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Wind is an important source of renewable energy with abundant availability at
many places of the world. The integration of wind energy into the electricity grid
brings new challenges on the system reliability due to its intermittent nature. A
robust tool with good accuracy for wind power forecasting is an essential part of
wind based power system. Wind power is directly related to the cube of wind speed
and hence a small improvement in the forecasting of wind speed provides larger
improvement in wind power forecasts. The accuracy of a wind speed forecasting
model depends upon the characteristics of wind signal incorporated in the model.
Wind direction has significant effect on wind speed forecasts and the complex
representation of wind signal provides a convenient tool to include the effect of
direction. The complex wind signal is non-circular, and widely-linear modeling
of the complex wind signal provides optimal results. Wind signal has strong
temporal and spatial correlations as well. Most of the wind forecasting models at
present do not incorporate all of these characteristics of the wind signal. In this
thesis work, we will develop a widely-linear collaborative wind forecasting model
which takes into account the non-circular nature of the complex wind signal and
its temporal and spatial correlations as well. The parameters of the model are
updated using recursive least squares approach. The forecasting model is further
optimized for efficient resource utilization by using a set-membership formulation.
A data model for the complex wind signal is developed and the algorithm is
tested on the simulated wind data. Simulation results show better forecasting
performance with the developed approach. Real world wind data is also used to
verify the results.

Keywords: Forecasting, complex wind signal, non-circular, widely-linear, spa-
tial, collaborative, recursive least squares, set-membership.
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Chapter 1

Introduction

Accurate forecasts of supply and demand in an electrical power system are essential
for its smooth operation. Current trends towards renewable energy generation,
driven by environmental and economical concerns, are mainly employing the natural
phenomenons such as wind and solar energy for electricity generation. Wind is an
important source of renewable energy with abundant availability at many places of
the world. When wind energy is a part of electrical grid, it brings an uncertainty
on the power supply due to its intermittent nature. Thus the need of a robust tool
for the wind forecasting is even more evident. In this thesis work we will develop
a wind forecasting model which improves the forecasting performance by exploiting
the non-circularity and spatial correlation of the wind signal.

In Section 1.1, we will study the background of the wind forecasting problem.
Then in Section 1.2, the research problem and scope of the thesis are stated. Section
1.3 consists of the contribution of the thesis work and the outline of the thesis report
is given in Section 1.4.

1.1 Background

Wind energy is in fact a transformed form of the solar energy [1, 2]. The sun’s
radiation heats different parts of the earth surface at different rates. The effect of
this uneven heating of earth surface causes hot air to rise up, reducing the pressure
at earth surface which draws cooler air to replace it. The moving air, due to its
mass, contains kinetic energy, which can be converted to electrical energy using a
wind turbine [3].

A wind turbine basically has three key elements called a rotor, a nacelle (con-
taining a gear box, the generator and control and monitoring equipment) and a
tower [3]. The tower contains the blades which rotate upon striking of the wind.
The rotation of the blades is the mechanism by which the kinetic energy of the wind
is transformed into electrical energy [4].

Wind is an intermittent phenomenon and the integration of wind energy into
an existing power system brings new challenges. The demand-supply chain in a
traditional electrical power system is kept balanced by determining the demand for
electricity in advance. When wind energy enters the electricity grid, it brings uncer-
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tainty on the supply. In order to balance the supply and demand of the electricity,
reliable and high quality forecasts of the wind power must be made in advance. In
essence, a robust tool for wind power forecasting is essential for a power system for
its reliable and economical operation when wind energy is part of the system [2,4,5].

Wind power could be predicted directly but that is highly dependent upon the
types, sizes and the number of turbines in operation. The power output of a wind
turbine is proportional to the cube of the wind speed, which means wind speed can
be used to drive a prediction of the wind power for a given site. The prediction of
wind speed is independent of the physical properties and the configuration of turbine
and hence it provides more flexibility for power predictions. A small improvement
in the wind speed prediction can provide large improvement in power predictions
because of the cubic relationship between them [5].

There are a number wind speed forecasting techniques with varying degrees
of accuracy based upon the approach being used. The accuracy of a forecasting
technique depends upon the characteristics of the wind signal incorporated in the
forecasting model and its complexity.

The power generated by a wind turbine is strongly related to the direction at
which the wind strikes the blades of the turbine [6]. The direction of wind is often
ignored while making forecasts of wind speed. Neglecting direction reduces the
accuracy of the forecasting system and wind signal needs to be treated as a vector
wind speed and direction as its components.

Complex-valued processing of wind signal provides an opportunity to exploit the
non-circular nature of the complex wind signal [7]. Standard linear processing of the
complex signals is based upon the inherent assumption of circularity of the signal
and hence it does not provide optimal results for non-circular signals like wind. A
widely-linear processing model, which takes into account the non-circularity of the
complex wind signal is necessary for optimal results.

Another important characteristic of the wind signal is its spatial correlation at
physically close sites. The inertia of the weather system makes wind changes at one
place to correlate with nearby places. The spatial correlation of the wind signal
at neighboring sites can be incorporated in the forecasting models to improve their
performance [8, 9].

1.2 Research Problem and Scope

This thesis work is focused on the development of a wind forecasting model which si-
multaneously takes into account the non-circularity and the spatial correlation of the
complex wind signal. Furthermore, a resource-efficient widely-linear collaborative
wind forecasting model for N neighboring nodes is developed. The spatial corre-
lation among the neighboring nodes is taken into account by sharing the regressor
data from all the nodes with their neighbors. The effect of direction on wind speed
forecasts is taken into account using complex wind signal. The widely-linear collabo-
rative wind forecasting model is further optimized for efficient resource utilization by
reducing the local processing and communication between the collaborating nodes.
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1.3 Contributions of the Thesis

There has been a lot of work in wind forecasting for various purposes including
energy generation, weather prediction, air traffic management etc. Forecasting for
the purposes of energy generation requires significant accuracy so that the uncer-
tainty in the energy supply can be minimized. In this thesis work, we develop a
resource-efficient collaborative model for the forecasting of wind power.

The main contributions of the thesis can be summarized as follows:

• Widely-linear modeling is used for N collaborating nodes to fully exploit the
second-order statistics and spatial correlation of the complex wind signal.

• The widely-linear collaborative model is improved for efficient utilization of
the system resources by reducing the local processing requirements and the
amount of communication between the nodes.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we study the nature of the
complex wind signal and its characteristics using real world wind data. The analysis
is used to develop the forecasting model in the following chapters. Chapter 3 provides
an overview of existing wind forecasting techniques along with a detailed description
of the widely-linear adaptive algorithms for wind forecasting. Towards the end of
the chapter, we provide a literature survey of different collaborative techniques for
wind forecasting. A review of these techniques will help us to understand the basic
considerations and aspects of a collaborative wind forecasting model. In Chapter
4, we derive the widely-linear collaborative wind forecasting model. The widely-
linear collaborative wind forecasting model is then optimized for efficient resource
utilization using set-membership formulation. Chapter 5 contains the details of
simulation setup, the data model for the complex wind signal and real world wind
data used for the simulations. The results are discussed highlighting the performance
gain of the resource-efficient widely-linear collaborative wind forecasting model.



Chapter 2

Spatio-Temporal Analysis of Wind

Signal

This chapter is dedicated to study some characteristics of the wind signal which
will be used to develop the wind forecasting model in the rest of the thesis. In this
chapter, in Section 2.1, we present the current trends in the power industry, their
challenges and the need for wind power forecasting, when wind energy is a part
of the power grid. In Section 2.3, we study the relation between wind power with
speed. Section 2.4 is devoted to the detailed analysis of the characteristics of wind
signal, which are essential for the development of a good forecasting model. First
we discuss the complex nature of the wind signal by studying the effect of wind
direction on wind speed forecasts. Then the non-circular nature of the complex
wind signal is analyzed. Finally the temporal and spatial correlation of the complex
wind signal are analyzed with examples from real world data.

2.1 Smart Grids and the Need for Wind Power

Forecasting

Conventional power grids have been designed in accordance with the power gen-
eration through fossil fuels. With increasing share of the renewable power sources
into the conventional power grids, the integration of different kind of power sources
and their scheduling has become a problem due to the intermittent nature of the
renewable sources [4, 5].

Current trends in the power industry are shifting towards the modernization of
power transmission and distribution system by employing the developments in the
digital technologies. Thus, smart grids are becoming the solution to the problem of
power management issues [10].

Smart grids are defined as an innovative solution to the transmission and distri-
bution system with intelligent monitoring, control, communication and self healing
technologies. They upgrade the existing power grid into real-time, two-way com-
munication between power suppliers and their users. With smart grids in action,
power suppliers provide customers with the pricing information based on the time
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of the day. The customers can use that information to control their power consump-
tion [11].

Since smart grids operate on the forecasted demand and supply of the power from
all the sources, which are part of the grid, accurate source forecasts are essential
for the smooth operation of the power system and to maintain load and supply in
balance. This brings the need for better forecasting models for the renewable energy
sources, which are variable in nature due to their dependence upon weather [10,12].

