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Abstract 
This thesis is concerned with the development of the shear damage simulation procedure for 
combined mechanically clamped and adhesively reinforced frictional joint interfaces. The 
first step has been to experimentally measure the shear fracture behaviour of high strength 
steel interfaces using annular ring specimens subject to constant normal pre-stress. The 
experimental programme included variations of the pre-stress, surface roughness and epoxy 
curing temperature. Results showed that these factors significantly influence both the  
maximum attainable peak shear loads and the critical fracture energy release rate of the 
interfaces. For the selected structural adhesive, the strength contributions of the reinforcing 
adhesive and friction due to the pre-stress conformed well to the principle of superposition. 
Comparisons of adhesively reinforced and non-reinforced interfaces with identical surface 
conditions and pre-stress demonstrate a substantial contribution due to the epoxy 
reinforcement. 

Test results are exploited for characterization of the non-local shear stress vs. displacement 
responses. A damage evolution model for the abraded interface is formulated for room 
temperature- and heat-cured adhesives. Model parameters are fitted using regression 
analysis. Decohesion finite elements involving the cohesive zone model are adapted to model 
progressive degradation of the reinforced interfaces. A non-local friction law is also 
implemented when modelling the surface interaction using finite element contact. Based on 
the principle of superposition, the fracture potential and steady frictional dissipation of the 
interface can, therefore, be independently characterized. 

An applicability of the presented damage simulation process is shown by finite element 
analyses on the structural multi-fastener connections. Corresponding experiments on full-
scale joints were performed. The measured peak shear loads show a good correlation with the 
computed results. To further strengthen multi-fastener connections, a geometric 
optimization procedure is formulated for equalizing fastener loads due to an applied eccentric 
load. 

In summary, the objective of this thesis is to develop a damage simulation procedure to 
analyse decohesion initiation of adhesively reinforced frictional interfaces under quasi-static 
shear loading. Both the numerical modelling procedure and new material property data for a 
design of more optimal structures involving multi-fastener connections are presented. 

Keywords Cohesive zone modelling, damage mechanics, geometric optimization, interface 
fracture 
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Tiivistelmä 
Tässä väitöskirjatyössä kehitetään etenevän leikkausvaurion mallinnusprosessi 
rakenneliimalla vahvistetuille kitkaliitosrajapinnoille. Aluksi suurlujuusteräsrajapintojen 
leikkausvauriokäyttäytyminen määritettiin perustutkimustasolla käyttäen normaalin 
suuntaisesti tasaisesti kuormitettuja kiekkokoekappaleita. Kokeelliseen tutkimusohjelmaan 
sisältyi erilaisten esikiristysarvojen, kontaktipinnankarheuden ja liiman 
kovettamislämpötilojen variaatioita. Tulosten perusteella nämä tekijät myötävaikuttavat 
maksimaalisen rajapinnan leikkauslujuuden ja krittisen murtumisenergiadissipaation 
saavuttamisessa. Esikiristyksen ja valitulla epoksiliimalla saavutetun lujuusvaikutusten 
havaittiin noudattavan superpositioperiaatetta. Rakenneliimalla vahvistettujen 
kitkarajapintojen lujuus havaittiin huomattavasti suuremmaksi verrattuna vastaaviin 
liimaamattomiin koekappaleisiin. 

Saavutettuja koetuloksia hyödynnetään jännitys-siirtymävasteen yksityiskohtaisessa 
määrittämisessä. Parametrinen koheesiomalli muodostetaan karkealle rajapintatyypille sekä 
huoneenlämpötilassa kovetetulle että lämpökovetetulle epoksiliimalle. Lujuusopin 
elementtimenetelmässä käytetään koheesioelementtejä jatkuvan rajapintavaurion 
kuvaamiseksi. Lisäksi vaurioituvalle kontaktirajapinnalle mallinnetaan vaikuttamaan kitka. 
Vaurioituvan rajapinnan murtumisenergiapotentiaali ja ajasta riippumaton kitkadissipaatio 
voidaan siten karakterisoida toisistaan riippumattomina perustuen 
superpositioperiaatteeseen. 

Esitetyn vaurion simulointiprosessin sovellettavuus osoitetaan analysoimalla 
monikiinnitinliitosten leikkauslujuutta lujuusopin elementtimenetelmään perustuen. 
Simulointimallia vastaavien täysmittakaavaisten koesauvojen lujuutta testattiin lisäksi 
laboratoriokokein. Mitatut maksimileikkauskuormat korreloivat hyvin vastaavien 
numeerisen laskennan tulosten kanssa. Lisäksi työssä formuloidaan epäkeskeisesti 
kuormitetulle liitokselle geometrinen optimointitehtävä, jota hyödyntämällä voidaan 
saavuttaa tasainen paikallisten kuormien jakautuminen kiinnittimien välillä. 

Työn tavoitteena on kehittää jatkuvan rajapintavaurion simulointiprosessi kvasistaattisesti 
kuormitettujen liimalla vahvistettujen kitkarajapintojen lujuusanalysointia varten. Tuloksina 
esitetään sekä numeerinen mallinnusprosessi että uusia materiaaliparametrejä aikaisempaa 
optimaalisempien monikiinnitinliitoksilla koottavien rakenteiden suunnittelua varten. 

Avainsanat Koheesiomallinnus, vauriomekaniikka, geometrinen optimointi, 
rajapintamurtuma 
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Nomenclature 

Scalars 
 

d  damage parameter 

,h l  overlap height and length between the bracket and plate 

q  uniform normal pressure due to the axial clamping load 

r  radius measured from the hole centre 

ar  outer limit radius of the annular interface 

br  inner limit radius of the annular interface, i.e. the radius of bolt through holes 

cr  average outer limit radius of the flow of uncured adhesive 

wr  outer radius of the washer 

s  pitch constraint, i.e. minimum distance between fasteners 

it  traction stress of the ith mode at the decohesion interface 
c
it  critical decohesion stress 
p

it  peak value of the traction stress 
r
it  residual value of the traction stress due to steady friction 

,1
ix 2

ix  horizontal and vertical coordinates of the ith fastener 

z  number of fasteners 

,� �  non-dimensional shape exponents (interface constants) 

,� �  non-dimensional shape scale parameters (interface constants) 

i�  relative displacement of the ith mode at the decohesion interface 
c
i�  critical relative displacement 
�
i�  relative displacement corresponding to full interface damage  

eff�  effective relative displacement 

i�  nominal strain of the ith mode 

II	  evaluated tangential stiffness of the contact interface 

p
  slip coefficient corresponding to the peak load 

r
  slip coefficient corresponding to the residual shear stress 

2� , 3�  normal stress at the friction interface for 2D, and 3D cases 
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cr�  slip critical shear stress 

eq�  equivalent friction stress 

II�  total shear stress at the contact surface 
c
II�  critical value of the total shear stress 
p
II�  peak value of the total shear stress 

1� , 2�  shear stresses at the contact surface 


  resulted relative displacement at the interface due to applied loading 


�  relative velocity due to applied loading 


~  total relative displacement including elongation of the plate members 

A  pre-stress dependency slope 

B  pre-stress independent portion of the interfacial shear stress 

iG  ith component of the fracture energy release rate 
c
iG  critical fracture energy release rate 

iiK  penalty stiffness of the ith mode 

fP  pre-load of the fastener 

pP  attained maximum shear force of the lap-joint 

cT  constitutive thickness of the decohesion interface 

gT  geometric (real) thickness of the decohesion interface 

fQ  objective function, i.e. the sum of magnitudes of shear force on all fasteners 

 
Array quantities 
 

,1e 2e  unit vectors in the domain plane 

m  moment caused by the eccentricity of the joint with respect to the centroid 
im  reaction moment from the ith fastener 

rm  total reaction moment from all fasteners in the system 

p  applied shear load 
iq  total shear load of the ith fastener 
i
mq  moment-reaction component of the shear force vector 
i
pq  direct load reaction component of the shear force vector 

ar  eccentricity of the applied loading 
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br  eccentricity of the instantaneous centre of the rotation 
i

cr  distance from instantaneous centre to the ith fastener 

t  nominal traction stress 
ix  position of the ith fastener with respect to the centroid of the pattern 

ε  nominal strain 

δ  effective displacement 

D  damage matrix 

I  identity matrix 

K  constitutive matrix 

 
Abbreviations 
 

CZM cohesive zone model/modelling 

DCM displacement compatibility method 

FEM finite element method 

FEA finite element analysis 

ENF end notched flexure specimen 

HSS high strength steel 

IC instantaneous centre 

ID identification 

SQP sequential quadratic programming 

2D two dimensional 

3D three dimensional 

 
Mathematical notation 
 

�  for all 

� belongs to 

 absolute value 

 Euclidean norm 

(a,b) open interval 



14 
 
 

[a,b) half-closed interval 

[a,b] closed interval 

 Macaulay brackets 

�  vector product 

�  infinity 

exp exponential function 

D  domain 
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Original features 

Previous developments of cohesive zone modelling (CZM) have mainly been 

concentrated with interface debonding problems and ductile fracture. Basic 

instrumented experiments on friction connections were performed already in the 1950s 

and adapted to computational mechanics in the 1980s and 1990s.  In this thesis, new 

experimental data on combined decohesive and frictional behaviour of adhesive 

reinforced interfaces is produced and adapted to computational mechanics using CZM 

and non-local friction laws. The research results presented in this thesis have been 

performed during the period 2007 - 2011 and many of the main findings have been 

published in three conference and four journal publications. The author was the main 

author in five of these publications and has been responsible for oversight of all 

experimental work, analysis of the test results, numerical modelling and development of 

the theory presented in this thesis. Prof. Gary Marquis stimulated the initial research 

ideas and contributed the research work with valuable corrections, improvements and 

suggestions. The following results and features of this dissertation are considered to be 

original. 

 

1. The high strength steel (HSS) specimens were used to experimentally assess the 

quasi-static shear strength of the epoxy adhesive reinforced frictional connection 

interfaces. The influence of the pre-stress, contact surface roughness and 

adhesive curing temperature on the shear stress vs. relative displacement 

response has been reported. 

2. Reinforced interfaces with various normal pre-stress values have been 

characterized based on the predominant shear fracture behaviour, i.e. brittle, 

semi-brittle or ductile. Qualitative observations of the damage mechanisms, i.e. 

decohesion or adhesion failure, have been made. 

3. Previously published shear decohesion models were examined and a new 

parametric damage evolution model for shear decohesion analysis of combined 

clamped and adhesive reinforced interfaces was developed based on the 

experimentally observed degradation responses. Interface constants for the 
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damage evolution model are fitted based on the least squares method. The 

suggested non-local degradation model takes into account the influence of the 

constant normal pressure on the shear stress vs. relative displacement response. 

4. A damage function applicable for CZM is derived based on the damage 

evolution model. This parametric damage function enables straightforward 

incorporation of CZM in the finite element method (FEM). 

5. Interfacial energy dissipation contributions due to the shear fracture potential 

and steady sliding friction are separated, i.e. the principle of superposition is 

applied in the characterization of the total responses. 

6. The damage simulation procedure for CZM of adhesive reinforced frictional 

connections was numerically assessed using two dimensional (2D) FE analyses. 

The results of these simulations are presented for a typical test problem in which 

the damageable interface was modelled using decohesion finite elements. The 

non-local friction law was also incorporated into the interaction between the 

contacting elements. 

7. The quasi-static tests on the full-scale double lap-joints have been performed 

and reported. These connections involved epoxy reinforced HSS interfaces 

tightened using the instrumented and calibrated HS bolts. 

8. The FEM based computational damage simulation procedure developed for 2D 

was applied to the full-scale double lap-joint experiments. Shear fracture of the 

pre-defined and closed annular interface areas in the vicinity of the fasteners was 

modelled using decohesion finite elements involving the parametric CZM. 

Parameters for the CZM were taken from the simple “napkin ring” specimens. 

9. A comparison of the test and computed results on the multi-fastener double lap-

joints showed a good agreement. Therefore, the presented modelling procedure 

can be suggested to be used for engineering of adhesive reinforced connection 

interfaces involving friction. 

10. A computationally efficient fastener layout optimization problem is formulated 

and programmed based on constrained geometric optimization. The equations of 

the classical vector superposition analysis are derived in a vector calculus form. 



17 
 
 

The representation is particularly suitable for mathematical programming and 

computing. 

11. An eccentrically shear loaded multi-fastener bracket-to-beam connection was 

numerically assessed as an example structure subject to geometry optimization. 

An arc-shaped fastener pattern was found as an exactly equally loaded structure 

based on the vector sum analysis. 
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1 Introduction 

Light and efficient solutions provide great potential for saving raw materials and energy 

and decreasing CO2 emissions over the lifetime of cars, trucks and forest machinery. 

Therefore, many industrial sectors are pursuing improved strength-to-weight ratios 

especially for dynamically loaded structural applications. Designers of lifting, hoisting 

and transportation equipment are increasingly selecting steels with yield strengths up to 

1000 MPa in an effort to reduce weight. Increased performance is an additional benefit, 

for example, in lifting and transport equipment. These engineering products typically 

include a considerable number of welded and/or bolted connections. 

    In the development of modern high strength steels (HSS), considerable effort has  

been expended to achieve high yield and fracture strength levels in combination with 

good surface properties and weldability. For end users and design engineers, however, 

the service life of a structure is frequently limited due to low fatigue strength of joints. 

