
Aalto University
School of Science
Degree Programme in Computer Science and Engineering

Mark Sevalnev

Applying Queueing Theory to
Computing Cluster Energy Optimization

Master’s Thesis
Espoo, January 24, 2012

Supervisor: Professor Keijo Heljanko
Instructor: Professor Samuli Aalto and Dr. Tapio Niemi

i

Aalto University
School of Science ABSTRACT OF
Degree Programme in Computer Science and Engineering MASTER’S THESIS

Author: Mark Sevalnev
Title of thesis:
Applying Queueing Theory to Computing Cluster Energy Optimization

Date: January 24, 2012 Pages: 9 + 105
Professorship: Theoretical Computer Science Code: T-79
Supervisor: Professor Keijo Heljanko
Instructor(s): Professor Samuli Aalto and Dr. Tapio Niemi

This work examines the current state of green IT and introduces a new
software solution for saving energy in computing clusters. The work in-
cludes a comprehensive literature review on green IT by offering solutions
to both computing clusters to improve energy efficiency and, more gener-
ally, other information technology solutions targeted to minimize energy
consumption. It is known that the information technology systems re-
sulted in 2% of all carbon dioxide emissions in 2007. Green IT focuses on
developing of solutions to improve energy efficiency. Most solutions are
based on the idea that the computing equipment is used only occasionally,
but the device still consumes electricity while in the waiting mode. This
necessitates the identification of such idle periods and to switch the de-
vice into a power saving mode. The work will go fundamentally through
the necessary theoretical background: queuing theory, control theory, and
statistical testing, so that a solution can be understood without knowl-
edge of background literature. The solution for computing cluster energy
minimization was also experimented with in practice.

Keywords: cloud computing, datacenter, energy-proportionality,
green IT, Grid, power-performance trade-off,
quality of service, queueing theory

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu DIPLOMITYÖN
Tietotekniikan koulutusohjelma TIIVISTELMÄ

Tekijä: Mark Sevalnev
Työn nimi:
Jonoteorian soveltaminen laskentaklusterin energiakäytön optimoimiseksi

Päiväys: 24. tammikuuta 2012 Sivumäärä: 9 + 105
Professuuri: Tietojenkäsittelyteoria Koodi: T-79
Työn valvoja: Professori Keijo Heljanko
Työn ohjaaja: Professori Samuli Aalto ja FT Tapio Niemi

Tässä työssä tarkastellaan vihreän IT:n nykytilaa sekä esitetään uusi oh-
jelmistoratkaisu energian säästämiseen laskentaklustereissa. Työ sisältää
laajan kirjallisuuskatsauksen vihreään IT:hen — siinä esitetään ratkaisu-
ja sekä laskentaklustereiden energiatehokkuuden parantamiseksi että ylei-
semmin muita tietoteknisia ratkaisuja, joilla sähkökulutusta voidaan mini-
moida. Kirjallisuudesta tiedetään, että tietotekniset järjestelmät tuottivat
2% kaikista hiilidioksidipäästöistä vuonna 2007. Vihreässä IT:ssä kehite-
tään ratkaisuja energiatehokkuuden parantamiseksi. Useimmat ratkaisut
perustuvat siihen havaintoon, että sähkölaitetta käytetään vain ajoittain,
mutta laite silti kuluttaa sähköä ollessaan odotustilassa. Työssä kehite-
tyillä menetelmillä pyritään havaitsemaan tällaisia ajanjaksoja, joissa voi-
daan ohjata laite vähäenergiseen tilaan. Työssä käydään perusteellisesti
läpi tarvittava teoreettinen tausta: jonoteoria, säätöteoria ja tilastollinen
testaus, jotta oma ratkaisu voi ymmärtää ilman taustakirjallisuutta. Rat-
kaisun toimivuutta laskentaklusterin energian säästämiseksi on työssä ko-
keiltu myös käytännössä.

Avainsanat: energiaverrannollisuus, energia-tehokkuus-kompromissi,
Grid, jonoteoria, palvelun laatu, pilvilaskenta,
tietokonesali, vihreä IT

Kieli: englanti

iii

Kiitokset

Haluan kiittää valvojaani Keijo Heljankoa, ohjaajaani ja työnantajaani Tapio
Niemeä sekä ohjaajaani Samuli Aaltoa. Keijo Heljangolta sain diplomityöhöni
erittäin paljon ajatuksia ja parannusehdotuksia. Tapio Niemi ohjasi hienosti
työtäni CERN:ssa, ja myös työn ulkopuolella hän huolehti, että asumaan aset-
tumiseni Ranskaan olisi mahdollisimman stressitöntä. Sain erittäin paljon
motivaatiota Samuli Aallon opettamasta jonoteorian kurssista keväällä 2011.
Hän myös selitti minulle vaikeita matemaattisia asioita niin, että lopulta os-
asin ne.

Työpaikalla CERN:ssä sain korvaamatonta apua Jukka Kommerilta klusterin
rakentamiseen. Kiitän myös muita työtovereita leppoisasta ja motivoivasta
työilmapiiristä, kiitos Henrille, Markolle, Eetulle, Jonille, Ollille ja Antille.

Diplomityön tarkistuksessa minua auttoivat Pia Lappalainen, Ilkka Ollakka
ja Mikael Isoaho. Kiitos teille!

Diplomityötä tehdessäni, minulla oli ajoittain kysyttävää jostakin erityisalue-
esta, silloin marssin kyseisen alueen asiantuntijalle, ja sain vastauksia
kysymyksiin. Suurkiitos Aalto yliopiston henkilökunnalle, joka auttoi minua
näissä pulmissa, kiitos Pasi Lassilalle, Jukka K. Nurmiselle, Kai Zengerille,
Jukka Parviaiselle, Jukka Mantereelle ja Vesa Hirvisalolle.

Viimeisimpänä mutta ei vähäisimpänä haluan kiittää rakasta perhettäni ja
ihania ystäviäni, joita ilman en jaksaisi opiskella näin pitkälle puhumattakaan
diplomityön kirjoittamisesta.

Minua auttoivat välittömästi tai välilliseti suuri joukko muita ihmisiä.
Kaikkien nimiä en välttämättä edes muista, kiitos teillekin!

Espoo 24. tammikuuta 2012

Mark Sevalnev

iv

Abbreviations and Acronyms

M/M/1-queue the queue with Poisson arrivals and Exponential ser-
vice times

M/G/1-queue the queue with Poisson arrivals and general service
times

λ arrival rate
µ service rate
ρ utilization
π state probability
AC Alternating Current
CERN (French) Conseil Européen pour la Recherche Nu-

cléaire (European Council for Nuclear Research)
CPU Central Processing Unit
CTwQA Control Theory with Queue Adjusting
DC Direct Current
DCiE Datacenter Infrastructure Efficiency
DFS Dynamic frequency scaling
DPPE Datacenter Performance Per Energy
DVFS Dynamic Voltage and Frequency Scaling
DVFS-WD Dynamic Voltage and Frequency Scaling based on

Workload Decomposition
EEE Energy Efficient Ethernet
FIFO First In First Out
FIR Finite Impulse Response
GB GigaByte
GHz GigaHertz
HIP Helsinki Institute of Physics
I/O Input/Output
IaaS Infrastructure as a Service
ICT Information and Computer science
IIR Infinite Impulse Response

v

LAN Local Area Network
LCP Lazy Capacity Provisioning
LHC Large Hadron Collider
LIFO Last In First Out
MMPP Markov Modulated Poisson Process
OLDI Online Data-Intensive
PaaS Platform as a Service
PDU Power Distribution Unit
PID Proportional-Integral-Derivative
PMR Peak-to-Mean Ratio
PMU Performance Monitoring Unit
PS Process Sharing
PUE Power Usage Efficiency
QTwAF Queueing Theory with Averaging Filter
QTwEF Queueing Theory with Exponential Filter
RAILS Redundant Array for Inexpensive Load Sharing
SGE Sun Grid Engine
SLA Service Level Agreement
SPC Storage Performance Council
SPEC Standard Performance Evaluation Corporation
SPUE Server PUE
SaaS Software as a Service
TCP Transmission Control Protocol
TPC Transaction Processing Performance Council
UPS Uninterruptable Power Supply
i.i.d. identically and independently distribution

vi

Contents

1 Introduction 1

2 Overview of cloud computing 5

2.1 Cloud computing . 5

2.2 Grid . 8

2.3 Warehouse datacenters structure 9

2.4 Physics computing at CERN 10

3 Overview of green IT 12

3.1 Green IT . 13

3.2 Green IT in Cloud Computing 14

3.3 Important processor related metrics 18

3.4 Challenges . 21

4 Related work 23

5 Theoretical background 29

5.1 Queueing theory . 29

5.1.1 Renewal sequence . 29

5.1.2 Deterministic process 30

5.1.3 Poisson process . 30

5.1.4 Markov chains . 31

5.1.5 Birth-death process . 34

5.1.6 Queueing systems . 36

vii

5.1.7 Little’s formula . 38

5.1.8 M/M/1 queue . 39

5.1.9 n M/M/1 queues . 40

5.1.10 Non-homogeneous Poisson process 42

5.1.11 Queueing theory models 44

5.1.12 Mathematical modeling with queueing theory 45

5.2 Control theory . 48

5.2.1 Control theory basics 48

5.2.2 PID-controllers . 50

5.3 Statistical testing and estimation 51

5.3.1 Graphical tests . 51

5.3.2 Statistical tests . 52

6 Statistical testing for real world data 54

6.1 Analysis of HIP-cluster data 55

6.2 Analysis of NorduGrid data 63

7 Optimization problem and its solution 69

7.1 Problem description and possible solution approaches 69

7.2 Our queueing theory model 72

7.3 Algorithmical solution . 75

7.4 Justification of the approach 76

8 Implementation 80

8.1 Hardware settings . 80

8.2 Workload settings, case 1 . 82

8.3 Workload settings, case 2 . 82

8.4 Workload settings, case 3 . 83

9 Results 84

9.1 Results for the test setting 1 84

9.2 Results for the test setting 2 90

viii

9.3 Results for the test setting 3 92

10 Conclusions and further work 94

10.1 Improvements and further work 94

10.2 Summary . 96

Appendix 101

ix

List of Tables

6.1 Table (statistics of interarrival times of different-size samples
in NorduGrid) . 66

6.2 Table (statistics of service times of different-size samples in
NorduGrid) . 68

9.1 Table (The comparision of the algorithms) 85

x

List of Figures

1.1 The contribution of ICT carbon emissions and its growth [59] 2

2.1 The flow of the cloud computing services [15] 6

2.2 The graphical view of a typical datacenter [17] 10

3.1 Calculation of PUE and DCiE [35] 14

3.2 Energy consumption per a server component [17] 15

3.3 Average power consumtion of major parts used in TPC-C [56] 16

3.4 “Average CPU utilization of more than 5,000 servers during
a six-month period. Servers are rarely completely idle and
seldom operate near their maximum utilization, instead oper-
ating most of the time at between 10 and 50 percent of their
maximum utilization levels.” [16] 17

3.5 “Server power usage and energy efficiency at varying utiliza-
tion levels, from idle to peak performance. Even an energy-
efficient server still consumes about half its full power when
doing virtually no work.” [16] 18

3.6 The processes consuming CPU when run in serial one after
another and simultaneously 19

4.1 How techniques affect workload (from left to right, from top to
bottom): Google approach [30], our approach described earlier
in the introduction, PoweNap [50] and approach using UPSs
[33] . 27

5.1 Example of a birth-death process, customers arrive at the rate
2 and are served at the rate 3, numbers on the states signifies
the number of waiting customers (customers in the queue). . . 35

xi

5.2 The setting of the data communication system: customer ar-
rive to the system, processed by the system and leave the system 36

5.3 The quality of service triangle: by freezing two aspects makes
the third derivable of the first two 37

5.4 Left: The mean delay as the function of the arrival rate. Right:
The mean number of customers as the function of the arrival
rate . 40

5.5 The mean delay as a function of the number of servers with
fixed λ and µ . 41

5.6 The required number of servers as the function of customers’
arrival rate when mean delay is fixed 42

5.7 Possible paths from the raw data to the model representing
the data . 47

5.8 Feed-back loop diagram of the water basin example 49

5.9 Open loop diagram of the water basin example 49

6.1 Cumulative arrivals plot of HIP’s datacluster, number of jobs
arrived up to the current moment expressed as a function of
time in seconds . 55

6.2 Cumulative arrivals plot of the random interval of the Fig-
ure 6.1, number of jobs arrived up to the current moment
expressed as a function of time in seconds 56

6.3 Cumulative arrivals plot of HIP’s datacluster, interval 1, num-
ber of jobs arrived up to the current moment expressed as a
function of time in seconds . 57

6.4 Interarrival time plot of HIP’s datacluster, interval 1, the time
between the subsequent jobs in seconds as a function of job
ordering number . 57

6.5 Interarrival time dependance on the previous interarrival time
plot of HIP’s datacluster, interval 1, time of the interarrival
time in seconds as a function of the previous interarrival time 58

6.6 Cumulative arrivals plot of HIP’s datacluster, interval 2, num-
ber of jobs arrived up to the current moment expressed as a
function of time in seconds . 58

xii

6.7 Interarrival time plot of HIP’s datacluster, interval 2, the time
between the subsequent jobs in seconds as a function of job
ordering number . 59

6.8 Interarrival time dependance on the previous interarrival time
plot of HIP’s datacluster, interval 2, time of the interarrival
time in seconds as a function of the previous interarrival time 59

6.9 Cumulative arrivals plot of HIP’s datacluster, interval 4, num-
ber of jobs arrived up to the current moment expressed as a
function of time in seconds . 60

6.10 Interarrival time plot of HIP’s datacluster, interval 4, the time
between the subsequent jobs in seconds as a function of job
ordering number . 60

6.11 Interarrival time dependance on the previous interarrival time
plot of HIP’s datacluster, interval 4, time of the interarrival
time in seconds as a function of the previous interarrival time 61

6.12 Cumulative arrivals plot of HIP’s datacluster, interval 10, num-
ber of jobs arrived up to the current moment expressed as a
function of time in seconds . 61

6.13 Interarrival time plot of HIP’s datacluster, interval 10, the
time between the subsequent jobs in seconds as a function of
job ordering number . 62

6.14 Interarrival time dependence on the previous interarrival time
plot of HIP’s datacluster, interval 10, time of the interarrival
time in seconds as a function of the previous interarrival time 62

6.15 Exponential probability distribution function generated with
λ derived from interarrival times of interval 10 (see Figure 6.13) 63

6.16 Histogram of interarrival times of interval 10 (see Figure 6.13) 63

6.17 Statistics of different sample and different sample-size service
times in HIP’s cluster, frequency of jobs as a function of time 64

6.18 Interarrival time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds 65

6.19 Interarrival time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds 65

6.20 Interarrival time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds 66

xiii

6.21 Service time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds 67

6.22 Service time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds 67

6.23 Service time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds 68

7.1 Taxonomy of different types of scheduling algorithms [23] . . . 71

7.2 A queueing theory model representing a computing cluster
(the diagram is generated by the JMT-tool [18]) 73

7.3 A simplified queueing theory model representing a computing
cluster (the diagram is generated by the JMT-tool [18]) 73

8.1 The hardware test setting . 81

9.1 Comparision of the algorithms: cumulative electricity con-
sumption in Watt hours is depicted as the function of time
in seconds . 85

9.2 Queueing theory with averaging filter: transient electricity use
in Watts plotted as a function of time in seconds 86

9.3 Queueing theory with averaging filter: (red) the length of the
queue, (blue) the number of jobs in the system as a function
of time in seconds . 86

9.4 Queueing theory with averaging filter: response time in sec-
onds as a function of time in seconds 86

9.5 Queueing theory with exponential filter: transient electricity
use in Watts plotted as a function of time in seconds 87

9.6 Queueing theory with exponential filter: (red) the length of
the queue, (blue) the number of jobs in the system as a func-
tion of time in seconds . 87

9.7 Queueing theory with exponential filter: response time in sec-
onds as a function of time in seconds 87

9.8 Control theory with queue adjusting: transient electricity use
in Watts plotted as a function of time in seconds 88

xiv

9.9 Control theory with queue adjusting: (red) the length of the
queue, (blue) the number of jobs in the system as a function
of time in seconds . 88

9.10 Control theory with queue adjusting: response time in seconds
as a function of time in seconds 88

9.11 No algorithm: transient electricity use in Watts plotted as a
function of time in seconds . 89

9.12 No algorithm: (red) the length of the queue, (blue) the number
of jobs in the system as a function of time in seconds 89

9.13 No algorithm: response time in seconds as a function of time
in seconds . 89

9.14 Control theory with queue adjusting, another test setting:
(red) the length of the queue, (blue) the number of jobs in
the system as a function of time in seconds 90

9.15 Control theory with queue adjusting, another test setting: the
number of running computing nodes as a function of time in
seconds . 91

9.16 Control theory with queue adjusting, another test setting: the
jobs response time in seconds 91

9.17 Randomly generated arrival intensity expressed as a number of
jobs arrived during five minutes interval (time unit is a second) 92

9.18 The number running nodes as a function of time in seconds . . 93

9.19 Control theory with queue adjusting, third test setting: tran-
sient electricity use in Watts plotted as a function of time in
seconds . 93

xv

Chapter 1

Introduction

Nowadays Information and Communication Technology (ICT) starts to be as
global and ubiquitous infrastructure such as electricity. Almost every data
processing device has an access to Internet and probably initiates a great
amount of computation, although this might be totally invisible to an end-
user. The recent trend has been the switch towards cloud computing. All
kind of computation such as web search indexing, data analyzing, business
transactions, scientific simulations, which are either valuable in themselves
or are executed as a byproduct of user-side actions, are performed in huge
datacenters full of computing nodes. End-users’ devices start to get the role
of request senders and response receivers, and computation is transferring to
datacenter side.

Datacenters vary in size from a single rack server room to several hundreds
or even thousands servers containing halls. For instance, the most famous
ICT company owning datacenters and providing cloud computing services —
Google has 31 datacenters worldwide 1. It was estimated that in 2007 the
construction of a single datacenter cost for Google constituted $ 600 million,
that includes investment for construction, infrastructure and servers 2. But
this is not the whole picture of expenses, namely datacenters of a such size
are enormous electricity consumers, drawing continuously about 260 MWs 3.
Another example is Digital Realty Trust in Chicago has a 100 MW power
feed and a datacenter campus in Ashburn, Virginia that is wired for 225 MW
4. Assuming that such datacenter operates at its full capacity for an hour,

1http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-locations/
2http://www.datacenterknowledge.com/google-data-center-faq-part-2/
3http://www.nytimes.com/2011/09/09/technology/google-details-and-defends-its-use-

of-electricity.html
4http://www.datacenterknowledge.com/google-data-center-faq-part-2/

1

CHAPTER 1. INTRODUCTION 2

it brings the expenditure of approximately $ 26000 (we take the cost of the
electricity 0.117 $/kWh 5, thus 0.117 $/kWh * 225000 kWh = 26325 $). That
is why it is not a surprise that datacenters are designed optimal energy use
in mind and new solutions are sought continuously.

It was estimated in the SMART report that ICT is responsible for 2% of
global carbon emissions in 2007 and it is estimated to go grow to 6% in
2020 (see Figure 1.1) [59]. Datacenters are not even the biggest consumers of
electricity: from the same report we see that datacenters contribute to 14 %
of the all ICT carbon emissions in 2007 [59]. Green IT is an emerging field
which seeks solutions to energy optimization in ICT. Many achievements can
be done just by increasing the knowledge about the current situation in ICT
power consumption. For example the survey conducted by Fujitsu, which
summarizes 1000 responses to questions about green IT policies, reveals that
almost the half of the respondents either have never thought about the elec-
tricity bills in their companies or simply do not know how expensive elec-
tricity consumption could be. Further, they found out that there is a strong
correlation between the visibility of the ICT power bill and the company’s
green IT efficiency [11].

