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Static code analysis (SCA) is a popular bug detection technique. How-
ever, several problems slow down the adoption of SCA. First of all, when
first applying SCA to a mature software system, the SCA tools tend to
report a large number of alerts which developers do not act on. Second,
it is unclear how effective SCA is to find real defects. Therefore, we
decided to conduct a case study in Valuatum to evaluate and enhance
the effectiveness of FindBugs, a popular SCA tool for Java. The main
goal of this thesis is to learn how to make FindBugs as an effective tool
providing immediate, useful feedback for developers in Valuatum.

We have used several approaches to study FindBugs. First, we have
analyzed how many and what types of fixed defects could have been
prevented with FindBugs. Second, we have developed custom detectors
for the most important defects missed by FindBugs. Third, we have
studied the precision of FindBugs to detect open defects. Last, we have
presented several approaches, such as defect differencing and IDE in-
tegration, to deal with the large number of alerts.

The results indicate that FindBugs is not very effective in detecting
fixed defects. We estimated that 9–16% of the fixed bugs should be
feasible to detect with SCA. However, only 0–2% of the reported fixed
bugs and 1–6% of the unreported fixed bugs could have been prevented
with FindBugs. Moreover, only 18.5% of the high-priority open alerts
are considered actionable. Nevertheless, we think FindBugs is a cost-
effective tool, because it detected several important open issues and can
be enhanced with custom detectors.
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Staattinen koodianalyysi (SCA) on suosittu menetelmä ohjelmistovir-
heiden eli bugien etsinnässä. Sen käyttöönottoa kuitenkin haittaavat
useat ongelmat. Ensinnäkin SCA tuottaa kehittyneissä ohjelmistoissa
paljon varoituksia, joihin käyttäjät eivät reagoi. On myös epäselvää,
kuinka tehokkaasti SCA löytää oikeita bugeja. Siksi toteutimmekin
tässä työssä tapaustutkimuksen Valuatumilla, jossa arvioimme ja pa-
rannamme FindBugsin tehokkuutta. Työn päätarkoitus on oppia hyö-
dyntämään FindBugsia niin, että se antaisi mahdollisimman hyödyllis-
tä ja välitöntä palautetta Valuatumin ohjelmistokehittäjille.

Käytimme tutkimuksessa useita eri tapoja FindBugsin arviointiin. En-
sinnäkin analysoimme, mitä korjattuja ohjelmistovirheitä FindBugs
olisi voinut estää. Kirjoitimme myös omia bugi-ilmaisimia niille tär-
keimmille virheille, joita FindBugs ei löytänyt. Lisäksi tutkimme Find-
Bugsin löytämiä avoimia bugeja sekä esitimme erilaisia tapoja, miten
hallita suuria määriä varoituksia.

Tutkimustulokset viittaavat siihen, että FindBugs ei ole kovin teho-
kas löytämään korjattuja ohjelmistovirheitä. Arvioimme, että SCA:lla
pystyisi löytämään 9–16% korjatuista bugeista. Kuitenkin vain 0–2 %
raportoiduista ja 1–6 % raportoimattomista bugeista olisi voitu estää
FindBugsilla. Avoimista FindBugsin löytämistä korkeimman prioritee-
tin varoituksista vain 18,5 % luokiteltiin oleellisiksi. FindBugs on kui-
tenkin mielestämme kustannustehokas työkalu bugien etsintään, kos-
ka sitä pystyy tehostamaan omilla bugi-ilmaisimilla ja sen avulla olem-
me löytäneet useita tärkeitä virheitä koodista.
Avainsanat: FindBugs, Java, SCA, staattinen koodianalyysi,

staattinen analyysi, väärät varoitukset
Kieli: englanti
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Abbreviations and Acronyms

AAIT Actionable alert identification technique;
A technique used to identify actionable alerts
from the set of warnings produced by an SCA
tool

AC Alert characteristic; A characteristic of an
alert from an SCA tool, usually used in AAITs

API Application programming interface; Spec-
ifications that software programs can follow to
communicate with each other

AST Abstract syntax tree; A tree-form representa-
tion generated from program source code

CFG Control flow graph; A representation of all
paths that might be traversed through a pro-
gram during its execution

CI Continuous integration; A continuous pro-
cess of applying quality control during software
development

CPU Central processing unit; A major component
of a modern computer

CSE Computer Science and Engineering
CSS Cascading Style Sheets; A style sheet lan-

guage describing the formatting of, for example,
HTML pages

DFA Data flow analysis; A high-level method for
static code analysis

EJB Enterprise JavaBeans; A server-side compo-
nent architecture for modular construction of
enterprise applications in Java
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FN False negative; A measure for instances where
an SCA tool does not report a warning for a real
defect

FP False positive; A measure for instances where
an SCA tool reports a warning which does not
indicate a real bug

GPL GNU General Public License; A free software
license originally written for the GNU Project

GUI Graphical user interface
HTML HyperText Markup Language; A markup

language describing the structure of web pages
I18N Internationalization
IBM International Business Machines; An Amer-

ican multinational technology and consulting
corporation

IDE Integrated development environment; A
software application providing facilities to pro-
grammers for software development

JDK Java Development Kit; A standard develop-
ment kit for Java developers by Oracle Corpora-
tion

JSP JavaServer Pages; A server-side Java pro-
gramming language which is typically embed-
ded to HTML pages

JVM Java virtual machine; A virtual machine ca-
pable of executing Java bytecode

LGPL Lesser GNU Public License; A free software
license, more permitting than GPL

LOC Lines of code; A unit used to measure software
size

NASA National Aeronautics and Space Adminis-
tration; A space agency in the United States of
America

NIST National Institute of Standards and Tech-
nology; A non-regulatory federal technology
agency in the United States of America

NCLOC Non-comment lines of code; A software size
measuring unit which ignores comments and
line-breaks
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NPE NullPointerException; An exception which
occurs when referencing a null object in pro-
gram code

PMD Programming Mistake Detector; A static
code analysis tool for Java focusing on styling
issues

QA Quality assurance; A process used to measure
and assure the quality of a product

SCA Static code analysis; Program analysis with-
out executing the analyzed program

SDK Software development kit; A set of software
development tools allowing the creation of ap-
plications for a certain software system

SPM Syntactic pattern matching; A high-level
method for static code analysis

SQE Software Quality Environment; A code qual-
ity inspector plugin for NetBeans

SQL Structured Query Language; A database
query language

SVN Subversion; A software versioning and a revi-
sion control system distributed by Apache Soft-
ware Foundation

TN True negative; A measure for instances where
an SCA tool reports no warning because there is
no defect

TP True positive; A measure for instances where
an SCA tool reports a warning which relates to
a real bug

UI User interface
URL Universal resource locator; A reference to an

Internet resource
XML Extensible Markup Language; A markup

language defining set of rules used to construct
documents which are both human-readable and
machine-readable

XSLT Extensible Stylesheet Language Transfor-
mations; An XML-based declarative language
used for the transformation of XML documents

XSS Cross-site scripting; A type of security vulner-
ability typically found in web applications
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Chapter 1

Introduction

1.1 Motivation

A well-known fact in the field of software development is that fixing a
defect early in the development cycle is much more cheaper than fixing
the defect in the field. According to a NIST study published in 2002,
software bugs cost about $60 billion annually merely for U.S economy
(Research Triangle Institute, 2002, p. 169). Based on a feasible 50 per-
cent reduction of errors through improved testing, the potential cost
savings has been estimated as much as $22 billion. The potential sav-
ings are massive, so there clearly is a demand for cost-effective defect
detection techniques.

Static code analysis (SCA) is one such technique which could help to
save those 22 billion dollars. Nowadays, SCA is actively used in vari-
ous software companies, such as NASA (Brat and Venet, 2005), Google
(Ayewah and Pugh, 2010), IBM (Nanda et al., 2010), Microsoft (Ayewah
et al., 2010), and eBay (Jaspan et al., 2007). Evidently, static code anal-
ysis is a very popular quality assurance method to find defects from
software systems.

The main benefits of SCA are that it is well scalable and can be auto-
mated. Several studies have shown that SCA is a cost-effective fault
detection technique (Baca et al., 2008; Jaspan et al., 2007; Wagner
et al., 2008; Zheng et al., 2006). For example, Wagner et al. (2008)
concluded that detecting a single severe defect or 3–15 normal defects
is enough for an SCA tool to be cost-effective.

1



CHAPTER 1. INTRODUCTION 2

1.2 Background

Static analysis, also known as static program analysis (Godefroid et al.,
2008), static code checking (Louridas, 2006), automated static analy-
sis (Heckman and Williams, 2011) or simply static analysis (Ayewah,
2010), is defined by IEEE (1990) as:

"The process of evaluating a system or component based
on its form, structure, content, or documentation"

In practice, this means that SCA tools try to find out defects from the
code without actually executing the program under analysis. Static
code analysis is usually contrasted with dynamic analysis. In dynamic
analysis, the program under analysis is executed by providing suffi-
cient test inputs to produce interesting behavior, which can be further
analyzed. Traditional testing methods, such as unit testing and per-
formance testing, are examples of dynamic analysis (Emanuelsson and
Nilsson, 2008). In contrast to dynamic analysis, static code analysis
does not execute the analyzed program but it uses various formal anal-
ysis methods for defect detection, such as data flow analysis. SCA is
not intended to replace traditional testing methods but is an additional
quality assurance technique. It is especially useful for finding defects
from untested code or detecting bugs which are hard to find with tradi-
tional testing, such as concurrency or security issues.

Numerous SCA tools are available and they differ, for example, from
the formal methods they use and from the programming languages
they support. In this study, we1 focus on tools supporting Java pro-
gramming language. These tools can detect defects such as null deref-
erence errors, misuse of API, concurrency issues, cross-site scripting
(XSS) vulnerabilities, and SQL injections. Some of the tools operate
on source code, while others analyze bytecode. FindBugs, PMD, JLint,
and Lint4j are examples of free SCA tools for Java. Also commercial
products exist for Java, such as Klocwork Insight and Coverity Static
Analysis.

A major problem with the commercial tools is that they are very expen-
sive. The pricing policy seems to be mysterious: few companies offering
commercial SCA tools list their price publicly. One article claims that

1Use of the plural pronoun is customary even in solely authored research papers;
thus, we use the plural form also in this thesis.
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Klocwork K7, the predecessor of Klocwork Insight, costs about $20,000
annually for projects up to a half-million lines of code (Louridas, 2006).
Another problem with commercial SCA tools is that they usually come
with license agreements forbidding the publication of any experimental
or evaluative data (Ayewah et al., 2007; Hovemeyer and Pugh, 2007b).
Free tools, however, have different problems: many of them are not
actively developed anymore, so they suffer from, for example, incom-
patibility problems with the new versions of programming languages
and out of date defect detection methods. FindBugs is actually the only
free tool for Java which we saw worth analyzing (see more from Sec-
tion 3.2). Therefore, the focus of this paper is on FindBugs.

The author of this thesis works in a software company named Valua-
tum. It develops a commercial Java-based system used by stockbrokers
and their clients. A major problem in the system is that only 23% of
the 700,000 lines of Java-code (including comments) are covered with
automated unit tests. Much of the untested code is legacy code, which
is hard to test with current unit testing tools. When most of the code is
not automatically tested, even quite trivial programming errors might
escape notice and end up to the production environment, causing visi-
ble problems to the customers.

In Valuatum, SCA has been seen as an economically potential method
for detecting defects. It is not intended to replace unit testing but is an
additional quality assurance technique to help detecting the most sim-
ple programming errors especially from the untested code. However,
some well-known problems make the adoption of SCA challenging in
Valuatum. These problems are discussed in the next section.

1.3 Research problem

One of the main problems slowing down the adoption of SCA in Valua-
tum is that SCA tools tend to report a high number of false warn-
ings especially in mature systems which have not previously used any
SCA tools. The rate of false warnings varies by tool, project, and con-
figuration. A popular SCA tool, FindBugs, advertises on their website
to have false warnings rate less than 50%. Heckman and Williams
(2011) have reported that 35–91% of reported alerts are unactionable,
in other words, developers do not react to these alerts. This high rate
of false warnings may lead developers to completely ignore the output
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of SCA tools because of the overhead of alert inspection. Based on a
survey with the users of FindBugs, dealing with large number of false
warnings is one of the biggest barriers for adopting SCA because it re-
quires a significant initial effort the first time the tool is run (Ayewah
and Pugh, 2008).

In fact, this is exactly what happened in Valuatum before starting this
thesis. Although FindBugs was included in our development process
for half a year, basically all the warnings from the tool were ignored
by the developers. Running FindBugs to the whole Valuatum’s system
produced over 12,000 alerts. Many of the reported warnings seemed to
be quite unimportant, and developers felt that it would take too much
time to identify which warning is a real warning and which is a false
warnings. There was clearly a need for a method or a process which
could help to deal with the large number of alerts.

Another problem with FindBugs is that it is not clear how effective
it is to prevent actual defects. For example, Wagner et al. (2008)
evaluated the effectiveness of FindBugs. For one project, they did not
find a single case where a field defect2 was related to an alert reported
by FindBugs. One reason for this outcome was seen that SCA tools are
good at detecting commonly known general bugs, such as null derefer-
ences, but defects occurring in the field are usually high-level logical
project-specific defects. Another reason, pointed out by Plösch et al.
(2008), is that the analyzed project was already in production for four
years; therefore, reaching a high level of maturity.

Regarding the maturity level and project size, the larger project in-
vestigated by Wagner et al. is quite close to the software developed
in Valuatum. Therefore, the results are disappointing from FindBugs’
point of view and raise a couple of questions. First of all, is FindBugs
really effective for detecting field defects from mature software? Sec-
ond, if the field defects are usually project-specific, can we effectively
customize FindBugs to find these project-specific bugs?

FindBugs allows users to develop own custom bug detectors, which
could be used to detect at least some of the project-specific defects.
Because all software contains internal APIs and have specific coding
rules, these custom bug detectors could be used, for example, to find vi-
olations of project-specific coding rules or misuse of internal API. Sev-
eral major companies have found out that developing own bug checkers

2The term "field defect" here means a defect which has been detected from the
production environment, for example, by a customer.
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might be cost-effective. For example, Jaspan et al. (2007) from eBay re-
port that they are very interested in using own checkers to look for
project-specific issues. Also Nanda et al. (2010) from IBM and Kienle
et al. (2011) from ABB Robotics share the same interest.

In Valuatum, FindBugs has failed to identify several critical bugs which
have caused considerable problems in the production environment. Some
of these bugs were quite simple project-specific programming errors;
therefore, they should be found with static code analysis. Although
the aforementioned bugs are already fixed, SCA might help to prevent
these bugs from occurring again. For that reason, using custom de-
tectors in Valuatum seems to be an interesting approach and worth
further studying.

The main goal of this thesis is to learn how to make FindBugs as an
effective tool which could provide immediate, useful feedback for devel-
opers in Valuatum. To learn how we should use FindBugs effectively,
we first need to analyze what FindBugs is capable of when using it in
a mature system. How many and what types of defects does it actu-
ally find? Could some important missed defects be detected effectively
with custom detectors? How many of the reported open alerts are ac-
tionable? All these questions need to be answered so that we can get
the most out of FindBugs. In addition to evaluating the effectiveness
of FindBugs, we also need to study how to deal with the large number
of unactionable alerts.

1.4 Research questions

To answer the problems described in the previous section, this thesis
studies the following research questions:

1. RQ1: How effective is FindBugs in preventing bugs in mature
software systems?

2. RQ2: What techniques are applicable in mature software systems
to find the most important alerts from the large number of alerts
reported by FindBugs?

The research questions above are answered based on a case study per-
formed in Valuatum. In summary, the main contributions of this paper
are:
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• Analyzing the effectiveness of FindBugs to prevent bugs in a ma-
ture software system. If some of the known bugs are not de-
tected with the default detectors of FindBugs, we develop custom
project-specific detectors for the most important missed defects.
These custom detectors help us to prevent the defects from occur-
ring again, and they might also reveal other locations of code in-
fected with the same defect. Some of the custom detectors are gen-
eralizable; therefore, they may also help others to find the same
defects in different projects.

• Analyzing the effectiveness of FindBugs to find new defects from
a mature system by analyzing how many of the reported open
alerts are actual defects having functional impact and how many
are unactionable alerts.

• Presenting and evaluating different ways to deal with the large
number of unactionable alerts in mature software systems. This
will hopefully help also others to integrate FindBugs to their soft-
ware development process.

