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Automatic evaluation of integrated circuits can provide significant benefits and 

savings for a company compared to doing the evaluation manually. This paper 

describes a LabVIEW application called ATAC that was developed to automate 

evaluation of ASIC circuits. The same software can also be used to test integrated 

circuits in general in different hardware environments. A hardware setup for 

automatic ASIC evaluation is presented and it is used as basis for ATAC design. 

Presented software application ATAC can be used to control all hardware components 

in the evaluation setup but it can also be used without the hardware components. 

Hardware abstraction in ATAC makes it possible to use the same software solution in 

different environments with little modifications to the software code. The process of 

developing ATAC is presented as well as final application. Screenshots of GUI are 

presented as well as the underlying code using state chart presentation. The software 

was reviewed and assessed by end users who performed several ASIC evaluation tests 

using ATAC during the software development. An example case of an ASIC 

evaluation test is presented and the measurement results gathered with ATAC are 

discussed. 
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Integroitujen piirien automaattinen evaluointi voi tuottaa huomattavia etuja ja säästöjä 

yhtiölle verrattuna evaluoinnin manuaaliseen suorittamiseen. Tässä opinnäytetyössä 

esitellään LabVIEW-sovellus nimeltään ATAC, joka kehitettiin automatisoimaan 

ASIC-piirien evaluointi. Samaa sovellusta voi käyttää myös muiden integroitujen 

piirien testaukseen erilaisissa laitteistoympäristöissä. Laitteisto ASIC-piirien 

automaattista evaluointia varten esitellään ja tämän laitteiston käyttöön ATAC 

lähtökohtaisesti suunniteltiin. Esitettyä ohjelmaa voi käyttää laitteiston kaikkien osien 

kontrollointiin, mutta ohjelmaa voi käyttää myös ilman laitteistokomponentteja. 

Laitteiston abstrahointi ATAC:ssa mahdollistaa ATAC:n käytön eri ympäristöissä 

ilman suuria muutoksia ohjelmakoodiin. ATAC:n kehitysprosessi sekä lopullinen 

ohjelma esitellään tässä opinnäytetyössä. Graafinen käyttöliittymä esitellään 

kuvakaappausten avulla ja koodi kuvaillaan käyttäen tilakaavioita. Ohjelman 

käytettävyyttä ja ohjelmankehitysprojektin onnistuneisuutta arvioidaan 

loppukäyttäjien kokemusten sekä todellisten ASIC-piirien evaluointimittausten 

tulosten perusteella. Esimerkki ASIC-piirin evaluointitestistä esitetään ja ATAC:n 

keräämiä mittaustuloksia arvioidaan. 
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Symbols and Abbreviations 

Symbols 

I   Current 

P   Power 

R  Resistance 

U  Voltage 

 

Abbreviations 

ACE  Automated circuit evaluation 

ASIC  Application specific integrated circuit 

ASL  Application separation layer 

ATAC  Automated test and characterization. Name of the software developed 

in this thesis 

ATE  Automated test equipment 

API  Application programming interface 

CPU  Central processing unit 

DLL  Dynamic-link library 

DSSP  Device-specific software plug-in 

DUT  Device under test 

EMI  Electromagnetic interference 

EVM  Evaluation module 

FPGA  Field-programmable gate array 

GPIB  General Purpose Interface Bus 

GPIO  General Purpose Input/Output 

GUI  Graphical user interface 

I
2
C  Two-wire serial bus invented by Philips 

IC  Integrated circuit 

IDE  Integrated development environment 

MCU  Microcontroller 

NRE  Non-recurring engineering 

OOP  Object-oriented programming 

PC  Personal computer 

PCB  Printed circuit board 

SPI  Serial Peripheral Interface Bus 

TDMS  File format created by National Instruments 

UART  Universal Asynchronous Receiver/Transmitter 

UML  Unified modeling language 

VI  Virtual instrument. Basic block of LabVIEW programming.  

VISA  Virtual instrument software architecture 

 



 

 

1 Introduction 

The use of integrated circuits (IC) in electronic devices has increased rapidly since the 

invention of IC technology at late 1950’s. Today a modern silicon chip can hold over 

hundred million transistors and the complexity of a chip has become very high [5]. At 

the same time the cost of a single chip has decreased systematically [3]. The large 

number of components and the complexity of a modern IC set challenges for design 

and evaluation when new circuits are being developed.   

Today many different IC devices are produced with different purposes and 

complexities. The software presented in this thesis was developed to be used to 

evaluate application specific integrated circuits (ASIC) but can also be used to evaluate 

and debug various other type of circuits. Evaluation also known as characterization is a 

process where the operation of a device is tested and compared against requirements 

documentation and simulations. Evaluation of ASICs involves many different kinds of 

tests and measurements that are performed before the device can be released for 

market. This thesis focuses on the so called bench evaluation tests that are performed 

on a lab setup that closely resembles the target application of the ASIC. In bench 

evaluation external components are connected to the ASIC pins to match the target 

application. The goal of this thesis was to develop a software application to automate 

the bench evaluation testing. The design of the software is presented as well as 

implementation and test results. The end users of the developed software had existing 

software application that was able to execute measurement scripts somewhat 

automatically and to control instruments remotely. The goal of this thesis was to create 

a better software that would be easier to use and would be able to control whole 

evaluation system instead of just instruments. 

The thesis is constructed such that after the introduction chapter the reader is 

given a general view of ASIC circuits and circuit evaluation. This provides basis for 

understanding the requirements for the evaluation environment and for the software. 

Chapter 3 describes the evaluation system environment that includes hardware 

components such as PCBs (Printed circuit board), instruments and software framework. 

Understanding the whole evaluation system is essential for creating reasonable 

requirements for the software. The chapter 3 is divided into several sub chapters 

describing all the different parts of the system. Good understanding of different 

components of the system hardware is needed because the software will communicate 

with all the components and make them work together. In chapter 4 software 

development techniques and LabVIEW are introduced to provide the reader a basis for 

understanding the reasons behind the decisions made during software design. The 

software that was designed and implemented in this thesis is presented in chapter 5. The 

software, named as ATAC (Automated Test And Characterization), is first presented in 

a general level describing the features and the development process. After that the 

reader is given a more detailed description over different features of the software and 

descriptions how the software can be used. Understanding how the ATAC is used 

provides the reader a better view over the software and the descriptions regarding 

structure and architecture of the software are easier to understand in later chapters. 

After describing how the ATAC is used the structure of the software is illustrated and 

explained. At the end of chapter 5 the methods used for testing

the software are presented. Successfulness of the software project and the usability and 

flexibility of ATAC is assessed in chapter 6. The quality of the software is assessed by 
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meeting the specification, correctness of produced measurement data and by the general 

usability and flexibility. An example of a real evaluation test performed to an ASIC 

using the presented evaluation system and ATAC is also presented in chapter 6. The 

reader is given a general view of how the evaluation of an ASIC is done with ATAC 

and what results and data the ATAC produces. Possible future improvements are 

presented in chapter 7. 
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2 Integrated circuit characterization 

In this chapter application specific integrated circuits are described in general level and 

their properties are compared to other IC technologies. The evaluation of ASIC devices 

is also described to provide basic understanding of the measurements and tests needed 

to characterize a new ASIC after it has been manufactured. The benefits of automatic 

evaluation are presented as well as reasons for developing the control and data 

collection software that is presented in this thesis. 

 

2.1 Application specific integrated circuits 

Application specific integrated circuits are widely used devices in high volume 

products. Because of their good performance combined with small size and small 

energy consumption they are often better choice than general purpose devices such as 

FPGAs (Field-Programmable Gate Array) [2], [9] and MCUs (Microcontroller) [22]. 

Because ASIC circuits are custom made for specific applications it is vital that the 

performance of the ASIC is tested before it is sent to a customer. 

The design of an ASIC is often done at transistor level but also at higher 

hardware layers. The difference to general purpose microcontrollers and FPGAs is that 

general purpose devices have generic hardware and they can be programmed to suite 

different applications. Microcontrollers have fixed hardware but the MCUs’ software 

can be programmed to meet different applications. FPGAs have a generic hardware that 

can be programmed for different applications at hardware level. Thus FPGAs can be 

seen as compromise between hardware solution (ASIC) and software solution (MCU). 

Because user can program the hardware of an FPGA the performance is usually better 

than a pure software solution like using MCU. [22] 

ASIC circuits have hardware that is designed for a specific application and the 

hardware cannot be altered by programming. ASIC devices usually have some 

parameters that can be adjusted by programming but the main functionality of the 

device is fixed at hardware level. This means that ASICs usually have very good 

performance, low power consumption and small size compared to general purpose 

devices [2]. On the other hand the initial cost of ASIC is greater than with off-the-shelf 

devices. The high initial cost consists of designing and manufacturing of the ASIC. 

Besides being expensive the design and manufacturing of ASIC device is also time-

consuming. The development of an ASIC may be several years long project whereas 

off-the-shelf devices can be programmed within much less time. However if the volume 

of the application where ASICs are used is high, then the high initial cost may not be a 

problem. This is because once the ASIC device has been designed and manufactured 

the cost of a single device is low. Choosing between different device solutions (ASIC, 

FPGA, MCU) is an optimization problem that depends on the initial NRE 

(Nonrecurring engineering) cost, continuous cost and the volume of the devices [22]. 

Figure 1 illustrates how ASIC cost is competitive with different technologies when the 

volume of devices is high. 
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Figure 1. Cost of different IC technologies in general. A = MCU, B = FPGA, C = ASIC. [25]. 

 

2.2 Trimming and evaluation 

Because an application specific integrated circuit is designed at hardware layer it is 

vital to perform evaluation once the device has been manufactured. In evaluation the 

device performance and functionality is tested and compared against simulations and 

specification. Usual evaluation tests that are performed include functional tests, open-

loop tests and closed-loop tests. Functional tests are used to verify the general 

functionality of the device. Different values are written to registers of DUT (Device 

Under Test) and the state of the device should change accordingly. 

Open-loop tests are tests where no external components are connected to the pins 

of DUT. These tests include sweeping and adjusting internal parameters and the effects 

can be measured from specific output pins. Open-loop tests can be performed using 

highly automated systems called ATE (Automated Test Equipment). With ATE 

thousands of ASIC devices can be tested on silicon wafers right after the 

manufacturing. The problem with these test systems is that they are expensive to use 

and they cannot evaluate all the parameters of the device. For example measurements 

that need external components cannot be tested on ATE systems. 

Closed-loop tests are performed by connecting external components to ASIC pins 

to create a setup that closely matches the intended target application. In many cases 

ASIC has an internal switching regulator or some other component that needs external 

components for performing so to test these internal components different external 

components are required. These external components allow flexibility for the 

applications that use the ASIC. External components such as resistors, capacitors, and 

coils can be used to adjust specific characteristics of the ASIC. For example output 

voltages of ASIC output pins could be designed to be externally adjustable by adding 

external components to specific pins of the device.  In some cases it is not even possible 

to integrate all components inside the ASIC. For example large capacitors and coils for 

switching regulators are such components. Closed-loop tests are much slower to 

perform than open-loop tests that are done with ATE. That is why not all devices can be 

tested in closed-loop environment. Closed-loop tests are usually done only to few 

devices where as open-loop tests are performed to all new ASICs. 

Before characterization of an ASIC is started the internal reference quantities 

such as reference voltage, reference current and reference frequency must be trimmed. 

Trimming means adjusting the internal reference parameters so that the reference 
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quantities correspond to predefined values. Trimming is necessary because process 

variation in manufacturing results in imprecise reference quantities. All voltages and 

currents in an ASIC are derived from the few reference quantities, so if the references 

have offset all the other quantities have offset also [26]. ASICs are usually designed to 

have trimming registers which can be programmed through communication interface to 

fine adjust reference signals. The trim registers as well as other registers of an ASIC are 

located inside the digital core of the device [24]. In addition to the digital core there 

usually exists number of analog circuits integrated around the digital core. The digital 

core controls the state flow of the device and provides communication interface. In 

addition to programming trim values to device memory communication interface is 

used to set output channels of the device to a desired level and to control the state of the 

device. 