Figure 1.1: The contribution of ICT carbon emissions and its growth [59]

The aim of this Master’s Thesis is twofold. First, we want to give an overview
of green IT concentrating mainly on power efficiency of datacenters. We tell
about the current state of solutions for improving power efficiency of datacen-
ters and introduce academic research in the field. We also give the picture of
the cloud computing ecosystem, which inevitably affects datacenter design.
It is important to understand that power efficient datacenters are not the

5http://www.eia.gov/

CHAPTER 1. INTRODUCTION 3

ultimate goal. ICT companies are seeking for revenues by selling services
provided by datacenters and by minimizing the cost caused by running those
datacenters. Thus it is not enough to minimize only operating costs but
instead it is worth to try to achieve a trade-off between the service avail-
ability and efficient datacenters design. Second, we propose our solution for
improving datacenter power efficiency. We apply the state-of-the-art theory
in performance analysis in communication systems — queueing theory.

Queueing theory has been extensively applied as a model for different telecom-
munication systems which provides service for randomly arriving customers
with the specified quality of service. Queueing theory binds together the con-
cepts of service capacity, customers’ arrival intensity and a quality of service
in an elegant and simple way such that their dependencies could be expressed
with equations. Given two of the three parameters, the third can be derived
of the two. Queueing theory has been mostly used in static environments, in
which the customers’ arriving intensity is assumed to have a constant value.
This assumption leads to very convenient results, wherein we get the required
service capacity when quality of service is fixed. But in reality an arrival dis-
tribution seldom remains unchanged. As long as the variations are small,
a distribution with constant arrival rate is acceptable as an approximation.
In computing clusters the workload could be very ‘spiky‘. That is why we
introduce quite a new model, in which we let the customers’ intensity to vary.
Naturally, this not only captures better the behavior of the real customers
but also brings us many new challenges, such as the increased uncertainty
due to approximations and the difficulties to assess real values in changing
settings. But regardless of the difficulties, our study makes possible to ad-
just computing resources to the level which is ‘just enough‘ for the current
customers’ demand. By this approach we can significantly increase the uti-
lization of the computing nodes in a datacenter and thus gain power savings.
In order for our solution to be applied it is necessary to fulfill a number of
conditions regarding the arrival and service time distribution. We analyzed
data logs gathered from real computing clusters, performed statistical test
on that data and argue how well the data fits into our models.

We implemented our approach with three algorithms written in Bash. The
algorithms perform resource management in a data cluster by switching on
or switching off computing nodes based on the current customers’ arrival
rate. We also tested our solution by executing long runs and measuring
electricity consumption of servers. The test settings were as close to the real
situation as possible — we used real resource management software (Sun
Grid Engine, Bash-scripts), the jobs were CPU-intensive benchmarks and
the customers’ arrival was simulated realistically. Those preliminary test

CHAPTER 1. INTRODUCTION 4

runs show remarkable savings in electricity and thus the purpose of this
work is fulfilled — it was attested that queueing theory is applicable to the
problem. Because both the theory is large and the optimization targets are
numerous, we could not investigate all the aspects of the approach in detail.
We leave suggestions for further improvements to the future research.

This Thesis is constructed as follows. In Chapter 2 we give an overview of
cloud computing. Cloud computing is not just a collection of datacenters
full of servers spread all over the world. It is new concept in ICT business
with its own advantages and challenges. Because this research was founded
by Helsinki Institute of Physics at CERN, in the last Section of the Chapter
we describe which connections CERN has to cloud computing.

In Chapter 3 we give an overview of green IT. ICT ranges from end-users’ de-
vices such as cell phones and PCs coming to data transmission infrastructure
such as Internet, LANs and phones base stations and ending to large data-
centers. It is important to remember that green IT is searching for energy
efficient solutions on all those sides, although in our study we concentrate on
datacenters. Also the Chapter is important because the motivation behind
our solution is given there. It is very recommended to read at least Sections
3.2 and 3.3, in which we argue why the problem of servers poor utilization is
worth to be considered.

In Chapter 4 we present work done in green IT concerning datacenter power
efficiency improvements. Solutions are either hardware-driven or software-
driven depending on which components are used to achieve power efficiency.

Chapter 5 familiarizes with the basics of queueing theory, control theory and
statistical testing needed for understanding of our approach. In the Section
describing queueing theory we have a short introduction to the modeling of
computing systems with the aid of queueing theory. This could be understood
as a related work but presented later because of the need to understand first
the appropriate theoretical background.

In Chapter 6 we analyze a real world data and see how well it is applicable
to our models.

In Chapter 7 we present our solution and the alternative ways to model the
problem of improving datacenter utilization. The last Section is somewhat
the summary of our investigations.

In last Chapters 8, 9 and 10 we give the concrete description of the imple-
mentation for our approach, then we present results for the test runs and
conclude the thesis. Improvements and further investigations are presented
there.

Chapter 2

Overview of cloud computing

In this Chapter we try to describe what cloud computing is and give four
views at it. First, what kind of new business opportunities cloud computing
brings. Second, what new technology cloud computing requires. We discuss
the structure of datacenters and what challenges their use bring. Third,
we look at scientific version of cloud computing — the Grid, which differs
slightly in use from business cloud computing. Finally, we discuss why CERN
requires Grid.

2.1 Cloud computing

In the recent years there has been a comprehensive movement towards cloud
computing in the ICT field. Cloud computing is a concept which comprises
both the economic and technical perspectives. Economic view comprises
all policy, methodology and social changes in the way ICT companies offer
their services and end-users perceive those services. Technical view describes
the hardware and software architecture required to make the new services
profitable for companies and suitable in cost for customers.

Let us examine the whole supply chain of cloud computing field and see what
kind of new possibilities are arising from it for end-users and companies. We
will employ the classification used in [15] and divide the supply chain into
three parts — end-users or Software as a Service-users (SaaS-users), ser-
vice providers (SaaS-providers), which are cloud users, and cloud computing
providers (see Figure 2.1). The main stream literature introduces usually
three layers of cloud computing business — Software as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) [44]. In

5

CHAPTER 2. OVERVIEW OF CLOUD COMPUTING 6

this work we combine PaaS- and IaaS-providers into a single actor and call
it according to [15] a cloud computing provider. A company buying such
services is then PaaS- or IaaS-user or alternatively SaaS-provider. End-users
are called in all contexts SaaS-users. The terminology of the cloud comput-
ing have not yet become established and our distinction might not be the
unique, so that a reader should be careful with their use. We will investigate
what benefits cloud computing brings for each of those business groups.

Figure 2.1: The flow of the cloud computing services [15]

Users get access to the applications and services regardless of a usage context.
Internet services are changing from mostly informational to service-based ap-
plications. In cloud computing familiar services such as information retrieval,
email, office applications, photo and video storage and social networking are
offered ubiquitously and thus can be accessed from any device and in any
place and time. From the end-user point of view cloud computing improves
the service experience, as it reduces the management (no configuration or
backups are needed), and eases the access as the service can be reached from
any device (no matter which operation system it has, or whether it is desktop
or portable device) [17].

Services used by end-users are run by companies, we call software providers
(SaaS-provider) or service providers, whose software resides (usually) in an
other company’s cloud. Although some companies own both the datacen-
ter and the service running on the top of it (Amazon, Google, Facebook),
there is emerging a novel business trend, in which instead of purchasing a
datacenter, a company actually buys a datacenter facilities for its service
from an another company. Let us explain why such trend is possible. First,
(especially) startup companies can outsource the IT-services to datacenter

CHAPTER 2. OVERVIEW OF CLOUD COMPUTING 7

providers. This brings the huge opportunities to company’s visionary ideas
that can be tested within a short time. In the old days, when a company con-
sidered about launching a new service, it had to invest to a datacenter, wait
until it has been deployed (a building constructed, servers purchased and
software installed) and only then see whether the idea was worth to imple-
ment. Nowadays, a company can buy any number of servers for any period of
time. This means that a company can rent servers from a servers’ provider,
transfer its application and/or data to the servers for a paid period of time. If
more computation is required the company can rent servers for longer time or
alternatively rent more servers. Today, cloud computing supports total scal-
ability, wherein renting one server for 1000 hours equals in price renting 1000
servers for one hour [15]. Second, renting servers from datacenter providers
relieves cloud users of maintenance costs related to hardware. Problems with
fault situations also disappear as the datacenter provider watch over them.

Now, let us take a look at datacenter providers. There are companies which
construct datacenters containing hundreds, thousands or even tens of thou-
sands servers. Renting servers from datacenters became a new profitable
business with its own laws and peculiarities [60]. Below we mention some
of them. Buying cloud computing utilities can be even cheaper than run-
ning workload on the own datacenter. The trick is that although the cost
of cloud computing is more expensive than electricity bill of the own server,
it pays nothing when not used. In other words buying a cloud computing
service releases a company from the capital investment and the problems of
its under-utilization. On the other hand a company providing such service
can achieve a very high utilization, as it receives many requests with peaks
and valley at different time moments, and thus can ‘pack‘ workload very
efficiently.

Cloud computing also benefits from economy on scale, wherein purchasing
a large number of components at a time (servers, UPSs, PDUs) can cost
less. This is possible because the fixed costs are then distributed over larger
amount of machines. For instance James Hamilton reports in his presentation
that in very large services the economy of scale brings 7.1, 5.7 and 7.1 times
more savings in networking, storage and administration costs, respectively,
than in small/middle-sized datacenters (numbers are collected in 2006) [37].
Server administration costs are also amortized among a bigger number of
machines. An IT-specialist maintaining 10000 of servers costs less per-server
price versus IT-specialist maintaining 100 servers. But of course a very high
cost of an entry is required to make economy of scale substantial.

CHAPTER 2. OVERVIEW OF CLOUD COMPUTING 8

2.2 Grid

Grid computing is a term unifying the set of software and hardware tech-
nologies used in distributed computing into the paradigm, wherein comput-
ing resources are thought to be as ubiquitous and easy-to-use as electricity
in the power grid. In the legendary book ‘The Grid: Blueprint for a New
Computing Infrastructure‘ the authors confirm this with the historical fact
that not the invention of electricity made it so crucial and useful, but the
spreading of electrical infrastructure — electrical power grids, which deliv-
ered electricity to everybody homes [41]. The same applies to the Grid, only
the uniform standards of middleware bring grid computing capabilities to
a mass consumer. The appealing idea behind the Grid is that instead of
buying a computer, one buys the computing resources, the same way we
buy electricity instead of constructing our own power plant. Concept of grid
computing is very similar to cloud computing. Actually, besides tiny dif-
ferences those two have a lot in common. Grid computing is aiming to the
more tangible, standardized and secure services. For instance, wherein grid
computing is providing storage and computing resources, cloud computing
is providing services and more abstract resources. Grid computing aims to
the standardization between sites to achieve universal protocols to request
computing power. In grid computing security is safer but on the other hand
more complicated. Instead, cloud computing resources are accessed simply
via Internet. [31]

Grid and cloud computing have similar building blocks in software and hard-
ware parts. Both aim to unify computing resources converting the underlying
fabric to a pool of abstract resources. Cloud computing uses more virtualiza-
tion and grid computing batch queueing systems. Thus, grid computing does
not directly support interactive applications, because of expensive scheduling
decisions and potentially long queues in the batch queueing systems. Both
grid and cloud computing use programming interfaces such as MPI [14] and
MapReduce [29]. Both also share the user’s viewpoint of outsourcing the
computer provisioning and maintenance to a third party. It is easy and fast
to just use one’s credit card to buy from a resources provider an on-demand
access to thousands of servers all around the world. [31]

Are there then any reasons to choose local computing instead of grid or cloud
computing? First, not everyone wants to send their private or very sensitive
data to the third party. Second, some companies have very tight requirements
to the availability — the service should be active even if the network is not
functioning. One is ought to use grid computing whenever the jobs send to a
cluster are stand-alone applications and do not have strict deadlines. Cloud

CHAPTER 2. OVERVIEW OF CLOUD COMPUTING 9

computing is appropriate to the business applications where the demand is
changing fast and it is hard to predict it.

2.3 Warehouse datacenters structure

Most of nowadays computation is not running on end devices but in ware-
house size datacenters. Those datacenters contain from hundreds to tens of
thousands of servers. While running, servers consume electricity and produce
heat, and this heat have to be removed by a cooling system requiring more
electricity consumption and thus more heat. A datacenter is a matter of
great investment, which are proportional to the amount of power delivered
to the system. Typical construction cost is $10-20/W [17]. Additionally,
a datacenter consumes continuously electricity, which increases operational
costs. That is why datacenters have to be designed very carefully. Careful
datacenter design covers both the correct capital investment — appropriate
for the current business situation number of servers and power efficient facili-
ties for servers’ execution support such as power system, fault control system
and cooling. This introduces the totally new design solutions and methods
to improve efficiency.

We briefly present the structure of a typical datacenter because a couple
of solutions achieving power savings use the building blocks of a datacenter.
The typical datacenter contains the following building blocks — power distri-
bution units (PDUs), uninterrupted power supply (UPS) system, emergency
diesel generators, electrical primary switchgear, individual computer cabinets
and cooling infrastructure. Electricity enters from a transformer, and then
it passes through a switch board to UPSs. An UPS is also connected to a
diesel generator, which will be switched on in the case of power shortage.
Because a generator will take 10-15 seconds to start, the UPS is needed to
provide electricity during this time. UPS is basically small battery and it
accomplishes AC-DC-AC conversions. The electricity coming from UPS is
fed to a number of PDUs. Each PDU distributes power to 20-60 racks. Each
rack is a circuit protected with its own breaker. Depending on the type of
the server, each rack can contain 10-80 computing nodes (see Figure 2.2).
[17]

CHAPTER 2. OVERVIEW OF CLOUD COMPUTING 10

Figure 2.2: The graphical view of a typical datacenter [17]

2.4 Physics computing at CERN

CERN is a widely known nuclear particle research center. CERN was founded
after Second World War in 1954 by 12 founding member states. Its origi-
nal purpose was to recreate the European science and to unite European
scientists. [1]

Nowadays, CERN is much more than just a research center. Within CERN
objectives in addition to the primary research are: Creating and advancing
the frontiers of technology, for instance World Wide Web was created at
CERN by Tim Berners-Lee. Maintaining research community and bringing
together nations through science. Training the scientists of tomorrow, for
instance every summer there are around 200 young summer trainees visiting
CERN to work and to study. [2]

Today, the most promising and breathtaking CERN project is Large Hadron
Collider (LHC). LHC is the world’s largest particle accelerator with the diam-
eter 27 kilometers, situated 100 meters underground and spanning between
France and Switzerland. [3] It was started up in 2008 and with its aid the
researchers try to answer fundamental questions about the nature of our uni-
verse — what gives matter its mass, what is the dark matter and energy
comprising 96% of the Universe, why there are more matter then antimatter

CHAPTER 2. OVERVIEW OF CLOUD COMPUTING 11

and what are the first instants of the Universe’s existence. [4] [46]

The major question, which will be possibly answered with the aid of LHC,
is the existence of so called Higgs boson. Higgs boson can be thought as the
mathematical correction in nowadays physics to explain the presence of mass
in force-carrying particles. Researchers accelerate particles to the near light
speed to produce high energy collisions and thus conditions in which theoreti-
cal Higgs boson can be registered. [5] In the LHC experiment a great amount
of empirical data is collected and compared to the results obtained ‘theoret-
ically‘ — conditions and results which are deduced and computed through
physical simulations, wherein the existing physical laws are represented. If
the results of empirical and theoretical approaches match, the existence of
Higgs boson would be proved.

The Grid is the innovation, which is used and developed in parallel with
LHC-project. The enormous amount of data produced by LHC (about 15
petabytes of data in a year) is stored and distributed through the Grid en-
abling physicists to work with the experiment remotely. The Grid provides
also computational and communicational resources. Finland participates to
the LHC-project through NorduGrid 1.

1http://www.nordugrid.org/about.html

Chapter 3

Overview of green IT

In the current state of IT the power expenses associated with maintenance
of IT facilities are unproportionally large compared to what they could ide-
ally be. Green IT is an emerging field aiming to decrease the wastage of
power resources consumed in IT field. There are two properties we want to
achieve. First, a computing device should consume as little energy as pos-
sible, let us call this power (energy) efficiency. Second, a computing device
should consume the amount of energy (electricity) proportional to the useful
work it does, let us call this energy-proportionality. However, both are far
from the the ideal situation, computing and computing-aided components
such as servers, power supply units, hard disks and coolers are not ideally
power efficient nor energy-proportional in the sense that they consume more
power than useful computations they accomplish. Additionally, a computer
produces heat as a byproduct, which has to be removed requiring more en-
ergy. Inefficient hardware is only part of the problem, poor utilization of
computational resources is also wastage of energy. Even if a server is very
power efficient (do not mix up with energy-proportionality), ‘doing noth-
ing‘ or idling might be ‘the useful computation‘ from a server’s point view,
whereas we regard it as a wastage of energy. Bringing the problem to its
highest degree — even if a server is both ideally power efficient and energy-
proportional (such a server do not yet exist nowadays), if there is no enough
workload for it, the investment into the server were done inefficiently. In this
Chapter we will look at the current state of green IT, first we give a couple of
examples of green IT applied elsewhere than in datacenters just to avoid the
impression that green IT and efficient datacenters are synonyms. Then we
present metrics used to assess the datacenter’s power efficiency generally and
the metrics we will use extensively in our study. We conclude the Chapter
with the challenges in front of green IT in datacenters. The concrete exam-

12

CHAPTER 3. OVERVIEW OF GREEN IT 13

ples of solutions developed for improving datacenters power efficiency are left
to the next chapter.

3.1 Green IT

If we are talking about office buildings, there is a research on reducing plug
load. A ”plug load is the energy consumed by any electronic device that
is plugged into a socket.“ [58] In office buildings those devices are coffee
makers, water coolers, refrigerators, routers, computer desktops, projectors
and servers. Nowadays, many of such devices have stand by modes, in which
electricity consumption is less than in active mode. Still, stand by modes
consume some energy, which accumulates to a great amount over long periods
of time. In [28] authors argue that the promising new technology would be
occupancy sensors, which shut the gadgets totally when the users are away
and do not need them for sure.

In the field of data transmission there is a research on energy efficient hard-
ware. In [55] authors describe IEEE 802.3az Energy Efficient Ethernet (EEE)
standard approved in September 2010. In this standard is used low power
mode, which uses less electricity if the data transfer is also low. The stan-
dard covers the most common Ethernet physical layers such as 100BASE-TX,
1000BASE-T and 10GBASE-T. This is an important achievement because
networks are very lightly utilized, 1%-5% is a typical utilization [25].

In [40] authors evaluate the energy consumption of Internet. They split In-
ternet structure to three logical layers — access network, metro network and
network core. They present the typical devices that operate in those layers
such as optical line terminals in an access network, routers in a metro net-
work and multi-shelf core routers in core network. Then, they estimate their
power consumption taking into account such factors as number of homes,
peak access rate and the over-subscription rate. Thus, the author concludes
that the approximate power consumption of the Internet is 1% of the total
electricity consumption in broadband enabled countries. This is an exam-
ple of those rare studies aiming to increase the knowledge about ICT power
consumption.

