
Karthik Venkata Krishna Nagabhushana

External Media Announcement
Approach For Media Resource Function
Processor

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 28.03.2012

Thesis supervisor:

Prof. Jukka Manner

Thesis instructor:

Leena Pitkäranta, Oy LM Ericsson AB

A’’ Aalto University
School of Electrical
Engineering

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80704182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Karthik Venkata Krishna Nagabhushana

Title: External Media Announcement Approach For Media Resource Function
Processor

Date: 28.03.2012 Language: English Number of pages:9+61

Department of Communications and Networking

Professorship: Networking Technology Code: S-38

Supervisor: Prof. Jukka Manner

Instructor: Leena Pitkäranta, Oy LM Ericsson AB

Announcement application service is a multimedia service in IMS which plays me-
dia (audio/video) announcements to the User Equipment (UE). This thesis studies
Media Resource Function Processor (MRFP), a key network component in IMS
which is responsible for the announcement application service. This thesis looks
into the MRFP architecture and tries to find a feasible and alternative approach
to handle media announcements. The factors this thesis concentrates on are: (1)
primarily, the limited availability of memory to store the media announcements
within the MRFP, and (2) the possibility to reduce the number of Digital Signal
Processors (DSPs) reserved for playing announcements.
For a possible solution to the above mentioned research questions, this thesis pro-
poses an external announcement approach to provide the announcement service.
This is studied by using a separate server outside the MRFP node to store all the
media announcement files. In this thesis, the external announcement approach is
studied by using three different protocols - RTSP, HTTP or FTP as the interface
between the MRFP node and the external server. The impact on the software
architecture of MRFP due to the external announcement approach is studied.
Also, a prototype is built to test the performance of the external announcement
approach in an emulated Wide Area Network (WAN) environment. One other
key area of study made in this thesis is to use the existing limited MRFP mem-
ory as a cache. The number of requests made to the external server to fetch the
announcement files can be decreased by implementing an effective caching algo-
rithm in the MRFP, which improves the performance. The study made shows
that Greedy Dual-Size Popularity (GDSP) algorithm can be a relevant and very
effective caching mechanism in MRFP. Through this work, it is demonstrated that
an effective announcement service can be achieved in MRFP by using an external
server.

Keywords: IMS, MRFP, Announcement Service, External Media Announce-
ments, RTSP, HTTP, FTP, Caching algorithm

iii

Preface

This Master’s thesis work was carried out at the Research and Development Center
of Oy L M Ericsson AB, Jorvas, Finland. During this thesis work, I have received
help from many talented individuals.

I would like to thank my supervisor Prof. Jukka Manner for his encouraging
comments and suggestions on the work undertaken. I would like to express my grat-
itude towards my thesis instructor Leena Pitkäranta at Ericsson for her continuous
support during this thesis work. I would like to thank Node Architect at Ericsson,
Olli Hynönen for his valuable ideas, guidance and expertise.

Espoo, 28.03.2012

Karthik Venkata Krishna Nagabhushana

iv

Contents

Abstract ii

Preface iii

Contents iv

List of Figures vi

List of Tables vii

List of Acronyms viii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Thesis Outcome . 3
1.3 Outline . 3

2 MRF Architecture in IMS 4
2.1 Overview of IMS . 4

2.1.1 IMS Architecture . 4
2.1.2 IMS Core Network Components 5

2.2 Announcement Service in IMS . 7
2.3 MRF Architecture . 9

2.3.1 MRFP Components . 9
2.3.2 MRFP Architecture for Playing Announcements 10

2.4 Summary . 11

3 External Announcement Approach 13
3.1 External Announcement Architecture for Playing Announcements . . 13
3.2 External Announcement Approach Using RTSP 14

3.2.1 RTSP Overview . 14
3.2.2 RTSP Operation . 16
3.2.3 Dataflow Analysis for External Announcements Using RTSP . 17

3.3 External Announcement Approach Using HTTP 20
3.3.1 HTTP Overview . 20
3.3.2 Dataflow Analysis for External Announcements Using HTTP . 23
3.3.3 Caching Mechanism in MRFP 25

3.4 External Announcement Approach Using FTP 25
3.4.1 FTP Overview . 25
3.4.2 FTP Requests and Responses 27
3.4.3 Dataflow Analysis for External Announcements Using FTP . . 28

3.5 Summary . 30

v

4 Effective Utilization of Memory in MRFP 31
4.1 MRFP Memory as Cache . 31
4.2 Key Parameters in File Caching . 31
4.3 Caching Algorithms for MRFP . 33
4.4 Summary . 40

5 Prototyping the External Announcement Approach 42
5.1 Prototype Design . 42
5.2 Network Emulator . 42
5.3 Implementation . 47
5.4 Open-source Implementations . 47
5.5 Summary . 48

6 Measurements and Analysis 49
6.1 Parameter Measured . 49
6.2 Announcement Media Types . 49
6.3 Measurements . 49
6.4 Analysis . 51

7 Conclusions and Future Work 53
7.1 Conclusions . 53
7.2 Future Work . 54

References 55

vi

List of Figures

1 IMS Network Element Topology. ([2], modified) 2
2 IMS architecture. [4] . 5
3 A scenario of invoking announcement service. 8
4 Announcement service protocol diagram (with proxy). [1] 9
5 MRFP Components in a High-Level 10
6 MRFP Architecture for Playing Announcements 11
7 Proposed external announcement approach architecture 14
8 RTSP mechanism . 15
9 An RTSP flow example. ([23], modified) 18
10 External announcements dataflow using RTSP 19
11 An HTTP flow example. ([18], modified) 21
12 External announcements dataflow using HTTP 24
13 FTP Active data connection. ([32], modified) 26
14 FTP Passive data connection. ([32], modified) 27
15 External announcements dataflow using FTP 30
16 External announcement dataflow requiring caching mechanism 32
17 Comparison of cache-hit ratio between HLRU and LRU [47] 35
18 Cache-hit ratio for SLRU policy [48] 36
19 Inter-access time distribution function, D(t) [51] 37
20 LRV performance (cache-hit ratio, HR) comparison with other algo-

rithms [51] . 38
21 Performance of GDSP under constant cost [40] 40
22 Prototype Design . 43
23 IP packet handling in the Linux kernel [59] 44

vii

List of Tables

1 Overview of RTSP methods . 17
2 HTTP response categories . 21
3 FTP commands . 28
4 FTP response categories . 29
5 Summary of caching algorithms . 41
6 Test announcement files . 50
7 Latency measurements of File1 . 50
8 Latency measurements of File2 . 50
9 Latency measurements of File3 . 51
10 Latency measurements of File4 . 51

viii

List of Acronyms

3GPP 3rd Generation Partnership Project
AS Application Server
AuC Authentication Center
CDR Charging Data Records
CSCF Call Session Control Function
DSP Digital Signal Processor
DTMF Dual-Tone Multi-Frequency
DTP Data Transfer Process
FIFO Fist In, First Out
FTP File Transfer Protocol
GD-S Greedy Dual-Size
GDSF Greedy Dual-Size Frequency
GDSP Greedy Dual-Size Popularity
HLR Home Location Register
HLRU History-based Least-Recently Used
HR (Cache) Hit Ratio
HSS Home Subscriber Server
HTTP Hypertext Transfer Protocol
I-CSCF Interrogating-Call Session Control Function
IMS IP Multimedia Subsystem
IP Internet Protocol
ISC IMS Service Control
LDAP Lightweight Directory Access Protocol
LFU Least-Frequently Used
LRU Least-Recently Used
LRV Lowest Relative Value
MAC Media Access Control
Mb IP interface for Multimedia
Megaco Media Gateway Control Protocol
MGCF Media Gateway Control Function
MGW Media GateWay
Mp Media-processing interface
MPEG Moving Picture Experts Group
MPM Multi-Processing Module
Mr Media-resource interface
MRF Media Resource Function
MRFC Media Resource Function Controller

ix

MRFP Media Resource Function Processor
netem Network Emulator
O&M Operations and Maintenance
OSI Open Systems Interconnection
P-CSCF Proxy-Call Session Control Function
PSTN Public Switched Telephone Network
RTP Real-time Transport Protocol
RTSP Real Time Streaming Protocol
S-CSCF Servicing-Call Session Control Function
SDP Session Description Protocol
SIP Session Initiation Protocol
SLRU Segmented Least-Recently Used
tc Traffic Control
UA User Agent
UE User Equipment
URI Uniform Resource Identifier
VoIP Voice over IP
WAN Wide Area Network

1 Introduction

In recent years, using Internet to consume and share multimedia information has
increased enormously. IP Multimedia Subsystem (IMS) provides a framework to
deliver such information in a reliable and efficient way. IMS defines an architecture
and framework converging data, speech and mobile network technology over an IP-
based infrastructure. IMS is advantageous both from the end-user and the service
provider standpoint. With the IMS architecture it is easier to create and deploy
new applications and services.

Media Resource Function (MRF) is the part of the IMS architecture which per-
forms media related functions in the core network. MRF provides functionality to
manage and process media streams such as voice, video, text-to-speech and real time
transcoding of multimedia data. MRF is mainly involved when a network service
like playing announcements and mixing media streams is required by an IMS ap-
plication. Each MRF in the network can be divided into Media Resource Function
Controller (MRFC) and Media Resource Function Processor (MRFP). MRFC is the
signaling plane which interfaces which other IMS network elements using Session Ini-
tiation Protocol (SIP). MRFC interprets the information from Application Server
(AS) and Servicing-Call Session Control Function (S-CSCF) and controls the MRFP
using H.248 protocol. MRFP is the media plane which does the media processing
based on the instructions from MRFC. Figure 1 is a simple representation of part
of IMS architecture showing various interfaces used with MRFC and MRFP [2]. As
shown in Figure 1, the communication between AS and S-CSCF is handled by using
a SIP-based IMS Service Control (ISC) interface and the communication between
S-CSCF and MRFC is handled through the SIP-based Mr interface. The AS in-
vokes SIP messages to MRFC to play network tone and announcements. MRFC
controls the MRFP via the H.248 protocol based Mp interface. The processed me-
dia by MRFP based on commands from MRFC are received via the RTP-based Mb
interface.

Fundamentally, playing announcements involves playing media to user’s terminal
device. Announcements can be in different forms such as stored static media files (for
example, an .mp3 audio file), media files generated in real-time (for example, a .mp3

audio file generated in interactive voice response), media streams generated in real-
time (for example, a H.264 video stream on making a video call), multimedia objects,
or combinations of the above [1]. Announcements are invoked by IMS application
services using Uniform Resource Identifier (URI) which contains the information
about the location of the media file to be played. The details on how the network
announcement service is handled depends on the MRFP solution. This thesis mainly
focuses on the network announcement service in one such MRFP solution [3].

1.1 Problem Statement

Traditionally, the media announcement files that are processed and played by MRFP
are stored within the network element (MRF) itself. This approach has two main

2

Figure 1: IMS Network Element Topology. ([2], modified)

challenges: 1) It takes huge amount of memory to store all the announcement me-
dia files, which makes it unfeasible to store them within the MRFP node. Video
announcements, for example can be of several megabytes and storing such files in-
ternally is a critical area to optimize in MRFP solutions. 2) Traditional approach
also leads to reservation of additional resources in the network element like Digital
Signal Processor(s) (DSP) for playing announcements.

In this thesis work, the aim is to study different ways to tackle the above men-
tioned challenges by configuring and implementing an alternative approach to play
the media announcements in MRFP. The main idea behind this approach is to store
all the media announcement files externally in a separate media server outside the
MRFP. When MRFP receives the command from MRFC to play the media an-
nouncement, it will get the URI pointing to the location of the announcement in
the media server to be played. MRFP uses the URI and plays the announcement to
the required IP address corresponding to the user’s terminal device. The external
announcement approach is implemented using three different protocols for transac-
tion between MRFP and the media server namely Real Time Streaming Protocol
(RTSP), Hypertext Transfer Protocol (HTTP), and File Transfer Protocol (FTP).
Playing media announcements can be more efficient if they are stored in the MRFP
itself as there would be no external media server transactions. However, this thesis
tries to use caching algorithms to make best use of the existing limited memory in
MRFP.

3

1.2 Thesis Outcome

The work shows that the announcement service in MRFP can be made more feasible
by using an external server to store all the announcement media files. A prototype
built to test the external announcement architecture shows that it is possible to
use RTSP, HTTP and FTP as possible interfaces between MRFP and the server.
The prototype is tested with audio and video announcements with emulated Wide
Area Network environment by introducing variable delays and packet loss between
MRFP and the external server. The results from the tests show that the decision
on which interface (RTSP, HTTP or FTP) to use depends on the properties (size,
format, etc.) of announcement files. Also, various caching algorithms are studied
to use the limited memory in MRFP as a cache and the GDSP caching algorithm
turns out to be most suitable for MRFP.

1.3 Outline

The document is organized as follows. Section 2 gives a detailed background on the
MRFP solution architecture and the existing media announcement approach. Sec-
tion 3 describes the new announcement approach using an external media server. It
also gives a detailed description of the different protocols used to achieve this. Sec-
tion 4 describes the importance of effective utilization of limited memory in MRFP
as cache memory and it also outlines algorithms which can be used to achieve the
same. Section 5 describes the prototype implementation to achieve the external
media announcement. Section 6 explains the measurements taken from the imple-
mented new approach. It also does an analysis and comparison of measurements
(like latency) when different protocols are used for external server transactions. Sec-
tion 7 concludes the thesis work mentioning the benefits and limitations of external
announcement approach and looks into the possible future improvements.

4

2 MRF Architecture in IMS

This chapter gives an overview on IMS explaining IMS architecture, its benefits and
the role of MRF in IMS. The goal of this chapter is also to give a detailed description
of the architecture used to play media announcements using MRFP. Essentially this
chapter intends to provide all the information required to gain better understanding
of future sections of the thesis.

2.1 Overview of IMS

This section gives an introduction to the layered architecture of IMS and also ex-
plains the functions of different core network components in IMS.

2.1.1 IMS Architecture

IMS is an internationally recognized standard, first specified by Third Generation
Partnership Project (3GPP/3GPP2) [5]. IMS standard provides a generic architec-
ture for Voice Over IP (VOIP) and multimedia services. It fills the gap between
two most successful communication paradigms, cellular and Internet technology. It
also provides real-time voice and data services over packet-switched network via SIP
infrastructure. The IMS architecture supports variety of services enabled based on
SIP. The purpose of the IMS architecture is to provide various multimedia services
that can be accessed by a user from various devices via IP network or traditional
telephony system.