With increased amount of wind energy into the power generation systems, its
impact on the power supply is a critical issue. This impact can bring additional
costs on part of the power supplier due to the variable nature of the wind energy.
These additional costs can be significantly reduced if wind energy is scheduled using
accurate and reliable forecasting methods [13, 14].

2.2 Wind Power versus Wind Speed

As we discussed, wind power forecasting is imperative for its integration into the
power generation system. The power output of a wind turbine is directly linked to
the speed at which the wind strikes its blades. The power output of the turbine W
is in fact in direct proportion to the cube of the wind speed [1, 4] and the relation
given by

W(v) =
1

2
ρAv3 (2.1)

can be derived based on the expression for the kinetic energy of the wind, where
A is the airflow cross-section in m2, ρ is the air density in kg/m3 and v is the air
velocity in m/s [1, 6, 15].

The wind turbine cannot convert all of the kinetic energy of the air which strikes
its blade, since in that case the air has to become still immediately after the impact
which is not the case in the real world. The maximum possible energy extracted
from the moving air is 59% of its kinetic energy, which happens when the wind speed
after passing from the turbine is 1/3 of its strength as compared to that before the
impact [1]. The numerical relation of the power output of a wind turbine and the
wind speed at its blades is represented by the power curve [4].

Figure 2.1 shows the power curve for Vestas V82 wind turbine in which the
power output from a wind turbine starts at a minimum wind speed 3.5 m/s called
the cut-in speed vcutin at which the turbine blades start to rotate. The output power
follows a cubic relation until the rated speed (vrated) 13 m/s at which the maximum
power output of the turbine, which in this case is 1600 kW, is achieved. The cut-off
speed vcutoff is the wind speed at which the turbine blades stop rotating in order to
protect it from damage and for V82 wind turbine it is 20 m/s.1

1www.vestas.com
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Figure 2.1: Power curve of a wind turbine generator.

2.3 Complex Nature of Wind Signal

Wind turbines are normally built to face the direction of the incoming wind while
operating. At stronger winds the direction has less influence, since wind is more
concentrated in one direction. For milder winds, the direction of the wind has more
prominent impact since it is more spread in area and strikes the face of the turbine
blades from broad range of directions [7].

Since wind speed and direction influence the wind turbine power simultaneously,
complex-valued representation of the wind signal provides a convenient tool to in-
clude the effect of wind direction in wind speed calculations [6,7]. A complex signal
z can be constructed using the speed and direction data in the form z = vejφ, where
v is the wind speed data and φ is the wind direction data. Another complex valued
representation of the wind signal is achieved using the real and imaginary compo-
nents of the wind signal in North-East coordinate system. The complex wind signal
z is formed by

z = zE + jzN (2.2)

where zE and zN are the wind speed measurement data in East and North directions,
respectively.

Figure 2.2 shows the distribution of wind speed over direction using real world
wind data from the site Archer City (site#2001) for the month of August, 2007
obtained from the public database of the Alternative Energy Institute (AEI). 1 We

1http://www.windenergy.org
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Figure 2.2: Wind speed distribution over the direction shown as a polar plot.

see that wind in certain directions is stronger as compared to others and it is spread
in a range of angles. This shows the interdependence between these two variables
of the wind signal [7].

2.4 Non-circularity of Complex Wind Signal

The second order statistical properties of complex signals are characterized by their
covariance and pseudo-covariance. The covariance of the signal captures the infor-
mation about the power of the signal whereas its pseudo-covariance characterizes
the information about the power difference and the cross-correlation between real
and imaginary parts of the complex signal [16]. For a general complex signal z(k),
covariance and pseudo-covariance functions are given by

c(k1, k2) = E[z(k1)z
∗(k2)] (2.3)

p(k1, k2) = E[z(k1)z(k2)] (2.4)

where z(k1) and z(k2) are the values of signal at time instants k1 and k2, respectively.
Standard linear signal processing techniques are developed with an implicit as-

sumption of pseudo-covariance being zero. However, this is not necessarily true and
wind signal is a good example when pseudo-covariance is non-zero. Thus, algo-
rithms based on the assumption of zero pseudo-covariance are not optimal for wind
signals [17, 18]. Related to the pseudo-covariance, comes the concept of circularity.
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Figure 2.3: Real-imaginary plot for real world wind signal (z).

A complex signal z is circular if its probability density function does not change
under any phase transformation. In other words, second order statistics remain the
same under rotations of z. In general there is no reason for p(k1, k2) to be zero and
complex signals are non-circular which means that p(k1, k2) needs to be taken into
account [18, 19].

The non-circular nature of the wind can be verified by a real-imaginary plot
[20]. The real-imaginary plot of a complex signal shows the distribution of real
and imaginary components of the complex signal relative to each other. For a
circular complex signal, the real imaginary plot is symmetric, whereas for non-
circular complex signal it is non-symmetric. Non-symmetry of the real-imaginary
plot of a complex signal is proportional to the degree of non-circularity and vice-
versa.

In Fig. 2.3, real world complex wind data z for the site Archer city is used for
the real-imaginary plot. The data set consists of 744 complex wind data points for
the month of August 2007. From the plot the non-circular nature of the complex
wind signal is evident with high degree of non-symmetry.
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2.5 Temporal Analysis of Wind Signal

Weather is a system with memory, making wind a signal with strong temporal
correlation. Thus, a measurement of wind signal at a particular time instant k is
correlated with p past measurements. The temporal correlation of the complex wind
signal can be described in terms of auto-correlation coefficient [21] of its speed and
direction which represents the linear correlation among adjacent observations of the
speed and direction data in time.

For a given wind data with K measurements z = [z(1) . . . z(K)]T with z(k) =
v(k)ejφ(k), the real-valued auto-correlation coefficient for speed and direction repre-
sented by, Â, is estimated by the following

Âx(τ) =
1

K−τ

∑K−τ

k=1 [x(k)x(k + τ)]− m̂2
x

σ̂2
x

, τ = 0, . . . , K (2.5)

where x(k) = v(k) for wind speed and x(k) = φ(k) for wind direction, τ is the time
lag, m̂x is the estimated mean of the wind signal and σ̂2

x is its estimated variance.
A plot of the auto-correlation coefficient versus time lag τ shows the decay of the

correlation of speed or direction data samples. A slowly decaying auto-correlation
coefficient shows long term temporal correlation. Similarly, a fast decaying plot
shows short term temporal correlation [6, 21].

We use real world wind data from the site Archer City mentioned in the previous
section to show the temporal correlation of the components of complex wind signal.
Figure 2.4(a) shows the plot of temporal correlation of the wind speed and direction
versus the time lag. A section of the Figure 2.4(a) is shown in Figure 2.4(b) high-
lighting the wind speed’s temporal correlation for the time lag of up to eight hours
which is more than 50% and wind direction has little less than 50% for the time lag
of four hours.

2.6 Spatial Correlation of Wind Signal

The weather system, due to its inertia, changes slowly over the earth surface. Wind
at a particular site is highly correlated with the wind at its neighboring sites. The
spatial correlation among neighbors can be described in terms of the cross-correlation
coefficient [21]. The spatial correlation of wind signal can be exploited to improve
the performance of a wind forecasting system.

For given time series wind data from two different sites with K measurements
z1 = [z1(1) . . . z1(N)], z2 = [z2(1) . . . z2(N)] where zi(k) = vi(k)e

jφi(k) for i = 1, 2;
the cross-correlation coefficient between wind speed and direction represented by Ĉ,
is given by

Ĉx1x2
(τ) =

1
K−τ

∑K−τ

k=1 [(x1(k)− m̂x1
)(x2(k + τ)− m̂x2

)]

σ̂x1
σ̂x2

, τ = 0, . . . , K (2.6)
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where xi(k) = vi(k) for wind speed and xi(k) = φi(k) for wind direction for i = 1, 2
and τ is the time lag, m̂x1

and m̂x2
are the estimated means of the wind data at the

two sites and σ̂2
x1

and σ̂2
x2

are their estimated variances.
A plot of the cross-correlation coefficient versus the time lag gives a good idea

of the spatial correlation of the wind between two sites. A slowly decaying cross-
correlation coefficient shows long term spatial correlation. Similarly, a fast decaying
cross-correlation coefficient shows short term correlation [5, 22–24].

We use real-world wind data from the two sites with Archer City as mentioned
earlier and other site being Young County 1 - Site #1987 with wind speed and direc-
tion sensors at the height of 28m to show the spatial correlation of the components
of the complex wind signal.

Figure 2.5(a) shows the cross-correlation coefficient between Archer City and
Young County-1 versus time lag τ . Figure 2.5(b) shows a section of Figure 2.5(a).
From the plots we see that, for the data in question, wind speed and direction from
two different sites have high cross-correlation for time lag of up to nine hours in
case of speed and four hours in case of direction. The spatial correlation at time lag
zero is about 88% for speed and 64% for direction. This spatial correlation can be
used in time series modelling of the complex wind signal to improve the forecasting
performance.
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Figure 2.5: Spatial correlation of wind signal for selected data (a) and zoomed in
for clarity in (b).