1.5 Structure of the thesis

The rest of this thesis is organized as the following. In Chapter 2,
we introduce related work about static code analysis. For example,
different methods for static analysis are presented, and also previous
studies about evaluating the effectiveness of FindBugs are described.
Next, Chapter 3 presents some background information about our case
study and why we have chosen FindBugs as the SCA tool for our work.
To continue, Chapter 4 describes the case study methodology, in other
words, how did we perform the study and what limitations are involved
to the methods we have used. The actual results from our case study
are presented in Chapter 5. Finally, in Chapter 6, we conclude the
thesis and present some ideas for future work in Chapter 7.



Chapter 2

Related work

Static code analysis has been a quite active field of study. Numerous
papers are published about the topic. In this chapter, we present the
most important previous work related to the scope of this thesis. We
first describe the methods for static code analysis ranging from simple
techniques (such as syntactic pattern matching) to more complex meth-
ods (such as model checking). Second, we present the problem with
false positives and what techniques exist for actionable alert identifi-
cation. Third, we describe previous work on analyzing the effectiveness
of FindBugs. Finally, related work on enhancing FindBugs with custom
detectors is presented.

2.1 Methods for static code analysis

Several different methods exist for performing static code analysis. In
this section, we present the most commonly used static analysis meth-
ods described in the literature. We include the following techniques
mentioned in the taxonomy of static code analysis tools (Novak et al.,
2010): syntactic pattern matching, data flow analysis, theorem proving,
and model checking. Each of these methods are briefly described in the
following subsections.

7
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2.1.1 Syntactic pattern matching

Syntactic pattern matching (SPM) is one of the most common tech-
niques used in static code analysis tools. FindBugs, PMD, JLint, and
CheckStyle are examples of tools implementing SPM (Rutar et al.,
2004; Novak et al., 2010). In practice, syntactic bug pattern detec-
tion scans the program code for suspicious patterns of code. Some of
the tools (such as PMD) work on the source code and some (e.g. Find-
Bugs) analyze the bytecode. The actual techniques used in bug pattern
matching varies by tool. For example, PMD uses Java and XPath to de-
tect bug patterns from the abstract syntax tree (AST) generated from
the source code. FindBugs, on the other hand, linearly scans the byte-
code of a class instruction at a time and, in that way, constructs a state
for the class under analysis, which can be used to detect bug patterns.

One of the advantages of SPM is that it is rather easy to apply. Perhaps
that is why the technique is one of the most popular static code analy-
sis techniques used: almost all popular tools include SPM techniques.
For many simple bugs, this technique is enough to detect them. Syn-
tactic pattern matching is, however, said to be a quite shallow method
and produces many false warnings (Emanuelsson and Nilsson, 2008).
Therefore, it does not suite very well for more complex bugs which need
more knowledge of the state of a program and interaction between dif-
ferent components (e.g. detecting more complex interprocedural null
dereferences or finding complex synchronization problems).

2.1.2 Data flow analysis

Data flow analysis (DFA) is a technique used in more complicated static
analysis bug detectors. It is perhaps the second most used static analy-
sis technique after syntactic pattern matching. JLint and FindBugs are
examples of tools implementing DFA (Rutar et al., 2004; Novak et al.,
2010). Data flow analysis uses program’s control flow graph (CFG) to
analyze the application’s execution paths. The goal of this method is to
gather information about the possible set of values calculated at differ-
ent points of program code. With the help of CFG, data flow analysis
simulates application’s execution paths without actually executing the
code. Some tools might perform deep interprocedural data flow analy-
sis, while others might be restricted to more lightweight intraprocedu-
ral analysis.
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For instance, FindBugs has detectors which use intraprocedural DFA
to detect null pointer dereferences (Hovemeyer and Pugh, 2004). Below
is an example NPE (NullPointerException) bug which can be detected
with FindBugs.

String s= getString();
if (s == null && s.isEmpty()) {

return;
}

When compared to SPM, one advantage of DFA is that it can be used to
detect more complex bugs than syntactic pattern matching. Many bugs
require the knowledge of the possible values of variables. For example,
good interprocedural null pointer dereference analysis requires know-
ing the possible set of values in order to determine whether a value can
be null at some point of the program code.

2.1.3 Theorem proving

Theorem proving is a static analysis method which performs formal
verification of the properties of program code. Theorem proving is used,
for example, in ESC/Java2 (Flanagan et al., 2002; Rutar et al., 2004).
In practice, ESC/Java2 provides programmers an annotation language
which they can use to express design decisions formally, for example,
by adding preconditions and postconditions. ESC/Java2 analyzes the
annotated program code and warns of inconsistencies between the de-
sign decisions recorded as annotations and the actual program code.

One disadvantage of this method is that it has very poor tool support
for Java: the discontinued tool ESC/Java2 is the only tool we are aware
of supporting this technique. Another weakness of this technique is
that the technique requires quite much manual pre-work, like adding
annotations to the program code to record the design decisions in case
of ESC/Java2. In large code bases, this manual pre-work might be too
laborious.

2.1.4 Model checking

Another formal static analysis technique is model checking. It is used
to extract finite-state models from program code. The generated model
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can be then used to verify program behavior. This technique is used
in the Bandera tool. To use Bandera, the programmers annotate their
source code with specifications describing what should be checked, and
with the help of the generated model, Bandera can verify the program
behavior (Corbett et al., 2000).

Model checking has at least the same disadvantages as theorem prov-
ing: it requires quite much manual pre-work and has poor tool support
for Java. Bandera is the only general-purpose SCA tool for Java we are
aware of supporting model checking. Moreover, model checking might
not be very well suitable for large programs because the state explosion
problem makes it difficult to construct a finite state for large software
systems (Corbett et al., 2000).

2.2 Static analysis accuracy

Regardless of the SCA technique used, almost all static analysis tools
produce false warnings or miss bugs which they should warn of. Both of
these are well-known problems with static analysis. In this section, we
describe these problems in more detail and present some approaches
how to deal with large number of false warnings.

2.2.1 False positives and actionable alerts

If a static analysis tool produces a warning which does not indicate
a real defect, this warning is considered to be a false positive (FP).
Warnings revealing real errors are, on the contrary, true positives (TP).
Sometimes also terms false negative (FN) and true negative (TN) are
used (Plösch et al., 2009; Heckman and Williams, 2008). The term
false negative refers to unwanted cases where a tool does not report a
warning for a real defect. True negative is a less commonly used term
which means a desired case where a tool reports no warning because
there is no defect.

False positives are probably the greatest problem with static analy-
sis. If a tool reports a large number of false positives, developers will
eventually lose faith to the tool and stop using it. This happened, for
example, in eBay (Jaspan et al., 2007). It is clear that effective static
analysis tools always produce false positives. The tools usually have
to make a compromise between false negatives and false positives. In
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the literature (Hovemeyer, 2005) this trade-off between false negatives
and false positives is defined as terms sound and complete analysis.
Sound analysis generally means that the tool "finds every real bug",
whereas complete analysis "reports only real bugs". In other words, a
sound analysis does not have false negatives, and a complete analysis
does not have false positives.

Although completeness and soundness are desired, both of them are
practically impossible to achieve in static analysis. If a tool can find all
possible bugs (soundness) it usually does this by reporting hundreds
or thousands of false positives for every true positive, making the tool
unusable in practice. Instead, if the tool only reports true errors (com-
pleteness), it usually finds only a small number of defects, thus produc-
ing many false negatives.

The terms precision and recall are commonly used measures to ana-
lyze the effectiveness of SCA tools (Plösch et al., 2009; Heckman and
Williams, 2008; Nanda et al., 2010; Shen et al., 2011). The higher the
precision and recall are, the more effective the analysis is. Also the
term accuracy is sometimes used (Heckman and Williams, 2008, 2011).
These measures are defined as the following:

precision =
true positives

all warnings
=

TP

TP + FP
(2.1)

recall =
true positives

all known bugs
=

TP

TP + FN
(2.2)

accuracy =
correct classifications

all classifications
=

TP + TN

TP + TN + FP + FN
(2.3)

All the measures rely on the correct classification of warnings as false
positives. However, classifying a warning as a false positive is actu-
ally a quite difficult task. Nanda et al. (2010) mention in their study
that even though an alert is a true positive indicating a real defect,
users might ignore the warning for several different reasons. Devel-
opers may, for example, think that the defect is unlikely to cause a
failure in practice or the defect is reported in the code that is not so
critical. More reasons for ignoring these warnings are described by
Ayewah (2010), including reasons such as dead code, deliberate er-
rors, and infeasible statements. In fact, using the term false positive
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for these legitimate but uninteresting warnings is inaccurate. There-
fore, some studies (Heckman and Williams, 2011; Ruthruff et al., 2008;
Liang et al., 2010) prefer to use terms actionable alert and unaction-
able alert. False positives are naturally unactionable alerts, however,
also true positives which developers see not worth fixing are classified
as unactionable. Only warnings which developers are willing to fix are
considered actionable alerts.

2.2.2 Actionable alert identification techniques

As we have seen in the previous subsection, static analysis tools pro-
duce a large number of false positives, or more precisely, only a part
of the alerts are actionable. Therefore, several different actionable
alert identification techniques (AAIT) have been proposed in the lit-
erature. Most of these techniques either re-prioritize warnings so that
the most important warnings are at the top or directly classify an alert
as actionable or unactionable without prioritization. Heckman and
Williams (2011) present a very comprehensive study about AAITs. In
this section, we will briefly summarize the general AAIT approaches
presented in the aforementioned paper. The included eight approaches
are: 1) alert type selection, 2) contextual information, 3) data fusion,
4) graph theory, 5) machine learning, 6) mathematical and statistical
models, 7) dynamic detection, and 8) model checking.

Alert type selection

Alert type selection is probably the most straightforward and easiest
approach to use. It basically means excluding bug patterns which de-
velopers do not see important. Usually, static analysis tools group
warnings to categories which users can exclude from analysis. Al-
though the method is simple and might significantly reduce the num-
ber of unactionable alerts, it is prone to suppress also those important
warnings which belong to the excluded categories. It is very project-
specific which types of warnings are relevant. Therefore, this approach
requires studying the alert types appearing in the target code base usu-
ally by mining the source code repository or manually reviewing differ-
ent alert types.
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Contextual information

AAITs utilizing the contextual information approach try to diminish
unactionable alerts by selecting only areas of code that a static analysis
tool can analyze well. For example, if we know that some part of a
program contains old legacy code which works well but produces many
unactionable alerts, we can exclude this legacy portion of the code from
the analysis.

Data fusion

Data fusion uses outputs from multiple static analysis tools and com-
bines them to produce more accurate results. Similar warnings from
multiple tools might imply that an alert is actionable. For example, the
output from FindBugs could be enhanced with the output from PMD.
If both FindBugs and PMD report a warning for the same line of code,
this warning might get a much higher priority than if only one tool
reports a warning for the line of code.

The AAIT presented by Meng et al. (2008) uses the data fusion ap-
proach. The authors combined the results from FindBugs, PMD, and
JLint. They first prioritized alerts by the priority from each tool. Next,
they analyzed whether multiple alerts from different tools point to the
same issue. If more than one tool has found the same issue, the alert’s
rank is raised. The authors did not, however, do any precise evaluation
about the effectiveness of this approach.

Graph theory

AAITs using the graph theory approach try to identify actionable alerts
by using, for instance, system dependence graphs, which provide con-
trol and data flow information for a program. Based on this informa-
tion, one can calculate, for example, the execution likelihood for some
location of code. If a warning points to the line of code having low
execution likelihood, we can either ignore the alert or give it a lower
priority.

The AAIT described by Boogerd and Moonen (2008) uses the graph
theory approach by analyzing program’s execution likelihood combined
with execution frequency. The higher execution likelihood and execu-
tion frequency the code has, the higher are warnings from SCA tools
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prioritized.

Machine learning

One of the most common approaches used in AAITs is machine learn-
ing. Heckman and Williams (2011) define it as "the extraction of im-
plicit, previously unknown, and potentially useful information about
data". In practice, AAITs using machine learning commonly use the in-
formation about the alerts and the surrounding code. These AAITs try
to find patterns within gathered data and then build a constantly up-
dated model from the data, which can be used to predict or re-prioritize
alerts. Usually these AAITs apply some well-known machine learners,
such as Bayesian network or logistic regression.

For example, Heckman and Williams (2009) propose a model building
process which gathers alert characteristics (AC) from three sources: a
static analysis tool, a metrics tool, and a source code repository. The
model includes candidate ACs, such as cyclomatic complexity of the
method containing an alert, alert priority, alert open revision, total
alerts for revision, and file age. From the set of candidate ACs, only
those ACs that have the best predictive power are included and irrele-
vant characteristics are ignored. Using machine learning algorithms
and the selected set of predictive ACs, a model is build, which can
then be used to predict whether an alert is actionable or not. Heck-
man and Williams evaluated this AAIT with two subject programs and
concluded that the average precision of the AAIT is 89–90% and the
average recall is 83–99%. In other words, 89–90% of the alerts classi-
fied with the model as actionable were actionable alerts. Furthermore,
83–99% out of all known actual actionable alerts were classified as ac-
tionable.

Mathematical and statistical models

Using mathematical and statistical models is another very common ap-
proach among AAITs. This approach usually uses the data from alerts
and the history from a source code repository to create mathematical or
statistical models in order to determine whether an alert is actionable
or not.

For example, one AAIT (Kim and Ernst, 2007b) using mathematical
and statistical models analyzes alert lifetimes. The basic principle in
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the aforementioned study is that alerts fixed quickly are more impor-
tant to developers. The authors believe that based on this principle
and the historical data from the source code repository, they can pre-
dict actionable alerts with the aid of mathematical and statistical mod-
els. Another AAIT using mathematical and statistical models is the
method described by Ruthruff et al. (2008). Their approach to predict
actionable alerts is based on logistic regression model which uses 33
ACs identified by the authors. This AAIT was evaluated on 1652 alerts
from Google’s bug database, where approximately 56% of the alerts
were actionable. The authors concluded that the model was able to
predict actionable alerts over 70% of the time.

Dynamic detection

Dynamic detection is a less commonly used approach among AAITs. It
combines static analysis with dynamic analysis. For example, results
from static analysis can be used to automatically generate dynamic test
cases. Furthermore, these test cases can be used to verify the faulty
behavior of the location of the code identified by an alert from static
analysis tool.

Model checking

Another less frequently used approach among AAITs is model check-
ing. This approach combines static analysis and model checking. Model
checking can be, for instance, used to better identify concurrency prob-
lems. An AAIT using model checking might, for example, create a
model from the program under analysis and prioritize the states in
the model by analyzing the program code. If a static analysis tool re-
ports a concurrency issue in one of the high-priority states, the alert is
more likely to be actionable. One major problem with this approach is
that, in large programs, the state explosion problem might make model
checking unusable.

2.3 Evaluating the effectiveness of FindBugs

Several different approaches have been used to evaluate the effective-
ness of FindBugs in the literature. The most common methods appear
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to be evaluating how well FindBugs could have prevented known field
defects and measuring the false positive rate of FindBugs. Some stud-
ies also have investigated the cost-effectiveness of FindBugs. In the
next subsections, we present the previous work about these different
approaches.

2.3.1 Detecting field defects

Wagner et al. (2008) examined whether FindBugs could have prevented
real documented field defects. They studied two projects: a mature
large project having 600,000 LOC and a just finished smaller project
having 40,000 LOC. The authors used two approaches to analyze the
effectiveness of FindBugs. First, they manually analyzed whether re-
ported bugs from a bug tracker could have been detected with Find-
Bugs. Second, they applied FindBugs for the different revisions of the
selected projects and analyzed whether fixed warnings were related to
field defects. From the larger project, they could not find a single case
where a field defect correlates to a warning generated by FindBugs.
For the smaller project, they only used the second approach and found
four out of 24 warnings (16.7%) being removed because they actually
caused a failure.

More positive results were reported by Nanda et al. (2010). They ana-
lyzed the distribution of bugs in two projects: Apache Ant and a com-
mercial project. They estimated that static analysis could catch 5–15%
of the reported bugs, most of them being NPEs. One should note that
the authors did not verify this estimate by running FindBugs for the
selected projects; therefore, the conclusions are questionable.

Kim and Ernst (2007a) studied the precision and recall of FindBugs,
JLint, and PMD in three subject programs. They first identified bug-
related lines by mining change log messages from the software history
having fix change identification keywords (such as "fix" or "bug"). If
a warning from a tool matches any bug-related line, the warning is
considered as correct. Otherwise, it is a false positive warning. Using
this approach, FindBugs got the precision of 5–18% from these three
subject programs when including all warning priorities. The recall 2–
5% was reported only as the sum of all included tools, however, this
means that FindBugs could have prevented 5% of the field defects at
best.

To sum up, there seems to be not so many studies about how effectively



CHAPTER 2. RELATED WORK 17

FindBugs can detect field defects. Among the few studies, the results
vary greatly and are not always comparable. There seems to be at
least two practices how to evaluate the effectiveness of FindBugs to
detect field defects: comparing warnings from FindBugs to bug reports
from an issue tracker and comparing warnings from FindBugs to bugs
mined from the commit messages of a version control system.