 

2.3 Automated evaluation 

Time-to-market is a critical concern in the business of selling ASICs. If the design, 

manufacturing or evaluation is delayed for some reason the impact on profit can be 

significant. If these phases can be speeded up it will provide great edge in the market 

for the company. Time needed for evaluation depends on the complexity of the device 

and the length of specification. It can take several weeks or months to measure all the 

parameters and cases specified in the device specification. If all the tests are performed 

using for example three different supply voltages and three different temperatures the 

amount of data produced is very large and acquiring and processing that data takes 

time. Even using only one temperature and one supply voltage level a single test can 

require tens to hundreds of measurements. Usually closed-loop bench evaluation 

consists of tens of tests which each are performed for few different devices using 

different temperatures and supply voltages. If evaluation is done by a lab engineer who 

manually connects instruments (multimeters, source meters, power supplies, etc.) to 

DUT for different tests and manually writes commands to device registers it is easy to 

see that evaluation will take lots of time. Also it might not be motivating work for 

engineer to perform several tests that are almost identical to each other. Automating 

data collection will provide savings for a company in time and money and it will 

increase the work motivation of test engineers. 

Many tests can be performed automatically for large number of devices in small 

amount of time using ATE right after the devices have been manufactured. Although 

these test systems can test functionality of large number of devices quickly, they are 

expensive to use and they can only perform open-loop measurements. Closed-loop 

measurements must be performed in different environment using PCBs (Printed Circuit 

Board) that provide external components for the DUT. Different commercial [29], [17] 

and non-commercial systems and software exist to automate the characterization at 

these closed-loop tests. The automation level may vary from very low automation level 

where user has to control the testing all the time to high automation level software that 

can perform tests quite independently. The benefit from creating new software for 

automated evaluation is that the software can be designed to meet specific needs of 

target users. Commercial software solutions tend to be generic in nature to be 

compatible with many different hardware environments and use cases. This has a 

drawback that the user needs to spend more time configuring the software and creating 

the tests. The ATAC software developed and described in this thesis was designed in 
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close co-operation with target users to provide easy interface for creating and executing 

tests for ASIC circuits and yet maintaining certain level of generic compatibility. 
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3 System environment 

The environment where ATAC was designed to be used is presented in this chapter. 

The hardware components such as instruments, PCBs (Printed circuit board) and 

adapters are essential parts of any IC evaluation system. Understanding the 

environment is basis for understanding the functionality and use of ATAC software. 

The presented environment is only one possible setup that can be used to automate 

ASIC evaluation. The ATAC does have some features specifically designed for the 

presented hardware setup but the software can be used in other hardware environments 

also. 

 

3.1 Overview 

The hardware of an evaluation environment sets boundary conditions and requirements 

for the control software. Block diagram of the whole evaluation system is illustrated in 

Figure 2. The software is executed on PC (Personal computer) that connects to different 

components of the system. The instruments illustrated in the figure can be power 

sources, multimeters, source meters, etc. that are connected to bench EVM (Evaluation 

module) PCB through ACE (Automated circuit evaluation) board. The ACE board is 

used to route instruments to different pins on bench EVM. An ASIC to be evaluated is 

mounted on bench EVM board and thus the instruments that are routed to bench EVM 

pins are also connected to the ASIC pins. Different components of the system have 

different communication interfaces and thus adapters are needed to translate 

communication between PC and other components of the system. In the following 

chapters individual components of the system are described in more detail. 

 

 

Figure 2. Overview of the automated evaluation system. 



8 

 

3.2 ACE board 

3.2.1 Overview 

The ACE board is used to automatically route instruments to different pins of bench 

EVM and DUT and to provide adjustable external resistance load. ACE board can also 

be used to generate line and load transients to evaluate transient characteristics of the 

ASIC under test. ACE board PCB layout is presented in Figure 3. The ACE board is 

controlled through I
2
C bus. 

 

 

Figure 3. ACE board PCB layout. 

 

3.2.2 Instrument relay matrix 

The main feature of the ACE board is to provide a remotely controllable relay matrix 

for connecting instruments to different pins of bench EVM board. The relay matrix 

works as a multiplexer between instruments and bench EVM board so that specific 

instrument can be connected to any pin on the bench EVM without manually routing 

wires between instrument and target circuit pins. The relay matrix is controlled with I
2
C 

communication bus. The relay matrix has 64 relays in total and can connect up to eight 
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instruments to fourteen different bench EVM pins. Every instrument has a signal route 

and a sense route to the bench EVM board. Sense route can be used by the instrument 

to measure actual voltage (or other quantity) on the DUT pin because sense line does 

not have current flowing. Without current flow the voltage drop between two ends of 

the sense line is zero. Thus the instrument sees the actual voltage on the ASIC pin. In 

signal lines current flows between instrument and the DUT and causes voltage drop 

over signal line. Using only signal line the instrument would not see the actual voltage 

on DUT pin because of the voltage drop over signal line. 

 

3.2.3 Power relays 

Power relays provide a way to control special functions of ACE board such as line and 

load transients and resistance load. With power relays user can choose what function is 

selected and routed to bench EVM board. Power relays are controlled by I
2
C bus in the 

same manner as instrument relay matrix. 

 

3.2.4 Resistance load 

ACE board provides adjustable resistance load that can be routed to bench EVM board 

through power relays. The resistance value can be adjusted by remote I
2
C commands. 

Supported resistance values are 2
n
 Ω, where n = 0, 1, 2, … , 15. The resistance load is 

designed for adjusting small (< 100 mA) currents. Using the resistance load to sink 

large (0,1 – 1 A) currents is possible as long as keeping the limited resolution of the 

resistance load in mind as well as the power rating of the resistors. 

An example of the effect of the limited resolution: Let’s say the external 

resistance load is connected to ASIC pin that is at 5V potential. Changing resistance 

value from 32768 Ω (2
15 

Ω) to 16384 Ω (2
14

 Ω) results in current changing from 

𝐼1 =
𝑈

𝑅1
=

5𝑉

32768Ω
= 152,6 𝑢𝐴 to 𝐼2 =

𝑈

𝑅2
=

5𝑉

16384Ω
= 305,2 𝑢𝐴. The current changes 

only 152,6 uA allowing  accurate adjustment of small currents using the resistance load. 

Changing resistance value for example from 16 Ω (2
4
 Ω) to 8 Ω (2

3
 Ω) results in 

current changing from 𝐼1 =
𝑈

𝑅1
=

5𝑉

16Ω
= 0,3125 𝐴 to 𝐼2 =

𝑈

𝑅2
=

5𝑉

8Ω
= 0,625 𝐴. The 

current changes 312,5 mA which is a large step in current. Accurate adjustment of a 

large current is thus impossible with the ACE board resistance load. 

 

3.3 Bench EVM board 

3.3.1 Overview 

Bench EVM is a PCB that provides all the necessary components for the ASIC under 

test to operate as it would in target application. The ASIC is mounted on top of the 

bench EVM and the pins of the ASIC are routed to bench EVM connectors that lead to 

ACE board. The bench EVM board also provides functionality to drive the DUT into 

different modes so that evaluation of all necessary features can be performed. 

The bench EVM board needs to be specifically designed and manufactured for 

every new ASIC. However the interface between the bench EVM and ACE board 

remains same throughout different projects. This enables the use of ACE board in 
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different projects and only the bench EVM board needs to be redesigned for each 

project. Communication to bench EVM board can be routed through the ACE board if 

the bench EVM and DUT use I
2
C communication. Otherwise a separate adapter 

between bench EVM and PC needs to be used to enable communication with the bench 

EVM and the DUT. 

 

3.4 Adapters 

3.4.1 Overview 

Adapters work as a link between PC and other hardware. An adapter provides API 

(application programming interface) for the PC software and hides low level hardware 

specific communication. ACE board uses I
2
C communication protocol so adapter is 

needed to communicate between PC and ACE board. Bench EVM board is different for 

each ASIC so the communication bus to bench EVM and DUT can differ between 

projects. An adapter is needed to communicate with bench EVM as well as DUT 

mounted on bench EVM. The DUT can use custom communication protocols so 

adapter needs to be flexible enough to support many different communication means. 

Often many different adapters are used at the same time to communicate with different 

parts of hardware. Depending on what communication cards the PC has an adapter 

between PC and instrument bus may also be needed. 

 

3.4.2 Adapter interfaces 

Adapter handles the low level hardware communication towards target device and 

provides a high level API for main software. All the APIs for different adapters that 

were used with the ATAC software were available as dynamic-link library (DLL) or as 

LabVIEW VI’s. The LabVIEW VI’s hid the DLL calls and provided easy API to use in 

LabVIEW environment. The DLL works in between the main software and adapter 

firmware providing methods to main software and converting the data to the format 

adapter firmware supports. 

 

3.5 Instruments 

3.5.1 Overview 

Essential part of the evaluation environment is instruments that provide voltage and 

current to DUT and other hardware. The instruments are also used to read specific 

quantities such as voltage, current and frequency from the pins of DUT. Before 

automated evaluation system instruments were used in manual manner meaning 

instruments were needed to manually connect to specific pins and reading of 

measurements was done by visually reading the instrument display. In the automated 

evaluation system presented in this paper the instruments are connected to different 

pins of DUT automatically and the measurements are also read automatically by the 

ATAC software. Different instrument types the presented evaluation system has and the 

ATAC supports are 

 

- Multimeter 
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- Source meter 

- Power supply 

- Battery simulator. 

 

Other instruments that were used with manual evaluation but not implemented in the 

automated system were 

 

- Oscilloscope 

- Function generator. 

 

These instruments would require more initial configuration than multimeters, source 

meters, power supplies and battery simulators making them more difficult to handle in 

the software. Support for oscilloscopes and function generators was considered to be 

unnecessary in ATAC because great number of evaluation tests can be done without 

them. However ATAC was designed so that support for new instruments could easily 

be added in the future. 

 

3.5.2 Instrument interfaces 

Instruments were connected to IEEE-488 bus which is more commonly known as GPIB 

(General Purpose Interface Bus). GPIB is a common industrial bus used to 

communicate with instruments remotely. The bus supports different topologies such as 

star, chain and hybrids of these two. PC communicates to GPIB bus through GPIB card 

installed in PC’s PCI bus or through adapter that connects to PC’s USB port. The low 

level commands sent to GPIB bus were hidden by the LabVIEW drivers that provided 

high level access to the instrument. LabVIEW drivers for instruments are a common 

way of communication between PC and instruments because they provide fast and easy 

access to instruments without having to learn low level command syntaxes. Large 

number of LabVIEW drivers for different instruments are available at National 

Instruments website [16] for free use which makes the remote controlling of 

instruments very easy. 

 

3.6 Device under test 

3.6.1 Overview 

In the evaluation system the device under test is an ASIC circuit that needs to be 

evaluated. The ASIC is mounted on the bench EVM board that is designed specifically 

for that ASIC device. The bench EVM board provides all the external components 

needed for the ASIC to operate and to be able to perform all the evaluation 

measurements. 

The ASIC can be soldered directly to bench EVM board or it can be mounted on 

a specially made socket that is soldered or screwed to the bench EVM board. Coupon 

boards are also used to mount ASIC to bench EVM board. Coupon board is like a 

socket for the ASIC but it provides also essential capacitors and inductors that need to 

be as close to the ASIC as possible. The coupon board has connectors which connect to 

corresponding connectors on bench EVM board.  
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3.6.2 Device interfaces 

Making ASIC circuits as small as possible has benefits such as saving target PCB space 

and making the ASIC applicable to small hand held devices. Silicon area of an ASIC is 

used sparingly and the number of pins is kept low. Single pin usually has many 

different operating modes that can be chosen by writing to device registers. 

