connected clients through a dedicated channel. In other words,
UbiQloud supports a common scenario, in which the history data is fetched
(pull) from the server at application startup, and as long as the application
is running, the data is kept up-to-date in real-time (push).

The platform aims to fulfill developers’ needs in a variety of integration levels.
UbiQloud can be used as the sole back-end solution for an application or a
single module can be integrated to a custom solution. The main target group
for UbiQloud is freelance developers or small businesses in need for a platform
to rely on modern, Web 3.0 applications.

6.2 Server Components

UbiQloud relies only on free, widely used, and easily configurable third-party
components. The idea is that setting up UbiQloud instances would be as
easy as possible regardless of the environment (e.g., Windows, OS X, or
Linux). Figure 6.2 represents the server-side architecture of the platform.
The architecture consists of three third-party components that are:

CHAPTER 6. IMPLEMENTATION 40

1. Play! Framework (version 1.2.4),

2. Openfire (version 3.7.1) XMPP server, and

3. MySQL (version 5.1.50) Relational Database Management System
(RDBMS).

UbiQloud
Application

UbiQloud DB Openfire DBUser DB

Figure 6.2: Components of the UbiQloud platform.

Play! Framework [60] is a modern Java Web framework targeted to RESTful
architectures. The framework provides built-in support for modern Web
application requirements, such as controllers for real-time communication
(i.e., Comet and WebSocket), and clients for communicating with secure
third-party Web services (e.g., an API using OAuth). Play! is based on a
stateless architecture, which makes it easy to scale Play!-based applications
(i.e., multiple instances of the same application can be run simultaneously).

Openfire [61] is a Java-based XMPP server for real-time communication.
It supports a wide variety of XEPs (e.g., publish/subscribe) and can be
integrated with existing user management systems. Furthermore, Openfire

CHAPTER 6. IMPLEMENTATION 41

can be easily extended with plugins and custom classes implementing its
interfaces. For example, UbiQloud relies on a plugin for providing the XMPP
over Websocket gateway and a custom class for authenticating users per
application basis.

MySQL [62] is the world’s most popular open source RDBMS. It runs on
a server and provides access to a number of databases. MySQL can be
used on a variety of different environments including Windows, OS X, and
the most popular Linux variants. UbiQloud does not rely on any MySQL-
specific features, meaning that it could be easily used with other RDBMS
as well (e.g., PostgreSQL1). In addition to the popularity of MySQL, it was
chosen as the RDBMS for UbiQloud, because both Play! and Openfire have
a built-in support for it.

6.3 UbiQloud Application

Based on the requirements introduced in Chapter 5, the UbiQloud applica-
tion architecture is divided into four modules and seven sub-modules. The
primary goal for the module-based approach is to ease the development of
the platform by dividing the code base into smaller pieces that could be de-
veloped separately. In reality, the modules are not fully undependable of
each other and the functionality is not restricted to a certain topic (e.g., re-
quirement R6 is linked to the Indoors module although it covers all sensor
integration). Table 6.1 represents the different modules and Figure 6.3 repre-
sents the relations between the modules and the requirements. The modules
are covered in detail in the following sub-sections. Requirement R1 can be
considered module independent because almost everything in UbiQloud can
be accessed through the RESTful API, and therefore the requirement R1
covers all modules.

1PostgreSQL, http://www.postgresql.org/

CHAPTER 6. IMPLEMENTATION 42

ID Name
M1 Recognize
m1.1 User Profiles
m1.2 Objects
M2 Locate
m2.1 Indoors
m2.2 Outdoors
M3 Connect
m3.1 Push
m3.2 Aggregate
M4 Share
m4.1 Social Media

Table 6.1: UbiQloud modules.

6.3.1 Recognize Module

In order to fulfill the requirements R3 and R5, the Recognize (M1) module
was implemented. The module consists of two sub-modules that are User
Profiles (m1.1) and Objects (m1.2). Every UbiQloud user (i.e., any user of
any application developed on top of UbiQloud) is represented as an object
with various profiles and a location feed. All the users have an unique XMPP
profile, which is automatically created during the first login and is completely
transparent to the user. In addition, users have a set of application-specific
profiles ranging from different social media profiles to digital identifiers, such
as NFC tags and Bluetooth devices.

Objects in UbiQloud behave similar to users. They are also identified and
they have a location feed. However, objects do not have profiles like users but
a single unique identifier. In addition, all objects have application-specific
activity feeds consisting of different activities made by users. A single activity
can be, for example, a like, a comment, or a check-in. UbiQloud allows
using any of the provided activities with any kind of object.

CHAPTER 6. IMPLEMENTATION 43

Push

Outdoors

Recognize
User Profiles

Objects

Locate
Indoors

Connect
Aggregate

Share Social Media

R3, R5

R4, R6

R2, R7

R8

R1

Figure 6.3: Relations between the UbiQloud modules and requirements.

6.3.2 Locate Module

The Locate (M2) module represents the requirements R4 and R6 and consists
of the Indoors (m2.1) and Outdoors (m2.2) sub-modules. As the sub-module
topics suggest, the aim of the modules is to provide positioning related func-
tionality. Although positioning is the core context, the Indoors sub-module
is responsible for all sensor integration with the UbiQloud platform (i.e., the
sensor interfaces and drivers). The Indoors sub-module can be used with
any sensor, but in order to gain parsed and well-formed data, a dedicated
driver for each sensor should be implemented. At the moment, the drivers
implemented (RealSense and Feig LRU) are meant for indoor positioning.

The Outdoors sub-module is responsible for providing meaningful outdoor
location data for other modules and applications. The main task of the
sub-module is to receive coordinate points and transform those coordinates
to textual representation by utilizing the MapQuest Nominatim Search API
Web Service2.

2MapQuest Nominatim Search API Web Service,
http://developer.mapquest.com/web/products/open/nominatim

CHAPTER 6. IMPLEMENTATION 44

6.3.3 Connect Module

For the requirements R2 and R7 the Connect (M3) module was implemented.
The module consists of two communication related sub-modules, that are
Push (m3.1) and Aggregate (m3.2). The Push sub-module is responsible
for all the real-time communication functionality in UbiQloud. When a data
manipulation request is received by UbiQloud, the Push sub-module performs
three steps as follows:

1. Intersects the request,

2. Converts the data to XML if possible/needed (the data is already
parsed, manipulated, converted, and stored by other modules), and

3. Pushes the data to a dedicated channel (e.g., sensor feed or application
feed).

Figure 6.4: Example of using the UbiQloud APIs for pushing the location
information of a user.

CHAPTER 6. IMPLEMENTATION 45

The Aggregate (m3.2) sub-module is responsible for aggregating data from
different sources. For example, an application might request user’s connec-
tions and if the user has authorized the application for her Facebook and
Twitter profile, the Aggregate sub-module combines the data from both ser-
vices. Another example would be data aggregation from different modules
as illustrated in Figure 6.4. First, a client application sends a user’s loca-
tion (i.e., user ID and coordinates) to UbiQloud. Second, the coordinates
are converted to textual representation by using the MapQuest Nominatim
Search API. Third, the data (i.e., user ID, coordinates, and textual repre-
sentation) is aggregated to a single location point object and stored into
database. Fourth, the data is pushed to the application channel.