Chapter 3

Wind Forecasting and

Widely-Linear and Collaborative

Processing of Wind Signal

This chapter starts with a general overview of wind forecasting. Different types of
wind forecasting methods and their features are described. Typical considerations
in a wind forecasting system such as forecasting horizons and performance measures
are also summarized. In Section 3.2, we present the widely-linear filtering model for
the complex wind signal. In Section 3.3, we discuss the performance gain achieved
with widely-linear approach using real world wind data. Towards the end of the
chapter, Section 3.4 is dedicated to the literature review of collaborative wind fore-
casting. Starting with a general introduction of collaborative wind forecasting, we
will describe two collaborative schemes which are relevant to our work.

3.1 Overview of Wind Forecasting

The integration of wind energy into the power grid requires accurate forecasting of
the wind power. While the need for wind power forecasting is evident, we focus
on wind speed forecasting which can directly be used to estimate power output of
the turbines. Complex wind signal is non-circular and also it has strong temporal
and spatial correlation. A good forecasting model requires incorporation of all these
characteristics of the wind signal to accurately predict the future values of the wind
speed.

Different approaches have been used for wind forecasting purposes in the liter-
ature. The most basic and simplest technique to forecast the future value of the
wind signal is ’persistence’ [14,25,26] which is based on the simple assumption that
wind speed at a future time is same as it is at the time at which forecast is being
made. Persistence is used as a reference model to gauge the performance of more so-
phisticated forecasting models. More advanced models based on numerical weather
prediction and statistical methods have been developed to improve the forecasting
performance [14,15,27].

13
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The suitability of a forecasting model is determined by the forecasting horizon
which is the time ahead for which the forecast is made. Based on the forecasting
horizon, wind forecasting is divided into short term (30min-6hrs), medium term
(6hrs-24hrs) and long term (24hrs-7days) forecasts [27, 28].

Numerical weather prediction models rely on physical reasoning and employ
topological information to forecast the future values of the weather system and
these models were originally designed for weather predictions over large areas and
for long time ahead typically ranging from several hours to months ahead. The
resolution of numerical weather prediction based models is quite small and for short
term forecasting the errors are high. Therefore, these methods are not best suited
for short-term wind forecasting [14,15,25,27].

For power scheduling purposes, short-term wind forecasting with a forecasting
horizon of one hour are the most commonly used system parameters for forecasting
models. Statistical models are best suited for short term wind forecasting and
with the incorporation of wind characteristics and terrain information, these models
outperform all other kind of methods [5]. Statistical methods are based on the
training of model parameters using measurement data and the error signal, which is
the difference between the predicted and actual wind signal. These methods are sub-
divided into two categories: 1) Time-series based models, and; 2) Neural network
based models. The most popular models in time-series based methods are auto-
regressive moving average (ARMA) models and their variants, e.g., auto-regressive
integrated moving average (ARIMA), seasonal- and fractional -ARIMA and ARIMA
with exogenous input (ARMAX or ARX). Some other time-series models are grey-
predictors, linear predictions, exponential smoothing, etc [27, 29]. Neural network
based methods are normally used where the available wind data is highly nonlinear
and they are computationally intensive. In this thesis work we will focus only on
time series based methods.

There is an inherent uncertainty in wind power predictions due to the inter-
mittent nature of wind signal, meaning that there will always be an error in the
wind forecasts. Thus, it is important to assess the performance of the forecasting
method. The performance of a certain forecasting model is determined by the per-
formance measures such as mean squared error (MSE) and root mean squared error
(RMSE) [14,26,30,31].

Performance measures give an account of the accuracy of forecasting model.
Evaluation of the forecasting approach is based upon the comparison between the
forecasted value of the wind and the actual value of the wind at the time for which
prediction is made.

The prediction error defined as the difference [14, 26] between the measured
value of the wind and the forecasted value is the most basic measure to look at the
forecasting accuracy of the model. It is used in adaptive updating of the model
parameters to minimize a function of the error signal like mean of the squared error.

Based on prediction error, there are numerous performance measures which are
used in practice. Bias is the average value of the error over whole data set. Mean
squared error (MSE) defined as mean of the squared error and root mean square
error (RMSE) is square root of the MSE. Mean absolute error is sum of absolute
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values of the errors over test data and standard deviation of error (SDE) is the
square root of the variance of the error signal [14, 26, 30,31].

3.2 Adaptive Algorithms for Short Term Wind

Forecasting

Statistical models for wind forecasting purposes are based on the exploitation of the
statistical properties of the wind signal. In the previous chapter, we studied some
properties of the complex wind signal which, in this chapter, will be utilized for the
development of statistical models for wind forecasting. The complex representation
of wind signal is more natural and convenient for processing. Temporal correlation
of the complex wind signal motivates to develop regression based filtering models
where the past output of the system is weighted and combined to predict the future
value. Widely-linear (WL) filtering models provide a framework to capture full
second order statistics of the complex wind signal. Here we present the widely-linear
filtering algorithms which fully utilize the second order properties of wind signal.
We will start with widely-linear adaptive filtering model and provide the derivation
of least squares (LS) and least mean square (LMS) type update algorithms for the
filter parameters.

3.2.1 Widely-Linear Processing of Complex Wind Signal

Widely-linear modeling of complex signals is based upon the augmented statistics
[18], where the input data z(k) = [z(k) . . . z(k−p+1)]T with p samples is appended
with its conjugate to form an augmented input vector za(k), which is given by

za(k) = [z(k) . . . z(k − p+ 1), z∗(k) . . . z∗(k − p+ 1)]T

= [zT (k), zH(k)]T . (3.1)

The output of a widely-linear filter for the desired signal d(k) = z(k + n), in
n-step ahead prediction setting, is given by

y(k) =

p−1
∑

a=0

haz(k − a) +

p−1
∑

a=0

gaz
∗(k − a)

= hH(k)z(k) + gH(k)z∗(k)

= wH(k)za(k) (3.2)

where h = [h0 . . . hp−1]
T , g = [g0 . . . gp−1]

T are the widely-linear filter coefficient
vectors, and w(k) = [hT (k),gT (k)]T .

The objective is to find an estimate for the coefficients of the filter which tries
to find those values of h(k) and g(k) that make y(k) closest to the desired signal
with an instantaneous error signal e(k) = d(k)− y(k), where closeness is defined by
an error criterion, also called objective function, which should be realistic enough
for the given task and should be analytically tractable.

Two commonly used error criteria are provided below:
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• Deterministic least-squares error criterion, given by

J(k) =
k

∑

i=0

λk−i|e(i)|2 =
k

∑

i=0

λk−i|d(k)− y(k)|2 (3.3)

where λ is the exponential weighting factor, or forgetting factor, and should
be chosen in the range 0 ≪ λ ≤ 1.

• Instantaneous error criterion, given by

J(k) =
1

2
|e(k)|2 =

1

2
|d(k)− y(k)|2. (3.4)

The objective function J(k) is a real-valued scalar function of the complex pa-
rameter vectors h(k) and g(k). The aim here is to find the parameter vectors h(k)
and g(k), such that J(k) is minimized. The direction of maximum rate of change of
a real-valued function of a complex vector variable is determined by differentiating
it with respect to the conjugate parameter vectors, i.e., h∗(k) and g∗(k) [18].

In the following derivations we will differentiate and minimize the objective func-
tions with respect to corresponding filter parameters and find the optimum solution
for the update of parameter vectors.

The deterministic error criterion for widely-linear least square type problem for
complex input data can be given by

J(k) =
k

∑

i=0

λk−i|d(i)−
(

hH(k)z(i) + gH(k)z∗(i)
)

|2 (3.5)

=
k

∑

i=0

λk−i
[

d(i)−
(

hH(k)z(i) + gH(k)z∗(i)
)] [

d∗(i)−
(

hT (k)z∗(i) + gT (k)z(i)
)]

.

(3.6)

Now we will differentiate J(k) with respect to h∗(k) and g∗(k) and equate the
result to zero to find the optimum value of h(k) and g(k). Differentiating J(k) with
respect to h∗(k) and g∗(k) gives

∂J(k)

∂h∗(k)
= −

k
∑

i=0

λk−iz(i)
[

d∗(i)−
(

hT (k)z∗(i) + gT (k)z(k)
)]

(3.7)

∂J(k)

∂g∗(k)
= −

k
∑

i=0

λk−iz∗(i)
[

d∗(i)−
(

hT (k)z∗(i) + gT (k)z(k)
)]

(3.8)
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Equating the results to zero

−
k

∑

i=0

λk−iz(i)zH(i)h(k)−
k

∑

i=0

λk−iz(i)zT (i)g(k) +
k

∑

i=0

λk−iz(i)d∗(i)] =







0
...
0







(3.9)

−
k

∑

i=0

λk−iz∗(i)zH(i)h(k)−
k

∑

i=0

λk−iz∗(i)zT (i)g(k) +
k

∑

i=0

λk−iz∗(i)d∗(i)] =







0
...
0







(3.10)

Equations (3.9) and (3.10) can be written in compact form

C(k)h(k) +P(k)g(k) = p(k) (3.11)

P∗(k)h(k) +C∗(k)g(k) = p∗(k) (3.12)

where

C(k) =
k

∑

i=0

λk−iz(i)zH(i) (3.13)

P(k) =
k

∑

i=0

λk−iz(i)zT (i) (3.14)

and

p(k) =
k

∑

i=0

λk−iz(i)d∗(i). (3.15)

Now solving (3.11) and (3.12) simultaneously for h(k) and g(k) gives

[

h(k)
g(k)

]

=

[

C(k) P(k)
P∗(k) C∗(k)

]−1 [
p(k)
p∗(k)

]

(3.16)

w(k) = C−1
a (k)pa(k), (3.17)

where Ca(k) and pa(k) are the augmented input covariance matrix and the cross-
covariance vector between the augmented input vector and the desired signal.