CHAPTER 3. OVERVIEW OF GREEN IT 14

Figure 3.1: Calculation of PUE and DCiE [35]

3.2 Green IT in Cloud Computing

Energy efficiency in datacenters is defined as the useful work performed di-
vided by the energy required for that [17]. Green IT communities have
developed metrics which help designers to assess their datacenters power ef-
ficiency. Power usage efficiency (PUE) is a such widely adopted metric [7].
PUE reflects the energy efficiency of datacenter buildings in relation to IT
resources. As we saw in the previous chapter, the datacenter building is more
than just a collection of servers, the datacenter consists of a large infrastruc-
ture of equipment such as power supplies, UPSs, coolings, etc. PUE tells
how much energy is spent in datacenter buildings’ infrastructure in addition
to the pure maintainance of an IT equipment (PUE = total facility power
/ IT equipment power) [35]. For example, the PUE value of 3 means that
every watt going to an IT equipment needs 2 more watts to maintain infras-
tructure. Ideally, we wish the PUE value equaling 1, but according to the
several studies average PUE is around 2.0-3.0 [17]. A good PUE value can
be thought to be as large as 1.5 according to James Hamilton [37] and 1.6
according to The Green Grid consortium [35]. Google reported of having its
PUE equal to 1.12 [6]. There is also a derivative metric of PUE— Datacenter
Infrastructure Efficiency (DCiE), which is calculated as follows: DCiE = 1 /
PUE. A visualization of those metrics is presented on Figure 3.1. The main

CHAPTER 3. OVERVIEW OF GREEN IT 15

contributor of datacenters’ inefficiencies are claimed to be cooling, after that
comes an IT equipment itself (servers) and Uninterruptible Power Supplies
(UPSs).

Figure 3.2: Energy consumption per a server component [17]

PUE is not alone enough when we want to improve efficiency of the IT equip-
ment itself [34]. For instance, Figure 3.2 shows the proportion of electricity
consumption each server component is responsible for. The metric server
PUE (SPUE) tells how efficient the IT components which are involved into
computation — CPU, memory, disks, motherboards. Normal SPUE values
are around 1.6-1.8 [17]. Green IT Promotion Council suggested its own met-
ric — Datacenter Performance Per Energy (DPPE), which function of four
other metrics including PUE. DPPE captures more aspects of datacenter’s
energy efficiency than PUE [34].

There are a couple of industry standard organizations such as Transaction
Processing Performance Council (TPC), Standard Performance Evaluation
Corporation (SPEC) and Storage Performance Council (SPC) that have de-
veloped tests for measuring energy consumption of computing systems. Most
of servers’ developers are members of those consortia. Their test can work as
a uniform measure of computer performance. Normally, they express servers’
performance in terms of overall work performed per overall energy consumed,
in units it can be W∗m

T
(electricity consumed [W] per transaction [T] per time

unit [m]) for TPC-C1, T
W

(web transactions [T] per electricity consumed [W])
for SPECweb20092 or T

s∗W (input/output operations [T] per second [s] and

1http://www.tpc.org/tpcc/
2http://www.spec.org/web2009/

CHAPTER 3. OVERVIEW OF GREEN IT 16

per electricity consumed [W]) for SPC-1C/E3. As we can see from those ex-
ample metrics, those benchmarks usually test commercial systems in terms
of business transactions and differ from each other in terms of what they test
[57]. For instance TPC-C is the TPC’s benchmark, which is claimed to be
“accepted in the industry as the most credible transaction processing bench-
mark” [56]. TPC-C operates in the following way, it generates a ‘realistic‘
mix of transactions, where the proportion of each transaction is the same
as in the real workload, and load the system with the workload to achieve
100%-utilization. When the system is stabilized into steady state, TPC-C
measures its energy consumtion in time windows, for a minimum 120 min-
utes. The workload also tries to load all conponents of the server — CPU,
memory, disks. TPC-C tests the whole system including clients and server
enclosures (see Figure 3.3). [57] [56]

Figure 3.3: Average power consumtion of major parts used in TPC-C [56]

In our research we concentrate on the third aspect of energy efficiency mea-
sure — utilization, which we try to maximize. Utilization can be defined
as a ratio of time spent on useful computation divided by the time of the
whole measuring period. Naturally, it cannot be greater than one and usu-
ally it is below one because of the lack of the workload. Nowadays servers
run at a very low (approximately 30%) utilization (see Figure 3.4) [17] [16].
It makes interesting for us that maximizing utilization may involve software
solutions. As we will see in the next chapter, the research performed on
utilization maximization have been primarily concentrated on putting server
components into low-power modes during low activity periods. Such ap-
proaches need of course support from the hardware — there should be such
power saving states and entering and leaving them have not to take long

3http://www.storageperformance.org/results/benchmark_results_spc1c

CHAPTER 3. OVERVIEW OF GREEN IT 17

time. So, software solutions alone without hardware assistance cannot solve
the under-utilization problem. Still, there are many unseen improvements on
the software side that can exploit the existing hardware possibilities. Already
at this point, we want to mention that due to queueing theoretical reasons,
we will describe later on, in a long run the utilization cannot reach 100% (if
it could, the response time would go to infinity). But of course during short
time intervals we can see a system working at 100% utilization.

Figure 3.4: “Average CPU utilization of more than 5,000 servers during a six-
month period. Servers are rarely completely idle and seldom operate near
their maximum utilization, instead operating most of the time at between 10
and 50 percent of their maximum utilization levels.” [16]

Here we also want to stress that the additional desire to improve utiliza-
tion is driven by the poor energy-proportionality of server components, i.e.
while idling, servers still consume too much energy (see Figure 3.5). Energy-
proportionality could be improved either by software solutions (scheduling
and buffering workload to maintain a pool of jobs) or with hardware solu-
tions, wherein with less workload servers spend proportionally less energy
(and ideally while idling they do not spend energy at all). Currently, efforts
are mostly performed on software side. The reason is that to improve hard-
ware the designer should optimize several server components in their whole

CHAPTER 3. OVERVIEW OF GREEN IT 18

workload spectrum. As we see from the Figure 3.2 a CPU is not the only
consumer of electricity.

Figure 3.5: “Server power usage and energy efficiency at varying utilization
levels, from idle to peak performance. Even an energy-efficient server still
consumes about half its full power when doing virtually no work.” [16]

3.3 Important processor related metrics

In this Section we will briefly discuss important energy consumption metrics,
whose nature and characteristics explain how to achieve better utilization
by balancing between less energy consumption and increased response time.
Very first it is important to understand the difference between concepts power
and energy, which are often wrongly thought to be interchangeable. Energy is
the metric which determines the final bill and usually expressed in (kilo)watt-
hours. Energy is ability to do work. The power of an electrical device is the
rate at which it consumes energy and it is expressed in watts. Energy is what
and additionally how much one delivers and power is the rate at which one
delivers it.

The first metric is processor frequency, which defines how efficient the pro-
cessor is. Processor frequency is expressed in number of cycles performed in

CHAPTER 3. OVERVIEW OF GREEN IT 19

a time period [38]. The frequency is very closely related to power. The fre-
quency and voltage scaling techniques such as Intel’s SpeedStep and AMD’s
Cool’n’Quiet use this relation to decrease power at the expense of reduced
frequency. The equation binding those metrics is the following P = C∗V 2∗F ,
where C is the capacitance, V is the voltage and F is the frequency [27].

The second metric is power efficiency with unit jobs/watt-hour. It defines the
rate at which a computer processes an amount of fixed workload (here we
assume that all jobs have the same size) for every watt-hour of energy used.
Power efficiency is calculated in the following way: the workload delivered
(expressed in a number of jobs) is divided by the energy consumed, and the
bigger this ratio is the more power efficient computation we get. Earlier
studies [54] have shown that power efficiency increases when several jobs
are run simultaneously on a single core. This way they are run in parallel,
CPU and memory switching between a number of different processes. In [54]
the authors argue that this effect is explained by increased utilization, i.e.
when we have enough jobs running in parallel on a single core, we achieve
a better control to interchange between jobs and fill the process idling gaps.
As computer electricity consumption during idling is almost as big as during
working phase, it is desirable that a computer remains always fully-utilized.
In Figure 3.6 you can see one possible scenario how processes could be run
simultaneously instead of sequentially to achieve better power consumption.

Figure 3.6: The processes consuming CPU when run in serial one after an-
other and simultaneously

Now we demonstrate the use of those metrics by examples. Their purpose is
to motivate the reader towards our solution (see Section 7.2). The examples

CHAPTER 3. OVERVIEW OF GREEN IT 20

explain why in our solution we aim to get a few computing nodes fully-utilized
and other off instead of all nodes running at moderate utilization. Assume
we have a computer running at 1 watt power level and it should compute
10 similar jobs. To accomplish that it takes 10 hours. What is the energy
consumed and how efficient is this solution? As the computer ran at 1 watt
during 10 hours, we get

1 watt * 10 hours = 10 watt-hours
10 jobs 10 watt-hours = 1 jobs/watt-hour

Now imagine that we use two computers similar to the previous to accomplish
the same task. How much more efficient/inefficient is this solution to the
previous one? Both computers run at 1 watt power level but because the
workload is divided equally between them, each computer will get 5 jobs, so
it will take 5 hours to accomplish all jobs. We get for the energy spent:

1 watt * 5 hours + 1 watt * 5 hours = 10 watt-hours

and for the energy efficiency:

10 jobs / 10 watts-hour = 1 jobs/watt-hour

So the solution is as power-efficient as the first one. A few points to remark
are that the computation lasted only a half of the first one. This is of course
a positive outcome, but during the computation we needed at the same time
twice as much power as in the first example. This could cause problems if we
have only a limited amount of power. This is not a totally artificial situation
as in the field of power generation it is extremely desirable not to produce
power peaks.

Now let us imagine a situation, where computers are not fully utilized. Sup-
pose we have three computers to run 6 jobs (2 jobs per computer). As before
each computer consumes 1 watt of electricity, but now it takes 3 hours to
run all the jobs for each computer. The energy consumed is now:

(1 watt * 3 hours) + (1 watt * 3 hours) + (1 watt * 3 hours) = 9 watt-hours

and energy efficiency is:

6 jobs / 9 watt-hours = 0.667 jobs/watt-hour

CHAPTER 3. OVERVIEW OF GREEN IT 21

which is less than in above cases. Now the reader might wonder, how it is
possible that a computer executes jobs slower when there are less jobs. In
the first example we had 10 jobs / 10 hours = 1 jobs/watt-hour and in the
last 2 jobs / 3 hours = 0.667 jobs/watt-hour. The trick is that in the first
example a computer executes all jobs simultaneously (in parallel) and thus
the spent time is spread among all jobs, although that one job completion
takes still fewer time than it would take when executed alone. The previous
study [54] implies that this is due to poor utilization, in which case a job
might block waiting for a memory access and thus a computer spend much
of its time idling but still spending energy. In contrast, when fully utilized,
while some job is blocked, another could be executed and thus consume
energy that otherwise would be wasted. This leads us to a very important
observation—to optimize energy efficiency we should provide computers with
enough workload.

3.4 Challenges

We can think there are two main classes of workload sent to datacenter
servers — on-line requests and off-line batch jobs. On-line workload (such as
web page surfing, on-line translation, video watching and so on) is interac-
tive and thus requires response from the server to the users’ requests. Such
workload exhibits a high sensitivity to the response time — if it exceeds the
limit, the users start to suffer from degraded service. It can have disastrous
consequences if the service provider has agreed on the service level agreement
(SLA) (the synonym of this term is quality of service, which we will use in
queueing theory), which is often the case. When service level is violated,
the provider loses revenue as some of the customers cease to use its service.
The on-line workload is also problematic because of the hardness to achieve
perfect utilization. Although the on-line workload is highly interactive, it has
a number of idle periods, for instance those time intervals when the server is
waiting for the user’s response. It is hard to fill such intervals because they
are quite short and cannot be extended as quality of service may suffer.

Off-line batch jobs are a type of workload requiring large resources — CPU,
memory, disk space and they usually do not have strict time constrains. For
datacenter computation optimization this brings great opportunities — by
using different scheduling approaches we can improve the energy-proportiona-
lity just slightly affecting performance. We will see in the next Chapter 4
how it could be done and our approach is an example of this type of energy
improvement.

CHAPTER 3. OVERVIEW OF GREEN IT 22

Another important aspect related to optimizing datacenter computation is
workload prediction. It is well known that workload intensity is varying. But
not only workload, business requirements, electricity prices and datacenter
capacity are seldom constant values.

When we start to explain related solutions and our solution, it is worth to
keep in mind these challenges. These challenges explain why the solutions
are such as they are. For instance, one cannot forget users’ perspective while
designing energy efficient solutions.

Chapter 4

Related work

One of the main obstacles in front of efficient energy management is a varying
workload. There have been different strategies for improving energy man-
agement with the commonality that they introduce trade-offs, for instance
achieving better power efficiency at the expense of degraded performance.
We can divide those techniques into two categories — those affecting per-
formance and those affecting users’ behavior. The former has been studied
more than the latter. In researches it has been proposed to deny the service
during rush hours (TCP protocol’s scale window) [48], use execution throt-
tling and frequency scaling techniques, and spreading the workload over time
and space. The latter are slowly coming into use in the datacenter commu-
nity, although the users’ behavior shaping has been used in other fields. For
instance in electrical power companies it is quite common that the company
charges less for energy during less active periods (i.e. nights) to make the
workload as constant as possible. We will look in this Chapter into few ex-
amples of the first type of workload management — reducing performance
to achieve better energy efficiency.

In [50] the authors claim that current datacenter servers run on average with
20-30% utilization. Still, such poorly utilized servers consume about 60%
of the peak power. The paper comes up with the solution called PowerNap
suggesting turning off unused machines to save energy and resulting in 23%
energy savings. The advantage of this approach is that hardware designers
can concentrate on optimizing the energy efficiency of the only two states in
a computer — fully utilized active and near zero-power passive. There are
other approaches in which one or several computer components are set into a
power saving state. But then it is desirable that the components functioning
in such states are not less efficient than they are in active states, which

23

CHAPTER 4. RELATED WORK 24

imposes serious challenges for hardware designers. According to the authors
the disadvantage of this approach is that despite of idling more than 60% of
the time the typical workload of some interactive server applications exhibits
idle periods of less than one second, which are too short to be exploited by
the PowerNap mechanism. The other problem resides in an inefficiency of
datacenter power supply units (PSUs), whose efficiency degrades as output
voltage decreases. To overcome this, the authors introduce a new power
provisioning approach — Redundant Array for Inexpensive Load Sharing
(RAILS).

Although, the idea of PowerNap is elegant and simple, it has a limitation. In
their workload analysis of datacenter servers they do not distinguish between
workload of separate machines. This leads to the situation in which the
decisions are done based on the knowledge of averages, which does not lead
to perfectly efficient solutions. For instance they present a table with data
collected from seven departmental IT servers. According to their analysis, an
idle period is on average 1.8 seconds long in a 600-node cluster. Although,
the length of idle periods can vary largely on different machines of the same
cluster.

In [30] similarly as in [50] the authors found that in a big cluster of thousands
of servers there is a 7-16% gap between achieved peak power and theoretical
peak power reported by a manufacturer (so called nameplate value). The
peak grows to almost 40% in the whole datacenter. They found out that
computers’ nameplate value is higher than a server can actually achieve in
its real use. They also found that, as the number of servers grows, it becomes
more unlikely that different machines have their peak power at the same mo-
ment due to statistical effects. They present cumulative distribution function
curves of rack’s, PDU’s and cluster’s utilization level to visualize the effect
of under-utilization. For example a cluster runs at most at 0.923 utilization
(normalized to the peak value), on the other hand the rack can achieve 0.96
utilization. The under-utilization of the datacenter facility is transferred into
total cost of the datacenter acquisition. As a solution, the authors suggest
hosting additional machines under the existing power budget. They also
suggest using a more heterogeneous workload to smooth workload activity
peaks. This is because a heterogeneous workload more likely does not have
correlated activity peaks. The authors suggest the use of CPU voltage and
frequency scaling (DVS) as a technique to preserve the cluster from the ex-
ceeding an allowable cluster power limit. If the current workload will threaten
to grow over the existing power supply limits, the machines could be slowed
down until the workload decreases again.

CHAPTER 4. RELATED WORK 25

Paper [30] presents a pair of simple methods to improve PSU usage efficiency.
Here is important to stress that those methods are aiming to PSU full uti-
lization. By adding more servers and keeping the PSUs capacity unchanged,
we can process more workload, but workload variation still remains. Thus,
we still face the problem of an inefficient power usage during less active peri-
ods. The usage of DVS in case of too tall activity peaks is a useful idea, but
as the authors said no analyses were made on how it can affect the system
performance.

In [51] the authors describe several techniques to switch server hardware com-
ponents into active low-power modes during the low workload. They argue
that PowerNap [50] is not applicable to the workload class called On-line
Data-Intensive (OLDI). OLDI is a very interactive workload as it requires
responsiveness in the sub-second time scale. Large search products, on-line
advertising and machine translation are examples of OLDI. Although, the
OLDI workload there could exhibit periods of low activity, it is very rarely
fully idle. Thus, instead of turning machines off, their components perfor-
mance can be reduced to achieve power-performance trade-offs. The authors
present activity graphs, whose purpose is to succinctly describe how different
workload activity causes the utilization level changes in different hardware
elements such as CPU, memory and disks. The authors also present the char-
acteristics of components idle modes such as the duration of transition to the
mode and how much energy it saves related to the full active mode. By com-
bining those two pieces of information, the authors state, which low-power
mode can be applied in which workload. Their ultimate goal is to create a
framework for energy-proportionality, wherein the server component spends
as much energy as there is useful computation available.

Although, in [51] the very large spectrum of idle and low-power modes is
presented as well as their applicability to different workload levels, their
approach suffers from the criticism presented in [50] — it is much harder to
optimize several server components to operate efficiently at all activity levels
than to optimize just two — fully-active mode and fully-passive mode. Some
of their results are not correct in all contexts. For instance they demonstrate
how to read activity graphs — when the CPU utilization is 80% then CPU
can be switched into active low-power mode that incurs a 25% slowdown
(1/1.25 = 80%). This is not always true, because low utilization is not
necessarily a result of the lack of computation. For instance the process
can wait for a constant time I/O-event and thus the CPU slowdown will
not increase the utilization (but it is true that it might decrease energy
consumption during the waiting time).

CHAPTER 4. RELATED WORK 26

In [33] the authors propose to exploit the datacenter uninterrupted power
supplies (UPSs) during the increased workload to ‘shave‘ power peaks. The
authors remind that minimizing energy consumed in a datacenter is not nec-
essary the same as minimizing the electricity bill. They argue that most
electricity providers charge a greater price for intensity peaks, which forces
us to concentrate on them. Their insight is that in datacenters there is an un-
used power source — UPS, whose primary task is to guarantee uninterrupted
power supplement during electricity breaks. The authors formed a framework
for power peak reduction. Their algorithm knows the day’s workload in ad-
vance and then with the help of UPSs and voltage scaling techniques tries
to smooth the peaks starting with the tallest one. The authors report that
using the algorithm can reduce 15-45% of peak power which translates into
6-18% savings in an electricity bill.

Although, the idea in [33] is very fresh, it suffers from several limitations.
First, the shortages reported by authors themselves — lower UPS lifetime due
to frequent charge/discharge cycles and reduced datacenter availability due
to discharging UPSs undermines their usefulness in power break situations.
Second, the algorithm makes too severe assumption without a justification
— knowing the workload for a day in advance.

In Figure 4.1 we summarize the ideas presented in the first three papers and
compare them to our solution, which was briefly described in Introduction
and in details in Section 7.2. We sketched the original workload with a
red color and assume that it correlates with electricity consumption. Then,
from the same graph with blue, we can see what happened to electricity
consumption after applying one of the earlier presented techniques to the
original workload (marked with red).