The fatigue strength in the vicinity of structural joints is controlled by local stresses 

(Gough 1924; Reemsnyder 1996). As material thickness is decreased and nominal 

stresses increase, greater attention must be given to design details and the fatigue 

strength of structures that include welding can become even more critical. In general, 

the fatigue of welded steel structures is assessed without any advantage granted for the 

use of HSS (Hobbacher 2007). As a consequence, the improved fatigue life of joints still 

continues to be a primary challenge for the design of load carrying structures in HSS. It 

is a major challenge to obtain functional and safe products with extended service life 

which combine new materials and advanced joining methods. Optimized design 

methods for structures which include both the influence of the advanced materials and 

the influence of fabrication processes must be continuously developed. 

    In mechanical engineering, the finite element method (FEM) has been adapted as a 

standard strength analysis tool for both static and dynamic design problems. Increased 

computation capacity and continuous development of commercial FE programs has 

made it possible to perform more and more complex simulations involving e.g. 

frictional body contacts and damage mechanics (Zhong 1993; Belytschko et al. 2001). 
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An extensive literature research showed, however, that only very limited amount of 

input data such as material constants exists for strength analysis of adhesive reinforced 

frictional joint interfaces. 

    At Aalto University, adhesive reinforced frictional connections are currently being 

studied as an alternative joining method for thin sheet structures in HSS (Oinonen and 

Marquis 2009, 2010, 2011a, 2011b; Hurme et al. 2011). The long-term goal of the 

research programme is to better understand and develop design methods for adhesive 

reinforced frictional joints in HSS. Developing a fundamental understanding of the 

quasi-static strength properties is an essential first step toward understanding the fatigue 

strength which is low for joints produced via welding. In the context of this thesis, 

“thin” refers to HSS products from 3 to 8 mm in thickness. Studies concerned with 

interfaces involving the combination of the structural adhesive and different surface 

abrasion finishes in HSS have been initiated. An optimization formulation has been 

developed in order to reduce concentrated stress in multi-fastener connections. In this 

thesis, both the fundamental material property data and numerical modelling procedure 

for a design of structures involving adhesive reinforced multi-fastener layouts are 

addressed. The work concerned with the quasi-static shear loading is reported (Oinonen 

and Marquis 2009, 2010, 2011a, 2011b). 

1.1 Background 

Previous studies of cyclically loaded specimens assembled using bolts or rivets have 

been performed by Hansen (1959), Birkemoe and Srinivasan (1971), Reemsnyder 

(1975) and reviewed by Kulak et al. (1987). It has been shown that fatigue cracks 

develop in the material near the connection if the loading exceeds the frictional 

resistance capacity of the joint. In this case a serviceability limit state of slip-resistance 

for connections would be suitable for fatigue critical applications (Galambos et al. 1982; 

SFS-ENV 1993). For multi-fastener joints, joint slippage which results in bearing 

contact between a single fastener and plates would be sufficient to lead to fatigue failure 

of the structure (Hansen 1959). Correspondingly, the ultimate limit state of the 

connection is reached, when the maximum load-carrying capacity of the most critical 
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fastener within the layout has been exceeded (Galambos et al. 1982; Rutenberg 1984; 

Kulak et al. 1987). 

    A development of adhesive bonding technology has led to the use of structural 

adhesives in load-bearing joints in civil engineering applications such as buildings and 

bridges (Adams and Wake 1984; Mays and Hutchinson 1992; Gresnigt and Stark 1995). 

In certain repair applications, the use of adhesives can provide more convenient, faster 

and less expensive joint than traditional methods, e.g. welding (Mays and Hutchinson 

1992; Chan and Vedhagiri 2001). Furthermore, joining of structural members in steel by 

adhesive bonding has been motivated by the desire to improve the fatigue strength of 

traditional bolted or welded connections and to prevent structural distortion due to the 

welding process (Mays and Hutchinson 1992). Adhesives have been used successfully 

to fill the clearance between the fastener and hole in reinforcement and repair operations 

of existing bolted connections in steel and thus improve the fatigue strength of the 

structure (Gresnigt and Stark 1995). In such cases, adhesive bonding increases the static 

shear capacity of a bolted joint up to slippage. Ali et al. (2007) have investigated fatigue 

properties of thin galvanized steel plates joined by epoxy bonding with comparison to 

the non-bonded rivet and screw joints. The endurance limit in terms of stress of the rivet 

and screw joints was found to be only half of the corresponding quantity obtained for 

the bonded lap-joints. Weld bonding, which combines spot or laser welding in 

conjunction with adhesives, is extensively used e.g. to join thin automotive body 

structures (Fays 2003). 

    Reinforced joints consisting of combination of mechanical fastening and adhesive 

bonding have been studied in the context of the light weight aeronautical structures 

(Hart-Smith 1985; Mann et al. 1985; Paroissien et al. 2007), composites (Chan and 

Vedhagiri 2001; Kelly 2005) and steel specimens (Albrecht and Sahli 1986, 1988; 

Imanaka et al. 1993; Oinonen and Marquis 2009; Pirondi and Moroni 2009). It has been 

shown that adhesive reinforcement significantly increases the quasi-static peak shear 

stress of lap steel connections as compared with the similar non-bonded specimens 

(Oinonen and Marquis 2009; Pirondi and Moroni 2009). In addition, the fatigue life of 

the reinforced riveted HSS joints has been found to increase with the use of epoxy 

adhesive (Imanaka et al. 1993). For bolted HSS sheets, there exists even the greater 
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strength potential due to utilization of considerably higher clamping loads as compared 

to e.g. riveted composite plates. 

    FEM is an efficient tool for strength assessment of fastener groups. However, due to 

the required computational resources, FEM based design optimization is not ideally 

suited for the optimization of fastener patterns. Numerous models with different fastener 

pattern variations would need to be solved and assessed. Therefore, optimization 

procedures which provide reasonable modelling and computing costs should be 

employed (Oinonen et al. 2010). Finite element analysis (FEA) can, of course, be used 

to assess shear load distribution for the resulting fastener pattern. 

1.2 State of the art 

Only a limited amount of published research exists on the theme of adhesive reinforced 

frictional interfaces involving higher clamping pressures which are characteristic of 

bolted steel connections. The quasi-static results presented in this thesis provide 

fundamental data for the future development of fatigue assessment methods of adhesive 

reinforced frictional joints. An assessment of fatigue and cyclic slip behaviour of the 

identical reinforced specimens has already been published by Renvall et al. (2010) and 

Hurme et al. (2011). 

1.2.1 Testing of mechanical properties 

For reinforced frictional connections, mechanical fastening provides high slip-resistance 

in shear (mode II) and helps to prevent peeling (mode I) failures of the adhesive. The 

internal strength, i.e. cohesion of the hardened adhesive material, increases the 

maximum shear strength of the joint interface. Furthermore, in the case of reinforced 

HSS joints, the relatively low Young’s modulus of the adhesive increases local 

flexibility of the mechanically connected interface and thus reduces stress concentration 

between the higher modulus adherents. 

    Typically, the shear deformation and fracture of structural adhesives which are 

subjected to large-scale yielding is assessed as a function of the bond layer thickness 

and test temperature using the napkin ring specimens (De Bruyne 1962; Chai 2004). 
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This testing procedure consists of applying equal and opposite torque to two tubular 

adherents butt joined by an adhesive layer with a pre-defined thickness (De Bruyne 

1962). The test method produces a relatively uniform shear stress distribution within the 

adhesive due to the continuous surface and small difference between the inner and outer 

diameter of the specimen (Kinloch 1987). However, due to the relatively expensive 

specimen fabrication and complex experimental setup of the napkin ring test, a thick-

adherent lap-shear specimen has been widely adapted as a standard for determining 

stress-strain behaviour of adhesives loaded in shear (ASTM International 2009). 

Kinloch (1987) has provided a review on suggested specimens and testing procedures 

for structural adhesives. 

    Dragoni and Mauri (2000, 2002) have investigated the maximum shear strength of 

reinforced clamped interfaces using napkin ring specimens which were subject to 

torsion loading. Sawa et al. (2001) have performed similar studies. Tests involving 

ground contact surfaces and strong anaerobic adhesives (retainers) have shown that the 

slip torque is linearly dependent on the applied clamping pressure and that the adhesive 

provides a constant baseline shear strength which is independent from the applied axial 

clamping stress (Dragoni and Mauri 2000, 2002; Sawa et al. 2001). Therefore, the 

combined slipping and interface damage based shear load vs. displacement response of 

adhesively retained joints can be characterized based on the principle of superposition. 

However, the experiments on adhesives with lower strength have shown that the 

superposition method cannot be adapted as a general rule (Dragoni and Mauri 2002). 

These studies employed ground metallic surfaces and anaerobic adhesives. More 

recently, research results on epoxy reinforced frictional interfaces reported in this thesis 

have been published by Oinonen and Marquis (2011a, 2011b). 

    During the assembly process of adhesive reinforced joints with adherents in steel, the 

fasteners are tightened before the adhesive is cured (Albrecht and Sahli 1986; Dragoni 

and Mauri 2002; Oinonen and Marquis 2009). In such a case, the normal pressure 

between the plates created by the fasteners is high enough to force uncured adhesive out 

from the interface region and only small quantities remain to fill in the micro-volumes 

between the contact surfaces (Dragoni and Mauri 2000). The resulting elastic-plastic 

deformation of the original interface topography due to clamping is dependent on the 

initial surface roughness and yield limit of the adherent material (Archard 1953). Thus, 
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only a part of the adherent surfaces is in contact with the adhesive and metal-to-metal 

contact will occur adjacent to the formed micro-cavities. Therefore, an adhesive layer 

with a constant thickness, as is sometimes observed in adhesive joints with low 

clamping stress, does not provide an accurate physical assumption for reinforced joints 

in HSS involving high clamping stress. Nevertheless, an equivalent adhesive thickness 

may be adapted in computational analyses (Sawa et al. 2001). According to Archard 

(1957), the first relaxation of the high normal pre-stress and subsequent reloading 

deforms metal asperities predominantly elastically. The fundamental research work 

reported by Archard (1953, 1957) and Greenwood and Williamson (1966), however, 

exclusively addresses non-bonded contacts of rough surfaces. 

    During decohesive cracking, fracture energy is dissipated. For ductile and semi-

ductile materials, resistance to fracture material bonds and displacement of the fracture 

surfaces is often described using R-curves, i.e. energy dissipation as a function of the 

extent of crack propagation (Broek 1984). In general, the R-curve should be determined 

directly from the actual energy release rate. The R-curve should not be used for fully 

brittle fracture (Bao and Suo 1992). In the cases involving unavoidable non-steady 

crack propagation due to a periodically brittle fracture, the effective R-curve (Reff-curve) 

term can be used (Nairn 2009). Previously, the R-curve has been used to describe the 

delamination resistance of composites (Krueger et al. 2000) and fracture resistance of 

adhesive bonded interfaces (De Moura 2008). The analogous G-curves, i.e. the failure 

energy release rate curve for cohesive zone, have been developed for epoxy reinforced 

frictional HSS interfaces by Oinonen and Marquis (2011a, 2011b). For clamped 

interfaces, the G-curve directly presents the energy release rate vs. relative displacement 

behaviour. Particularly for the adhesive reinforced interfaces, the contribution of 

frictional dissipation is excluded from the G-curve (Oinonen and Marquis 2011a, 

2011b). 

    The shear load carrying capacity of thermosetting epoxy adhesives has been observed 

to increase when the adhesive thickness is decreased (Khrulev 1965; Chai 2004). 

Consequently, the critical fracture energy release rate of the adhesive material has been 

shown to strongly decrease if the thickness of the adhesive layer is increased (Chai 

1988, 2004). Therefore, bulk material properties of the cured adhesive cannot directly 

be adapted for use in strength assessment or in a FE model. 
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The effects of curing temperature on the shear strength of the adhesive bonded lap-

joints have been investigated by Matsui (1990). For heat-cured epoxy adhesive joints, 

the results indicated a substantial increase in the average ultimate shear stress as 

compared to existing data from similar specimens cured at room temperature. Stewart et 

al. (2007) have also reported a notable increase in the lap shear strength of the epoxy 

adhesive joints which had undergone four hours post-curing in 40 - 90 °C. 

    The relationship between shear strength and surface roughness shows only a marginal 

decrease of 3 MPa in the maximum shear stress of the epoxy bonded lap-joint when the 

arithmetical mean roughness, Ra, of the surface is increased from 1 to 3 μm (Uehara 

and Sakurai 2002). However, it has been previously concluded that the dependency 

between joint strength and surface finish is a complex phenomenon and cannot be 

generalized for different loading conditions and materials involved (Khrulev 1965; 

Shahid and Hashim 2002). A very limited amount of research addresses the influence of 

different abrading conditions on the shear strength of combined clamped and bonded 

interfaces (Oinonen and Marquis 2011b). 

    To this end, Mengel et al. (2007) have experimentally shown that shear strength of 

bonded cylindrical steel-magnesium joints can be increased considerably by curing the 

epoxy adhesive under relatively high hydrostatic pressure, i.e. up to 100 MPa. 

Correspondingly, the reinforced clamped connections presumably strengthen due to the 

cure of adhesive under characteristically developed increased pressure in the micro-

cavities during the curing process. However, it is difficult to experimentally proof and 

further develop interfaces in order to benefit of this strengthening effect to a higher 

degree. Therefore, this interesting phenomenon is left as a future note, and it is not 

further addressed within this thesis. In contrast, an effect of the curing temperature on 

the shear strength can more straightforwardly be accessed. 