The direct computation of C−1
a (k) results in a computational complexity of

O(p3). The computation of the inverse matrix is avoided by the use of matrix
inversion lemma [32]. In the following derivations, we will first express the inverse
of Ca(k) in recursive form and then proceed to derive the parameter update for the
filter coefficients based on the a priori error e(k) = d(k)− [hH(k)z(k)+gH(k)z∗(k)].

From (3.13) and (3.14) the covariance matrix Ca(k) can be expressed in the
recursive form as

Ca(k) = λCa(k − 1) + za(i)z
H
a (i) (3.18)
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and by applying the matrix inversion lemma1, the inverse matrix Sa(k) is given by

C−1
a (k) = Sa(k) =

[

λCa(k − 1) + za(i)z
H
a (i)

]−1

=
1

λ

[

Sa(k − 1)−
Sa(k − 1)za(k)z

H
a (k)Sa(k − 1)

λ+ zHa (k)Sa(k − 1)za(k)

]

(3.19)

Now (3.9) and (3.10) can be expressed as

C(k)h(k) +P(k)g(k) = λ

[

k−1
∑

i=0

λk−i−1z(i)d∗(i)

]

+ z(k)d∗(k)

= λp(k − 1) + z(k)d∗(k) (3.20)

P∗(k)h(k) +C∗(k)g(k) = λ

[

k−1
∑

i=0

λk−i−1z∗(i)d∗(i)

]

+ z∗(k)d∗(k)

= λp∗(k − 1) + z∗(k)d∗(k). (3.21)

Since

C(k − 1)h(k − 1) +P(k − 1)g(k − 1) = p(k − 1) (3.22)

P∗(k − 1)h(k − 1) +C∗(k − 1)g(k − 1) = p∗(k − 1) (3.23)

Equations (3.20) and (3.21) become

C(k)h(k) +P(k)g(k) = λ [C(k − 1)h(k − 1) +P(k − 1)g(k − 1)] + z(k)d∗(k)
(3.24)

P∗(k)h(k) +C∗(k)g(k) = λ [P∗(k − 1)h(k − 1) +C∗(k − 1)g(k − 1)] + z∗(k)d∗(k).
(3.25)

Equations (3.24) and (3.25) can be combined in the augmented form as

Ca(k)w(k) = λCa(k − 1)w(k − 1) + za(k)d
∗(k). (3.26)

The a priori error is given by

e(k) = d(k)−wH(k − 1)za(k) (3.27)

and
d(k) = e(k) +wH(k − 1)za(k). (3.28)

We then put the value of d(k) in (3.26) and simplify it for the parameter vector
w(k)

Ca(k)w(k) =

[

k
∑

i=0

λk−iza(i)z
H
a (i)− za(k)z

H
a (k)

]

w(k − 1)

+za(k)
(

e(k) +wH(k − 1)za(k)
)∗

(3.29)

1(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1
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Ca(k)w(k) = Ca(k)w(k − 1) + e∗(k)za(k) (3.30)

Using the inverse relation Sa(k) = C−1
a (k), we get

w(k) = w(k − 1) + e∗(k)Sa(k)za(k). (3.31)

Equation (3.31) is the least-square update for widely-linear filter parameters in re-
cursive form.

Now we proceed to derive the filter update equation with stochastic error crite-
rion. The stochastic error function given in (3.4) can be written as

J(k) =
[

d(k)−
(

hH(k)z(k) + gH(k)z∗(k)
)] [

d∗(k)−
(

hT (k)z∗(k) + gT (k)z(k)
)]

.
(3.32)

The generic gradient type update equation for the coefficient vector h(k) and
g(k) is given by

h(k + 1) = h(k)− µ
∂J(k)

∂h∗(k)
(3.33)

g(k + 1) = g(k)− µ
∂J(k)

∂g∗(k)
(3.34)

where µ is a step size controlling the learning and the steady state error.
Differentiating J(k) with respect to h∗(k) and g∗(k)gives

∂J(k)

∂h∗(k)
= −z(k)[d∗(i)− hT (k)z∗(k)− gT (k)z(k)]

= −e∗(k)z(k) (3.35)

∂J(k)

∂g∗(k)
= −z(k)[d∗(i)− hT (k)z∗(k)− gT (k)z(k)]

= −e∗(k)z∗(k). (3.36)

From (3.33), (3.34), (3.35) and (3.36) the least mean square type update for
widely-linear filter coefficients is given by

h(k + 1) = h(k) + µe∗(k)z(k) (3.37)

g(k + 1) = g(k) + µe∗(k)z∗(k). (3.38)

The update equations for h(k) and g(k) can be combined in augmented form

w(k + 1) = w(k) + µe∗(k)za(k) (3.39)

and (3.39) is referred as the widely-linear LMS type update equation.
The widely-linear least-squares and least mean square type filter reduce to their

linear counterparts by setting g(k) = 0.
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Figure 3.1: RLS and WL-RLS processing of real world wind data.

3.3 Performance Gain using Widely-Linear Ap-

proach

Figure 3.1 shows the speed plot of a real word wind data from the site Archer City.
The magnitude of wind signal is divided into three regions, i.e., low, medium and
high. Wind speeds below 4m/s is called low wind, between 4 m/s and 6 m/s is
called medium wind and wind greater than 6 m/s is called high wind. Output plots
of one-step ahead prediction with linear and widely linear filters are also shown on
the same figure.

Table 3.1: RMSE for linear and widely-linear modeling.
Site/RMSE linear output widely-linear output
Archer City 1.50 1.46

Young County1 1.38 1.35
Young County2 1.37 1.35

Table 3.1 shows the RMSE values for the three sites in our study for the overall
wind test data set. The RMSE values in case of WL-linear processing are less than
those of linear processing, confirming the non-circular nature of the wind signal and
the performance gain achieved through WL-linear processing as well.
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3.4 Collaborative Processing of Wind Signal

While the need for wind speed forecasting has been emphasized in the previous
sections, current forecasting models are mostly developed for the data from a single
site without properly taking into account the spatial correlation of the wind signal.
As discussed in Chapter 2, wind signals at neighboring sites are correlated. Thus,
forecasts for a single site can be improved by incorporating the spatial correlation
of neighboring sites into the forecasting model.

Wind data from upwind [33] neighboring turbines, where the wind strikes first,
in a single wind park can also be utilized to make better forecasts for the turbines at
the downwind location which receive the same wind that comes from upwind turbine
after some time lapse. Since wind does not change much in a relatively small area
of a single wind park, most of the work has been done to exploit the wind data from
different sites with somewhat larger distances and with good spatial correlation.

This section is dedicated to the literature review of collaborative wind forecasting
techniques. In Section 3.4.1, we explain the multi-variable auto-regressive model for
collaborative wind forecasting. Section 3.4.2 is dedicated to the decentralized wind
flow model for a single wind park. Finally in Section 3.4.3, we summarize some
other collaborative wind forecasting techniques.

3.4.1 Multivariate Auto-Regressive Model

Multivariate auto-regressive model has been developed for wind speed forecasting
for UK Met-Office weather stations data. The method presented in [34] is summa-
rized here to develop the understanding of a basic spatial correlation based wind
forecasting model.

The model uses time-stamped wind speed data from different stations as input
and produces a time-series model which utilizes both the temporal and spatial cor-
relations of the wind speed. For the development of this model, data was obtained
from the Met-Office stations which offered consistent historical measurements and
with the longest records to include all the variations in the wind speeds over the
years.

Wind speed at single site n in one-step ahead prediction setting can be repre-
sented with a time series, in the form of a pth order auto-regressive (AR) model

yn(k) =

p
∑

a=1

hn,azn(k − a) + v(k)

= hT
n (k)zn(k) + v(k) (3.40)

where v(k) is a random process (zero mean and unit variance), hn(k) = [h1, . . . , hp]
T

are the auto-regressive coefficients and zn(k) = [zk−1, . . . , zk−p]
T is the regressor

data.
For N sites, each with regressor data of length p, the model can be represented
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as

y(k) =







y1(k)
...

yN(k)






=

p
∑

a=1

Ha(k)z(k − a) + v(k)

= Hs(k)zs(k) + v(k) (3.41)

where y(k) = [y1(k), . . . , yN (k)]
T is a N×1 output vector for N sites at time instant

k, H1, . . . ,Hp are the N × N auto-regressive coefficient matrices which correlate
the values of N measurements in z(k − a) to their own past values and also to
the other site’s past data values, and v(k) is an N × 1 vector of white noise and
hs(k) = [H1(k) . . .Hp(k)] is a matrix stacked with the matrices Ha(k) and zs(k) =
[zT (k− 1) . . . zT (k− p)]T is a vector stacked with z(k) and v(k) is a vector of white
noise.