6.3.4 Share Module

The Share (M4) module aims to fulfill the Social Sharing (R8) requirement,
by creating a unified API for the third-party publishing APIs of the supported
social media services. The sub-module Social Media (m4.1) is responsible
for communicating with the social media services and thus abstracting the
differences of the third-party APIs by providing a single API method for
sharing data to different services.

6.4 Communication with UbiQloud

UbiQloud was designed to support different protocols when establishing com-
munication channels with various applications and devices (cf. Figure 6.1).
Applications implemented on top of UbiQloud have access to real-time data
through XMPP (native mobile or desktop application) or XMPP over Web-
Socket (Web applications). All the data is also stored in the platform and
can be accessed through the RESTful API in either JSON or XML for-
mat. Devices connected to UbiQloud can use either an HTTP interface or a
pure TCP Socket interface. The design of the platform also supports adding
device-specific drivers for handling proprietary protocols. For allowing a user
to login with her existing social media credentials, UbiQloud offers a Social
Gateway in form of a JavaScript widget. The JavaScript widget acts as a
bridge between social media services and applications developed on top of
UbiQloud.

CHAPTER 6. IMPLEMENTATION 46

6.4.1 RESTful API

For accessing the data stored in UbiQloud retrospectively, the platform pro-
vides an HTTP-based RESTful API. The REST-based architecture is well
suited for UbiQloud because UbiQloud contains resources, which are linked to
physical objects (i.e., smart objects). The API is divided into four parts rep-
resenting users, objects, sensors, and applications. The resources are accessed
with HTTP methods (GET, POST, PUT, and DELETE) and identified with
the following URL patterns:

URL
http://api.ubiqloud.io/{user|object|sensor|app}/...

For example the following request:

HTTP GET
http://api.ubiqloud.io/object/1/activity/1

could result the following response in JSON:
{
"activity" :

{
"id" : 1,
"type" : "like",
"published" : "2011 -02 -07 11:18:32.0",
"userid" : "foobar"
}

}

Listing 6.1: Example of the JSON representation of a resource

or in XML:
<activity >

<id>1</id>
<type>like</type>
<published >2011 -02 -07 11 :18:32 .0</published >
<userid >foobar </userid >

</activity >

Listing 6.2: Example of the XML representation of a resource

To make sure that the data is accessible only for authorized parties, several
methods have been implemented to secure the API and to identify the client
application making a request (cf. Figure 6.5). The API security procedures
are inspired by the Signature version 2 [63] of the Amazon Web Services
(AWS).

CHAPTER 6. IMPLEMENTATION 47

1. Generate a base URL
e.g., http://api.ubiqloud.io/object/1/activity/1

2. Append appid and timestamp parameters
http://api.ubiqloud.io/object/1/activity/1

?appid=d41d8cd98f00b204e9800998ecf8427e
×tamp=1338193970480

3. Generate a hash from the URL with
application secret

975f60d234e66b8c9ed8c0f6957bf46f4be9580093
9878941bc4fdf9c4183d2b

5. API request

6. Compare the timestamp parameter against
the current UTC

Request expired

7. Fetch the application secret based on
the appid parameter

Not found

8. Exclude the signature parameter and
regenerate the hash

4. Append the hash as a signature parameter
http://api.ubiqloud.io/object/1/activity/1

?appid=d41d8cd98f00b204e9800998ecf8427e
×tamp=1338193970480

&signature=975f60d234e66b8c9ed8c0f6957bf46f
4be95800939878941bc4fdf9c4183d2b

9. Compare the hash against the signature
Invalid signature

10. Process the request
11. API response

Client Application UbiQloud

Figure 6.5: Secure communication with the UbiQloud RESTful API.

Once a developer registers an application to UbiQloud, unique ID and se-
cret — that is public and private keys — are generated for the application.
For every request the application makes against the API, three additional
parameters should be included into the URL. The first parameter is appid
with the value of the ID assigned to the application. The second parame-
ter is timestamp with the value of the current Coordinated Universal Time
(UTC) time in milliseconds. The third parameter is signature with a base64
encoded Hash-based Message Authentication Code (HMAC) generated from
the request string and the application secret with the SHA-256 cryptographic
hash function. For example, the request presented above could look as fol-
lows:

CHAPTER 6. IMPLEMENTATION 48

HTTP GET
http://api.ubiqloud.io/object/1/activity/1
?appid=d41d8cd98f00b204e9800998ecf8427e
×tamp=1338193970480
&signature=975f60d234e66b8c9ed8c0f6957bf46f4be95800939878941bc4
fdf9c4183d2b

When UbiQloud receives the request, it first compares the timestamp pa-
rameter against the current UTC time and if the value of the timestamp is
more than five minutes in the past the request is rejected. The timestamp
comparison is made to prevent replay attacks (a hostile party copies a re-
quest and tries to use the same request in the future to make authenticated
API calls). If the timestamp is valid, the appid parameter is used to fetch
the correct application secret from the database. Then, the signature pa-
rameter is omitted from the request string and the same hashing operation
made in the application side is made in UbiQloud as well. If the resulted
hash value equals to the value of the signature parameter, UbiQloud can
be sure that the request has come from the application and the request is
delegated to the controller processing the actual operation requested.

6.4.2 Server Push Interfaces

Server push in UbiQloud is based on the publish/subscribe architecture and
uses XMPP and related XEPs (namely, XEP-0060: Publish-Subscribe) as
the underlying protocols for real-time communication. In UbiQloud, the
publisher is always the platform itself, meaning that all the push events
are emitted from operations in the RESTful API. There is two reasons for
not allowing a client application to use real-time channels directly. First of
all, the data needs to be stored and possibly manipulated for later use in a
correct format (i.e., XML or JSON). Second of all, by restricting the way
to publish data, an application cannot accidentally or deliberately pollute
wrong channels.

The publish/subscribe model fits well for the service-oriented nature of
UbiQloud. The platform consists of related, yet loosely-coupled, services
that need to provide data both to each other and to a dynamic group of data
consumers (i.e., applications developed on top of the platform and Smart Ob-
jects integrated to it). In other words, the platform includes services, users,
objects, sensors, and applications that do not need to be aware of each other,
but need to be able to provide data to each other. To facilitate this kind of a
loosely-coupled system, each entity capable of creating or manipulating data
has a unique channel to push changes. For example, a sensor communicating

CHAPTER 6. IMPLEMENTATION 49

with UbiQloud could provide valuable data to several applications, but it
does not need to know the identity of these applications (the amount and
type of consumer applications may vary over time). Furthermore, some of
the applications might need data from other sensors as well, but the sensors
do not need to be aware of each other (i.e., a centralized data broker for all
the sensors would not be an optimal solution). The solution is to provide a
unique channel (node) for every sensor to push data and let interested parties
to subscribe to that channel.