1.2.2 Modelling of interfacial slip and damage 

In computational mechanics, frictional mechanisms are classified as quasi-static, 

dynamic or wear damaging (Oden and Martins 1985). For dynamic friction, penetration 

and plastic deformation of the interface is assumed not to occur. Surface roughness has 

been found to influence the stiffness of the contacting interfaces (Oden and Martins 
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1985). Additionally, the dynamic friction coefficient has been found to depend on the 

slip rate, i.e. the relative sliding velocity of the surfaces (Richardson and Nolle 1976). 

For many quasi-static engineering applications, however, the slip velocity is low enough 

for the rate dependency of the friction coefficient to be ignored (Oden and Martins 

1985). Frictional properties of the epoxy reinforced HSS interfaces in damaged 

condition involving the constant slip rate has been reported by Oinonen and Marquis 

(2011a, 2011b). 

    Decohesion finite elements have been developed to provide a suitable option to 

simulate progressive damage of adhesive bonded interfaces (Camanho and Dávila 2001, 

2002; ABAQUS Inc 2010). For a typical cohesive zone model (CZM), the magnitude of 

the interface traction stress increases, achieves its maximum value, and finally falls to 

zero due to damaging loading/displacement. In this case there is no need to define an 

initial crack and the damage is restricted to evolve along the pre-defined cohesive 

interface. Decohesion finite elements are placed between solid finite elements of the 

base material. Principles from fracture mechanics, such as the fracture energy release 

rate, can be adapted to control the separation of the interfaces. After a specified damage 

initiation criterion is reached, a damage evolution law begins to govern the degradation 

process of the interface. A damage function derived from its corresponding damage 

evolution law, enables incorporation of different CZMs in FEM. The most common 

mathematical models for CZM are either bi-linear (Dávila and Camanho 2001) or 

trapezoidal (Tvergaard and Hutchinson 1996). Non-linear laws for CZM have been 

developed e.g. by Needleman (1987), Allix et al. (1995), Valoroso and Champaney 

(2006) and Oinonen and Marquis (2011a). An experimentally validated CZM can be 

implemented in FEM and thus provide a versatile modelling approach for the more 

complex adhesive joining related engineering problems (Camanho et al. 2003; De 

Moura 2008). Previously, CZM have been adapted to model decohesion of adhesive 

bonded interfaces involving clamping pressure (Pirondi and Moroni 2009; Oinonen and 

Marquis 2009, 2011a). 

    The fracture energy and critical interface stress govern the strength of the interface 

and therefore comprise the basis for material property determination for the FE model 

calibration. CZM which are implemented in FEM, are exploited to determine the critical 

fracture energy release rates of bonded joints (De Moura and Chousal 2006). A 
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consistently determined Reff-curve, or analogously Geff-curve, can be regarded as a 

mechanical property and it additionally provides an appropriate theoretical connection 

with the corresponding CZM (Nairn 2009). 

    Recently, Oinonen and Marquis (2009, 2011a, 2011b) have suggested a modelling 

procedure that includes both the cohesive and frictional properties at the clamped joint 

interface. The process allows a physical characterization of the energy dissipation 

contributions due to the interfacial shear fracture potential and non-local friction 

separately at the contact. Consequently, the principle of superposition can applied in the 

determination of the total responses. Hence, the suggested modelling principle is 

particularly suitable for damage simulation of adhesively retained non-slip bolted joints 

involving high contact pressures. Furthermore, if applicable, all existing friction laws 

can be included in the FE contact involving CZM. The contribution of friction is 

excluded from the CZM (Oinonen and Marquis 2011a). 

1.2.3 Design of non-slip multi-fastener connections 

In order to improve static strength, slip resistant bolted joints in structural steel with 

adhesive reinforced lap interfaces have been introduced by Albrecht and Sahli (1988). 

For example, in highway bridge applications reinforcement bonding is made using two-

component epoxy (Gresnigt and Stark 1995) or acrylic (Albrecht and Sahli 1986, 1988) 

adhesives with high elastic modulus. The reinforcement carries most of the shear load 

but if the interface fails, bolts will carry the quasi-static load in bearing thus providing 

for safer operation. Improving quasi-static slip resistance of bolted lap-joints using 

structural adhesive reinforcement has consequently been shown to increase fatigue 

strength (Albrecht and Sahli 1986). 

    Strengthening structural connections in the early design process by reducing the 

maximum fastener loads has been focus in few optimization studies. Chickermane et al. 

(1999) have derived a topology optimization based approach for a search of optimal 

fastener locations. Oinonen et al. (2010) exploited the gradient-based sequential 

quadratic programming (SQP) to solve a fastener pattern optimization problem with an 

objective to minimize the sum of the fasteners’ shear load magnitudes. An eccentrically 
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shear loaded multi-fastener bracket-to-beam joint was assessed as a design example 

subject to geometry optimization. 

    The computationally efficient elastic vector sum method is frequently employed in 

the analysis of patterns for bolting and riveting, see e.g. Salmon and Johnson (1996). 

Reilly (1870) and Prichard (1895) were among the first to publish applications of this 

engineering approach to the strength analyses of eccentrically loaded rivet groups. This 

method assumes that the total shear force on a fastener is the vector sum of two 

components. The first component is the direct shear component which acts parallel to 

the applied force and is equal for all fasteners in the group. The method further assumes 

that the moment-reaction shear force component for each fastener is proportional on the 

distance between the fastener and the centroid of the group and that its direction is 

perpendicular to the position vector of the fastener with respect to the centroid. 

    The instantaneous centre of rotation (IC) concept first suggested by Gullander (1914) 

is also widely used to calculate the shear load on fasteners within a group. In linear-

elastic cases, identical results are obtained for both the vector sum and IC method. 

However, Muir and Thornton (2004) have shown that the equilibrium condition which 

satisfies the load-deformation relationship of the fastener group with the IC concept can 

only be obtained if a linear-elastic constitutive model is assumed and if the load is 

perpendicular to the symmetry axis of the fastener pattern. This limitation is due to the 

inherent discontinuity in the equilibrium equations which would exist if the fasteners’ 

loads are assumed to equalize due to slipping or yielding. 

    The displacement compatibility method (DCM) developed by Swift (1984) provides 

an efficient procedure for the evaluation of fastener loads on both cracked and 

uncracked stiffened panels. The gain in computation time of DCM is based on the 

exploitation of exact analytical solutions for the displacements and stress intensity 

factor. In addition, an advantage of DCM over the vector superposition and IC methods 

is that the elastic behaviour of the plate and flexibility of the fasteners can be taken into 

account. Although DCM is fundamentally a general approach, its application will be 

limited to certain well defined cases where analytical solutions for displacement and 

stress intensity factors are known, e.g. when an infinite plate is subjected to a tensile 

load. It is difficult to adapt DCM to the analysis of eccentrically loaded multi-fastener 

joints. 
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1.3 Applicability, limitations and requirements 

The fracture and strength assessment reported in this thesis can be assumed to provide 

an input for design data and improve a modelling accuracy of both the epoxy reinforced 

and non-bonded frictional HSS interfaces with different surface roughness. The 

suggested modelling procedure is applicable to FEM based quasi-static simulation of 

combined interfacial fracture and slip, e.g. an assessment of the serviceability limit state 

of non-slip bolted connections. Engineering problems involving reinforced HSS 

interfaces have not previously been widely studied and thus, some characteristics still 

lack experimental validation. Therefore, some necessary assumptions and 

simplifications have been made within this study. These aspects, important notes and 

further limitations are discussed below. 

    Adhesive reinforced clamped interfaces were tested using a constant shear 

displacement velocity. The simulation models involving the parametric CZM are thus 

adjusted to this slip rate. Characteristically, unavoidable periodically brittle shear 

fracture behaviour of some interfaces was experimentally observed; especially for the 

heat-cured interfaces. The related rate dependency of interfacial degradation was 

beyond the scope of this study and lacks experimental data. This complex dynamic 

phenomenon was also beyond the scope of the modelling. Wear of abraded HSS due to 

sliding under significant normal pressure is taken into account by CZM, but it is not 

separated from the total damage behaviour of interfaces. Although heat generation is 

closely related to friction, it is excluded from this thesis due to the low displacement 

velocities used. Heat rise in the specimens was not noticeable and is assumed as low 

enough for its influence on the results to be negligible. 

    Characteristic fracture behaviour of the pre-stressed reinforced interfaces has 

previously been shown to depend on the adhesive type (Dragoni and Mauri 2002). With 

structural applications in mind, a two-component epoxy adhesive with the high stiffness 

and good resistance to increased ambient temperatures was used for reinforcing the HSS 

interfaces (3M United Kingdom PLC 2001). Additional adhesive types and/or 

environmental effects on adhesives are not covered within the current study. The 

characteristics such as ageing and creep behaviour should be assessed before applying 
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the reported results in different working conditions. See e.g. the current work reported 

by Doyle and Pethrick (2009). 

    All performed experiments and computations are limited to shear damage scenarios 

where the joint interface has been cured under clamping without other external loads 

involved. However, the interfaces of the tested full-scale joints are influenced due to an 

effect of the applied direct shear load on the normal stress distribution field, i.e. shear 

lag in the lap-joints necessarily causes changes in the normal stress distribution near the 

fastener. Hence, the normal pre-stress varies before shear damage initiation. This effect 

has not yet been validated using the simple napkin ring test specimens which had near 

perfect boundary conditions. For this reason, the corresponding three dimensional (3D) 

simulations were computed using a CZM with an averaged critical shear stress value 

within decohesion interface areas. Due to experimentally observed brittle fracture 

behaviour, exclusively the computed maximum static shear load carrying capacity of the 

adhesive reinforced full-scale joints has been validated. 

    The computational cost of FEM based damage simulations is not addressed within 

this thesis. To reduce the computational cost of the simulations using CZM it is 

necessary to investigate how to solve the convergence problems that appear with 

implicit, such as Newton-Raphson, solution methods (Turon et al. 2006). The adapted 

FE mesh size was based on the fact that the results did not noticeably change if the 

smaller element size was used in the trial simulations. Therefore, the presented results 

can be assumed as converged. 

    The solved geometry optimization problem resulted to an arc-shaped fastener pattern 

which is based on the widely used vector sum method (Reilly 1870; Kuzmanović and 

Willems 1977; Salmon and Johnson 1996). The vector sum method relies on the 

engineering assumptions (Muir and Thornton 2004) and the obtained fastener pattern 

may, in specific cases, require further assessment by FEM (Oinonen et al. 2010). For 

most applications, the resulting layout efficiently provides a close estimate of the most 

optimal fastener pattern. 

    In summary, this thesis is concentrated with the development of the methods for 

design of more optimal engineering structures involving adhesive reinforced non-slip 
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multi-fastener connections. The essential requirements for the theory are the following 

items. 

 

1. The parameters of the damage evolution model should be identified based on the 

fundamental experiments in order to ensure a sufficient accuracy and validation 

of the FEM based simulation models. 

2. The experimental programme should include different abrasion finishes, i.e. 

ground and grit blasted surfaces. These are typical surface conditions in 

engineering applications, e.g. bolted non-slip connections (Kulak et al. 1987). 

3. A strength effect of the reinforcement bonding is shown by comparing the test 

results of the bonded interfaces to the identical experiments based on the non-

bonded specimens. This applies for both the fundamental experiments and tests 

on the bolted lap-joint specimens. 

4. The developed modelling process should separate the energy dissipation 

contributions due to sliding friction and degradation of the interface. This 

requirement indicates that a fully damaged interface exclusively involves 

frictional properties. 

5. The solution of the interface damage response should parametrically include the 

influence of the constant normal stress on the total shear stress vs. displacement 

response of the interface. 

6. The suggested damage modelling procedure involving CZM can be 

implemented in FEM. The FEM based 2D test model can be generalized to 3D 

interface damage simulations on the full-scale bolted/bonded connections. 

7. A development of the computationally efficient geometric fastener layout 

optimization problem is presented. The main requirement is that the shear load 

in the most severely loaded fastener in the group is reduced in order to more 

uniformly distribute the resultant shear loads between the fasteners. 
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2 Experimental determination of quasi-static response 

An experimental programme was initiated to determine the interface shear stress vs. 

relative displacement curves for reinforced and non-bonded clamped interfaces. The 

results obtained from the specimens with the highly abraded (grit blasted) contact 

surfaces are compared with the identical loading cases involving considerably smoother 

(ground) contact surfaces. The effect of curing temperature was investigated by 

comparison of the results based on the specimens cured at room temperature to the 

identical cases involving heat cure. 

    The observed predominant shear fracture behaviour, i.e. brittle, semi-brittle or 

ductile, under different clamping pressure and abrasion conditions is characterized 

based on the experimental observation. Observations are also made on the damage 

mechanisms, i.e. decohesion or adhesion failure. Selected photographs of both the bond 

lines of the non-damaged interfaces under clamping and fracture surfaces of the 

damaged interfaces are presented. There is also a summary of the peak values of the 

evaluated shear stress at the interfaces. Parametric fits of the measured total interface 

shear stress vs. relative displacement responses are calculated for the grit blasted contact 

surfaces. In Section 3, these results are exploited in a development of the computational 

damage modelling procedure. 

2.1 Specimens with axial pre-stress 

The clamped application of specimens of napkin ring type (De Bruyne 1962) was 

adapted for all fundamental experiments of the current study. This specimen type has 

the advantageous characteristics to the napkin ring, and axial clamping load could be 

applied without disturbing the tangential shear stress uniformity. Test specimens were 

machined from HSS sheets with a nominal yield strength of 960 MPa. The design and 

dimensional details of the specimen are given in Figure 1. The eight threaded holes 

were used for fixing the specimens into the testing device. 
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Figure 1. a) Test specimen with the main dimensions [mm]. b) Photograph of the 

specimen. 