Wagner et al. (2008) evaluated the effectiveness of FindBugs using the
first approach and counted the "number of warnings related to reported
bugs / number of all bug reports in a bug tracker". However, this
measure completely ignores unreported bugs and depends much on the
quality of the bug tracking database. Because FindBugs detects many
simple defects, which might not get submitted to a bug tracker, this
measure may disfavor FindBugs in terms of effectiveness.

We think that the second approach (comparing warnings to bugs mined
from a version control system), is a more accurate method because it
also includes unreported bugs. This is the method used in the study by
Kim and Ernst (2007a). However, instead of manually analyzing the
actual cause of a bug, the method used in the aforementioned study
relies on automatically marking code lines as bug-related lines based
on commit messages from a version control system. Kim and Ernst
admit that this approach may produce unrealistic results if developers
check in both a fix and many other changes in a single commit.

Categorizing warnings as true positives is another noteworthy issue
which varies between the studies. For example, Kim and Ernst (2007a)
rely on automatically categorizing a warning as a true positive based
on the bug-related lines calculated from the software change history.
Wagner et al. (2008) also utilized program change history to count true
positives, however, they categorized a warning as a true positive if a
warning was removed between selected revisions and it related to a
documented failure. Wagner et al. used also another method to calcu-
late true positives: manually examining randomly selected portion of
reported bugs and analyzing whether a warning from FindBugs relates
to any of the reported bugs.

Clearly, because there are so few studies about the effectiveness of
FindBugs to detect field defects, and the results vary much, it is hard
to precisely conclude how many field defects FindBugs really can find.
If we use the lowest and highest value from the studies, FindBugs is
able to detect 0–15% of the field defects.
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2.3.2 Measuring the false positive rate

Araújo et al. (2011) studied the effectiveness of both FindBugs and
PMD. They first evaluated the tools by analyzing the source code of the
Eclipse platform with both FindBugs and PMD. In the study, a warn-
ing was considered to be relevant if its lifetime was inferior than the
selected time threshold (12, 24, and 36 months thresholds were used).
When using the default settings, in the best scenario, only 29.4% of the
high-priority warnings of FindBugs were relevant. However, when re-
stricting the analysis to warnings in the correctness category only, the
relevance percentage increased to 64%. The authors further extended
the study to 12 other open source Java systems, including such popular
systems as Struts2, JEdit, Pdfsam, Jython, and Tomcat. In these five
systems, FindBugs achieved relevance rates superior to 40%. These are
quite good results when compared to the results they got with PMD:
the rate of relevant warnings reported by the tool ranged from 2.5% to
10.1% when analyzing the Eclipse platform.

Kim and Ernst (2007a) evaluated the precision and recall of FindBugs,
JLint, and PMD in three subject programs. In their study, FindBugs
got the precision of 5–18% from these three subject programs when
including all warning priorities. In other words, the authors concluded
that the false positive rate of FindBugs is as high as 82–95%.

Kester et al. (2010) wanted to know how good is static analysis to find
concurrency bugs. The authors used FindBugs for 12 example bench-
mark programs containing known concurrency issues and concluded
that from the total of 13 concurrency bugs, FindBugs can detect four
bugs (31%). FindBugs produced total of 12 multithread related warn-
ings and 50% of them pointed to a real bug.

Ayewah and Pugh (2010) conducted a large scale engineering review
at Google, involving hundreds of engineers and thousands of warnings
from FindBugs. In this study, Google’s code repository was analyzed
with FindBugs. For two days period, more than 700 engineers ran
FindBugs from dozens of offices. They reviewed almost 4,000 warnings
from the total of 9,473 warnings. Developers filed more than 1,700 bug
reports and submitted code changes that made more than 1,000 of the
warnings to disappear. Over 77% of the reviewed warnings were clas-
sified as "Must Fix" or "Should Fix". Although the precise accuracy of
FindBugs is hard co calculate from these values, it is clear that Find-
Bugs clearly provided relevant warnings which developers were willing
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to fix.

Another study from Ayewah and Pugh (Ayewah et al., 2007) analyzed
the effectiveness of FindBugs with JDK 1.6. FindBugs reported a to-
tal of 379 medium and high priority correctness warnings. The au-
thors reviewed each warning and reported that 56% of the warnings
has functional impact. In other words, 56% of the warnings are con-
sidered as as actionable alerts. Only 1% was classified as bad analysis
from FindBugs. The rest 43% were classified as unactionable alerts not
being possible or likely to have little or no functional impact. Based on
analyzing the program’s build history, the authors also concluded that
FindBugs detects issues that developers are willing to address.

We think that using the software change history alone to classify warn-
ings as true and false positives is somewhat questionable. Ayewah
et al. (2007) concluded that more than 50% of the warnings removed
between the different builds of JDK disappeared because of small tar-
geted changes trying to remedy the issues described by the warnings.
Quite the opposite results are described by Wagner et al. (2008). When
analyzing two software projects, they concluded that the majority of
the warnings removed were due to code changes that were not directly
related to the warnings. Moreover, also Kim and Ernst (2007a) con-
cluded that few warnings are removed as the result of actual bug fixes.
When analyzing FindBugs, JLint, and PMD in three subject programs,
they found out that at best only 9% of the warnings were removed by a
fix-change when analyzing 1–4 years of the software change history.

This clearly raises a concern that is it reasonable to assume that warn-
ings which are removed between two software revisions are those warn-
ings which developers are willing to remove—or are these alerts re-
moved just as the side-effect of fixing or refactoring some unrelated
other issues. Moreover, when analyzing the effectiveness of FindBugs
based only on the software change history, we miss those true positive
open alerts which relate to bugs which are not yet fixed.

To sum up, there is clearly much dispersion in the results about mea-
suring the false positive rate of FindBugs: the rate varies between
36–95%. There are several reasons why the results are so different.
First of all, some studies only include medium and high priority warn-
ings, while others include also low-priority warnings. Second, there
are no clear rules how to categorize a warning as a true positive. Some
studies manually analyze the warnings and based on their subjective
evaluation categorize an alert as a false or true positive. Other studies
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rely on the software change history and make the classification auto-
matically based on whether an alert is removed between two software
revisions. Third, some studies limit analyzed warnings to the specific
categories of FindBugs, whereas others include all possible categories.
For example, when restricting the analysis to warnings in the correct-
ness category only, the true positive rate increased substantially from
29% to 64% in the study by Araújo et al. (2011). Naturally, the ana-
lyzed projects also affect the outcome. A more mature project might
have completely different false positive rate than some recently fin-
ished project.

There is also much dispersion in the terminology used in the studies.
For example, among the studies, a true positive warning is defined at
least using three alternate terms: a relevant warning, an actionable
alert, and a warning having functional impact. Moreover, Ruthruff
et al. (2008) defines the term false positive as an alert which is a tool
error that does not reveal a real defect and an unactionable alert as an
alert which points to a real defect but developers ignore it despite its
legitimacy. Instead, Heckman and Williams (2009) use terms false pos-
itive and unactionable alert as synonyms for each other. This jumble
of terms does not help to compare the results. We think that the terms
actionable alert and unactionable alert, which Heckman and Williams
(2011) use in their study, are the most descriptive and should be pre-
ferred instead of true positive. Furthermore, the term false positive
should only refer to cases where an alert is a tool error which does not
reveal any defect.

Because there are quite few comparable studies about measuring the
false positive rate of FindBugs, it is hard to conclude the precise false
positive rate, or more precisely the unactionable alert rate, of Find-
Bugs. Based on the described studies, the rate is somewhere between
36–95%. We believe that better results can be achieved by project-
specific customization, for example, by limiting selected bug categories
to only those that are important for the project.

2.3.3 Other effectiveness analysis

The effectiveness of FindBugs can also be analyzed based on other
measures than detecting field defects or calculating the false positive
rate. For example, Wagner et al. (2005) studied the cost-effectiveness of
FindBugs. They estimated that detecting a single severe defect or 3–15
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normal defects is enough for an SCA tool to be cost-effective. Also Jas-
pan et al. (2007) concluded that when comparing FindBugs to manual
testing in eBay, FindBugs has a better cost-benefit ratio.

In addition to statistical studies described in the previous subsections,
the effectiveness of FindBugs is also studied with surveys. Ayewah
(2010) reports in his Ph.D. thesis about interviews with experienced
developers using FindBugs. Over 1,000 developers responded to the
query and 90% of them stated that their investment in FindBugs has
been worthwhile. Furthermore, 81% told that FindBugs has found se-
rious problems from their projects.

2.4 Enhancing FindBugs with custom de-
tectors

Not much research has been conducted about enhancing FindBugs with
custom project-specific detectors although several studies (Khare et al.,
2011; Wagner et al., 2008; Kim et al., 2006; Liang et al., 2010; Nanda
et al., 2010) have pointed out that defects occurring in the field are pre-
dominantly logical project-specific bugs, which are difficult to find with
static analysis tools using default detectors. For example, Khare et al.
(2011) analyzed defects present in a navigation system and concluded
that 33% of the bugs could have been captured using static code anal-
ysis, however, 90% of these defects could not have been detected by off-
the-shelf tools because most of the tools do not verify system-specific
rules relevant to the domain. We will not go to any technical details
how to develop custom detectors for FindBugs, but in this section, we
focus on describing the previous results about using the custom detec-
tors of FindBugs. More detailed information how to develop custom
detectors for FindBugs is available in the presentation by the authors
of FindBugs (Hovemeyer and Pugh, 2007a).

Shen et al. (2008) developed custom FindBugs detectors for projects us-
ing AspectJ. This set of detectors, which they call XFindBugs, supports
17 bug patterns to cover common error-prone features in an aspect-
oriented systems. The authors tested the detectors with three mature
large-scale AspectJ applications: AJHotdraw, AJHSQLDB, and Glass-
Box. They detected seven reported bugs and found 257 previously un-
known defects which may result in a software crash. Clearly, custom
detectors are well suited for these types of applications using common
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frameworks. Security issues are another area where static analysis
suits well because security problems are hard to detect by other means.
Ware and Fox (2008) wrote a few security-specific detectors for Find-
Bugs, however, they did not analyze their effectiveness in any way.

Al-Ameen et al. (2011) explored which common bugs FindBugs is not
able to find. They noticed that numerous simple bug patterns exist
which are not yet detected by FindBugs. The authors developed eight
new bug detectors including detectors for such bug patters as zero or
negative length array, division by zero, and never executed for loop.
They tested the effectiveness of their new bug detectors with five large
Java applications (e.g. Android SDK, jEdit, and Spring security) and
found over 1,000 issues with the average percentage of false positives
being only 15.45%.

To summarize, although there are quite few studies about using cus-
tom bug detectors with FindBugs, it seems to be a cost-effective way to
enhance the effectiveness of FindBugs. The study by Kim et al. (2006)
supports this opinion. The authors of the aforementioned study an-
alyzed bugs in five open source projects and concluded that 19–40%
of the bugs appear repeatedly. Because many of the bugs are project-
specific, developing custom bug detectors for these frequently occurring
defects appears to be reasonable.

It seems that custom detectors suit well for finding violations of project-
specific coding rules and misuse of internal or external APIs. Usually,
project-specific bug detectors achieve much lower false positive rates
than common detectors because project-specific detectors can be better
targeted for specific applications and must not be so generic.



Chapter 3

Case study background

In this chapter, we present a brief introduction to the background of
the case study performed at Valuatum. We first describe the company
background and the background of the system we analyzed in the case
study. Second, we provide reasons for why we have selected FindBugs
as the static analysis tool for our study.

3.1 Company and system background

Valuatum is a small Finnish software company founded in year 2000.
The company delivers equity research solutions and systems to stock-
brokers, investment banks, private equity companies, and asset man-
agers worldwide. Customers include such companies as Danske Bank,
Evli Bank, Nordnet, and Solidium. Valuatum currently has about 10
employees from which three are software developers. Many different
software developers have worked in the company during the 12-year
history of Valuatum. Therefore, despite the number of the software de-
velopers currently working in the company is small, the code is actually
written by many programmers, making it a quite good subject for re-
search. The author of this thesis has worked four years in the company
and can be considered as an expert in understanding the system. This
actually is another aspect why this system is a good research subject.
Previous studies about the effectiveness of FindBugs have usually an-
alyzed systems the authors of the papers have not developed, making
it hard for the authors to decide whether a warning from an SCA tool
is actionable or not.

23
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The key product of Valuatum is a Java-based enterprise web-application,
which the stockbrokers and their clients use, for example, to update the
key figures of analyzed companies or to search for the best investment
with the aid of the ranking tool. The web-application basically con-
sists of two main modules named ValuBuild and webapp. The first one
contains all the business logic written in Java. The second one contains
mostly user interface related code written in JSP, JavaScript, CSS, and
XML. To get a general idea about the size of the web-application, alone
the ValuBuild module contains about 425,000 NCLOC (non-comment
lines of code).

The whole web-application runs on top of the JBoss application server
supported by the Struts and Spring frameworks. Although the mod-
ern frameworks are in use, there is still much legacy code in the sys-
tem. For example, some old JSP pages contain both HTML, Java, and
SQL in the same file, making them hard to test. Also the ValuBuild
module contains old Java code which is not using the aforementioned
frameworks but some old hard-to-test custom code. This legacy code is
error-prone for changes in the code because no automated tests exist
for this old code. Although refactoring the old code and creating au-
tomated tests for the new refactored code would be the ideal solution
for the problem with the legacy code, the company currently does not
have enough resources for that. Therefore, we hope that static analysis
could help reducing the bugs in the legacy code by catching at least the
most common errors.

The latest changes made to the system are updated to the produc-
tion environment during the process called production update, which is
usually done approximately every other month. This process includes
heavy testing before updating the code to the production servers. The
company uses many well-known development practices in every day
development. For example, code reviews, daily scrum, Kanban, unit
testing, and automated web tests are all common practices used in Val-
uatum. Build process is completely automated with the Jenkins con-
tinuous integration server.

3.2 Tool selection

In this section, we present the reasons why we have chosen FindBugs
as the SCA tool for this case study. The original plan for this study
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was to compare the effectiveness of different static code analysis tools
in order to select the best SCA tool for Valuatum. However, after per-
forming an initial comparison with the tools, we quickly realized that
FindBugs is currently the only eligible free static analysis tool for Java
which can find real defects from the program code. Therefore, focusing
on evaluating and improving FindBugs was chosen as the focus of this
case study.

In the next subsection, we briefly describe the most popular SCA tools
for Java which have been presented in the literature. We compared a
total of ten SCA tools. We only included tools which support Java pro-
gramming language and are not only focused on single types of bugs.
For example, CheckThread1, although supporting Java, only finds con-
currency issues and is thus not described here in any more detail.
Eight of the described tools are free SCA tools and the remaining two
are industry-leading commercial SCA tools. We evaluated each tool
mainly based on the following viewpoints: project activity, tool focus,
SCA methods used, expandability, integration to development environ-
ment, and tool license.

3.2.1 Evaluated static code analysis tools for Java

FindBugs

FindBugs2 is one of the most popular static analysis tools for Java. Ac-
cording to the website of FindBugs, sponsors include large companies,
such as Google and Sun Microsystems. FindBugs is even integrated
into commercial static analysis tools such as Coverity Static Analysis
and HP Fortify Static Code Analyzer (Hovemeyer and Pugh, 2007b).

FindBugs is mainly based on the syntactic pattern matching technique
but also includes some data flow features. Most of the bug detectors are
based on the visitor design pattern and usually analyze the structure
of a class by examining the visited fields and methods. Another com-
mon approach among the detectors is to perform linear code scan by
analyzing Java bytecode instruction at a time to drive a state machine.
More complex detectors use interprocedural data flow analysis to take
both control and data flow into account. More detailed description of
the tool is available in the Ph.D. thesis by the project founder, David

1http://www.checkthread.org/
2http://findbugs.sourceforge.net/
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Hovemeyer, from the University of Maryland (Hovemeyer, 2005).

FindBugs is more focused on real bugs rather than stylistic issues. It
can detect more than 380 bug patterns (Ayewah and Pugh, 2010), in-
cluding such issues as null pointer dereferences, security flaws, con-
currency problems, and performance issues. Since FindBugs operates
on the Java bytecode, it can also analyze JSP pages because JSP code
can be pre-compiled to Java classes. FindBugs prioritizes warnings
based on the coarse three-level (high, medium, low) priority, which is
nowadays renamed to confidence level in FindBugs. Recently, a more
accurate priority called BugRank was introduced, which assigns alerts
a BugRank between 1–20 where a lower value means a more critical
bug.