XMPP was chosen as the real-time communication protocol for several rea-
sons. Firstly, It is a mature, well supported, and standardized protocol.
Numerous client libraries exists for several platforms and languages, mean-
ing that XMPP would not become a bottleneck for developing UbiQloud
applications. Secondly, XMPP is extensible and there is already a vast range
of extensions covering features needed in UbiQloud (e.g., publish/subscribe).
Furthermore, because of the extensibility, it is possible to implement custom,
platform-specific extensions if needed. Thirdly, XMPP has a built-in support
for user management, authentication, and presence, which is important for
the UbiQloud platform (i.e., regardless of the social media profiles, users need
to be able to authenticate to the platform in a common way). Lastly, XMPP
is reliable and secure [12], which is important for UbiQloud, because (1) it
consist of interconnected entities that rely on each other, and (2) it mediates
sensitive and private data (e.g., user and application-specific data).

As stated in Chapter 2 (Section 2.1.2), although XMPP is a widely used pro-
tocol for real-time communication, it is hardly used in traditional Web appli-
cations, because none of the major Web browsers support it natively. Luckily,
XMPP can also be used [16, 21] over protocols suitable for Web browser en-
vironments. To support also browser-based applications, UbiQloud provides
a WebSocket gateway for XMPP communication.

Every user in UbiQloud has a shared XMPP profile (i.e., unlike social media
profiles, the XMPP profile is not application specific). Even if the XMPP
profile of a user is available to all UbiQloud applications, UbiQloud requires
that an application making the connection (e.g., user authentication) on be-
half of a user is a registered application. In general, when a user wishes
to authenticate to an XMPP server, the identity (i.e., Jabber ID, JID) and
password of the user is sent to server. In UbiQloud, the JID is sent as is,
but instead of the password the application must send a string in format
{appid}:{hash}, where hash is a base64 encoded HMAC constructed from
the user’s XMPP password and application’s secret with the SHA-256 cryp-
tographic hash function.

CHAPTER 6. IMPLEMENTATION 50

Once authenticated, the user is able to subscribe to any number of channels to
start receiving real-time updates through the push interfaces. For example, if
subscribed to the application’s channel in which another user adds an activity
to an object, the following XMPP message could be received:
<message from="pubsub.ubiqloud.io" to="examplejid@ubiqloud.io

" id="foo">
<event xmlns="http:// jabber.org/protocol/pubsub#event">

<items node="{unique node identifier}">
<item id="ae890ac52d0df67ed7cfdf51b644e901">

<root>
<object id="1">

<activity id="1" method="post">
<type>like</type>
<published >2011 -02 -07 11 :18:32 .0</published >
<userid >foobar </userid >

</activity >
</object >

</root>
</item>

</items >
</event >

</message >

Listing 6.3: Example of an XMPP publish/subscribe message.

6.4.3 Smart Gateway

When a developer integrates a sensor to UbiQloud, the type and Internet
Protocol (IP) address of the sensor must be specified. The type can be one
of the known sensor types (i.e., RealSense or Feig LRU) or undefined. In the
case of the known sensor types, the received data is manipulated to more
usable form (i.e., XML) before storing and pushing forward. In the case of
an undefined type, the data is stored and pushed as is. The IP address is
used to identify the sending server when new data is received in UbiQloud.
If the IP address is known, the data can be treated correctly (i.e., where to
store and push), and if the address is unknown the data is ignored. Each
sensor has a unique channel, where the data is pushed when ready.

For communicating with UbiQloud, there are two kinds of interfaces avail-
able for sensors. One is a HTTP interface and the other is a TCP Socket
interface. For using the HTTP interface, a sensor must send either a GET
or POST request to a dedicated URL (http://api.ubiqloud.io/sensor)
with the data as a value of the data parameter. The other option, the TCP
Socket interface, can be used by initializing a socket connection to UbiQloud

CHAPTER 6. IMPLEMENTATION 51

(ubiqloud.io) through the port 9999. Once the connection is established,
new data can be sent anytime.

6.4.4 Social Gateway

In general, to integrate a Social Login provided by any social media service, a
developer needs to complete certain steps. First, an application needs to be
created in the platform. During the application creation, a developer needs
to provide some basic information (e.g., name of the application and URL
used to communicate with the API) and gain application specific keys to
securely communicate with the social media service. Second, a JavaScript
widget needs to be embedded to the client application and initialized with
application-specific options (e.g., public key). Third, a controller that com-
municates with the social media services during and after the authorization
process needs to be implemented. From a developer’s point of view, the prob-
lem is that social media services use different techniques for the authorization
(e.g., different versions of OAuth or OpenID/OAuth hybrids) and differently
implemented APIs. In other words, to support more than one Social Login
providers, a developer needs a unique implementation for each service.

To ease the Social Login integration, UbiQloud provides a unified mechanism
to integrate multiple Social Login providers. The mechanism works similarly
as described above. First of all, a developer still needs to register applications
to the social media services individually, because the users need to give an
authorization per application basis. Once the applications are created, the
developer adds the key pairs to UbiQloud which allows UbiQloud to commu-
nicate with the social media service on behalf of the client application. After
the keys are added to UbiQloud, the developer can start using the Social
Login service as illustrated in Figure 6.6.

First, the developer embeds the Social Login widget provided by UbiQloud to
the client application as well as initializes it with an application specific URL
and the target URL to post a one-time token (cf. Listing 6.4). The widget
provides an UI to login to all the supported services (i.e., Facebook, Twitter,
and LinkedIn). Once the user is logged in to a selected social media service
and has authorized the application, UbiQloud receives the user information
and user-specific tokens.

CHAPTER 6. IMPLEMENTATION 52

Figure 6.6: Six steps for Social Login through UbiQloud.

Then, a one-time token is generated in UbiQloud and sent to the client ap-
plication via the widget. After receiving the token, the client application can
exchange it to the user profile information. The authorization part needs
to be completed only once per application and once authorized, the applica-
tion can interact with the social media service on behalf of the user through
UbiQloud’s unified RESTful APIs.
<input id="UQ_login_button" type="button" value="{login

button label}"/>
<script type="text/javascript" src="http :// ubiqloud.io/public

/javascripts/widgets.js"></script >
<script type="text/javascript">

UQ.init("{appid}. ubiqloud.io", "{token URL}");
</script >

Listing 6.4: Example of embedding the UbiQloud Social Login widget.

Chapter 7

Sample Applications

This chapter demonstrates two sample applications, FeedThroat and InView,
developed on top of the UbiQloud platform. The sample applications were
developed for testing two aspects of the platform as follows:

1. Does the implemented platform meet the requirements set, and

2. Does the implemented platform work with real applications in real-
world settings.

The first sample application, FeedThroat, was developed in conjunction with
the first version of the UbiQloud core (i.e., FeedThroat was not initially a
separate application, but part of the UbiQloud code base). The reason for
the tight integration was to be able to easily test different technologies and
tweak the APIs. The second sample application, InView, was developed as a
separate application to actually test UbiQloud as a PaaS. A detailed overview
of the sample applications is given in the following sections.