In [45] provisioning of datacenter servers for power savings is modeled as an
optimization problem. The authors present a general formula which captures
the expenditure of energy consumption, revenue lost due to an increased de-
lay and costs related to switching servers in and out of a power saving mode.
The generality of the formula provides wide possibilities to apply any model
appropriate for the current situation. For instance, the choice of revenue
losses can be expressed by any equation, as well the delay can be modeled
either with the queueing theory average delay or the 99%-bound delay. The
optimization procedure is then deduced from this formula. The basic idea
is to achieve a trade-off between energy costs and revenue losses due to de-
graded quality of service. The new algorithm — Lazy Capacity Provisioning
(LCP(w)) operates by predicting the incoming traffic for the next time period
w, and based on that outputs the optimal number of servers able to process

CHAPTER 4. RELATED WORK 27

Figure 4.1: How techniques affect workload (from left to right, from top
to bottom): Google approach [30], our approach described earlier in the
introduction, PoweNap [50] and approach using UPSs [33]

the workload. Although, for the optimal solution the whole future should
be known in advance, the ‘myopic‘ algorithm LCP(0) is still 3-competitive,
which means that it is less than 3 times as efficient as the optimal algorithm
for all problem instances (all convex cost functions and finite incoming traffic
rate). The authors state that as large as 50% energy savings and 40% cost
savings can be achieved with the algorithm if the workload peak-to-mean
ratio (PMR) equals 5. The authors also consider the impact of datacenter
related aspects on the efficiency of the algorithm. They present how PMR,
the energy cost function, delay cost function and switching costs affect the
savings gained with the algorithm. To our knowledge and opinion [45] gives
the most wide analysis of such aspects and their solution is provides signifi-
cant savings.

In [24] the technique named Dynamic Voltage and Frequency Scaling based

CHAPTER 4. RELATED WORK 28

on Workload Decomposition (DVFS-WD) is introduced. Energy savings are
achieved through the use of program workload analysis and the use of DVFS
in the light of the obtained information about the current workload. The
program workload is decomposed into on-chip and off-chip based on statis-
tics reported by a performance monitoring unit (PMU). The insight of the
approach is that during the memory accesses the CPU is idling — consum-
ing energy but performing no useful work. In [24] the authors switch the
processor with DVFS into a lower frequency mode. In the lower frequency
mode CPU consumes less energy at the expense of degraded efficiency, but
efficiency is not crucial then because it is reduced during the execution off-
chip periods. The authors report that energy savings of 20-40% are achieved
with 10-30% performance loss for CPU-bound applications. The authors
also state that because the latency for switching the CPU voltage/frequency
is 500 µseconds the scaling should happen at least in two or three orders
of magnitude larger periods of time. The idea of [24] is very close to [51],
DVFS-WD is just one technique to slow down the processor during less active
workload periods.

In [32] authors consider how to distribute available power among datacen-
ter servers so as to minimize mean response time. The authors argue that
datacenters usually have fixed peak power budget and interesting question
what is the optimal allocation of power to servers. For instance the avail-
able power can be distributed in the way that as many servers are running
as possible at their minimum speed (frequency) or in the other way a few
servers are running at their maximum speed. The third possibility is to run
intermediate amount of servers at some speed between maximum and min-
imum. Generally, authors state that it is not always optimal to run servers
at their maximum power levels as it was introduced in some research [16].
With the use of voltage and frequency scaling mechanisms such as DFS,
DVFS and DVFS+DFS the server can consume less power at the expense of
its performance. The authors deduce the power-to-frequency curves for those
techniques. Then they present a formula which relates the used power of the
server to its performance. The sum of running servers’ power must of course
equal to the fixed power budget and the total performance of all servers is
matter of maximization. The answers to the equations to be maximized are
derived. It came out that the optimal allocation depends on such factors
as power-to-frequency relationship in the processors, the arrival rate of jobs,
the maximum server frequency. The study experiments show that the use of
the optimal power allocation can reduce mean response time even as much
as a factor of 5.

Chapter 5

Theoretical background

5.1 Queueing theory

In this Section we will define basic concepts we will need later on. We start
from the definition of stochastic process and later, as stochastic process is a
very broad concept, introduce its subclasses, which fulfill our needs. The con-
cept of Markov chains is needed to understand how the equations of queueing
systems are derived. The general idea of queueing theory modeling is pre-
sented in Section 5.1.6. If the reader is already familiar with queueing theory
basics, we urge to go directly to Sections 5.1.9 and 5.1.10, which give a basis
for our solution. The materials used in this Chapter are taken from queueing
theory textbooks [19] and [36]. We also used a material presented on ‘Intro-
duction to Performance Analysis‘-course of Department of Communications
and Networking 1.

5.1.1 Renewal sequence

In probability theory, a stochastic process is a sequence of random variables,
each of which is indexed with numbers from a set N and takes values in a
common range from a setM . Varying the characteristics of the index set and
the random variable range set, we get four types of stochastic processes —
discrete time, discrete space; continuous time, discrete space; discrete time,
discrete space and time ordering, continuous space. In our study we will
use discrete ordering, discrete space and discrete ordering, continuous space.
With these we can represent for instance the number of jobs in a queue at the

1https://noppa.aalto.fi/noppa/kurssi/s-38.1146/luennot

29

CHAPTER 5. THEORETICAL BACKGROUND 30

specified time moment or the interarrival time between successive customers.
Also, we assume that random variables in the sequence are independent and
identically distributed (i.i.d.). When such a property is true, the process is
called renewal process. Formally:

{Xn}∞n=1

F (x) = P (Xn ≤ x), n = 1, 2, ...

We can think about the sequence {Xn}∞n=1 that it is an ordered set of ran-
dom variables, each of which follows the same probability distribution and
independent of others, also in a realization — when each random variable
takes a value, we get an ordered set of values. Depending on the probability
distribution of Xi:s, we can get different types of processes. In our study
we will need the following distributions: deterministic (D) and exponential
(Poisson process, M).

5.1.2 Deterministic process

Deterministic distribution can be defined as follows:

F (x) = 0, x 6= b, (5.1)
F (x) = 1, x = b.

Deterministic distributions are used when for example service or waiting time
is known to be a constant. However, it is seldom the case, because of small
fluctuations caused by other uncontrollable factors. So, a better approach
might be the use of other distributions.

As we explained in Section 5.1.1, the random process gets its realization
according to its probability distribution. Now, we can think that for exam-
ple a server service time is deterministically distributed, thus the sequence
{Xn}∞n=1 can get the realization 5, 5, 5, 5, ... (b = 5 in (5.1)).

5.1.3 Poisson process

Poisson process can be defined in three interchangeable ways:

CHAPTER 5. THEORETICAL BACKGROUND 31

1. Poisson process is a pure birth process. In an infinitely short time
period only one event can occur. This happens with the probability
λdt and independently of previous events, or formally:

A. The process has independent increments

B. The process has homogeneous increments

C. Pr[N(t+ dt)−N(t)]

= 0] = 1− λdt
= 1] = λdt
> 1] = 0

where N(t) is the counting process — the function representing the
cumulative number of events happened thus far, λ is the arrival rate
and dt is a differential sized time interval.

2. The number of arrivals in a finite interval t follows the Poisson distribu-
tion: P{N(t) = n} = (λ∗t)n

n!
∗ e−λ∗t. In addition, the number of arrivals

in non-overlapping intervals is independent of each other.

3. The interarrival times are independent and follow the exponential dis-
tribution: P{interarrivaltime < t} = 1− e−λt.

The very important property of a Poisson process is that Poisson Arrivals See
Time Averages (PASTA). This property means that the distribution of the
system at a randomly chosen time moments will be the same as the system
state distribution the Poisson arrivals observes. In other words, if we make
infinitely many observations of system state at random time moments and
there are infinitely many Poisson arrivals, which find the system in one of its
states, those two ways will result the same distribution.

Another important property is the random split property. It says that if a
Poisson process with the intensity λ is split into two processes with proba-
bilities p1 and p2, such that p1 + p2 = 1 then the resulting processes are also
Poisson processes with intensities p1λ and p2λ. This result can be generalized
to a bigger number of processes.

5.1.4 Markov chains

Markov chain is a mathematical model, which has a number of applications
in machine learning, economics, biology, etc. Markov chains are well stud-
ied and lead to nice and simple equations, which express the nature of the
underlying system. We will need Markov chains to model the behavior of

CHAPTER 5. THEORETICAL BACKGROUND 32

servers and especially server queues. First, we will look at discrete time
Markov chains, which are based on the concept of state transition probabil-
ities. Then, we will look at continuous time Markov chains, which are based
on the concept of transition rates. In our study we will need continuous time
Markov chains, but we will present also discrete time Markov chains, because
the derivation of transition rates is easier through the transition probabilities.

Formally, a Markov chain (with a discrete state space) is defined as follows
[19]. If there is a random process {X(t), t ∈ T} that satisfies the following
properties:

P{X(tn+1) = xn+1 | X(t1) = x1, ..., X(tn) = xn} =

= P{X(tn+1) = xn+1 | X(tn) = xn}

then the process is called Markov chain. This condition says that the prob-
ability to transfer to the state xn+1 in the next time interval tn+1 depends
only on the current state xn and not on the whole history. We can think that
the random process realization of xn (the value random variable X takes at
the time moment n) defines which probability distribution xn+1 will follow.

Markov chains are often depicted as directed graphs with nodes as states, arcs
between states as transitions and weights on the arcs as transition probabil-
ities. Mathematical way representing Markov chains is a matrix, where the
rows and columns represent states. The matrix entry pij tells the probability
to transfer from state i to state j, that it:

pij = P{Xn+1 = j | Xn = i}.

We will call such pij as a state transition probability.

Another important property of the Markov chain is time-homogeneity. Markov
chain X(t) is time-homogeneous if

P{X(t+ h) = y | X(t) = x} = P{X(h) = y | X(0) = x}
∀t, h ≥ 0 ∧ x, y ∈ S.

In other words the probability to transfer into the next state depends only on
the difference of time moments in successive states and not on the absolute

CHAPTER 5. THEORETICAL BACKGROUND 33

time. The other way to describe it is to say that the state probabilities
remain the same over time.

If we use Markov chain with transition probabilities, we call it discrete time
Markov chain. Now we will define state transition rates qij. If the transi-
tion rates are used instead of transition probabilities, we are dealing with a
continuous time Markov chain.

qij := lim
h→0

1/h ∗ pij(h) = lim
h→0

1/h ∗ P{X(h) = j | X(0) = i}

If the Markov process is in the state i, the conditional probability that it
transfers to the state j during a short time interval h is qijh + o(h). Note,
that the probability does not depend on the other time intervals. Let qi
denote the total transition rate out of the state i:

qi :=
∑
j 6=i

qij

In other words, the conditional probability the Markov process will transfer
from state i to any other state adjacent to it is given by qih + o(h). As the
transition is independent of the other time intervals, the condition satisfies
the memoryless property. Thus, the time the process stays in the state i
before transferring anywhere else is exponentially distributed with the inten-
sity qi (an exponential probability density function f(x; qi) equals qie−qix if
x ≥ 0, and it equals 0 otherwise):

Ti ∼ Exp(qi)

Similarly, the time the process stays in the state i before transferring to the
state j is exponentially distributed with the intensity qij:

Tij ∼ Exp(qij)

Let us think about those in the light of what we told in Section 5.1.3. If
the service times are exponentially distributed and thus the sequence of the
service times forms Poisson process (see definition 3 in Section 5.1.3), the
Markov chain can be used to model the server.

CHAPTER 5. THEORETICAL BACKGROUND 34

A state transition probability is then defined with state transition rates:

pij = P{Tj = Tij} = qij/qi

In addition to state transition rates and probabilities, it is useful to know
the probabilities of the states, i.e. the probability with which the process
visits the state at the random time moment — π = (πi | πi ≥ 0, i ∈ S). We
call the set of such probabilities as an equilibrium distribution, which tells
us what is the probability to reside in the specific state. We can calculate
the equilibrium distribution from the state transition rates and so called
normalization condition. The normalization condition says that the sum of
state probabilities must sum up to one (as the typical distribution does):

∑
i∈S

πi = 1 (5.2)

The global balance equations set the dependencies between the state in and
out transitions. For every state it must hold that outgoing flow sum up to
the sum of the ingoing flow:

∑
j 6=i

πiqij =
∑
j 6=i

πjqji (5.3)

If normalization condition and global balance equations are satisfied, we
achieve the equilibrium distribution of the Markov process. The unique equi-
librium distribution always exists if the Markov chain is finite — it has the
finite number of states and from each state there is a path to all other states.
Markov chains we use in our study usually have a unique equilibrium distri-
bution.

5.1.5 Birth-death process

Here is presented a class of the Markov chains we will use extensively through-
out the study. The Markov chain which has an infinite (or finite) number of
states, whose states can be arranged in a sequence and whose transitions are
possible only between the adjacent states is called birth-death process. The
idea of the birth-death process is better understood through an example. Let

CHAPTER 5. THEORETICAL BACKGROUND 35

us assume, we have some service, for instance a shop’s cash desk. The cash
desk serves customers at the speed of 3 customers in an hour, and customers
arrive to it with the speed of 2 customers in an hour. If we want to model
the cash desk as a Markov chain, we can represent the number of customers
in the service as states — if there is no customers, we are in the state 0, if
there is one, we are in the state 1, if there are two (one is served by the seller
and another is waiting for the service), we are in the state 2 and so on. At
a single time moment only one customer could be served (and thus leave the
service) or ask for the service (thus being served or joining the queue if it
was not empty). The adjacent states are thus connected with arcs weighted
by birth and death rates — λi and µi respectively. The birth rate in our
case is the speed at which new customers arrive and thus 2, the death rate
is the speed at which they are served and thus leave the service, which is 3.
Finally, we get a Markov chain, which looks like in Figure 5.1.

Figure 5.1: Example of a birth-death process, customers arrive at the rate 2
and are served at the rate 3, numbers on the states signifies the number of
waiting customers (customers in the queue).

Birth-death processes are important because first we can model our systems
with them, and second, their theory — equilibrium distribution and others
are very easy to calculate. When we set the condition (5.2) and the conditions
(5.3) for every state and solve them, we obtain:

πi = π0

i∏
j=1

λj−1/µj (5.4)

π0 = (1 +
∞∑
i=1

i∏
j=1

λj−1/µj)
−1 (5.5)

CHAPTER 5. THEORETICAL BACKGROUND 36

5.1.6 Queueing systems

Now we use the theory developed thus far to model data communications.
We can think that there are infinite or a very large number of customers
(if there are only a few customers, their Poisson arrival property might be
violated (see Section 5.1.3)) and the system as shown on the Figure 5.2. The
system provides a service to customers, which request the service by arriving
at the random time moments to the system. The duration of the service is
not known in advance. Although customers’ arrivals and their service time
are random, their probability distributions are known, and based on that,
we can draw general conclusions about the system behavior in a long run.
Thus, we assume that we know the probability distribution of the time ta to
the next customer arrival and their arrival rate λ. Also, we assume we know
the probability distribution of the service time ts and similarly its rate µ.

Figure 5.2: The setting of the data communication system: customer arrive
to the system, processed by the system and leave the system

When we express the system and the customers in the mathematical terms
using queueing theory, we obtain the relationships that bind together prop-
erties of the service, the system and the traffic. Generally, we can freeze two
aspects to obtain the third one, i.e. when we set the values of two the values
of the third is derivable from those. Thus we can quantitatively determine
how, for instance, the quality of service (service) will react to an increase of
customers arrival rate (traffic) when the system capacity (system) remains
the same. We can get answers to the questions like “Given the system and
the traffic, what is the quality of service experienced by the customers?”,
“Given the traffic and the quality of service, what should be the capacity
of the system?” and “Given the system, with a predefined capacity and re-
quired quality of service, what is the maximum possible traffic?”. Note that
quality of service can be defined in many different ways and can reflect either
customers’ or system’s point of view, it can be the delay experienced by a
customer, packet loss rate, utilization, etc.

The system can be modeled in many different ways. The choice of the model
depends on the nature of real system. For instance, the way the system be-

CHAPTER 5. THEORETICAL BACKGROUND 37

Figure 5.3: The quality of service triangle: by freezing two aspects makes
the third derivable of the first two

haves when too many customers are arrived to it (a newly arrived customer
might be lost or a newly arrived customer will be forced to wait or alterna-
tively a newly arrived customer is accepted to the service but the service rate
will degrade) determines which model would be a more faithful representa-
tion of reality. We will need in our study a so called pure queueing system
model, in which there are a finite number of servers (n <∞), which provide
a service to customers, and an infinite number of waiting places (m =∞). If
all servers are occupied when a customer arrives, it goes to the waiting place
and waits until some server will be released.

When all system servers are occupied and there are multiple customers in
the queue, it is interesting which customer will be taken into service next.
This is called the scheduling policy. There are many different policies each
of which affects the properties of the system such as average waiting time,
average response time, etc. We will use only two of them — First In First
Out (FIFO) and Process Sharing (PS), but a reader must understand that
those are not the only choices. In FIFO the customer arrived the earliest will
be served the first. In PS all customers in a queue are served simultaneously,
this can be thought either that each customer is given a time slice during
which it performs some computation at the server’s full speed and then goes
back to the queue or that the server capacity is shared between all customers
in the queue such that each customer is served at a degraded speed.

There is an agreed notation, called Kendall notation, for various customers’
arrival distributions, service duration distributions, number of servers and
scheduling policies. For arrival and service times we assume that they are
identically and independently distributed (i.i.d.). M denotes the exponen-
tial (memoryless) distribution, D denotes deterministic times and G denotes
general (any possible) distribution. The Kendall notation is of the form

CHAPTER 5. THEORETICAL BACKGROUND 38

A/B/n/p/k − P , where A refers to the arrival process, B refers to service
times, n refers to the number of parallel servers, p refers to the number of
waiting places, k refers to the size of the customer population (p and k are
usually infinite — p = ∞, k = ∞ and thus omitted) and P refers to the
scheduling policy. For example, M/G/1−FIFO stands for the configuration
in which customers arrive according to the Poisson process, service times fol-
low some general (possible unknown) distribution, there is one service place
in the system and waiting customers are taken into system according to the
FIFO-policy.

5.1.7 Little’s formula

Before we start to describe properties of different systems, let us introduce
the very important formula which plays a crucial role in deducing general
results about queueing theory systems. When we construct a system, we
usually make a lot of simplifying assumptions about it — the arrival or
service process is Poisson, etc. When those assumptions do not hold, the
resulting formula for the system behavior become either too intractable or
even impossible to deduce. Still, there is a general formula, which is true for
all stable systems.

If the system is stable i.e. it becomes empty at eventual time intervals —
arrival rate equals departing rate, we can derive Little’s formula:

N = λ ∗ T (5.6)

where N is the average number of the customers in the system and T is the
average time a customer spends in the system. As the total waiting time in
the system consists of waiting time in the queue TQ and in the service TS —
T = TQ+TS (the same is true for the number of customers — N = NQ+NS),
Little’s formula has also forms for queue and service waiting times:

NQ = λ ∗ TQ
NS = λ ∗ TS

We want to stress here again that Little’s formula is true for all system types
and it is used in derivition of many results.

CHAPTER 5. THEORETICAL BACKGROUND 39

5.1.8 M/M/1 queue

Now, we will look at the properties of M/M/1− FIFO-queue more closely.
As we described in Section 5.1.6, M/M/1 − FIFO-queue is the system,
wherein customers arrive according to Poisson process with the rate λ (or in
other words, interarrival times follow exponential distribution), service times
follow exponential distribution with the mean 1

µ
, and there is one server

processing customers in first in first out manner. Let X(t) denote the number
of customers in the system at time moment t. During a short time interval
(t, t + h] a new customer could arrive with a probability λh + o(h) (with a
state transition i→ i+1) and a customer leaves the system with a probability
µh+ o(h) (with a state transition i→ i− 1), where o(h) is any function for
which holds limh→0 o(h)/h = 0. Thus X(t) forms a Markov chain and X(t)
is also a birth-death process with an infinite state space S = {0, 1, 2, ...} (see
Section 5.1.5).