3.4.2 Decentralized Wind Flow Model and Prediction

The decentralized wind flow model given in [33] is based on the fact that each
downwind turbine in a wind park is affected by its upwind neighboring turbines.
Here we summarize the main steps of the decentralized wind flow model.

Prediction Model

The general form of the model is based on discrete time auto-regressive with external
input model with upwind turbine’s regressor data z(k) and the output of downwind
turbine y(k) in one-step ahead prediction setting is given by

y(k) = −

pu
∑

p=1

hupy(k − p) +

pd
∑

p=1

hdpzd(k − p)

= hT
u (k)y(k) + hT

d (k)zd(k) (3.42)

where pu is the regressor length of upwind turbine with regressor data zu(k) =
[zu(k − 1) . . . zu(k − pu)]

T and pd is the regressor length of the downwind turbine
obtained from previous outputs, y(k) = [−y(k − 1) . . . − y(k − pd)]

T and hu(k) =
[hu1 . . . hupu ]

T and hd(k) = [hd1 . . . hdpd ]
T are the parameter vectors for upwind and

downwind turbines.

Online Parameter Estimation

In many real-world applications, online estimation of the parameters is required as
the system output changes constantly and the measurements are available only when
the system is in operation.

Let h(k) = [hu1 . . . hupu , hd1 . . . hdpd ]
T be the overall parameter vector of size

p = pu + pd then the Kalman filtering formulation for the updates of the true
parameter vector h◦(k) is given by

h◦(k) = h◦(k − 1) + v(k), (3.43)
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where h◦(k) is the true parameter vector of the same size as h(k) and v(k) white
noise vector of size p with p× p covariance matrix R1.

The general recursive form of the parameter update is given by

h(k) = h(k − 1) + k(k)(d(k)− y(k)), (3.44)

y(k) = hT (k − 1)z(k), (3.45)

where d(k) is the actual output of the system at time k, y(k) is the predicted output,
k(k) is the Kalman gain vector of size p × 1 and z(k) = [−y(k − 1), . . . ,−y(k −
pu), zd(k − 1), . . . , zd(k − pd)]

T .
The gain has the following general form

k(k) = Q(k)z(k), (3.46)

where the N ×N matrix Q(k) is defined as

Q(t) =
P(k − 1)

σ2
e + zT (k)P(k − 1)z(k)

, (3.47)

P(k) = P(k − 1) +R1 −
P(k − 1)z(k)zT (k)P(k − 1)

σ2
e + zT (k)P(k − 1)z(k)

, (3.48)

and σ2
e is the error covariance and it is a scalar quantity and P ia a p× p matrix.

Fusion

When there are several upwind neighboring turbines which are laterally distributed
against the wind direction then we have different predictions at downwind turbine
resulting from the each upwind turbine. It is then beneficial to fuse all these pre-
dictions to generate one global prediction for the downwind turbine. The fusion can
be based on the weight given to prediction from each upwind turbine according to
the error variance associated with it. The fusion can be made adaptive by using a
recursive algorithm for the weight’s update.

A simple example to fuse the predictions from N upwind turbines is given by

yg(k) = σ2
T (k)

N
∑

i=1

σ2
i
−1(k)yi(k), (3.49)

σ2
T (k) =

[

N
∑

i=1

σ2−1
i (k)

]−1

, (3.50)

where yi(k) is the ith predicted wind speed and σ2
i (k) is the corresponding error

covariance. All quantities in this expression are scalars.
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Effect of Direction

The direction of the wind affects performance achieved by collaboration. There are
two general cases to consider here. The first case is when the direction of the wind
is in line with the two turbines, i.e., wind direction is in parallel to the wind turbine
row and the second case is when the wind direction hits the wind turbine row at
some constant angle θ.

There is very small or negligible benefit achieved by collaboration in the first
case while in the second case the forecasting performance is improved consider-
ably. Figure 3.2(a) and Figure 3.2(b) show the two scenarios discussed above. In
Figure 3.2(a) the direction of wind is parallel to the line connecting the two wind
turbines. In this case same wind signal will be received at the two turbines and
hence there is no gain achieved through collaboration. Whereas, in Figure 3.2(b)
wind from the upwind turbine hits the downwind turbine at an angle θ. In this
case, the measurements at the upwind turbine will be useful for the predictions at
downwind turbine. The simulation results for these cases given in [33] confirm the
observations made.

3.4.3 Other Collaborative Schemes

One of the simplest techniques to include the effect of wind direction in spatial
correlation studies is to use direction specific forecasting models. Regime-switching
space-time diurnal model [35] is an example of such case, where the wind speed
forecasting model is switched based on the direction of wind flow. Two different
forecasting models are used based on the direction of the wind flow which can be
from west to east (westerly regime) or east to west (easterly regime). The main
limitation of such kind of model is that only two wind flow directions are assumed,
while in practice wind can flow from a wide area with different directions.

The trigonometric direction diurnal model [5] was developed to address this
problem by including the wind direction as a covariate in the forecasting model. The
inclusion of direction as covariate in wind speed forecasting provides more flexibility
and improves the accuracy of the model.

Another model with wind speed and direction data as a bi-variate vector in
Cartesian coordinates was developed to improve the spatial correlation-based wind
forecasting. The bi-variate Skew-T model [5] uses wind data in Cartesian co-ordinate
system from the neighboring sites.
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Figure 3.2: Effect of direction on collaborative wind forecasting with turbines in a
straight line (a) and at an angle θ with each other.



Chapter 4

Resource-Efficient Widely-Linear

Collaborative Processing of Wind

Signal

The available spatial correlation based wind forecasting techniques, reviewed in
Chapter 3 do not take into account the non-circular nature of the complex wind
signal. Moreover existing models do not exploit all characteristics of the wind sig-
nal such as the effect of direction, non-circularity, spatial correlation and temporal
correlation in a single formulation. This chapter presents a widely-linear collabo-
rative wind forecasting model, which takes variable-length regressors from all the
sites in the neighborhood of a reference site and appends them with its regressor
to make m-step ahead prediction. The coefficients of the model are updated re-
cursively in such a way that the sum of the square of error is minimized. The
model is further optimized for efficient resource utilization using a set-membership
filtering approach. As a results, we can significantly reduce local processing and
communication requirement between neighboring nodes.

In Section 4.1, we will derive the widely-linear collaborative wind forecasting
model and the update equations for the filter coefficients. In Section 4.2, we will
present the resource-efficient formulation of the widely-linear collaborative model
and discuss the saving in the communication and processing cycles using this ap-
proach.

4.1 Collaboration with Widely-Linear Processing

Current models of collaboration using spatial correlation from different locations
are based upon the inherent assumption of the circularity of the wind data. In the
following section we derive a widely-linear model for the processing of complex wind
signal using augmented statistics [7, 18].
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4.1.1 Widely-Linear System Model

We consider a fully connected network of N nodes with measurement data at nth
node is given by zn(k) = [zn(k) . . . zn(k−pn+1)]T , n = 1 . . . N , with pn being the re-
gressor length for the node. Each node receives the measurement data from all other
nodes in the network and makes its m-steps ahead prediction by exploiting its own
auto-correlation and cross-correlation with the other nodes’ data using augmented
data vectors.

For the desired signal d(k) = zn(k +m), the output from the node n is given by

y(k) =
N
∑

n=1

pn−1
∑

p=0

hn,pzn(k − p) +
N
∑

n=1

pn−1
∑

p=0

gn,pz
∗
n(k − p)

= hH
1 (k)z1(k) + · · ·+ hH

N(k)zN(k) + gH
1 (k)z

∗
1(k) + · · ·+ gH

N (k)z
∗
N(k)

= hH(k)z(k) + gH(k)z∗(k)

= wH(k)za(k) (4.1)

where w(k) = [hT (k),gT (k)]T is the combined augmented coefficient vector and
za(k) = [zT (k), zH(k)]T is the combined augmented data vector.

4.1.2 Parameter Estimation

The parameters of the widely-linear filter are estimated by minimizing an objective
function of the instantaneous error signal e(k) = d(k) − y(k). For this purpose we
use the least squares objective function, introduced in Section 3.2.1, given by

J(k) =
k

∑

i=0

λk−i|d(k)−wH(k)za(k)|
2. (4.2)

Differentiating J(k) with respect to w∗(k) and solving for w(k), we get

w(k) = C−1(k)p(k)

=



















C11(k) · · · C1N(k) P11(k) · · · P1N(k)
...

. . .
...

...
. . .

...
CN1(k) · · · CNN(k) P1N(k) · · · P1N(k)
P∗

11(k) · · · P∗
1N(k) C∗

11(k) · · · C∗
1N(k)

...
. . .