7.1 Retail Context: FeedThroat

FeedThroat is a social shopping assistant application developed for iOS1 and
the Web. The core idea of the application is to provide retailer indepen-
dent product information with social sharing and collaboration functional-
ity. The iOS version of the application is targeted for regular users (i.e.,

1iOS is the operating system used in iPhone, iPod Touch, and iPad

53

CHAPTER 7. SAMPLE APPLICATIONS 54

customers) and it contains all end-user specific functionalities. The Web ver-
sion of the FeedThroat also contains most of the features (excluding camera-
related functionality) for end-users. However, the main target group of the
Web version is retailers, and therefore it contains retailer features not present
in the iOS application.

(a) Scanning a product (b) Viewing product information (c) Adding a product to a list

Figure 7.1: FeedThroat UI views in iOS application.

Figure 7.1 represents the main functionalities of the iOS application. First,
the user can use the smartphone’s built-in camera to scan the barcode of a
product (a) to gain instant information of it (b). In addition to the traditional
product information, there is a social layer on top of it including photos,
comments, and a list of friends interested in the same product. Second,
the application allows users to generate shared shopping lists with real-time
updates and in-list product information (e.g., private comments and photos).
Users are able to drop products to a list (c) by scanning a barcode, manually
entering a product, or choosing from a dynamic product list of the newest
products. Products in shared lists can also be checked as purchased (i.e.,
similar to tasks in todo lists that can be marked as done). The ability to
check products is useful for example in shared shopping lists.

As mentioned, the Web version of FeedThroat shares most of the function-
ality with the iOS version. In addition, the Web application also provides a
custom view for retailers, in which they can add products, events, and ads

CHAPTER 7. SAMPLE APPLICATIONS 55

that are presented to customers in both applications. These items can also
be dropped into a list the same way as products. Furthermore, retailers can
automatically share the added items to Facebook, which means that while
both FeedThroat and Facebook can be used as an advertisement channel,
only one application is needed for generating the ads. In Figure 7.2, a re-
tailer view containing the retailer’s items is presented. In the view, a retailer
can add new items as well as view, edit, and remove the already added items.

Figure 7.2: FeedThroat retailer view in the Web application.

7.1.1 Integration to UbiQloud

FeedThroat uses three of the four available modules of the UbiQloud plat-
form. The three modules used are Recognize (M1), Connect (M3), and Share
(M4). In addition, all the sub-modules of these modules are used. The
UbiQloud interfaces used are Client APIs and Social Gateway.

FeedThroat uses the User Profiles (m1.1) sub-module to authenticate users
and retrieve information about the authenticated user’s Facebook friends.
The friend information is used to provide the possibility for the user to share
lists between friends and to see which products are popular or used among
the friends. The other sub-module Objects (m1.2) of the Recognize module is
used to identify products based on scanned barcodes. Users can also expand

CHAPTER 7. SAMPLE APPLICATIONS 56

the UbiQloud Object database through FeedThroat UI by providing a textual
representation for the unrecognized object.

All the data changes made in FeedThroat are pushed to other FeedThroat
instances through the Push (m3.1) sub-module. The iOS version uses native
XMPP for real-time communication and the Web version uses XMPP over
WebSocket. FeedThroat also uses the UbiQloud RESTful API to fetch data
during the application initialization process and during other operations,
such as fetching friend information.

The Share (M4) module is used by the retailer users of FeedThroat to dissem-
inate information to social media. For example, ads created in FeedThroat
can be automatically shared to Facebook.

7.1.2 User Tests

For testing the application with real users, a small user test [57] was orga-
nized with 15 participants (divided to two groups) in the Iso Omena shopping
center. The participants were given a task to buy a set of products to orga-
nize a party. For the task, the participants were divided to pairs and each
pair gained a smartphone with a pre-installed FeedThroat application. In
addition, the list of needed products was populated to FeedThroat before
the test. The list contained products from various shops in order to prevent
one group for purchasing everything from a single shop.

The idea was that the pairs did not decide beforehand which pair is going to
buy what. Instead, the pairs used FeedThroat to scan and check products as
they purchased them. As soon as a product was checked by one pair, all the
other pairs gained a notification that the particular product was purchased.

The test showed that communication (both pull and push) with UbiQloud
worked well even in a crowded shopping center over a 3G cellular network.
The latency of the communication was not measured, but at least the users
did not complain about slowness in data fetching (e.g., scanned barcode was
sent to UbiQloud and product information was received fast). Also, all push
notifications were sent correctly without any dropped messages.

CHAPTER 7. SAMPLE APPLICATIONS 57

7.2 Positioning Context: InView

InView is a cross-platform mobile application for monitoring people flow in-
doors. The application was developed with Web technologies — that is,
HTML, Cascading Style Sheets (CSS), and JavaScript — and cross-compiled
to multiple mobile Operating Systems (OS) with PhoneGap2. The main pur-
pose of the InView application is to visualize both authenticated and anony-
mous movements in indoor spaces. The location data was obtained from two
types of sensors integrated to UbiQloud. A set of UHF readers were used to
identify individual users and their location based on user-specific RFID tags.
For anonymous people flow (i.e., the amount and direction of people passing
by), a custom ZigBee-based WSN was used.

Figure 7.3 illustrates the three main views of the application. The first
view is a location feed sidebar (a) that is updated in real-time based on
the movements of identified users. The second view, called Live View (b),
visualizes the people flow by drawing a hit map on top of a floor map. The
final view, called History View (c), can be used to retrospectively view the
amount of people passed by each sensor on both directions at a given time
point. The History View contains two sliders to adjust the date and the time
within one hour interval.

(a) Sidebar and (b) Live View in iPad (c) History View in HTC Desire

Figure 7.3: InView UI views in Android and iOS devices.

2PhoneGap, http://phonegap.com/

CHAPTER 7. SAMPLE APPLICATIONS 58

7.2.1 Integration to UbiQloud

InView utilizes the first three main modules (M1, M2, and M3) of UbiQloud.
From the main modules, the most relevant sub-modules for the application
are Indoors (m2.1), User Profiles (m1.1), Push (m3.1), and Aggregate (m3.2).
In addition, all UbiQloud interfaces are used (i.e., Client APIs, Smart Gate-
way, and Social Gateway).

The indoor space, Aalto Design Factory monitored with InView, has two
types of sensors integrated to UbiQloud. For people flow monitoring, there
is a ZigBee-based WSN that monitors movements and sends each pulse to
UbiQloud, which in turns pushes the data to a dedicated channel subscribed
by InView. As the data arrives to InView, a small animation illustrating
activity and the direction of the movement is presented in the Live View at
the spot of the sensor.