Implementation of communication protocol uses silicon area and affects the total size 

of the ASIC. Communication interface also needs some number of pins which again 

increases the final size of the device. [8] This is why special communication methods 

that use as few as one pin and as little space on silicon as possible are tempting choices 

in ASICs. However these communication methods may not be standardized and they 

can be quite difficult to operate. Adapter that works as a link between PC and the ASIC 

needs to know how to handle such communication protocols. The communication 

interface that is used to control the ASIC provides means to write and read the registers 

of the ASIC and thus control the operation of the ASIC. Although no communication 

interface may not be needed when using an ASIC in a target application, it is necessary 

to have an interface for testing and trimming the ASIC device after it has been 

manufactured. 

 

3.7 PC requirements 

The ATAC software is a LabVIEW application and thus needs LabVIEW run-time 

engine (2011 SP1) to be installed on the PC in order to be executable. The LabVIEW 

run-time engine is free for everyone and can be downloaded at National Instruments 

website. The LabVIEW run-time engine requires Windows 7/Vista/XP/Server 

operating system. [12] 

A GPIB interface card or a GPIB adapter is needed for communication between 

PC and instruments. Other communication buses can be used instead of GPIB 

depending on what buses instruments support. ATAC software has a hardware 

abstraction layer which enables the use of any communication bus between PC and 

other components of the system including instruments and adapters. 

To communicate with different PCBs in the system adapter or multiple adapters is 

needed. All the adapters and instruments require drivers to be installed on PC before 

use. In addition all instruments and adapters must have an implemented ATAC plug-in 

in order for the device to be accessible from ATAC. A plug-in separates hardware 

specific functionality of instruments and adapters from the main software and makes it 

possible to easily add support for different instruments and adapters in ATAC. More 

detailed description of the hardware abstraction layer (HAL) of ATAC is presented in 

chapter 5. 
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4 Software development techniques 

This chapter describes software development techniques such as object oriented 

programming and software life cycle management. The ATAC was developed using 

object oriented programming and spiral type of life cycle management so understanding 

the basics of these concepts gives the reader a deeper view on the ATAC structure and 

development process. LabVIEW programming is also described in general level to give 

the reader an understanding how LabVIEW programming is practiced and how it 

differs from programming with other languages. 

 

4.1 Object oriented programming 

Object oriented programming (OOP) is a programming style that has become widely 

used when programming large software applications. OOP provides a way to efficiently 

manage software and maintain good scalability and modularity. Many programmers can 

work on the same project without conflicting each other’s work because the different 

parts of software communicate through certain interface and the inner functionality of 

one part of software can be handled as a black box by another part. [6] 

In OOP classes are used to encapsulate features that belong to certain area. For 

example there could be a class called ―Car‖ and that class would hold all information 

and functionality that is related to different cars. For example the class ―Car‖ could 

hold information such as ―car name‖, ―model‖, ―number of tires‖, etc. This information 

is encapsulated inside of the class and it is not visible from outside of the class. To 

access the information from outside the class the class provides methods for that. 

Methods are an interface to a class. For example the class ―Car‖ could have methods 

such as ―get car name‖, ―set number of tires‖, ―accelerate‖, etc. 

Class is a static structure that defines features and operations for a certain entity. 

Object is an instance of a class. When a program wants to create a new object it makes 

a call that creates a new instance of a class. One class can be used to create multiple 

objects that all have different parameters. For example the class ―Car‖ could be used to 

create objects that represent different cars that have individual names and model types. 

They would all have the methods and private fields ―name‖, ―model‖, etc. that were 

defined by the class ―Car‖. 

The use of classes makes it possible to develop different parts of large software 

separately and make the different parts work together relatively easily. Because the 

communication between different objects is performed through methods, one object 

only needs to know what the methods of the object it is using are. It does not have to 

know the inner functionality of the other object and it cannot accidentally change the 

inner data of the other object. 

OOP includes concepts called inheritance and polymorphism. Inheritance means 

that a class can inherit another class and become a child class for the inherited class. A 

parent class and its private data and methods that are inherited usually contain common 

information that applies to all child classes. For example a class ―Car‖ could be used to 

define information and operations that apply to all cars and sub classes. For example 

classes such as ―Toyota‖, ―BMW‖, and ―Skoda‖ could be used to define information 

specific to a certain car manufacturer. If these sub classes are defined to inherit the 

class ―Car‖, then the child classes also have the data and operations of the parent ―Car‖ 

class. 
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Use of inheritance makes the code efficient because same information does not 

have to be defined to different classes separately if they all inherit the information from 

a single parent class. Inheritance also makes the maintainability of the software more 

manageable. If one would like to change a certain feature of the software one could 

make the change to a parent class and the same change would then apply to all child 

classes, instead of modifying the code in several different places. 

Polymorphism means that the data type of an object is not only defined by the 

class of the object but also by the parent class of that object. For example an object 

called ―BMW 7 Hatchback‖ is a type of ―BMW‖ but also a type of ―Car‖. 

Polymorphism enables a way to create generic interfaces that accept multiple different 

data types. [6], [23] 

Object oriented programming was used to design and program ATAC software. 

This provided variety of benefits which will be discussed in chapter 5. 

 

4.2 LabVIEW programming 

4.2.1 LabVIEW in general 

LabVIEW is a graphical programming language and IDE (Integrated Development 

Environment) developed by National Instruments [16]. It is widely used in electrical 

and test engineering because it provides a fast and easy way to interact with hardware 

[27]. A large database for support and drivers for different hardware exists at National 

Instruments website [16] and user rarely needs to program low level functions for 

interacting with hardware. LabVIEW also provides ready to use elements such as 

windows, textboxes, buttons, etc. for creating graphical interfaces which makes it 

possible to build applications with very little effort [27]. 

LabVIEW programs are called virtual instruments (VI) because they usually 

imitate physical instruments. A VI resembles a function or a method but with a 

difference that a VI can be run individually or it can be called from other VI’s. 

LabVIEW divides the programming of a VI into three sections: Front panel, block 

diagram and connector pane. Front panel is a graphical user interface of the VI 

containing access to controls and indicators of the VI for the user. Every VI has a front 

panel even though only the top level VI’s front panel is visible to the user. Block 

diagram of a VI is the actual code that executes when the VI is run. When creating a 

block diagram code LabVIEW compiles the code in real-time as user writes it. This 

makes the development of block diagram code easy because user sees instantly if the 

code contains errors that do not compile. LabVIEW provides also debugging tools that 

help to check the correctness of the code effortlessly without writing separate test 

programs. The debugging tools of LabVIEW were used systematically when validating 

ATAC software components. Third section of a VI is called connector pane. Connector 

pane is the interface that other VI’s see when calling another VI. Connector pane 

defines the interface to a VI and allows other VI’s to access controls and indicators of 

the VI. When a VI calls other VI in its block diagram the called VI is usually referred to 

as sub VI. [13] 

LabVIEW has the same common programming structures such as if-else, do-

while, event handlers, etc. as many other programming languages. The main difference 

is that instead of writing code as text commands the user draws blocks and wires them 

together with wires. With text based languages like Java and C++ the order of the 

instruction execution is clear. The instructions are executed in the order they are 
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written. With LabVIEW the order of the instruction execution is not so straightforward. 

If user for example constructs two parallel loops that do not depend on each other the 

order of execution between the loops is not defined similarly as with text based 

programming languages. This is because the two loops/blocks can be drawn where-ever 

on the sheet and their execution order does not depend on their position on the sheet. 

This is illustrated in Figure 4 where two while-loops are executed in parallel. The order 

of the program execution is defined by data flow [7]. When an element has all of its 

inputs defined it is executed. If more than one element has its inputs defined at the same 

time their execution order is random. [13] In the Figure 4 neither of the loops have any 

inputs so they are both ready to execute at the same time. The order of execution in this 

example goes as follows: 

1. Program execution randomly selects Loop 1 as first element and steps into it. 

2. Execution steps into the Loop 2 because it was waiting its turn from previous step. 

3. Register ―Channel 0‖ as input for ―Read from I/O‖ VI in Loop 1 

4. Register ―Channel 2‖ as input for ―Read from I/O‖ VI in the Loop 2 

5. Inputs for VI ―Read from I/O‖ in the Loop 1 are defined so the block is executed. 

6. Inputs for VI ―Read from I/O‖ in the Loop 2 are defined so the block is executed. 

7. VI ―Read from I/O‖ in Loop 1 has produced output which is input for ―BandPass 

Filter‖ so ―BandPass Filter‖ VI is executed. 

8. Etc. 

 

 

Figure 4. Parallel execution. 

 

The example above illustrated how program execution order is defined by data flow 

instead of the positions between different instructions. This is why LabVIEW is called 

data flow programming language. Using structures that are executed in parallel 

provides a way to execute different tasks simultaneously similarly as use of threads 

makes it possible to execute different parts of code simultaneously in text based 
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languages. The analogy with parallel structures in LabVIEW and threads in text based 

languages is not very accurate because LabVIEW also uses threads on a lower level. 

Even though a LabVIEW program would not have any parallel structures it might be 

divided into several threads by LabVIEW IDE when the program is compiled and 

executed. This is usually hidden from the programmer. It is possible to force the 

number of threads and control the division of tasks between multiple processors but in 

most cases programmer can ignore this and let the IDE handle low level threading. [20] 

 

4.2.2 Controlling hardware with LabVIEW 

LabVIEW is designed to be easy to use programming environment that can be used to 

create data acquisition applications with very little effort. Many different instruments 

have LabVIEW drivers available at National Instruments website and on the website of 

the instrument manufacturer. LabVIEW drivers for instruments are VIs that have inputs 

and outputs and they allow fast way to use instruments remotely from the software. 

LabVIEW has built-in abstraction layer called VISA (Virtual Instrument Software 

Architecture) which provides an easy way to handle and control hardware connected to 

different communication buses. [18] 

 

4.2.3 OOP in LabVIEW 

LabVIEW has long been a way to build small applications that interact with hardware 

with little effort needed at programming. Object oriented programming would be 

overkill in these small applications where the structure of the software does not play 

vital role. LabVIEW does however provide structures and ways to program using object 

oriented style [11]. The support for object oriented programming can be seen as 

inevitable development because of the popularity of object oriented programming 

today. LabVIEW has also become a language that is used to program larger 

applications that need modular and maintainable structure. [15] 

The difference between LabVIEW classes and classes in for example Java and 

C++ is that LabVIEW classes do not have constructors. An instance of a class is created 

by drawing a wire from a block diagram control that represents the class. The wire is 

the created object and it can be routed throughout the software. Like other OOP 

languages LabVIEW also supports inheritance and polymorphism which enabled the 

construction of a hardware abstraction layer into the ATAC software. 

 

4.3 Software life cycle management 

Planning of a software life cycle plays important role when developing new software. 

Traditional waterfall type of flow where each development phase is performed once 

and then proceeded to a next phase might not be efficient way of managing the software 

development in many cases. In fact many software development projects use more agile 

strategies where different phases are executed simultaneously in some degree and the 

shift from one phase to another is not a one way transition. This enables earlier 

prototypes of the software and bad features can be modified at early stage of the 

development process. [4] Different software life cycle models have been studied and 

advantages and disadvantages of different models have been presented [1]. Especially 

with the ATAC software described in this paper the traditional waterfall model was not 
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reasonable approach because the specification and requirements for the software were 

likely to change throughout the development process. This is why the software 

development flow for ATAC was managed using the principles of spiral flow [4] 

shown in the Figure 5. A similar agile model called Twin peaks model was presented 

by Nuseibeh [21] and was also studied for life cycle managing of ATAC development. 

With ATAC development there was not much time spent in making requirements at the 

beginning of the project because it was not known exactly what the requirements would 

be and it would be likely that the requirements will change and become more precise 

when users can get a feel of early stage prototypes of the software. Using a risk driven 

spiral type of software development model the risks related to the user interface and 

other parts of the software were handled in a reasonable fashion. The Figure 5 which 

illustrates the spiral flow of ATAC development can be interpreted in the following 

way: The development is started at near the center of the spiral. After designing and 

implementing some aspects of the software new round of spiral is started. At each 

iteration the software becomes better and the focus changes from developing software 

towards maintaining the software. Software components that hold greatest risks are 

implemented first to make sure the essential parts of the software can be implemented 

and that they work as designed. This avoids situation where large part of software needs 

to be rewritten if essential parts of the software need to be changed.  