IMS provides a horizontal, layered network architecture which enables common
functions to be reused by multiple applications. This also enables inter-operability
and roaming, and provides bearer control, charging and security [4]. As shown in
Figure 2 the layers in IMS architecture can be classified as follows.

• Service layer: The Service layer is essentially the application services layer
where all the services live. This layer comprises of IMS Application Servers
which host and execute services in IMS environment. IMS specific Application
Servers are also called SIP Application Servers as they use SIP as interface
protocol. Service layer also defines interfaces based on IMS standard to achieve
common functionalities like identity management, billing services, etc [7].

• Control layer: The Control layer controls the authentication, routing, and
distribution of IMS traffic between Service layer and Connectivity layer. This
layer comprises of network components for session set-up, modification and
release. The control layer hosts two most significant network elements in
IMS namely Home Subscriber Server (HSS) and Call Session Control Function
(CSCF). Control layer also provides support functions for provisioning, charg-
ing and Operations and Maintenance (O&M). Also, control layer supports the
inter-working between different kinds of networks via border gateways.

5

• Connectivity layer: The Connectivity layer is responsible for network access.
It allows different IMS devices to connect to the IMS network. This layer
comprises of IP backbone along with traditional networks like PSTN. The
responsibility of this layer includes IP provisioning and registration of devices
with the higher layers.

Figure 2: IMS architecture. [4]

2.1.2 IMS Core Network Components

IMS core network comprises of many components. Some of the key components and
their functionalities are explained below [6].

• Application Servers (AS): AS are the components which host and execute
the logic of IMS services. SIP AS processes SIP messages related to an IMS
service. AS may host variety of services like voice-mail, announcements, in-
teractive voice response, Push-to-talk over Cellular (PoC), etc. Each AS is
capable of hosting multiple services and this has significant advantages with
regard to loading of IMS core network nodes [4]. AS invokes requests to MRF

6

for media related services like playing network announcements and this feature
is discussed in detail in Section 2.2.

• Home Subscriber Server (HSS): HSS is a component in the control plane
which is a centralized repository for all the subscriber information. HSS, also
called User Profile Server Function (UPSF) is a master database which pro-
vides information to all other IMS network entities when required. HSS mainly
includes information about subscriber registration (name, address, services,
etc), subscriber preferences (call baring/forwarding settings etc), subscriber
location and service-specific data. Using these information, HSS performs
subscriber authentication and authorization [8]. HSS is similar to Home Lo-
cation Register (HLR) and Authentication Center (AuC) in GSM. In IMS
environment, AS and CSCF are the entities which interact with HSS.

• Call Session Control Function (CSCF): CSCF, also known as SIP server
is the central component in the control plane which processes SIP signaling
messages in the IMS. CSCF which uses SIP as protocol provides various net-
work services like session control services (subscription, registration, routing,
roaming, etc), central service based charging, secure authentication using HSS,
Quality of Service control, etc. CSCF plays a key role in providing indepen-
dence between different application services hosted by AS [6]. It is achieved by
defining SIP-based ISC interface with standard filters between AS and CSCF
as shown in Figure 1. CSCF signaling functions can further be split into three
SIP servers:

– Proxy-CSCF (P-CSCF): This is the first point of contact for the device
or User Equipment (UE) and it controls authentication.

– Interrogating-CSCF (I-CSCF): This is the entry point for all SIP mes-
sages.

– Serving-CSCF (S-CSCF): This SIP server manages all the session control
functions in IMS.

• Media Resource Function (MRF): MRF is the IMS component which
handles all the media related functions like media processing, playing of tones
and announcements, etc. MRF is divided into two main parts:

– Media Resource Function Controller (MRFC): MRFC is the signaling
part of MRF and it controls the MRFP. It controls the media stream
resources in MRFP as required by the AS. As shown in Figure 1 it uses
SIP messages to interpret the media service request from AS and con-
trols MRFP to perform the service using H.248/Megaco messages. IMS
specifications gives MRFC the task of generating Charging Data Records
(CDR) for billing purposes.

– Media Resource Function Processor (MRFP): MRFP is the part in the
media plane which performs the actual mixing and processing of media
streams. MRFP is able to carry out services like playing announcements,

7

converting text-to-speech, mixing audio for conference calls, voice pro-
cessing, etc [6]. MRFP performs various tasks like controlling bearer at
Mb reference point (Figure 1), providing resources to be controlled by
MRFC, mixing media streams, handling media stream processing, etc.

References [9] and [10] give a detailed sequence diagram for an IMS conference
call explaining various functions of MRFC and MRFP respectively.

• Media Gateway Control Function (MGCF): MGCF is the component
which integrates IMS with PSTNs and traditional telephony services. It
communicates with CSCF (using SIP) and controls the IMS Media Gateway
(MGW) as shown in Figure 2. MGCF does the mapping from non-SIP pack-
etized voice to SIP UA and vice versa.

• Media Gateway (MGW): MGW is controlled by MGCF by H.248/Megaco
interface. MGW does the conversion between SS7/TDM calls from legacy
networks and SIP/RTP traffic in IMS. MGW supports media conversions
(transcoding) and functionalities like echo cancellation etc. MGW bridges
the gap between TDM and VoIP domains.

2.2 Announcement Service in IMS

Announcements are static or real-time media files delivered/played to the user. Play-
ing announcements is one of the basic network media services in IMS. This section
describes the protocols and the messages involved in achieving this service in an
IMS environment. Playing announcement involves using server protocols such as
SIP, often with markup languages like VoiceXML (VXML) [11] and Media Server
Control Markup Language (MSCML).

Consider a scenario of playing announcement after a SIP call has been setup. The
exchange of messages between AS and MRF is depicted in Figure 3. To start with,
AS sends an INVITE SIP method to MRF requesting the announcement service.
The MRF then negotiates Session Description Protocol (SDP) with AS and responds
with 200 OK. After MRF receives ACK message from AS, it goes ahead to play the
announcement to the requested device. Finally, after playing the announcement
MRF issues BYE command to AS and AS acknowledges MRF with 200 OK. The
detailed description of offer/answer model of SDP can be found in [13].

MRF gets the announcement service request from AS in the form of SIP URI.
The URI defines various parameters like format, location of the announcement me-
dia file, etc [12]. The user part of the request URI describes if the request is for
the announcement service. This is indicated by ”annc” in the URI. Also, for an
announcement service URI, ”play” is a mandatory parameter which specifies the
resource to be played. If the request URI has some parameters unsupported by
MRF, MRF responds with an appropriate response error code. Examples for an-
nouncement request URIs are shown below [1]:

8

Figure 3: A scenario of invoking announcement service.

sip:annc@ms2.example.net; play=http://audio.example.net/allcircuitsbusy.

g711

sip:annc@ms2.example.net; play=file://fileserver.example.net//geminii/

yourHoroscope.wav

A generic scenario in announcement service involves having AS and S-CSCF
(serving SIP proxy) in between caller and the MRF (media server). The caller
may also invoke the announcement service directly without involving AS [1]. Figure
4 shows the protocol diagram showing different messages exchanged between the
caller, serving SIP proxy and media server.

Figure 4 is similar to Figure 3 but shows the proxy between the caller and the
media server. The caller first invokes INVITE method to the serving SIP proxy. The
SIP proxy determines which audio prompt to play to the caller by SDP negotiation.
SIP proxy responds back to caller with 100 TRYING. Proxy also issues INVITE
method to the media server with details of the announcement media file in the URI.
The media server responds to the INVITE method with 200 OK to proxy. SIP proxy
then issues 200 OK method back to the caller. The caller issues an ACK method as
acknowledgement which is relayed to media server by SIP proxy, thus establishing

mailto:annc@ms2.example.net
http://audio.example.net/allcircuitsbusy.g711
http://audio.example.net/allcircuitsbusy.g711
mailto:annc@ms2.example.net
file://fileserver.example.net//geminii/yourHoroscope.wav
file://fileserver.example.net//geminii/yourHoroscope.wav

9

Figure 4: Announcement service protocol diagram (with proxy). [1]

SIP call. Now the media server plays announcement to the caller. On completion
of playing the media announcement, the media server issues a BYE method to the
proxy which is relayed to the caller. On receiving BYE, the caller responds with
200 OK to the proxy and the proxy forwards the same to the media server thus
completing the announcement operation.

2.3 MRF Architecture

In practice, MRFP solution in IMS can be provided as a standalone node or as an
integral part of Media Gateway (MGW) node [14]. This section describes MRF
(media server) component as part of the IMS solution.

2.3.1 MRFP Components

Figure 5 shows the high-level architecture of the MRFP solution. The key functions
of MRFP is explained in Section 2.1.2. The MRFP is designed as an application on
top of a transport and connectivity platform [15] as shown in Figure 5. The MRFP
node contains components to handle various resources like DSPs, IP ports, etc. The
uppermost layer is the MRFP Application which has the fundamental control logic
of MRFP. MRFC communicates with MRFP Application via Mp (H.248) interface.
MRFP also has components to control the resource handling within MRFP along

10

with O&M. However, the scope of this thesis is limited to only specific MRFP
components mainly MRFP Application and DSP devices.

Figure 5: MRFP Components in a High-Level

2.3.2 MRFP Architecture for Playing Announcements

The announcement operation is carried out as explained in Section 2.2. The an-
nouncement media files (audio/video) are stored in the MRFP node. MRFC sends
the URI to MRFP Application via H.248 interface. This URI contains the details
about the location of media announcement file in the MRFP.

Figure 6 shows the different MRFP components involved when a media an-
nouncement is played. MRFP Application receives the URI from MRFC and for-
wards the request to Streamer component. The Streamer is associated with the

11

Figure 6: MRFP Architecture for Playing Announcements

MRFP memory to store the media files. The Streamer picks out the requested an-
nouncement file and sends the file to the Media Processing Device(s) to perform
media processing. The processed announcement media file is then played to an IP
address/port on the Ethernet board. The Ethernet boards lie in the edge of MRFP
and connects MRFP to the IP backbone.

One of the key challenges this thesis discusses is the lack of memory space for the
announcement files in the MRFP. All the announcement files are stored in the MRFP
memory which is very limited in size. If the memory is full, a new announcement file
can be added only by deleting existing file(s) in the memory. With the wide range
of announcement media available, the MRFP architecture is studied to support
more feasible file storage capability. Another architectural optimization possibility
is regarding reservation of additional resources for playing announcements. The
MRFP Application reserves new DSP device(s) to handle the announcement service.
Hence there are additional devices reserved each time an announcement service is
requested, which may be avoided. This thesis also discusses the MRFP solution to
avoid extra reservation of these device(s).

2.4 Summary

Chapter 2 gives an understanding to the announcement service operation in IMS.
To start with, this chapter introduced us to the functionalities of various network

12

components in IMS. Also, this chapter explained the steps involved to handle the
announcement service in IMS (Section 2.2). This chapter specifically looks into the
MRFP architecture to understand the architectural flow to achieve the announce-
ment service and points out the possible areas of improvements to it. The key thing
to take away from this chapter is the MRFP software architecture shown in Figure
6 which can be compared against the MRFP software architecture in the external
announcement approach described in Chapter 3.

13

3 External Announcement Approach

For the reasons described in Section 2.3.2, there is a need to find an alternative solu-
tion for handling announcement services in IMS. The MRFP architecture described
in Section 2.3.2 stores all the media files internally in the MRFP. In the external
announcement approach, the media files are stored externally in a media server and
are accessed by MRFP using different protocols. This chapter describes in detail
the proposed architecture for external announcement approach followed by selected
different protocols that may be chosen to achieve this proposition.

3.1 External Announcement Architecture for Playing An-
nouncements

Figure 7 is a modified version of Figure 6 which shows the proposed approach for
playing announcements externally. As shown in Figure 7, the media server located
external to the MRFP stores all the audio/video announcements of different formats
and sizes. This server is accessed by MRFP software components via an interface.
The interface may use various protocols agreed between MRFP components and
server. For instance, if the server is an RTSP server implementation, RTSP is
used as the signaling protocol to communicate between MRFP components and the
server.

The MRFP application gets the request URI from MRFC with the details about
announcement file location and file format. This request is forwarded to the Streamer
component which can have a built-in media player for streaming. The MRFP Ap-
plication/Streamer then communicates with the external media server to get the
announcement file using a suitable protocol as interface. The announcements can
be played in two different ways depending on the type of server implementation
used:

• Streaming: If the server is a streaming server, the announcement video/au-
dio file is delivered by streaming it to the required destination IP address
on the Ethernet board of MRFP. RTSP server is an example for this way
of playing announcements. Essentially MRFP Application component estab-
lishes connection with the RTSP server using RTSP signaling. The server then
streams the audio/video announcement requested to the given destination IP
address on the Ethernet board using Real-time Transport Protocol (RTP).
This method is explained in detail in Section 3.2

• Playing locally: If the interface between the MRFP and the server is a network-
ing protocol supporting client-server architecture, the requested announcement
audio/video file is first downloaded from server to the MRFP. The downloaded
file is stored locally in the MRFP memory. The file is then played locally within
the MRFP to the destination IP address using RTP. For instance, a HTTP
based web server can be used as an external server to store all the announce-
ment files. In this case, the Streamer requested file is first downloaded (HTTP

14

Figure 7: Proposed external announcement approach architecture

GET) from the server using HTTP which is later played to the destination IP
address using RTP. This method is explained in detail in Section 3.3.

3.2 External Announcement Approach Using RTSP

This section gives a detailed description on how announcements are played using
RTSP as the interface between MRFP and the external server. In this section, the
working of RTSP is delineated followed by it’s usage to achieve external announce-
ments.

3.2.1 RTSP Overview

RTSP is a widely used protocol to control the media sessions streaming between the
media client and the media server. RTSP is an application-level protocol which is
used to control delivery of multimedia streams with real-time constraints through
the network [16]. RTSP enables controlled on-demand delivery of real-time audio
and video. RTSP does not itself deliver streaming data; instead it controls choosing
the delivery channels such as UDP, multicast UDP and TCP. RTSP operation does
not depend on the underlying protocol used for data transmission. Typically RTP

15

is used as the protocol to deliver streaming data. Figure 8 shows a simplified block
diagram with RTSP/RTP between a media client and a media server.