For identifiable movements, there is a set of UHF readers installed in the
space, which are integrated to UbiQloud. When a reader detects an RFID
tag, the ID of the tag is sent to UbiQloud. UbiQloud then maps that ID to
a specific user profile and aggregates that profile with social media profiles
of that user into a single user object. The user object is then pushed to the
sensor’s channel. After receiving the information, InView shows the user in
the sidebar and displays an animation in the Live View to show the location
of the reader.

In addition to real-time updates, InView fetches the history data generated
by the sensors through UbiQloud’s RESTful API. The history data is used
in the sidebar to show the recent movements of authenticated users and in
the History View to visualize people flow on the selected date and time in
the past.

7.3 Conclusions

Based on the sample applications developed on top of the UbiQloud platform,
it can be said that the platform can be used with real applications in real-
world settings and it fulfills the requirements set in Chapter 5. Firstly, the
platform provides both pull-based and push-based communication channels
(requirements R1 and R2), as showed in both sample applications. Secondly,
UbiQloud is able to identify people based on different profiles (e.g., RFID
profile in InView, requirement R3) and objects based on identifiers (e.g.,
product recognition in FeedThroat, requirement R5). Thirdly, the platform

CHAPTER 7. SAMPLE APPLICATIONS 59

provides information on user’s social connections (e.g., friends’ interests in
FeedThroat, requirement R3). Fourthly, UbiQloud provides ways to inte-
grate sensors (requirement R6) that can be used in positioning (requirement
R4) as shown in InView, and is able to aggregate information (e.g., com-
bined user profile in InView, requirement R7). Lastly, the platform allows
sharing information to social media services (e.g., ad sharing in FeedThroat,
requirement R8).

Chapter 8

Testing and Evaluation

In this Chapter, the settings and tools used to test UbiQloud in a laboratory
environment are presented. In addition, the results gained from the tests are
presented and discussed.

8.1 Setup

The main goal of the experiments was to measure the performance and scal-
ability of the UbiQloud platform in a controlled environment. The idea was
to simulate a situation, in which the platform receives a fair amount of re-
quests from multiple clients simultaneously [64]. In the tests, the amount of
requests was set to 10000 and the amount of clients was set to 50. The values
for the request count and concurrency were decided based on two criteria.
First, it was important to generate enough traffic to monitor the performance
of the platform under heavy load. Second, it was important that the testing
tool also performed well in order to exclude any anomalies not related to
UbiQloud (e.g., if the concurrency was set over 50, the client machine was
not able to run the test reliably).

The experiments included test runs against two kinds of methods: requesting
a resource from the client interface and adding new data through the sen-
sor interface. The first API method tested was a method used to request a
specified activity of an item (HTTP GET, http://api.ubiqloud.io/object/1/
activity/1). The second method tested was a method used by sensors to pub-
lish data (HTTP GET/POST, http://api.ubiqloud.io/sensor). The methods
were selected for the tests due to their internal differences. Methods used for
requesting UbiQloud resources (e.g., the former test method) do not manip-

60

CHAPTER 8. TESTING AND EVALUATION 61

ulate data, meaning that UbiQloud does not need to push changes to any
channel. Methods that do manipulate data in UbiQloud (e.g., the latter test
method) trigger the Push (m3.1) module resulting to additional tasks in the
platform. In addition, the latter test method is part of the Smart Gate-
way, which has looser security procedures (i.e., UbiQloud does not check
any timestamps or regenerate/compare hashes, which yields faster response
times).

Furthermore, to test the scalability of the platform, both tests were conducted
against two kinds of server setups: against a single instance of UbiQloud
running on the server and against five UbiQloud instances running side by
side on the server. The idea was to determine how well the platform scales
and does the amount of instances correlate the performance benefits (i.e.,
is it worth to use a higher number of instances). The number of instances
(five) was selected to clearly separate the result between the single and scaled
UbiQloud, but in general the number of instances could be anything above
one. In real-world settings the number of instances should be selected per use
case basis. Both server setups included Apache1 HTTP server as a reverse
proxy (i.e., redirecting requests between the Play! framework and clients
through the standard HTTP port 80). In addition, Apache handled the load
balancing in the scaled UbiQloud setup. The tests ran against the single
UbiQloud could have been conducted without the reverse proxy, but for
better comparison it was used in both cases.

All the tests were carried out in a high speed Local Area Network (LAN)
(100/100 Mbit/s) network. The server machine was a Mac mini with a 64-
bit OS X 10.7.4 operating system, a 2.0 GHz quad-core Intel Core i7 CPU,
and 8GB of RAM. The client machine was a MacBook Pro with a 64-bit OS
X 10.7.4 operating system, a 2.53 GHz Intel Core 2 Duo CPU, and 4 GB of
RAM.

8.2 Tools

Apache Bench (ab) [65] was used on the client machine to create the de-
sired amount of traffic and concurrency. Ab is an open-source command line
tool to benchmark HTTP-based servers. It is pre-installed on many operat-
ing systems and supports a wide variety of options, such as authentication,
concurrency, and result output in different formats. Listing 8.1 shows an
example of an ab script that performs 10000 request with a concurrency of

1Apache HTTP Server, http://httpd.apache.org/

CHAPTER 8. TESTING AND EVALUATION 62

50 as well as outputs the results to a Comma Separated Values (CSV) file
called results.csv, whereas Listing 8.2 shows the console output of that
test run.
ab -n 10000 -c 50 -e results.csv http://api.ubiqloud.io/

sensor?data=4 F97D177E50D00072B1

Listing 8.1: Example of an Apache Bench script.

Server Software: Play!
Server Hostname: api.ubiqloud.io
Server Port: 80

Document Path: /sensor?data=4 F97D177E50D00072B1
Document Length: 110 bytes

Concurrency Level: 50
Time taken for tests: 7.070 seconds
Complete requests: 10000
Failed requests: 0
Write errors: 0
Total transferred: 5380000 bytes
HTML transferred: 1100000 bytes
Requests per second: 1414.33 [#/sec] (mean)
Time per request: 35.352 [ms] (mean)
Time per request: 0.707 [ms] (mean , across all

concurrent requests)
Transfer rate: 743.08 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 1 0.3 1 4
Processing: 10 34 7.1 34 122
Waiting: 10 34 7.1 34 122
Total: 11 35 7.1 35 123

Percentage of the requests served within a certain time (ms)
50% 35
66% 37
75% 38
80% 39
90% 42
95% 48
98% 56
99% 59

100% 123 (longest request)

Listing 8.2: Example of an Apache Bench console output.

CHAPTER 8. TESTING AND EVALUATION 63

8.3 Testing the Client Interface

Figure 8.1 represents the benchmark results of the tests against the client
interface (i.e., http://api.ubiqloud.io/object/1/activity/1). As stated, the
same tests were performed against the single UbiQloud instance and the
scaled UbiQloud (5 instances). Both tests consisted of 10 identical test runs
in order to gain some variance for statistical analysis. The graph lines are
constructed of median values from the 10 test runs.