By forming global balance equations and a normalizing condition described in
Section 5.1.4, we can derive the formula for state probabilities (equilibrium
distribution). If we substitute λ

µ
with utilization ρ in equations (5.4), we

obtain the second and the third formula in equation (5.7). The mean number
of customers E[X] in the system is computed by using the second and the
third formula in (5.7) as the state probabilities that work as the weights for
the number of customers in the appropriate state. The variance D2[X] is
computed in the similar way.

ρ =
λ

µ
(5.7)

πi = ρiπ0, i = 0, 1, 2, ...

π0 = 1− ρ

E[X] =

λ
µ

1− λ
µ

=
ρ

1− ρ

D2[X] =
ρ

(1− ρ)2

If the distribution of either arrival or service time is not exponential and
the scheduling policy is still FIFO, the above results do not hold any more.
However, for PS scheduling the formula remain the same although the service
time distribution will change, i.e. the above formula also hold for M/G/1−
PS-queues.

CHAPTER 5. THEORETICAL BACKGROUND 40

The total delay D of the system contains both waiting W and the service S
times: D = W +S. The mean delay can be derived from the Little’s formula
(see Section 5.1.7) and it holds the same for all work-conserving scheduling
policies (FIFO, PS, LIFO, ...). In the case of M/M/1 − FIFO-queue, the
mean delay is derived from 5.6 and 5.7:

E[D] =
E[X]

λ
=

1

λ
∗ ρ

1− ρ
=

1

µ− λ
(5.8)

Waiting time of a customer is given by: W = D − S

E[W] = E[D]− E[S] =
1

µ
∗ 1

1− ρ
− 1

µ
=

1

µ
∗ ρ

1− ρ

Figure 5.4: Left: The mean delay as the function of the arrival rate. Right:
The mean number of customers as the function of the arrival rate

From Figure 5.4 we can see how the average delay and the average customers
number depends on the arrival rate.

5.1.9 n M/M/1 queues

By the configuration of n M/M/1 queues, we will call the setting in which
there are n queues connected in parallel, and each of the queue is M/M/1.
Such configuration is reasonable when there is a Poisson arrival process which
is then split according to a general probability function into n Poisson pro-
cesses (splitting Poisson process results in several Poisson processes as was

CHAPTER 5. THEORETICAL BACKGROUND 41

shown in Section 5.1.3). Each of newly created processes ‘generates‘ cus-
tomers, which enter their own queue to get service. Such configuration could
be, for example, thought as a representation of the shop’s checkouts.

The rate of service time is, as before, µ and the rate of arrival time is λ.
Because we have n queues and the traffic is (as it is possible equally) split
between them, each queue is experiencing only λ

n
of the whole traffic. A

single customer sees the system as it would be a M/M/1 queue with a traffic
intensity λ

n
. From that fact we can derive all property formula for n M/M/1

queue by just substituting λ with λ
n
inM/M/1 queue formula (5.7) and (5.8).

We get:

E[X] =

λ/n
µ

1− λ/n
µ

(5.9)

E[D] =
1

µ− λ/n
(5.10)

Figure 5.5: The mean delay as a function of the number of servers with fixed
λ and µ

From the Figures 5.5 and 5.6 we can see how the average delay decreases
when we increase the number of servers as well as how many servers we need

CHAPTER 5. THEORETICAL BACKGROUND 42

Figure 5.6: The required number of servers as the function of customers’
arrival rate when mean delay is fixed

to add to the system to maintain the pre-defined average delay if the arrival
rate increases.

5.1.10 Non-homogeneous Poisson process

Although Poisson process is a common process class to represent real phe-
nomena, it is not always a totally accurate model because it considers situa-
tions wherein the incoming intensity stays constant. This is rarely the case
in the real life as the intensity rather changes over time and may even possess
a cyclic behavior. For example, in the public traffic there are rush hours dur-
ing 7-8 and 16-18, which actually is seen in the more dense transportation’s
time schedules. Airline flights are used more on weekdays, which is seen in
the increased flight tickets. Shops experiences rushes, for example, during
pre-Christmas periods.

Those and many others are phenomena that can be modeled with a non-
homogeneous (non-stationary) Poisson process. Non-homogeneous Poisson
process is a Poisson process whose intensity is not a constant any more but
a function of time. Formally, a non-homogeneous Poisson process can be
defined as follows:

CHAPTER 5. THEORETICAL BACKGROUND 43

A. The process has independent increments

B. Pr[N(t+ dt)−N(t)]

= 0] = 1− λ(t)dt
= 1] = λ(t)dt
> 1] = 0

where N(t) is the counting process, λ(t) is the arrival rate at time t and dt
is a differential sized time interval.

So the non-homogeneous Poisson process is defined in a simpler way than the
homogeneous Poisson process (see Section 5.1.3) except that the incoming
intensity does not vary in time. It is important to remember that because the
interarrival times of non-homogeneous Poisson process are not exponentially
distributed, the process does not possess the memoryless property. This
leads to the problem — we cannot use the steady state formulas deduced
earlier. Still, [36] states that the results deduced assuming the homogeneous
Poisson process are applicable in non-homogeneous case as long as ρ(t) —
the absolute utilization at time t, is less than 1 for all t and the rate function
varies slowly. Or as the author has stated: “the steady-state approximation
can only be accurate if the change in ρ(t) during one relaxation time is small
in comparison to the average queue length”. The relaxation time defines the
time after which the system ’forgets’ its initial state. Mathematically the
approximation is valid if:

∆ =

[
1

µ(t)

] [
1

[1− ρ(t)]3

] [
dρ(t)

dt

]
, ρ(t) < 1

∆ << 1

Interestingly, there are different opinions about the predictability of the ar-
rival rate function. [36] claims that the varying value can be well estimated
and predicted. The author even says that: “If the arrival pattern is not pre-
dictable, then it should not be modeled as a non-stationary Poisson process.
The essence of the non-stationary Poisson process is predictable variability in
the arrival process.” On the other side of spectrum is study conducted by [20]
on the predictability of arrival calls rate to a small banking call center. They
performed a series of statistical tests on data gathered and tried to prove
that the number of calls arrived during the same day and the same time over
a year (say every Monday between 8 and 9) was drawn from the identically
distributed Poisson distribution. Almost in all cases the null hypothesis on
the identical distribution was refuted. We will return to the statistical test
in the later sections.

CHAPTER 5. THEORETICAL BACKGROUND 44

5.1.11 Queueing theory models

We have presented central queueing theory results that we will use for model-
ing the problem of our interest. Still, it is instructive to investigate of which
extent queueing theory has been used in industry and in the academic world.
Here we will briefly describe a few queueing theory models used in other
researchers’ articles.

In [21] the M/G/1/K ∗ PS queue was used to model a single web server.
The authors assumed that the customers arrive according to Poisson pro-
cess. The server can process at most K customers, if more customers arrives
when all K places are reserved, the customer is blocked. The server service
time follows general distribution and additionally operates in process shar-
ing fashion. This nicely justifies the use of the results of M/M/1/K queue,
which is simpler than general M/G/1/K queue. The authors stress that
compared to the other models their approach is a beneficial because of its
simplicity, although it may lack the validity in the server overloaded work
region. The authors also applied a maximum likelihood estimation to obtain
model parameters — average service time x and the number of service places
K. They preset the maximum number of TCP-connections their web-server
could process and generated a random workload. Then they measured the
average response time experienced by the virtual customers for several data
sets. Since the average response time is a sample average, it is due to cen-
tral limit theorem approximately normal. Several estimates for the average
response time are substituted into normal probability function. The func-
tions values are multiplied together, and the result is tried to be maximized
through varying the values of x and K. The authors applied a brute force
optimization algorithm to derive those. The study of [21] is advantageous
because of its simplicity but criticism can be introduced about the justice to
use Poisson process as the representation of arrivals, as no real data analysis
was made on it.

In [13], written by the same authors as [21], a better model for an overload
region is presented. The authors use a two-state Markov Modulated Poisson
Process (MMPP) in order to simulate bursty traffic with random peaks. A
two-state MMPP is simple Markov chain with two states, in the first state the
Markov chain outputs the incoming customers with the intensity λ1 and in
the second with the intensity λ2 (λ1 << λ2), and the Markov chain changes
between those two states with intensities r1 and r2. As the model of the
service is the same as in [21], so the whole system is MMPP/G/1/K ∗ PS.
The maximum likelihood method is used again to obtain the estimates for
the mean service time and number of server places. Although, the approach

CHAPTER 5. THEORETICAL BACKGROUND 45

of [13] is more realistic than in [21] because of the use of MMPP, the authors
did not compare the resulted traffic generated by MMPP with some real
server traffic.

In [47] the authors model a 3-tier web-server as a closed queueing network.
Traditionally web-servers consist of three layers — a web server processing
the customers’ requests, an application server implementing business logic
and a database server storing important records. The authors model each
of those as a service with its own queue connected in series, such that the
customer served by the web server is proceeded to the application server.
The authors made a couple of simplifications compared to the real setting, for
instance the service time is assumed to be workload independent and follow
an exponential distribution. By using mean-value analysis, the queueing
network parameters, such as mean delay and throughput, are computed. The
authors ran tests in the described setting, measured the system parameters
and then compared them to the mathematically deduced ones. The authors
report that the error between the empirical and theoretical values is small,
which says that the model represent the real setting accurately. Still, as in
the two first studies, [47] lacks the investigation about the real traffic and
service. The authors use TPC-W benchmark to generate the workload but
did not give justifications behind that.

5.1.12 Mathematical modeling with queueing theory

If we want to model the problem with queueing theory, first we should test
whether the data coming from the problem’s setting fulfill the set of condi-
tions. In the case those conditions do not hold, it is important to understand
the reasons for that. Usually when we discover settings breaking the condi-
tions, it is easier to justify immediately whether queueing theory is applicable
for the problem, instead of running the large amount of statistical tests.

Models are simplifications of real situations, such that it is rare luck if all
model’s conditions are satisfied. The more realistic case is that the data from
a real world phenomenon does not pass all tests. Thus we are faced with a
choice of how the phenomenon should be modeled. There are four general
solutions to the situation when the data coming from the real world problem
and the model conditions mismatch:

1. When the reasons that break the assumptions are revealed, they can be
taken into account in the theory. Usually, this brings us a more compli-
cated model. For instance, if in a queueing system customers arrive in

CHAPTER 5. THEORETICAL BACKGROUND 46

groups, the queueing theory extension named bulk arrival can be used.
Still, the use of more complicated models should be considered prop-
erly, because the resulting equations might be intractable that benefits
of using the theory diminish greatly.

2. We can find the data from the similar real world phenomenon, which
pass the tests. Thus the model is not universal for the current problem
but solves only a subset of it. Again, the reasons behind the incon-
sistency should be found such that we are able to argue why different
datasets from the same phenomenon have divergent properties. For
example, if in a queueing system Poisson arrivals are assumed, the
customers’ population should be truly large. There could be similar
settings such as high throughput scientific clusters, but the incoming
traffic does not seem to come from Poisson distribution in one of them.
The reason could be simply that there are too few customers in one of
the those settings compared to the another.

3. If the data failed to pass the tests, the attractiveness of model simplicity
can drive to use a model as an approximation. If the model is used as
an approximation, it is desired to check how large is the error between
the model predictions and actual system parameters.

4. The last possibility is to reject the model as inappropriate. Again, the
reasons have to be mentioned and the alternative model is presented.

In Figure 5.7 we present the path from the real phenomenon data to the
model capable to describe it. In addition to cases when the data does not
fulfill the conditions of the model, we took into account the possibilities to
choose simpler models at the expense of accuracy. The first condition that has
to be true in all queueing theory models is that arrivals must be independent
of each other. If they do not (and as we see in Section 6), we can represent
the group of dependent arrivals as a single multi-job arrival. This of course
requires both more complicated pre-processing as interdependent jobs has to
be identified and resulting formula for the such model (called bulk arrival).
Nevertheless both models need to pass Poisson distribution test. If this is
not the case either, there is still the model for general arrival distributions
but its shortage is that it provide just few closed-form formulas. In such
situations we prefer to use simpler models (such as M/G/1) although they
are not necessarily 100 % accurate. In Figure 5.7 we marked the path for
our model choice as a dotted line for HIP’s cluster data and as a dashed line
for NorduGrid data.

CHAPTER 5. THEORETICAL BACKGROUND 47

Figure 5.7: Possible paths from the raw data to the model representing the
data

CHAPTER 5. THEORETICAL BACKGROUND 48

5.2 Control theory

5.2.1 Control theory basics

Control theory provides mathematical calculus for automation technology
field. In an automation there is always a system we wish to control, and
it is called a process. The process (system) has its own specific dynamics,
which means that it responds to an input in the way which is governed by
the equations particular to this process. There is also a process variable or
process value, which can be thought as a process output we are interested
in. We control the process by changing the value of a process manipulated
variable, which can be thought as an input to the process. We also have
a set-point, which is the desired or ‘correct‘ value of the process variable.
Process control happens through measuring the value of process variable,
comparing it to the set-point, and based on the difference and knowledge of
the process dynamics, changing the process variable. In some situations there
is also a disturbance, which is the second input variable (in addition to the
process manipulated variable). The disturbance cannot be controlled, so that
we after the process achieved the set-point, we should not leave the process
alone, because a new disturbance can eventually interfere it. Control theory
provides mathematical tools that can bind all those terms nicely together,
such that we are able to see the characteristics of the system dynamics and
the impact of the control on it. [43]

Let us now illustrate those concepts with a simple and practical example.
We want to take a bath and fill the basin with water coming from a tap.
We wish water in the basin to be of the specified temperature, i.e. the basin
water is the set-point. But the water temperature is what it is and can
take any values, and it actually forms the process variable. Still we can
control the temperature of the incoming water by adjusting the valve, such
that the valve position acts as the manipulated variable. The process is
the system of the tape and the basin, it can be, for example, expressed in
mathematical formula how fast the tape water temperature actually reaches
the value set by the valve. We can also add a disturbance to our model,
which can be the phenomenon that the water in the basin cools down as
time passes. The purpose of the control is to provide us with the positions
of the valve along the time such that at the end we obtain the basin filled
with a right-temperature-water.

Control systems are characterized into two main classes — feedback - and
open loop-systems. Feedback systems contain a feedback loop, which gives

CHAPTER 5. THEORETICAL BACKGROUND 49

possibility to observe values of the process variable. When there is an obser-
vation of the process variable, it is easier to adjust the manipulated variable
to the set-point. In our water basin example, the possibility to measure basin
water temperature plays the role of the feedback loop. In contrast, in open
loop-systems there is no knowledge of the process variable value, and all what
can be done is to adjust the manipulated variable and hope it will be close
enough to the set-point. Control systems are usually depicted with block
diagrams, in Figures 5.8 and 5.9 is shown block diagrams of a water basin
process with a feedback- and open loop-control.

Figure 5.8: Feed-back loop diagram of the water basin example

Figure 5.9: Open loop diagram of the water basin example

Further, we will also need a few important concepts that describe the per-
formance of the control system. Suppose, there a new set-point we want the
process to reach. The major characteristics of the control are:

• Rise time: the time needed for the process to reach 90% of the set-point
for the first time.

CHAPTER 5. THEORETICAL BACKGROUND 50

• Overshoot: how much the maximum value of the process variable is
higher than the steady state value of it during the adjustment phase.

• Settling time: the time needed for the process to converge into the
steady state.

• Steady-state error: the difference between the steady state value and
the set-point.

5.2.2 PID-controllers

Proportional-Integral-Derivative-controllers (PID) are widely applied in the
industry to control the processes when its underlying dynamics cannot be
known. In this way the process is regarded as a black box controlled only via
the manipulated variable. Although the PID is a very simple and powerful
tool, it does not provide the optimal control. The performance of PID can
be improved by adding a so called feed-forward control block which is aware
of the process dynamics.

PID operates by taking as an input the error between the setpoint and the
measured value of the process variable. Then, the PID calculates its output
to the process according to the formula:

u = KP e+KI

∫
edt+KD

de

dt

where e is the error (the difference between the set-point and the current
process variable value), KP is the coefficient of the proportional gain, KI is
the coefficient of the integral gain and KD is the coefficient of the derivative
gain. By fine-tuning the factors KP , KI and KD in the PID, the control is
improved in the terms of characteristics described in the previous subsection.
KP is used to decrease the rise time, KI is used to reduce overshoot and
settling time and KD is used to remove the steady-state error. There are a
number of methods for evaluations of those coefficients, normally they are
iterative — based on the response for the initial settings, the coefficients are
updated.

CHAPTER 5. THEORETICAL BACKGROUND 51

5.3 Statistical testing and estimation

In this Section we will introduce mathematical tools required to justify the
model we will use. Because our preliminary assumption as well as the field
literature use Poisson processes to model customers arrivals, we will primarily
concentrate on tests and estimators related to Poisson processes.

5.3.1 Graphical tests

In graphical tests we simply plot the data and examine, whether it has any
visibly recognizable patterns. If some patterns are observed, the most im-
portant task is to reveal which factors caused the patterns. If the successive
arrivals are not independent, why they are not independent? If the interar-
rival times are not exponential, why they are not? [36]

• Stationarity: Cumulative arrivals. Plot the cumulative arrival
curve A(t). Draw a straight line between A(0) and A(T), where 0 and
T are the start and end points of the interval considered respectively.
There should not be any pattern in deviation from the straight line and
the difference between the line and the values of A(t) should be small
for all values of t. In this work we will see the use of this plot in Figures
6.1, 6.2, 6.3, 6.6, 6.9 and 6.12.

• Stationarity/Independence: Interarrival times. Plot the inter-
arrival times as a time series (on the x-axis are ordered arrivals, on
the y-axis are their interarrival times). The points should be randomly
distributed over y-axis. There should not be any cyclic patterns. In
this work we will see the use of this plot in Figures 6.4, 6.7, 6.10 and
6.13.

• Independence. Plot the points (Xn, Xn−1), n = 2, 3, ..., whereXn rep-
resents the nth interarrival time. It should be impossible to approxi-
mate the data with a straight line. In this work we will see the use of
this plot in Figures 6.5, 6.8, 6.11 and 6.14.

• Exponential interarrival (service time) distribution. Plot the
empirical distribution of the interarrival (service) times and the theo-
retical exponential distribution with λ = A(T)/T , where T is the length
of the interval observed. There should not be large and systematic de-
viations between the distributions. In this work we will see the use of
this plot in Figures 6.17, 6.18, 6.19, 6.20, 6.21, 6.21, 6.22 and 6.23.

CHAPTER 5. THEORETICAL BACKGROUND 52

5.3.2 Statistical tests

Graphical tests can give only a guidance for arguing whether an observed
data set follows Poisson distribution. For instance some deviations from the
correct distribution could be present but how large difference is acceptable.
To obtain quantitative measure of the similarity or dissimilarity, statistical
tests are used. Statistic is a function of a data and thus itself is random
variable. We will examine a few statistical tests and statistics related to
them. [36]

Interarrival time distribution. To test, whether interarrival times follow
exponential distribution, we can use two statistical tests — chi-squared test
and Kolmogorov-Smirnov test. Because we are interested in non-homogeneous
Poisson process and thus cannot take the whole data set for testing. This is
because we want to test whether the underlying process follow Poisson dis-
tribution at some time interval, but we already know that it does not follow
(stationary) Poisson process at the whole time interval. Thus we will apply
the approach described in [20]. In that work the authors split the data set
into small equal-size subsets, say 6 minutes, and performed the testing on
them.