FindBugs is actively developed. The latest version 2.0 came out in De-
cember 2011, adding new bug patterns, improved accuracy, and a cloud
storage for developers to share bug information. Users can easily ex-
tend FindBugs by creating their own custom bug detectors. FindBugs
can be easily integrated into various IDEs (e.g. Eclipse), software build
systems (e.g. Apache Ant), and continuous integration servers (e.g.
Jenkins).

PMD

PMD (unofficially known as Programming Mistake Detector)3 is an-
other very popular static analysis tool for Java. Unlike FindBugs, PMD
operates directly on program’s source code, not the bytecode like Find-
Bugs does. To be precise, PMD uses Java and XPath to detect bug pat-
terns from the AST (Abstract Syntax Tree) generated from the source
code. PMD uses the syntactic pattern matching technique for detect-
ing bugs. It does not have a data flow component, however, according
to the future directions on PMD’s website, including data flow analysis
is planned.

Many of the defects PMD finds are violations of stylistic and design
conventions, in other words, the application could still function prop-
erly even if the defects were not corrected. PMD finds such defects
as missing JavaDoc comments, unused code, if statements without us-
ing braces to surround the code block, and classes containing too many
methods. Although PMD is more focused on finding stylistic errors, it

3http://pmd.sourceforge.net/
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can also be used to find real functional bugs. PMD is highly config-
urable. It can be easily extended with custom detectors, which PMD
calls rules. PMD is actively developed, and the latest version 5.0-alpha
has been released on January 31, 2012. Like FindBugs, PMD also has
a very good plugin support which integrates it to various IDEs and
software build systems.

Checkstyle

Checkstyle4 is an open source static analysis tool focused on finding
styling issues. It uses syntactic pattern matching and data flow tech-
niques (Novak et al., 2010). Like PMD, also Checkstyle operates on the
AST constructed from the Java source code. It also supports creating
own bug detectors, which are called checks.

Although the main focus of Checkstyle is checking compliance with
coding standards, nowadays more and more checks for other purposes
have been added. For example, in addition to checking coding stan-
dards, Checkstyle provides checks for finding class design problems
and duplicate code. Checkstyle is actively developed: the latest version
5.5 was released in November 2011. It is also integrated with plugins
to various IDEs and build tools.

JLint

JLint5 is similar to FindBugs in that it analyzes Java bytecode and
performs both syntactic pattern matching and data flow analysis. JLint
is claimed to be extremely fast even with large projects: it requires
only one second to check all classes. However, one might question that
does it perform good analysis when compared to FindBugs, which takes
several minutes to analyze large projects.

JLint can detect three types of bugs: synchronization, inheritance and
data flow issues. Synchronization category includes detecting dead-
locks and race conditions by building a lock graph from the program
and ensuring the non-existence of cycles in the graph. Detectors in
the inheritance category find problems with class inheritance, such as
components shadowing superclass variable names. Data flow analy-

4http://checkstyle.sourceforge.net/
5http://jlint.sourceforge.net/
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sis is used to detect NPEs by calculating possible range of values for
expressions and local variables.

JLint is not currently actively developed. In fact, the project seems to
be dead and nobody is developing it. The latest version 3.1.2 is from
January 2011, and the previous version 3.1.1 was released in February
2010. According to the tool’s change log, no major changes has been
made to the tool after the release of the version 3.0 in June 2004.

Lint4j

Lint4j6 is a static analysis tool which analyzes Java source and byte-
code to detect defects by performing data flow, type, and lock graph
analysis. Lint4j can detect the following types of defects: performance
problems, Java language related problems, architectural problems, code
portability issues, serialization problems, synchronization issues, and
EJB (Enterprise JavaBeans) specification violations. Although Lint4j
can find various types of defects, it has considerably fewer detectors
than, for example, FindBugs or PMD.

Lint4j is free, however, it is not open source and is licensed under cus-
tom commercial license. The tool is well documented, however, not
easily expandable. Lint4j has Eclipse and Maven plugins for easier in-
tegration to development workflow. As JLint, also the Lint4j project
seems to be dead. According to the user manual, the latest version
0.9.1 was released in May 2006.

ESC/Java2

ESC/Java27 is a static analysis tool based on theorem proving. It is
described in more detail by Flanagan et al. (2002). The tool performs
formal verification of the properties of Java source code. In practice,
ESC/Java2 allows a programmer to record design decisions with an
annotation language (e.g. specifying that a method parameter can not
be null). ESC/Java2 analyzes the annotated program code and warns
of any inconsistencies between the design decisions recorded as anno-
tations and the actual program code.

ESC/Java2 can produce some useful output even without any anno-
6http://www.jutils.com/
7http://kindsoftware.com/products/opensource/ESCJava2/
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tations. In this case, it looks for errors such as null pointer deref-
erences, array out-of-bounds errors, and type cast errors. It can also
warn about synchronization errors, such as race conditions and dead-
locks, in concurrent programs. As many other free static analysis tools,
also ESC/Java2 is a dead project. The web page clearly says that
ESC/Java2 is no longer under development. The latest version 2.0.5
is from November 2008. A major problem with this tool is that it can
only parse Java 1.4 code; thus, cannot understand Java 1.5 programs.
This basically prevents using the tool in any modern program written
in Java.

Bandera

Bandera8 is an open source static analysis tool based on model check-
ing. The tool is described in more detail by Corbett et al. (2000). To use
Bandera, programmers annotate their source code with specifications
describing what should be checked. Bandera generates a model from
the Java source code and, with the help of the model, it can verify the
program behavior, such as freedom from deadlocks and the absence of
null pointer dereferences.

As many other static analysis tools for Java, also the Bandera project is
currently not active. The website states that the project is in hiberna-
tion, and there are no plans to continue the project. The latest version
1.0a4 is from May 2006. It is questionable whether Bandera can be
used in a real industrial project at all. Rutar et al. (2004) reported
that they were not able to run Bandera on any realistic Java program,
however, the version they used was a rather old one, 0.3b2.

QJ-Pro

QJ-Pro9 is an open source static code analysis tool supporting over 200
rules, such as detecting ignored return values and checking code qual-
ity based on code metrics. Users can also define their own rules. QJ-Pro
analyzes program’s source code. The static analysis techniques used by
the tool are not described, however, it seems to be mainly using syntac-
tic pattern matching.

8http://projects.cis.ksu.edu/gf/project/bandera/
9http://qjpro.sourceforge.net/
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Unfortunately, also QJ-Pro seems to be a dead project. The latest ver-
sion 2.2.0 is from May 2005. The tool was compared to both FindBugs
and PMD by Wagner et al. (2005). Only 4% of the warnings reported
by QJ-Pro were true positives, making the tool the least effective of the
compared tools. Similar results are described by Ware and Fox (2008).

Klocwork Truepath

Klocwork Truepath10 is a commercial static analysis tool supporting C,
C++, Java, and C# programming languages. It is the static analysis
engine that powers the Klocwork Insight toolset. As PMD and Check-
style, also Klocwork Truepath performs syntactic pattern matching on
the AST constructed from program’s source code. Klocwork Truepath
also uses interprocedural data flow analysis and symbolic logic to de-
tect more complex bugs. It can find various types of defects, such as
concurrency violations, web application vulnerabilities, invalid object
references, and violations of coding practices. Users can also create
their own custom bug checkers. The tool is described in more detail in
the white paper by Fisher (2009).

The Klocwork’s tool is actively developed: the latest version (9.5) of
Klocwork Insight was released in January 2012. Louridas (2006) has
reported that Klocwork K7, the predecessor of Klocwork Insight, costs
about $20,000 annually for projects up to a half-million lines of code.
The current price of the latest version is unknown because the price of
the tool is not specified on the Klocwork’s website, and the company did
not answer to our queries about their pricing policy.

Coverity Static Analysis

Coverity Static Analysis11 (formerly known as Coverity Prevent) is an-
other commercial static code analysis tool. Like Klocwork Truepath,
the Coverity’s tool also supports C, C++, C#, and Java programming
languages. It can detect bugs such as concurrency defects, performance
degradation problems, null pointer dereferences, and security vulner-
abilities. Coverity offers little information about the static analysis
techniques they use. The website briefly describes a few proprietary

10http://www.klocwork.com/products/insight/klocwork-truepath
11http://coverity.com/products/static-analysis.html
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static analysis methods used by the tool. These methods include: path
simulation, statistical analysis, and boolean satisfiability.

Interestingly, FindBugs is nowadays integrated into Coverity Static
Analysis. Coverity has fine-tuned the checkers of FindBugs and has
integrated the results into their centralized defect management sys-
tem, Coverity Integrity Manager. Also Coverity does not list their price
publicly. However, Binkley (2007) claims that the previous version,
Coverity Prevent, costs $50,000. The price is most likely an annual
price even though this is not clearly mentioned in the article.

3.2.2 Reasons for selecting FindBugs

Table 3.1 summarizes the most important features of the SCA tools
presented in the previous subsection.

Table 3.1: Summary of the main features of the SCA tools for Java

Tool name Status Focus Main
methods License Expandable

FindBugs Active All bugs SPMa,
DFAb LGPL x

PMD Active Style SPM BSD-style x
Checkstyle Active Style SPM, DFA GPL x
JLint Dead All bugs SPM, DFA GPL

Lint4j Dead All bugs DFA, lock
graph

Free closed
source

ESC/Java2 Dead All bugs Theorem
proving

Free open
source x

Bandera Dead All bugs Model
checking GPL

QJ-Pro Dead All bugs SPM GPL x
Klocwork
Truepath Active All bugs SPM, DFA Commercial,

$20k/year x

Coverity Static
Analysis Active All bugs Proprietary

methods
Commercial,
$50k/year x

aSPM = Syntactic pattern matching
bDFA = Data flow analysis

Among the free tools, the most active and popular tools are FindBugs,
PMD, and Checkstyle. Interestingly, they all use rather simple static
analysis methods, such as syntactic pattern matching. Although, for
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instance, ESC/Java2 and Bandera both use novel and quite powerful
static analysis methods, the tools have not gained any widespread us-
age. Simplicity seems to overrun novelty in this case. One reason for
the poor success of novel free static analysis tools might be that the
best techniques may have been commercialized for such tools as Kloc-
work Truepath or Coverity Static Analysis. However, the few results
with commercial tools do not indicate that they use any superior static
analysis techniques (Emanuelsson and Nilsson, 2008; Ware and Fox,
2008; Mantere et al., 2009).

From the described tools, the commercial tools were the first ones we
had to discard because neither Klocwork nor Cloverity answered to
our queries about acquiring a free trial of their software for research
purpose. Moreover, as pointed out by Hovemeyer and Pugh (2007b),
commercial tools are quite problematic in the academic point of view:
their proprietary licenses may prohibit from disclosing any information
about the capabilities of the tools. This might be the main reason why
so few results are available about the effectiveness of these commercial
tools.

With the remaining free SCA tools, we performed an initial compari-
son with Valuatum’s system. Free static analysis tools including JLint,
Lint4j, Bandera, ESC/Java2, and QJ-Pro did not perform well in our
initial analysis. For example, both Bandera and ESC/Java2 did not
even work with Valuatum’s system because they do not support Java
1.5. Therefore, they can be discarded immediately. Moreover, the re-
sults from both JLint and Lint4j were poor in our initial study where
we run the tools for the ValuBuild module. For instance, JLint pro-
duced 2,414 warnings from which the majority (69%) were quite use-
less messages like "Local variable ’x’ shadows component of class x".
Moreover, the remaining warnings seemed not to be as important as
what FindBugs (v1.3.8) did found. JLint also does not have any bug
categories or priorities, which makes the output of the tool quite diffi-
cult to read. Lint4j produced only 252 alerts from which the majority
was also seen unimportant. Neither of the tools did not find the critical
deadlock bug described in Section 5.1.3 although both tools should find
concurrency issues.

Among the free static analysis tools, one feature seems to be partic-
ularly common: the lifespan of the tools is short. For example, JLint,
Lint4j, ESC/Java2, Bandera, and QJ-Pro are all practically dead projects.
Although the tools are yet somewhat usable, investing any man-hours



CHAPTER 3. CASE STUDY BACKGROUND 33

to configure these tools seems to be questionable if there are no guar-
antees that the tools will work with future Java versions. Instead,
FindBugs, with the lifespan of almost 10 years, is a very active project.
PMD and CheckStyle are other actively developed static analysis tools
for Java, however, their focus on styling issues is not in our interest if
we want to find defects causing real functional errors.

In addition to project activity, also the expandability of the tools had
a great impact on choosing the static analysis tool for this case study.
Because many bugs in projects are project-specific, we think that the
ability to write custom project-specific bug detectors is very important.
Among the free tools, FindBugs is one of the easiest tools to expand
with custom bug detectors. JLint, Lint4j, and Bandera can not be ex-
tended at all, which makes them less tempting.

To conclude, based on our initial comparison with Valuatum’s system,
tool expandability, tool focus, and project activity, the only viable tool
that remains is FindBugs. Comparing the effectiveness of the different
static analysis tools in more detail, which was the original plan, seemed
quite pointless because we already knew that FindBugs is most likely
the tool which can find the largest number of real defects. Therefore,
evaluating and improving FindBugs was chosen as the focus of this
case study.



Chapter 4

Case study methodology

In this chapter, we introduce the methodology of the case study per-
formed at Valuatum. In other words, we describe how we planned and
executed the case study. As we have described in Section 1.4, the focus
of this study is to find answers to the following research questions:

1. RQ1: How effective is FindBugs in preventing bugs in mature
software systems?

2. RQ2: What techniques are applicable in mature software systems
to find the most important alerts from the large number of alerts
reported by FindBugs?

The first research question is answered by analyzing the effectiveness
of FindBugs. We use several different approaches for this analysis:

1. Analyzing how well FindBugs can detect reported defects.
This approach consists of searching reported defects from an issue
tracker and inspecting how many of the reported defects could
have been detected with FindBugs.

2. Analyzing how well FindBugs can detect unreported de-
fects. This approach consists of searching unreported defects
from the SVN commit logs and inspecting how many of the un-
reported defects could have been detected with FindBugs.

3. Analyzing how well FindBugs can detect missed defects
using custom detectors. This approach consists of identifying
those reported and unreported defects which should have been

34
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caught with SCA but were missed by FindBugs. After the iden-
tification, we develop custom detectors for the most important
missed defects.

4. Analyzing what types of alerts are removed during the
project history. This approach consists of fetching several dif-
ferent revisions of the ValuBuild module and performing Find-
Bugs’ analysis to these revisions. The results are then compared
and FindBugs can identify what alerts are removed during the
project history.

5. Analyzing how well FindBugs can find new defects. This
approach consists of performing FindBugs’ analysis to the latest
version of Valuatum’s product and evaluating how many of the
alerts are actionable and how many are unactionable or false pos-
itives.

The second research question is answered based on experimenting dif-
ferent approaches to deal with the large number of unactionable alerts.
These approaches include: defect differencing, integration to IDE, and
the use of simple AAITs. All these approaches are described in more
detail in the following sections.

4.1 Study design: FindBugs effectiveness

4.1.1 Detecting reported fixed defects

Our first approach to analyze the effectiveness of FindBugs is to study
how well FindBugs could have detected known reported fixed bugs.
This type of approach was also used by Wagner et al. (2008). We started
by first selecting all bug reports from our project management tool hav-
ing the state "Completed". The bug reports were selected from the pre-
vious two and a half year time period (from the beginning of June 2009
to the end of October 2011). We limited the time period to the previ-
ous 30 months because older bug reports were only available in our
obsolete project management system, and searching bug reports from
it would have been difficult. We also believe that bug reports from two
and a half years is a sufficient time period for this study.

We identified a total of 158 fixed bug reports from our project man-
agement tool. This includes bugs from both ValuBuild and webapp
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modules because the bugs are not separated between the two modules.
From the identified bugs, 26 had to be ignored because they were du-
plicates or incorrectly categorized as a bug fix (some of the bugs were
clearly more feature improvements than bug fixes).

When removing the inadequate bug reports described above, the final
set of bug reports we used was 132 bug reports. Each of these bugs
were classified to the following categories:

• System-specific logical bugs (e.g. logical errors in algorithms,
calling wrong API methods in wrong places, incorrect checks for
permissions, wrong data used in wrong places)

• User interface bugs (e.g. JavaScript errors, layout issues)

• Server configuration bugs (e.g. issues with character encod-
ings, problems caused by server software updates, incorrect li-
brary configurations, problems with file system permissions)

• Common coding errors (e.g. ArrayIndexOutOfBounds excep-
tions, unused method parameters, SQL syntax errors, illegal ref-
erences from JSP pages to Java classes)

• Third-party bugs (e.g. JVM errors, issues with external data
provider data, problems with external libraries)

• NullPointerExceptions (NPEs)

• Concurrency bugs (e.g. deadlocks, race conditions)

In addition to assigning each bug to the categories above, we also ana-
lyzed each bug report with the following question in mind: Could Find-
Bugs have been used to prevent this bug? We know that, with the
default settings, FindBugs can not really detect system-specific logical
errors. Neither can it detect user interface bugs, such as layout issues
or JavaScript errors. However, FindBugs should be good at detecting,
for example, common coding errors, NPEs, and concurrency issues.