Figure 8.1: Benchmark results for a single request response time against the
client interface of the single and scaled UbiQloud with 50 concurrent users
and 10000 requests.

The graph clearly shows the superiority of the scaled UbiQloud in response
time as the amount of requests increase (maximum response time of the
scaled UbiQloud for a single request was around 30ms, whereas the corre-
sponding value of the single instance was slightly below 150ms). However,
the single instance of UbiQloud was capable of responding faster before the
request count increased over 3000. The reason for this is the nature of the
request (i.e., the method called in UbiQloud). The request did not cause
any data manipulation on UbiQloud, meaning that UbiQloud did not need
much time processing the request. With a smaller number of requests, the
time taken in the load balancer to route requests increased the response time

CHAPTER 8. TESTING AND EVALUATION 64

with the scaled UbiQloud. Furthermore, the response time per request with
the single instance increases drastically when the request count reaches over
9000. The reason for this might be that the Play! framework reached its limit
for simultaneous requests or the reverse proxy was not configured properly
(neither of the two were optimized).

8.4 Testing the Sensor Interface

In these tests, the interface tested was the sensor interface of UbiQloud.
In comparison to the client interface tests, the method tested in the sensor
interface manipulated data in UbiQloud, which increased the processing time
in the platform. The data sent to UbiQloud was formatted similar to the data
sent from the RealSense sensors, meaning that with each request, UbiQloud
needed to parse the data, convert the data to XML, store the data, and push
the data to the sensor channel. Figure 8.2 represents the results of the sensor
interface tests. The values are again median values from 10 test runs per test
case.

Figure 8.2: Benchmark results for a single request response time against the
sensor interface of the single and scaled UbiQloud with 50 concurrent users
and 10000 requests.

CHAPTER 8. TESTING AND EVALUATION 65

Overall, the graph clearly shows that methods manipulating data in Ubi-
Qloud need more time for processing (longest response time with the scaled
UbiQloud was around 90ms and with the single instance around 410ms).
In contrast to the client interface tests, the scaled instance performed bet-
ter all the way in the sensor interface test because the time taken in the
load balancer is relatively shorter. Furthermore, in these tests the increase
in response times with the single UbiQloud towards the end is even more
dramatic.

8.5 Evaluation

The performance tests clearly showed that UbiQloud is responsive even with
one instance running on the server [64, 66]. In addition, using several Ubi-
Qloud instances in parallel showed that the platform scales well and is able to
process a large number of requests from several clients. Figure 8.3 shows the
mean count of requests served in a second in all the tests. Without scaling,
UbiQloud is able to process nearly 1300 request per second when a client only
requests a resource and over 750 requests per second with data manipulation
requests. The corresponding values for the scaled UbiQloud are 2081 requests
per second and 1277 requests per second. However, the tests were performed
in a controlled laboratory environment with a high speed wired Internet
connection, which is not often the case in real-world settings. In real-world
settings, clients often utilize lower speed wireless networks, which in terms
affects the response time. All in all, the tests showed promising results of
the performance and scalability of the platform, but if the platform would
be publicly available, additional testing with additional parameters and in
different kinds of networks should be performed.

CHAPTER 8. TESTING AND EVALUATION 66

Figure 8.3: Requests per second served during the tests.

Chapter 9

Conclusions

In this Chapter, this Thesis is concluded by first revisiting the research ob-
jectives. Then, the main contributions of the author are presented. Next, the
main conclusions are drawn based on the results from the literature review
and empirical validation. Finally, suggestions for future work are discussed.

9.1 Research Objectives Revisited

Before proceeding with the results and conclusions, the research questions
of this Thesis (cf. Chapter 4) are revisited. The research questions of this
Thesis were:

Q1: How to integrate server push, Smart Object integration, positioning,
and Social Login services under a single cloud-based platform?

Q2: How to transform indoor environments to Smart Spaces by utilizing the
existing plain and smart objects?

Q3: How to seamlessly integrate digital services as part of the everyday
physical activities?

9.2 Main Contributions

The main contributions of this Thesis are as follows:

67

CHAPTER 9. CONCLUSIONS 68

• Requirements analysis for the platform, which is partly conducted by
the Author

• Design of a scalable cloud-based platform offering services for develop-
ing real-time, location-aware WoT applications for Smart Spaces, which
has been solely designed by the Author

• Implementation of a prototype, UbiQloud, whose sole implementer the
Author has been

• Validation of the design and prototype with performance tests and two
sample applications, FeedThroat and InView (both mainly developed
by the Author).

9.3 Results

UbiQloud shows that it is possible to develop a cloud-based platform offering
services related to server push, Web of Things, positioning, and social media
from a single entry point. In addition, because of the module-based archi-
tecture of the platform, it is relatively easy to add new services and extend
existing ones in the future.

Developing new applications on top of UbiQloud as well as utilizing UbiQloud
services in existing applications should be relatively easy for developers fa-
miliar with third-party APIs due to the following reasons: UbiQloud uses
standardized technologies, it is based on the widely used RESTful architec-
ture, and it uses well-known security procedures for secure API communica-
tion. For a novice developer, the learning curve might be fairly steep, but
not any steeper than using other third-party services.

The sample applications showed (cf. Chapter 7) that UbiQloud can be used
with real applications in real-world settings and that the implementation
meets the requirements set (Q1). In addition, the functionality and integra-
tion to UbiQloud showed that the platform provides a gateway for creating
Smart Spaces (Q2) and that existing objects can be brought as part of the
Web of Things (Q3). Moreover, the performance benchmarks showed that
UbiQloud performs well and can be easily scaled if needed.

All in all, the results suggest that UbiQloud is a powerful and scalable plat-
form for developing state-of-the-art Web applications for the Web 3.0 era.
There were no indications that the platform would not be suitable for real-
world application development. Furthermore, the wide range of services pro-

CHAPTER 9. CONCLUSIONS 69

vided by UbiQloud would ease the development of Web applications and
reduce the need to rely on multiple third-party APIs.

9.4 Future Work

There are several possibilities for future work regarding to the work presented
in this Thesis. First of all, the platform could be extended in a variety of
places. The amount of social media services supported by the platform could
be extended to allow users from other services use their existing credentials;
the range of sensor-specific drivers could be expanded to offer more usable
data; the coverage of supported protocols for sensor integration could be
broaden (e.g., XMPP and Constrained Application Protocol, CoAP [67]) to
allow integration of sensors not capable of communicating with the existing
interfaces.

In addition, the use of XMPP could be increased by supporting, for example,
strict client-to-client communication instead of publish/subscribe to allow
more targeted communication and interaction between users. Furthermore,
there could be a platform-wide notification channel for broadcasting events
to better support event-driven architectures.

Furthermore, the APIs could be protected using OAuth 2.0 [68] instead of a
custom solution to simplify the communication with the APIs even more. Al-
though, the OAuth 2.0 specification is not yet finalized, some of the popular
APIs (e.g., Facebook Graph API) already use it for secure API communica-
tion.