In chi-squared test the theoretical distribution is generated. In the case of
Poisson arrival process we will generate the exponential distribution with the
mean A(T)/T , where T is the length of the examined period and A(T) is
the number of arrived customers. This generated distribution will be called
expected distribution in contrast to the observed distribution. Then both the
expected and the observed distributions are split into equally wide ‘bins‘, the
data points which occur within bounds of any bin are put into that bin. If
there are less than 5 points in some bin, it is merged with the neighbor bin.
The test statistic is:

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
(5.11)

where Oi is an observed frequency, i.e. the number of observed items in the
bin, Ei is an expected frequency, i.e. the number of expected items in the bin
and n is the number of frequency classes (bins). The statistic χ2 approaches
asymptotically χ2-distribution with the n− 1 degrees of freedom. [52]

Kolmogorov-Smirnov test operates in the similar way as chi-squared test but
instead of placing data points into bins it compares the values of data points
not their amount. In Kolmogorov-Smirnov test the theoretical exponential

CHAPTER 5. THEORETICAL BACKGROUND 53

distribution is generated with the arrival rate λ equal to A(T)/T . Then the
maximum deviation from the empirical distribution is measured:

D = maxx|FO(x)− FE(x)| (5.12)

where FO(x) is the observed cumulative probability function and FE(x) is
the expected cumulative probability function. The test statistic D follows its
own distribution, which is derived for different sizes n. Kolmogorov-Smirnov
test is more accurate and simple than chi-squared test. [49]

Interarrival time independence. The most important property of arriv-
ing process is that interarrival times must be independent of each other, or
formally: Xn must independent of Xn−m, m = 1, 2, 3, Generally, it can
be very difficult to prove that each data point is independent of all other.
Usually, if there are no reasons to argue otherwise, we assume that whether
data points are dependent they depend on the their neighbors. So, we as-
sume that it is sufficient to verify whether successive points are independent
or not.

There is a chi-squared test for independence similarly to chi-squared test
for distributions. The test is based on placing data points into contingency
table and comparing the number of points in each category. The expected
and observed frequencies should be roughly the same if the null hypothesis is
correct. The disadvantage of this test is that a great amount of observations
is needed to be collected the test to be powerful. [36]

The alternative approach is to test weaker hypothesis — whether the cor-
relation coefficient between Xn and Xn−1 equals zero. Independent random
variables have zero correlation but the reverse is not necessarily true.

Chapter 6

Statistical testing for real world
data

Before constructing any model we analyzed the data to assist the choice of
the right data representation. We analyzed two datasets, one obtained from
the HIP’s cluster and the second collected from the NorduGrid1. HIP cluster
was used just by a few users whereas in Nordu there was about 201-500 users
and about 1000-5000 computation cores.

We found out just by looking the cluster traces that the arriving jobs are
strongly coupled. The reason is that a user seldom sends a single job but
instead several jobs are generated and sent to a cluster simultaneously. Un-
fortunately, this breaks the important property of jobs’ independent arrival.
One way to solve this problem is to treat the group arrivals as single job.
But such pre-process raises its own problems. First, it is hard to determine
which jobs belong to which group, let us imagine a user generates a group of
jobs and sends them to the cluster or the same user sends several individual
jobs one after another with a short interval between submissions. So, it is
not well specified within how wide time window the jobs submitted by the
same user should be regarded belonging to the same job group. Second, the
calculus needed to solve the resulting model is more complicated than in the
single jobs case. In the light of those difficulties, we decided to conduct our
analysis of the data in two different ways — first, HIP dataset is preprocessed
by merging jobs sent in the same time interval (which equals 1 second) into
a single job, second both the preprocessed HIP cluster and NorduGrid data
are analyzed by plotting them and performing statistical testing on them to
see how well they follow Poisson distribution (see Section 5.3).

1http://gwa.ewi.tudelft.nl/pmwiki/

54

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 55

6.1 Analysis of HIP-cluster data

Figure 6.1: Cumulative arrivals plot of HIP’s datacluster, number of jobs
arrived up to the current moment expressed as a function of time in seconds

We preprocessed HIP cluster data and plotted it into a cumulative arrival
diagram (see Figure 6.1). By looking at the diagram we tried to identify
the periods of the constant arrival rate. Here we want to stress that those
piecewise linear periods can be seen only afterwards, when all data is collected
and plotted. If we look at the random time intervals, even as short as 600
seconds, the graph does not resemble Poisson distribution at all (see Figure
6.2). We identified the following piecewise linear periods in Figure 6.1:

1. 0-37500

2. 37500-85000

3. 85000-90000

4. 90000-102500

5. 102500-107500

6. 107500-112500

7. 112500-117500

8. 117500-125000

9. 125000-127500

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 56

Figure 6.2: Cumulative arrivals plot of the random interval of the Figure 6.1,
number of jobs arrived up to the current moment expressed as a function of
time in seconds

10. 127500-160000

11. 160000-195000

Below we plot the diagrams of intervals 1, 2, 4 and 10 for checking for the
properties of Poisson arrivals (stationary, cumulative) and independence (sta-
tionary/independence and independence) described in the Section 5.3.1. Un-
fortunately, all intervals except 10th exhibit regular deviations. For example
in interval 1 many jobs arrive almost simultaneously. The interarrival and
service time distribution show interesting behavior — almost the whole prob-
ability mass is accumulated in the very small interval.

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 57

Figure 6.3: Cumulative arrivals plot of HIP’s datacluster, interval 1, number
of jobs arrived up to the current moment expressed as a function of time in
seconds

Figure 6.4: Interarrival time plot of HIP’s datacluster, interval 1, the time
between the subsequent jobs in seconds as a function of job ordering number

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 58

Figure 6.5: Interarrival time dependance on the previous interarrival time
plot of HIP’s datacluster, interval 1, time of the interarrival time in seconds
as a function of the previous interarrival time

Figure 6.6: Cumulative arrivals plot of HIP’s datacluster, interval 2, number
of jobs arrived up to the current moment expressed as a function of time in
seconds

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 59

Figure 6.7: Interarrival time plot of HIP’s datacluster, interval 2, the time
between the subsequent jobs in seconds as a function of job ordering number

Figure 6.8: Interarrival time dependance on the previous interarrival time
plot of HIP’s datacluster, interval 2, time of the interarrival time in seconds
as a function of the previous interarrival time

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 60

Figure 6.9: Cumulative arrivals plot of HIP’s datacluster, interval 4, number
of jobs arrived up to the current moment expressed as a function of time in
seconds

Figure 6.10: Interarrival time plot of HIP’s datacluster, interval 4, the time
between the subsequent jobs in seconds as a function of job ordering number

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 61

Figure 6.11: Interarrival time dependance on the previous interarrival time
plot of HIP’s datacluster, interval 4, time of the interarrival time in seconds
as a function of the previous interarrival time

Figure 6.12: Cumulative arrivals plot of HIP’s datacluster, interval 10, num-
ber of jobs arrived up to the current moment expressed as a function of time
in seconds

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 62

Figure 6.13: Interarrival time plot of HIP’s datacluster, interval 10, the time
between the subsequent jobs in seconds as a function of job ordering number

Figure 6.14: Interarrival time dependence on the previous interarrival time
plot of HIP’s datacluster, interval 10, time of the interarrival time in seconds
as a function of the previous interarrival time

We performed Kolmogorov-Smirnov tests (see formula (5.12)) for intervals
1, 4 and 10, because their shape is mostly close to the straight line. For
all those intervals the null hypothesis that the samples would come from
exponential distribution was rejected with p-value equaling 0 with 4 decimals
(the appropriate test statistics for those were 0.41, 0.23, 0.09 for intervals 1,
4, and 10 respectively). For comparison we also present the chi-squared test

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 63

results (see formula (5.11)) for interval 10, which actually failed to reject
the null hypothesis with the p-value equaling 0.14995. We also performed
t-test to verify the interdependency of points in the dataset. The t-test for
zero-correlation gave us statistic equaling 0.1311, which resulted p-value of
0.2290, i.e. the test failed to reject the null hypothesis that the interarrival
times would be independent on each other. In Figures 6.15 and 6.16 you can
see the observed data plot for interval 10 and exponential plot with the mean
derived from the observed data.

Figure 6.15: Exponential proba-
bility distribution function gener-
ated with λ derived from interar-
rival times of interval 10 (see Fig-
ure 6.13)

Figure 6.16: Histogram of interar-
rival times of interval 10 (see Fig-
ure 6.13)

We also took a look at service time distribution by plotting different-size
samples from different time intervals, see Figure 6.17.

6.2 Analysis of NorduGrid data

We also plotted the data obtained from NorduGrid cluster. We plotted
different-size intervals from different time windows (see Figures 6.18, 6.19
and 6.20). The first property we discovered from interarrival plots that they
had a great amount of short jobs and a few very long jobs. The results are
summarized in Table 6.2. The same analysis we performed on service time.
The different size samples are depicted on Figures 6.21, 6.22 and 6.23 and
their statistics are summarized in Table 6.2. We see the same behavior as
with interarrival times — most of the jobs are relatively short. This leads to
the a suggestion that such jobs could be approximated as deterministic jobs
(see Section 5.1.2 for deterministic process definition).

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 64

Figure 6.17: Statistics of different sample and different sample-size service
times in HIP’s cluster, frequency of jobs as a function of time

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 65

Figure 6.18: Interarrival time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds

Figure 6.19: Interarrival time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 66

Table 6.1: Table (statistics of interarrival times of different-size samples in
NorduGrid)
sample sample size mean standard deviation min max
V001 29 581779 2.469E+06 0 1.296E+07
V002 30 2580.8 6959.4 2 33786
V003 30 19238 76954 0 419106
V004 30 9756.1 21595 0 97077
V005 30 581.40 1639.6 2 8844.0
V006 30 13678 58576 1 312071
V007 30 5697.2 15010 1 60577
V008 31 283.65 1566.3 1 8723.0
V009 61 425.89 1222.2 1 8844.0
V010 101 2364.5 22918 2 230302
V011 201 442.60 3312.0 1 45734

Figure 6.20: Interarrival time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 67

Figure 6.21: Service time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds

Figure 6.22: Service time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds

CHAPTER 6. STATISTICAL TESTING FOR REAL WORLD DATA 68

Table 6.2: Table (statistics of service times of different-size samples in Nor-
duGrid)
sample sample size mean standard deviation min max
V001 29 482536 370012 159.00 852948
V002 31 928336 1.117E+06 56.000 6.741E+06
V003 31 161376 299805 24.000 770220
V004 31 490962 721886 55.000 1.521E+06
V005 61 210449 438211 40.000 1.520E+06
V006 101 53828 134156 54.000 433885
V007 199 378539 653044 24.000 6.741E+06
V008 301 75966 144307 18.000 463672
V009 501 3012.7 7212.1 77.000 153999
V010 1000 99712 333375 18.000 6.741E+06

Figure 6.23: Service time histograms for different samples in NorduGrid,
frequency of jobs as a function of time in seconds

Chapter 7

Optimization problem and its
solution

In this Chapter we will describe the real life problem we aim to solve. We
investigate how and why the problem should be modeled using queueing
theory. Also, we discuss briefly the alternative modeling methods to solve
the problem. We present our solution in terms of queueing theory and also
describe its algorithmic implementation. Finally we give a checklist we used
as a justification for our approach.

7.1 Problem description and possible solution
approaches

As we described in Sections 3.2 and 3.3 our main objective is to optimize the
servers utilization. The workload experienced by the servers varies through
the day. If the datacenter servers are on all the time, the utilization would be
dramatically low during the less active workload periods, because datacenter
capacity is usually provisioned for peak rather than average load. Our idea is
to adjust the number of servers to the current workload such that the quality
of service remains approximately the same. By putting everything together,
we formulate the optimization problem as follows: our task is to minimize
electricity consumption in a computing cluster; we aim to it by increasing
cluster utilization with as minor negative side-effects on quality of service as
possible. The current problem can be modeled with different mathematical
tools. In this Section we will describe some of approaches as well as their
pros and cons.

69

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 70

First, we can try to attack the optimization problem from the scheduling
theory perspective. By using the terminology of [12] we can distinguish
between high and low server’s workload phases. During the high phase there
are jobs to be executed and a server is performing useful computation by
running the jobs and during the low phase the server is idling because there
are no jobs. Also there are two energy states in the server. In the active
state the server consumes r energy units per time unit no matter whether
it is performing computation or not. In the passive energy state the server
does not consume any energy and the transition from the active to the passive
state takes no additional energy but the transition from the passive to the
active consumes β energy. The purpose is to decide when to perform the
transition to minimize the ultimate energy consumption. This kind of power
management problem is called on-line problem — at any time point we do
not know about future events and thus do not know whether it is worth
to transfer into passive energy state. The algorithms community resorts
to competitive analysis, in which the on-line algorithm is compared to the
optimal off-line algorithm. The off-line algorithm sees the whole future and
thus is able to compute the state transition schedule and in this way achieves
the minimum energy consumption. [12]

In [12] a very simple on-line algorithm is presented, which transfers a single
server into passive state whenever there is no computation for at least β/r
time period for that server, where β is energy units required to transition the
server from the sleep state to the active state and r is the power consumption
rate in server active state expressed in energy units per time unit. The algo-
rithm is proved to be 2-competitive. This is because the optimal algorithm
will not transfer into passive state if the duration of idle period T multiplied
by the energy spent is less than state transition energy β, that is rT < β.
The on-line algorithm will spend the same amount of energy as optimal al-
gorithm because the idle period is less than β/r ⇒ T < β/r ⇔ rT < β.
When the idle period is longer than β/r, the on-line algorithm spends r∗β/r
energy and then transfers into passive energy state and finally goes back to
active energy state and consumes β for transition. The optimal algorithm
knows in advance the length of the idle period and transfers there immedi-
ately in the beginning of it and thus spends only β energy. The result of
2-competitiveness from that. The authors also prove that no deterministic
on-line algorithm can beat the competitive ratio of 2.

Second, we can represent mathematically the behavior of the arriving jobs
in the terms of probability distributions. If we know also the job’s durations
or at least their distribution, we can express the problem with queueing the-
ory. As we described earlier, in queueing theory we bind together in terms of

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 71

formula the concepts of jobs’ arrivals, their duration and quality of service.
We can also think that we let some jobs to wait in the queue at the expense
of other jobs that will be performed immediately. Interestingly that in [23],
which classifies different types of scheduling algorithms, queueing theory is
also present in their taxonomy and is regarded as global-static-optimal algo-
rithm (see Figure 7.1). The classification goes as follows: Global means that
the decision is made to which computing node the job will be sent, contrary
to the local scheduling, wherein the assignment of jobs to the time-slices of
a single processor is involved. Static versus dynamic division determines the
time when the scheduling decisions are made. In static case the decisions
are made already in a compilation phase, whereas in dynamic the decisions
are made when the jobs arrive. Optimal versus sub-optimal division tells,
as its name says, whether the solution provided by the scheduling algorithm
provides optimal or only ‘close-enough-to-optimal‘ solutions. From this tax-
onomy we can see that scheduling and queueing theory are very close to each
other and aim to the same goal, but still operate with a slightly different
terms. We will explain the queueing theory model we used in our research
in the next Section.

Figure 7.1: Taxonomy of different types of scheduling algorithms [23]

Third, we can express the problem as a pure optimization as was done in

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 72

[45]. In this approach described in more details in Chapter 4 the number of
computing nodes in a cluster during the day could be represented as a time
series, where on x-axis there is time and on y-axis there is number of servers.
An appropriate limiting function is required to express how increase of servers
affects electricity bill and similarly how decrease of servers and thus degraded
quality of service affects profits gained from service. By substituting to the
whole time series correct values, we can achieve the maximum for our profits.

Last, we can model the problem with control theory. In the such approach
we are set a variable we want to control, which usually means keeping to
equal to the specific value. The value is chosen such that if the system stays
in the state represented by the value, savings related to the another variable
are achieved (see Section 5.2).

7.2 Our queueing theory model

We want to obtain a queueing theory model that is as simple as possible but
is expressive enough to provide us with information helping in our decision
making such that energy savings could be achieved. Thus, we construct a
queueing system in which jobs arrive to the system queue and based on the
cluster status are either sent immediately to a server or forced to wait until
there will be free space available on the server. So, in the model there is a
waiting queue, responsible for buffering all incoming jobs, and a pool of par-
allelly connected processing queues, which accomplish the jobs arriving from
the waiting queue (see Figure 7.2). Translating to the real setting, a waiting
queue is a cluster scheduler, processing queues are cluster servers (computing
nodes) and adding and removing processing queues means switching on and
off cluster servers.

As we described in Section 7.1, the aim is to adjust the number of running
servers to the current workload. This means that, ideally, a waiting queue
exists only during workload intensity changes and otherwise it stays empty.
This is not very radical assumption if we think what happens during workload
intensity changes. If intensity decreases, there are more servers than are
needed for the current workload, and arriving jobs are sent immediately to
the servers. If intensity remains the same, the amount of servers is optimal
to the current workload and all arriving jobs are again sent immediately to
the servers. If then intensity grows, more servers are needed related to the
workload and the arriving jobs are forced to wait in the waiting queue, but
the system reacts to the situation by adding more servers. If we assume that
our system reacts to the intensity increases fast enough and that the workload

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 73

Figure 7.2: A queueing theory
model representing a computing
cluster (the diagram is generated
by the JMT-tool [18])

Figure 7.3: A simplified queueing the-
ory model representing a computing
cluster (the diagram is generated by
the JMT-tool [18])

never grows larger then there possible servers to process it, the waiting queue
stays most of the time empty. Thus we can represent our system with a
simpler model, in which the waiting queue is deleted of convenience reasons
(see Figure 7.3).

In queueing theory terminology our model is n X/X/1 queue with varying
n. What probability distribution functions interarriving and serving time
follow? This has to be decided based on analyzing the data. As we did in
Chapter 6, the statistical tests should be performed. As we saw, the arriving
jobs do not always conform to Poisson distribution. The main reason is
that in computation clusters jobs are sometimes sent in bursts. Still, in the
sufficiently large clusters the arriving jobs come approximately from Poisson
distribution (interarrival times are exponentially distributed) with varying
arriving rate and service time follows some general distribution. Thus we
achieve n M/G/1 queue. Servers process all their jobs simultaneously, so we
have process sharing (PS) queueing paradigm for processing queues (servers).
As we saw in Section 5.1.8, M/G/1− PS queue behaves in the same way as
M/M/1− FIFO queue, so we can freely use results obtained there.

A few words should be said about why our model is not an M/G/K-queue.
An M/G/K-queue could be a tempting choice, here is a pair of reasons.
First, we might want to abstract away what happens inside a single node

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 74

thus eliminating own queues from the nodes. Second, one might argue that
the scheduler queue exists all the time, actually the solution could be imple-
mented in a way that the queue always contains a few jobs. It is true that the
abstraction of node’s internal events would result in a simpler model. But the
problem is that in real world setting there a non-zero probability of several
jobs being on a node while no jobs on the other. On the other hand, such sit-
uation is totally impossible for the M/G/K-queue model [61]. Additionally,
the implementations of our algorithm use the information of how many jobs
there are currently on a node. This is because it is more natural to mark
the node to be switched off which has the least amount of running jobs. For
the second reason we can argue that the queue is non-empty for very short
time periods and if there some jobs in it, they could be sent to computing
nodes for execution immediately. If we want to accumulate more jobs to be
executed at once, we come to trade-off solutions for quality of service and
electricity cost balance, which we shortly describe in Section 10.1.