2.1.1 Preparation, bonding and cure of interfaces 

Grit blasted, coarse ground and fine ground contact surfaces were investigated. Surface 

roughness following abrading was measured in the circumferential direction from the 

sixteen randomly selected locations for each of the surface types. The gauge length of 

each measurement was 2.5 mm. The average arithmetical mean roughness (Ra), 

maximum peak (Ry) and ten-point mean roughness (Rz) are presented in Table 1. An 

example of the typical profile of a grit blasted contact surface is shown in Figure 2. 

 

 
Figure 2. Typical surface profile vs. measuring distance (2.5 mm in total) of the grit 

blasted surface before the clamping and testing procedure (produced using the 

TalyProfile 3.2.0 program). 
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 Table 1. Measured contact surface roughness [μm]. 

Surface type Ra Rz Ry 

Fine ground 0.38 2.02 3.42 

Coarse ground 0.57 3.26 5.34 

Grit (aluminium oxide) blasted 3.57 22.42 31.21 

 

A two-component structural epoxy adhesive DP760 produced by 3M was used for all 

reinforced interface configurations (3M United Kingdom PLC 2001). All circular 

contact surfaces were cleaned with pure acetone to ensure proper adhesion (Wegman 

1989). The surfaces inside of the (�  = 56 mm) contact area (Figure 1) were protected 

using an O-ring seal to prevent adhesion inside the desired contact areas and to reduce 

the build-up of an inner spew fillet. During the assembly process, adhesive was 

exclusively applied to the contact surfaces of the specimens, and clamping to the desired 

pre-stress was immediately applied. The outer surfaces of the specimens were cleaned 

of excess uncured adhesive. For reference, the mechanical properties of the epoxy 

adhesive reported by the manufacturer are given in Table 2. Differently from the present 

study, the limit stress data presented in Table 2 is based on overlap shear specimens in 

aluminium and 150 μm glue line thickness. 

 

 Table 2. Mechanical properties of the structural epoxy adhesive DP760 based on 

 the test method EN 2243-1 (3M United Kingdom PLC 2001). 

Cure conditions Shear strength [MPa] Young’s modulus [MPa] 

7 days at 23±2 °C 28.2 5972 

2 hours at 65±3 °C 29.1 not reported 

 

The pre-defined clamping stress was constant during the curing process, and it was not 

released before the subsequent testing was performed with the same stress. Five 

different axial pre-load values, q = {4,50,100,150,200} MPa, were considered for each 

of the surface finish variations. The value q = 4 MPa corresponded to the lowest 

pressure needed to force uncured adhesive out from the interface region and to firmly 

close the contact. 
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The heat cure of adhesive was performed at 65±3 °C for two hours. The heat-up time 

from 20 to 65 °C was 2½ hours. The other studied cure method involved hardening at 

room temperature, i.e. 20±1 °C for one week (3M United Kingdom PLC 2001). 

2.1.2 Micro-sections of bond-line 

The bond lines of the contact interfaces are shown in Figure 3 for each studied surface 

type and for q = 100 MPa. The identifiable magnified details from the figures on the left 

are shown on the right for each case. These micro-sections were produced following the 

previously described bonding process involving the heat cure. Constant q was 

developed using an instrumented bolt; it remained constant during curing, preparation 

and microscopic examination of the micro-section. For each of the bonded and clamped 

specimen pairs, approximately 1 mm of material was tangentially machined away from 

the outer diameter. This new surface was then polished, followed by a subsequent 

microscopic examination. See also Figure A5a in Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Polished micro-sections of the tangential bond line of the contact interfaces 

under the clamping load q = 100 MPa. The magnified details from the figures on the left 

are shown on the right for the each interface types: a) Fine ground. b) Coarse ground. c) 

Grit blasted. 
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2.2 Quasi-static testing system 

For all fundamental experiments, a tailor made testing device shown in Figure 4 was 

used. See also Appendix A for more details presented in Figures A1-A3. The servo-

hydraulic actuated test machine applied pure torsion load across the circular specimen-

pair interface. During testing, normal stress on the interfaces was maintained via a 

threaded rod equipped with an in-line axial load cell. Normal stress was continuously 

measured during curing and testing, in order to verify that it varied by no more than 1 % 

from the desired value. The threaded rod was equipped with low friction axial thrust 

bearings at each end. The influence of bearing friction due to pre-load on the measured 

torque was less than 1.5 % for all tests. Therefore, the measured torque was assumed to 

be exclusively transmitted across the interface. An eddy current extensometer was fixed 

to each side of the specimen pairs in order to measure displacement between the contact 

surfaces. The static resolution and measurement precision of the eddy current sensor 

were better than 10.0 μm and 20 μm, respectively. Rotation displacement was applied at 

the nominal rate of 
�  ≈ 0.027 mm/s, measured at the mean diameter of the contact 

interfaces. However, the actual 
�  was not constant due to the unavoidable periodically 

semi-brittle fracture behaviour. During testing the temperature was maintained at 20±1 

°C. 

 

 

 

 

 

 

 

 

Figure 4. a) Schematic of the testing device. The key components are: (1) specimen 

pair, (2) specimen holders, (3) axial load cell, (4) torque reaction, (5) support, (6) thrust 

bearing, (7) threaded rod, (8) nut, (9) torque arm, and (10) rotation bearing. b) Detailed 

sketch with the applied direct and torsional loads. 
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2.3 Combined decohesion and slip 

In this section, the predominant shear fracture behaviour of the epoxy reinforced HSS 

interfaces is characterized and the damage evolution model is developed. The maximum 

values of the total interface shear stress p
II�  are presented for the studied normal 

pressure values, q = {4,50,100,150,200} MPa. In addition, the measured total shear 

stress II�  vs. relative displacement 
  curves are plotted for the selected experiments. 

The parameters of the damage evolution model are fitted for the grit blasted cases. For 


 �[1.0,3.0) mm, the responses of all bonded interfaces were observed to exclusively 

consist of steady sliding friction. Therefore, the range 
 �[0,1.0] is considered to be of 

primary interest for representing the result data. 

2.3.1 Predominant shear fracture behaviour and mechanism 

Figure 5 shows the fully damaged contact surfaces for q = 4 and Figure 6 for q = 100 

MPa, respectively. The magnifications from the figures on the left are shown on the 

right for all the examined surface types. Based on Figures 5a-b, the interfacial fracture 

mechanism was due to adhesive failure for both the fine and coarse ground interfaces. 

In contrast, the grit blasted interface showed predominantly cohesive failure, as 

indicated by Figure 5c. With reference to the surfaces shown in Figures 6a-c, a 

predominantly cohesive failure can be observed for all the studied interface types. 

    Observed predominant shear fracture behaviour is summarized in Table 3 for all the 

reinforced interface types involving significant pre-stress, i.e. q�[50,200]. The 

characterization listed in Table 3 is based on the measured responses reported in Section 

2.3 and Figures 5 and 6. For all interfaces stressed to q = 4, a fully brittle fracture 

occurred. 
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 Table 3. Predominant shear fracture behaviour of the epoxy reinforced interfaces for 

 the significant clamping stress range, q�[50,200] MPa (FG = fine ground, CG = coarse 

 ground and GB = grit blasted). 

Interface Cure temp °C Brittle Semi-brittle Ductile Unstable 

FG 65±3 q�[50,100] q = 150 q = 200  

FG 20±1 q = 50 q = 100 q�[150,200]  

CG 65±3 q�[50,100]   q�[150,200] 

GB 65±3  q�[50,150)  q = 200 

GB 20±1   q�  [50,200]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Contact surfaces for q = 4 MPa after the fully brittle shear fracture. The 

magnified details from the figures on the left are shown on the right for each of the 

surface types: a) Fine ground. b) Coarse ground. c) Grit blasted. 
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Figure 6. Damaged contact surfaces for q = 100 MPa and 
→3.0 mm. The 

magnifications from the figures on the left are shown on the right for each of the surface 

types: a) Fine ground. b) Coarse ground. c) Grit blasted. 

2.3.2 Peak and critical shear stresses 

The measured values of p
II� (q) are summarized in Figure 7. With reference to the II�  vs. 


  responses shown below in Figures 8-10, p
II� (q) always occurred within the range 


 �(0,0.15) mm. Figure 7 includes results from the studied surface finish variations 

both with and without bonding involving the significant pre-stress, i.e. q�[50,200] 

MPa. For the experiments involving the non-bonded ground contact surfaces, non-linear 

slip hardening of the interfaces was observed, as seen in Figure 16. In such cases, the 

critical values at the beginning of the observed slip c
II�  are reported. The linear least 

squares fitting method (The MathWorks 2011a) was applied to develop the relationship 

between p
II� , c

II�  and q, 
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� � BAqqp ��II�  and � � BAqqc ��II� ,    q�[50,200).     (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Peak values of the maximum measured interface shear stress p
II�   vs. clamping 

stress q are shown with the corresponding linear least squares fit. The critical values c
II�  

are plotted exclusively for the non-bonded ground contact surfaces.  

 

Eq. (1) provides an estimate for assessing p
II� (q), c

II� (q) within the range of q�[50,200) 

MPa. The calculated fitting coefficients A and B for each interface variation are given in 

Table 4. For q = 4 MPa, a different failure mechanism was reported in Section 2.3.1 

and, therefore, the data for q = 4 was excluded from the regression fit. The values of 
p
II� (q) for this case are given in Table 5. 
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 Table 4. Matrix of experiments involving q�[50,200] MPa and the numerical values of 

 the fitting parameters A and B for Eq. (1) (FG = fine ground, CG = coarse ground and 

 GB = grit blasted). 

Interface type Tests for each q Cure temp °C   A B [MPa] 

FG - bonded 2 65±3  0.169 57.23 

FG - bonded 1 20±1 0.187 40.71 

FG - non-bonded 1 - 0.177 -3.21 

CG - bonded 2 65±3 0.147 45.35 

CG - non-bonded 1 - 0.211 -1.81 

GB - bonded 2 65±3 0.406 44.56 

GB - bonded 2 20±1 0.421 17.22 

GB - non-bonded 1 - 0.415 0.99 

 

 Table 5. Measured peak values of the interface shear stress p
II�  [MPa] for the low pre- 

 stress q = 4 MPa and 65±3 °C cured epoxy. 

Interface type p
II� , test I p

II� , test II Average p
II�  based on the tests I and II 

Fine ground 49.4 46.2  47.8 

Coarse ground 49.2 43.4 46.3 

Grit blasted 54.5 52.1 53.3 

2.3.3 Post-peak response of adhesive reinforced ground interfaces 

In Figure 8, the combined slip and interface decohesion response of the reinforced 

specimens with the fine ground contact surface finish is shown. Test data from the 

specimens cured at 65±3 °C is compared to the corresponding cases with the 20±1 °C 

cure. Exclusively the more conservative, i.e. lower p
II� , data is shown from cases where 

replicate tests were performed. The initial interface decohesion response of the coarse 

ground specimens for 
 �[0,0.10] mm based on the experiments with q = 150 and q = 

200 MPa is shown in Figure 9. 
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Figure 8. Combined slip and interfacial decohesion responses of the specimens with the 

fine ground contact surface finish. The test data of the conservative results with 65±3 °C 

cure is compared with the corresponding results obtained by 20±1 °C cure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Initial interface decohesion response of the reinforced coarse ground 

specimens, the cases q = 150 and q = 200 MPa are shown. 
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2.3.4 Post-peak response of adhesive reinforced grit blasted interfaces 

Figure 10 shows the measured II� (
 ) response of the adhesive reinforced specimens 

involving 65±3 °C cure. Two tests were performed for each q, and the data shown in 

Figure 10 corresponds to the more conservative, i.e. lower p
II�  of them, from the two 

identical experiments. The measured data for q = 200 MPa is excluded from Figure 10 

due to observed incoherent and highly unstable response before attaining p
II�  in two 

identically performed tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Combined slip and interface decohesion responses of the specimens with the 

grit blasted contact surface finish. The heat cure was performed at 65±3 °C for two 

hours. 

 

Figure 11 shows the II� (
 ) response of the reinforced grit blasted specimens with 20±1 

°C cure. The results of the two nominally identical tests are presented. 
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Figure 11. Combined slip and interface decohesion response of the specimens with the 

grit blasted contact surface finish. The room temperature cure was performed at 20±1 

°C for one week. The data of two identical tests is shown and the conservative results 

are identified by the filled markers. 

2.3.5 Model of interfacial slip and damage response 

From Figures 10 and 11, the shear fracture behaviour can be characterized as shown in 

Figure 12. Based on the principle of superposition, the shear fracture potential of 

interfaces can be determined independently from the contribution of steady frictional 

dissipation. Eqs. (2) and (3) mathematically present the corresponding calculated total 

shear stress vs. relative displacement responses IIt ( II� ) shown in Figures 12a and 12b, 

respectively. The fitting of the numerical coefficients for Eqs. (2) and (3) is described in 

Section 2.3.6. 
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Figure 12. Models of IIt ( II� ) response of the reinforced grit blasted HSS interfaces. a) 

For 65±3 °C cured epoxy. b) For 20±1 °C cured epoxy. 

2.3.6 Fitting of interface constants 

The Curve Fitting Toolbox included in the MATLAB (The MathWorks 2011a) was 

applied for the fitting procedure of the non-linear part of Eqs. (2) and (3). In cases 

where replicate experiments were performed, the more conservative result was used in 

the fitting of IIt ( II� ). 