Finally, it would be interesting to release UbiQloud as a public service in order
to see how well the platform performs with multiple real-world applications
developed outside the research community.

Bibliography

[1] A. Taivalsaari and T. Mikkonen. The Web as an Application Platform:
The Saga Continues. In Proceedings of the 37th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA’11),
pages 170–174. IEEE, 2011. doi: 10.1109/SEAA.2011.35.

[2] T. Mikkonen and A. Taivalsaari. Reports of the Web’s Death Are
Greatly Exaggerated. Journal of Computer, 44(5):30–36, 2011. doi:
10.1109/MC.2011.127.

[3] S. Murugesan. Web X.0: A Road Map, volume 1, pages 1–11. Informa-
tion Science Reference, 2010.

[4] M. Meeker, S. Devitt, and L. Wu. Internet Trends. Technical re-
port, Morgan Stanley, 2010. URL http://www.morganstanley.com/
institutional/techresearch/pdfs/Internet_Trends_041210.pdf.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC
2616 (Draft Standard), June 1999. URL http://www.ietf.org/rfc/
rfc2616.txt. Updated by RFCs 2817, 5785, 6266, 6585.

[6] M. Pohja. Server Push for Web Applications via Instant Messaging.
Journal of Web Engineering, 9(3):227–242, 2010.

[7] I. Hickson. HTML5. W3C working draft, W3C, March 2012. URL
http://www.w3.org/TR/2012/WD-html5-20120329/.

[8] T. Bray, J. Paoli, E. Maler, F. Yergeau, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C recom-
mendation, W3C, November 2008. URL http://www.w3.org/TR/2008/
REC-xml-20081126/.

70

BIBLIOGRAPHY 71

[9] D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627 (Informational), July 2006. URL http:
//www.ietf.org/rfc/rfc4627.txt.

[10] A. Ginige and S. Murugesan. The essence of web engineering - managing
the diversity and complexity of web application development. Journal
of Multimedia, 8(2):22 –25, apr-jun 2001. ISSN 1070-986X. doi: 10.
1109/MMUL.2001.917968.

[11] Y. Huang and H. Garcia-Molina. Publish/Subscribe in a Mobile Envi-
ronment. Journal of Wireless Networks, 10:643–652, 2004. ISSN 1022-
0038.

[12] P. Saint-Andre, K. Smith, and R. Tronçon. XMPP: The Definitive
Guide. O’Reilly Media, Inc., Sebastobol, CA, the United States of Amer-
ica, 2009. ISBN 978-0596521264.

[13] P Saint-Andre. Streaming XML with Jabber/XMPP. IEEE Internet
Computing, 9(5):82–89, 2005. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1510608.

[14] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Core. RFC 6120 (Proposed Standard), March 2011. URL http://www.
ietf.org/rfc/rfc6120.txt.

[15] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence. RFC 6121 (Proposed Standard), March
2011. URL http://www.ietf.org/rfc/rfc6121.txt.

[16] I. Paterson and P. Saint-Andre. XEP-0206: XMPP over BOSH. Draft
Standard, July 2010. URL http://xmpp.org/extensions/xep-0206.
html.

[17] P. Millard, P. Saint-Andre, and R. Meijer. XEP-0060: Publish-
Subscribe. Draft Standard, July 2010. URL http://xmpp.org/
extensions/xep-0060.html.

[18] J. Postel. Transmission Control Protocol. RFC 793 (Standard), Septem-
ber 1981. URL http://www.ietf.org/rfc/rfc793.txt. Updated by
RFCs 1122, 3168, 6093, 6528.

[19] I. Paterson, D. Smith, P. Saint-Andre, and J. Moffitt. XEP-0124:
Bidirectional-streams Over Synchronous HTTP (BOSH). Draft Stan-
dard, July 2010. URL http://xmpp.org/extensions/xep-0124.html.

BIBLIOGRAPHY 72

[20] I. Fette and A. Melnikov. TheWebSocket Protocol. RFC 6455 (Proposed
Standard), December 2011. URL http://www.ietf.org/rfc/rfc6455.
txt.

[21] J. Moffit and E. Cestari. An XMPP Sub-protocol for WebSocket.
Internet Draft, June 2011. URL http://tools.ietf.org/html/
draft-moffitt-xmpp-over-websocket-00.

[22] I. Hickson. The WebSocket API. W3C candidate recommendation,
W3C, December 2011. http://www.w3.org/TR/websockets/.

[23] R. Krannenburg. The Internet of Things. A critique of ambient tech-
nology and the all-seeing network of RFID. Network Notebooks 02.
Institute of Network Cultures, 2008.

[24] Internet of things in 2020, roadmap for the future. Technical report, IN-
FSO D.4 Networked Enterprise & RFID INFSO G.2 Micro & Nanosys-
tems in co-operation with the Working Group RFID of the ETP EPOSS,
May 2008.

[25] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From the Internet
of Things to the Web of Things: Resource Oriented Architecture and
Best Practices, chapter 5, pages 97–129. Springer, April 2011. ISBN
978-3-642-19156-5.

[26] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton. Smart ob-
jects as building blocks for the internet of things. IEEE Internet Com-
puting, 14(1):44–51, 2010. URL http://oro.open.ac.uk/31631/.

[27] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A
Survey. Computer Networks, 54(15):2787–2805, 2010. URL http:
//linkinghub.elsevier.com/retrieve/pii/S1389128610001568.

[28] T. Kawashima, J. Ma, R. Huang, and B. O. Apduhan. GUPSS: A
Gateway-Based Ubiquitous Platform for Smart Space. 2009 Interna-
tional Conference on Computational Science and Engineering, pages
213–220, 2009. doi: 10.1109/CSE.2009.265. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5284203.

[29] D. Guinard, V. Trifa, and E. Wilde. A Resource Oriented Ar-
chitecture for the Web of Things. Journal of Evolution, pages 1–
8, 2010. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=5678452.

BIBLIOGRAPHY 73

[30] R. T. Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of Califor-
nia, Irvine, 2000. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.91.9164\&rep=rep1\&type=pdf.

[31] L. Reyero and G. Delisle. A Pervasive Indoor-Outdoor Positioning
System. Journal of Networks, 3(8):70–83, 2008. URL http://www.
academypublisher.com/ojs/index.php/jnw/article/view/1056.

[32] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of Wireless Indoor
Positioning Techniques and Systems, 2007. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4343996.

[33] A. Popescu. Geolocation API Specification. W3C proposed rec-
ommendation, W3C, May 2012. http://www.w3.org/TR/2012/PR-
geolocation-API-20120510/.

[34] A. Mayfield. What is social media? Journal of Networks, 1.4:
36, 2008. URL http://www.icrossing.co.uk/fileadmin/uploads/
eBooks/What_is_Social_Media_iCrossing_ebook.pdf.