Figure 8: RTSP mechanism

RTSP is a text-based state-oriented protocol, i.e., a RTSP server maintains
states of an RTSP session labeled by a session identifier. RTSP is also transport-
independent and hence an RTSP session may be established using unreliable or
reliable transport protocols. RTSP session involves exchanging RTSP messages be-
tween the client and the server over a negotiated transport protocol and a port
number. RTSP uses 554 as the default transport layer port number [17]. Some of
the properties of RTSP are listed below [16]:

• RTSP is a bi-directional protocol. i.e., both client and server can send request-
s/responses to each other.

• RTSP is an extendable protocol. i.e., it is easy to add new methods/parameters
to RTSP.

• The content presented to the client from the server can be a combination of
multiple media streams (for example, audio and video). Each of these media
streams can be fetched from different media servers and synchronized. Hence,
RTSP supports multi-server capability.

• RTSP is HTTP-friendly. Though HTTP is a stateless protocol, it’s existing
framework is reused for RTSP.

• RTSP client and server negotiate an appropriate connection-less or connection-
oriented transport protocol before any continuous media stream is processed.

• RTSP re-uses HTTP security mechanisms such as HTTP authentication etc.
RTSP may also use transport-layer and network-layer security technologies
like Transport Layer Security (TLS) [19].

• RTSP provides an effective server control mechanism. If a RTSP client starts
a media stream, it must also be capable of stopping the stream. On the other
hand, if a server starts a media stream, it must not prevent the client from
stopping the stream.

16

The media content which is streamed by the media server towards the client can
be in different forms:

• Pre-stored media: These are readily recorded media contents stored in the
media server. When client requests the server, media will be delivered as a
stream.

• Live broadcast media: These are the media contents directly streamed to the
user as it is produced. However, there might be delay involved due to editing
or buffering of the data.

• Live interactive media: In this case, there may be several users interacting with
each other and producing their own content. Video conferencing is an example
for such media content where streaming is not controlled by one broadcaster.

3.2.2 RTSP Operation

A media stream is identified by an RTSP URL which also indicates the location
of the continuous file in the media server. RTSP can operate in either unicast or
multicast mode. In unicast mode, the media server streams data to the client which
sent the RTSP request. Also, the server uses the port number chosen by the client to
transfer data. In multicast mode, the media server streams the content to different
RTSP clients the specified by multicast address and port. The scope of this thesis
is limited to RTSP operation in unicast mode.

As explained in Section 3.2.1 the RTSP signaling is independent of the actual
data transmission from the media server. Therefore RTSP session states are main-
tained to associate RTSP requests with a media stream. RTSP signaling is estab-
lished by the exchange of RTSP control messages between client and server. An
RTSP message mainly comprises of different RTSP methods.

Following are the basic RTSP methods used in RTSP messages:

• OPTIONS: The client issues OPTIONS command to the server stating the
protocol version it is using. The server responds with all the available methods
that it accepts.

• DESCRIBE: The client issues the DESCRIBE method to fetch the low level
description of the media object represented by the URL. The server response
contains a full media description of the media object in Session Description
Protocol (SDP) format [20]. The DESCRIBE method performs the media
initialization step in RTSP signaling.

• SETUP: The client informs the server about the transport mechanisms it
wants to use by issuing the SETUP method. The response to this method
contains the transport parameters selected by the server. For example, the
client may inform the server that it wants to use RTP over UDP on specific

17

Table 1: Overview of RTSP methods

Method Direction Requirement
OPTIONS C –>S Mandatory
DESCRIBE C –>S Recommended
SETUP C –>S Mandatory
PLAY C –>S Mandatory
PAUSE C –>S Recommended
TEARDOWN C –>S Mandatory

port numbers for streaming the media object. If the server agrees to client’s
transport selection, it acknowledges with the confirmation and details about
the selected transport mechanism.

• PLAY: The PLAY command starts the data transmission from the server to
the client over the transport mechanism negotiated in the SETUP phase. The
PLAY request contains various parameters like the RTSP session identifier,
the URL of the media(s) and an optional range. The URL may represent one
or multiple media to be streamed. The range parameter specifies the starting
position of the media to be streamed. If no range is specified, the media is
streamed from the beginning.

• PAUSE: The PAUSE request temporarily halts the media stream. This re-
quest may optionally contain range parameter specifying the time position at
which the stream should be paused. If no range is specified, the media stream
is interrupted immediately on receiving the PAUSE request.

• TEARDOWN: The TEARDOWN request terminates the RTSP session and
frees all the resources associated with the media stream. The client issues the
TEARDOWN command specifying the URL representing the media stream(s)
and the RTSP session identifier. The server then acknowledges this TEAR-
DOWN request and stops the media stream(s).

Table 1 gives a summary of the above mentioned commands. It shows if the
commands are sent from client (C) to server (S) or vice-versa. It also shows the
requirement of the commands in an RTSP server implementation [16].

Figure 9 shows an example of the message exchanges involved between the client
and the server during an RTSP session [21] [22]. For simplicity, this section deals
with only primary RTSP commands. An elaborate description of RTSP involves var-
ious other commands like ANNOUNCE, GET PARAMETER, SET PARAMETER,
REDIRECT, RECORD, etc which are out of scope of this text.

3.2.3 Dataflow Analysis for External Announcements Using RTSP

Section 3.1 describes the proposed approach to handle announcements using an
external media server. This section gives a detailed description of RTSP as a pos-

18

Figure 9: An RTSP flow example. ([23], modified)

sible interface between MRFP and the external media server. Figure 10 shows the
dataflow between different components to achieve external media announcements.

As shown in Figure 10, MRFC receives the announcement request from the UE
after SIP negotiations between different IMS components [24]. The MRFC forwards
the received announcement URI to the MRFP via the H.248 interface. MRFP
Application thus gets the details about the media file format and location of the file
in the external media server. MRFP Application has the control logic of a RTSP
client which uses the URL of the announcement file to establish RTSP session with
the external RTSP server. Section 3.2.2 briefly explains the main steps involved to
establish an RTSP session. MRFP Application negotiates RTP/UDP as transport
mechanism used by the server to stream the announcement. MRFP Application
also sends the details about the destination IP/port address of the Ethernet board
to which the server should stream the announcement media. When the MRFP

19

Figure 10: External announcements dataflow using RTSP

Application issues PLAY command to RTSP server, the server starts to stream the
announcement media over RTP/UDP transport to the given destination IP/port
address.

The RTP/UDP media played to the Ethernet board may need media-transcoding
to match the format supported by the UE. Therefore the streamed media is again
transcoded according to requirement by the Media Processing Devices (MPDs) as
shown in Figure 10. In short, transcoding is a process of converting media file
from one format to the other. The transcoded media output from the MPDs is
streamed out of the MRFP to the announcement requesting UE via RTP. The
external announcement is hence achieved using RTSP as an interface between MRFP
and the external media server. More details on the RTSP client and RTSP server
configurations/implementation as a prototype is described in Section 5.1.

On comparing the MRFP architecture in Figure 7 with that in Figure 10, it
can be noticed that in the latter the Streamer software component is non-existent.
This is because the Streamer component can have an in-built media player which is
used to play the media files locally. But when RTSP is used, the media is directly
streamed via RTP/UDP from media server to the Ethernet board. Additionally,
the MRFP memory may not be used to store the announcement files as they are

20

directly streamed to the destination instead of being downloaded. Hence Streamer
is not a required component in MRFP node in RTSP based approach.

Therefore, RTSP based approach solves a critical challenge of storing the me-
dia announcement files internally in MRFP by storing them in an external RTSP
server. Also, since media is directly streamed to Ethernet boards, this approach
avoids reserving additional DSPs for playing announcements and gets rid of Streamer
component in MRFP. Hence, RTSP based approach addresses both the challenges
mentioned in the problem statement of this thesis work in Section 1.1. Section 6.3
gives an analysis of the results collected by configuring/implementing a prototype
of this approach.

3.3 External Announcement Approach Using HTTP

The goal of this section is to discuss a possible approach with Hypertext Transfer
Protocol (HTTP) as an interface between MRFP and the external media server.
This section describes the basic features of HTTP followed the by description on
how HTTP is incorporated as an interface to achieve external media announcements.

3.3.1 HTTP Overview

HTTP is the widely used protocol in the Internet today. HTTP is a text-based
application-level networking protocol for distributed, interactive multimedia infor-
mation systems [25] [27]. HTTP is a ”request-response” protocol and it is based on
client-server architecture. It essentially involves a client which sends requests and a
web server which responds to these requests. The client and the server follow the
HTTP message structures for request and response respectively. HTTP identifies
and locates the resources in the server using URIs. The URIs are included as part
of the HTTP requests sent from clients to the servers.

Unlike RTSP, HTTP is a stateless protocol. Each transaction between the client
and the server is independent of the previous one. During an HTTP session, the
client first establishes a TCP connection to a specific port on the server (typically
port 80 [17]). The server then waits on that port for client’s request messages. When
the server gets the client’s message request, it sends back a response to it and closes
the TCP connection. Both HTTP request and response follow a similar message
structure. A HTTP generic message structure is shown below:

<initial-line>

<message-headers>

<empty-line>

[<message-body>]

[<message-trailers>]

Listing 1: HTTP message structure

21

Table 2: HTTP response categories

Status codes Response category
1xx Informational message only
2xx Success of some sort
3xx Client redirection to another URL
4xx An error at the client end
5xx An error at the Server end

In the message structure shown in Listing 1, <message-body> and <message-trailers>

are optional parameters. The <initial-line> conveys the purpose of the message.
<initial-line> is different for request and response messages. In a HTTP request
message, <initial-line> has three parts: the method name, the URI specifying
the location of the resource and the version of HTTP being used. An example for
an HTTP request <initial-line> is shown below:

GET /path/to/file/mp3 test.mp3 HTTP/1.1

In the above example, GET is the method name followed by URI specifying path to
the resource mp3 test.mp3. The HTTP version used for the transaction is HTTP/1.1.
Figure 11 shows the interaction between a HTTP client and an HTTP server during
GET method.

Figure 11: An HTTP flow example. ([18], modified)

In a HTTP response message, <initial-line> has three parts as well: the
HTTP version, the response status code and the textual phrase describing the sta-
tus code. An example for a response message <initial-line> is shown below in

22

which HTTP/1.1 is the HTTP version, 200 is the status code and OK is the textual
description of the response code indicating that the transaction was successful.

HTTP/1.1 200 OK

The HTTP status code is a three digit number and the first digit represents the
category of the server response. Table 2 outlines different response categories based
on status codes.

In the HTTP message structure shown in Listing 1, <message-headers> are the
name-value pairs which provide data about HTTP request or response. In a HTTP
response message, <message-headers> provides information about the object sent
in <message-body>. Both <message-headers> and <initial-line> parameters
must end with Carriage Return (<CR>) followed by Line Feed (<LF>). An example
for a HTTP request message header is shown below. It shows a name-value pair with
the name User-Agent whose value indicates the program and system information
making the HTTP request.

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.18)

Gecko/20110628 Ubuntu/10.04 (lucid) Firefox/3.6.18\r\n

HTTP uses various methods in <initial-line> to indicate the action to be
performed on the resource identified by the URI. Some of the key methods are
described below [27]:

• GET: The HTTP GET method retrieves the resource indicated by the re-
quest URI. There are different variants of HTTP iGET like "partial GET"

and "conditional GET". In "partial GET", only a part of the resource is
retrieved as defined by the range header field in HTTP request message. In
"conditional GET", the resource is retrieved based on some conditions like
If-Modified-Since, If-Unmodified-Since, etc. defined in the header field
of HTTP request message. A sample GET request is shown in Listing 2

GET /example.html HTTP/1.1

Host: 192.168.1.228

Listing 2: HTTP GET method

• HEAD: This method is very similar to GET method except that the server
response to HEAD request contains no message-body. HEAD method retrieves
only the meta-information in the HTTP response headers.

• POST: The HTTP POST method is used for requesting the server to accept
the data included in the <message-body> of the request. The server allocates a
URI for this data and returns the URI back to the client. The POST method is
most commonly used to submit HTML form data. Listing 3 shows an example
of HTTP POST method.

23

POST /example.html HTTP/1.1

Host: 192.168.1.228

Connection: Keep-alive

Content-length: 311

Content-Type: text/html

data=<data_sent_to_server>

Listing 3: HTTP POST method

• OPTIONS: The OPTIONS method is used to request the server for the HTTP
methods it supports for the specified URI. This is similar to the OPTIONS

method in RTSP described in Section 3.2.2

• DELETE: The DELETE method requests the server to delete the resource
specified by the request URI.

HTTP includes various other request methods like PUT, TRACE, CONNECT, PATCH,
etc [26] which are out of scope of this text.

3.3.2 Dataflow Analysis for External Announcements Using HTTP

The aim of this section is to study HTTP as a possible interface between MRFP
and the external media server as described in Section 3.1. Figure 12 shows the
dataflow between various components to achieve media announcements using a ex-
ternal HTTP server.

As shown in Figure 12, UE initiates the announcement request to IMS. This re-
quest reaches MRFC component after several SIP negotiations between various IMS
components [24]. MRFC thus receives the details about the media announcement
requested by the user. The MRFC then sends the announcement request to MRFP
via the H.248/Megaco interface. The MRFP Application gets the announcement
URL and forwards the same to the Streamer component. The Streamer component
has the control logic of a HTTP client. The HTTP client sends a HTTP GET re-
quest to the external HTTP media server using the announcement URL. The server
listens to client’s request on port number 80. The server responds to the HTTP GET

by transmitting the media file indicated by the URL. The HTTP GET operation is
explained in more detail in Section 3.3.1. The GET request and response for a µ-law
encoded .wav audio file compressed at a bitrate of 88.2 kbps is shown below:

HTTP GET Request

GET http://192.168.1.228/wav_88_2kbps_ulaw.wav HTTP/1.1\r\n

Host: 192.168.1.228\r\n

Accept-Encoding: identity\r\n

\r\n

24

Figure 12: External announcements dataflow using HTTP

HTTP GET Response

HTTP/1.1 200 OK\r\n

Date: Tue, 08 Nov 2011 08:48:31 GMT\r\n

Server: Apache/2.0.64 (Unix)\r\n

Last-Modified: Tue, 25 Oct 2011 12:13:03 GMT\r\n

ETag: "c80274-25306-760e51c0"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 152326\r\n

Content-Type: audio/x-wav\r\n

\r\n

As shown above, the Streamer component retrieves the wav 88 2kbps ulaw.wav

file from the media server. The retrieved file is stored locally in the MRFP memory
as shown in Figure 12. The Streamer is responsible to play the media file in the
database to the destination IP/port address on the Ethernet board as indicated by
the announcement request. The Streamer component has a in-built media player
which plays the media locally using RTP. The media played by the media player

25

is transcoded by the MPDs according the user’s media format requirements. The
transcoded media is then played on the destination IP/port which is streamed out
of MRFP to the UE via RTP. The external media announcement is thus achieved
by using HTTP as an interface between MRFP and external media server. Section
5.1 gives more details on the implementation/configuration of the client and server
used in the prototype. A detailed analysis of the measurements taken by playing
different media announcements can be found in Section 6.