    Because q governs interface degradation, the fitted material parameters can 

conventionally be represented as a function of q. Hence, the functions for the critical 

cohesive stress ctII (q) and steady friction stress rtII (q) could be developed by applying 

the linear least squares method. The decay exponent of Eq. (2), �  ≈ -5.33 was obtained 

by calculating an average of the different values of �  for each q based on the original 

test data. By defining a common �  and developing Eqs. (4) and (5), the number of 

parameters is decreased. This unification process, i.e. refitting of the parameters to a 

single data set, improves the applicability of the interface damage model for engineering 

purposes. Finally, Eqs. (4) and (5) can be combined with Eq. (2) to give the total 
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response model IIt ( II� ,q), which is defined as a combination of the terms which are 

linear in ctII (q), rtII (q) and non-linear in �  for the selected q. The overall cohesive 

strength in terms of stress is governed by the scale of ctII (q). 

 

� � 09.33067.0II �� qqtc ,     q�[50,150]      (4) 

 

� � 47.1134.0II �� qqt r ,       q�[50,150]      (5) 

 

Figure 13 shows the corresponding fits calculated from Eq. (2) for q�[50,150] MPa. 

These regression fitted curves calculated for each q are based on the unified material 

parameters, which are presented in Table 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Interfacial decohesion responses of the specimens with the grit blasted 

contact surface finish involving 65±3 °C cure. The original test data of the conservative 

results )()( IIII 
�
 r��  for � �150,50�q  MPa is compared to the fitted exponential decay 

model )(),( IIIIII qtqt r�� , Eq. (2). 
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To this end, the interface stiffness parameter II	 �[3∙103,104] N/mm3 can be 

approximated based on the experimental data presented in Figures 10 and 11. With 

reference to Figure 12, the numerical values of the critical relative displacements can 

then be calculated from 

 

� � IIIIIIII /	� rcc tt �� .         (6) 

 

At 
 �1.0 mm, II� (
 ) for all reinforced specimens had reached a nearly steady state 

value. Therefore, the friction coefficient r
  corresponding to II� (1.0) was based on the 

experimental data, and the values of r
  were directly calculated from 

 
� � � � qqr /0.1II�
 � .         (7) 

 

 Table 6. Material parameters of the interface damage model as a unified data set for  

 65±3 °C cured epoxy. The values of r
 are based on Eq. (7) for each q. 

q [MPa] ctII [MPa] �  r
  

50 36.44 -5.33 0.56 

100 39.79 -5.33 0.44 

150 43.14 -5.33 0.41 

 

Finally, the continuous curves shown in Figure 14 present the total response model, Eq. 

(2), the development of which is based on the evaluated experimental degradation 

responses. The fits based on the original individual data sets are also shown in Figure 14 

only as reference. 
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Figure 14. Calculated total response of the specimens with the grit blasted contact 

surface finish involving 65±3 °C cure. The results based on the unified interface 

constants are compared to the original individual fits for each q. 

 

Similarly, the non-dimensional shape exponents � , �  and the shape scale parameters 

� , �  of the total response model, Figure 12b and Eq. (3), were fitted based on the more 

conservative experimental data plotted in Figure 11. In addition, the functions ctII (q), 
rtII (q),  � (q) and � (q) were developed by applying the linear least squares method. The 

exponents of Eq. (3), �  and �  were obtained by averaging. The unified material 

parameters can be calculated from the following equations and are additionally listed in 

Table 7. The previously presented Eqs. (6) and (7) apply also for this case. 

 
� � 50.5062.0II �� qqtc ,     q�[50,200]       (8) 

 

� � 29.931.0II �� qqt r ,     q�[50,200]       (9) 
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� � � � ctqq II/59.223.0 ��� ,     q�[50,200]      (10) 

 
� � � � ctqq II/78.223.0 ���� ,     q�[50,200]      (11) 

 
 Table 7. Material parameters of the interface damage model as a unified data set for  

 20±1 °C cured epoxy. The values of r
 are based on Eq. (7) for each q. 

q [MPa] ctII [MPa] �  �  �  �  r
  

50 8.58 -4.71 -27.36 1.67 -0.99 0.44 

100 11.66 -4.71 -27.36 2.23 -1.69 0.43 

150 14.74 -4.71 -27.36 2.56 -2.10 0.40 

200 17.82 -4.71 -27.36 2.78 -2.37 0.34 

2.4 Post-peak response of non-reinforced interfaces 

The combined slip and pure HSS decohesion responses of the specimens without 

adhesive reinforcement were also experimentally evaluated. This data is necessary in 

order to assess the adhesive’s influence on the shear strength of the interface. The plot 

presenting II� (
 ) behaviour for the grit blasted surfaces is shown in Figure 15. The 

plots for the fine ground and coarse ground specimens are given in Figure 16. 
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Figure 15. Interfacial degradation responses of the non-reinforced specimens with the 

grit blasted contact surfaces for each q. The clearly highest interfacial damage (wear of 

HSS) occurs to the case with the highest clamping load, q = 200 MPa. 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 16. Interfacial slip-response of the non-reinforced specimens with the fine and 

coarse ground contact surfaces for each q. The fine ground cases most closely resemble 

the classical Coulomb’s friction law after the transient degradation vanishes. For all 

coarse ground cases, there clearly exists stable interface hardening. 
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3 Computational damage and slip modelling procedure 

In Section 2, the determination of the total shear stress vs. displacement response II� (
 ) 

of the reinforced specimens was based on the experimentally measured interface 

degradation. The steady frictional stress of the damaged specimens II� (1.0) was 

subtracted from the total quantity II� (
 ) to obtain the damage response as a result of 

degradation of the interfaces. Based on this result, the damage evolution equations were 

parametrically fitted using the least squares method for each case of the pre-stress q. 

    In the current section, the experimentally characterized decohesion behaviour is 

exploited in the development of the computational interface damage modelling 

procedure. Pure shear interfacial damage is studied and an effect of the constant q is 

included in the interface parameters of the computational damage evolution model. 

Consequently, the constitutive response of decohesion finite elements is modelled in 

terms of the traction-separation law with an uncoupled relation between the normal and 

shear components of the traction vector and separation vector. An exponential damage 

function involving four material parameters is derived and details of the FE model are 

described. This damage function was implemented into the ABAQUS environment to 

govern interface degradation during simulations. Steady dynamic friction is modelled 

based on the isotropic non-local friction law. Damage is exclusively assumed to occur 

along the pre-defined decohesion interface. The steady non-local friction and interfacial 

damage are processed as uncoupled in the performed simulations. The 2D FE test model 

consists of two plate members and a cohesive interface. To reduce computational effort, 

only a short segment of the axi-symmetric test surface is modelled. The results of large 

shear displacement simulations on the test model, 
 �[0,1.0] mm, are presented with 

comparison to the original experimental data. 
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3.1 Cohesive zone model 

The adapted CZM was based on the linear-exponential traction vs. separation response 

for each of the loading modes (i = I, II, III). This model can be illustrated with the help 

of Figure 17. The penalty stiffness parameter iiK  determines the slope of the line A-B 

and represents the linear-elastic response area of the reinforced interface for the normal 

and shear deformation across the interface. The decohesive degradation initiates when 

the maximum elastic interface traction stress c
it  is reached at the critical point B. At this 

inflexion point, the corresponding relative displacement between interfaces i�  is 

defined as the critical displacement c
i� . As i�  further increases, it varies non-linearly 

until the full damage corresponding to a zero residual value of it at the point C has been 

accumulated. 

 

 

 

 

 

 

Figure 17. Linear-exponential damage evolution models. The critical fracture energy for 

each c
iG  mode is defined as an area integral. a) For 65±3 °C cured epoxy. b) For 20±1 

°C cured epoxy. 

 

In FEM implementation, the non-zero components of the nominal traction stress vector t 
are computed by dividing force components by the initial area at each integration point 

of the element (ABAQUS Inc 2010). The constitutive thickness of the decohesion 

interface cT  is appropriately selected equal to unity. Consequently, based on the 

following definition of linear strains, 
                                              

cii T/�� � ,   (12) 
 

a b
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the components of the nominal strain vector ε are equal to the corresponding separations 

δ (ABAQUS Inc 2010). The vector t across the reinforced interface is related to ε by the 

elastic constitutive matrix K. Hence, the linear-elastic behaviour can be written as 
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where the zero terms in off-diagonal of K exist due to selected uncoupled behaviour 

between the normal and shear components of t and ε. With the equality ε = δ, the 

diagonal of K could directly be determined based on the true geometric thickness of the 

interface gT (ABAQUS Inc 2010). Camanho et al. (2003) have obtained accurate and 

well converged computational results for composites by using a value of iiK  = 106 

N/mm3. In contrast to reinforced interfaces, the condition gT = 0 is a result of the 

normal load q and suggests that the shear plane penalty stiffness parameters ��11K  

and ��22K . However, to obtain converged solutions, the numerical values of K 

should be selected within the range iiK �[104,1010] N/mm3 (Turon et al. 2006). With the 

numerical stability in mind, a functional selection such as 106 N/mm3 for 11K  and 22K  

can be adapted. 

    For three potential loading modes, damage in the cohesive elements is assumed to 

initiate based on the quadratic interaction function (Dávila and Camanho 2001), 
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where the Macaulay brackets / 0 in the third component, i.e. the normal component, 

indicate that exclusively compressive stressing does not allow damage to initiate. This 

operator is defined by Eq. (15), 
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Damage evolution is governed by the damage function � �effd � , which ranges from zero 

(undamaged) to one (full damage). The effective displacement eff� , i.e. the highest 

value of the mixed-mode relative displacement attained by the interface material, is 

obtained from the Euclidean norm of δ (Camanho and Dávila 2002), 
                                              

δ�eff� , � 3� .   (16) 
 
In Eq. (16), the Macaulay brackets in 3�  indicate that a negative displacement, i.e. 

penetration due to q at the interface does not affect the numerical value of eff� . The 

mode I degradation considerably differs from the mode II damage contribution. For 

convenience, the condition / 3� 0 is set and the mode I influence due to q is 

parametrically included in d ( eff� ). The degraded stresses are governed by the matrix 

equation (Camanho and Dávila 2002), 
                                              

� �KδDIt �� ,     (17) 

 

where D = d ( eff� )I is the damage matrix and I is the identity matrix. The critical 

fracture energy release rate c
iG  for each mode is defined as the work of separation of 

the two surfaces (Rice 1968a, 1968b), 
                                              

� � .
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iii
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��    (18) 

3.2 Computational decohesion model and damage function 

The form of the damage evolution law was suggested based on the form of the 

experimentally observed damage. In this section, the damage function is derived based 

on a proposed linear-exponential damage evolution law. The non-linear damage 

evolution law is formulated as the superposition of two exponential functions. With 

reference to Figure 17, this damage evolution model is mathematically expressed as, 
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where � , �  are the shape exponents and � , �  are the shape scale parameters, i.e. non-

dimensional material constants. Exclusively for the case shown in Figure 17a, �  = 1 

and �  = 0. The overall cohesive strength in terms of stress is governed by the scale of 
c
it . The difference of the relative displacements ( i� – c

i� ) in Eq. (19) exists because the 

non-linear part of the damage evolution law is defined to be valid for the displacement 

range i� �[ c
i� , �

i� ). From the constitutive relation, Eq. (17), it ( i� ) can be defined,  
                                               
� � � �dKt iiiii �� 1�� .    (20) 

 
The equation of the interface stress degradation can be expanded by substituting Eq. 

(19) with an identity c
iii

c
i Kt ��  into Eq. (20) as follows, 
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    (21) 
 
To develop the damage evolution function d( eff� ), the effective displacement eff�  is 

considered. Firstly, from Eqs. (19) and (20) we obtain a trivial solution � �effd �  = 0 for 

the range eff� �[0, c
eff� ). Secondly, Eq. (21) can further be modified and simplified for 

the range eff� �[ c
eff� , �

eff� ) to the form, 
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c
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c
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   (22) 
 
Finally, d( eff� ) corresponding to its damage evolution law is completed by solving Eq. 

(22) for d( eff� ), 
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Based on Eq. (16), the maximum attained value of eff�  is used in Eq. (23) to track the 

accumulation of the damage, i.e. to ensure that the damage process in non-recoverable. 

3.3 Frictional contact interaction model 

The contact pairs at the interfaces were modelled by exploiting a penalty contact 

algorithm with the ABAQUS/Explicit. See e.g. Zhong (1993) for details concerning a 

theory and formulation of the penalty contact method. The finite sliding tracking 

approach was chosen, in which the contact is monitored along the entire master surface 

(ABAQUS Inc 2010). In the normal direction, the hard contact model (ABAQUS Inc 

2010) was selected. This model assumes that the contacting surfaces can transmit 

contact pressure only when the nodes of the slave surface are in contact with the master 

surface. For reinforced frictional interfaces involving both shear and compressive 

normal loads, the selected material property �33K 0 allows the use of non-local friction 

models without interference. 

    Isotropic non-local friction was modelled along the contacting surfaces based on the 

static-kinetic formulation (ABAQUS Inc 2010). This friction law is based on the 

assumption that no relative sliding can occur if the equivalent friction stress eq�  

computed from 

 
2
2

2
1 ��� ��eq          (24) 

 

is less than the corresponding critical shear stress, 

 

3�
� rcr � ,          (25) 
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where 3�  is the initial normal stress to slip and r
  is the friction coefficient. In Eq. (24) 

1�  and 2�  are the computed shear stresses at the contact surfaces. Correspondingly, for 

the adapted 2D model shown in Section 3.4, the non-slip state is valid for the condition 

1� < cr� , where 2�
� rcr � . 