...
...

. . .
...

P∗
N1(k) · · · P∗

N1(k) C∗
1N(k) · · · C∗

NN(k)



















−1 

















p11(k)
...

pN1(k)
p∗
11(k)
...

p∗
N1(k)



















(4.3)
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where

Cmn(k) =
k

∑

i=0

λk−izm(k)z
H
n (k)

Pmn(k) =
k

∑

i=0

λk−izm(k)z
T
n (k)

pmn(k) =
k

∑

i=0

λk−izm(k)d
∗
n(k), m = 1 . . . N, n = 1 . . . N

are the input covariance matrix and pseudo-covariance matrix and cross-covariance
vector between input data and desired signal, respectively.

The parameter update equation for the widely-linear collaborative filter is similar
in formulation to (3.17) and hence, it can be written in the form

w(k) = w(k − 1) + e∗(k)S(k)za(k) (4.4)

where

S(k) =
1

λ

[

S(k − 1)−
S(k − 1)za(k)z

H
a (k)S(k − 1)

λ+ zHa (k)S(k − 1)za(k)

]

. Equation(4.4) is the widely-linear collaborative least-square type update for filter
parameter in recursive form. It is evident from the expressions of C(k), P(k), C∗(k),
P∗(k), p(k) and p∗(k) that the widely-linear collaborative filtering model takes into
account the auto-covariance, pseudo-covariance and cross-covariance of the input
data and its conjugate with the desired signal as well as the cross-covariances with
the data from all other nodes in the network, thus exploiting the spatial correlation
as well as non-circularity of the complex wind signal in a single formulation.

By setting g(k) = 0 and without augmenting the data vector, we can achieve
the linear version of the collaborative RLS filtering model. The algorithms for the
linear and widely-linear collaborative RLS filtering models are summarized in the
Tables 4.1 and 4.2.

4.2 Resource-Efficient Processing

The update for the collaborative RLS filter basically consists of two steps: 1) A
communication step where nodes (or sites) share regressor vectors with each other;
and 2) An update step where each node computes its parameter update using its
own and other nodes regressor vectors. In other words, this requires constant trans-
mission and processing for each new data measurement and hence does not render
efficient utilization of the system resources, since the new data is not always useful
for the parameter update. In particular as the number of nodes increases, local com-
plexity as well as the amount of communication will increase substantially. We will
in this section look at a strategy that reduces communication requirements (in terms
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Table 4.1: Linear collaborative RLS processing.
Linear collaborative RLS algorithm for node n
Initialization:
S(0) = δI
h(0) = 0
for k = 1:K
{
z(k) = [zT1 (k), . . . , z

T
N (k)]

T

en(k) = dn(k)− hH(k)z(k)
G(k) = zH(k)S(k − 1)z(k)

S(k) = 1
λ

[

S(k − 1)− S(k−1)z(k)zH(k)S(k−1)
λ+G(k)

]

h(k) = h(k − 1) + e∗n(k)S(k)z(k)
}
If necessary, compute:
yn(k) = hH(k)z(k)
e
′

n(k) = dn(k)− yn(k)

Table 4.2: Widely-linear collaborative RLS processing.
Widely-linear collaborative RLS algorithm for node n
Initialization
S(0) = δI
w(0) = 0
for k = 1:K
{
z(k) = [zT1 (k), . . . , z

T
N (k)]

T

za(k) = [zT (k)zH(k)]T

en(k) = dn(k)−wH(k)za(k)
G(k) = zHa (k)S(k − 1)za(k)

S(k) = 1
λ

[

S(k − 1)− S(k−1)za(k)zHa (k)S(k−1)
λ+G(k)

]

w(k) = w(k − 1) + e∗n(k)S(k)za(k)
}
If necessary, compute:
yn(k) = wH(k)za(k)
e
′

n(k) = dn(k)− yn(k)

of regressor sharing) as well as local processing complexity by selectively updating
the parameter estimates. The basic principles underlying the proposed strategy rest
on the principles of set-membership filtering (SMF) which feature data-dependent
updates of parameter estimates integrated with those of widely-linear adaptive fil-
ters.

In SMF, the parameter update is based on a predefined threshold for the mag-
nitude of the error signal for each pair of the input data and desired signal [36–38].
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Using this approach, local update and transmission is made only when the error
signal is greater than the pre-defined threshold, thus keeping the error below the
threshold. There are many set-membership filtering based approaches for the pa-
rameters update but optimal bounding ellipsoids (OBE) are one of the most popu-
lar. In the following we will present OBE type set-membership formulation of the
widely-linear collaborative filtering algorithm.

For a combined augmented input data vector za(k) from a network of N nodes
and local desired signal d(k) = zn(k+m) inm-steps ahead prediction setting at node
n and at time instant k with filter parameter vector w(k), in SMF by setting an
upper bound γ on the error, we seek parameter vector w which keeps the magnitude
of the output error below a predefined threshold γ for all input data pairs, i.e.,

|e(k)| ≤ γ, ∀k (4.5)

At time instant k, constraint set given by

H(k) = {w : |d(k)−wH(k)za(k)|
2 ≤ γ2} (4.6)

which defines the set of parameter vectors that for current input data pair {d(k), za(k)}
obey the bound criterion in (4.5) [36–38].

Let us consider a sequence of data pairs measured at time instants k = 1 to
k = K. The unknown parameter vector remains constant, it must lie in the following
set

ψ(k) = ∩k
j=1H(j) (4.7)

referred to as the exact membership set. We see that any parameter vector belonging
to the exact membership set is a feasible solution for the requirement set in the
formulation. This is in contrast with the conventional approach in (4.3) which
allows only allows a single solution. The exact membership set defined in (4.7) is a
convex polytope in the parameter space and can be tracked more conveniently by
using bounding ellipsoids.

Assume that at time instant k − 1 the exact membership set is outer bounded
by an ellipsoid E(k − 1) given by

E(k − 1) = {w : [w −w(k − 1)]HC−1(k − 1)[w −w(k − 1)] ≤ σ2(k − 1)} (4.8)

where C−1(k−1) is a positive definite matrix which represents the shape, orientation
and size of the ellipsoid and σ2(k − 1) is a positive number defining the size of the
ellipsoid and w(k − 1) is the center of the ellipsoid.

A new ellipsoid E(k) at time instant k that outer bounds the intersection E(k−
1) ∩H(k) is obtained by a linear combination of E(k − 1) and H(k)

E(k) = {w : α(k)[w −w(k − 1)]HC−1(k − 1)[w −w(k − 1)]+

β(k)|d(k)−wH(k)za(k)|
2 ≤ . . . α(k)σ2(k − 1) + β(k)γ2} (4.9)

where α(k)>0 and β(k) ≥ 0 are time-varying weights will be optimized in the
following.
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4.2.1 Update Equations

The solution for the OBE type SMF problem formulated above comes out to be in
the form of the following recursions

S(k) =
1

α(k)

[

S(k − 1)−
β(k)S(k − 1)za(k)za

H(k)S(k − 1)

α(k) + β(k)zHa (k)S(k − 1)za(k)

]

(4.10)

w(k) = w(k − 1) + e∗(k)β(k)S(k)za(k) (4.11)

σ2(k) = α(k)σ2(k − 1) + β(k)γ2 −
β(k)α(k)|e(k)|2

α(k) + β(k)zHa (k)S(k − 1)za(k)
(4.12)

Different choices of α(k) and β(k) give different algorithms for the parameter
estimates. Setting α(k) = 1 − λ(k) and β(k) = λ(k) with 0 ≤ λ(k) ≤ 1, we get
a widely-linear version of the collaborative DH-OBE algorithm [38]. The optimal
value for λ(k) in DH-OBE is the one that minimizes σ2(k) in (4.12). An update is
made only when σ2(k) + |e(k)|2>γ2 and in this case

λ(k) = min(v(k), λmax) (4.13)

with

v(k) =



















λmax if e(k) = 0
1−µ(k)

2
if G(n) = 0

1
1−G(n)

[

1−
√

G(n)
1+µ(k)(G(k)−1)

]

if 1 + µ(k)(G(k)− 1)>0

λmax if 1 + µ(k)(G(k)− 1) ≤ 0

G(k) = zHa (k)S(k−1)za(k), µ(k) =
γ2(k)−σ2(k)

|e(k)|2
and λmax ∈ (0, 1), otherwise λ(k) = 0

and no update is made.
Another algorithm called BEACON is obtained by setting α(k) = 1 and β(k) =

λ(k) in (4.10), (4.11) and (4.12). An update is made only when |e(k)|>γ in which
case the optimal value of λ(k) [37] which minimizes (4.12) is given by

λ(k) =

{

0
1

G(k)

(

|e(k)|
γ

− 1
)

if |e(k)| ≤ γ
if |e(k)| > γ

. (4.14)