3.3.3 Caching Mechanism in MRFP

The MRFP architecture shown in Figure 12 slightly differs from the MRFP archi-
tecture for RTSP approach shown in Figure 10. The Streamer is a key component
in HTTP based approach. Also, the announcements files played are the ones which
are stored in the existing MRFP memory. Since the existing MRFP memory is
very limited, it is critical to use this memory as cache to store the announcement
files based on appropriate caching algorithm. The caching algorithm takes into ac-
count various factors like the announcement file size, access frequency, etc. When
an announcement is requested, if the announcement file already exists in cache, the
Streamer does not send the HTTP GET request to the external server to download
the file. Instead, it directly plays the already existing file to the destination IP/port.
Therefore, HTTP based approach has an advantage that the MRFP does not con-
tact the external server unless the requested announcement file is not found. This
is unlike RTSP based approach where every announcement request involves RTP
streaming from the external server to the destination IP/port as described in Sec-
tion 3.2.3 [28]. Section 4.3 makes a detailed study on different caching algorithms
which can be used in MRFP.

3.4 External Announcement Approach Using FTP

The third possible approach is to use File Transfer Protocol (FTP) as an interface
between MRFP and the external media server. This section gives an overview on
FTP, a brief description of key FTP commands used and explains how FTP is
incorporated as an interface to study external announcements.

3.4.1 FTP Overview

FTP is a networking protocol which follows the client-server model to transfer files
from one host to the other. FTP uses TCP as the transfer protocol for an efficient,
secure and reliable data transfer [29] [30]. FTP uses two TCP connections to perform
the operation:

• A control connection on which the client sends FTP request messages and the
server replies with FTP response messages.

• A data connection to perform actual data (file) transfer.

26

The data connection may be intermittent but the control connection persists for
the entire FTP session. Typically, FTP control connection uses TCP port number
21. The data connection is established and handled by the Data Transfer Process
(DTP) in the client and the server. The data connection may be operated in two
modes:

• Active mode: In active mode, the server-DTP initiates the data connection.
On the control channel, the client would send the server the IP/port address
which it can use to establish the data connection. The server-DTP uses this ad-
dress to establish the data connection from it’s own port number 20. The client
ports used in data connections are typically ephemeral ports (port numbers
greater than 1023). The steps involved to establish a active data connection
is shown in Figure 13. In Figure 13, the PORT command is used to specify the
client’s ephemeral port number to which the server should connect.

Figure 13: FTP Active data connection. ([32], modified)

• Passive mode: In passive mode, the client-DTP initiates the data connection.
On the control channel, the server sends it’s IP address and ephemeral port
number for data connection. The client-DTP then initiates the data connec-
tion from it’s own ephemeral port number to the IP/port address sent from
the server. An example of a passive data connection is shown in Figure 14.
In Figure 14, the PASV command is used to indicate the server to use passive

27

mode. The server replies to PASV command with it’s ephemeral port number
which the client-DTP can use to initiate the data connection [31].

Figure 14: FTP Passive data connection. ([32], modified)

FTP provides a basic authentication mechanism by using the login scheme.
When a client wants to access the FTP server, it sends it’s username and password

using FTP commands. The combination of username/password is verified against
server’s database to verify if the client has access to the server. There are many
security extensions for FTP to provide better authentication, authorization and en-
cryption [33]. On the other hand FTP can be used without any authentication at
all by using a general purpose account called ”anonymous FTP” [29]. Anonymous
FTP is used when the server stores files which can be accessed publicly. Such servers
create a special account called anonymous with limited access rights. The only op-
erations that can be performed by anonymous account is to login, list and retrieve
the contents stored in the server. The anonymous users are only allowed to retrieve
files but they cannot transfer the files to the server.

3.4.2 FTP Requests and Responses

The FTP client can send various commands to the FTP server over the control
channel. The server interprets the command, takes appropriate action and responds

28

back with the status code and any other appropriate information. FTP supports
various commands performing wide range of operations like:

• Access control commands: These commands use the user login and authen-
tication information to handle the access control of resources. USER, PASS, CWD,
etc. are some of the examples in this category.

• Transfer parameter commands: These commands specify how a data
transfer should take place. The transfer parameters have default values and
these commands are used only if they need to be changed. Typical examples
for commands in this category are TYPE, PASV, etc.

• FTP service commands: These set of commands are used to perform the
actual file operations. These commands typically take file pathname as the
argument. RETR, DELE, STOR, etc. are commonly used FTP service commands.

Table 3 gives a brief description about the commonly used FTP commands.

Table 3: FTP commands

Command Description
USER Character string to authenticate the username
PASS Character string specifying user’s authentication password
CWD Change Working Directory to the specified path
CDUP Change to parent directory
QUIT Terminates FTP session
PORT Allows the client to specify the port number which the server should

use for data connection (Figure 13)
PASV Enables the passive mode FTP data connection (Figure 14)
TYPE Specifies the format in which data is transferred (binary/ascii)
RETR Retrieve the specified file from the server
STOR Store the sent file in the server
REST Restart file transfer from the where it had stopped
DELE Delete the specified file from the server
LIST Lists all the files and directories in the current directory
HELP Outputs all the commands that the server can understand

All FTP responses for the client’s requests are sent over the control channel. The
FTP responses are identified by a 3-digit reply code along with some text explaining
the response. Each digit of the reply code has a special significance. For example,
the first digit indicates whether the response is a success, a failure or incomplete.
Table 4 outlines different response categories based on first digit of the reply code.

3.4.3 Dataflow Analysis for External Announcements Using FTP

This section aims to study FTP as a possible interface between MRFP and the
external media server to achieve external announcements. The dataflow and the

29

Table 4: FTP response categories

Status codes Response category
1xx Positive Preliminary reply - The request has been initiated success-

fully
2xx Positive Completion reply - The request has been executed success-

fully
3xx Positive Intermediate reply - The request has been accepted but

the server is waiting for further action from the user
4xx Transient Negative Completion reply - The request was not ac-

cepted due to a transient error
5xx Permanent Negative Completion reply - The request was not ac-

cepted due to a permanent error

MRFP components involved to achieve such announcement are shown in Figure 15.
It can be noted that the architecture in Figure 15 follows the same flow as in the
HTTP case (Figure 12) but with FTP used to fetch the announcement media file
from the server.

As shown in Figure 15, the UE sends the media announcement request to the
IMS which reaches the MRFC component. The MRFC component now has the
details about the location and format of the media requested. MRFC forwards the
request to the MRFP Application component in MRFP via H.248 interface. The
MRFP Application then forwards the required media information to the Streamer
component. The Streamer is the key component which stores the media announce-
ments in the MRFP memory. The Streamer has a FTP client built into it which
sends FTP requests to the external server to get the requested announcement file.
The client uses the anonymous login to access the server. The client uses the passive
mode data connection to transfer the announcement file. The client then sends the
RETR request to fetch the file from the server and stores it in the MRFP memory.
The media file being played is first transcoded by the MPDs to meet the media
format requirements supported by the UE. Finally, the transcoded media is played
to the destination IP/port on the Ethernet board using RTP as shown in the Figure
15.

The FTP based approach has the same drawbacks as HTTP. If the Streamer
does not find the media file locally, it is first downloaded from the external server to
the MRFP and it is then locally streamed to the known destination IP/port address.
Hence, the existing limited memory in MRFP has to be used as a cache to store
the announcement files. An advantage from FTP/HTTP based approaches is that
the MRFP does not go to the external server at all if the requested announcement
file exists locally. An appropriate caching algorithm should be used to make the
best use of the limited MRFP memory. A detailed explanation on the possible
caching algorithms that can be used is given in Section 4.3. Section 5.1 gives the
implementation/configuration details about the clients and servers used to realize
this approach. Also, Section 6 gives an analysis of the measurements taken in an

30

Figure 15: External announcements dataflow using FTP

emulated networking environment involving packet loss, latency, etc.

3.5 Summary

Chapter 3 gives a detailed description on three of the protocols that may be used as
an interface between MRFP and the external media server namely RTSP, HTTP and
FTP. The MRFP architecture to realize the external media announcement approach
using RTSP, HTTP and FTP are shown in Figures 10, 12 and 15 respectively.
Therefore this is a key chapter which gives an understanding that it is possible to
study external announcements in different ways. Based on the study made in this
chapter, a prototype is built which is described in Chapter 5.

31

4 Effective Utilization of Memory in MRFP

This chapter discusses an important challenge of how to utilize the limited memory
in MRFP effectively. Section 3.3.3 briefly discussed about this by explaining the
importance of incorporating cache memory mechanism in MRFP. In this section,
the need for implementing such algorithms is explained in Section 4.1 followed by
Section 4.2 which points out various parameters that needs to be considered in
caching. Finally, Section 4.3 proposes the caching algorithms which can be best
incorporated in the MRFP.

4.1 MRFP Memory as Cache

One of the prominent research questions in this thesis is to study the possible ways
to effectively utilize the limited amount of memory available in MRFP. Using an
external server to store the announcement media files does not solve the issue in all
cases. When HTTP/FTP is used as an interface to download the announcement
file, the downloaded file is first stored in the MRFP memory (by the Streamer
component) and then it is played by the media player in the Streamer component to
the known destination IP/port address. Therefore, even though there is an external
memory capable of storing large number of announcement files, the MRFP dataflow
makes it necessary to store the files internally before playing. This brings up the
question of how to use this limited MRFP memory in an efficient manner which this
section tries to answer. However, if RTSP is used as an interface, there is no such
problem to store the announcements in MRFP memory as the announcements are
directly streamed to the destination IP/port address. Hence, it is important to note
that in this thesis study, the caching mechanism is required only when the interface
between MRFP and the external media server is HTTP or FTP.

Figure 16 shows the scenario when the appropriate caching mechanism is re-
quired. Since the MRFP memory is used as a cache, if the requested announcement
file is readily available in the MRFP, the Streamer component does not download
the file from the external server. It directly plays the announcement without in-
volving any HTTP/FTP signaling. There are various parameters that can be used
to decide which files to store (or discard) in the cache. Section 4.2 explains such
parameters.

4.2 Key Parameters in File Caching

The MRFP supports various audio and video announcement media formats. Also,
MRFP handles files with various audio or video compression techniques and of
different sizes. The caching issue tackled in this thesis can be directly related to the
proxy caching techniques used for caching web objects [34]. The primary intention
is to make sure that the announcement media requested by the UE is played at the
destination IP/port address with the least latency. Additionally, MRFP caching
also reduces the load on busy external servers.

32

Figure 16: External announcement dataflow requiring caching mechanism

The MRFP caching algorithms are essentially replacement algorithms which are
used to decide which file to replace from the cache when it is full. The caching
algorithms can be implemented in a relatively transparent manner without any
major configuration changes at the client or server end. The MRFP handles files
only as a whole and hence fragmenting the file (partial caching [36]) is not supported.
The various factors that determine the selection of a MRFP caching algorithm are
explained below [35]:

• Announcement file size: The size of the announcement media files may vary
from a few kilo bytes (audio) to several megabytes (video). Hence, the MRFP
cache can store many small-sized or only a few large-sized announcement files.
Depending on the available limited cache memory, the file size is a key pa-
rameter to be considered to decide if the file should be stored in the cache
[38].

• Retrieval cost: When the requested announcement file is not found in the
MRFP cache, there is a cost due to the connection time and the network
latency involved to fetch the file from the server. This is the retrieval cost
and it is an important parameter utilized to select the caching algorithm. For

33

instance, if the retrieval cost for an announcement file is very high, it is most
likely not removed from the cache [40].

• Bandwidth: Another performance parameter measured is the network band-
width overhead while retrieving an announcement file from the server [41]. The
network bandwidth overhead can be reduced if the selected caching mechanism
minimizes the number of retrievals from the server. In other words, the net-
work bandwidth is saved every time the requested announcement file is found
in the MRFP cache.

• Popularity: This is a significant parameter which indicates the access fre-
quency of the announcement files [39]. The access frequency of each announce-
ment file is calculated over a pre-determined period of time. The access fre-
quency is used to decide the announcement file that should be removed when
the cache is full. Therefore, if an announcement has high popularity, it is likely
that the caching algorithm would retain it in the cache. However, as Section
4.3 explains, there are factors other than the popularity which can contribute
to make that decision. The implementation part of this thesis involves the cal-
culation of the popularity of the announcement files. More on this is described
in Section 5.3.

• Last requested time: Each announcement file is associated with the last re-
quested time parameter. It indicates the time when an announcement file was
last requested by the UE. Like popularity, the last requested time parameter
can also be used to decide the file that should be retained when the cache is
full.

Cache hit and cache miss

When the UE requests for an announcement, if the announcement file is already
available in the MRFP cache, it is referred as a cache hit. The ratio of the number of
cache hits to the total number of requests is defined as cache hit ratio. On the other
hand, if the requested announcement file is not found in the cache, it is referred as a
cache miss. The ratio of the number of cache misses to the total number of requests
is defined as cache miss ratio. Therefore, higher the cache hit ratio, better is the
performance of the selected caching algorithm [42].

4.3 Caching Algorithms for MRFP

Based on the parameters described in Section 4.2, there are several algorithms which
can be used to implement caching in MRFP. This section carries out a theoretical
study of some of the algorithms. The caching algorithms discussed in this section
are all replacement algorithms which decide on the announcement file which should
be evicted when the cache is full [43].