    An influence of the rough surfaces on the tangential stiffness II	  was taken into 

account in the adapted frictional model to improve the correlation with the test data. The 

tangential stiffness of the contact interface II	  was specified to determine the slope of 

the shear stress vs. elastic slip relationship, i.e. sticking frictional behaviour. Based on 

trial simulations and the test data represented in Section 2.3.4, the value of II	  was 

selected to 104 N/mm3 for all simulations on the 2D test model. For rough surfaces, a 

non-linear dependence between II	  and q could be expected (Oden and Martins 1985). 

In this study, however, the constant II	  was found to result to a good correlation with 

the experimental results shown in Section 2.3.4 for all values of q. This insensitivity can 

be explained by a relatively small range of the studied pre-load, i.e. q�[50,200] MPa. 

3.4 Finite element based simulation – 2D test model 

The 2D FE model involving the two plate members and cohesive interface is shown in 

Figure 18. The bottom plate was modelled slightly longer to allow for sufficient 

displacement 
~  of the upper plate and to allow more uniform distribution of the stress 

fields. Only a short section of the joint was modelled to reduce computational cost. 

Thus, the resulting FE model corresponded to a section equal to about 2 % of the 

circular test specimen area which is shown in Figure 1. For the FE model setup, four 

node quadrilateral plane stress CPS4R continuum elements and COH2D4 cohesive 

elements were used with the ABAQUS/Explicit. The cohesive elements with two 

integration points had sharing nodes with the neighbouring continuum elements. A 

geometric thickness of zero, gT = 0, was used for the cohesive layer of elements. The 

bottom nodes of the lower plate were constrained in both directions. 

 

 

 



57 
 
 

 

 

 

 
 

 
Figure 18. FE model of the reinforced connection, including two plate members. The 

mesh size is 0.2 x 0.2 mm at the interface. The interface composed of the zero thickness 

cohesive elements is marked with the dashed line. The horizontal displacement, 


~ �1.0 mm, due to the transverse velocity boundary condition applies along all nodes 

of the top surface, which is simultaneously affected by the normal pressure q. 
 
Failure simulations were performed in two steps. Firstly, a tightening operation was 

simulated by imposing the desired constant q acting on the top of the upper plate 

member in the negative 2 direction. Secondly, a constant horizontal translational 

velocity boundary condition was imposed to induce shear stress. This translation was 

applied along the top surface of the upper plate and was in the positive 1 direction. The 

translation was slow enough for the resulting solution to become quasi-static, and 

dynamic effects, such as oscillatory effects due to inertial forces, were insignificant. The 

rate of 0.5 m/s was used for the simulated clamping operation, and the constant 

translation velocity was 0.05 m/s. Note that the damage evolution equations do not 

contain any time-dependent terms, thus the rate is selected only to obtain a good 

numerical solution. 

    The test specimens were manufactured from steel, so typical values for the Young’s 

modulus 210 GPa, Poisson’s ratio 0.3 and density 7.8·103 kg/m3 were used for the FE 

model. The material parameters for both the friction model and CZM were derived from 

the experimental data and are described in Section 2.3.4. The fine mesh size 0.2 x 0.2 

mm at the contact interface was modelled to ensure a convergence of stresses. This 

selection was based on previous work by Turon et al. (2006), who comment on the 

mesh sensitivity of CZM and the influence of the cohesive layer stiffness iiK  on the 

computational results. Considerably coarser mesh size has been found to result in good 



~
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engineering accuracy and thus improved computational efficiency in debonding 

simulations (Turon et al. 2006). 

    The FE models of this study involved processes that change over short time intervals, 

i.e. demonstrate progressive degradation of the reinforced interconnection or interfacial 

slip. In such cases, convergence problems with the implicit Newton-Raphson solver 

could occur and thus increase the computational cost (Bathe 1996). For explicit solution 

methods, the state at the end of each increment is based on the computed displacements 

and their first and second derivatives from the previous increment (Bathe 1996; 

ABAQUS Inc 2010). Advantages of explicit methods over implicit methods are that 

each time increment is inexpensive and complex contact problems can be solved more 

promptly (ABAQUS Inc 2010). Therefore, the FE problems were solved using the 

central difference method based explicit integration with the ABAQUS/Explicit. 

3.5 Computed shear damage responses – 2D test problem 

Figure 19 shows the combined slip and decohesion response of reinforced grit blasted 

specimens in the range of resulted relative displacements �
 [0,1.0] mm. The results 

corresponding to adhesive cured at room temperature are presented. The computed FE 

solution of the total interface shear stress II� (
 ) is shown with the experimental data. 

The reference result for each case of q is the more conservative one of the two identical 

experiments shown in Figure 11. Here, the conservative result indicates the data series 

which attained the lower peak value of II� (
 ). The conservative results were adapted as 

references for the fitting of the damage evolution model parameters in Section 2.3.6. 

The continuous dashed curves represent the corresponding simulation results based on 

the unified material parameters, i.e. the single data sets, given in Table 7. The 

continuous reference curves present the corresponding computational results based on 

the original individual fits. As 
 �1.0, the shear load carrying capacities approach 

steady state, corresponding to full interface damage, d( eff� )�1.0. In the current 

example, 
  ≈ 
~ . 
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Figure 19. Continuous curves present the FE solution of the combined slip and interface 

damage responses for each q. The numerical results are compared to the respective more 

conservative original experimental data. 
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4 Interfacial fracture energy release rate 

The fracture resistance curve, R-curve, has been developed to describe energy release 

rate as a crack advances in a ductile or semi-ductile material. In this work the damage 

process is associated with relative displacement of the interfaces so an analogous 

concept, the G-curve is developed. The G-curve represents the failure energy release 

rate per unit area of the cohesive zone as a function of displacement. 

    In this section, the G-curves for the grit blasted specimens cured at room temperature 

are produced. In addition, the Geff-curves for both the heat-cured grit blasted specimens 

and fine ground specimens cured at room temperature are produced to represent the 

development of the mode II energy release rate IIG  vs. relative displacement 
 . This 

classification is based on the experimentally observed shear fracture behaviour strongly 

affected by the cure temperature of the epoxy adhesive used. 

4.1 G-curves of adhesive reinforced interfaces 

For the characterized traction stress it  vs. relative displacement i�  relationship, the 

fracture energy release rate iG  is obtained by integrating Eq. (19) with respect to i�  

within i�  > 0. The resulting total potential functional for is then, 
                

� � � �� � � �� �� �33 �����
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From Eq. (26), one can obtain the equation to be used for computing the critical fracture 

energy release rate, 
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In Eq. (27), the first term inside the braces gives the contribution of the linear portion of 

the damage evolution law to c
iG . The second and third terms define the contribution of 

the non-linear portion of the damage evolution law to c
iG , respectively. The linear part 

of Eq. (27) approaches zero for cases involving high interface stiffness. 

    The computed shear energy release rate IIG  vs. 
 , i.e. G-curves of the grit blasted 

interfaces cured at room temperature, are shown in Figure 20. As 
 �1.0 mm, IIG  has 

approximately reached to cGII . To validate the goodness of the fitted non-dimensional 

shape parameters (Table 7), the corresponding G-curves were also computed by directly 

numerically integrating the original experimental data with respect to 
 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 20. G-curves of the grit blasted interfaces cured at room temperature for one 

week. The results computed by Eq. (26) are shown with comparison to the 

corresponding curves, which were integrated based on the more conservative 

experimental result data. 

4.2 Effective G-curves of adhesive reinforced interfaces 

The shear energy release rate IIG  vs. 
 , i.e. Geff-curves of the reinforced interfaces, are 

shown in Figure 21 for the grit blasted surface finish and in Figure 22 for the fine 

ground finish. In Figure 22, the results corresponding to adhesive cured at room 
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temperature are shown. These Geff-curves were numerically integrated based on the 

original test data points. For all cases, IIG  has reached approximately constant values at 


  = 1.0 mm. This is defined as cGII . With reference to CZMs shown in Figure 17 

involving cGII  defined by Eq. (28), the Geff-curves exclusively include damage 

dissipation of the reinforced interface, and the contribution of steady frictional 

dissipation is excluded (Oinonen and Marquis 2011a, 2011b). The cases involving the 

predominantly brittle or unstable decohesion fracture were considered as non-relevant 

sources, and the respective Geff-curves could not be developed. In contrast to the G-

curves shown in Figure 20, the Geff -curves in Figures 21 and 22 are presented as data 

points to emphasize discontinuities due to the brittle fracture intervals. 

 

� � � �� �3 
�
�
0.1

0
IIII

c
II 0.1 dG ��         (28) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Geff -curves of the adhesive reinforced interfaces with the grit blasted surface 

finish. The filled markers correspond to the conservative result obtained from two 

identical tests. Epoxy adhesive was cured at 65±3 °C. 
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Figure 22. Geff -curves of the reinforced interfaces with the fine ground surface finish. 

Epoxy adhesive was cured at 20±2 °C. 
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5 Testing and simulation of full-scale adhesive reinforced 

bolted lap-joints 

The applied research part of this thesis is concerned with assessment of the total shear 

load carrying capacity of full-scale double lap-connections. A double lap-joint 

resembles the geometry of many bolted joints applicable in structural engineering. 

Moreover, the connection is cost-effective and relatively simple to manufacture. The 

good structural performance of this type of joint is a result of both the symmetric direct 

load path and increased slip load capacity due to double frictional planes. The 

symmetric load path is also very favourable for laboratory testing. However, the true 

stress distribution at the lap-interfaces, which are simultaneously subject to the direct 

shear and clamping loads is, characteristically, non-uniform and complex. 

    Quasi-static testing on the bolted full-scale specimens was performed. The 

connections involved epoxy adhesive reinforced HSS interfaces tightened to a pre-

defined tension values which was measured using instrumented HS bolts. The expected 

distribution of normal pressure in the contact region in the vicinity of the bolt was 

determined using FEA. The experimental programme included two parallel fasteners 

and three fasteners in a series (row). Joints both with and without adhesive 

reinforcement were tested. Two alternate bolt pre-load values were used. The maximum 

attained shear loads are reported and comparisons to the results based on the identical 

non-bonded specimens are made. 

    The corresponding 3D interface damage simulations on the reinforced connections 

were computed using FEM. The numerical values of the maximum shear loads are 

summarized with comparison to the experimental results. In addition, the attained direct 

shear load vs. relative displacement curves are produced based on the numerical results. 
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5.1 Experiments on the double lap-connections 

The full-scale test specimens were fabricated from the same material as the napkin ring 

specimens of this study, i.e. HSS sheet with yield strength 960 MPa and plate thickness 

8 mm. The schematic of the double lap-connections with the key details and features is 

shown in Figure 23. The testing matrix and specimen identifications (ID) are listed in 

Table 8. Two different fastener layouts were investigated, i.e. the parallel and row 

connections with the z number of instrumented HS bolts. For the reinforced specimens, 

two replicate tests were performed with both values of the pre-specified clamping load 

fP . In total, the results of twelve experiments are reported. 

 

 Table 8. Testing matrix. 

Specimen ID Interface type z Layout fP [kN] 

2N35-1 non-bonded 2 parallel 35 

2N50-1 non-bonded 2 parallel 50 

3N35-1 non-bonded 3 row 35 

3N50-1 non-bonded 3 row 50 

2R35-1, 2R35-2 reinforced 2 parallel 35 

2R50-1, 2R50-2 reinforced 2 parallel 50 

3R35-1, 3R35-2 reinforced 3 row 35 

3R50-1, 3R50-2 reinforced 3 row 50 
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Figure 23. Schematic of the full-scale double lap-connection specimens. The key 

components and features are: (1) instrumented HS bolts (2 or 3 per specimen), (2) HS 

washer, (3) nut, (4) oversized bolt through holes of the non-slip half, (5) bolt through 

holes of the grip end, and (6) oversized bolts and nuts used to ensure non-slip 

connection. Measurement of the total relative displacement 
~  was performed between 

the shown location points (a) and (b). a) Row (series) connection with three fasteners. 

b) Two single fasteners in parallel. c) Assembled specimen with the main dimensions 

and direct loads P. 

5.1.1 Preparation, assembly and cure of the test specimens 

The annular contact surfaces of the specimens with the outer limit radiuses ar  were 

treated by grit blasting using aluminium oxide. The blasting process and resulting 

interface finish resembled the napkin ring specimens reported in Section 2.1 of this 

thesis. Figure 24 illustrates both the definition of ar  = 20±0.8 and the radius of the 

machined holes br  = 7.25±0.03 mm. The selection of ar  was based on desired closed 

interface, which was approximated from reference FEA reported in Section 5.2.1. The 
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surfaces outside of ar  were abraded by hand using a sand paper with the medium grit 

size, i.e. P60. The result of this treatment can be observed from Figure 24b. 

    During the assembly process of the reinforced specimens, the epoxy adhesive DP760 

(3M United Kingdom PLC 2001) was applied to the annular contact surfaces of the 

plate members. A template with the hole and putty knife were used for a controlled 

adhesive application process. The instrumented HS bolts (M12) were centred with the 

machined holes, and immediately tightened to the pre-specified fP . Two machined pins 

were used for centring the holes. The resulted flow of the uncured adhesive due to fP  

can be observed from Figure B1 in Appendix B. Two HS washers with the outer radius 

wr  = 11.9 mm and thickness 2.4 mm were used in conjunction with the instrumented HS 

bolts. The bolt-head thickness was 7.2 mm. 