Equation(4.14) shows two cases based on the magnitude of error signal relative to
the error bound γ. When error is larger than γ an update for the filter parameters is
made with corresponding non-zeros value of λ(k) and when the error is less or equal
to γ, λ(k) is zero, and no parameter update is made. Based on the chosen value of
γ, we can save significant amount of processing cycles. In a collaboration scenario,
each new data vector at a node is first processed to check if local update is required
or not. If an update is required locally the data is broadcasted over the network
and similarly any node which receives data from the network utilizes it for its local
update (if it is required). The underlying idea is that if new data at any node is
useful to cause a local update then it might be useful for other nodes in the network
and hence it is transmitted and if the data does not cause a local update, it is not
transmitted. Hence, based on the value of γ, significant amount of communications
can be saved. The linear and widely-linear versions of BEACON are summarized in
Tables 4.3 and 4.4.
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Table 4.3: Resource efficient linear collaborative RLS processing.
Resource efficient collaborative RLS algorithm for node n
Initialization:
S(0) = I

h(0) = 0
for k = 1:K
{
zn(k) = [zT1 (k), . . . , z

T
N(k)]

T

z(k) = [zT1 (k), . . . , z
T
N(k)]

T

en(k) = dn(k)− hH(k)z(k)
Check for transmission of new measurement and update
If |en(k)| > γ
{
G(k) = zH(k)S(k − 1)z(k)

λ(k) = 1
G(k)

(

|en(k)|
γ

− 1
)

S(k) = S(k − 1)− λ(k)S(k−1)z(k)zH(k)S(k−1)
1+λ(k)G(k)

h(k) = h(k − 1) + e∗(k)λ(k)S(k)z(k)
}
Receive data from the network and update the regressor vector
or wait for regressors.
z(k) = [zT1 (k), . . . , z

T
N(k)]

T

}
If necessary, compute:
yn(k) = hH(k)z(k)
e
′

n(k) = dn(k)− yn(k)
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Table 4.4: Resource efficient widely-linear collaborative RLS processing.
Resource Efficient WL collaborative RLS algorithm for node n
Initialization:
S(0) = I

w(0) = 0
for k = 1:K
{
zn(k) = [zT1 (k), . . . , z

T
N (k)]

T

z(k) = [zT1 (k), . . . , z
T
N(k)]

T

za(k) = [zT (k)zH(k)]T

en(k) = dn(k)−wH(k)za(k)
Check for transmission of new measurement and update
If |en(k)| > γ
{
G(k) = zHa (k)S(k − 1)za(k)

λ(k) = 1
G(k)

(

|en(k)|
γ

− 1
)

S(k) = S(k − 1)− λ(k)S(k−1)za(k)zHa (k)S(k−1)
1+λ(k)G(k)

w(k) = w(k − 1) + e∗(k)λ(k)S(k)za(k)
}
Receive data from the network and update the regressor vector
or wait for regressors.
z(k) = [zT1 (k), . . . , z

T
N(k)]

T

za(k) = [zT (k)zH(k)]T

}
If necessary, compute:
yn(k) = wH(k)za(k)
e
′

n(k) = dn(k)− yn(k)



Chapter 5

Simulations and Results

This chapter is dedicated to the implementation of the resource-efficient widely-
linear collaborative wind forecasting algorithm, which was developed in the previ-
ous chapter, and discussion of results for simulated and real-world wind data. A
data model for the highly-changing complex wind signal, which incorporates its
noncircularity, spatial correlation and the temporal correlation, is presented. The
non-circularity and the spatial correlation of the simulated complex wind signal are
verified using real-imaginary plot and the spatial correlation profile of first wind
data site, hereby called node, with all other nodes in the network is also presented.
The MSE plots are used to show the convergence and the steady state behavior of
the algorithm in single node and collaboration cases with linear and widely-linear
processing. Simulations are performed for the algorithm with single node, collab-
oration in linear and widely-linear settings, with no resource saving and resource
saving, and the results are discussed to highlight the performance gain achieved
with the resource-efficient widely-linear processing of the complex wind signal. Real
world wind data is also used to verify these results.

The chapter is organized into two major sections. Section 5.1 is related to the
simulated wind data where, first we will first present the data model for noncircular
and spatially correlated complex wind signal. Then the simulated wind data is
analyzed for its non-circularity and spatial correlation. Next, the convergence and
steady state MSE behavior of the algorithm are analyzed and finally the algorithm
is applied on simulated wind data in single node and collaboration settings and the
results are discussed. Section 5.2 contains the site information about the real world
wind data and the simulation results.

5.1 Results with Simulated Wind Data

In this section we will present the simulated wind data model, analyze its properties
and perform different experiments with the resource-efficient widely-linear collabo-
rative wind forecasting algorithm.
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5.1.1 Data Model

Here we present a model for complex wind data at N nodes, with spatial correlation
coefficient of ρ between two neighbors. The complex wind signal at each node is
obtained by combining the north-south (zN) and east-west (zE) components [7, 39]
of the wind speed signal in North-East coordinate system

z = zE + izN (5.1)

where the wind speed v is given by v =
√

z2E + z2N and wind direction by θ =

tan−1
(

zN
zE

)

. The complex wind signal becomes noncircular when there is differ-

ence between the variances of the north and east components, where the individual
components are normally distributed [40].

In order to generate spatially correlated complex wind signal for a network of
N nodes, we adopt the following procedure. Let x(k) = [x1(k), . . . , xN (k)] and
y(k) = [y1(k), . . . , yN(k)], where xn(k) and yn(k) are Normal random variables,

xn(k) ∼ N (0, 1),

yn(k) ∼ N (0, 1), n = 1 . . . N, k = 1 . . . K. (5.2)

The spatial correlation between the nodes is created using a spatial correlation
matrix R of size N ×N

x̃(k) = x(k)R
1

2 , (5.3)

ỹ(k) = y(k)R
1

2 , k = 1 . . . K, (5.4)

where R in case of N nodes assembled in straight line such as shown in Figure 5.1,
is given by

R =















1 ρ ρ2 . . . ρN−1

ρ 1 ρ . . . ρN−2

ρ2 ρ 1 . . . ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 . . . ρ 1















. (5.5)

The next step is to model the temporal correlation of the wind data using a
temporal correlation coefficient α

˜̃x(k) = α˜̃x(k) + (1− α)x̃(k − 1), (5.6)

˜̃y(k) = α˜̃y(k) + (1− α)ỹ(k − 1), k = 2 . . . K. (5.7)

The final step to create the simulated wind data, with the desired mean vectors
µR(z) and µI(z) and variance vectors σ2

R(z) and σ
2
I(z) for real and imaginary compo-

nents of the wind signal at N nodes, consists of first normalization of the spatially
and temporally correlated data at each node to zero mean and unit variance and
then assigning the desired mean and variance values.
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1 2 3 4 N
Nodes index

ρ

Figure 5.1: Network of N nodes in straight line with spatial correlation ρ between
two adjacent nodes.

Let

µ˜̃xn
= E[˜̃xn], (5.8)

µ˜̃yn
= E[˜̃yn], (5.9)

σ2
˜̃xn

= E[(˜̃xn − µ˜̃xn
)2], (5.10)

σ2
˜̃yn

= E[(˜̃yn − µ˜̃yn
)2], n = 1 . . . N. (5.11)

be the mean and variance vectors of the spatially and temporally correlated data at
N nodes, then it can be converted to zero mean and unit variance by

x◦
n =

˜̃xn − µ˜̃xn

σ˜̃xn

, (5.12)

y◦
n =

˜̃yn − µ˜̃yn

σ˜̃yn

, n = 1 . . . N. (5.13)

The real and imaginary components of the complex wind data with desired means
and variances at N nodes are achieved by

R(zn) = σR(zn)x
◦
n + µR(zn), (5.14)

I(zn) = σR(zn)y
◦
n + µR(zn), n = 1 . . . N. (5.15)
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where Z = R(Z)+iI(Z) is the matrix containing spatially and temporally correlated
data at N nodes with the desired means and variances.

5.1.2 Experiments and Results

Simulation Setup

We used K = 5000 number of samples and N = 5 number of nodes in our simula-
tions. Considering a highly changing wind signal, the spatial correlation coefficient
was set to ρ = 0.85 and the temporal correlation coefficient α of 0.05 was used.
The mean value µ = 3.29 and variance σ2 = 2.34 for wind speed [7] are distributed
between the real and imaginary parts with the variance of real part being 3

4
σ2 and

that of imaginary part 1
4
σ2. All simulations are run for 1-step ahead prediction and

the steady state RMSE is calculated for the iterations 1000− 5000. The MSE plots
to study the transient and study state behavior are generated with 10, 000 inde-
pendent number of trials. The regressor size of three is used for single node. The
performance measure used in our simulations is root mean square error (RMSE).
For M number of independent trials and K data samples, the RMSE is calculated
by

RMSE =

√

√

√

√

1

MK

K
∑

k=0

M
∑

m=1

|em(k)|2 (5.16)

where em(k) is the instantaneous error at iteration k of the realization m.

Data Analysis

In this section, we will study the non-circularity and spatial correlation of the sim-
ulated wind data.

Figure 5.2 shows the magnitude of simulated wind signal representing wind speed
at the first node. The wind speed signal is highly changing representing a wind signal
with fast variations in the high wind speed region. Wind signal with fast variations
has high degree of non-circularity and spatial correlation. Next we will verify these
properties of the simulated wind data.