Least-Recently Used (LRU): LRU algorithm uses the last requested time
parameter explained in Section 4.2. LRU evicts the least recently used file from the

34

cache. It is based on the hypothesis that the most recently requested announcements
are more likely to be requested again. LRU has many variants. An optimized LRU
algorithm is provided in [44].

Least-Frequently Used (LFU): LFU algorithm makes use of the popularity
parameter mentioned in Section 4.2. During the eviction process, the replacement
algorithm removes the announcement file which has been requested least number of
times (least popular). LFU algorithm can also be used in combination with LRU
[45].

SIZE: This is another basic algorithm used to decide on files to be stored in the
cache based on file size alone. This policy removes the largest file first. But if the
files are of the same size, LRU policy is applied [46].

History LRU (HLRU): HLRU is an extended version of LRU algorithm.
HLRU examines the history of the number of requests made for each of the an-
nouncement files. If r1, r2, ..., rn represent the announcement requests made at the
times t1, t2, ..., tn, the history function can be mathematically represented as [47]:

hist(x, h) =

{
ti if there are exactly h− 1 references between ti and tn
0 Otherwise

(1)

The function hist(x, h) gives the time of the past h-th request made to a specific
cached announcement file x. Therefore when the cache is full, the HLRU algorithm
replaces the announcement file with the highest hist value. If there are many cached
announcements with the hist value 0, the traditional LRU algorithm is followed to
decide the file to be evicted. Figure 17 shows the graph of the cache-hit ratio with
respect to the cache-size from the experimentation carried out in [47]. Figure 17
shows the curves obtained by using 2, 4 and 6 as the histories in HLRU and also
curve from the traditional LRU. The cache-hit ratio increases with the increase in
the histories taken to calculate the hist values. Therefore, HLRU(6) gives better
cache-hit ratio compared to the other cases.

Segmented LRU (SLRU): SLRU algorithm uses both the frequency and re-
cency parameters when making the replacement decision. In SLRU, the available
cache memory is divided into two segments namely protected and unprotected seg-
ments [48]. The protected segment is reserved for popular announcement files. When
an announcement is requested for the first time, it is fetched and stored in the un-
protected segment. When a cache-hit occurs, this file is moved from unprotected
segment to the protected segment. When either of protected or unprotected seg-
ment is full, LRU policy is used for the eviction process. Therefore, both segments
manage the files using LRU algorithm and the files are moved between the segments
using LFU policy. By this mechanism, the more popular files are retained the the
protected segment of the cache for a longer duration. The key parameter that needs
to be specified in this policy is the percentage of cache memory which should be
used as protected segment.

Figure 18 shows the variations of the cache-hit ratio with respect to size of the

35

Figure 17: Comparison of cache-hit ratio between HLRU and LRU [47]

protected segment. The curves in Figure 18 are obtained from the simulation carried
out in [48]. The only parameter that is varied is the percentage of cache memory
which is used as the protected segment. In Figure 18, SLRU − 10, SLRU − 60 and
SLRU − 90 represents that the percentage of cache memory allocated as protected
segment are 10%, 60% and 90% respectively. If the protected segment is too small
(10%), the weight given to recency is significantly more than to frequency. Hence,
SLRU behaves like LRU with small protected segment sizes. On the other hand if
the protected segment is too large (90%), significant weight is given to frequency and
SLRU behaves like LFU. Therefore, an appropriate balance should be met between
sizes of protected and unprotected segments. The simulation shows that the best
result is achieved for SLRU − 60 [48].

There are various cache replacement algorithms based on frequency/recency of
announcement files’ access [49]. Since external announcement involves an external
media server placed in the network, parameters like bandwidth and file retrieval cost
are key parameters to be considered. The replacement algorithms described so far
(LRU,LFU,HLRU and SLRU) are based on the parameters like size, popularity
(frequency) and recency (last requested time). These algorithms do not consider
bandwidth and file retrieval cost explained in Section 4.3. There are various function-
based strategies which calculate a value for each file (cache object) based on different
parameters. The eviction process is done based on the these values associated with
each file (usually the file with the lowest value is evicted) [49]. In this section three

36

Figure 18: Cache-hit ratio for SLRU policy [48]

such function-based strategies are explained namely Hybrid algorithm (HYB) [50],
Lowest Relative Value (LRV) based algorithm [51] and Greedy-Dual Size (GD-S)
based policies [52].

Hybrid algorithm (HYB): HYB is a replacement algorithm which uses several
factors like file size, popularity (number of past references), available bandwidth to
the server and server connection time to calculate value for each file in the cache
[49] [50]. The function used to calculate the value of a file is defined as:

f(i) =

(
cs + Wb

bs

)
si

fWn
i (2)

In Equation (2), f(i) gives the value for a file i of size si (in bytes), access
frequency fi, available bandwidth to the server bs and server connection time cs. Wb

and Wn are weighted constants which set the importance of bs and fi respectively
[50]. This can be verified from the equation as well. As the value of Wb tends
towards zero, the importance of the bandwidth to the server is decreased. Similarly
as the weight Wn approaches zero, the parameters like si become more important
than access frequency fi. The value of f(i) will be large if the file resides in a server
which requires large connection time cs and a low bandwidth link bs, if the file size
si is small, and if the file is frequently accessed in the past fi. Therefore, it is likely
that the file with a large value of f(i) is retained in the cache.

Lowest Relative Value (LRV) based algorithm: This policy uses a function

37

to determine the probability that a file in the cache may be accessed again in the
future. The value given by the function is the relative value and the file with the
Lowest Relative Value (LRV) is removed from the cache when required. The function
to find the value (probability Pr) is defined by [49]:

Pr(fi, Ti, si) =

{
P (1, si)(1−D(Ti)) if fi = 1
P (fi)(1−D(Ti)) Otherwise

(3)

In the above Equation (3), fi is the variable which gives the number of times
a file i has been previously requested, si is the size of the file, Ti is the time when
the file was last accessed and D(t) is the time distribution function given by the
previous file access times. The probability that a file in the cache will be requested
again depends mainly on the time distribution function D(t) of previous file requests.
From Equation (3), if the file has been requested only once (fi = 1), the probability
that the file will be requested again depends on the size of the file. Figure 19 gives
an example curve of a distribution D(t) plotted against logarithmic time scale. Due
to the logarithmic time scale, the inter-access time distribution can be shown over a
long duration (over 100 days) of time. The study made in [51] uses extensive trace
information ([53]) to obtain D(t) and to implement the LRV algorithm.

Figure 19: Inter-access time distribution function, D(t) [51]

Figure 20 compares the performance of LRV with other algorithms like LFU,
FIFO (Fist In, First Out), LRU, SIZE and RAND (removal algorithm which removes
a randomly selected file). Figure 20 shows cache-hit ratios (HR) for different cache
sizes. The curves show that the LRV policy gives better performance than rest of the
algorithms except SIZE. However, SIZE algorithm shows a poor performance with
smaller cache sizes. Therefore, effectively LRV consistently gives better performance
when compared with other algorithms [51].

Greedy Dual-Size (GD-S) based approach: Similar to HYB and LRV poli-
cies, Greedy Dual-Size (GD-S) algorithm associates each file with a characteristic

38

Figure 20: LRV performance (cache-hit ratio, HR) comparison with other algo-
rithms [51]

value H. In the original GD-S algorithm, H is calculated as [52]:

Hi =
ci
si

+ L (4)

Equation (4) is used to calculate the value Hi for a file i. In the equation, L is
called the inflation factor and it is calculated whenever there is a cache miss. The
GD-S algorithm can be explained in different steps as follows [52]:

• To start with, the inflation factor L is initialized to zero. L← 0

• If a file access gives a cache-hit, it means that the requested file i is already
existing in the memory. In this case, Hi is calculated as:

Hi ← L+
ci
si

(5)

• If the file access gives a cache-miss and if there is not enough space to store
the file in the cache, GD-S uses Hi values to decide the file which should be
removed from the memory. First, a new value of L is calculated as:

L← mini∈MHi (6)

From Equation (6), L is assigned to the least value of H among all the files
stored in the cache M . The file corresponding to the least H value (now L) is
removed from the cache.

39

• The removed file from the cache is now replaced by the newly downloaded file.
The H value for the new file is calculated as:

Hi ← L+
ci
si

(7)

The L value used in Equation (7) is the one which is calculated from Equation
(6).

The implementation and analysis made in [52] show that GD-S outperforms (in
cache-hit ratio) other caching policies like LRU, SIZE and LRV. There are many
algorithms proposed as extensions of GD-S. Some of the algorithms based on GD-S
algorithms are Greedy Dual-Size Frequency (GDSF) [54], Greedy Dual-Size Popu-
larity (GDSP) [40], Greedy Dual∗ [55], etc. A comparison among GD-S variants is
made in [40] and it shows that GDSP outperforms other algorithms and hence this
thesis work makes a detailed study on GDSP.

Greedy Dual-Size Popularity (GDSP): GDSP is a modified version of GD-
S algorithm. The main idea behind GDSP is to blend the basic GD-S policy with
the accurate popularity information of all the files in the cache [40]. One of the
drawbacks of GD-S policy is that it does not take the access frequency of files into
account. GDSP makes an improvement in this area by using access frequency to
calculate a utility value for each file. The utility for a file i is given by:

u(i) = f(i)× ci
si

(8)

Equation (8) gives the utility value u(i) of i with retrieval cost ci, size si and with
access frequency f(i). Therefore, u(i) represents the cost per byte for all accesses of
i in a known period of time. GDSP uses u(i) along with the inflation factor L and
characteristic value H to modify GD-S in an effective way as follows [40]:

• The inflation factor L is initialized to zero. L← 0

• If there is a cache-hit on file request, H is calculated as:

Hi ← L+ f(i)× ci
si

(9)

i.e,Hi ← L+ u(i)

• If there is a cache-miss and if there is no space in the cache for the new file,
GDSP uses the same method as GD-S to decide the file to be removed from
the cache.

L← mini∈MHi (10)

40

The file corresponding to the least value of H is removed from the cache to
make room for the new one. It can be noted that Equation (10) and Equation
(6) are exactly the same. The difference lies in the calculation of Hi.

• The H value for the newly replaced file is calculated as below:

Hi ← L+ f(i)× ci
si

(11)

The L value used in Equation (11) is obtained from Equation (10).

The implementation and performance evaluation of GDSP is described in [40].
The simulations carried out in [40] use extensive trace information from DEC ([53])
and NLANR ([56]). Cache-hit ratio (HR) is taken as a performance metric to
compare GDSP with other algorithms like LRU, LFU and GD-S. Figure 21 shows the
cache-hit ratios (HR) of these algorithms as a function of cache-sizes (in logarithmic
scale) for both DEC and NLANR traces. Figure 21 shows the version of GD-S and
GDSP algorithms with the assumption that the cost ci of transferring each file is
constant. Hence these are represented as GDS(1) and GDSP (1) respectively.

Figure 21: Performance of GDSP under constant cost [40]

With smaller cache sizes, GDSP consistently outperforms GD-S, LFU and LRU
policies. However, when the cache sizes are large, the performance of all algorithms
tends to converge. Overall, by emphasizing popularity as an important factor, GDSP
is evaluated as an effective caching algorithm which can be used in MRFP.

4.4 Summary

Chapter 4 makes a study on using the limited MRFP memory as cache when
HTTP/FTP is used as an interface between MRFP and the external media server.

41

This chapter described in detail about various parameters that affect caching along
with explaining various file replacement caching algorithms that are relevant to
MRFP [57]. Table 5 summarizes all the algorithms explained in this chapter. It can
be noted that the selection of caching algorithm to implement is dependent on the
scenario in hand. If the files are of widely varying sizes placed in a network with
high latency, GDSP is preferred since it takes all the necessary caching parameters
into consideration.

Table 5: Summary of caching algorithms

Algorithm Reference Consideration of Implementation
parameters nonuniformity complexity

(size, cost) (processing time)
LRU Last requested time - O(1)
LFU Frequency - O(log2 n)

(Popularity)
SIZE - Size O(log2 n)
HLRU rth access time, - O(log2 n)

Frequency
SLRU Last requested time - O(n)
HYB Frequency Size, latency O(log2 n)
LRV Last requested time,

Frequency
Size O(n)

GD-S Last requested time Size, latency O(log2 n)
GDSP Last requested time,

Frequency
Size, latency O(log2 n)

42

5 Prototyping the External Announcement Ap-

proach

Chapter 3 described the architecture proposed to achieve the external announce-
ments in MRFP. This chapter describes a prototype to realize this approach. The
prototype includes the use of a network emulator to emulate the properties of a
Wide Area Network (WAN) for testing the performance of different external an-
nouncement approaches. Section 5.1 outlines the design of the prototype, Section
5.2 explains about the network emulator used to emulate the properties of WAN and
Section 5.4 gives an overview of the open-source implementations used as clients and
servers in this prototype.

5.1 Prototype Design

The aim of the prototype is to realize the behavior of external announcement ap-
proach in a network-like scenario. Figure 22 shows the prototype design to achieve
external announcements in MRFP. To start with, MRFP receives the URL for the
announcement media file via H.248 protocol. This URL is used by the control logic
implemented in MRFP to dispatch the announcement request depending on the
type of external server being used. Also, as shown in Figure 22, a network emula-
tor is used between the MRFP and the external server to emulate typical network
characteristics like packet loss, latency, packet duplication, packet corruption, etc.
The announcement file from the external server is then downloaded/streamed to the
known destination IP/port address on the Ethernet board in MRFP. Finally, the
RTP stream of the announcement is verified by the audio/video player as shown in
the Figure 22.

The implementation done in this thesis is primarily in the control logic of MRFP
as explained in Section 5.3. The control logic is generic and it supports RTSP, HTTP
and FTP client programs. Additionally, the details about the requested announce-
ment files (like frequency, last requested time, etc.) are recorded which serve as input
to the implementation of a suitable caching algorithm. The audio/video player and
the servers used in the prototype are open-source implementations. A more detailed
description on these is given in Section 5.4

5.2 Network Emulator

As shown in Figure 22, the network emulation is achieved by placing a device be-
tween the MRFP and the server to alter the packet-flow and thus simulating the
WAN characteristics. The network emulator used in this thesis work is netem [58].
netem is readily enabled in the Linux kernel distributions 2.6 or higher. In our
prototype, the netem is run on a Ubuntu10.04.3LTS Linux distribution with kernel
version 2.6.32−33−generic. The machine is configured with two Network Interface
Cards (NICs) - eth2 for handling the ingress traffic (IP packets coming into the

43

Figure 22: Prototype Design

device) and eth0 for handling egress traffic (IP packets transmitted out from the
device). netem can be run in two modes:

• Bridge mode: When the netem device is configured to work in bridge mode, it
operates in layer two of the OSI (Open Systems Interconnection) model. The
two interfaces (for ingress and egress traffic) in the netem device function such
that the IP packets are forwarded from one to the other. Also, packets are
forwarded using a MAC address based forwarding table. Generally the netem

device is configured in bridge mode if the devices in the network are of the
same type. Bridge mode is also easy to configure and is preferred for on a
simple network topology. In this thesis work prototype, the netem device is
configured in bridge mode since it needs to be connected to only two machines
(MRFP and external server) of the same type.