 

 

Figure 5. Spiral model of the software development project. [30]. 
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5 ATAC – Automated Test And Characterization software 

In this chapter the control and data collection software named ATAC that was 

developed in this thesis is presented. First the requirements for the software are 

presented to give the reader an overview of the features and capabilities that were 

implemented in ATAC. After that the reader is given an example of how test scripts are 

written and loaded into ATAC. The use of ATAC to run scripts and to control hardware 

is described and associated GUI windows are presented. This gives an overview of how 

the ATAC is used and the inner structure and functionality of the software is easier to 

understand in later subchapters. The structure of the software is described in class level 

and the block diagram code is described using state charts. Methods used for testing the 

software are described at the end of this chapter. 

 

5.1 Application overview 

Control and data collection software, ATAC, described in this paper is designed to 

provide high level of automation for ASIC evaluation. The goal is that user can write 

test sequences that the software executes independently. The software must be generic 

enough so that the same software can be used with different PCB hardware, different 

instruments and different ASICs. At the same time it must be easy to use, intuitive and 

quickly adoptable so that user can maintain focus on debugging and testing the DUT 

and not struggling with GUI that has too many adjustable parameters and features. 

ATAC enables user to execute tests automatically or by instruction at a time 

displaying real-time information about test and measurements to the user. Debugging of 

DUT is important aspect when trying to characterize a device so ATAC also provides 

ways of sending commands to different components of the system in the middle of test 

execution using manual communication windows. ATAC also abstracts the ACE board 

control and provides GUI for controlling ACE board relays and other functionality.  

 

5.2 Specification and planning 

The development of ATAC was performed using principles of Spiral model [4] which 

is a risk driven style of managing software development. Greatest risks in the ATAC 

development were related to communication with hardware and the style how tests are 

created by user. The communication with hardware was perhaps the most essential part 

of the software so it was implemented first. When working VI’s for communication 

with hardware PCBs and instruments were successfully implemented other parts of the 

software were designed. User interface was a big risk as well as general usability of the 

software so GUI prototype was sketched at an early stage of development. Sketching 

GUI is easy with LabVIEW because every VI has a front panel where readily available 

buttons, graphs and other components can easily be added. The GUI defines the style 

how software would be used and sets requirements how the program structure should 

be implemented. 

Other significant risk was related to implementing parallel style of test execution. 

The parallel test execution means that test sequences should be able to run at the same 

time as other features of the ATAC are used. The parallel nature of execution defines 
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the top level structure of the software and implementing the top level code at an early 

development stage avoids large changes in the code later. 

By using Spiral model approach the development of ATAC did not follow either 

bottom-up nor top-down style of software development. Both, bottom level hardware 

communication and top level software structure were implemented in early stages of 

development to minimize risks and possibilities of having to rewrite software. 

Although requirements for the software were specified throughout ATAC 

development some initial requirements were defined at the beginning of the 

development project. The requirements were defined in co-operation with target users. 

The initial requirements were 

 Automatic execution of test files 

- User must be able to create test scripts and execute them in automatic 

fashion using the software. Queuing test scripts should also be possible to 

allow the user to divide large tests in different files. 

 

 Pausing and single stepping test commands 

- Test scripts created by user can contain errors that cause the test to fail or to 

produce unreasonable results. The device under test can also behave 

unpredictably. If whole test script is executed automatically it is impossible 

for the user to see what instruction caused the failure. This is why the 

software has to have capabilities to execute test scripts line by line and to 

pause the test execution if continuous execution mode is used. 

  

 Recovering from error states automatically 

- The software should not stop test execution in every error situation. Errors 

that can be handled without human interaction should be handled 

automatically to minimize the execution time of tests. 

 

 Manual control interfaces for adapters 

- User should be able to send commands through adapters whenever a test 

sequence is not running. This enables the software to be used as a generic 

debugger and communication interface towards different devices. In the 

middle of a test manual commands should be able to be sent to DUT to read 

state of the device. 

 

 Hardware abstraction layer for instruments and adapters 

- Support for new instruments and adapters should be able to be added to the 

software with minimal modifications to the existing code to keep the 

software clean and manageable. The main software should also be able to 

execute without knowing how devices are handled at lower levels of the 

software. 

  

 Parallel execution between test execution and other features 

- User must be able to execute test sequences in background while 

performing other tasks with the same software. For example if a graphical 

creation of test scripts is added to the software in the future, user must be 

able to create tests with the software at the same time other tests are being 

executed. 
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 Control of ACE board power up/down with changeable instruments and 

adapters 

- The software should be able to control ACE board power because manually 

powering the ACE board is difficult. Different instruments could be used to 

power the ACE board so the software should be flexible enough to handle 

any instrument as ACE board power. 

 

 Use of multiple adapters simultaneously 

- Different components of the evaluation system hardware use different 

communication protocols and different adapters need to be used at the same 

time. The software must support simultaneous use of multiple adapters 

regardless of the adapter type. 

 

 Real-time graphical examination of measurement results 

- User needs to be able to track all measurements at real-time while a test is 

being executed. The measurements should be displayed in a graph. 

 

 If-else structure for tests 

- User has to be able to construct consecutive and overlapping conditional 

statements and structures in test scripts. 

 

 Loop structure for tests 

- User has to be able to construct consecutive and overlapping loop structures 

in test scripts. 

 

 Storing of measurement results to an Excel compatible format 

- Measurements should be automatically saved to file system in a format that 

can be opened with Excel. The measurement data should be in easily 

viewable and usable matrix. 

 

The control and data collection software described in this paper can be regarded as a 

fairly large LabVIEW application and to keep the software development manageable a 

good programming style had to be practiced. The software has to be easily modifiable, 

scalable, generic and modular. It is likely that new functionality will be added 

throughout the application’s life cycle. The same software must also work with 

different instruments, adapters and PCB hardware. The structure of the software must 

be designed so that these requirements are fulfilled. 

Before presenting the implemented ATAC architecture the reader is given a 

description of how the ATAC is used. This provides the reader a better understanding 

of the ATAC features and makes it easier to understand the software architecture 

beneath.  

 

5.3 Using ATAC 

5.3.1 Creating tests 

Tests can be written using any text editor. During the development of ATAC Notepad 

was most commonly used to write test sequences. ATAC uses the following syntax for 

commands: 
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<command>: <parameter 1>, <parameter 2>, … , <parameter n> 

The double dot (:) separates the command from parameters. The number of parameters 

as well as syntax of parameters depends on the command. Every command requires 

unique parameters that can be mandatory or optional. A dash (,) is used to separate 

commands from each others. White spaces can be freely used around double dot (:) and 

dash (,) as well as in the beginning and the end of the line. Text can be commented by 

adding // before the text. Everything that comes after the comment mark at that line is 

ignored by the instruction handler in ATAC. An example of a test script is presented in 

Figure 6. A description for the example script is given below the figure. 

 

 

 

Figure 6. Example of test script. 

 

The script presented in Figure 6 trims (adjusts) bandgap [26] voltage reference of an 

ASIC device to a desired value. The used commands are described next: 

disconnect: All 

 

Disconnects all instruments from bench EVM board by opening instrument relays 

on ACE board. Opens also all power relay connections on ACE board. 

 

instr_init: DMM1, 2-wire, rear 
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Initializes multimeter called DMM1 that is used to measure bandgap voltage from 

DUT. Parameter ―2-wire‖ tells the DMM1 to use 2-wire measurement mode and 

parameter ―rear‖ instructs the DMM1 to use rear terminals. 

 

var: tmp, count, incr = 0, regValue = 0x04 

 

Initializes variables and assigns values to them. No values for variables ―tmp‖ 

and ―count‖ are given so they are both initialized to 0. Variable ―tmp‖ is used as a 

general purpose variable to temporarily store various different information. 

Variable ―count‖ is used as loop iteration counter. Variable ―incr‖ is used to 

increment a bandgap register value of an ASIC at every loop iteration. Variable 

―regValue‖ represents a value of an 8-bit register. 

 

channels: VBG 

 

Defines a channel called VBG where bandgap measurements are stored. Channel 

data is written to a file when test execution is finished. While executing test the 

VBG data can be examined on front panel graph in real-time. 

 

write_read_spi: USB2ANY, ED 00 00, tmp 

write_read_spi: USB2ANY, EA 00 01, tmp 

write_read_spi: USB2ANY, EB 00 01, tmp 

delay_ms: 1 

write_read_spi: USB2ANY, E7 00 1F, tmp 

write_read_spi: USB2ANY, EC 00 00, tmp 

write_read_spi: USB2ANY, EA 00 0F, tmp 

delay_ms: 1 

 

Sequence of SPI (Serial Peripheral Interface Bus) instructions are send to adapter 

called USB2ANY. These set the DUT to appropriate state for bandgap voltage 

measurement. Data that is sent to SPI bus is given in groups of 8 bits. SPI 

configuration has already been done at a separate window before starting the test 

execution. For example the first command sent to SPI bus is ED 00 00 which in 

binary format is 11101101 00000000 00000000. Variable ―tmp‖ is used to 

temporarily store data that is read from SPI. 

 

connect: A2 --> column 4 //DMM1 to measure VBG 

 

Connects ACE board terminal A2 to bench EVM column 4 by closing appropriate 

relay on ACE board. DMM1 connected to ACE board terminal A2 now has 

connection to bench EVM column 4 and can read bandgap voltage from the DUT. 

 

do: 

 

Starts loop structure. 

 

increment_bits: regValue, 1-4, [incr] 

 

Gets bits from regValue variable at indexes 1,2,3 and 4 starting from least 

significant bit and increments this value by the amount defined by variable ―incr‖. 
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Value of ―incr‖ is accessed by adding ―[― and ―]‖ characters around variable 

name. Bandgap voltage reference is trimmed by bits 1,2,3 and 4 and other bits of 

the same register are left unchanged. The new register value is stored back to 

variable ―regValue‖ after the increment. 

 

string_subset: regValue = [regValue], 2-3 

 

Prefix ―0x‖ is removed from ―regValue‖ variable and the stripped value is stored 

back to ―regValue‖ variable. At first loop iteration the value of ―regValue‖ before 

this command was 0x04 because at the first iteration of loop the value is 

incremented by amount of 0. After execution of this command the value of 

―regValue‖ was 04 because the command was instructed to get characters at 

indexes 2 and 3 starting from the left.  

 

write_read_spi: USB2ANY, E3 00 [regValue], tmp 

 

The incremented register value is sent to SPI bus using adapter called 

USB2ANY. This sets the bandgap register value of the DUT. 

 

instr_get: DMM1, DCvoltage, VBG, tmp 

 

Multimeter called DMM1 that was connected to measure the device bandgap 

voltage is instructed to perform DC voltage measurement. The read measurement 

is stored in channel ―VBG‖ and in variable ―tmp‖. 

 

concate_strings: regValue = 0x, [regValue] 

 

A prefix ―0x‖ is added to the value of variable ―regValue‖. The prefix is required 

by  commands ―increment_bits‖ and ―set_trim_bits‖. 

 

var: incr = 1, count++ 

 

Sets variable ―incr‖ value to 1. Variable ―incr‖ is used to define increment 

amount of bandgap register value at each loop iteration. Loop iteration count is 

stored in variable ―count‖. 

 

while: [count] < 16 

 

This command decides whether to jump to previous ―do‖ command or to exit the 

loop. If value of variable ―count‖ is under 16, then the execution jumps to line 

where previous ―do‖ command was given. If value of ―count‖ is 16 or over the 

loop is exited and execution continues from next line. Bandgap is trimmed with 

four bits so to go through all the register values for bandgap the loop must be 

executed 16 times.  

 

set_trim_bits: regValue, 1-4, VBG, 1.21 

 

When this command is executed the previous loop has been iterated 16 times. All 

bandgap register values have been sweeped through and bandgap voltages for 

each register value have been measured and measurements stored to channel 
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―VBG‖. This command goes through the ―VBG‖ channel data and finds index of 

measurement that is a closest match to specified 1,21 target voltage. This index is 

the same value that needs to be written to bandgap register of the device to 

produce the 1,21 voltage. The found index is written to the variable ―regValue‖ 

that holds bandgap register values. 