Real-imaginary plot of the wind signal at the first node is shown in Figure 5.3(a).
The plot is highly non-symmetric along x and y-axis, because of the difference in
the variances of real and imaginary parts, thus representing a high degree of non-
circularity of the wind signal.

Now, let us study the spatial correlation of the first node with all other nodes in
the network. There are five nodes in the network and in Figure 5.3(b), we show the
spatial correlation coefficient of the first node with node two, three, four and five at 0
time lag. From the plot we notice, that the spatial correlation of first node decreases
exponentially in relation to the distance between first node and other nodes which is
in agreement to the spatial correlation matrix of the network shown in the previous
section.
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Figure 5.2: The first 300 simulated wind speed data points at first node.

In this section, we studied the non-circular and spatial correlation properties of
the complex wind signal. These properties will be exploited in the following sections
to improve the wind forecasting.

MSE Analysis of the Algorithms

In this section, we will look into the MSE behavior of the widely-linear collaborative
forecasting algorithm in single node and collaboration cases. First, we will see the
convergence and the steady state MSE for a single node with linear and widely-linear
processing. Figure 5.4 shows the MSE behavior of single node for linear and widely
linear cases. The convergence behavior shown in Figure 5.4(a) depicts the conver-
gence in the case of linear processing is faster than widely linear but the steady state
MSE in case of widely-linear processing is lower than the linear case which high-
lighted in Figure 5.4(b) more clearly. That means better forecasting performance is
achieved with the widely-linear processing of the non-circular complex wind signal.

Figure 5.5 shows the MSE behavior in the case of three nodes collaboration with
linear RLS processing. The convergence of the MSE curves in Figure 5.5(a) shows
that the convergence speed in case of single node is faster than two nodes and three
collaborating nodes and similarly convergence in case of two collaborating nodes
is faster than three collaborating nodes meaning that as the level of collaboration
increases, the convergence speeds slower. The steady state MSE in Figure 5.5(b)
shows that the MSE in the case when three nodes collaborate is lower than when
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Figure 5.3: Non-circularity and spatial correlation of the simulated wind data at
first node.
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Figure 5.4: MSE behavior at first node with linear and widely-linear RLS.
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Figure 5.5: MSE at first node with single node (no collaboration), two and three
nodes collaboration processing.
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Figure 5.6: RMSE plot for linear and WL RLS with no resource saving.

two nodes collaborate, and single node processing without collaboration.
From this section, we conclude that for non-circular and spatially correlated

complex wind data, we can achieve better forecasting results by using widely-linear
processing and collaboration. In the following sections, we will use the widely-
linear and collaboration techniques jointly, to further improve the wind forecasting
performance.

Collaborative RLS Processing

In this section we discuss the results of linear and widely-linear collaborative RLS
algorithm on the simulated wind data.

Figure 5.6 shows the output curves of RMSE versus the number nodes for linear
and widely-linear collaborative processing. From the figure we observe that the
RMSE with widely-linear processing is lower than that of linear processing for all
levels of collaboration. The RMSE for both linear and widely-linear cases decrease
as the level of collaboration increases. Thus, we can infer that better performance
is achieved with widely-linear and collaborative processing than a single node linear
processing and no collaboration.
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Figure 5.7: RMSE plot for linear and WL RLS with resource saving.

Resource-Efficient Processing

Figure 5.7 shows RMSE versus the number of collaborating nodes for linear and
widely-linear collaborative BEACON algorithms using simulated wind data. Sim-
ilar to collaborative RLS processing, the RMSE decreases with increasing number
of collaborating nodes and widely-linear processing gives lower RMSE values than
linear processing. Comparing these results with the results in the previous figure,
we notice that as the level of collaboration increases the RMSE values in case of
resource-efficient processing become even lower than those of collaborative RLS pro-
cessing and the reason for this improvement is that in resource efficient processing
only the useful data is utilized for an update, thus making the estimates even bet-
ter. Along with better results significant amount reduction in communication and
processing is also achieved, which is tabulated below.

Table 5.1 shows the number of communication and processing cycles for single
node processing (no collaboration) and two or more nodes collaboration with linear
and widely-linear processing. From the table we observe that the number of commu-
nication and processing cycles are just around 1− 2%. Thus a significant saving in
communication and local processing which is a critical consideration in the systems
with limited resources.

The gain in resource savings increases monotonically with the increasing value
of error threshold γ. Next, we will study the effect of γ on RMSE and the resource
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usage for a range of the values of γ.

Table 5.1: Resource saving.
Setting Linear Widely-Linear
Resource Proc. Comm. Proc. Comm.
Usage cycles % cycles % cycles % cycles %

Single Node 14 1.4 - - 12 1.2 - -
Two Nodes 24 2.4 24 2.4 23 2.3 23 2.3
Three Nodes 9 0.9 9 0.9 9 0.9 9 0.9
Four Nodes 12 1.2 12 1.2 13 1.3 13 1.3
Five Nodes 9 0.9 9 0.9 9 0.9 9 0.9

Figure 5.8 shows the effect of γ values on RMSE for single node processing (no
collaboration) and two or more nodes collaboration with linear (Figure 5.8(a)) and
widely-linear (Figure 5.8(b)) processing. From the figures we observe that the RMSE
values, for both linear and widely-linear cases, are minimum for a particular value
of γ and increases exponentially with the increasing value ofγ. Thus the selection
of error threshold directly effects the performance of the algorithm.

In Figure 5.9, we show the relation between the value of γ and the resource
usage for the linear and widely-linear collaboration. From the Figure 5.9(a) and
Figure 5.9(b), we observe that the resource usage decreases monotonically with
increasing value of γ for any level of collaboration in the cases of linear and widely-
linear processing both.

5.2 Results with Real World Wind Data

5.2.1 Data Description

The wind data used in our work is freely available at the website of Alternative
Energy Institute (AEI) which was formed in 1977 at West Texas University (now
West Texas A&M University).1

Two sites, selected for data collection, are based on their relative location which
is small enough to have good spatial correlation, availability of data for the same
time scale and the relative height of the wind measurement sensors.

• Clay Archer County - Site #1358 with wind speed sensors at the height of 20
m, 40 m, 45 m and 60 m. Wind direction sensors are placed at a height of 40
m and 50 m.

• Young County 2 - Site #1988 with wind speed sensors at the height of 18m
and 28m and wind direction sensors at the height of 28m.
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Figure 5.8: Effect of γ on output RMSE for different levels of collaboration.
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Table 5.2: RMSE values for linear and widely-linear resource efficient collaboration.
Setup No Resource Saving With Resource Saving

Linear Widely-Linear Linear Widely-Linear
Site1 1.43 1.40 1.77 1.54

Site1-Site2 1.37 1.36 1.38 1.35

Table 5.3: Resource saving.
Setting Linear Widely-Linear
Resource Proc. Comm. Proc. Comm.
Usage cycles % cycles % cycles % cycles %
Site1 62 11.27 - - 73 13.27 - -

Site1-Site2 99 18 99 18 121 22 121 22

5.2.2 Experiments and Results

The linear and the widely-linear collaborative RLS algorithms are applied on the
real world wind data mentioned in Section 5.2.1 for the month of July, 2007 with
550 samples for the filter training the remaining samples as the test data. The
results are shown in Table 5.2 and we observe, that the RMSE value for a single
node is improved in case of widely-linear processing and further improved when
two nodes are collaborating. The combined results of widely-linear with two nodes
collaboration gives much improved result for RMSE as compared to the single node
with linear processing.

The resource efficient linear and the widely-linear collaborative BEACON algo-
rithms with γ value of (4.4) have similar performance as their RLS counterparts but
with significant reduction in communication and processing cycles.

Table 5.3 shows the number of communication and processing cycles in the cases
of single processing (no collaboration) and two nodes collaboration. We see that
the number of communication and processing cycles are less than 25% as compared
to the case with no resource saving, thus a significant gain in resource saving is
achieved.

1http://www.windenergy.org



Chapter 6

Conclusions

This thesis works presented a novel method of wind speed forecasting which exploits
the non-circularity as well the spatial correlation of the complex wind signal.

Widely-linear modeling was used to include the non-circularity, and regressor
data from all nodes was gathered at each node and utilized to incorporate the spa-
tial correlation of the wind signal. The widely-linear collaborative model was then
further optimized for efficient resource utilization using set-membership filtering.

Simulated wind data was used to study the performance gains achieved with
this approach. The generated data was made non-circular and spatially and tem-
porally correlated. The resource efficient widely-linear collaborative algorithm was
applied on the non-circular and spatially correlated simulated wind data in different
settings. Results with no collaboration (single node), collaboration in linear set-
ting and widely-linear with resource-saving and without resource-efficient processing
were discussed and compared and it was shown that the widely-linear collaborative
model is superior in performance in comparison to a single with linear processing.
The resource-efficient processing provided significant saving in communications and
processing cycles. Real world wind data was also used to show the results in linear
and widely-linear collaboration cases.
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