• Router mode: This mode operates in layer three of the OSI model. In this
mode, the path to forward packets from source to the destination is obtained
from the routing table. Configuring netem in routing mode is preferred when
the network topology is more complex and the devices in the network are
heterogeneous. Additionally, routing mode allows us to make more effective
and intelligent decisions to send packets.

44

netem uses the Traffic Control (tc) tool for packet shaping and packet filtering.
Basically, tc is used to show/manipulate traffic control settings in the Linux kernel
[60]. tc is used to affect the packets enqueued in ingress/egress queue [59]. Each
of the two interfaces in the netem configured device has a queue associated with
it which processes the packets in FIFO manner. The queuing disciplines (qdisc)
make the decision on when to send which packet from the FIFO queues (i.e, how
the packets are ordered and sent). Figure 23 shows the block diagram of IP packet
handling in the Linux kernel [59].

Figure 23: IP packet handling in the Linux kernel [59]

Therefore, the packets entering the netem device from one NIC will be processed
and sent out from the other NIC. Also as shown in Figure 23, the ingress traffic is
generated by downloading/streaming the announcement file from external server to
the MRFP. The characteristics of the outbound packets are modified by using tc

tool to modify the queuing discipline (qdisc). netem can be configured to perform
four basic operations on the IP packets [59]:

• Delay: netem can be used to emulate WAN delays by delaying each packet
going out of the egress interface. Delays can be introduced in different ways.
The simplest way is by specifying a fixed amount of delay on each packet going
out of the netem device. This is achieved by the following command in the
netem device:

tc qdisc add dev eth0 root netem delay 10ms

The above command introduces a fixed delay of 10ms and it can be verified
by ping test. When a ping is done from MRFP to the server’s IP address,
the delayed packets can be noticed as below:

$ ping -c 3 192.168.1.228

PING 192.168.1.228 (192.168.1.228) 56(84) bytes of data.

64 bytes from 192.168.1.228: icmp_seq=1 ttl=64 time=10.8 ms

64 bytes from 192.168.1.228: icmp_seq=2 ttl=64 time=10.7 ms

45

64 bytes from 192.168.1.228: icmp_seq=3 ttl=64 time=10.6 ms

--- 192.168.1.228 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 10.671/10.755/10.836/0.108 ms

A more practical way of emulating delay is by introducing it in a variable
manner. This is achieved by specifying a random delay along with the fixed
delay. This method is used in the prototype in this thesis to emulate WAN.
An example command is:

tc qdisc add dev eth0 root netem delay 10ms 5ms

Basically the above command results in delaying the packets from the egress
interface with a degree of randomness of 5ms (i.e.,10ms±5ms net delay). A
ping test on the above command gives the following:

$ ping -c 5 192.168.1.228

PING 192.168.1.228 (192.168.1.228) 56(84) bytes of data.

64 bytes from 192.168.1.228: icmp_seq=1 ttl=64 time=5.87 ms

64 bytes from 192.168.1.228: icmp_seq=2 ttl=64 time=7.28 ms

64 bytes from 192.168.1.228: icmp_seq=3 ttl=64 time=13.0 ms

64 bytes from 192.168.1.228: icmp_seq=4 ttl=64 time=6.73 ms

64 bytes from 192.168.1.228: icmp_seq=5 ttl=64 time=12.9 ms

--- 192.168.1.228 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4006ms

rtt min/avg/max/mdev = 5.870/9.184/13.074/3.163 ms

• Packet loss: The netem device can drop some packets before sending it towards
MRFP, resulting in packet loss. Packet loss is generally specified in percentage
and the tc command used to achieve the same is:

tc qdisc add dev eth0 root netem loss 20%

The packet loss can be confirmed by verifying the sequence number of the
arriving packets by performing a ping test from MRFP to the external server.
The ping test results are as below:

$ ping -c 5 192.168.1.228

PING 192.168.1.228 (192.168.1.228) 56(84) bytes of data.

64 bytes from 192.168.1.228: icmp_seq=1 ttl=64 time=0.306 ms

64 bytes from 192.168.1.228: icmp_seq=2 ttl=64 time=0.797 ms

64 bytes from 192.168.1.228: icmp_seq=3 ttl=64 time=0.577 ms

64 bytes from 192.168.1.228: icmp_seq=5 ttl=64 time=0.828 ms

--- 192.168.1.228 ping statistics ---

5 packets transmitted, 4 received, 20% packet loss, time 4000ms

rtt min/avg/max/mdev = 0.306/0.627/0.828/0.209 ms

46

Clearly, the packets with the sequence number 4 (seq=4) is missing thus ver-
ifying the packet loss. In the above example, a high packet loss percentage
is given (20%) only for the purpose of ping test. In the actual prototype
settings, the packet loss percentage used are very low (0.1%, 0.5%, etc.).

• Packet duplication: netem can be configured to duplicate packets using tc

command as below:

tc qdisc add dev eth0 root netem duplicate 10%

With the above command, netem duplicates 1 in every 10 packets. The ping

test verifies the packet duplication as shown below:

$ ping -c 5 192.168.1.228

PING 192.168.1.228 (192.168.1.228) 56(84) bytes of data.

64 bytes from 192.168.1.228: icmp_seq=1 ttl=64 time=0.427 ms

64 bytes from 192.168.1.228: icmp_seq=2 ttl=64 time=0.594 ms

64 bytes from 192.168.1.228: icmp_seq=3 ttl=64 time=0.617 ms

64 bytes from 192.168.1.228: icmp_seq=4 ttl=64 time=0.537 ms

64 bytes from 192.168.1.228: icmp_seq=4 ttl=64 time=0.560 ms (DUP!)

64 bytes from 192.168.1.228: icmp_seq=5 ttl=64 time=0.591 ms

--- 192.168.1.228 ping statistics ---

5 packets transmitted, 5 received, +1 duplicates, 0% packet loss, time 4000ms

rtt min/avg/max/mdev = 0.427/0.554/0.617/0.065 ms

• Packet corruption: A packet can be corrupted by introducing single bit errors
at a random offset in the packet [58]. Such corrupted packets lead to random
noise thus emulating the environment of a WAN. The number of packets to
be corrupted can be specified as a corruption percentage in the tc command
as below:

tc qdisc add dev eth0 root netem corrupt 1%

The corrupted packets are not received. A ping test with packet corruption
gives a similar output as packet loss.

In the prototype tested in this thesis, the WAN is emulated by using a combina-
tion of variable delay and packet loss. Different combinations of delays and packet
loss are considered to test the behavior of the external announcement setup. The
analysis of the measurements taken from this setup is described in Section 6.

47

5.3 Implementation

As mentioned earlier in Section 5.1, the implementation done in this thesis is a
small part of MRFP control logic. The announcement URL obtained via the H.248
interface is alone stored in a separate file in MRFP. The implementation is done
using python programming language [61] and it performs the following operations:

• If RTSP is the chosen interface, the MRFP establishes an RTSP session with
the external server. The target announcement file is streamed directly to the
MRFP specified IP/port address. The RTP stream of the announcement is
then played by the media player opened by the MRFP.

• If HTTP/FTP is chosen as the interface, the MRFP uses the stored URL to
first check if the requested file is already existing in the MRFP memory. If
it exists then it locally streams the file via RTP to the media player. If the
file does not exist in cache, then it is fetched from the HTTP/FTP server and
stored in the memory before streaming it locally. Also, on each announcement
request, a cache parameter file is updated with parameters like size, fre-
quency and last requested time and this file can be used for implementing a
caching algorithm in MRFP. A sample cache parameter file based on the
measurements taken from the prototype is shown in Section 6.3.

5.4 Open-source Implementations

This section gives a brief description of the open-source implementations used to
realize the external announcement approach from the prototype. Open-source server
implementations are used in each of RTSP, HTTP and FTP scenario which handle
and respond to the requests made by the MRFP. Also, the MRFP control logic
uses a open-source audio/video player to play the RTP stream of the announcement
media from the MRFP as shown in Figure 22.

LIVE555 Media Server: “LIVE555 Media Server” is a open-source complete
RTSP server implementation [62]. This is used in the external server when RTSP
is the protocol chosen as an interface to achieve external announcements. The
announcement files to be streamed are stored in the same directory from which the
server is launched. LIVE555 server application runs on port 8554 by default. One
important reason to use this RTSP server is that it can stream various types of
audio/video files like .mp3, .mpg, .wav, .264, etc.

Apache HTTP server (httpd): httpd is a popular, robust HTTP server
implementation which also offers wide range of features [63]. httpd constitutes of
various Multi-Processing Modules (MPMs) which can be selected and configured as
per the requirements. When the MRFP wants to fetch the required media file, it
does a HTTP GET on the httpd external server. The server responds to GET request
by transmitting the announcement file.

Pure-ftpd: Pure-ftpd is a free, secure, efficient and standard compliant FTP
server [64]. Pure-ftpd server has several advantages:

48

• Pure-ftpd uses simple command line options for configuration thus getting rid
of complex configuration files.

• It allows monitoring and limiting bandwidth usage by each user.

• It supports Lightweight Directory Access Protocol (LDAP) [65] server authen-
tication with secure cryptographic hashes.

• Pure-ftpd allows users to have virtual FTP accounts. This enables users to
have different passwords for system and FTP accounts.

• All FTP user’s information can be stored in a centralized MySQL database.

VLC media player: VLC (originally VideoLan Client) is an open-source,
portable and powerful multimedia player which plays various formats of audio and
video [66]. MRFP streams the announcement media to the destination IP/port ad-
dress via RTP. Therefore, it is important to choose a media player which can reliably
be used for RTP streaming. VLC satisfies this requirement very well as it can be
used as a server to stream content and as a client to receive streams [67].

For external announcement approach using HTTP/FTP protocols, MRFP uses
VLC media player as both client and server. It uses VLC media player as a server to
stream the announcements locally. At the target IP/port address MRFP uses VLC
as a client to capture the RTP stream. When RTSP is used as a protocol, MRFP
uses VLC media player at the target address as a client to capture the RTP packets
streamed directly from the external server.

5.5 Summary

A prototype to realize the external announcement approach explained in Chapter 3
is described in this chapter. This chapter describes the implementation along with
the tools and softwares used to build the prototype. To sum-up, the prototype shows
that the external announcement approach can be practically deployed in the MRFP
to achieve the announcement service in IMS.

49

6 Measurements and Analysis

This chapter describes the parameters measured using the prototype shown in Figure
22. Section 6.1 states the parameter which is measured from the setup, followed by
Section 6.2 which gives an account of the media files which are used as input for the
measurements. The measurements are made under WAN environment emulated by
netem using packet loss and variable delay. Sections 6.3 and 6.4 reports the actual
measurements made and a comparative analysis on the same, respectively.

6.1 Parameter Measured

The parameter which is measured from the prototype is the latency for the an-
nouncement file to start playing from the time the announcement request was made
to MRFP. This latency is measured when RTSP, HTTP and FTP are used as inter-
faces to achieve external announcements. Also, the measurements are taken when
various types of audio and video announcements of different sizes are requested.
This measurement helps to make a behavioral analysis of the external announce-
ment technique.

6.2 Announcement Media Types

The prototype is tested with both audio and video announcement files. The type
of audio files tested are MPEG audio (.mp3) and waveform audio (.wav, µ law
encoded). The video file tested is a MPEG (.mpg) audio and video compressed
file. These formats are chosen as they are commonly used announcements formats.
However, it has also been verified that the setup works for other media formats like
MPEG-4 AVC (Advanced Video Coding, .H.264) and MPEG Transport Stream
(.ts). Sample audio/video files of various formats are available from [68] and [69].

6.3 Measurements

In this section, the behavior of the prototype is showcased. The results are collected
for three different cases (RTSP, HTTP, FTP) and their behavior is compared. To
recall Section 5.4, the prototype uses:

• live555 Media server as RTSP server implementation. The default buffer size
used in the server implementation is 50 kilobytes.

• Apache HTTP server (httpd) as for the case of HTTP.

• Pure-ftpd as the FTP server implementation.

Table 6 gives a list of files tested using the prototype. The performance of the
prototype using each of these files is evaluated in this section. For simplicity, the

50

files are hereby referred with the names in the Representation column of Table
6. Table 6 also lists the sizes of each file tested which is a key information to be
considered and is explained in Section 6.4.

Table 6: Test announcement files

Filename Format File size (in kilobytes) Representation
mp3 test.mp3 mp3 492 File1
mpg audio video.mpg MPEG-1 (mpg) 707 File2
wav 88 2kbps ulaw.wav µ law wav 152 File3
test mp3 large.mp3 mp3 5541 File4

Table 7: Latency measurements of File1

Delay (ms) Packet loss Latency (ms) Latency (ms) Latency (ms)
(X, x) (X±x) (%) FTP case HTTP case RTSP case
- - 22.1 22.2 47.6
5, 5 0.1 253 220 84.3
10, 5 1 643 612 119
10, 5 0.5 521 570 106
15, 5 0.5 675 681 149

Table 8: Latency measurements of File2

Delay (ms) Packet loss Latency (ms) Latency (ms) Latency (ms)
(X, x) (X±x) (%) FTP case HTTP case RTSP case
- - 243 238 47.6
5, 5 0.1 274 269 84.3
10, 5 1 738 755 119
10, 5 0.5 690 675 106
15, 5 0.5 978 980 149

Tables 7, 8, 9 and 10 show the results from the prototype when the announcement
file accessed was File1, File2, File3 and File4 respectively. Fundamentally, these
tables show the latency or the time taken for the announcement file to start playing
at the destination since the announcement request was made to MRFP. For each file,
five different cases are measured for each protocol. First, a measurement is taken
without introducing any delay or packet loss. Followed by this the delay and packet
loss are used in four different combinations to measure the latency. It can be noted
that the latency measured are listed in milliseconds (ms) in case of Tables 7, 8 and
9 and in seconds (s) in Table 10. The latency measured in Table 10 is in seconds
because of the size of the file (File4) being accessed. When HTTP or FTP are used
as the interfaces, File4 being a large audio file takes more time to be downloaded,
which is measured in seconds.