Now, we summarize what model we will use as well as its advantages and
disadvantages. Our model is n M/G/1 − PS queue, where incoming traffic
follows Poisson distribution with a varying rate and service time follows some
general distribution (here we want to stress again that variability in incoming
traffic is not controlled but the service time variability is our reaction to the
changes in incoming traffic). The model makes a number of simplifying
assumptions each of them is responsible for errors in model’s predictions.
Those assumptions are:

1. The system reacts to the workload intensity changes very rapidly, such
that the waiting queue stays empty most of the time (see Section
5.1.10).

2. The system is never overloaded for long periods (ρ < 1), such that
queueing theory equations are valid (see Section 5.1.10).

3. The jobs arrive approximately independently of each other and accord-
ing to Poisson distribution. We discussed this in Section 6 how well
these assumptions hold in our solution.

4. The cluster scheduler sending jobs to the servers preserves Poisson dis-
tribution. This means that the scheduler splits the incoming workload
randomly between the servers.

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 75

7.3 Algorithmical solution

In this Section we describe the algorithm implementing the idea presented
in the previous Section. We implemented three different algorithms called
queueing theory with averaging filter (QTwAF), queueing theory with
exponential filter (QTwEF) and control theory with queue adjusting
(CTwQA). The pseudo-codes for these algorithms is presented in the Appendix.

QTwAF and QTwEF operate in a similar way. They measure the interarrival
times from every two successive jobs coming to the cluster and calculate
the estimate for the current arrival rate. The algorithms differ in how they
calculate it. QTwAF takes an average from three successive interarrival times
(the value of 3 was chosen for our preliminary test setting but a deeper
research on the value optimality should be done). Theoretically such signal
processing can be thought as filtering the input with FIR [53]. QTwEF scales
the current and the past values in the way that the latest value is thought
as more significant. The algorithm multiplies the latest interarrival time
by factor 0.8 and the whole rest history by factor 0.2 and then sums them
up (again the values of 0.8 and 0.2 were chosen for our preliminary test
setting but a deeper research on the values optimality should be done). Such
processing can be thought as filtering the input with IIR [53]. After that the
estimate for the current arrival rate is put into the formula that determines
the number on computing nodes required to maintain the predefined level of
service whenever the arrival rate changes.

m =
E[T]

E[T] ∗ µ− 1
∗ λ (7.1)

where m is number of required nodes, E[T] is predefined fixed response time,
which we want to keep constant, µ is the service rate of the node (or core if
there are several cores per a node) and λ is the current arrival rate of jobs.
We gave fixed values of 600 seconds and 1/90 seconds for parameters E[T]
and µ respectively. This formula is derived from formula (5.9). When we
made our calculations we multiplied m by the number of cores on a node,
because in our test setting there were 4 processors (cores) on a computing
node. Generally, m can be thought as an abstract processing unit, an entity
which executes customers’ jobs in 1/µ time on average.

Theoretically the formula (7.1) should give the correct number of nodes but
the problem is that we can only obtain an estimate of λ, not its correct value.
If the estimate is too high (jobs are arriving often) compared to the real value,

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 76

we overbook computing resources resulting in an inefficient use of servers. On
the other hand, if the estimate is too low (jobs are arriving rarely) compared
to its real value, we may break the terms of agreement as our currently
allocated computing resources are not enough to provide predefined quality
of service. The algorithms QTwAF and QTwEF actually differ in how they try
to estimate the arrival rate. But both algorithms do not see the effect of
their estimation, they do not get information about the change in response
time when the number of nodes is changed.

For this reason it would be reasonable to use a feedback system of the type
described in Section 5.2. The most simple such system could be a PID-
controller (not necessary using all its parts — proportional, integrator and
derivator), which regulates the number of running nodes such that the length
of the queue stays zero. If there are jobs waiting in the queue, the node could
be switched on and if there are no jobs on some node, it could be switched
off. Such controller might keep the queue in balance. We implemented this
approach in the algorithm CTwQA.

CTwQA could provide the moderate solution to the problem but its shortage
is that it does not know the dynamics of the system, which leads to slow
reaction of the arrival rate changes. Better solution could be achieved if we
combine two approaches — queueing and control theories, the number of
nodes is set based on the arrival rate and calculated using the formula (7.1)
but after that the fine-tuning is done by PID-controller, which observes the
queue length. We did not implemented such hybrid algorithm because our
cluster is small (three computing nodes), but we state that this approach
might be optimal for big clusters.

7.4 Justification of the approach

Here we adopt the guidance described in [39] to sketch the systematic ap-
proach we used to tackle our problem. The guidance is the list of questions
that all should be answered affirmatively if we want to confirm the reader
about rigidity of our study. We present the most important of those questions
below with our answers and possible references to the chapters we discuss
the topic in more detail.

1. Is the system correctly defined and the goals clearly stated?
Our system is a computing cluster, which receives jobs from user. The
cluster is implemented as three slave nodes and a master node all con-
nected via a network switch, the master receives jobs and passes them

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 77

to the slaves. The goals are 1) to develop an algorithm that achieves
energy savings in the cluster computation 2) to investigate whether
queueing theory is worth to be used as a model to solve the first goal.

2. Are the goals stated in an unbiased manner?

We do not promote any specific theory or approach — the main focus
is on the queueing theory but alternative methods are also presented.

3. Have all the steps of the analysis followed systematically?

At least we have aimed to it. We selected all needed system parameters,
factors, metrics and workload types.

4. Is the problem clearly understood before analyzing it?

In Section 3.2 we described the important concept of energy propor-
tionality — the idea to make a computing cluster use as much energy
as it performs useful work. We also investigated what is the current
state of computing clusters energy proportionality.

5. Are the performance metrics relevant for the problem?

We chose the same metrics, which are used in the appropriate theory —
response time, queue length, interarrival time between two successive
jobs. Additionally we measure electricity consumption with an electric-
ity meter. The only important missing metric, which is not included,
is utilization due to the difficulty to measure it. Still, its absence is
not that crucial because it can be approximated from the queue length
and it basically tells us the same information we get from electricity
consumption, in other words how energy efficient is our algorithm.

6. Is the workload correct for this problem?

Ideally the workload should be the same as the one used by real users.
Our users are physics researchers, which usually run simulations using
Grid software. We cannot install such software into our test setting, so
we used a commonly used benchmark, which actually loads the server
in the similar way as the real workload. We also analyzed the average
duration of the workload and chose the benchmark of the similar length.

7. Is the evaluation technique appropriate?

We used a real measurement as our evaluation technique. Analytical
evaluation can be easily performed as well by using equations derived
in Section 5.1.

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 78

8. Is the list of parameters that affect performance complete?

We included all parameters, which have been used in the similar studies:
speed of the server CPU, bandwidth of the network, distribution of the
jobs size and distribution of the workload intensity.

9. Have all parameters that affect performance been chosen as factors to
be varied?

As a factor we chose interarrival times. It varies in two dimensions,
first it is randomly drawn from exponential distribution and second the
parameter of the exponential distribution is also a random variable. We
did not vary job duration, because the data we analyzed demonstrates
strong deterministic nature — most of the jobs (90%) are short (< 90
seconds) and their variation inside this interval is small.

10. Is the experimental design efficient in terms of time and results?

With a small number of runs (4 each of one day long) we can decide
which algorithm is worth to investigate further as a tool for energy
savings.

11. Would errors in the input cause an insignificant change in the results?

Some parameter (such as whether a computing node is running or shut
down) values are collected in such a way that they may contain a little
delay. For example a node might be marked as shut down at a some
time point although it is actually completing its last jobs. Still does not
bring misleading results, because we compare the efficiency of compet-
ing algorithms in terms of electricity consumption, which is measured
separately.

12. Have the outliers in the input or output been treated properly?

We ignored very long jobs which were present in the real cluster logs
and did not model them. In the output there were no outliers.

13. Have the future changes in the system and workload been modeled?

No, but that was not the purpose of our study. We searched for a
solution to the current energy consumption problem.

14. Has the variance of input been taken into account?

No, but as wee saw from Section 6 after abandoning very long jobs,
other fall in very small interval.

CHAPTER 7. OPTIMIZATION PROBLEM AND ITS SOLUTION 79

15. Is the analysis easy to explain?

Queueing theory is state-of-the-art in telecommunication systems such
that models based on it should be well understood.

Chapter 8

Implementation

8.1 Hardware settings

Our test environment was the following (depicted in Figure 8.1):

• A front-end computer with Sun Grid Engine 6.2u4 (SGE) [9] installed
on it. SGE is a widely used batch system. Its scheduling interval was
set to 5 seconds. The default scheduling algorithm of SGE was used.
It allocates a newly arrived job to the computing node with the least
workload (with the smallest number of running jobs).

• As the network configuration we had a 1 Gb D-link connecting the front
end and three nodes. Linux operating system, kernel version 2.6.32-33,
was installed on the nodes.

• 3 computing nodes with 4 core computers, which had Intel 2.4 GHz
processors, 8 gigabytes of memory and a 217 GB hard disk. Each
computing node has a number of job execution places. Place number
tells how many jobs can be allocated to that node (in the terms of
queueing theory place number corresponds to the queue buffer length).
In our test setting place number of each node was set to 4 (the same
as cores number). All jobs allocated to the same node are executed
simultaneously in round robin fashion.

• The electricity was measured with the Watts Up Pro electricity meter.

We implemented our algorithms in Bash. It is a script that periodically
checks the state of the cluster, i.e. observes whether the arrival intensity

80

CHAPTER 8. IMPLEMENTATION 81

Figure 8.1: The hardware test setting

changed significantly such that the current number of nodes is not any more
representative for it. Then based on the situation the algorithm performs ap-
propriate actions i.e. adds or deletes a node from the cluster or does nothing.
All three algorithms differ in the way how they estimate the current traffic.

The node deletion works in three phases: first, we delete the node from SGE
queue such that no more jobs can be sent to it; second, we wait until the
last job is completed; third, we suspend the node to the disk. There are
two modes into which a node can be suspended [10]. The first is suspend
to memory mode, during its suspend period the node consumes very little
energy, but its wake up lasts only a few seconds. The second is suspend to
disk mode, in which node consumes no energy at all but its wake up lasts
more than one minute. The suspend to memory would be more preferable for
us but unfortunately this mode is rarely supported on server type computers.
Adding a node is performed with Linux wakeonlan [8] command, which sends
a so called magic packet to the suspended node.

CHAPTER 8. IMPLEMENTATION 82

8.2 Workload settings, case 1

We generated different interarrival times from exponential distributions with
varying λ. So, the generation of the interarrival time series happened as a
generation of two random variables. First, we drew the random value for
λ but in the way that it falls in the predefined interval. This is because
we are limited in a number of computing nodes and cannot allow arbitrary
high intensity, on the other hand we cannot allow too low intensity because
then the nodes will idle most of their time and the test setting would not be
fair. Second, we drew the random value from the exponential distribution
with the parameter deduced in the first step. Thus we obtained the series
of interarrival times. We want to stress here that this procedure results in
Poisson distribution with a constant intensity. Our traffic simulator sends
jobs to the cluster after the next interarrival time in the series have been
elapsed.

We used lloops_64 benchmark from Roy Longbottom benchmark collection1

as a test job. This benchmark was reported as a state-of-the-art test for
scientific computing [39].

8.3 Workload settings, case 2

We also wanted to test our solution in an environment with arrivals distri-
bution more close to the real world situation. That is why after running the
test setting in case 1 (see Section 8.2) we chose the most promising algorithm
(which turns out to be CTwQA) and tested it in the another test setting.

We wanted to use the workload from some real cluster and chose HIP’s cluster
for this purpose. Unfortunately it is significantly larger than our test cluster.
That is why we extracted the data from HIP’s cluster data log for only four
nodes (because our cluster has also four nodes). Still the intervals between
the consecutive arriving jobs were so long that without any preprocessing
the test run would take too long. We scaled the data by multiplying each
interarrival time by the constant.

Instead of previously used benchmark we used a so called dummy job. It just
occupied a computing node for specified amount of time and did nothing.
The executing times were also picked from the HIP’s cluster data. They
were scaled in the way such that their average should equal to 600 seconds.
We used such setting because we wanted to simulate the effect of varying-

1http://homepage.virgin.net/roy.longbottom/index.htm

CHAPTER 8. IMPLEMENTATION 83

length-jobs and with standard benchmarks this would be difficult to achieve.
The problem with the test setting in which jobs perform nothing but occupy
a node for a specified amount of time, is that the energy consumption cannot
be measured directly. But we can deduce it if we know what is an average
consumption of a running node.

8.4 Workload settings, case 3

Our third test setting was the following, we generated time intervals of a
random length but still longer than average job execution duration, which
was 90 seconds. Then for each time interval we generated arrival intensity
λ, which is constant during this interval. Then we generated interarrival
times within each time interval from the exponential distribution with the
parameter λ generated in the previous step. Thus we obtain randomly long
time interval with randomly generated interarrival times inside each interval.
After that we sent jobs to our cluster after each interarrival time.

We used a ‘winner‘ algorithm CTwQA and lloops_64 benchmark as job simu-
lators. Then we sent jobs by using the same interarrival times to the cluster
without any algorithm and compared consumed electricity. We also mea-
sured response time of every job to compare how the optimization algorithm
affects quality of service.

Chapter 9

Results

9.1 Results for the test setting 1

We performed the series of tests with hardware setting described in Section
8.1 which implements the algorithms described in Section 7.3 and the work-
load settings described in Section 8.2. The test run lasted approximately
19 hours (69168 seconds) and it was executed 3270 jobs. In the subsequent
plots we can see the behavior of the algorithms in terms of their transient
electricity consumption (see Figures 9.2, 9.5, 9.8 and 9.11), the length of the
queue (see Figures 9.3, 9.6, 9.9 and 9.12) and the response time (see Figures
9.4, 9.7, 9.10 and 9.13). All results are summarized in Table 9.1. A reader
might wonder the term length of the queue as we claimed in Section 7.2 that
the queue will stay empty. This is true but it is important to remember first,
that our model is only approximation and, second that although the queue
should be empty, it occasionally contains some jobs, such that this effect
raises the average from zero. Still, as we claimed the average queue length is
very close to zero.

As we can see all three algorithms stayed in the service level agreement,
which was set to 600 seconds. The best result in terms of whole electricity
consumption is provided by CTwQA. CTwQA spent 5648 Watt hours which is
11.9 % less then in the setting without any algorithm (6413 Watt hours spent)
with the average response time only 32.3 % greater then in the no-algorithm
version (119.0 seconds against 90.0 seconds).

The algorithms based on ‘pure‘ queueing theory approaches QTwAF and QTwEF
are less energy-efficient than CTwQA but still outperform the setting without
any algorithm with an acceptable degradation in quality of service. Interest-

84

CHAPTER 9. RESULTS 85

Table 9.1: Table (The comparision of the algorithms)
QTwAF QTwEF CTwQA No algo-

rithm
cumulative electricity
consumption (Wh)

5829 6186 5648 6413

minimum transient
electricity (W)

225 195 197 252

maximum transient
electricity (W)

393 453 473 486

average number of
jobs in service

3,983 4,084 3,990 4,216

average number of
jobs in the queue

0,198 1,288 1,459 0,105

average response time
(s)

92,7 117,8 119,0 90,0

ingly that QTwAF turned out to be more efficient than QTwEF in both electricity
consumption and response time. Their difference was that QTwAF calculates
an average from interarrival times and QTwEF calculates an exponential decay
from them. The reason behind inefficiency might be that QTwEF is too sensi-
tive to abrupt changes in incoming traffic such that it switches nodes on and
off rapidly although the better strategy would be to adopt to the changes
smoothly.

Figure 9.1: Comparision of the algorithms: cumulative electricity consump-
tion in Watt hours is depicted as the function of time in seconds

CHAPTER 9. RESULTS 86

Figure 9.2: Queueing theory with averaging filter: transient electricity use
in Watts plotted as a function of time in seconds

Figure 9.3: Queueing theory with averaging filter: (red) the length of the
queue, (blue) the number of jobs in the system as a function of time in
seconds

Figure 9.4: Queueing theory with averaging filter: response time in seconds
as a function of time in seconds

CHAPTER 9. RESULTS 87

Figure 9.5: Queueing theory with exponential filter: transient electricity use
in Watts plotted as a function of time in seconds

Figure 9.6: Queueing theory with exponential filter: (red) the length of the
queue, (blue) the number of jobs in the system as a function of time in
seconds

Figure 9.7: Queueing theory with exponential filter: response time in seconds
as a function of time in seconds

CHAPTER 9. RESULTS 88

Figure 9.8: Control theory with queue adjusting: transient electricity use in
Watts plotted as a function of time in seconds

Figure 9.9: Control theory with queue adjusting: (red) the length of the
queue, (blue) the number of jobs in the system as a function of time in
seconds

Figure 9.10: Control theory with queue adjusting: response time in seconds
as a function of time in seconds

CHAPTER 9. RESULTS 89

Figure 9.11: No algorithm: transient electricity use in Watts plotted as a
function of time in seconds

Figure 9.12: No algorithm: (red) the length of the queue, (blue) the number
of jobs in the system as a function of time in seconds

Figure 9.13: No algorithm: response time in seconds as a function of time in
seconds

CHAPTER 9. RESULTS 90

9.2 Results for the test setting 2

Then we run test for the winner algorithm — CTwQA with the same hardware
setting (see Section 8.1) but with different workload settings, which are more
close to real world case (see Section 8.3). The test run lasted approximately
18 hours (64438 seconds) and it was executed 900 jobs. In the subsequent
plots we can see the behavior of the algorithm in terms of its queue length
(see Figures 9.14), the number of nodes (see Figures 9.15) and the response
time (see Figures 9.16).

The average response time for HIP’s cluster data after scaling was 335.8 sec-
onds and the average response time of jobs ran in our test was 349.0, which
is only 3 % longer. The average number of jobs in the service was 0.559 and
in the queue 0.250. We calculated the theoretical amount of energy saved
during this time — 18 hours by approximating how much electricity would
be consumed if all three nodes would be running (we assumed that a running
computing node consumes some predefined amount of electricity). Accord-
ing to our calculations we should have achieved 35 % savings in electricity
consumption during such short time period.

Figure 9.14: Control theory with queue adjusting, another test setting: (red)
the length of the queue, (blue) the number of jobs in the system as a function
of time in seconds

CHAPTER 9. RESULTS 91

Figure 9.15: Control theory with queue adjusting, another test setting: the
number of running computing nodes as a function of time in seconds

Figure 9.16: Control theory with queue adjusting, another test setting: the
jobs response time in seconds

CHAPTER 9. RESULTS 92

Figure 9.17: Randomly generated arrival intensity expressed as a number of
jobs arrived during five minutes interval (time unit is a second)

9.3 Results for the test setting 3

In the third test setting, described in Section 8.4, we compared the measured
electricity savings gained by CTwQA compared to the setting without any
algorithm. The test lasted approximately 8 hours and we gained 27.7 % in
electricity savings (only 873 Wh:s spent versus 1207 Wh:s) with only 35.5 %
longer response times (139.6 s versus 90.1 of the average response time).

In Figure 9.17 is shown how arrival intensity varied through the test period.
In Figure 9.18 is shown how the number of running nodes varied through the
test period. In Figure 9.19 is shown current power consumption of CTwQA.

CHAPTER 9. RESULTS 93

Figure 9.18: The number running nodes as a function of time in seconds

Figure 9.19: Control theory with queue adjusting, third test setting: tran-
sient electricity use in Watts plotted as a function of time in seconds

Chapter 10

Conclusions and further work

As we saw from Table 9.1 and the figures in Chapter 9, all algorithms out-
perform the setting without an algorithm with minor effects on quality of
service. All three solutions provide significant energy savings with moderate
degradation in quality of service. We strongly suggest to adopt the solutions
we have proposed. As a starting point for small size clusters (less then 10
nodes) we suggest to consider CTwQA. For a bigger size clusters we suggest
to develop a solution based on mixed approach of queueing theory and con-
trol theory. In such an algorithm the appropriate number of running nodes
in a cluster is first estimated based on queueing theory equations and then
fine-tuned with control theory PID-controller.