    Similar to the napkin ring specimens of this study, the heat cure of adhesive was 

performed at 65±3 °C for two hours; the heat-up period from 20 to 65 °C was 2½ hours. 

The HS bolts remained tight during the entire curing process and subsequent testing 

process. 

5.1.2 Testing procedure 

The experiments were performed on a 400 kN static capacity servo controlled loading 

frame. All specimens were loaded incrementally under displacement control with the 

nominal rate of 0.027 mm/s, measured from the piston of the hydraulic cylinder of the 

testing machine. The force and local joint displacements were recorded until the 

complete failure of the reinforced connection interface, i.e. after the sudden noticeable 

slip occurred. During testing, the temperature was maintained at 20±1 °C. The 

assembled and instrumented specimen is shown in Figure B2 in Appendix B. 

5.1.3 Fracture behaviour and mechanism 

The total response P(
~ ) consists of the local and global responses, i.e. combined 

decohesive failure and slip at the contact and elastic elongation of the plate members. 

For all adhesive reinforced specimens listed in Table 8, a sudden fracture occurred after 

attaining the maximum shear load carrying capacity pP . Similar to the experiments on 
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the napkin ring specimens, the non-bonded full-scale lap-connections showed smooth 

and ductile degradation behaviour, i.e. wear of the abraded HSS. This observation is 

based on the P/z (
~ ) responses reported in Figures 29-31, Section 5.4. 

    Figure 24a shows the fully damaged contact surface for fP  = 50 kN and 
~ �1.25 

mm. Based on Figure 24a, the interfacial fracture mechanism was due to cohesive 

failure at the grit blasted interface area limited by r�( br , ar ). In contrast, the abraded 

smoother surface, r > ar , shows the predominantly adhesive failure. More details of the 

observable fracture mechanisms are reported in Appendix B, where the damaged 

contact surfaces of the adhesive reinforced row connection are presented in Figure B1. 

 

 

 

 

 

 

 

 

 

 

Figure 24. Damaged contact surfaces of the parallel connection for the clamping load 

fP  = 50 kN and relative displacement 
~ �1.25 mm. The annular interfaces are 

determined by the limit radiuses, ar  = 20±0.8 and br  = 7.25±0.03 mm, respectively. a) 

Adhesive reinforced test specimen. b) Non-bonded case. 

5.2 Finite element modelling 

In order to more accurately simulate physical behaviour of the bolted structural 

connection (Kim et al. 2007), a solid bolt model was chosen as the approach in this 

study. In addition, all FEA involved the Lagrangian formulation (Belytschko et al. 

2001; ABAQUS Inc 2010). Hence, the non-linear effects of large deformations and 

displacements were taken into account. The experimentally determined CZM was 
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exploited in the FE based simulation procedure. The steady non-local friction was also 

incorporated into the interaction between the contacting elements. 

5.2.1 Determination of the annular interface area 

Determination of the outer radius of the contact interface ar  was based on the reference 

FE model, which was solved using ABAQUS/Standard. Additionally, alternative and 

more direct methods to determine ar  are studied for comparison. This FE solution, from 

which ar  is determined, is shown in Figure 25. Figure 25a shows the profile of the 

interface following tightening with the deformations scaled by a factor 100. Note, that 

the involved bolt and washers are hidden to enable a more clear presentation. Opening 

of the interface due to fP  determines the true contacting interface area (Gould and 

Mikic 1972). 

    The absolute value of the normal pressure at the contact 3� (r) for fP  = 50 kN is 

plotted in Figure 26. The form of the corresponding solution of ar  as 3� (r)�0 with fP  

= 35 is nearly identical and not here presented. The normalized quantity of 3� (r) is 

plotted in Figure 27. Comparisons with the classical engineering approximation 

(Rötscher 1927; Yoshimi 2008) and the analytical solution derived by Chandrashekhara 

and Muthanna (1979) are also presented. Only FEM takes geometric non-linearity into 

account. The solution of ar  as 3� (r)�0 based on the presented reference solutions is 

independent on fP  for all �fP (0,� ). Obviously, the FE solution requires the highest 

computational efforts. 

    The straightforward method to obtain ar  suggested by Rötscher (1927) is based on 

the assumption that fP  distributes its influence exclusively within the truncated cone 

involving a vertical half angle of 45° with the axis of the bolt. 

    The analytical solution derived by Chandrashekhara and Muthanna (1979) is based 

on the classical theory of elasticity (Love 1944), where the body of revolution under an 

axial symmetry of the loading is considered. The load due to a bolt is approximated as 

the constant pressure q, which affects on the annular area of the plate member. In order 

to define the annular area, the constants for the inner radius br  = 7.25 and outer radius 

wr  = 11.9 mm, were adapted for the result plotted in Figure 27. Hence, q is assumed to 

uniformly affect through the washer and plate contact. 
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Figure 25. FE solution of the clamped joint with the deformations scaled by a factor 

100. The model was solved with the clamping load fP  = 50 kN and friction coefficient 


 = 0.4. The similar bolt with washer shown in Figure 28 was used to generate fP . 

Here, the bolt and washers are hidden for more illustrative presentation. The mesh size 

is 0.6 x 0.6 mm in the vicinity of the interface. a) Symmetric opening of the interface 

occurs exclusively due to fP . b) Opening of the interface can be observed at the right 

side due to the combined fP  and P. c) General 3D view of the FE solution shown in b). 
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Figure 26. Absolute value of the normal pressure 3� (r) at the contact computed using 

the FE model shown in Figure 25a. The clamping load fP  = 50 kN. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Normalized normal pressure at the contact computed using the FE model 

shown in Figure 25a. The approximation (Rötscher 1927) and the analytical solution 

derived by Chandrashekhara and Muthanna (1979) are shown for comparison purposes. 
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5.2.2 Decohesion and frictional interaction models 

With reference to Figure 17a, the adapted CZM involved the damage evolution model 

of the exponential type. For convenience, the constant pre-stress independent portion of 

the interfacial shear load carrying capacity B was used as a weight parameter, i.e. the 

critical shear stress ctII  of the damage evolution model. Hence from Table 4, B = 44.56 

MPa was adapted as the average value of ctII  = 44.56 MPa. This simplification is 

justified due to the varying and non-uniform 3� (r) distribution at the decohesion 

interfaces during the progressive damage. 

    Non-local friction between all contacting surfaces was modelled based on the 

classical Coulomb’s law. In contrast to Section 3.3, the tangential stiffness of the 

contact interface was specified to II	  = � , i.e. micro-slipping was not allowed. The 

friction coefficient corresponding to the steady friction stress was dependent on the 

local contact pressure at the interface, i.e. r
 ( 3� ). The data points from Table 6 were 

exploited to determine r
 (q). The linear interpolation between the experimental data 

points r
 (q) was applied. 

5.2.3 Finite element model and simulation process 

The FE model of the single fastener in parallel connection involving the plate members, 

annular decohesion interface and bolt with the washer is shown in Figure 28. Symmetry 

of the specimen was exploited in the modelling to reduce computational cost. The 

resulting FE model corresponded then to a quarter of a single fastener and the 

surrounding plate material environment of the test specimen shown in Figure 23b. For 

the series (row) connection shown in Figure 23a, the corresponding FE model involved 

a row pattern of three identical meshes shown in Figure 28. Decohesion elements 

(Camanho and Dávila 2002; ABAQUS Inc 2010) with zero thickness were placed at the 

annular bonded contact interface areas bounded by the radiuses ar  = 20 and br  = 7.25 

mm. Eight node linear brick C3D8R solid elements and COH3D8 cohesive elements 

were used with the ABAQUS/Explicit. The cohesive elements with four integration 

points had sharing nodes with the neighbouring solid continuum elements. 
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Figure 28. FE model of the single fastener joint. Symmetry was exploited in the 

modelling. For the parallel connection with two bolts, the model shown here 

corresponds to ⅛ of the respective environment of the real specimen. The mesh size is 

0.6 x 0.6 mm in the vicinity of the decohesion interface. 

 

The failure simulations computed using the FE model shown in Figure 28 were 

performed in two steps. Firstly, the connection was tightened to a pre-specified fP  by 

constant pressure acting in the negative direction 3 on the fastener’s symmetry plane 1-

2, see Figure 28. In the next step, horizontal translational velocity loading condition was 

applied to generate the desired shear load. This loading was applied along the surface B, 

to the positive direction 1. The surface A was correspondingly constrained in direction 

1. 

    The kinematic conditions were applied at a slow rate to minimize oscillatory effects 

due to inertial forces. In all simulations, a time value 5∙10-3 s was used in smooth 

clamping, and a constant rate of 50 mm/s was used to apply the shear load. Additional 

simulations showed that lower rates did not noticeably influence the final results. Recall 

from Section 3.4, that the rate is selected only to obtain a good numerical solution with 

the ABAQUS/Explicit. Both the damage evolution and friction interaction laws do not 

contain any time-dependent terms. 
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5.3 Maximum shear load carrying capacity 

The measured and simulated maximum values of the attained shear loads pP  are 

summarized in Table 9. The computed results for the row connection with six fasteners, 

6R50-1 and 6R35-1, are provided as an additional interest. In addition, pP  of the 

identical non-bonded double lap-joints were measured and thus the friction coefficient 

corresponding to the peak load p
  can be calculated from, 

 

f

p
p zP

P
2

�
 .          (29) 

 

 Table 9. Measured and simulated peak shear loads pP  [kN]. For the non-bonded 

 specimens, the friction coefficients corresponding to the peak load p
  are listed. 

Specimen ID pP  test pP  simulation pP / z  test pP / z  simulation p
  

2N35-1 63.8  31.9  0.46 

2N50-1 96.8  48.4  0.48 

3N35-1 110.5  36.8  0.53 

3N50-1 167.6  55.9  0.56 

2R35-1 296.8 240.2 148.4 120.1  

2R35-2 300.7  150.4   

2R50-1 273.4 260.4 136.7 130.2  

2R50-2 287.9  144.0   

3R35-1 330.9 322.4 110.3 107.5  

3R35-2 342.5  114.2   

3R50-1 361.5 353.9 120.5 118.0  

3R50-2 367.5  122.5   

6R35-1  510.5  85.1  

6R50-1  564.1  94.0  
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5.4 Total shear load vs. displacement responses 

For full-scale lap-joints, 
~  corresponds to the measured or computed relative 

displacement between the reference points (a) and (b), see from Figure 23 and Figure 

B2, Appendix B. The resulting measured and simulated responses for the parallel 

connection are shown in Figure 29 and for the row layout in Figure 30, respectively. For 

adhesive reinforced specimens, exclusively the more conservative, i.e. lower pP , data is 

shown from cases where replicate tests were performed. In Figure 31, the experimental 

results of the identical non-bonded specimens are plotted for 
~ �1.0 mm. In Figures 

29-31, the averaged total responses corresponding to the contribution of one fastener are 

presented. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29. Averaged total response corresponding to the contribution of one fastener. 

The experimental results of the adhesive reinforced connection for the parallel pattern, 

Figure 23b, are shown with comparison to the numerical results. For scaling, z = 2 has 

been used. 
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Figure 30. Averaged total response corresponding to the contribution of one fastener. 

The experimental results of the reinforced connection for the row layout, Figure 23a, are 

shown with comparison to the numerical results. For scaling, z = 3 has been used. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Measured average total response of one fastener for the non-bonded lap-

connection interfaces. For scaling, z = 3 for the row layouts and z = 2 for the parallel 

connections, has been used. 
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6 Geometry optimization of off-center loaded layout 

The goal of positioning optimization is to find a multi-fastener pattern, which more 

evenly distribute the resultant shear loads between fasteners, thus reducing the 

maximum stress in the vicinity of any single fastener. A computationally efficient 

optimization procedure which makes use of analytical fastener load determination based 

on the vector sum method (Reilly 1870) is presented. The presented formulation is 

programmed based on the constrained geometric optimization (The MathWorks 2011b). 

The equations of the classical vector superposition analysis are derived in a vector 

calculus form. The representation is particularly suitable for mathematical programming 

and computing. A typical eccentrically loaded multi-fastener bracket-to-beam joint is 

studied as an example problem. 

6.1 Approximation of shear loads of fastener pattern 

The instantaneous centre of rotation (IC) method (Gullander 1914; Kulak et al. 1987; 

Salmon and Johnson 1996) and the vector superposition method (Reilly 1870; Prichard 

1895; Kuzmanović and Willems 1977; Salmon and Johnson 1996) are perhaps the most 

common analytical assessment methods for determining the slip-critical load of 

eccentrically loaded multi-fastener joints. Maximum slip resistance of a single fastener 

is dependent on the fastener pre-tension, the number of slip planes in the fastener 

system and the slip coefficient. For the IC method, the direction and magnitude of the 

shear force on a single fastener are dependent on the position of the fastener with 

respect to the instantaneous centre, IC. By contrast, the vector superposition method 

assumes that moment in the joint is transferred by all fasteners acting around the 

centroid of the pattern. Vector superposition and the IC concept of a joint subject to 

eccentric loading can be illustrated with the help of Figure 32. 
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6.1.1 Instantaneous centre 

For many design situations it is assumed that the eccentric load causes both rotation and 

translation of the joint. Mechanically this is equivalent to pure rotation about a single 

point, the instantaneous centre. With reference to Figure 32, the moment on the 

connection due to joint eccentricity becomes � � prr �� ba  where br  is the position of IC 

with respect to centroid c.g. The position of each fastener with respect to c.g. is given by 

the vector ix defined by the orthogonal unit vectors 1e  and 2e  of the coordinate axes 1x  

and 2x . The position of the ith fastener with respect to IC is defined as i
cr . Therefore, 

� � i
cb

i rprx ��� . The equilibrium of the system of z fasteners leads to Eqs. (30) and 

(31) where iq is the total shear load vector for the fastener i. 
 