 

write_read_spi: USB2ANY, E3 00 [regValue], tmp 

 

The solved register value that produces the desired bandgap voltage is written to 

the DUT register using adapter USB2ANY and SPI bus. 

 

//end 

 

Comment that is ignored by ATAC. Helps the user to know this is the end of test.  

 

Test file is loaded into the ATAC software directly in the same text format it is written. 

Test is not compiled before execution and the execution of the test is done line by line 

for the text instructions. This way user can follow the execution of the test in ―Test 

execution‖ window which is the main window of ATAC. 

ATAC supports use of variables, arrays and channels for passing information 

through a test. Variables can be written and read and the values of variables can be 

viewed at main screen of ATAC in real-time. Arrays can be read but not written. Arrays 

can be used for example to define a series of values that define supply voltage of DUT 

through each iteration of a measurement loop. Channels can be written but not read. 

Channels are the storage for measurement data gathered throughout the test. All 

channel data is visible to user in a graph format on main window of ATAC. ATAC 

supports do-while loop structure and if-else conditional structures. In addition around 

40 different commands are supported. Full list of supported commands can be found at 

appendix A. 

Individual test scripts can be queued in ATAC which means different tests can be 

executed automatically one after another. This keeps the number of commands in a 

single test small and the tests remain manageable to the user. Automatically executing 

multiple test files sets responsibilities for the user to make sure the end of a test is 

compatible with a start of next test. Usual way of doing this is by disconnecting and 

closing all instruments at the end of a single test and initializing everything at the 

beginning of next test. This ensures that no voltages or short circuits exist in the 

hardware when starting a new test. In addition to executing one test in one file the 

queuing provides easy way of managing the file system hierarchy where the 

measurement data is stored. Adding a test file that changes the measurement data folder 

to queue automatically divides measurement data into manageable file system 

hierarchy. 

 

5.3.2 Executing tests 

The ―Test execution‖ window which is the main window of ATAC is described next. 

Screenshot of the window is presented in Figure 7. This is the window where user can 

load tests and execute them. The graph in the middle shows measurements in real-time 

so user can easily monitor the progress of the test. Multiple tests can be queued and 

measurements are automatically stored in measurement files. 
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Figure 7. ATAC Test execution window. 

 

When tests are loaded and a measurement file path is defined the test execution can be 

initiated. There are options for different execution modes such as ―Execute 

continuously‖, ―Execute one line‖ or ―Jump to selected line‖. In case of error occurs the 

user is given possibilities to continue the execution from any line or terminate the test. 

In noisy environment errors can easily occur in communication lines so instead of 

waiting for user input in every error event the program first tries to solve the error by 

itself and continue execution. This will save time in cases where tests are left to run for 

long periods of time without human monitoring. 

The main window shows values of variables and channels that are defined in the 

test script in real-time. This helps the user to follow test progress and to see if the 

measurements are in reasonable range. Measurement channels are where the 

measurements are stored. Selecting channel from pull-down list shows all 

measurements for that channel on the graph. 

The software is designed so that test execution runs independently in its own loop 

and other tasks in another loop. This enables the user to use other features of ATAC at 

the same time as tests are being executed in the main window. One of the requirements 

for the software was to be able to pause a test at any state and to be able to send manual 

commands to the DUT and instruments and then continue the test execution. Pausing a 

test can be done using pause button or by adding a pause command to the test file at 

desired line. 

ATAC supports also queuing of the test files meaning that multiple different tests 

can be executed automatically one after another. The loading of tests for execution is 

done by pressing button ―Manage…‖ under ―Test queue:‖ label on front panel (Figure 

7). This opens a queue management window that is shown in Figure 8. User can save 

and load queues and select which tests of the queue are loaded into ATAC. The order of 

the tests is also changeable. By closing the window the selected tests names and paths 

on file system are loaded into ATAC memory. The first test is loaded into ATAC front 
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panel for execution. After the first test has executed the second test in the queue is 

loaded and executed. 

 

 
Figure 8. Loading of test scripts into ATAC. 

 

5.3.3 Adapter control 

ATAC provides manual control over adapters and ACE board. Manual control window 

is used to set the adapters into desired state before starting to execute tests. This reduces 

the number of initialization commands needed in the test sequence and makes the 

initialization easy through buttons and pull-down menus. 

Adapter control window provides a graphical interface to communicate with 

adapters. Adapter features can be set and specific commands can be sent to adapters. 

Many adapters provide I
2
C, SPI, UART or GPIO communication towards DUT so 

parameters and configuration of these protocols can be set using this window. When 

debugging the DUT it is also convenient to have a manual interface for communication. 

Screenshot of manual control window is shown in Figure 9. The view changes when 

selecting a different adapter that supports different communication protocols. This is 

shown in Figure 10. Pressing one of the buttons (―UART‖, ―I2C‖, ―SPI‖, ―GPIO‖) 

opens a pop-up window for that communication protocol. 

 



27 

 

 
Figure 9. Manual control window. Adapter supports only I2C and GPIO. 

 

 
Figure 10. Manual control window. Adapter supports all communication protocols. 

 

An adapter object tells the main software what buses it supports and the main software 

can show supported buses for the user. Pressing a button corresponding to a specific 

bus user gets to configure the bus parameters and send/read commands. Each 

communication protocol has its own pop-up window for setting the communication 

parameters and sending commands and they are presented below. Manual instrument 

control and ―Test creation‖ tab seen in Figure 9 are place holders for possible features 

that might be added to the software in the future. 
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UART (Universal Asynchronous Receiver/Transmitter) is an asynchronous 

communication protocol and very common in various different devices. One of the 

reasons for UART’s popularity is its simple operation. As a drawback only one master 

and one slave device can be connected to the bus [10]. If an adapter supports UART the 

―UART‖ button is visible in the adapter control window. Pressing the button a pop-up 

window for configuring UART settings and sending commands is opened. The pop-up 

window is presented in Figure 11. Through this window user can send UART 

commands to a slave and read back data the slave sends. 

 

 

Figure 11. UART communication window. 

 

I
2
C is another commonly used communication protocol in embedded systems and 

ASICs. I
2
C uses only two lines for communication which makes it possible to minimize 

the number of pins when designing an ASIC. In addition multiple devices can be 

connected to a same I
2
C bus and every device can act as a master or as a slave. 

Drawback of I
2
C is its limited speed [10]. The ACE board presented in this paper also 

uses I
2
C for communication. I

2
C commands can be sent as well as setting I

2
C 

configuration parameters in a window presented in Figure 12. Data can be written and 

read in binary or hexadecimal format. 
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Figure 12. I2C communication window. 

 

SPI (Serial Peripheral Interface Bus) is a commonly used communication protocol that 

is also supported by the ATAC. SPI communication uses 3 + n wires, where n is the 

number of slaves connected to the bus. Large number of wires limits the use of SPI if 

more than one device is connected to the bus. On the other hand the SPI can reach 

higher baud rates than I
2
C and UART. [10] Communication window for SPI is 

presented if Figure 13. As with UART and I
2
C user can similarly configure SPI settings 

and send commands. In SPI communication the master (ATAC) and a slave change 

information at the same time. There is no separate write and read commands but the 

information to both directions is transmitted in a same communication cycle. 

 

 

Figure 13. SPI communication window. 
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GPIO (General Purpose Input/Output) is not a communication protocol like the UART, 

I
2
C and SPI. With GPIO user can set lines to be digital inputs or digital outputs and 

select impedance of the line. User can also select the state of the line to be high or low. 

The GPIO does not define any protocol how the lines are used for communication. That 

is left for the user to define. Usually GPIO lines are used as a general purpose digital 

I/O to control and read states of individual nets. GPIO control window is presented in 

Figure 14. ATAC supports twenty different GPIO lines that can be operated as inputs or 

outputs. 

 

Figure 14. GPIO control window. 

 

5.3.4 ACE board control 

The GUI shown in Figure 7 and Figure 9 is not tied to any hardware and enable the 

ATAC to be used as a standalone test sequencer and debugger. The functionality 

related to ACE board is behind ―ACE board‖ button. The ACE board functionality is 

integrated into the software but in such fashion that it is easily modified for other future 

ACE boards and different hardware. In practice the ACE board class would have to be 

replaced by new class representing new board but no other parts of software would 

have to be altered. The ACE board user interface is shown in Figure 15. 
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Figure 15. ACE board GUI window main tab. 

 

On the left user can control the ACE board supply voltage and load/save instrument 

mappings of ACE board and pin name mappings of Bench EVM board. Using 

mappings the actual terminal and pin ID’s present on the PCBs can be hidden and 

instead user can use self defined terminal and pin names. This enables the same GUI to 

be used with different hardware setups that have different pin and terminal 

configurations. 

The ACE connections tab can be used to define instrument to ACE board 

terminal mapping. User can select from pull-down lists which instrument is connected 

to which terminal and after that this mapping can be used elsewhere in the program. 

This way the user does not have to refer to terminals A1, A2, etc. but can refer to actual 

instrument names when routing instruments from ACE board to bench EVM board. 

Bench connections window (Figure 16) can be used to configure instrument 

routing from ACE board to bench EVM board. Bench EVM pin names can be changed 

and saved to match specific bench EVM board which makes it easy for user to define 

instrument connections. From pull-down lists user can select which of the available 

instruments connect to what pin on bench EVM board. Depending on the selected 

mode, instrument connection commands are sent to ACE board hardware at real-time or 

if the mode is offline, the connections only apply at the software but no hardware 

connections are made. Offline mode can be used if user wants to create a connection 

command and use it later in a test sequence. Other tabs are defined for future 

development but not yet implemented. 
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Figure 16. ACE board GUI window bench connections tab. 

 

5.4 Application structure 

5.4.1 Classes 

In addition to meeting the requirements specified for the software the software must be  

modular, scalable and easily modifiable. Therefore the structure of the software must be 

designed carefully. The software has to be easily modifiable so that new functionality 

can be implemented throughout the software life cycle. Object oriented programming 

has proven itself as a good programming style for large applications so the ATAC was 

also designed by the principles of OOP. 

The functionality of the software is divided into different classes. For example 

class named ―Adapter‖ represents an adapter that is connected to PC and has all the 

methods/VIs that can be used to communicate with an adapter. Different adapter classes 

that represent some specific adapter inherit the generic ―Adapter‖ class and thus have 

all the same methods/VIs as the ―Adapter‖ class. This also enables hardware abstraction 

[19] because the main software can use Vis of the class ―Adapter‖ to communicate with 

variety of different adapters that are implemented separately from the main application. 

Same principle is applied to instruments. The main application has classes such as 

―Multimeter‖, ―Source Meter‖, ―Power Supply‖ etc. and it does not have to know 

which specific instrument is connected to the system. This makes it possible to use the 

same application with different instruments that are connected to PC through different 

communication buses. 

The execution of test sequences can be run parallel to other tasks such as viewing 

adapter configurations. Synchronization between different parallel tasks is needed 

because some tasks can otherwise conflict with each other or cause unwanted behavior. 

For example sending manual commands to an adapter should be forbidden when a test 

is running. Otherwise the manually sent command might cause the DUT to go into 

unwanted mode or cause other unpredictable conflicts. A class named ―Mode 
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Controller‖ is a synchronization class that controls other classes and test execution. It 

holds information about the states of parallel tasks and makes sure no conflicting tasks 

are executed simultaneously. 

GUI events such as user pressing a button are registered with event handlers that 

transmit the information to the ―Mode Controller‖ object. The mode controller then 

decides whether the instruction can be executed and issues commands to other objects 

and tasks. Figure 17 illustrates the structure of the main software using UML (Unified 

Modeling Language). 

 

 

Figure 17. UML Class diagram of the software. 

 

―Mode Controller‖ holds and uses the following objects: 

 ―Instrument Group‖. Holds all instrument objects. 

 ―Adapter Group‖. Holds all adapter objects. 

 ―Test Execution‖. Handles test script execution. ―Test Execution‖ holds its 

own instances of instruments, adapters, ―ACE board‖, ―Command Interpreter‖ 

and ―Command File Handler‖. 