[35] How Many Social Networking Websites Are
There? URL http://howmanyarethere.net/
how-many-social-networking-websites-are-there/.

[36] H. Oh and S. Jin. The Security Limitations of SSO in OpenID. 2008 10th
International Conference on Advanced Communication Technology, 3:
1608–1611, 2008. URL http://ieeexplore.ieee.org/xpl/freeabs_
all.jsp?arnumber=4494089.

[37] M. N. Ko, G. P. Cheek, M. Shehab, and C. North. CONNECT
SERVICES. Journal of Computer, 43(8):37–43, 2010. URL http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5551044.

[38] M. Böhm, S. Leimeister, C. Riedl, and H. Krcmar. Cloud Com-
puting and Computing Evolution. In Cloud Computing Technolo-
gies Business Models Opportunities and Challenges, pages 1–28.
CRC Press, 2010. URL http://www.theseus.joint-research.org/
assets/Wissenschaftliche-Publikationen/BoehmEtAl2009c.pdf.

[39] S. P. Mirashe and N. V. Kalyankar. Cloud Computing. Communications
of the ACM, 51(7):9, 2010. URL http://arxiv.org/abs/1003.4074.

BIBLIOGRAPHY 74

[40] L. Savu. Cloud Computing Deployment models, delivery models, risks
and research challanges. Information Security, 2011.

[41] P. Ljungstrand, J. Redström, and L. E. Holmquist. WebStickers: Us-
ing Physical Tokens to Access, Manage and Share Bookmarks to the
Web. In Proceedings of DARE 2000 Designing Augmented Reality En-
vironments, pages 23–31. ACM Press, 2000. doi: 10.1145/354666.
354669. URL http://portal.acm.org/citation.cfm?id=354669\
&coll=ACM\&dl=ACM\&CFID=64850236\&CFTOKEN=86024593\#.

[42] V. Trifa, D. Guinard, V. Davidovski, A. Kamilaris, and I. Delchev. Web
Messaging for Open and Scalable Distributed Sensing Applications. Web
Engineering, 6189:129–143, 2010. URL http://www.springerlink.
com/index/G21NG6L3T60147H7.pdf.

[43] M. Blackstock, N. Kaviani, R. Lea, and A. Friday. MAGIC Broker 2:
An open and extensible platform for the Internet of Things. Computing,
(Nov. 29 2010-Dec. 1 2010):1–8, 2010. URL http://dx.doi.org/10.
1109/IOT.2010.5678443.

[44] T. Springer, D. Schuster, I. Braun, J. Janeiro, M. Endler, and
A. Loureiro. A Flexible Architecture For Mobile Collaboration Ser-
vices. Proceedings of the ACMIFIPUSENIX international middle-
ware conference companion on Middleware 08, page 118, 2008. doi:
10.1145/1462735.1462770. URL http://portal.acm.org/citation.
cfm?doid=1462735.1462770.

[45] R. Lübke, D. Schuster, and A. Schill. MobilisGroups: Location-based
group formation in Mobile Social Networks. Computer Networks, pages
502–507, 2011. doi: 10.1109/PERCOMW.2011.5766941. URL http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5766941.

[46] D. Schuster, T. Springer, and A. Schill. Service-based develop-
ment of mobile real-time collaboration applications for Social Net-
works. 2010 8th IEEE International Conference on Pervasive Com-
puting and Communications Workshops PERCOM Workshops, pages
232–237, 2010. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5470662.

[47] N. Jansen. Design and Implementation of a Web Gateway for Mobile
Collaboration Services. Master’s thesis, TU Dresden, 2011.

[48] Pusher. URL http://pusher.com/. [last checked: June 7, 2012].

BIBLIOGRAPHY 75

[49] Facebook. URL http://www.facebook.com. [last checked: May 7,
2012].

[50] LogicAlloy ALE Server. URL http://www.logicalloy.com/. [last
checked: May 7, 2012].

[51] M. Gudgin, M. Hadley, N. Mendelsohn, Y. Lafon, J.-J. Moreau, A. Kar-
markar, and H. Nielsen. SOAP Version 1.2 Part 1: Messaging Frame-
work (Second Edition). W3C recommendation, W3C, April 2007.
http://www.w3.org/TR/soap12-part1/.

[52] Cosm. URL https://cosm.com/. [last checked: May 7, 2012].

[53] Qubulus. URL http://www.qubulus.com/. [last checked: June 7, 2012].

[54] Gigya. URL http://www.gigya.com/. [last checked: June 7, 2012].

[55] Janrain. URL http://janrain.com/. [last checked: June 7, 2012].

[56] 4D-Space. URL http://mide.aalto.fi/en/4D-Space. [last checked:
June 7, 2012].

[57] P. Ojanen, P. Vuorimaa, P. Saarikko, and S. Uotinen. Sharing and
Browsing Social Objects in Physical Space within Close-Knit Groups.
In 1st International Workshop on Mobile Interaction in Retail Environ-
ments, 2011.

[58] P. Ojanen, P. Vuorimaa, P. Saarikko, and S. Uotinen. Ubeel: Gener-
ating Local Narratives for Public Displays from Tagged and Annotated
Video Content. 2011. URL http://ftp.informatik.rwth-aachen.
de/Publications/CEUR-WS/Vol-720/.

[59] S. Wellman. Google Lays Out Its Mobile User Experience Strategy
- mobility Blog, April 11 2007. URL http://www.informationweek.
com/blog/229216268. [last checked: June 7, 2012].

[60] Play! Framework. URL http://www.playframework.org/. [last
checked: June 7, 2012].

[61] Openfire. URL http://www.igniterealtime.org/projects/
openfire/. [last checked: June 7, 2012].

[62] MySQL. URL http://www.mysql.com/. [last checked: June 7, 2012].

BIBLIOGRAPHY 76

[63] Signature Version 2 Signing Process. Amazon Web Services.
URL http://docs.amazonwebservices.com/general/latest/
gr/signature-version-2.html. [last checked: June 7, 2012].

[64] Benchmarking APIs using PerfectAPI vs Express.js vs
Restify.js. URL http://blog.perfectapi.com/2012/
benchmarking-apis-using-perfectapi-vs-express.
js-vs-restify.js/. [last checked: June 7, 2012].

[65] ab - Apache HTTP server benchmarking tool. URL http://httpd.
apache.org/docs/2.0/programs/ab.html. [last checked: June 7,
2012].

[66] S. Ahuja and J.-E. Yang. Performance Evaluation of Java Web Services:
A Developer’s Perspective. Communications and Network, 2:200–206,
2010.

[67] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained Ap-
plication Protocol (CoAP). Internet Draft, March 2012. URL http:
//datatracker.ietf.org/doc/draft-ietf-core-coap/.

[68] D. Recordon and D. Hardt. The OAuth 2.0 Authorization Frame-
work. Internet Draft, May 2012. URL http://tools.ietf.org/html/
draft-ietf-oauth-v2-26.