51

Table 9: Latency measurements of File3

Delay (ms) Packet loss Latency (ms) Latency (ms) Latency (ms)
(X, x) (X±x) (%) FTP case HTTP case RTSP case
- - 13.6 8.14 47.6
5, 5 0.1 84 53.5 84.3
10, 5 1 233 228 119
10, 5 0.5 240 221 106
15, 5 0.5 319 311 149

Table 10: Latency measurements of File4

Delay (s) Packet loss Latency (s) Latency (s) Latency (s)
(X, x) (X±x) (%) FTP case HTTP case RTSP case
- - 0.13 0.14 0.047
5, 5 0.1 1.17 1.53 0.084
10, 5 1 6.92 7.23 0.119
10, 5 0.5 5.31 5.86 0.106
15, 5 0.5 7.17 7.78 0.149

Cache Parameter File

A cache parameter file is maintained in MRFP which is updated for every
announcement request. This file is used as a primary input to implement caching in
MRFP. The cache parameter file has information about the announcement file-
name, frequency of each file request, size of the file and the last requested date/time
stored in the following format:

The cache parameter file is updated upon every announcement request in the
following format:

File Name frequency file size Last Requested Time

A sample cache parameter file is shown below based on the measurements
from the prototype:

mp3 test .mp3 4 492147 2011−12−27 14 : 52 : 12 . 328807
t e s t mp3 l a rg e .mp3 5 5541781 2011−12−27 14 : 55 : 28 . 056783
mpg audio video .mpg 6 706564 2011−12−27 14 : 54 : 52 . 369125
wav 88 2kbps ulaw . wav 3 152326 2011−12−27 14 : 58 : 32 . 419514

6.4 Analysis

The following observations can be made from the tabulated results in Tables 7, 8, 9
and 10:

• The latency is measured for files of varying sizes from a few kilobytes to many
megabytes. It can be observed that as the file size increases the performance

52

in case of HTTP is better than FTP case. However, the performance between
the two cases do not show any significant difference when announcements of
smaller size (File1, File2 and File3) are considered.

• From signaling point of view, RTSP involves more signaling and therefore
takes more time to set up an RTSP session when compared to a HTTP or
FTP connection. Hence, if the file sizes are relatively smaller (File1, File2
and File3), the resulting latency to download the file and start playing the
announcement is lower than the corresponding RTSP case (Tables 7, 8 and
9). Hence, the file size is a key parameter which can make a difference in the
latency behavior.

• It can be noted that in case of RTSP, the announcement is played directly to
the destination without reaching MRFP control logic. The latency is indepen-
dent of the size of the announcement files as there is no download involved
in this case. Therefore, the RTSP case results show the same latency values
for all the files. Hence, for larger files (File4), the results shown for RTSP
case is significantly better than the HTTP or FTP cases. This can be verified
from Table 10. In a “worst-case scenario” with a high packet loss of 0.5% and
a variable delay of 15±5 ms, the latency in downloading the files via HTTP
or FTP is over 7 seconds when compared to RTSP which starts playing the
announcements in 149 ms. Therefore, the real-time nature of RTSP gives the
results shown in Table 10.

• RTSP case suffers a drawback when audio/video announcement quality is con-
sidered. In a WAN environment with large delay and packet loss, even though
the announcement play is started earlier than the HTTP/FTP cases, the RTP
packet stream from the external server is affected by the network environment
and may lead to poor media quality. The audio/video quality analysis is out
of scope of this thesis work.

• The latency measured is independent of the announcement being an audio
or video file. The prototype follows the same procedure in both cases. The
Streamer component in MRFP is capable of locally streaming both audio and
video types.

• In cases of HTTP and FTP, using an effective caching algorithm in MRFP
would altogether reduce the external server requests which significantly in-
creases the performance.

53

7 Conclusions and Future Work

The concluding remarks on this thesis work is given in Section 7.1. The possible
work that can be done as a continuity to this thesis is pondered in Section 7.2.

7.1 Conclusions

The work done in this thesis studies the behavior of the announcement application
in IMS when a server is placed outside the MRFP node in the core network. A
prototype to play the announcements externally has been built which involves im-
plementing a part of the MRFP control logic to communicate with the server to
download/stream the announcements. In this thesis, the servers used to store the
announcements are based on three different protocols namely RTSP, HTTP and
FTP. The main idea is to find a suitable protocol which can be used as an interface
between the MRFP and the server. The details on how the external announcement is
achieved using RTSP, HTTP and FTP is explained in Sections 3.2.3, 3.3.2 and 3.4.3
respectively. Therefore, it can be concluded that it is possible to achieve external
announcements in MRFP with the architecture proposed in Chapter 3.

Conventionally in IMS, the MRFP handles the announcement service without
any external server. MRFP node uses it’s limited memory to store the announce-
ments. As the number of announcement files increases, the existing files in the
node has to be flushed (deleted) out to make room for the new ones. This becomes
inconvenient and this thesis studies ways to overcome such drawbacks.

Another important study area in this thesis is on how to utilize the existing
MRFP memory as cache. This is advantageous when HTTP or FTP are used as
interfaces between MRFP and the server. Basically, when a file is downloaded from
the server, the caching algorithm in MRFP decides if it should be stored in the
cache. If the cache is full, then the algorithm decides which file in the cache is
replaced by the new file. Chapter 4 makes a study of various caching techniques
like LRU, LFU, SIZE, HLRU, SLRU, HYB, LRV, GD-s and GDSP based on various
caching parameters like size, frequency, last requested time, network latency etc. A
comparison of various caching techniques studied is shown in Table 5 from which
it can be concluded that implementing a caching algorithm based on GDSP would
increase the performance when MRFP memory is used as cache.

The results from the prototype of the external announcement approaches are
shown in Section 6.3. netem tool is used as a network emulator to emulate WAN
characteristics. It has to be noted that the conclusions are made by emulating
only network delay and packet loss. The reliability of the prototype is not tested
under other WAN characteristics like packet duplication, packet corruption, etc. The
latency (time taken for the announcement to start playing since it was requested to
MRFP) is measured for four files of different sizes. Each file is tested under three
protocol interfaces: RTSP, HTTP and FTP. The results show that the protocol that
may be used as an interface depends on the properties of the announcements that

54

the MRFP handles. It can be concluded that:

• If majority of the files handled by MRFP are of smaller size (few kilobytes),
it is advantages to use HTTP/FTP as an interface to the external server.

• If majority of the announcements handled are of larger size (many megabytes),
using RTSP gives better results. HTTP/FTP is inconvenient as the latency
to download the announcement is large.

• Using RTSP method reduces the overhead of reserving additional media re-
sources when an announcement is fetched (Section 3.2.3). This is because
the file is directly streamed to the destination without going through extra
components in MRFP, unlike HTTP/FTP case.

• When HTTP/FTP is used as an interface, the study made on caching algo-
rithms (Section 4.3) prove GDSP to be an efficient technique that may be
used in MRFP. GDSP takes into account the parameters like frequency, last
requested time, network loss/delay and file size, all of which are available
parameters.

7.2 Future Work

This thesis work can be extended and enhanced to further study the external an-
nouncement techniques. It would be interesting to study the performance of the
proposed architecture in a real WAN environment instead of emulated one. This
would result in introducing additional network characteristics like random packet
duplication, packet corruption, etc along with variable delay and packet loss. The
prototype can also be tested with different open-source server implementations to
study the impact on it’s performance. Also, one potential area for further research
is to analyze the impact of introducing enhanced secure communication between
MRFP and the external server.

Finally, one key area to be studied further is the caching mechanism in MRFP.
The study made in this thesis shows that with certain limitations, GDSP can be
effectively used as a caching algorithm. However, there are also various other caching
models which can be further analyzed and compared. When using the caching
algorithms listed in Table 5, the entire media object is downloaded and stored as
a static object. It would be interesting to analyze the impact of segment-based
caching techniques as well. In segment-based caching, the media objects are not
stored as a whole; instead the cache only stores the popular segments of the media
(for example, first 5 seconds of a audio file) [70]. It is important to make a elaborate
study on various caching algorithms before incorporating one in the MRFP.

55

References

[1] E. Burger, Ed., J. Van Dyke, A. Spitzer, “Basic Network Media Services with
SIP,” RFC 4240 (Standard), Internet Engineering Task Force, December 2005.
[Online]. Available: http://tools.ietf.org/html/rfc4240

[2] Dialogic, “The Architecture and Benefits of IMS,” Fetched 15 Septem-
ber 2011. [Online]. Available: http://www5.dialogic.com/products/docs/

whitepapers/11297-ims-arch-benefits-wp.pdf

[3] Ericsson, “IMS Control and Media,” Fetched 15 September 2011.
[Online]. Available: http://www.ericsson.com/ourportfolio/products/

ims-control-and-media

[4] Ericsson, “The value of using the IMS architecture,” Fetched 26 Septem-
ber 2011. [Online]. Available: http://www.techabulary.com/i/ims/ims_ip_

multimedia_subsystem.pdf

[5] 3GPP TS 23.002, “Network Architecture,” [Online]. Available: http://www.

3gpp.org/ftp/Specs/html-info/23002.htm

[6] Martin Koukal, Robert Bestak, “Architecture of IP Multimedia Subsystem,”
48th International Symposium ELMAR-2006, Zadar, Croatia.

[7] Metaswitch Networks, “IMS Architecture,” Fetched 27 Septem-
ber 2011. [Online]. Available: http://www.metaswitch.com/

sbc-session-border-controller/ims-architecture.aspx

[8] Mohammed A Qadeer, Afaq H. Khan, Juned A. Ansari, Sariya Waheed, “IMS
Network Architecture,” 2009 International Conference on Future Computer and
Communication, Kuala Lumpur, Malaysia.

[9] Eventhelix, “MRFC-AS Interfaces (IMS Conference Call),” Fetched 29 Septem-
ber 2011. [Online]. Available: http://eventhelix.com/ims/conference/

mrfc-as-sequence-diagram.pdf

[10] Eventhelix, “MRFP Interfaces (IMS Conference Call),” Fetched 29 Septem-
ber 2011. [Online]. Available: http://eventhelix.com/ims/conference/

mrfp-sequence-diagram.pdf

[11] Burnett, D., Hunt, A., McGlashan, S., Porter, B., Lucas, B., Ferrans, J., Rehor,
K., Carter, J., Danielsen, P., and S.Tryphonas, “Voice Extensible Markup Lan-
guage (VoiceXML) Version 2.0,” W3C REC REC-voicexml20-20040316, March
2004.

[12] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” RFC 3986 (Standard), Internet Engineering Task Force, Jan-
uary 2005. [Online]. Available: http://tools.ietf.org/html/rfc3986

http://tools.ietf.org/html/rfc4240
http://www5.dialogic.com/products/docs/whitepapers/11297-ims-arch-benefits-wp.pdf
http://www5.dialogic.com/products/docs/whitepapers/11297-ims-arch-benefits-wp.pdf
http://www.ericsson.com/ourportfolio/products/ims-control-and-media
http://www.ericsson.com/ourportfolio/products/ims-control-and-media
http://www.techabulary.com/i/ims/ims_ip_multimedia_subsystem.pdf
http://www.techabulary.com/i/ims/ims_ip_multimedia_subsystem.pdf
http://www.3gpp.org/ftp/Specs/html-info/23002.htm
http://www.3gpp.org/ftp/Specs/html-info/23002.htm
http://www.metaswitch.com/sbc-session-border-controller/ims-architecture.aspx
http://www.metaswitch.com/sbc-session-border-controller/ims-architecture.aspx
http://eventhelix.com/ims/conference/mrfc-as-sequence-diagram.pdf
http://eventhelix.com/ims/conference/mrfc-as-sequence-diagram.pdf
http://eventhelix.com/ims/conference/mrfp-sequence-diagram.pdf
http://eventhelix.com/ims/conference/mrfp-sequence-diagram.pdf
http://tools.ietf.org/html/rfc3986

56

[13] J. Rosenberg, H. Schulzrinne, “An Offer/Answer Model with the Session De-
scription Protocol (SDP),” RFC 3264 (Standard), Internet Engineering Task
Force, June 2002. [Online]. Available: http://tools.ietf.org/html/rfc3264

[14] P. May, “Application Services in an IP Multimedia Subsystem (IMS) Network,”
Data Connection Limited, whitepaper, 2005. [Online] Available: http://www.

tmia.org/white_papers/DCL_WhitePaper_IMS.pdf

[15] Jonas Reinius, “Cello-An ATM transport and control platform,” Erics-
son, [Online] Available: http://www.ericsson.com/ericsson/corpinfo/

publications/review/1999_02/files/1999021.pdf

[16] H. Schulzrinne, R. Lanphier, A. Rao, “Real Time Streaming Protocol (RTSP),”
RFC 2326 (Standard), Internet Engineering Task Force, April 2002. [Online].
Available: http://tools.ietf.org/html/rfc2326

[17] Internet Assigned Numbers Authority, “Service Name and Trans-
port Protocol Port Number Registry,” [Online]. Available: http:

//www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.xml

[18] Eventhelix, “HTTP Sequence Diagram,” Fetched 23 November 2011.
[Online]. Available: http://eventhelix.com/RealtimeMantra/Networking/

http_sequence_diagram.pdf

[19] T. Dierks, E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2,” RFC 5246 (Standard), Internet Engineering Task Force, August 2008.
[Online]. Available: http://tools.ietf.org/html/rfc5246

[20] M. Handley, V. Jacobson, “SDP: Session Description Protocol,” RFC 2327
(Standard), Internet Engineering Task Force, April 1998. [Online]. Available:
http://tools.ietf.org/html/rfc2327

[21] Yan Liu, Guo-Hui Zhong, Yu Liu, Hua-Qiang He, Fu-Rong Wang, “The Re-
search of Streaming Media Mutual Digest Authentication Model Based on
RTSP,” Proceedings of the 2008 International Conference on Wavelet Analysis
and Pattern Recognition, Hong Kong.