 ―Command File Handler‖. Handles write/read operations of command files. 

 ―ACE board‖. Represents the PCB board that routes instruments to bench 

EVM board. 

 

New instruments and adapters are added as external software plug-ins that override 

methods/VIs defined by generic ―Power Source‖, ―Battery Simulator‖, ―Multimeter‖, 

―Source Meter‖ and ―Adapter‖ classes. This enables hardware abstraction that is 

discussed next. 
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5.4.2 Hardware abstraction layer 

Hardware abstraction layer (HAL) enables the ATAC software to be used in different 

environments and with different hardware without having to modify the main software 

for each environment separately. HAL was designed by using factory design pattern 

[19]. Instruments and adapters are behind the HAL. These are both components that 

have certain common features that are generic and independent of the manufacturer or 

model. A common interface is defined for instruments and adapters and the main 

software uses generic VI’s defined by the interface. The generic VI’s are overloaded by 

actual instrument/adapter plug-in software at run-time. This is possible because the 

main software does not care how the interface method is implemented. Every hardware 

object has its own software plug-in written that implements the defined interface. The 

separate plug-in is linked to the main software by a configuration file that tells the main 

software where the implementation can be found at file system. 

Instruments are divided into following sub categories: 

 

- Multimeter 

- Power source 

- Source meter 

- Battery simulator. 

 

These all have unique interface that the instrument plug-in must implement. All 

multimeters support roughly the same functionality and an interface that satisfies all 

different multimeters is easy to design. The same applies to all the other instruments. 

Adapters on the other hand are a bit trickier to handle. All adapters must use the same 

predefined interface although a variation between different adapters can be quite large. 

This problem is solved by making the overloading of interface methods optional. Only 

some VI’s are required to be overloaded by the adapter plug-in. Such VI’s are 

―initialize‖, ―close‖ and ―get supported buses‖. With ―get supported buses‖ VI the 

adapter plug-in tells the main software what buses and communication methods the 

adapter supports towards hardware components. This way the main software can 

display buttons and functionality that applies to the connected adapter. 

When ATAC is started all the available instruments and adapters are displayed to 

the user. The user selects which of the instruments and adapters are loaded and 

initialized at the beginning of the program. This way same ATAC software can be used 

in different workstations regardless of what adapters, instruments and drivers that 

particular workstation has. Only the selected adapters and instruments are loaded into 

PC memory and initialized. This run-time loading of drivers was achieved by using 

factory design pattern that enabled construction of the whole HAL.  

Software plug-ins for instruments and adapters can be created separately from the 

main ATAC code. Only linkage between a plug-in and the main code is that a plug-in 

class must inherit a generic instrument or adapter class defined in the main ATAC 

software. This way the main software remains untouched when adding support for new 

hardware. 

The structure of HAL implemented in ATAC is shown in Figure 18. Not all 

methods and devices are depicted in the figure because the main idea is to present the 

structure of the HAL and not full documentation of implemented methods/VIs. The top 

level code is implemented in general level without specifying how individual tasks are 
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implemented. The ASL (Application separation layer) is a software layer for 

abstracting adapter and instrument specific implementation of commands such as 

―Initialize Multimeter‖ and ―Configure I2C‖ and providing generic interface for the top 

level. DSSP (Device-specific software plug-in) level classes handle the device specific 

implementations of commands such as ―Initialize Multimeter‖, ―Set Current‖, etc. that 

the ASL defines. When adding a new instrument or adapter to the system a new DSSP 

class has to be created for that device. The new DSSP has to implement some or all of 

the methods defined by ASL depending on what functionality the new device supports. 

The top level software does not see what the actual driver for the device is or what 

communication bus is used to communicate with the device. 

 

 
Figure 18, Hardware abstraction layer structure in ATAC. 

 

5.4.3 Error handling 

In LabVIEW exceptions are routed through the software with an error wire. Exceptions 

are generated when something goes wrong in the program execution. For example if the 

program tries to open a non-existent file. In ATAC exceptions are also created when 

something undesirable happens, for example if initialization of an object was 

unsuccessful or a device does not answer when spoken to. In most cases the exceptions 

are routed to top level with error wire where they are handled. In case of error the error 

indicator on main GUI is highlighted and the error description is displayed in the 

―Infobox‖. The user can evaluate the nature and significance of the error and decide 

whether to continue or quit the program. If user decides to continue the error is cleared 

as well as the error indicator and ―Infobox‖. 

If error is encountered while executing a test sequence the application enters a 

test execution error handling state presented in Figure 19. Here the user has different 

options as how to continue the execution or whether to terminate the test. In lab 

environment that has lots of different electrical machines EMI (electromagnetic 

interference) can cause signals to corrupt. While developing the ATAC software and 

running test scripts the I
2
C communication failed occasionally without apparent reason. 
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A test sequence could take hours or days to execute so it is not convenient if the 

execution stops completely when encountering error. In many cases a test is left 

running alone while the user focuses on other tasks so it is important that the software 

can solve error states by itself without user interaction. This problem was solved by 

making the ATAC to retry a command three times before stopping and displaying the 

error to the user. This solved the most frequent error where I
2
C communication failed at 

random intervals. Most likely the signal was occasionally corrupted by external 

interference and when retrying the message went through uncorrupted. 

 

 
Figure 19. Error handling when encountering error at test execution. 

 

5.4.4 Flow of execution 

The flow of program execution on the top level is described next using a flowchart and 

three state charts. In Figure 20 the general execution flow of main VI is presented. First 

the front panel properties of the main VI are initialized as well as blocks used for 

synchronization between parallel top level loops. After that the queues and software 

events are initialized in parallel to allow communication between the loops. 

The communication between loops is designed and implemented by the principles 

of producer/consumer design pattern [14]. The top loop acts as a producer loop for the 

middle loop and sends commands to the middle loop through a queue. The middle loop 

acts as a consumer loop for the top loop and as a producer loop for the bottom loop and 

sends commands to the bottom loop through another queue. Bottom loop can send 

information with events to the top loop. The master/slave type of communication of 

producer/consumer design pattern is thus turned into a communication chain where 

every loop can send information to next loop. The top loop acts as an event handler for 

user interface events and software generated events. The middle loop is the main loop 

of the software and holds instance of a ―Mode Controller‖ object that coordinates 

execution between tasks. The bottom loop handles test script execution. 
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After initializing the communication queues and events the loops are 

synchronized and started in parallel at the same time. The design of each loop is 

illustrated in Figure 21, Figure 22 and Figure 23 using state charts. When each loop has 

terminated (happens when user quits application) the communication queues and events 

are closed and application is shut down. 

 

 

Figure 20. Top level program execution flowchart. 

 

Figure 21 illustrates the top loop (event handler loop) execution in general level using 

state chart representation. The program execution waits for events and does not 

consume processor resources if no events are available. Most events are generated 

when user presses buttons or changes values of other controls on ATAC front panel. 

Every event has its own event handler which sends appropriate command to main loop 

for desired action. In most cases the top loop does not do anything else but to send 



38 

 

instruction for middle loop when event is registered. This way the top loop stays always 

ready for registering events and the GUI does not freeze up. In Figure 21 all events 

other than quit button activity is considered to be included in the ―Event registered‖ 

event. In practice every event causes a different command to be sent to the middle loop 

(main loop) but for the sake of simplicity the figure is drawn with a single ―Send 

command to middle loop‖ state. After sending command possible errors encountered 

are displayed and cleared. The front panel GUI shows error description until user 

presses a button but for the program execution to continue appropriately the error is 

cleared on the block diagram. If quit button is pressed a quit command is sent to the 

middle loop and the top loop pauses to wait until other loops are ready to close. It is 

necessary to stop execution of all loops in a controlled manner before closing 

communication channels and hardware references to avoid errors and race conditions. 

 

 

Figure 21. Top loop state machine. The loop handles all the events created either by user pressing buttons or 

other parts of software. 

 

The execution of middle loop (main loop) is illustrated in Figure 22. The middle loop 

initializes the GUI and hardware when it is started. After every action the errors are 

checked and displayed if there are any. The main loop checks queue for commands 

from the top loop every 200ms. If no commands are received the mode controller status 

is updated to hold newest information about test execution state. The test execution 

state information is held at GUI indicators which are accessed by both middle loop and 

bottom loop. 200ms is a long time in respect to processor clock frequency so updating 

the mode controller status does not take much processor resources. Every command 

that does not involve executing a test file is handled in the middle loop. When test 

execution command is received the command is routed to the bottom loop if test 

execution can be initiated or continued. In case of receiving quit command the middle 

loop sends the quit command forward to the bottom loop and waits other loops to stop 

executing before exiting the loop. 
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Figure 22. Middle loop state machine. This is the main loop of the software that handles everything else but 

test execution. 

 

The bottom loop (test execution loop) illustrated in Figure 23 using state chart is the 

loop that handles test script execution. Initially the loop waits for commands from the 

middle loop and does not take processor resources. When an instruction is received an 

action for that instruction is performed. If execution mode is set to be continuous, 

meaning the test is executed automatically from start to finish, the program will check 

for incoming instructions only for 1 ms period until continuing to execute next line. The 

smaller the period for waiting commands is the faster the test execution is which is 

critical in large time consuming tests. After executing a line all hardware object 

instances are sent to top loop using an event to provide up-to-date information about the 

hardware instances. Top loop routes hardware instances to the middle loop that holds 

―Mode controller‖ object instance. Thus after every executed line the ―Mode 

controller‖ object has newest information about the hardware objects in the system. 

Sending of hardware objects to top loop is considered to be included in ―Execute next 

line of test‖ state in the Figure 23. After executing a line possible errors are handled. 

Error handling in the bottom loop differs from the top and middle loop error handling. 

When errors are encountered in test execution user is given different choices to handle 

the error and continue as presented earlier in this paper. 

If quit command is received the graphics related to test execution are cleared and 

the program pauses to wait that every loop has stopped. When all three loops are 

stopped and waiting for other loops the execution can continue. 
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Figure 23. Bottom loop state machine. This loop handles the test execution. 

 

Long tests might take hours or days to complete so it’s efficient if user can use the 

software for different tasks while a test sequence is being executed. To achieve this the 

execution of tests is run in parallel to other tasks. In future the software could be 

enhanced by adding test creation window or measurement post processing capabilities. 

User could create tests or process measurement data with the same application and at 

the same time test sequences are executed. Parallel execution of tests and other tasks 

sets certain challenges that need to be assessed carefully when designing the software. 

For example controlling of adapters and instruments has to be blocked from the user 

when a test sequence is being executed. If test script uses instruments and adapters as is 

commonly the case the user interaction with an adapter or an instrument could cause 

the script to fail or to produce non-reasonable results. 

Parallel execution of tests is implemented by a parallel top level loop. The top 

level structure follows producer/consumer design pattern [14] but adds extra loop to 

handle test execution. The master/slave type of communication of producer/consumer 

design pattern is enhanced and the resulting pattern has a chain type of communication 

flow. The event handler loop (top loop in Figure 24) functions as a producer for the 

main loop (middle loop in Figure 24). The middle loop acts as consumer for the event 

handler loop and producer for the test execution loop (bottom loop in Figure 24). The 

test execution loop handles the execution of tests and updates ―Test execution‖ window 
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on ATAC front panel accordingly. The test execution loop sends events to the event 

handler thus acting as a producer for the event handler loop. 

 

 
Figure 24. Block diagram of top level VI. 

 

5.5 Software testing 

5.5.1 Unit testing 

To minimize errors in the code every VI was tested individually with different 

parameters before integrating the VI into other VI’s. This type of unit testing makes 

debugging easy because only small part of code is tested at a time. When connecting 

individual VI’s together the complexity of the code increases and finding errors 

becomes more difficult. 

LabVIEW makes unit testing very easy because no external test program is 

needed to run a VI with different input parameters. The VI front panel controls can be 

set by user to execute the VI with different input parameters. Unit testing works well in 

most cases but if a VI depends on complex objects it can be very time consuming to 

manually set the input parameters from the front panel of the VI. In these cases the VI 

was integrated into the main software without pre-testing and the main software was 

used to test the new VI by running the main program to certain states with different 

parameters. 