10.1 Improvements and further work

A Master’s Thesis is a project which is limited in time and space such that
many analyses and verifications have been omitted and interesting nuances
are left for the further research. Still, this thesis comprises the complete en-
tity and all suggestions should be understood as suggestions not as criticism.

First, as we pointed out in Chapter 6 the real world data from clusters do
not follow Poisson distribution. Thus we were forced to use M/G/1-model
as an approximation (see Figure 5.7). In this case it would be nice to run
simulations to prove that the model used gives the correct predictions. In
such a simulation the real world data would be fed to the system, the quality
of service is then measured and compared to the predictions obtained from
the analytical M/G/1-model. If the difference between the measurements
and the predictions is neglectable, it is acceptable to use the approximation.

94

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 95

We did not performed this because of the lack of time but the results about
energy savings gained with our solution are enough alone. For additional
research a very good background information about simulation can be found
in [42].

Second, in our solution we provided a reader only with a road map — what
should be improved (servers utilization) and how it could be done (our three
algorithms). But obviously the solution is not optimal. Although our algo-
rithms can be applied as working solutions, if the solution would be applied
in a real industrial datacenter cluster, we strongly recommend to fine-tune
them for the concrete case. As we described earlier, we claim that a hybrid
solution with both queueing theory and control theory would be optimal. By
using the terminology described in Section 5.2, the queueing theory equa-
tions would work as feedforward-blocks that enable quick responses to the
changes in the arrival rate. Thus the cluster can simultaneously switch on
or off many computing nodes. After that the control theory based PID-
controller can fine-tune the final amount of the nodes. Thus the queueing
theory provides quick response and control theory fine-tuning and correction
of the errors made in the estimation of the arrival rate.

Third, very close to our solution’s further improvements is the problem re-
garding how to decide to which server a newly arrived job should be allo-
cated. In the literature this is called dispatching problem. In our solution
we used the default dispatching algorithm of SGE, which tries to balance the
load between running nodes and thus sends a new job to the node with the
least current workload. Still, intuitively a better results could be achieved
if a newly arrived job is sent to the most loaded node. More considerations
about possible dispatching solutions can be found in [54] and [22].

Fourth, better implementation techniques can be used. As we described in
Chapter 8, when the node is ‘switched off‘ it is put to the suspend-to-disk-
state. It consumes almost no energy but waking the node up can take a
pair of minutes. The suspend-to-memory-state would be more preferable but
unfortunately it is not supported on the most of server nodes. The second
technology improvement concerns the use of live migration [26]. Virtual
machines could be installed on the computing nodes and thus when some
node was marked to be switched off, instead of waiting until it process its
jobs to the end, the jobs could be transferred to an another node on the fly.

Finally, more investigations can be performed about prediction of the future
traffic and the trade-off between savings in electricity costs gained by re-
stricting the service and revenue losses caused by the customers abandoning
your service because of degraded quality. Queueing theory contains the tools

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 96

for expressing the relation between those two in the terms of so called utility
function. Interested reader can explore more in [36].

10.2 Summary

In our study we have given a comprehensive view of green IT. We have de-
scribed a number of energy-efficient solutions, metrics expressing the good-
ness of those solutions and projects associated with energy-efficiency in ICT.
We have mainly focused on the energy-efficient solutions in datacenter servers.
We have also described the bounds of possible new solutions — the require-
ment to maintain reasonable quality of service for users. We have presented
our solution based on queueing theory. A detailed theoretical background
was provided for deep understanding of our approach such that ideally no
other literature is needed for understanding and implementing our solution.
We justified our solution with the extensive data analysis. Also we tended to
follow as much as possible the guidelines of the state-of-the-art performance
analysis. We have implemented our solution and tested it on a real hardware.
The test setting was close to the real world use-case. The preliminary results
show that our solution achieves notable savings in electricity. We suggest to
investigate our solution in a more detail and give a few suggestions for the
further research.

Bibliography

[1] Cern webpages. http://public.web.cern.ch/public/en/About/
History54-en.html.

[2] Cern webpages. http://public.web.cern.ch/public/en/About/
Mission-en.html.

[3] Cern webpages. http://public.web.cern.ch/public/en/LHC/LHC-
en.html.

[4] Cern webpages. http://public.web.cern.ch/public/en/About/
History08-en.html.

[5] Cern webpages. http://public.web.cern.ch/public/en/Science/
Higgs-en.html.

[6] Google datacenters. http://www.google.com/about/datacenters/.

[7] The green grid datacenter power efficiency metrics: PUE and
DCiE. http://www.thegreengrid.org/sitecore/content/Global/
Content/white-papers/The-Green-Grid-Data-Center-Power-
Efficiency-Metrics-PUE-and-DCiE.aspx.

[8] Magic Packet Technology, November 1995.

[9] BEGINNER’S GUIDE TO SUN GRID ENGINE 6.2 Installation and
ConfigurationWhite, 2009.

[10] Advanced Configuration and Power Interface Specification, April 2010.

[11] ICT sustainability: The global benchmark 2011.

[12] Albers, S. Energy-efficient algorithms. Commun. ACM 53 (May
2010), 86–96.

97

http://public.web.cern.ch/public/en/About/History54-en.html
http://public.web.cern.ch/public/en/About/History54-en.html
http://public.web.cern.ch/public/en/About/Mission-en.html
http://public.web.cern.ch/public/en/About/Mission-en.html
http://public.web.cern.ch/public/en/LHC/LHC-en.html
http://public.web.cern.ch/public/en/LHC/LHC-en.html
http://public.web.cern.ch/public/en/About/History08-en.html
http://public.web.cern.ch/public/en/About/History08-en.html
http://public.web.cern.ch/public/en/Science/Higgs-en.html
http://public.web.cern.ch/public/en/Science/Higgs-en.html
http://www.google.com/about/datacenters/
http://www.thegreengrid.org/sitecore/content/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE.aspx
http://www.thegreengrid.org/sitecore/content/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE.aspx
http://www.thegreengrid.org/sitecore/content/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE.aspx

BIBLIOGRAPHY 98

[13] Andersson, M., Cao, J., Kihl, M., and Nyberg, C. Perfor-
mance modeling of an Apache web server with bursty arrival traffic.
In IC’03: proceedings of the international conference on internet com-
puting (2005), CSREA Press.

[14] Aoyama, Yukiya; Nakano, J. RS/6000 SP: Practical MPI Program-
ming, 1999.

[15] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I., and Zaharia, M. Above the clouds: A Berkeley view of cloud
computing. Tech. rep., University of California at Berkeley, February
2009.

[16] Barroso, L. A., and Hölzle, U. The Case for Energy-Proportional
Computing. Computer 40, 12 (Dec. 2007), 33–37.

[17] Barroso, L. A., and Hölzle, U. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers,
2009.

[18] Bertoli, M., Casale, G., and Serazzi, G. Jmt: performance engi-
neering tools for system modeling. SIGMETRICS Perform. Eval. Rev.
36, 4 (2009), 10–15.

[19] Bhat, U. N. An Introduction to Queueing Theory: Modeling and Anal-
ysis in Applications. Statistics for Industry and Technology. Springer,
Dordrecht, 2008.

[20] Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H.,
Zeltyn, S., and Zhao, L. Statistical analysis of a telephone call
center: a queueing science perspective. Tech. Rep. 03-12, Wharton Fi-
nancial Institutions Center, Nov. 2002.

[21] Cao, J., Andersson, M., Nyberg, C., and Kihl, M. Web server
performance modeling using an M/G/1/K*PS queue. In 10th Interna-
tional Conference on Telecommunications (ICT’03) (2003), pp. 1501–
1506.

[22] Casalicchio, E., and Colajanni, M. A client-aware dispatching
algorithm for web clusters providing multiple services. In Proceedings
of the 10th international conference on World Wide Web (2001), ACM,
pp. 535–544.

BIBLIOGRAPHY 99

[23] Casavant, T. L., and Kuhl, J. G. A taxonomy of scheduling in
general-purpose distributed computing systems. IEEE Trans. Softw.
Eng. 14 (February 1988), 141–154.

[24] Choi, K., Soma, R., and Pedram, M. Dynamic voltage and fre-
quency scaling based on workload decomposition. In Proceedings of
the 2004 international symposium on Low power electronics and design
(New York, NY, USA, 2004), ISLPED ’04, ACM, pp. 174–179.

[25] Christensen, K. Green networks: Reducing the energy consump-
tion of networks. http://www.csee.usf.edu/~christen/energy/
koreaTalk10.pdf.

[26] Clark, C., Fraser, K., and Steven, H. Live Migration of Vir-
tual Machines. In Proceedings of the 2nd ACM/USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2005), pp. 273–
286.

[27] Corporation, I. Enhanced Intel SpeedStep Technology for the Intel
Pentium M Processor - White Paper, 2004.

[28] David Kaneda, Brad Jacobson, P. R. Plug load reduction: The
next big hurdle for net zero energy building design. ACEEE (2010),
120–130.

[29] Dean, J., and Ghemawat, S. Mapreduce: Simplified data processing
on large clusters. Commun. ACM 51 (Jan. 2008), 107–113.

[30] Fan, X., Weber, W. D., and Barroso, L. A. Power provisioning
for a warehouse-sized computer. In Proceedings of the 34th annual in-
ternational symposium on Computer architecture (New York, NY, USA,
2007), ISCA ’07, ACM, pp. 13–23.

[31] Foster, I., Zhao, Y., Raicu, I., and Lu, S. Cloud Computing
and Grid Computing 360-Degree Compared. In 2008 Grid Computing
Environments Workshop (Nov. 2008), IEEE, pp. 1–10.

[32] Gandhi, A., Harchol-Balter, M., Das, R., and Lefurgy,
C. Optimal power allocation in server farms. In SIGMET-
RICS/Performance (2009), J. R. Douceur, A. G. Greenberg, T. Bonald,
and J. Nieh, Eds., ACM, pp. 157–168.

[33] Govindan, S., Sivasubramaniam, A., and Urgaonkar, B. Ben-
efits and limitations of tapping into stored energy for datacenters.
SIGARCH Comput. Archit. News 39, 3 (June 2011), 341–352.

http://www.csee.usf.edu/~christen/energy/koreaTalk10.pdf
http://www.csee.usf.edu/~christen/energy/koreaTalk10.pdf

BIBLIOGRAPHY 100

[34] Green IT Promotion Council, J. Concept of new metrics for data
center energy efficiency introduction of datacenter performance per en-
ergy. Tech. rep., 2010.

[35] Grid, T. G. The Green Grid Data Center Power Efficiency Metrics:
PUE and DCiE. Tech. rep., 2007.

[36] Hall, R. W. Queueing methods: For services and manufacturing.
Prentice Hall, 1991.

[37] Hamilton, J. Cloud economics of scale. http://channel9.msdn.com/
events/MIX/MIX10/EX01.

[38] Hennessy, J. L., and Patterson, D. A. Computer Architecture:
A Quantitative Approach (The Morgan Kaufmann Series in Computer
Architecture and Design). Morgan Kaufmann, May 2002.

[39] Jain, R. The Art of Computer Systems Performance Analysis: Tech-
niques for experimental design, measurement, simulation, and modeling.
Wiley, 1991.

[40] Jayant Baliga, K. H., and Tucker, R. S. Energy consumption of
the Internet. COIN-ACOFT 24-27 (2007).

[41] Kesselman, C., and Foster, I. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, Nov. 1998.

[42] Law, A. M., and Kelton, D. W. Simulation Modelling and Analysis.
McGraw-Hill Education - Europe, 2000.

[43] Levine, W. S. Control system fundamentals. CRC Press, 1999.

[44] Limited, D. Understanding the cloud computing stack: SaaS, PaaS,
IaaS. Diversity Unlimited (2011), 1–17.

[45] Lin, M., Wierman, A., Andrew, L. L. H., and Thereska, E.
Dynamic right-sizing for power-proportional data centers. In Proc. IEEE
INFOCOM (Shanghai, China, 10-15 Apr 2011), pp. 1098–1106.

[46] Lincoln, D. The Quantum Frontier: The Large Hadron Collider. 2009.

[47] Liu, X., Heo, J., and Sha, L. Modeling 3-tiered web applications.
In Proceedings of the 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(Washington, DC, USA, 2005), IEEE Computer Society, pp. 307–310.

http://channel9.msdn.com/events/MIX/MIX10/EX01
http://channel9.msdn.com/events/MIX/MIX10/EX01

BIBLIOGRAPHY 101

[48] Lydia Parziale, David T. Britt, C. D. J. F. W. L. C. M. N. R.
TCP/IP Tutorial and Technical Overview, 2006.

[49] Massey, F. J. The Kolmogorov-Smirnov test for goodness of fit. Jour-
nal of the American Statistical Association 46, 253 (1951), 68–78.

[50] Meisner, D., Gold, B. T., and Wenisch, T. F. PowerNap: Elim-
inating server idle power. SIGPLAN Not. 44 (Mar. 2009), 205–216.

[51] Meisner, D., Sadler, C. M., Barroso, L. A., Weber, W.-D.,
and Wenisch, T. F. Power management of online data-intensive ser-
vices. In ISCA (2011), R. Iyer, Q. Yang, and A. González, Eds., ACM,
pp. 319–330.

[52] Milton, J. S., and Arnold, J. C. Introduction to probability and
statistics: Principles and applications for engineering and the computing
sciences. McGraw-Hill, 1995.

[53] Mitra, S. K. Digital signal processing: a computer-based approach.
McGraw-Hill, 2001.

[54] Niemi, T., and Hameri, A.-P. Memory-based scheduling of scientific
computing clusters. The Journal of Supercomputing (2011), 1–25.

[55] P. Reviriego, K. Christensen, J. R., and Maestro, J. A. An
initial evaluation of energy efficient ethernet. IEEE Communications
Letters 15 (May 2011), 578–580.

[56] Poess, M., and Nambiar, R. O. Energy cost, the key challenge of
today’s data centers: A power consumption analysis of TPC-C results.
Proc. VLDB Endow. 1, 2 (Aug. 2008), 1229–1240.

[57] Poess, M., Nambiar, R. O., Vaid, K., Stephens, J. M., Huppler,
K., and Haines, E. Energy benchmarks: A detailed analysis. In e-
Energy (2010), H. de Meer, S. Singh, and T. Braun, Eds., ACM, pp. 131–
140.

[58] Sator, S. Managing office plug loads. Energy Manager’s Quartery,
ESCD Newsletter (June 2008), 1–11.

[59] Webb, M., and Al., E. Smart 2020: Enabling the low carbon economy
in the information age. The Climate Group London (2008).

[60] Weinman, J. Cloudonomics. http://cloudonomics.com/.

[61] Willig, A. A Short Introduction to Queueing Theory, 1999.

http://cloudonomics.com/

Appendix

Below is listed the pseudo-code of the algorithms. The main scheduling algo-
rithm ControlCluster() controls a cluster queue. It periodically checks the
incoming traffic — new_intensity := CalculateIntensity(Algorithm);
and if it changed, the algorithm switches off on on a computing node. The
place, where three algorithms differ from each other, is how they evaluate an
arrival rate. QTwAF is listed in CalculateIntensity(Average) and calcu-
lates the average of the last N successive arrival times and uses the approxi-
mation to deduce the required nodes number — CalculateNeededNodesNum-
ber. For that it of course needs the mean response time and the mean de-
lay. QTwEF listed in CalculateIntensity(Exponential) operates in the
similar way except that it evaluates the incoming traffic by weighting differ-
ently the very last arrival and the remaining N − 1 arrivals. CTwQA listed in
CalculateIntensity(Queue control) does not look at arrivals at all but
approximates the arrival rate from the length of the cluster queue.

ControlCluster() {

// the initial number of running nodes
running_nodes_number := INITIAL_NODES_NUM;
current_intensity := 1;
// 0 measns that the intensity decreased,
// 1 that it keeps the same
// 2 that it increased

do forever {
sleep for N seconds;
new_intensity := CalculateIntensity(Algorithm);

// the intensity increased
if (new_intensity > current_intensity &&

running_nodes_number < MAX_NODES_NUMBER) {

102

BIBLIOGRAPHY 103

WakeupNode();
running_nodes_number++;

}

// the intensity decreased
else if (new_intensity < current_intensity &&

running_nodes_number > MIN_NODES_NUMBER) {
node_to_be_removed := ChooseNodeWithTheLeastWorkload();
RemoveNodeFromQueue(node_to_be_removed);
ShutDownNodeWhenEmpty(node_to_be_removed);
running_nodes_number--;
}

}
}

CalculateIntensity(Average) {

last_arrivals[] := GetNLastArrivals();
average_lambda_inverse :=

CalculateAverageLambdaInverse(last_arrivals[]);
needed_nodes_number :=

CalculateNeededNodesNumber(average_lambda_inverse,
MEAN_DELAY,
MEAN_SERVICE_TIME);

// the intensity increased
if (running_nodes_number < needed_nodes_number)

return 2;
// the intensity decreased
else if (running_nodes_number > needed_nodes_number)

return 0;
// the intensity stays the same
return 1;

}

CalculateIntensity(Exponential) {

last_exponential_lambda_inverse := GetLastLambdaInverse();
last_arrival := GetLastArrival();
exponential_lambda_inverse :=

BIBLIOGRAPHY 104

COEFFICIENT1 * last_arrival +
COEFFICIENT2 * last_exponential_lambda_inverse

needed_nodes_number :=
CalculateNeededNodesNumber(average_lambda_inverse,

MEAN_DELAY,
MEAN_SERVICE_TIME);

// the intensity increased
if (running_nodes_number < needed_nodes_number)

return 2;
// the intensity decreased
else if (running_nodes_number > needed_nodes_number)

return 0;
// the intensity stays the same
return 1;

}

CalculateIntensity(Queue control) {

waiting_threshold := SLOT_NUMBER + 1;
// SLOT_NUMBER is the number of jobs allowed to be
// executed on a single computing node

running_threshold := running_nodes_number * SLOT_NUMBER - 1;

waiting_jobs_number := GetNumberOfJobsInQueue();
running_jobs_number := GetNumberOfJobsInService();

if ((waiting_jobs_number - waiting_threshold) <
(running_threshold - running_jobs_number)) {

// the intensity decreased
if (running_jobs_number < running_threshold) {

return 0
}
// the intensity increased
if (waiting_jobs_number > waiting_threshold) {

return 2
}

BIBLIOGRAPHY 105

}
// the intensity stays the same
return 0;

}

	Introduction
	Overview of cloud computing
	Cloud computing
	Grid
	Warehouse datacenters structure
	Physics computing at CERN

	Overview of green IT
	Green IT
	Green IT in Cloud Computing
	Important processor related metrics
	Challenges

	Related work
	Theoretical background
	Queueing theory
	Renewal sequence
	Deterministic process
	Poisson process
	Markov chains
	Birth-death process
	Queueing systems
	Little's formula
	M/M/1 queue
	n M/M/1 queues
	Non-homogeneous Poisson process
	Queueing theory models
	Mathematical modeling with queueing theory

	Control theory
	Control theory basics
	PID-controllers

	Statistical testing and estimation
	Graphical tests
	Statistical tests

	Statistical testing for real world data
	Analysis of HIP-cluster data
	Analysis of NorduGrid data

	Optimization problem and its solution
	Problem description and possible solution approaches
	Our queueing theory model
	Algorithmical solution
	Justification of the approach

	Implementation
	Hardware settings
	Workload settings, case 1
	Workload settings, case 2
	Workload settings, case 3

	Results
	Results for the test setting 1
	Results for the test setting 2
	Results for the test setting 3

	Conclusions and further work
	Improvements and further work
	Summary

	Appendix