[22] Yong-Ju Lee, Ok-Gee Min, Hag-Young Kim, “Performance Evaluation Tech-
nique of the RTSP based Streaming Server,” Proceedings of the Fourth An-
nual ACIS International Conference on Computer and Information Science
(ICIS’05), Daejeon, Korea.

[23] Yong Liu, Bin Du, Shuling Wang, Haibo Yang, Xingwei Wang, “Design and
Implementation of Performance Testing Utility for RTSP Streaming Media
Server,” 2010 First International Conference on Pervasive Computing, Signal
Processing and Applications (PCSPA).

http://tools.ietf.org/html/rfc3264
http://www.tmia.org/white_papers/DCL_WhitePaper_IMS.pdf
http://www.tmia.org/white_papers/DCL_WhitePaper_IMS.pdf
http://www.ericsson.com/ericsson/corpinfo/publications/review/1999_02/files/1999021.pdf
http://www.ericsson.com/ericsson/corpinfo/publications/review/1999_02/files/1999021.pdf
http://tools.ietf.org/html/rfc2326
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://eventhelix.com/RealtimeMantra/Networking/http_sequence_diagram.pdf
http://eventhelix.com/RealtimeMantra/Networking/http_sequence_diagram.pdf
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc2327

57

[24] J. Soininen, Ed., Nokia, “Transition Scenarios for 3GPP Networks,” RFC 3574
(Standard), Internet Engineering Task Force, August 2003. [Online]. Available:
http://tools.ietf.org/pdf/rfc3574.pdf

[25] T. Berners-Lee, R. Fielding, H. Frystyk, “Hypertext Transfer Protocol –
HTTP/1.0,” RFC 1945 (Standard), Internet Engineering Task Force, May 1996.
[Online]. Available: http://tools.ietf.org/html/rfc1945

[26] T. Berners-Lee, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, “Hypertext
Transfer Protocol – HTTP/1.1,” RFC 2068 (Standard), Internet Engineering
Task Force, January 1997. [Online]. Available: http://tools.ietf.org/html/
rfc2068

[27] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616 (Stan-
dard), Internet Engineering Task Force, June 1999. [Online]. Available: http:

//tools.ietf.org/html/rfc2616

[28] Henning Schulzrinne, “A comprehensive multimedia control architecture for the
Internet,” Proceedings of the IEEE 7th International Conference on Network
and Operating System Support for Digital Audio and Video, p 65-76, 1997.

[29] P. Deutsch, A. Emtage, A. Marine, “How to Use Anonymous FTP,” RFC 1635
(Standard), Internet Engineering Task Force, May 1994. [Online]. Available:
http://tools.ietf.org/html/rfc1635

[30] M. Allman, S. Ostermann, “FTP Security Considerations,” RFC 2577 (Stan-
dard), Internet Engineering Task Force, May 1999. [Online]. Available: http:

//tools.ietf.org/html/rfc2577

[31] Bindshell, “Manipulating FTP Clients Using The PASV Command,” March
2007. [Online]. Available: http://www.bindshell.net/papers/ftppasv/

ftp-client-pasv-manipulation.pdf

[32] Eventhelix, “FTP Session Sequence Diagram,” Fetched 23 November
2011. [Online]. Available: http://www.eventhelix.com/realtimemantra/

networking/FTP_Port_21.pdf

[33] M. Horowitz, S. Lunt, “FTP Security Extensions,” RFC 2228 (Standard),
Internet Engineering Task Force, October 1997. [Online]. Available: http:

//tools.ietf.org/html/rfc2228

[34] I. Cooper, I. Melve, G. Tomlinson, “Internet Web Replication and Caching
Taxonomy,” RFC 3040 (Standard), Internet Engineering Task Force, January
2001. [Online]. Available: http://tools.ietf.org/html/rfc3040

[35] Wei-Kuo Liao, Pang-Hsin Shih, “Architecture of Proxy Partial Caching Using
HTTP for Supporting Interactive Video and Cache Consistency,” Proceedings

http://tools.ietf.org/pdf/rfc3574.pdf
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2068
http://tools.ietf.org/html/rfc2068
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc1635
http://tools.ietf.org/html/rfc2577
http://tools.ietf.org/html/rfc2577
http://www.bindshell.net/papers/ftppasv/ftp-client-pasv-manipulation.pdf
http://www.bindshell.net/papers/ftppasv/ftp-client-pasv-manipulation.pdf
http://www.eventhelix.com/realtimemantra/networking/FTP_Port_21.pdf
http://www.eventhelix.com/realtimemantra/networking/FTP_Port_21.pdf
http://tools.ietf.org/html/rfc2228
http://tools.ietf.org/html/rfc2228
http://tools.ietf.org/html/rfc3040

58

of the Eleventh International Conference on Computer Communications and
Networks, p 216-221, 2002.

[36] Benowitz, E., Ercegovac, M., Fallah, F, “Reducing the Latency of Division Op-
erations with Partial Caching,” Conference Record of the Thirty-Sixth Asilomar
Conference on Signals, Systems and Computers, Volume 2, p 1598-1602, 2002.

[37] Daniel Zeng, Fei-Yue Wang, Mingkuan Liu, “Efficient Web Content Delivery
Using Proxy Caching Techniques,” IEEE TRANSACTIONS On Systems, Man,
AND Cybernetics - Part C: Applications and Reviews, Volume 34, Issue 3, p
270-280, 2004.

[38] Zhourong Miao, Antonio Ortega, “Scalable Proxy Caching of Video Under Stor-
age Constraints,” IEEE Journal on Selected Areas in Communications, Volume
20, Issue 7, p 1315-1327, 2002.

[39] Wei Liu, Chun Tung Chou, Zongkai Yang, Xu Du, “Popularity-wise Proxy
Caching for Interactive Streaming Media,” 29th Annual IEEE International
Conference on Local Computer Networks, p 250-257, 2004.

[40] Shudong Jin, Bestavros, A., “Popularity-aware greedy dual-size Web proxy
caching algorithms,” Proceedings of the 20th International Conference on Dis-
tributed Computing Systems, p 254-261, 2000.

[41] Anja Feldmann, Ramon Caceres, Fred Douglis, Gideon Glass, Michael Ra-
binovich, “Performance of Web Proxy Caching in Heterogeneous Bandwidth
Environments,” Proceedings of the IEEE INFOCOM, p 107-116, 1999.

[42] Daniela Rosu , Arun Iyengar , Daniel Dias, “Hint-based Acceleration of Web
Proxy Caches,” Proceedings of the 19th IEEE International Performance, Com-
puting, and Communications Conference, 2000.

[43] Junho Shim, Peter Scheuermann, Radek Vingralek, “Proxy Cache Algorithms:
Design, Implementation, and Performance,” IEEE Transactions on Knowledge
and Data Engineering, Volume 11, Issue 4, p 549-562, 1999.

[44] Predrag Jelenkovic, Ana Radovanovic, “Optimizing the LRU Algorithm for
Web Caching,” The 18th International Teletraffic Congress, Berlin, 2003.

[45] Zhan-sheng Li, Da-wei Liu, Hui-juan Bi, “CRFP: A Novel Adaptive Replace-
ment Policy Combined the LRU and LFU Policies,” IEEE 8th International
Conference on Computer and Information Technology Workshops, p 72-79,
2008.

[46] Williams, S., Abrams, M., Standridge, C. R., Abdulla, G., Fox, E. A., “Removal
Policies in Network Caches for World-Wide Web Documents,” Proceedings on
the Applications, technologies, architectures, and protocols for computer com-
munications, ACM SIGCOMM, 1996.

59

[47] Vakali, A, “LRU-based algorithms for Web cache replacement,” International
Conference on Electronic Commerce and Web Technologies, 2000.

[48] Martin Arlitt, Rich Friedrich, Tai Jin, “Performance Evaluation of Web Proxy
Cache Replacement Policies,” Performance Evaluation - Special issue on mod-
elling techniques and tools for performance evaluation, Volume 39 Issue 1-4,p
193-206, 2000.

[49] S. Podlipnig, L. Böszörményi, “A survey of Web cache replacement strategies,”
ACM Computing Surveys (CSUR), Volume 35 Issue 4, 2003.

[50] Roland P. Wooster, Marc Abrams, “Proxy caching that estimates page load
delays,” Journal on Computer Networks and ISDN Systems, Volume 29 Issue
8-13, 1997.

[51] Luigi Rizzo, Lorenzo Vicisano, “Replacement Policies for a Proxy Cache,”
IEEE/ACM Transactions on Networking, Volume 8, Issue 2, 2000.

[52] Pei Cao, Sandy Irani, “Cost-Aware WWW Proxy Caching Algorithms,” Pro-
ceedings of the USENIX Symposium on Internet Technology and Systems, 1997.

[53] Digital Equipment Corporation, “Digital’s Web Proxy Traces,” Fetched 30
November 2011. [Online]. Available: http://apotheca.hpl.hp.com/ftp/pub/
compaq/traces/proxy/webtraces.html

[54] Ludmila Cherkasova, “Improving WWW Proxies Performance with Greedy-
Dual-Size-Frequency Caching Policy,” HP Technical Report, 1998.

[55] Shudong Jin, Azer Bestavros, “GreedyDual* Web Caching Algorithm – Exploit-
ing the Two Sources of Temporal Locality in Web Request Streams,” Proceed-
ings of the 5th International Web Caching And Content Delivery Workshop, p
174-183, 2000.

[56] National Laboratory for Applied Network Research, “Web cache traces,”
Fetched 30 November 2011. [Online]. Available: ftp://ircache.nlanr.net/

Traces/

[57] Hyokyung Bahn, Kern Koh, Noh, S.H., Lyul, S.M., “Efficient replacement of
nonuniform objects in Web caches,” IEEE Computer Society Computer Journal,
Volume 35 Issue 6, p 65-73, 2002.

[58] The Linux Foundation, “netem,” Fetched 08 December 2011. [Online].
Available: http://www.linuxfoundation.org/collaborate/workgroups/

networking/netem

[59] Ariane Keller, “Manual tc Packet Filtering and netem,” Fetched 08 December
2011. [Online]. Available: http://tcn.hypert.net/tcmanual.pdf

[60] Linux Manual Pages, “tc(8),” Fetched 09 December 2011. [Online]. Available:
http://lartc.org/manpages/tc.txt

http://apotheca.hpl.hp.com/ftp/pub/compaq/traces/proxy/webtraces.html
http://apotheca.hpl.hp.com/ftp/pub/compaq/traces/proxy/webtraces.html
ftp://ircache.nlanr.net/Traces/
ftp://ircache.nlanr.net/Traces/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://tcn.hypert.net/tcmanual.pdf
http://lartc.org/manpages/tc.txt

60

[61] “Python Programming Language, version 2.6.5,” [Online]. Available: http:

//docs.python.org/release/2.6.5/

[62] LIVE555, “LIVE555 Media Server, version 0.66,” [Online]. Available: http:

//www.live555.com/mediaServer/

[63] Apache Web Server, “Apache web server, version 2.0.64,” [Online]. Available:
http://httpd.apache.org/docs/2.0/

[64] Pure-FTPd, “Pure-FTPd server, version 1.0.32,” [Online]. Available: http:

//www.pureftpd.org/project/pure-ftpd

[65] K. Zeilenga, Ed., “Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map,” RFC 4510 (Standard), Internet Engineering Task
Force, June 2006. [Online]. Available: http://tools.ietf.org/html/rfc4510

[66] VideoLan Organization, “VLC media player, version 1.1.9,” [Online]. Available:
http://download.videolan.org/pub/vlc/1.1.9/

[67] VideoLan Organization, “Overview of the VideoLAN streaming solution,” [On-
line]. Available: http://www.videolan.org/vlc/streaming.html

[68] Mplayer, “Mplayer sample files,” Fetched 02 December 2011. [Online]. Avail-
able: http://samples.mplayerhq.hu/

[69] Audio Samples, “Audio file format specifications and samples,” Fetched
02 December 2011. [Online]. Available: http://www-mmsp.ece.mcgill.ca/

documents/AudioFormats/index.html

[70] Songqing Chen, Haining Wang, Bo Shen, Susie Wee, Xiaodong Zhang,
“Segment-based Proxy Caching for Internet Streaming Media Delivery,” IEEE
Journal on Multimedia, p 59-67, 2005.

http://docs.python.org/release/2.6.5/
http://docs.python.org/release/2.6.5/
http://www.live555.com/mediaServer/
http://www.live555.com/mediaServer/
http://httpd.apache.org/docs/2.0/
http://www.pureftpd.org/project/pure-ftpd
http://www.pureftpd.org/project/pure-ftpd
http://tools.ietf.org/html/rfc4510
http://download.videolan.org/pub/vlc/1.1.9/
http://www.videolan.org/vlc/streaming.html
http://samples.mplayerhq.hu/
http://www-mmsp.ece.mcgill.ca/documents/AudioFormats/index.html
http://www-mmsp.ece.mcgill.ca/documents/AudioFormats/index.html

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Problem Statement
	Thesis Outcome
	Outline

	MRF Architecture in IMS
	Overview of IMS
	IMS Architecture
	IMS Core Network Components

	Announcement Service in IMS
	MRF Architecture
	MRFP Components
	MRFP Architecture for Playing Announcements

	Summary

	External Announcement Approach
	External Announcement Architecture for Playing Announcements
	External Announcement Approach Using RTSP
	RTSP Overview
	RTSP Operation
	Dataflow Analysis for External Announcements Using RTSP

	External Announcement Approach Using HTTP
	HTTP Overview
	Dataflow Analysis for External Announcements Using HTTP
	Caching Mechanism in MRFP

	External Announcement Approach Using FTP
	FTP Overview
	FTP Requests and Responses
	Dataflow Analysis for External Announcements Using FTP

	Summary

	Effective Utilization of Memory in MRFP
	MRFP Memory as Cache
	Key Parameters in File Caching
	Caching Algorithms for MRFP
	Summary

	Prototyping the External Announcement Approach
	Prototype Design
	Network Emulator
	Implementation
	Open-source Implementations
	Summary

	Measurements and Analysis
	Parameter Measured
	Announcement Media Types
	Measurements
	Analysis

	Conclusions and Future Work
	Conclusions
	Future Work

	References