We examined the detailed description and comments from each bug
report in order to determine the cause of the bug. If the reason for the
reported bug was clearly a logical system-specific error, we did not even
try to detect it with FindBugs because we know that FindBugs does
not understand the internal logic of the system. Instead, if the bug was
caused by some coding error other than clear system-specific bug, we
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marked it as "SCA feasible", indicating that static code analysis could
be a feasible method for detecting the bug.

For each of these "SCA feasible" bugs, we retrieved the revision of the
class which contained the bug from SVN, built the project, and checked
whether FindBugs can detect the bug by running the FindBugs ana-
lyzer for the whole system. The GUI of FindBugs was then used to
search for warnings pointing out the bug.

We further analyzed the bugs which we marked as "SCA feasible" and
roughly assigned each bug an impact factor ranging from low (minor
bug) to very high (critical bug). The impact factors are described in
more detail below:

• Low: Fixing the bug can wait longer. Users can use the system
but with minor disturbance (e.g. a small cosmetic layout issue or
some minor administrator functionality not working as expected).

• Medium: The bug needs to be fixed in the next production up-
date (a few weeks). The bug causes some deviation from intended
behavior and is visible to regular users but no immediate action
is needed to fix the bug.

• High: The bug should to be fixed within a few days. Users can
still use the system but some important part of the system is not
working as expected.

• Very high: The bug must be fixed immediately. Users can not
use the system at all or some critical part of it. The bug might
cause data corruption, the return of incorrect data or considerable
performance issues.

Section 5.1.1 presents the results about how well FindBugs could have
detected known reported fixed bugs when using the approach described
above.

4.1.2 Detecting unreported fixed defects

Our second approach to analyze the effectiveness of FindBugs is to
study how well FindBugs could have detected known unreported fixed
bugs. In the previous section, we described an approach for analyz-
ing the effectiveness of FindBugs by mining reported bugs from our
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project management tool. However, we believe that some of the de-
fects FindBugs can detect do not get reported because bugs found with
SCA are usually quite simple. Thus, a developer might just fix the bug
and ignores submitting a bug fix task to the project management tool.
Therefore, we searched bugs also from our source code management
tool (SVN).

To identify the bug fixes, we searched SVN commit messages contain-
ing the following words (case-insensitive): Fix, Bug, NullPointer, Null
Pointer, and NP. These messages were searched from the trunk and
the tags branches from the previous two years time period (from 2009-
10-01 to 2011-10-01). The tags branch was included besides the trunk
because the tags branch mainly contains bug fixes detected after the
production testing phase; thus, it is a good source for discovering bug
fixes. We only searched fixed defects from the ValuBuild module. The
webapp module was not included because it contains mainly UI code,
and FindBugs is known to detect poorly user interface errors.

After fetching all relevant bug fixes from the SVN commit messages,
we applied exactly the same steps as with the reported bugs in Sec-
tion 4.1.1. In other words, we first classified the bugs to categories
based on their bug type. Second, we identified all bugs being feasible
to detect with SCA and assigned those bugs an impact factor rang-
ing from low (minor bug) to very high (critical bug). Last, we studied
whether FindBugs could have detected those bugs which were marked
as "SCA feasible".

One should notice that some of the bug fixes identified using the above-
mentioned approach might already be in the set of reported bug fixes
from our project management tool described in Section 4.1.1. Identi-
fying the duplicates between the reported and the non-reported bugs
would be laborious and inaccurate because not all SVN commit mes-
sages contain the task id used in the project management tool. There-
fore, it would be difficult to determine which commit relates to a re-
ported bug fix. However, this does not really matter because one of our
interests is to know the ratio of bugs which can be detected with static
code analysis. Including the duplicates does not change this ratio sig-
nificantly. Furthermore, we are interested in what types of bugs does
and does not FindBugs detect. Again, duplicates do not matter here.

This type of approach was also used by Kim and Ernst (2007a), how-
ever, the authors of the aforementioned study relied on automatically
categorizing a warning as a true positive based on the bug-related lines



CHAPTER 4. CASE STUDY METHODOLOGY 39

calculated from the software change history. Instead, because the au-
thor of this thesis knows the system under analysis very well, we rely
on manually analyzing each bug fix commit and manually evaluating
whether FindBugs could have prevented the bug.

Section 5.1.2 presents the results about how well FindBugs could have
detected known unreported fixed bugs when using the approach de-
scribed in this subsection.

4.1.3 Detecting defects using custom detectors

The results in Sections 5.1.1 and 5.1.2 reveal that FindBugs fails to de-
tect many critical bugs although those missed defects should be quite
easy to detect with SCA. Fortunately, FindBugs provides rather easy
tools for developing custom detectors. Therefore, we evaluated the ef-
fectiveness of FindBugs by developing a few custom detectors to catch
the most important missed bugs.

All detectors of FindBugs are written in Java. FindBugs provides an
extensive library for creating various types of detectors. The most
basic bytecode scanning detectors in FindBugs are based on the vis-
itor pattern. For example, the class OpcodeStackDetector, which is
the base class for many detectors, has methods visit(Method) and
sawOpcode(int). While FindBugs analyzes a class, it calls the method
visit(Method) when the contents of a method are walked. Likewise,
FindBugs invokes the sawOpcode(int) method as it analyzes each op-
code within the method body. When developing a custom detector, one
can override these methods and provide a custom implementation.

From the set of bugs FindBugs failed to detect in Sections 5.1.1 and
5.1.2, we selected the most important three defects which we thought
would be feasible to catch with FindBugs. We selected the bugs based
on the following principles:

1. The bug is hard to detect by other means. For example,
NPEs are quite easy to detect with good unit testing; therefore,
developing a complex detector for the missed NPEs might not
be cost-effective. On the contrary, concurrency and performance
issues are extremely difficult to detect with traditional testing;
therefore, they are good candidates for custom detectors.

2. Writing the detector should be cost-effective. In other words,
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writing a custom detector for the bug should take hours or days,
not weeks or months. Additionally, this also means that it is
not sensible to write a custom detector for one low impact de-
fect which has occurred only once and is highly unlikely to occur
again. Conversely, good reasons exist for developing a custom de-
tector for a single high impact defect because the cost of fixing the
bug might be considerably high.

3. The detector can be made generic. Although targeted project-
specific detectors might be effective, even better would be if the
detector is generic so that it could also be used in other projects.

Following the principles defined above, we developed custom detec-
tors for the following bugs: Deadlock with static synchronized methods,
Stateful singletons, and Incorrect lazy initialization of class fields. Each
of the bugs and the developed detectors are described in more detail in
Section 5.1.3

4.1.4 Detecting defects based on alert removal his-
tory

In the previous subsections, we analyzed the effectiveness of FindBugs
by searching fixed defects from both the project management tool and
the SVN commit messages. Because bugs found by SCA tools are usu-
ally quite simple, a bug might get documented in neither the project
management tool nor the SVN commit log. Therefore, we applied a
fourth approach to study how well FindBugs could have prevented fixed
defects: the different versions approach used by, for example, Wagner
et al. (2008).

In practice, we analyzed the different revisions of the ValuBuild mod-
ule and compared the differences between the warnings reported by
FindBugs. If a warning has disappeared between two revisions, we
know that there might have been a bug which a developer has fixed.
Class removals are ignored, so alerts only disappear due to targeted
bug fixes or code refactoring. We are especially interested in knowing
whether these alert removals are actually targeted bug removals or are
they just the side-effect of unrelated code refactoring. This approach
might also offer information about the types of warnings developers
are willing to fix. In other words, what types of warnings are action-
able.
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This different versions approach we applied, consists of the following
steps:

1. We fetched every 30th revision from the trunk branch starting
from revision 18382 (2010-06-14) and ending to revision 20271
(2011-09-13). This totals to 64 different revisions from the last 15
months.

2. We built the project for each fetched revision and analyzed the
fetched revisions with FindBugs. If the build did not succeed, we
ignored the revision and moved to the next 30th revision.

3. When all revisions were processed with FindBugs, we combined
the outputs of FindBugs with the ComputeBugHistoryTask of Find-
Bugs. In addition to combining the alerts from multiple software
revisions, the task also computes the revision numbers for the
alerts when they were first and last seen.

After completing the above steps, we had alert history data from 60
revisions. We had to discard four revisions (18742, 18832, 19162, and
19942) because the build failed in these revisions; thus, FindBugs could
not perform the analysis. The starting revision was chosen as 18382
since we could not anymore compile older revisions because of major
changes made in the system. Building any older revision would have
required extensive manual refactoring to the code.

We identified the removed warnings from the alert history data and
categorized these warnings based on their lifetime, BugRank, and bug
category. We also manually examined the removed alerts having Bu-
gRank 1–14 and the alerts having the lowest lifetime to see whether
the removed alerts disappeared because of actual targeted bug fixes—
or were they removed because of the side-effect of code refactoring. We
classified an alert as an actual targeted bug fix based on the SVN diff
between the revisions and also based on the SVN commit message re-
lated to the alert removal revision.

The results using the above-mentioned approach are presented in Sec-
tion 5.1.4.
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4.1.5 Detecting open defects

In the previous sections, we described approaches to study the effec-
tiveness of FindBugs to prevent fixed defects. However, despite the
many quality assurance practices used, there are still most likely de-
fects in Valuatum’s system which are not yet identified. Although these
defects probably are not so critical (because nobody has fixed them to
date), they might cause considerable problems in certain situations.
Especially security problems, concurrency bugs, and performance is-
sues are those types of defects which might hide in the system. There-
fore, we also analyze the effectiveness of FindBugs based on examining
the open warnings the tool produces.

We executed FindBugs for the latest revision (as of 2012-02-01) of Val-
uatum’s system. Both ValuBuild (business logic in Java) and webapp
(user interface code in JSP) modules were included. We did not include
our custom detectors described in Section 5.1.3. We used the ant task of
FindBugs with the following differences between the default settings:

1. effort="max" (enables analyses which increase precision and find
more bugs, but may require more memory and take more time to
complete)

2. reportLevel="low" (includes all possible warnings, not just high
and medium level warnings)

Using the GUI of FindBugs and the new cloud plugin, we manually
examined each of the scariest warnings and categorized them to the
following four categories: must fix, should fix, mostly harmless, and not
a bug. These are the same categories used by Ayewah and Pugh (2010)
in their study at Google. This categorization is also nowadays part of
the default user interface of FindBugs.

We used the following guidelines when deciding to which category an
alert belongs:

• Must fix: A bug described in the alert definitely has some im-
pact on system functionality (e.g. some common functionality is
unusable, data gets corrupted or users get unauthorized access to
data).

• Should fix: A bug described in the alert probably has some im-
pact on system functionality. Less critical and less likely than the
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must fix category, however, still a noteworthy defect which should
be fixed.

• Mostly harmless: A bug described in the alert is highly unlikely
to cause any impact on system functionality. In other words, it is
highly unlikely that the system ever gets into a state where the
bug occurs. And even if that happens, the impact is low. For ex-
ample, it makes no difference whether the system safely fails for
an NPE because a user enters bogus data as URL parameters or,
instead, doing null checks and displaying another error message.

• Not a bug: A bug described in the alert does not have any func-
tional impact to the system in any scenario. This is definitely a
false positive that will never be fixed. Examples in this category
are: a null dereference error in case where there is no NPE or a
security error in case where there is no security problem in the
code. Also unimportant code style issues and code design issues
fall into this category.

The results using the above-mentioned approach are presented in Sec-
tion 5.1.5.

4.2 Study design: Dealing with unaction-
able alerts

As described in Section 2.2.1, the large number of alerts, and especially
the large number of unactionable alerts, is one of the biggest problems
when adopting SCA. To overcome this problem, we studied several pos-
sible approaches how to deal with the large number of unactionable
alerts.

The initial plan was to compare several actionable alert identifica-
tion techniques (AAITs) described in Section 2.2.2. We admit that
some of the AAITs might be quite effective in distinguishing unaction-
able alerts from actionable. However, after investigating the different
AAITs, we realized that many of the approaches might be too com-
plex for Valuatum and might not even produce accurate results. The
most effective AAITs usually use mathematical models to predict ac-
tionable alerts. Not only does the initial construction of the model take
time, but it also takes time to maintain, evaluate, and tweak the model.
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Moreover, the results in Section 5.1.4 imply that, in mature software
systems, one can not use the history of alert removals as the basis for
an accurate prediction whether a future alert is actionable or not. So,
to train effective models, we would have to manually review and cate-
gorize a large number of alerts.

Therefore, we experimented other more simple approaches to deal with
the large number of unactionable alerts in mature software systems
which have not used SCA tools before. The following approaches are
included:

• Defect differencing. This approach consists of displaying devel-
opers only alerts which are new when compared to the last known
working published program revision. We think that preventing
new bugs for occurring is more important than fixing those alerts
which has been in the system for a long time. Therefore, we de-
cided to ignore the "old" alerts in every day development and focus
on new alerts, which are the ones that might point to new bugs.
Section 5.2.1 presents in more detail our experiences in applying
this technique to our development process.

• Integration to IDE. This approach consists of integrating Find-
Bugs to the developers’ desktop environment in order to get rapid
feedback. IDE integration should help to detect defects earlier
and it also helps to deal with the large number of alerts. We tested
IDE plugins for both Eclipse and NetBeans. We have reported our
experiences in more detail in Section 5.2.2.

• Simple AAITs. This approach consists of using the most sim-
ple actionable alert identification techniques described in Sec-
tion 2.2.2 to deal with the high number of unactionable alerts.
We used such AAITs like contextual information and alert type
selection, which enabled us to reduce the number of unactionable
alerts significantly. The results are described in more detail in
Section 5.2.3.

4.3 Software used

In this case study, the version of FindBugs we have used is FindBugs
2.0. This was the latest stable version of FindBugs at the time when
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this case study was started. The analysis runs were always performed
from the ant task of FindBugs. Also the GUI of FindBugs was used
when inspecting the alerts. We have always used the default settings
of FindBugs if not mentioned otherwise.

Various custom-made XSLT 1.0 documents were used to filter the bug
fix commits from the SVN history dumps and to transform the SVN
history dumps from XML to a more human-readable HTML table for-
mat. In addition, a few custom-made shell scripts were used to fetch,
build, and analyze the different revisions of the ValuBuild module in
the different versions approach described in Section 4.1.4.

4.4 Limitations

We have identified several limitations which might have an effect on
the results obtained in this case study. In this section, we discuss about
the most important limitations we have recognized.

First of all, we have only analyzed one mature software system in this
case study. Therefore, from the results, it is hard to draw any strong
conclusions which apply also in other mature systems. Nevertheless,
we think that Valuatum’s system is a quite good subject for study be-
cause of the long history and the large number of developers who have
worked on the system.

Also the number of known fixed bugs we have analyzed in Sections
5.1.1 and 5.1.2 is quite small. The reason for this is that we had to limit
the time period we used to approximately two years. Using a different
time period might produce different results. More software projects
and more bugs should be analyzed in order to draw any stronger con-
clusions from the results.

Another limitation is the quality of the issue tracking system we have
used when evaluating the effectiveness of FindBugs to detect reported
defects. Bug reports are not always so descriptive that we can be sure
what the root cause of the bug is. Therefore, we might have missed
some bugs which might be feasible to detect with SCA. Moreover, al-
though all bugs in Valuatum’s system should be recorded to the issue
tracking system, developers most likely have not documented all de-
fects to the issue tracking system. We have tried to overcome this limi-
tation by including also unreported defects from the SVN commit logs.
However, also the quality of the commit logs can affect the results:
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commit messages are not always so descriptive and a single commit
might have contained many bug fixes or other code refactoring. These
might have affected our analysis to identify the root cause of each bug;
therefore, we might have missed some defects detectable by SCA.

One should note that not all reported and unreported defects analyzed
in Sections 5.1.1 and 5.1.2 are defects occurred in the field—some might
be defects which have been detected before production update, for ex-
ample, with the aid of manual testing or automated unit testing. Iden-
tifying those defects which have occurred in the field would have been
too laborious. Moreover, a well-known fact is that detecting a defect as
early as possible in the development process saves money. Therefore,
we think it is also important to include those defects which have not
occurred in the field but are caught, for example, by manual testing
before production update. We might be able to catch these defects even
earlier.