Viewing the state and values of different variables and wires is easy in LabVIEW 

because of the debugging tools LabVIEW provides. User can place probes on wires to 

view all the data that flows through the code. In addition user can place breakpoints to 

specific parts of the code and make the program execution to pause at that point until 

instructed to continue. The program can be run in normal execution mode or by 

stepping instructions one by one. These debugging capabilities made the debugging fast 

and efficient and errors in the code were easily discovered. Not all the possible states 

and input combinations of a VI could be tested because the number of possible 

combinations of input parameters is very large at times. In these cases the VI was tested 

with input values that had most chances to generate incorrect behavior. 
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Below is a unit testing example of a VI called ―buildInstrumentObjects‖ that 

creates instrument objects based on instrument names that are given to the VI as input 

parameters. This example shows the principle how VIs are tested in general before 

integrating them into other VIs. The front panel of the VI is shown in Figure 25. Input 

parameters for the VI are placed on left side of the front panel and their meaning is the 

following: 

 

 Instrument Group in 

- Object representing all of the instruments. Provides methods/VIs for easy 

picking of specific instruments from the whole group. 

 

 XML File Name 

- A string that tells the VI what is the name of the configuration file that 

holds information about all instrument names, types and paths of classes 

that implement instrument functionality. 

 

 Instruments to build 

- Array containing names of instruments that are built and loaded into 

memory. The VI goes through the specified XML file and loads all 

instrument plug-in classes that match to specified instrument names. 

 

 error in (no error) 

- Error information to the VI. The VI is not executed if error status is true. 

 

 

 
Figure 25. Front panel of a VI called “buildInstrumentObjects”. 

 

Outputs of the VI are updated instrument group object and error information. The front 

panel of the VI can be used to examine whether the VI produces error signals to ―error 
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out‖ indicator but not much more can be seen by examining the front panel. This is why 

the functionality of the VI was tested by examining the block diagram execution with 

different input values. Block diagram of the ―buildInstrumentObjects‖ VI is shown in 

Figure 26. The yellow arrows are added to point to debug tools LabVIEW provides. 

Two probes are placed on wires to show user what information flows through the wires 

when the VI is executed. The one break point (red circle) is added to pause the program 

execution after a single instrument plug-in has been loaded into memory. When the 

execution is paused by the break point user can view the information of the probe ―3‖ 

that holds information about the newly loaded instrument plug-in class. This way user 

can track the execution of the program and tell whether the VI is working as it should. 

After all instrument plug-in classes and instrument drivers have been loaded into PC 

memory the program execution reaches probe ―1‖. This probe displays an array that 

holds all the newly created instrument objects. The use of probes and break points 

makes the debugging fast and efficient because large part of code can be tested 

simultaneously by adding more probes to the block diagram. 

 

 

Figure 26. Part of a VI block diagram that illustrates the use of probes and break points. 

 

5.5.2 System testing 

When connecting individual VIs together the communication and compatibility of 

different VIs needs to be tested for errors. Proper unit testing reduces the possibility of 

encountering errors when connecting different VIs together but not all errors can be 

found at unit testing. For example different VIs might work properly on their own but 

when connecting an output of a VI to be input to another VI the interfaces (connector 

panes) of the two VIs might not match. 

System testing is used to test whether different VIs work well together. The 

ATAC software has deep hierarchy of VIs so system testing was performed at many 

different levels. Final system testing was done at top level where the software was used 

like it would be used in target environment. In addition many different unusual cases 

were tested to find all possible errors in the program. For example user could press 
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buttons while program is processing events for previous user action and the program 

must work reliably also in these situations. Other possible cases for unexpected errors 

are for example if user tries to jump to a line that does not exist or instructs the program 

to do something else that was not meant to be done. The system testing was performed 

in close co-operation with end users that used the software for two months and gave 

feedback about the features and bugs they had encountered. 
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6 Results and discussion 

The overall successfulness of the ATAC development project is assessed in this 

chapter. An example case of an evaluation test performed to a real ASIC circuit is 

presented and the results are discussed. The reader is given a general view how a single 

evaluation test is performed using ATAC and what kind of results the ATAC produces. 

The data produced by ATAC is compared to manually gathered measurement data and 

the use of ATAC and automated evaluation environment is assessed based on the 

results. The usability of ATAC is also discussed based on feedback gathered from the 

end users. 

 

6.1 Meeting the specification 

One way of determining successfulness of a software project is by comparing the final 

software to the specification and requirements. The requirements for ATAC software 

defined in chapter 5.2 were implemented entirely and some extra features such as ACE 

board instrument mapping were added in addition. The specification for the software 

evolved through the software life cycle and features were gradually added to 

specification. 

 

6.2 ASIC evaluation measurement results 

The main objective of ATAC software was to be able to control the ASIC under test 

and to retrieve measurements from instruments and store them to measurement files 

automatically. To validate correctness of the measurement data the retrieved 

measurements were compared against simulation data and measurement data that was 

gathered by hand using separate measurement setup. If the DUT works as expected the 

measurement results are similar to simulation results. The general operation of the 

automated characterization system is thus easily validated. Still there is a chance that 

the characterization system hardware adds resistance, inductance, capacitance and other 

non-idealities to the measurement results and the results might thus be worse than what 

the DUT really is. To test the quality of the automated evaluation system hardware a 

comparison to manually made measurements was performed with different tests. 

If the DUT does not work as simulated the validation of measurement results by 

comparing to simulation is not so straightforward. In these cases doing the 

measurements manually with different measurement setup gives good reference 

whether the bad measurements were due to bad hardware setup or malfunctioning 

DUT. 

The application was successfully used to evaluate three different ASICs. The 

results had good quality compared to manually made measurements (no difference) and 

in line with simulations. The automatic characterization system proved to be efficient 

way to get large amount of measurement data from the DUT. Before automated system 

the measurements were done by hand. User had to manually connect instruments to 

different pins of DUT and use unorthodox software applications for reading the 

measurements to PC. The measurement results were visible to user only after the whole 

test was executed because the measurements were stored in the instruments’ memory 

through the execution of a test. With ATAC the time spent creating tests reduced due to 
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easier command syntax. The debugging of tests was also more efficient because user 

could see the measurements in real-time at the PC screen and could pause and jump in 

the test execution. The automation made possible to use large number of measurement 

points and to sweep over many different parameters such as supply voltages, load 

currents and temperature. The resulting measurement data set provided essential 

information about the DUT in multiple different operation points which would have 

been impossible to achieve by manually doing measurements. By executing different 

test script files consecutively in automatic fashion the resulting data set could easily 

have over thousand data points. Measuring this number of data by hand would have not 

been possible in reasonable time and effort. An example of evaluation measurements 

performed for a real ASIC is presented below starting from the initial evaluation plan 

and ending in measured results and graphs. The characterization is started by defining 

evaluation plan which is presented in Figure 27. Initially the right side of the plan is 

empty and is filled with green and red boxes when that specific test has been 

performed. 

 

 

Figure 27. Evaluation plan for a specific ASIC. 

 

As can be seen from Figure 27 evaluation plan all the tests need to be performed with 

different supply voltages and in different temperatures. A single test already involves 

sweeping over some parameters, so in addition sweeping over supply voltage and 

temperature results in a very large measurement data set. The ACE coverage column in 

Figure 27 tells whether the specific test is to be done with the automated evaluation 

setup or manually. The tests that require oscilloscope are done manually and others 

with automatic setup using ATAC. When a test script is written for ATAC it is very 

easy to sweep over different parameters such as supply voltage and load current 

because these add only additional loops to the test script that is otherwise functional. As 

can be seen from Figure 27 evaluation plan, manual measurements were done only with 

one supply voltage and in one temperature at the time the evaluation plan image was 

added in this paper. This indicates that it is very time consuming to perform tests 

manually by hand. The tests that were done with ATAC were performed for every 

supply voltage and every temperature. Although for now ATAC does not support 

temperature control it is very fast to manually set the temperature of an environmental 

chamber where DUT is placed to different temperatures between a set of tests. 
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The next step after creating evaluation plan is to create test scripts for ATAC. 

Below in Figure 28 is presented a script that performed a test ―DC output voltage vs. 

Iload vs. VIN‖ that was defined in the evaluation plan. 

 

 
Figure 28. Test script for DC output voltage vs. Iload vs. VIN. 

 

The test script is loaded into ATAC and executed. The measurement results are 

automatically stored to a user specified TDMS file. TDMS is a file format developed by 

National Instruments and is designed for storing measurement data. The TDMS file can 

be read into Excel for post processing using a free TDM Excel Add-in [28]. The 

measurement data seen in Excel is shown in Figure 29. There are five times more 

measurement data in the table that is seen in the Figure 29 but the picture gives a basic 
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view of what the output data of the ATAC looks like. In this case the ―Eff (%)‖ column 

is added afterwards in Excel but it could be automatically generated by ATAC also if 

the test script was modified to calculate efficiency at real-time when the test is being 

executed. Other columns in Figure 29 are automatically generated by ATAC. 

 

 

Figure 29. Measurement data generated by ATAC loaded into Excel. 

 

The next step is to post process the measurement data. The data should be converted to 

a graph for easy examination and desired key parameters should be generated from the 

data. This post processing is done by hand using Excel or other similar tool. Figure 30 

shows a graph that visualizes the measurement data seen in Figure 29. The graph was 

constructed by hand using tools of Excel. X-axis of the graph is the load current from 
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DUT to load. The values have minus sign because the current is towards the source 

meter that was used to measure the current. Y-axis represents the overall power 

efficiency of the DUT in percentage. The efficiency is calculated using formula:  

 

𝑃𝑜𝑤𝑒𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  % =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
× 100% =

𝑈𝑜𝑢𝑡 𝐼𝑜𝑢𝑡

𝑈𝑖𝑛 𝐼𝑖𝑛
× 100%.                    (1) 

 

 

Figure 30. Efficiency with different supply voltages and load currents. Y-axis = efficiency (%), X-axis = load 

current. 

 

6.3 Usability and flexibility 

ATAC was used several months by end users after the development had reached stage 

where real characterization tests could be executed. User feedback was gathered 

continuously through this time for future improvements. The GUI of the software was 

considered successful as being simple and easy to use, yet providing enough 

customizable parameters. The debugging capabilities (being able to pause a test and 

manually sending commands) were also considered to be useful and well implemented. 

The ATAC was able to handle three different kinds of ASIC circuits that were 

evaluated through the project. New features and support for new adapters and 

instruments were successfully implemented through the development process due to 

hardware abstraction layer and modular nature of the software. 

Negative feedback was received about the handling of numbers in test script. 

Because the software lacked unified means of handling numbers, all commands were 

not directly compatible with each others. Some commands handled numbers with a 
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prefix (0x, 0b, 0d) and others without the prefix. The prefix explicitly tells the ATAC 

command handler that a character is to be handled as a certain type of number. This 

issue could be fixed in the future by modifying all commands to take number 

parameters with a prefix. Another negative feature was that when debugging a test 

sequence user makes constantly small modifications to the script. However loading the 

script into ATAC requires multiple interactive actions from the user which becomes 

annoying after loading the slightly altered test into the program many times. This could 

be fixed by adding a reload button to the GUI which would reload the current test from 

file system to ATAC. 

Overall user experience gathered from the end users was positive and the ATAC 

was considered to be a better solution than the previous test sequencer software that 

was used before ATAC. The fact that user can track the test execution and view 

measurements at real time combined with the debugging capabilities was the main 

improvement compared to previous software solutions. 
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7 Future improvements 

Possible future improvements to ATAC are presented in this chapter. Some 

improvements would extend the features of the ATAC beyond its original specification 

where as other improvements would be smaller changes that would affect and improve 

the current features of the ATAC. 