In Section 5.1.4, we have analyzed the removed alerts from the history
of the ValuBuild module. One should note that we have only consid-
ered the trunk branch, which might affect the results—especially the
calculated alert lifetimes. More precise analysis would have required
to include also the history of ValuBuild’s tags branches because bug
fixes are usually committed more quickly to the tags branch than to
the trunk branch. However, including the tags branches would have
complicated the analysis process; therefore, we only used the trunk
branch. Also our sample size, every 30th revision, might affect the re-
sults. If an alert is removed very fast (e.g. within 1–2 revisions), our
every 30th revisions sample size might be too coarse to record the cre-
ation and the removal of the alert. Therefore, we might have missed
some short-lived alerts.

In Section 5.1.5, we have categorized open defects as actionable and
unactionable alerts. Although we have deep knowledge about the an-
alyzed system, we admit that this is a quite subjective classification.
One might get different results if the categorization is performed by
some other developer. It is also hard to make a difference between the
"Must fix" and "Should fix" categories we used. On the other hand,
it does not really matter here because bugs in the both categories are
bugs that should be fixed. Alerts in the "Must fix" category should be
given a higher priority, though.



Chapter 5

Case study results

5.1 FindBugs effectiveness

5.1.1 Detecting reported fixed defects

Our first approach to analyze the effectiveness of FindBugs is to study
how well FindBugs could have detected known reported fixed bugs. We
fetched bug reports from our project management system and studied
how many of the reported bugs could have been detected with Find-
Bugs. Section 4.1.1 describes the process in more detail.

Table 5.1 shows the distribution of the bug reports from our project
management system. The second column presents the absolute num-
ber of bugs found for each category and the same value as percentage
in parenthesis. In the third column, we can see how many of the bugs
in each category could even be detected with static code analysis. The
percentage in the third column is calculated from bugs in a category,
not from the total bugs. The last column shows how many of the bugs
are actually detected with FindBugs.

Table 5.2 shows more detailed information about what types of bugs we
classified as "SCA feasible" and which of these bugs were detected with
FindBugs. Because of confidential requirements, we can not reveal
very detailed bug descriptions but have to stay at rather general level.

47
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Table 5.1: Known reported bugs prevented with FindBugs.

Category Bugs SCA feasible FindBugs
System-specific logical bugs 61 (46%) 1 (1.6%) 0 (0%)
User interface bugs 27 (20%) 0 (0%) 0 (0%)
Server configuration bugs 25 (19%) 0 (0%) 0 (0%)
Common coding errors 7 (5%) 5 (71%) 1 (14%)
Third-party bugs 6 (5%) 0 (0%) 0 (0%)
NPEs 5 (4%) 5 (100%) 1 (20%)
Concurrency bugs 1 (1%) 1 (100%) 0 (0%)
Total 132 (100%) 12 (9.1%) 2 (1.5%)

Table 5.2: Known reported bugs categorized as SCA feasible

Bug type Impact FindBugs Notes
Common coding errors
Unused parameter in con-
structor

Very high Yes FindBugs reports a warning
"Unwritten field" for this bug
giving BugRank 15.

ArrayIndexOutOfBounds
exception

Medium No Calls vector.elementAt() to
an empty vector.

BigInteger misusage Low No BigInteger class was used to
create a hexadecimal string.
BigInteger.toString(16)
omits leading zeros.

Invalid Java class reference
in a JSP page x 2

Medium No Change in a Java class broke a
reference in a JSP page. Can
be detected by pre-compiling
JSP pages.

Concurrency bugs
Deadlock with static syn-
chronized methods

Very high No Deadlock was caused by using
static synchronized methods in
two static classes using each
others.

Logic
Stateful singletons Low No Incorrectly using attributes in

a singleton class which creates
a state for the singleton. Find-
Bugs does not have a detector
for singleton classes.

NPEs
NPE in a JSP page x 3 Medium No Requires effective interproce-

dural analysis.
NPE in a Java class Very high Yes Not detected by default. De-

tected by adding the CheckFor-
Null annotation which gener-
ated many false positives.

NPE in a Java class High No Requires effective context-
sensitive analysis.
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The results above do not look flattering from FindBugs’ point of view.
As we see from Table 5.1, from the total 132 bugs, we estimated that 9%
could be caught by using static analysis. This would have been a quite
good percentage. However, FindBugs only detects two of these bugs,
which means that FindBugs detects only 1.5% of the selected 132 bugs.
To be precise, without using annotations, FindBugs can only find one of
the total 132 bugs, and this one warning also gets a quite low priority
from FindBugs (BugRank 15). Because of the low priority, developers
probably would have ignored this alert. On the other hand, the impact
of this single bug was very high, so even preventing this one single bug
might have made FindBugs a cost-effective tool.

Our results are quite similar to the results from other studies. First
of all, we estimated that 9% of the bugs could have been detected with
SCA. This is very close to the results from Nanda et al. (2010) who eval-
uated two software projects and concluded that static analysis could
catch 5–15% of the reported bugs. The actual percentage of bugs we
detected with FindBugs is, however, much lower: 1.5%. Most likely,
also Nanda et al. would have obtained similar results if they had veri-
fied their estimates with FindBugs. This 1.5% of the reported bugs—or
2 out of 132 bug reports—is very close to the results from the study
by Wagner et al. (2008). The authors of the aforementioned study con-
cluded that none of the reported field defects could have been detected
with FindBugs. Interestingly, the software project analyzed by Wagner
et al. was quite close to the product of Valuatum in terms of software
size and project maturity.

The results we have obtained reveal that FindBugs fails to detect quite
many rather simple bugs which should be detectable with SCA. For
example, many NPEs are not detected. Clearly, the NPE detectors
of FindBugs should be further improved. Another example of a sim-
ple missed defect is calling vector.elementAt() for an empty vector,
which causes an exception. We think that this could be detected with
FindBugs using data flow analysis. Although vector is an obsolete col-
lection, the same detector could be used with ArrayList and other col-
lections.

Evidently, it seems that reported defects can not be effectively detected
with FindBugs. Based on our results and the results from the previ-
ous studies, the percentage of reported bugs detectable by FindBugs
is somewhere between 0–2%. We think that there are several reasons
why this percentage is so low. First of all, at least in Valuatum, most
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of the reported bugs are system-specific logical bugs, UI bugs or server
configuration issues, which are all hard to detect with SCA. Second,
the issue tracker might not contain bug reports for all simple bugs de-
tectable with SCA, which might distort the results significantly. There-
fore, in the next subsection, we analyze how well FindBugs can find
unreported defects.

5.1.2 Detecting unreported fixed defects

In the previous section, we analyzed the effectiveness of FindBugs by
mining reported bugs from our project management tool. In this sec-
tion, we present the results of evaluating the effectiveness of FindBugs
by searching bugs from SVN change log messages. Using the approach
described in Section 4.1.2, we identified a total of 201 fixed bugs (135
from the trunk branch and 66 from the tags branch). Table 5.3 shows
the distribution of the unreported fixed bugs. As in the previous sec-
tion, the table also presents how many of the bugs in each category
are even feasible to be detected with static code analysis (3rd column)
and how many of these bugs are actually detected with FindBugs (last
column).

Table 5.3: Known unreported bugs prevented with FindBugs.

Category Bugs SCA feasible FindBugs
System-specific logical bugs 121 (60.2%) 5 (4.1%) 0 (0.0%)
User interface bugs 35 (17.4%) 0 (0.0%) 0 (0.0%)
Server configuration bugs 11 (5.5%) 0 (0.0%) 0 (0.0%)
Common coding errors 13 (6.5%) 10 (76.9%) 2 (15.4%)
Third-party bugs 3 (1.5%) 0 (0.0%) 0 (0.0%)
NPEs 17 (8.4%) 17 (100%) 10 (58.8%)
Concurrency bugs 1 (0.5%) 1 (100%) 0 (0.0%)
Total 201 (100%) 33 (16.4%) 12 (6.0%)

Table 5.4 shows a more detailed information what types of unreported
bugs we classified as "SCA feasible" and which of these bugs were de-
tected with FindBugs.
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Table 5.4: Known unreported bugs categorized as SCA feasible

Bug type Impact FindBugs Notes
Common coding errors
ArrayIndexOutOfBounds High No Same as in Table 5.2
RuntimeException High No Converting byte to Integer.
Self assignment to method
parameter

Very high Yes FindBugs reports "Dead store
to local variable...".

Bad SQL grammar High No FindBugs does not scan for
SQL grammar mistakes.

Return value ignored High Yes Detected only with Check-
ReturnValue annotation (Bu-
gRank 13).

BigInteger misusage Low No Same as in Table 5.2
Empty if clause and miss-
ing return statement

Medium No If clause was empty instead of
containing a return statement

ArrayIndexOutOfBounds Low No Called String.deleteCharAt
for position −1.

Removing a wrong object
from a list

High No Mistakenly used an int value
instead of an Integer object to
remove an object from a list.

Typecast error Medium No Typecasting an object to
String.

Concurrency bugs
Deadlock with static syn-
chronized methods

Very high No Same as in Table 5.2

Logic
Absurd null/empty String
comparison

Medium No An internal API call should be
threated as null/empty check.

Mismatch between Spring
XML and class field names

Medium No FindBugs does not understand
Spring XML

Non-null method expected
to return null

Medium No FindBugs did not find this
even with NonNull annotation.

API misusage Medium No Using a null value as a param-
eter for non-null method.

Incorrect lazy initialization
of class cache

Medium No Mistakenly used != instead of
==.

NPEs
General NPE in a Java
class

High Yes FindBugs reports "Redundant
nullcheck..." with BugRank 20.

NPE in an often used
project class x 7

Medium Yes When adding the CheckFor-
Null annotation FindBugs re-
ports "Possible null pointer..."
(BugRank 13)

NPE in logging mechanism High Yes Detected only with the Check-
ForNull annotation but gener-
ated a huge number of false
positives

NPE when passing null to
non-null parameter

Medium Yes FindBugs reports an alert with
BugRank 6

General NPE in a Java
class x 7

Medium No Requires context-sensitive and
interprocedural analysis.
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Clearly, from the FindBugs’ point of view, there is some improvement
when compared to the results in the previous subsection. First of all,
the number of identified bugs increased from 132 to 201 although we
used a half-month shorter time-period. Second, the percentage of bugs
categorized as SCA feasible increased from 9.1% to 16.4%. Third, the
number of defects detected by FindBugs increased from 1.5% to 6%. So,
at the first glance, it seems that analyzing the effectiveness of Find-
Bugs to detect defects produces too poor results if we include only re-
ported bugs. However, one should note that most of the unreported
bugs FindBugs is able to detect are detected with the aid of annota-
tions. If not using annotations, the total number of detected bugs de-
creases from 12 to 3. This means that only 1.5% of the total number
of identified bugs can be detected with FindBugs without using anno-
tations. Although 1.5% is not a flattering percentage, this is still more
than in the previous subsection. One should note that the priority lev-
els of the warnings are quite low; therefore, developers probably would
have ignored most of the alerts. Only one alert exists which is in the
scary category (BugRank 1–9).

The results described in Table 5.3 are similar to the previous studies
described in Sections 2.3.1 and 2.3.2. Our estimate that 16.4% of the
bugs could be detected with SCA is quite close to the 5–15% which
Nanda et al. (2010) estimated when analyzing the distribution of bugs
in two software projects. Moreover, we experimented that FindBugs
can detect 6% of the unreported bugs, which is very close to the re-
sults from Kim and Ernst (2007a) who concluded in their study that
FindBugs could have prevented maximum of 5% of the field defects
identified from the version control system.

When comparing the bug categories in Tables 5.1 and 5.3, there seems
to be clearly more system-specific logical bugs within unreported bugs
(60%) than reported bugs (46%). Interestingly, some of the system-
specific logical bugs could be feasible to detect with SCA. Not a great
surprise is that the number of server configuration bugs has decreased
quite a lot, likely because these types of bugs are usually fixed directly
at the servers; thus, no trace is left to the version control system.

Perhaps the most interesting thing is that the number of NPEs has
considerably grown. Most likely, this increase is due to the fact that
small NPE fixes are not documented to the issue tracker but directly
fixed to the code and uploaded to the version control system. Because
SCA is good at finding NPEs, this increase in NPEs explains much why
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the percentage of SCA feasible bugs has increased when compared to
the results with the reported fixed defects. Clearly, the NPE detec-
tion of FindBugs could still be improved. The tool misses quite simple
NPEs and sometimes does not find simple NPEs even with the help of
annotations.

To sum up, based on the previous studies and the results from the case
study presented in this subsection, it seems that FindBugs can detect
1–6% percent of the unreported bugs. The results depend much on
whether you use annotations or not. Especially NPE detection can be
improved with annotations. Several reasons exist why this percentage
remains rather low. First of all, about 83% of the identified bugs are
system-specific logical bugs, UI bugs or configuration issues, which are
hard to detect with SCA. Second, we think that to get the most out
of SCA tools, the tools should be integrated into IDEs because there
might be common bugs which never get from developers’ desktop en-
vironment to the version control system. We also think that the ef-
fectiveness of FindBugs can be further improved by developing custom
detectors, which we discuss in more detail in the next subsection.

5.1.3 Detecting defects using custom detectors

As we have seen in Sections 5.1.1 and 5.1.2, FindBugs failed to de-
tect many critical bugs, although those missed defects should be quite
easy to detect with SCA. In this section, we describe the results from
developing custom detectors for three of the missed defects. Reasons
why we have chosen these three bugs are described in more detail
in Section 4.1.3. These custom detectors can be downloaded as a sin-
gle package from the following URL: http://iki.fi/mvestola/thesis/
detectors.jar.

Deadlock with static synchronized methods

The bug described in this section was the most critical and laborious
bug found from Valuatum’s system during the recent years. As calen-
dar time, it took one full month to detect the root cause of this bug.
We had three experienced developers working on this bug and we have
estimated that it took about 100 man-hours altogether to find and fix
this bug. Developing the detector for this bug took about 8 hours. Thus,
the time-savings would have been massive if we had used this detec-

http://iki.fi/mvestola/thesis/detectors.jar
http://iki.fi/mvestola/thesis/detectors.jar
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tor in our testing process. The bug also caused noticeable harm for
our customers because it randomly caused the servers to stop respond-
ing. All in all, this bug caused serious trouble for both developers and
customers—not to mention the negative effects it caused to the com-
pany’s image.

The root cause of this bug was that the system contained static Java
classes with static synchronized methods calling one another. Because
static synchronized methods use the class itself as a lock object, this
causes deadlocks in some situations. Consider the example illustrated
in Figure 5.1. In the example, classes A and B both contain static syn-
chronized methods named method1() and method2(). Furthermore,
A.method1() uses B.method1() and B.method2() uses A.method2()

Class A

static synchronized method1() 
{
    ...
    B.method1();
}

static synchronized method2() 
{
    ...
}

Class B

static synchronized method1() 
{
    ...
}

static synchronized method2() 
{

    ...
    A.method2();
}

Thread X

Thread Y

waits

Thread X waits for 
Thread Y  to finish. 
Thread Y waits for 
Thread X to finish.
  --> Deadlock

Thread Z

Thread WThread U

Thread C

Thread D

Other threads waiting 
Threads X and Y to finish to 
get access to Class A and B.

waits

Figure 5.1: An illustration of the deadlock with static synchronized methods

If thread X is at method A.method1() and thread Y is at B.method2(),
thread X needs to wait access to B.method1() because thread Y is al-
ready in B.method2(), holding the lock for all static synchronized meth-
ods in class B. Moreover, thread Y also needs to wait access to A.method2()
because thread X holds the lock for all static synchronized methods in
class A. Therefore, both threads wait each others, causing a deadlock.
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This does not only cause threads X and Y to be in the deadlock state
but also other threads trying to access static synchronized methods in
either class A or B will end up waiting.

Because of the nature of concurrency bugs, it was extremely difficult
to find the root cause of this bug. The only trace for this bug was that
because of the many threads waiting in the deadlock state, the num-
ber of active database connections multiplied and finally reached the
maximum allowed value thus preventing the server to connect to the
database. However, this sudden increase in database connections was
first seen as the cause for the servers to crash, not the symptom of
something else. The bug was finally traced to the deadlocks by analyz-
ing the thread dumps of the servers.

The custom detector we made to detect this bug is rather simple. It
uses the two-pass technique of FindBugs. In the first pass, the pre-
run detector scans every static synchronized method call found from
the program under analysis and constructs a shared database contain-
ing information about from which methods static synchronized method
calls are invoked. In the second pass, the post-run detector again
scans every static synchronized method call found from the program
and—using the shared database constructed in the previous pass—
determines whether deadlock is possible when calling the method.