 

7.1 Post processing of characterization data 

Post processing the data ATAC generates turned out to be laborious due to large 

number of data points and data files generated. When the number of Excel data files 

increased it became hard to manage all the data effectively. Third party data mining 

software was considered but suitable compatible software was not found. Adding data 

post processing capabilities into ATAC would provide one integrated solution that 

could handle all the data handling. Being LabVIEW application ATAC could also be 

easily made to read data from TDMS files which is a file format developed by the same 

company as LabVIEW. LabVIEW also provides graph frameworks so measurements 

could easily be converted into graph format. 

 

7.2 Synthesis of circuit simulators and ATAC 

When a new ASIC circuit is designed its operation is simulated by a design engineer. 

After design phase the circuit is sent for manufacturing. The manufacturing of an ASIC 

device can take a few months and at that time the engineer cannot proceed with the 

project. Writing test scripts for ASIC beforehand could be done but it is reasonable only 

to a certain point because the possibility of bugs in the prewritten test scripts is great. If 

being able to model lab evaluation environment in circuit simulator the engineer could 

create and test evaluation scripts on a simulator and then convert the simulation scripts 

into ATAC test scripts. The conversion should be done automatically by a software so 

that engineering effort would be minimized. The synthesis of circuit simulators and 

ATAC was discussed in high level during the development of ATAC but the challenges 

that exist were not fully assessed yet. However the idea is tempting. 

 

7.3 Other future improvements 

Other future improvements include adding support for different instruments and 

adapters as well as automatic controlling of environmental chambers. Making all 

commands to require prefix for numbers would simplify test scripts because 

conversions from one number type to another would simplify and parsing prefixes to 

numbers with separate commands would become obsolete. Also reloading a test script 

into ATAC could be made easier by adding a separate reload button. Graphical test 

script creation could be implemented in the future if the syntax of test commands turns 

out to be too difficult. Also a manual control window for instruments could be added to 

configure instruments using graphical interface. 
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Summary 

This paper introduced a control and data collection software, ATAC, for automatic 

testing and evaluation of ASIC circuits. ASIC circuits were first discussed in general 

level and the reader was provided with information about testing and evaluation needed 

in production of ASICs. The basic idea of evaluation is to measure and test whether a 

new device works as it is designed to. It was shown in this thesis that using ATAC for 

automatic evaluation of ASICs can provide savings in time and money for a company if 

a large number of tests need to be performed. 

The lab environment where ASIC software was designed to be run was 

introduced in detail to provide the reader understanding of the whole system. The main 

components of the system were  

 

- ACE board that routes instruments automatically to different pins of DUT 

- Instruments that supplied voltages and currents to DUT and retrieved 

measurement data from the circuit 

- Bench EVM board that provides device specific external components for the 

ASIC and mounts to ACE board 

- Adapters that convert communication from one protocol to another to enable 

communication across the system. 

 

Object oriented programming has shown its superiority when dealing with large 

applications which is why OOP was used with LabVIEW to develop ATAC. In 

addition to modular and scalable structure of the software this enabled construction of 

hardware abstraction layer so that adding new hardware support to the software is easy 

and does not involve modifying the main source code. The ATAC was designed so that 

it supported parallel execution of different tasks which enables the user to work with 

other parts of the software at the same time a test is being executed. The software 

development was managed by a Spiral type of life cycle model where different stages: 

specification, design, implementation and testing were practiced in a cyclic manner. 

Use of ATAC was described briefly and the reader was provided a basic understanding 

of how the software is to be used. 

Successfulness of the ATAC software project was assessed by comparing the 

final software to the specification and by user feedback received from the end users 

who performed several evaluation measurements for real ASIC devices using ATAC. 

The features and usability of ATAC were considered to be good and clear improvement 

to previous software solutions. Comparing the amount of data ATAC was able to 

produce in a same amount of time as a human doing the same measurements the ATAC 

proved it’s superiority over manual testing. As a result more data could be gathered 

than before and the device under test could be tested in various different conditions.  
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Appendix 

A Supported commands in ATAC 

instr_init: <instrument name>, <2/4-wire>, <front/rear> 

 

Initializes specified instrument. Instrument terminal (front/rear) is selected as well 

as whether the instrument uses 4-wire mode for accurate sensing. 

 

 

instr_close: <instrument 1 name>, <instrument 2 name>, … , <instrument N name> 

 

Closes communication to all specified instruments. 

 

 

instr_get: <instrument name>, <parameter 1>, … <parameter N>, <var 1>, … , <var 

x>, <channel 1>, … , <channel y> 

 

Instructs specified instrument to take measurement and return result. Parameters 

1…N are instrument specific parameters and depend on whether the instrument is 

multimeter, source meter or battery simulator. After instrument specific 

parameters variables and channels can be given for storing measurement result. 

 

 

instr_set: <instrument name>, <function>, <value>, <compliance level> 

 

Instructs specified instrument to source desired voltage or current. Instrument can 

source meter, battery simulator or power source. 

 

 

connect: <ACE board terminal x> --> <bench EVM column y>, … , <ACE board 

terminal z> --> <bench EVM column k> 

 

Connects instrument from specified ACE board terminal to a specified bench 

EVM board column. ACE board terminal can be one of the following: A1, A2, 

A3, A4, B1, B2, B3, B4. Bench EVM column can be one of the following: 

column 0, column 1, column 2, column 3, column 4, column 5, column 6, column 

7. 

 

 

disconnect: <ACE board terminal x> --> <bench EVM column y>, … , <ACE board 

terminal z> --> <bench EVM column k> 

 

Disconnects specified instrument connection. See connect command for more 

information about the parameters. 

 

 

disconnect: Instrument matrix 
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Disconnects all instruments from bench EVM board. 

 

 

disconnect: Power relays 

 

Opens all power relay connections. 

 

 

disconnect: All 

 

Disconnects all instruments from bench EVM board and opens all power relay 

connections. 

 

 

resload: <value> 

 

Sets resistance value of ACE board resistance load to a specified value. 

 

 

set_local_meas_folder: <relative path> 

 

Modifies existing measurement folder path. The modified folder path is valid 

only in a test where this command is executed. 

 

 

set_global_meas_folder: <relative path> 

 

Modifies existing measurement folder path. The modified folder path is valid for 

all tests that are executed after this command. 

 

 

write_read_uart: <adapter name>, <string to send>, <variable where read data is 

stored> 

 

Sends UART command using specified adapter. Read data is stored in a variable 

specified by user. UART settings must be configured before executing this 

command. 

 

 

write_read_spi: <adapter name>, <data to send in hex format separated with 

whitespace>, <variable where read data is stored> 

 

Sends SPI command using specified adapter. Read data is stored in a variable 

specified by user. SPI settings must be configured before executing this 

command. Data to send is given in hexadecimal format. For example: 80 01 FF 

sends 24 bits in groups of 8 bits. 

 

 

write_i2c: <adapter name>, <address>, <register>, <data> 
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Sends I
2
C write command using specified adapter. I

2
C settings must be 

configured before executing this command. 

 

 

read_i2c: <adapter name>, <address>, <register>, <variable where read data will be 

stored> 

 

Sends I
2
C read command using specified adapter. I

2
C settings must be configured 

before executing this command. Last parameter is a variable where the read data 

will be stored. 

 

 

write_gpio: <adapter name>, gpio <x> = <high/low>, … , gpio <z> = <high/low> 

 

Sets selected GPIO lines high or low. GPIO settings must be configured before 

executing this command. 

 

 

read_gpio: <adapter name>, <variable 1> = gpio <x>, … , <variable n> = gpio <z>  

 

Reads selected GPIO line states to specified variables. GPIO settings must be 

configured before executing this command. 

 

 

var: <operation 1>, …, <operation N> 

 

Performs variable operations. Operations can be initializing variables or 

performing calculations. The operation parameter can be following types: 

 

 x 

 x = 0 

 x++ 

 x— 

 x += 3 

 x -= 2.4 

 x *= 2 

 x /= 2 

 x = 1 + 2 

 x = 3 – 1 

 x = 2*4 

 x = 4/2 

 

Variable’s value can be accessed anywhere from a test script by writing variable 

name and adding [ ] around it. 

 

 

array: <array name> = <element 1>, <element 2>, … , <element n> 

 

Sets array elements. Array elements can be accessed anywhere from a test script 

by writing {<array name>.<element index>} 

 

 

wait_ms: <delay in milliseconds> 

 

Delays test execution for amount of time in milliseconds specified by user. 
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wait_s: <delay in seconds>  

 

Delays test execution for amount of time in seconds specified by user. 

 

 

pause: 

 

Pauses test execution until user instructs the program to continue. 

 

 

channels: <channel 1 name>, … , <channel N name> 

 

Specifies channels that are used for storage for measurement data. Channel data is 

shown in main window graph and the data is stored into TDMS file when test is 

finished. 

 

 

channel_put: <channel name> <-- <value to add> 

 

Appends a decimal valued number to a specified channel data. 

 

 

channel_put: <value to add> --> <channel name> 

 

Appends a decimal valued number to a specified channel data. 

 

 

increment_bits: <variable name>, <range>, <increment amount> 

 

Range defines bit indexes that are used to get a sub set of bits of a variable value. 

This set is incremented by the specified amount. Example of range definition: 0-

3. This gets bits from variable that are at indexes 0, 1, 2 and 3 starting from least 

significant bit. 

 

 

decrement_bits: <variable name>, <range>, <decrement amount> 

 

Range defines bit indexes that are used to get a sub set of bits of a variable value. 

This set is decremented by the specified amount. Example of range definition: 0-

3. This gets bits from variable that are at indexes 0, 1, 2 and 3 starting from least 

significant bit. 

 

 

set_trim_bits: <variable name>, <range>, <measurement channel>, <target value> 

 

Finds value from measurement channel that is a closest match to a specified 

target value. Writes index of closest value in channel to a variable value subset 

defined by range. Example of range definition: 0-3. This gets bits from variable 

that are at indexes 0, 1, 2 and 3 starting from least significant bit. 
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reverse_bits: <variable name> 

 

Reverts the bit representation of a variable value and stores the result back to the 

variable. 

 

 

concate_strings: <variable name> = <string 1>, … , <string n> 

 

Concatenates all the strings and stores the result in a variable. 

 

 

string_subset: <variable name> = <original string>, <range> 

 

Gets subset of original string and stores the result in a variable. The indexes of 

original string that are included in a sub string are defined by range parameter. 

Example of range definition: 0-3. This gets four first characters from original 

string starting from left. 

 

 

hex2bin: <variable name> = <hex value> 

 

Takes hex value and stores it in binary format in a specified variable. 

 

 

bin2hex: <variable name> = <bin value> 

 

Takes binary value and stores it in hexadecimal format in a specified variable. 

 

 

binary_and: <variable name> = <value 1>, <value 2> 

 

Performs binary AND operation for the two values and stores result to a variable. 

 

 

binary_or: <variable name> = <value 1>, <value 2> 

 

Performs binary OR operation for the two values and stores result to a variable. 

 

 

maximum: <variable name> = <value 1>, … , <value n> 

 

Gets largest value from the given values and stores it into a variable. 

 

 

maximum: <variable name> = <value 1>, … , <value n> 

 

Gets smallest value from the given values and stores it into a variable. 

 



61 

 

 

absolute: <variable name> = <value> 

 

Gets absolute value of the given parameter and stores the result to a variable. 

 

 

custom_module: <relative path to a module> 

 

Executes an external LabVIEW VI located in a path specified by user. 

 

 

do: 

 

Starts a do-while loop structure. 

 

 

while: <value 1> <operator> <value 2> 

 

Exits do-while loop structure if the condition specified is true. Operator can be <, 

>, <=, >=, == or !=. 

 

 

if: <value 1> <operator> <value 2> 

 

Starts conditional structure if condition is true. Operator can be <, >, <=, >=, == 

or !=. 

 

 

else_if: <value 1> <operator> <value 2> 

 

Starts conditional structure alternative to previous conditional structure if 

condition is true. Operator can be <, >, <=, >=, == or !=. 

 

 

else: 

 

Starts conditional structure alternative to previous conditional structure if 

previous structures were not executed. 

 

 

end_if: 

 

Ends conditional structure. Must be placed at the end of conditional structure. 
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