Deadlock is possible if all of the following is true (considering the pre-
vious example):

1. The current parent method A.method1() is static synchronized

2. The current invoked method B.method1() is static synchronized

3. The class of the invoked method (B) contains a static synchronized
method which invokes any of the static synchronized methods in
the class A.

There are some known limitations for this detector. One limitation
is that the detector can not identify deadlocks in complex chains of
method calls. For example, if classes A, B, and C contain static synchro-
nized methods, the following chain of calls can cause a deadlock which
the detector does not currently detect: A.method1() calls B.method1(),
which invokes C.method1(), which invokes A.method2(). Although the
detector is not perfect, it definitely is able to detect the deadlock bug
described in Figure 5.1 and does not produce any false positives. The
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detector did not find any new deadlock bugs from the most recent code
of Valuatum. Last but not least, this detector is not system-specific but
is generic; therefore, it can be used in any system to improve deadlock
detection.

Stateful singletons

Unlike the deadlock bug described in the previous section, the bug de-
scribed in this section is not so critical. However, this bug was chosen
because detecting this concurrency bug is difficult by other means. An-
other reason was that the bug has occurred in several classes. More-
over, not only one developer has introduced this bug but the bug seems
to be quite common among all developers. Although several classes
contain this bug, it has not yet caused any critical problems because
the bugs appear mainly in features which are currently not so heavily
used.

The root cause of this bug is that the system contains Java classes
which are defined as singleton objects. In other words, if a class is
a singleton, only one instance of the class exists in the whole system
(within the same class loader). In Valuatum’s system, singletons are
defined as singleton beans in Spring XML files. A class defined as a
singleton bean can not have fields creating a state for the object. If
a class contains fields which can create a state, this may cause un-
expected concurrency problems if two threads use the singleton bean
at the same time. The worst case scenario is that a user may receive
corrupted response or get access to unauthorized data.

Like the deadlock detector described in the previous section, also the
detector for this singleton bug is quite simple. It first creates a database
of singleton classes based on Spring XML files. Second, the detector
scans every class which is defined as singleton for fields which may
change the state of the class instance. For example, if the singleton
class has a non-final private field, this field definitely creates a state
for the class instance and is considered to be a bug. However, final
immutable fields (such as primitive values and instances of the String
class) and fields which are defined as singletons are allowed because
they can not change the state of the class instance.

It took only about 8 hours to write this detector which is a cheap price
for detecting this type of hard to find concurrency issue. The detector
found a total of 26 real bugs from 11 different classes when we applied



CHAPTER 5. CASE STUDY RESULTS 57

it to Valuatum’s system. Many of the bugs were previously unknown.
Although the testing for the detector was not so extensive, it seems to
work well and does not produce any false positives. The detector is not
as generic as the deadlock detector described in the previous section.
However, it can be used as such in other systems using the popular
Spring framework.

Incorrect lazy initialization of class fields

The detector described in this subsection finds incorrect use of lazy ini-
tialization in the getter methods of classes. For example, the following
code example is considered to be a bug because the comparison "field
!= null" does not make sense here. Instead, it should be "field ==
null".

private SomeObject getField() {
if (field != null) {
field = new SomeObject();

} return field;
}

This error in lazy initialization might cause an NPE which is, how-
ever, usually easy to detect with traditional testing. Nevertheless, the
bug might additionally cause performance problems if the field is acci-
dentally initialized elsewhere and initializing the object requires heavy
computation. This type of performance problem is much more difficult
to detect.

Developing the detector to find this bug took about 8 hours. The de-
tector basically scans the program code for a specific sequence of Java
bytecode. It also uses the field and the method name to determine
whether the analyzed method is a getter method for some field of the
class. The detector seems to find at least the most basic bugs and does
not to produce any false positives, however, the testing was not so ex-
haustive.



CHAPTER 5. CASE STUDY RESULTS 58

5.1.4 Detecting defects based on alert removal his-
tory

When using the approach described in Section 4.1.4, FindBugs identi-
fied that a total of 752 warnings were removed between the selected
starting and ending revision. When ignoring warnings being removed
by class removals (using the setting "removedByChange = true" in Find-
Bugs), the total number of warnings decreases to 692.

Table 5.5 reveals the distribution of the warnings based on the lifetime
of the alerts. The lifetime here means how many analyzed revisions
the warning has lasted before it was removed.

Table 5.5: Distribution of removed warnings based on warning lifetime

Lifetime Warnings (count) Warnings (%)
0 87 12.6%
1–2 47 6.8%
3–9 97 14.0%
10–15 114 16.5%
16–29 65 9.4%
30–49 104 15.0%
50–60 178 25.7%
Total 692 100.0%

Because we only included every 30th revision in our analysis, one step
in lifetime actually means a step of 30 revisions. If the lifetime is 0, it
means that the warning was first introduced at revision x and last seen
at the same revision x. In other words, the warning was not preset at
the next analyzed revision x + 30. Therefore, we know that a warning
having lifetime 0 was fixed in 30 revisions or less. Furthermore, if the
lifetime is 3, the warning was first introduced at revision y and last
seen at revision y + 30 ∗ 3. This means that a warning having lifetime
3 was removed between revisions y + 90 and y + 120 thus having the
actual lifetime between 90 and 120 revisions. The main point with the
lifetime is that the lower value means that the warning is fixed faster.

We further classified each warning to Table 5.6 based on the BugRank,
which is the new priority ranking of FindBugs. It is basically an en-
hancement to the older three-level priority classification. The lower
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the BugRank is, the more confident we should be that the warning is a
real defect. The table below also contains the average lifetime for each
BugRank scale.

Finally, we also classified the warnings to Table 5.7 based on the warn-
ing categories from FindBugs. The table below also contains the aver-
age BugRank and the average lifetime for all categories.

Table 5.6: Removed warnings classified based on BugRank

BugRank Warnings (count) Warnings (%) Avg. lifetime
Scariest (1–4) 0 0% -
Scary (5–9) 12 1.7% 16.3
Troubling (10–14) 23 3.3% 31.2
Concern (15–20) 657 94.9% 24.7
Total 692 100.0% 24.8

Table 5.7: Removed warnings classified based on warning category

Category Warnings Warnings Avg. BugRank Avg. lifetime
Bad practice 100 14.5% 18.7 15.9
Correctness 24 3.5% 9.5 20.3
Experimental 6 0.9% 20 34.2
I18N 7 1.0% 19.6 28.6
Malicious code 34 4.9% 17.8 15.9
MT correctness 3 0.4% 13.0 35.3
Performance 329 47.5% 18.2 31.5
Security 18 2.6% 13.4 45.8
Style 171 24.7% 19.4 16.4
Total 692 100.0% 18.1 24.8

At the first glance, it might seem that FindBugs could have prevented
692 defects, which is the total number of warnings removed during the
selected 15 months time period. This would be a really good result for
FindBugs. However, a closer look reveals that most of the removed
warnings are rather unimportant.

First of all, more than half of the warnings has quite a long lifetime.
More precisely, as we can see from Table 5.5, over 50% of the warnings
has lifetime longer than 15 analyzed revisions. If we make a theoreti-
cal assumption that revisions are equally distributed to the 15 months
(450 days) time period we have used, it means that, on an average,
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developers have created 4.2 new revisions per day. Therefore, the 15
analyzed revisions lifetime means that an alert has lasted at least 450
revisions, which equals to three and a half months. To continue, more
than a quarter of the alerts has lifetime 50 or more, which equals at
least 1500 revisions or a full year. These are rather long lifetimes for
alerts indicating bugs.

The results described in Table 5.7 also imply that most of the removed
alerts are quite unimportant. Almost 3/4 of the removed alerts belong
to the performance or style category, both categories having a very low
average BugRank. Style issues rarely indicate actual bugs. In the
performance category, 81% of the warnings were alerts about creating
Integer, Double or String objects inefficiently (e.g. new Integer(int)
instead of Integer.valueOf(int)). This certainly impacts performance
to some extent, however, we think that it is still rather unimportant.

As we can see from Table 5.6, none of the fixed warnings belong to the
scariest category (BugRank 1–4). Most of the warnings (94.9%) have
the lowest BugRank 15–20. Moreover, these warnings with the lowest
BugRank were on an average more quickly fixed than warnings having
the troubling BugRank. There might be several reasons why the an-
alyzed project history did not contain a single removed alert from the
scariest category. First, FindBugs might not have many detectors re-
porting high BugRank alerts. Second, the high BugRank alerts might
have been removed so fast (e.g. within 1–2 revisions) that our every
30th revisions sample size is too coarse. Third, high BugRank alerts
might indicate so critical bugs that they are removed by using other
QA practices before the code is committed to the SVN.

We manually analyzed each removed warning having BugRank 1–14.
After inspecting the total of 35 removed alerts, we identified that only
6 (or 17%) of these removed alerts were actual targeted fixes to fix the
problem FindBugs has detected. The rest of the alerts were removed
because of extensive method refactoring where an alert was removed
just as a side-effect for code refactoring. Interestingly, not all of the
targeted bug removals were removed fast. We identified one removed
alert having lifetime 4, one having lifetime 3, and one having lifetime
1. Rest three bug removals had lifetime 0. The bug fixing process
used in Valuatum might explain the rather long alert lifetimes. In
Valuatum, a field defect is usually fixed first to the tags branch, which
contains small patches to be updated to the production environment.
These patches are not necessarily immediately merged to the trunk
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branch but after a few weeks or so. Because we have only analyzed
the alert removals from the trunk branch, this might explain the long
lifetimes for some important alert removals.

We also manually inspected each of the removed alerts having lifetime
0. From the total of 87 removed alerts, only 6 (or 6.9%) were targeted
fixes to fix the problem detected by FindBugs. The rest of the removed
alerts were again removed as a result of major refactoring of the code.
Most of the removed alerts were rather unimportant alerts, such as
invoking new Integer() instead of Integer.valueof().

Our results support the results from the existing studies by Wagner
et al. (2008) and Kim and Ernst (2007a). Both studies concluded that
the majority of the warnings removed from the software projects they
analyzed were due to code changes that were not directly related to the
warning. Interestingly, Ayewah et al. (2007) reports opposite results
by claiming that more than 50% of the warnings removed between dif-
ferent builds of JDK were due to small targeted changes to remedy the
issue described by the warning. Ayewah et al. analyzed only alerts
from the correctness category and alerts having high or medium pri-
ority, which might explain the differences between the results to some
extend. However, we also studied the high-priority alerts and most of
the analyzed alerts were in fact alerts from the correctness category,
and still we got quite the opposite results.

To summarize, it seems that most of the alerts removed during the
project history are quite unimportant: the alerts have rather long life-
time and the priority of the alerts is quite low. Moreover, most of the
alerts are not removed as a result of actual targeted bug fixes but be-
cause of unrelated code refactoring. This implies that, at least with
mature software systems—such as Valuatum’s system—one can not
use the history of alert removals as the basis for an accurate predic-
tion whether a future alert is actionable or not. Some AAITs (Kim and
Ernst, 2007b; Heckman and Williams, 2009) described in Section 2.2.2,
use this approach, which is quite questionable at least with mature
software systems.

5.1.5 Detecting open defects

In this section, we describe the results from analyzing the effective-
ness of FindBugs to detect open defects. The approach we have used
is described in more detail in Section 4.1.5. When using this approach,
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FindBugs produced a total of 12,052 open warnings for Valuatum’s sys-
tem (5,382 for the ValuBuild module and 6,670 for the webapp module).
Most of the warnings (94%) were quite low level warnings having Bu-
gRank between 15–20. When including only the scary bugs (BugRank
1–9), the number of warnings decreases to 312.

Obviously, over 12,000 warnings is far too much for us to manually
analyze. Therefore, in this study, we only included the 312 scariest
alerts for more detailed analysis. We manually analyzed each of the
312 alerts and categorized them to the importance categories described
in Section 4.1.5. Table 5.8 presents the results in more detail.

Table 5.8: Open alerts having BugRank 1–9 classified based on alert cat-
egory and importance level

Category Alerts % MFa SFb HLc NBd

Correctness 108 34,6% 12 22 63 11
Bad practice 2 0,6% 1 1 0 0
MT correctness 20 6,4% 0 18 2 0
Security 182 58,3% 4 0 177 1
Total 312 100.0% 17 41 242 12

5,4% 13,1% 77,6% 3,8%

aMF = Must fix
bSF = Should fix
cHL = Harmless
dNB = Not a bug

Clearly, when including alerts having BugRank 1–9, FindBugs pro-
duces far too many unactionable alerts. Only 18.5% of the scary alerts
were classified as actionable (Must or Should fix). The percentage
would have been most likely even lower if we had considered alerts
having lower BugRank.

Almost half of the warnings are about security issues from JSP pages,
mostly XSS issues. However, we think that FindBugs provides too high
priorities for the XSS issues in Valuatum’s system because most of the
issues are non-persistent XSS vulnerabilities in admin pages. More-
over, almost all pages in the system are private password protected.
Therefore, an attacker must have a username and a password for the
system in order to search for XSS vulnerabilities. Alerts about multi-
thread correctness issues are those warnings which are most often
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categorized as actionable—possibly because of the fact that the con-
sequences of a multi-thread bug are quite high because they can affect
the whole system, for example, by causing deadlocks or data corrup-
tion.

One should note that although the total number of unactionable alerts
is quite high, FindBugs did find many actual new unknown bugs from
the system. All the 17 alerts in the "Must fix" category point to actual
bugs which should be fixed as soon as possible because they clearly
have functional impact to the system. The "Must fix" category contains
such bugs as: ignored method return values, infinite recursive loops,
comparing strings using == instead of String.equals(String), NPEs,
and XSS vulnerabilities in public pages. If we use the criterion from
Wagner et al. (2005), who reported that detecting a single severe defect
or 3–15 normal defects is enough for an SCA tool to be cost-effective, we
can conclude that these 17 detected defects are enough for FindBugs to
be a cost-effective tool.

We also superficially analyzed the warnings from the troubling (10–14)
and concern (15–20) ranks. Because of the large number of warnings,
the analysis was very superficial; thus, no precise classification is pro-
vided. Most of the warnings seemed to fall to the mostly harmless
category. However, some of the warnings from the troubling category,
such as alerts about SQL injections, raised some concerns. Although
most of the alerts about SQL injections seemed to be quite harmless,
there were some alerts which definitely need further studying whether
an SQL injection is possible. FindBugs also revealed some real per-
formance bugs from the concern category, mainly unclosed database
connections, from which one actually caused real problems in the pro-
duction environment. However, the alert was missed because the Bu-
gRank of the alert was so low.

Our results show that only 18.5% of the high-priority alerts are ac-
tionable alerts. This is quite close to the results from Kim and Ernst
(2007a) who evaluated the precision of FindBugs in three software sys-
tems. The authors concluded that only 5–18% of the alerts indicated
a real bug. In other words, only 5–18% of the alerts were action-
able. Araújo et al. (2011) reported higher precision: 29% of the high-
priority warnings of FindBugs were considered actionable. Two studies
(Ayewah and Pugh, 2010; Ayewah et al., 2007) reported completely dif-
ferent results. The first study reports experiences from Google. In that
study, the authors concluded that 77% of the reviewed warnings were
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classified as "Must Fix" or "Should Fix". However, only 42% of the total
9,473 warnings were reviewed so the actual percentage of actionable
alerts per all alerts is most likely much lower. The second study reports
that as much as 56% of the analyzed warnings from JDK 1.6 had func-
tional impact. The differences between the results can be explained to
some extent by the fact that the definition of actionable alert varies in
the studies. Some studies classify an alert as actionable automatically
based on the project history and alert lifetime, while other studies use
manual evaluation, which is prone to subjectivity.

To sum up, many of the FindBugs’ alerts about new defects seem to
be quite unimportant. Although some studies have reported that more
than 50% of the alerts are actionable, based on our results and other
previous studies, we believe that most of the alerts are actually unac-
tionable. The actual percentage of actionable alerts is closer to 15–30%
when including only high-priority alerts. The percentage is most likely
much lower if also low-priority alerts are included. Nevertheless, Find-
Bugs seems to find quite a few new previously unknown bugs which we
might have missed otherwise. We see detecting security, performance,
and multi-thread issues especially useful because they are hard to de-
tect by other means. We think that to get the most out of FindBugs, we
should tweak the FindBugs’ settings to match the needs of our project,
for example, by excluding unimportant bug categories and classes. We
can also use various other approaches to deal with the high number of
unactionable alerts, which we discuss in more detail in the next sec-
tion.

5.2 Enhancing FindBugs: Dealing with un-
actionable alerts

As described in Section 2.2.1, the large number of unactionable alerts
is the biggest problem with static code analysis. Even though a static
analysis tool could find real defects, warnings about those defects might
get cloaked by unimportant alerts. This is especially problematic when
applying SCA tools for mature software systems which have not used
SCA tools before. For example, as we have seen in Section 5.1.5, in
Valuatum’s system, FindBugs produced over 12,000 alerts when first
applying the tool, and only 18% of the high-priority alerts were catego-
rized as actionable.
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When initiating a new software project, it is quite easy to start using
an SCA tool because one can immediately begin following the practices
recommended by the tool. However, when introducing an SCA tool for a
mature project, the tool usually produces so many alerts that fixing the
issues would take too much resources. For example, if one developer is
working 8 hours per day, 40 hours per week, and could fix one alert in
five minutes, fixing 12,000 alerts would take 25 weeks, which equals to
almost half a year.

In this section, we introduce a few methods to deal with the high num-
ber of unactionable alerts and describe our experiences with the deploy-
ment of these techniques in Valuatum. These presented methods are:
defect differencing, integration to IDE, and the use of simple AAITs.
The reasons why we have chosen these techniques are describe in more
detail in the case study methodology in Section 4.2.

5.2.1 Defect differencing

As the results in Section 5.1.5 imply, most of the alerts from FindBugs
are quite unimportant. We believe that although there are some alerts
pointing to real bugs, most of the alerts actually do not indicate a bug
that has any functional impact to Valuatum’s system. If the latest re-
lease of the system has been running several weeks without problems,
it most likely does not contain any serious bugs. Therefore, we are
not so interested in fixing the existing alerts which has first appeared
before the latest release revision.

We think that the most important thing is to prevent new bugs for oc-
curring. Therefore, in Valuatum, we decided to ignore the 12,000 "old"
alerts in our every day development and focus on the alerts introduced
after the latest release revision because these alerts are the ones that
might point to new bugs. In this way, we can ensure that at least all
added new code and refactored code follow the recommended practices
of FindBugs. We certainly will fix the most important alerts we have
already identified from the 12,000 "old" alerts—and we might some day
go back to reviewing the remaining alerts, however, we do not use these
in our every day development process. We believe that it is psycholog-
ically better to show only small portion of the alerts than viewing all
the 12,000 alerts, which might depress the developers and make them
ignoring the tool output. Using the defect differencing approach, we
also hope that developers react faster to the alerts.
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We have now integrated FindBugs to our continuous integration (CI)
process using this defect differencing approach. Below is described in
more detail how our process works:

1. Our CI server Jenkins starts a static analysis task automatically
every night.

2. The task fetches and builds the latest code from the trunk branch
and the latest release branch.

3. The task runs FindBugs for both the ValuBuild module and the
webapp module and searches every possible alert from both the
trunk branch and the latest release branch.

4. The task calculates alert history using the computeBugHistory
ant task of FindBugs. This calculation produces one large XML
file containing all alerts from the both included branches with the
information about when an alert was first introduced. This XML
file is filtered with the filterBugs ant task of FindBugs to produce
the final output file containing only alerts which are new when
compared to the alerts from the latest release revision.

5. If new alerts are detected, the task automatically fails the build
and sends email to the development team. Users can see the
alerts from Jenkins and browse to the line of source code which
the alert complains about.

6. The developer whose changes caused the alerts to appear should
either fix the code so that the alert disappears or if the developer
thinks that there is no defect in the code, he or she should sup-
press the warning with the annotations of FindBugs. All alert
suppressions must be well reasoned to the annotations.

When analyzing the alert history data from Section 5.1.4, we calculated
that, during the last year, we released the latest code to the production
environment approximately in 150 revisions interval. Between the re-
leases, 80 new alerts were introduced on the average. We manually
analyzed some of the new alerts and we think that we can safely de-
crease the number of new alerts by 50% by filtering out alert types we
are not interested in. Thus, we will most likely have to inspect about
40 new alerts between future releases, which sounds reasonable and is
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not a burden to the developers because the alerts are fixed every lit-
tle while during the development process, not all in one. The number
of alerts to be inspected will probably even decrease over time when
developers start to adapt to the recommended practices of FindBugs.

To get more immediate feedback, it would be better to run the SCA task
in Jenkins after each code change, however, the process is quite heavy
and slow (takes about 40 minutes). Therefore, we decided to only run
it at midnight if we can not find ways to speed up the process.

Not much previous work exists about the experiences in applying this
defect differencing approach. Only Nanda et al. (2010) have reported
their experiences about using defect differencing in IBM and they think
it is a very important feature of their static analysis toolset. To get
more information about the effectiveness of using this defect differenc-
ing approach, we would need track the usage of the approach for longer
period of time. However, at the moment, our development team has a
very positive feeling about the approach and the team is committed to
use FindBugs.

5.2.2 Integration to IDE

In Section 5.1.2, we studied how many fixed bugs mined from the SVN
commit messages could have been detected with FindBugs. We con-
cluded that only few of those bug fixes could have been prevented with
FindBugs. This result might indicate that developers find the most
important bugs already before they commit their changes to the ver-
sion control system. This might be the reason why we could not find so
many fixed bugs from the SVN which FindBugs could have detected.
For example, clear NPEs which cause the system to crash are most
likely caught at least during the testing phase, which a developer should
always make before committing any changes to the SVN. FindBugs
might, however, detect these defects already before the testing phase.

According to Boehm (1981), fixing a defect during the development
phase is approximately 10 times cheaper than fixing the defect dur-
ing the testing phase. Also Wagner et al. (2005) has pointed out that
it seems to be beneficial to run SCA tools as early as possible before
any code reviews because the automation makes it cheaper and more
thorough than using manual reviews. Therefore, we prefer to catch the
defects early before any testing or code reviews with an automated SCA
tool. The defect differencing approach presented in the previous sub-
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section does not address this issue because it runs FindBugs after the
code is already tested, reviewed, and committed to the SVN. For that
reason, we have now planned to integrate FindBugs to the developers’
desktop environment using plugins for IDEs.

This IDE integration approach not only does help to detect defects ear-
lier but also helps to deal with the large number of alerts. Because the
IDE plugins of FindBugs show the alerts directly in the code editor, de-
velopers can focus on alerts related to only their modified classes and
can fix the most common bugs identified by FindBugs before any test-
ing or code review. There exists FindBugs plugins for both Eclipse and
NetBeans, which are two of the most popular IDEs.

There are, however, some limitations with the IDE plugins. We first
tried IDE integration with NetBeans, which is the IDE we are usually
using in Valuatum. We installed the Software Quality Environment
(SQE)1 toolkit for NetBeans 7.1.1. The SQE is not maintained by the
developers of FindBugs but it is the only plugin for NetBeans which
can run FindBugs. After a few hours of testing, we quickly realized
that this plugin is quite unusable. First of all, the plugin always runs
FindBugs full analysis when the IDE is opened. This initial run usu-
ally takes about 5–10 minutes to finish, takes very much CPU, and at
the end, completely freezes the IDE for a few minutes. Second, one can
not use the same alert type filters defined for the ant task; thus, pro-
viding a shared alert type configuration for the developers is difficult.
Third, the plugin does not work with the custom detectors described in
Section 5.1.3: the custom detectors are detected after some customiza-
tion but alerts do not appear in the editor. Last, the plugin uses the old
version of FindBugs (1.3.8) instead of the newest 2.0.

Nevertheless, we see that the NetBeans plugin could be very useful if
the shortcomings described above are fixed. After the initial run, the
plugin detects new problems from the code in a few seconds and dis-
plays the alerts to the developer immediately. However, now the plugin
is quite unusable in every day development and we probably will not
even introduce the NetBeans plugin to our developers since they most
likely will disable the plugin because of its annoying shortcomings.

Instead, the FindBugs’ Eclipse plugin, which is maintained by the de-
velopers of FindBugs, is almost perfect. It does not have the same
shortcomings than with NetBeans. In Eclipse, users can easily use
custom detectors and reuse filter files from FindBugs’ ant task. Users

1http://kenai.com/projects/sqe/
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can also filter shown alerts based on the BugRank, and the Eclipse plu-
gin is also integrated to the FindBugs’ cloud plugin so that users can
add comments about the alerts. It takes about 5–10 minutes to run
FindBugs for the whole project but users can also easily run FindBugs
manually for only a single file or a single package. Furthermore, users
can also configure the plugin to be run automatically, which signifi-
cantly speeds up the process and enables giving rapid feedback to the
developers.

To sum up, we think that IDE integration is very important when ap-
plying SCA tools. It provides developers rapid feedback and the issues
are most likely fixed faster than when inspecting the alerts after the
nightly SCA task has been run in the CI server. In order to know if
IDE integration really can help to detect more bugs earlier, we should
somehow gather usage data from the developers’ desktop environments
for longer time and evaluate how many and what types of bugs have
the IDE plugins reported. We think that both running FindBugs in
a centralized CI server and running FindBugs in developers’ desktop
environment are important. The centralized CI server provides defect
differencing and makes sure that important new alerts are not missed.
Because the IDE integration of FindBugs with NetBeans seems to not
work well, we are currently planning to move on to Eclipse, which has
good support for FindBugs.

5.2.3 Simple AAITs

In this subsection, we describe how we used the most simple AAITs de-
scribed in Section 2.2.2 to deal with the high number of unactionable
alerts. The initial number of alerts we started with was the same as
in Section 5.1.5, in other words, slightly over 12,000. By using simple
AAITs, such as contextual information and category selection, we man-
aged to reduce the number of alerts from over 12,000 to 4,400, in other
words, at least 63% of the alerts were seen unactionable and were re-
moved. We admit that 4,400 alerts is still much, however, because
we mainly use the defect differencing and IDE integration approaches,
this does not matter so much.

We mainly ignored alerts based on the following principles:

• If an alert points to old code which we know is working well even
though it contains defects pointed out by FindBugs, we ignore the
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bug pattern in the old code.

• If an alert is clearly a stylistic error not relevant in Valuatum (e.g.
confusing method names), we completely ignore the bug pattern
in all code.

• If an alert is irrelevant because of some framework we use, we
ignore the bug pattern in classes using the framework. For ex-
ample, FindBugs warns about uninitialized fields in some classes,
however, these are not relevant alerts because Spring handles the
field initializations for these classes.

We discovered that filtering out alerts based on the BugRank of Find-
Bugs is not very effective. Many alerts which we are interested in have
very low BugRank. For instance, unclosed database connections have
sometimes caused significant problems in Valuatum but BugRanks for
detectors detecting these issues are low. Jaspan et al. (2007) reports
similar experiences.

Interestingly, some specific bug patterns produce significant number of
alerts. For example, the bug pattern which warns about classes us-
ing instance variables while extending the Servlet class, is completely
irrelevant in Valuatum’s system—but still FindBugs generated about
2,000 alerts about this bug pattern. This is about 17% of the total
number of alerts. Jaspan et al. (2007) has reported similar problems.
The authors mention that, in eBay, two FindBugs checkers produced
over half of the original issues and all of these alerts were unimportant
in the eBay’s environment. This might explain the great variance be-
tween the results in Section 2.3.2 where we presented previous work
about evaluating the false positive rate of FindBugs. We think one
should always manually review the warnings at least superficially to
see whether there are any bug patterns which certainly produce too
many alerts. Otherwise these bug patterns may have too big effect on
the results.

To sum up, we think it is very important to configure FindBugs to
match the system under analysis. You should always exclude bug pat-
terns which are not meaningful to your team. By using this project-
specific tweaking, one can easily achieve more than 50% reduction in
unactionable alert rate.



Chapter 6

Conclusions

In this thesis, we have evaluated and enhanced the effectiveness of
FindBugs in preventing bugs in mature software systems. We have
also explored several applicable approaches to find the most important
alerts from the large number of warnings reported by FindBugs.

First, to analyze the effectiveness of FindBugs, we studied how many
fixed defects FindBugs could have prevented. Based on the findings
from our case study and the previous work by others, we have esti-
mated that FindBugs can detect 0–2% of the reported fixed defects and
1–6% of the unreported fixed bugs. In addition to fixed defects, we
also studied the open alerts FindBugs reports for Valuatum’s system.
We concluded that only 18.5% of the most high-priority alerts are ac-
tionable. This is far less than the 50% rates reported by some studies
(Ayewah et al., 2007; Ayewah and Pugh, 2010).

Based on the results, FindBugs seems not to be a very effective tool
in preventing bugs in mature software systems. We estimated that
9% of the reported fixed bugs and 16% of the unreported fixed bugs
could have been prevented with SCA. However, FindBugs does not get
even near these numbers. The tool failed to detect many defects which
should be feasible to detect with SCA. There seems to be still much
room for improvement with FindBugs.

However, judging the effectiveness of FindBugs only based on the per-
centages above does not do justice for FindBugs. Despite the low per-
centage of bugs detected, we found FindBugs to be a cost-effective tool
because of several reasons. First of all, as presented by Wagner et al.
(2008), detecting a single severe defect or 3–15 normal defects is enough
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for an SCA tool to be cost-effective. FindBugs was able to detect a few
severe fixed bugs and it also detected 17 new, previously unknown im-
portant issues which we might have missed otherwise.

We also developed custom detectors for the most important bugs missed
by FindBugs. These custom detectors help us preventing known bugs
for occurring again. For example, we think that it is highly valuable
to have an automatic custom bug detector for the severe deadlock bug
described in Section 5.1.3. This ensures that we never have to spend
another 100 man-hours to detect and fix this concurrency bug. Based
on our experiences, we think that project-specific detectors are very
useful and they can be used to significantly improve the effectiveness
of FindBugs. Developing custom detectors is especially useful for those
bugs which are hard to detect by other means (e.g. concurrency issues).

We have presented several techniques to mitigate the problem with
the large number of unactionable alerts. We found out that some of
the actionable alert identification techniques (AAITs) presented in the
literature use somewhat questionable methods to automatically cat-
egorize alerts as actionable based on the alert removal history. Our
results imply that, in mature systems, one can not use the history of
alert removals as the basis for an accurate prediction whether a fu-
ture alert is actionable or not. Therefore, some of these AAITs are
not really applicable in mature systems. We think that using more
lightweight approaches gives good enough results. Defect differencing
and IDE integration are examples of methods which we think are ap-
plicable techniques in mature software systems to find out the most
important alerts. Furthermore, simple AAITs, such as contextual in-
formation and alert type selection, are also applicable techniques and
can reduce the unactionable alerts easily by 50%.

To sum up, the main goal of this thesis was to learn how to make
FindBugs as an effective tool which could provide immediate, useful
feedback for developers in Valuatum. We have learned that although
FindBugs seems to be ineffective in finding fixed defects, it is able
to detect some severe defects, which is enough to make the tool cost-
effective. Furthermore, we can improve FindBugs by using custom de-
tectors and by using several techniques to reduce the number of un-
actionable alerts. We are now using FindBugs in our every day devel-
opment in Valuatum and the tool has already proved its usefulness by
detecting a few of issues which might have caused noticeable problems
in our production environment.



Chapter 7

Future work

In this chapter, we present some ideas for future work based on the
results from our case study. First of all, it would be interesting to try
the AAITs using machine learning methods presented in Section 2.2.2,
and to study their effectiveness. For example, evaluating the accuracy
of the method described by Heckman and Williams (2009) would be
a good topic for further research. We would especially like to know
whether there any alert characteristics which could be used in Valua-
tum to predict whether an alert is actionable or not. Also combining
dynamic analysis with static analysis seems to be an interesting ap-
proach worth further studying. For example, Chen and MacDonald
(2008) present some ideas about using dynamic analysis to improve
the effectiveness of static analysis.

Second, we would also like to see more custom project-specific bug de-
tectors. We will most likely continue developing custom bug detec-
tors in Valuatum if we encounter relevant bugs which could be de-
tected with SCA. However, we would like to see custom detectors also
from other parties. For example, many commonly used enterprise Java
frameworks—such as Spring, Struts or Hibernate—have some specific
coding rules that developers should follow. The developers of these
frameworks could provide custom FindBugs detectors to the commu-
nity bundled with their frameworks. In this way, the developers of the
community could easily automatically detect violations of framework-
specific coding rules.

Third, we would like to see more new static analysis methods imple-
mented into FindBugs. We think that many of the novel static analysis
techniques presented in Section 2.1 could be used to improve FindBugs.
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However, it is a shame that these new techniques have not gained as
wide industrial usage as syntactic pattern matching or data flow anal-
ysis techniques. One reason for this might be the weak tool support,
which does not encourage developers to use them. We think that re-
searchers should focus on integrating the new techniques to commonly
used tools rather than always developing a completely new SCA tool
with completely new UI. Developers might be unwilling to integrate a
yet another SCA tool with different UI to their development process.
However, if the novel techniques were implemented so that they could
be integrated into FindBugs, which has good reporting features and
IDE integration, maybe these techniques would get more widespread
usage and more people get interested in improving them.
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