 
Figure 32. Initial fastener configuration of an eccentrically loaded multi-fastener joint, 

which is subject to optimization. Each total shear load vector iq satisfies both the IC and 

vector superposition concepts in the linear-elastic state. 
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In the ultimate load case, iq  is constant valued and is frequently assumed to be 

equivalent to the computed slip load for a fastener. However, if fatigue is a major design 

consideration, slip is not desirable. The fastener system should remain fully elastic and 
iq  proportional to i

cr . The position vector of IC, br for a fastener pattern is 

computed by solving Eqs. (30) and (31). 

6.1.2 Vector superposition 

The elastic vector superposition method assumes that the total shear force for a fastener 

is the vector sum of two components. The first component is obtained by equally 

dividing the reaction to the applied direct shear load p on the joint between all fasteners 

in the pattern. This is expressed in Eq. (32), where i
pq  is the direct shear force vector for 

the fastener i and is assumed to be identical for all fasteners in the pattern. 
 

zi
p /pq ��                                      (32) 

 

The second shear force component for a fastener is due to the moment caused by the 

eccentricity of the joint with respect to c.g. of the fastener pattern, 
                                   

prm �� a .                   (33)    
  
The moment-reaction component for the fastener i is given by i

m
ii qxm �� . If the basic 

assumption is made that i
mq  is proportional to the distance of the fastener from c.g., i.e. 

ix , the normalized moment contribution is constant for all fasteners, 
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� ,  i = 1, 2,…, (z-1).        (34)       

 
The total reaction moment from all fasteners in the system is then, 
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For equilibrium, Eqs. (33) and (35) can be equated 
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Rearranging Eq. (36) leads to 
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and because the solution of i

mq  in an implicit form can be written, 
 
                          

� �
2i

ii
m

i
i
m

x

xqxq ��
� ,    (38)       

 
the moment-reaction shear force vector of the ith fastener due to the applied moment is 

found by substitution of Eq. (37) into Eq. (38) 
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The total shear force for the fastener i is the vector sum of the results from Eqs. (32) and 

(39), 
 

i
p

i
m

i qqq �� .                             (40)     

6.2 Layout optimization of the bracket-beam test problem 

In this section, a computationally efficient geometric fastener layout optimization 

problem is formulated. An eccentrically loaded multi-fastener bracket-to-beam 

connection was evaluated as an example structure subject to optimization. An arc-

shaped fastener pattern is presented as an exactly equally stressed configuration based 
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on the classical vector superposition analysis of eccentrically loaded multi-fastener 

joints (Reilly 1870). 

6.2.1 Optimization problem formulation 

Optimization of the eccentrically loaded joint was based on the vector sum method 

using the initial fastener configuration shown in Figure 32. In this example the number 

of fasteners is constant, z = 10. The objective function fQ  to be minimized was the sum 

of the magnitudes of shear force on all fasteners in the configuration. 

    Initial dimensional constraints are applied to determine an allowable design domain 

D for the fastener group, which is slightly smaller than the l x h overlap region between 

the bracket and stiffened plate as shown in Figure 33. In this example l = 2.5h, and the 

edge distance between the limits of D and the plate edge was h/8. The design variables 

used in the optimization are each fastener’s position vector ix with respect to c.g. of the 

pattern. 

 

 
Figure 33. Design domain D for the studied design examples. The area of D is smaller 

than l x h overlap region due to initial design constraints. 

 

The function fmincon included in the MATLAB optimization toolbox (The MathWorks 

2011b) was used for the constrained non-linear optimization to find the minimum of fQ  

starting from the initial position vectors. The fmincon function is based on sequential 

quadratic programming (SQP), where a quadratic programming sub-problem is solved 

at every iteration step. Typical to gradient methods, direction search within the design 

domain and step-size selection are performed. For each iteration step, an estimate of the 

Hessian of the Lagrangian is updated and a line search is performed using a merit 

function (The MathWorks 2011b). The SQP method has many advantages; gradients of 

l

h D
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only the active constraints are needed, equality constraints can be applied in addition to 

the inequalities, and the starting vector can significantly differ from the solution 

(Belegundu and Chandrupatla 2011). 

    The value of the objective function used in the multi-fastener pattern optimization, 

i.e. the total shear magnitude sum fQ , is minimized subject to the condition that an 

equal shear load magnitude exists at each fastener and a minimum allowable spacing s 

between the fasteners is maintained. The geometric optimization problem formulation is 

then (Oinonen et al. 2010): 

    

Min. 

 

6
�

�
z

i

i
fQ

1
q                                                        (41) 

 

s.t. 

                          
iz qq � ,  i = 1, 2,…, (z-1)                                                 (42) 

 

and 

                                  
jis xx �7 ,  i = 1, 2,…, (z-1);  j = (i+1),…, z.                                    (43) 

 

The objective function (41) and constraint equations (42) and (43) are all real valued, 

continuous and have continuous first derivatives. Constraint Eq. (42) specifies the 

uniform shear load magnitude on each fastener while constraint Eq. (43) defines an 

allowable pitch value s, i.e. the minimum distance between any two fasteners is 

constrained. Constraint Eqs. (42) and (43) determine a maximum value of s with respect 

to convergence within D. 

    The following design examples were solved with the largest possible values of s, to 

maximize an exploitation of D in the vertical direction. A total release of constraint Eq. 

(43) results to a layout where all fasteners are overlapping at the upper left and right 

corners of D, because the effect of moment is there reduced to its minimum. In contrast, 
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the effect of uniform direct shear components i
pq  is not dependent on fastener’s 

positions. The reader with some further interest in possible constraint variations is 

encouraged to program the represented pattern optimization problem. 

6.2.2 Resulted arc-shaped pattern 

The computed optimal multi-fastener group based on an assumed uniform direct shear 

load distribution is presented in Figure 34. In this example, the lower bound for the 

pitch constraint, i.e. Eq. (43), is s = 0.251h.  Figure 35 presents the values of one design 

variable 9x  and the value of the objective function Qf during several iterations of the 

geometry optimization. The objective function and all design variables were nearly 

constant after the 7th iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Optimized multi-fastener group with equal direct shear load distribution. The 

joint, having all fasteners symmetrically distributed about a point loading, is assumed to 

rotate about the common IC point (Oinonen et al. 2010). 
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Figure 35. a) Position of the fastener i = 9 in terms of the horizontal and vertical 

coordinates, 9
1x  and 9

2x . b) Corresponding development of the objective function 

(normalized value). This converged state corresponds to the pattern shown in Figure 34. 
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7 Discussion 

In the following sections, observations based on the experimental and computational 

results are provided. Discussion of the interface tests, interface fracture toughness and 

cohesive zone model is given in Section 7.1. Section 7.2 presents issues related to the 

testing and modelling of the full-scale double lap-joints and Section 7.3 discusses 

several issues related to fastener pattern optimisation to reduce local shear stress 

concentrations. Some suggestions for the related future work are discussed in Section 

7.4. 

7.1 Adhesive reinforced interfaces 

Good accuracy was maintained in manufacturing, preparation and assembly of the 

napkin ring specimens introduced in Section 2. A tailor made testing device shown in 

Figure 4 was used for the quasi-static testing procedure. In addition, a very sensitive 

eddy current sensor with a high resolution was used in the measurements of the relative 

displacement between the identical specimen halves. See Appendix A for more figures. 

    The constant B in Eq. (1) represents the contribution of the adhesive reinforcing to 

the shear strength of the interface p
II� . For a specific surface condition, this value was 

nearly independent of q. With reference to Table 4, the highest value B ≈ 57 MPa was 

obtained for the reinforced fine ground specimens involving 65±3 °C heat cure. For the 

heat-cured coarse ground and grit blasted interfaces, the respective values were 45.4 and 

44.6 MPa. However, for the fine ground and grit blasted interfaces cured at room 

temperature, the resulted values 40.7 and 17.2 MPa were considerably lower as 

compared to the corresponding values of B obtained with heat cure. The slope constant 

A in Eq. (1) determines the rate of increase in interface shear strength with the normal 

pressure q. Hence, A ≈ p
 , i.e. the dimensionless constant A is approximately equal to 

the static friction coefficient of the interface. From Table 4, the greatest A can be found 

for the grit blasted surface finish. With reference to Figure 7, the highest p
II�  was 

obtained for the reinforced grit blasted surface finish for the case q = 150 MPa. It can 
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also be seen from Figure 7 that the rate of increase of p
II�  with q was nearly constant for 

a particular surface finish for both bonded and non-bonded interfaces. This observation 

represents the superposition of adhesive strength with interface friction and corresponds 

to the previously published results obtained using a strong anaerobic adhesive and 

ground specimen interfaces (Dragoni and Mauri 2000). Moreover, Figure 7 shows that 

the rate of p
II� (q) was not sensitive to the curing temperature, i.e. 65±3 or 20±1 °C. 

    For all interfaces subject to small normal stress, i.e. q = 4 MPa, the shear fracture was 

fully brittle. Based on Figures 5a-b, the interfacial fracture was due to adhesive failure 

for both the fine and coarse ground interfaces. In contrast, the grit blasted interface 

showed predominantly cohesive failure as can be seen from Figure 5c. Due to the 

differing failure mode for low q as compared to the cases involving the greater normal 

pre-stress, i.e. q�[50,200], the data for q = 4 reported in Table 5 was excluded from 

Figure 7 and from the regression analysis used to calculate A and B. In consequence, the 

contribution of the reinforcing on the interface in terms of the constants B reported in 

Table 4 cannot directly be adapted or validated based on the values of p
II�  from Table 5. 

In addition, the values of B listed in Table 4 considerably differ from the shear limits 

reported by the adhesive manufacturer in Table 2. With reference to Figures 6a-c which 

were tested with q = 100, predominantly cohesive failure can be observed for all the 

studied interface types. A comparison of Figures 5c and 6c for grit blasted surfaces 

shows that low q resulted in a cohesive failure without noticeable damage to the HSS 

adherents. In contrast for more significant q, the surface is noticeably damaged. The 

transition from adhesive and brittle failures at low q to predominantly cohesive and 

ductile or semi-ductile failure at higher q has not been studied in detail and is left for 

future work. 

    In the current study, the principle of superposition accurately describes the behaviour 

of fine ground and grit blasted surfaces, but the fit is less satisfactory for coarse ground 

surfaces. Figure 9 shows the initial interface degradation response of the coarse ground 

specimens for the cases q = 150 and q = 200 MPa. Due to the small average increase in 
c
II�  for q = 200 as compared to q = 150, the slope A for the reinforced coarse ground 

case differs significantly from the non-reinforced case. If the results for q = 200 are 

excluded, the slope A = 0.19 is calculated, which is more consistent with the 

observations from other surface finishes. For the coarse ground cases, the relatively 
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small increase in c
II�  between q = 200 and q = 150 resulted, presumably, due to the 

subsequent unstable decohesion responses. Similar unstable fracture response was 

observed for the heat-cured grit blasted specimens at q = 200, and these are not 

discussed as part of this study. The polished micro-sections in Figure 3 show that as 

surface roughness increases, the contact points between interfaces become more distinct 

and point-like. When the mode II load is applied under q, it can be expected that local 

multiaxial yielding occurs causing the interface to collapse. However, a more precise 

explanation for unstable decohesion propagation of the rougher bonded HSS interfaces 

involving the high pre-stress, q�[150,200] has not yet been found. 

    Data for the adhesive reinforced interfaces shown in Figures 8, 10 and 11 indicates 

that as 
 �1.0 mm, II� (
 ) for all specimens had reached a nearly steady state value. 

Therefore, the reinforced frictional interfaces can be assumed as fully damaged for 
  ≥ 

1.0 mm. The critical interface traction stress ctII  and stiffness parameter II	  can be 

estimated from Figures 10 and 11 for CZM of grit blasted interfaces. With this 

information, the CZM shown in Figure 17 could be fully defined by applying the non-

linear least squares method. 

    The individual data points in Figures 8-11 were collected at fixed time intervals. 

Thus, large gaps between points indicate a very rapid increase in relative displacement 

at the interface. Such gaps are interpreted as representing unstable semi-brittle 

decohesion. A comparison of Figures 8 and 9 shows more ductility for the coarse 

ground surface finish when compared to the fine ground in otherwise identical testing 

conditions. From Figure 9, for 
  > 0.1 mm, unstable decohesion propagation occurred 

especially for the tests with the highest q. As with the fine ground cases, the brittle 

fracture occurred for the coarse ground specimens for both q = 50 and q = 100 MPa. 

From Figure 8 it can be observed, however, that the fine ground interfaces become 

increasingly ductile as q�200. This indicates an increasing strength contribution from 

friction relative to the shear strength of the adhesive. From Figure 10, unstable 

decohesion response due to the semi-brittle interface fracture is observed. This is seen 

especially for q = 150 over the range of �
 (0.1,0.35), where there is a sudden decrease 

in II�  accompanied by an increase in 
 . 

    The measured II� (
 ) response of the reinforced grit blasted specimens cured at room 

temperature is shown in Figure 11. The repeated identical tests show excellent 
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repeatability for q = 100 MPa. Concerning the more conservative results for q = 150 and 

q = 200, more non-linear initial degradation can be observed as compared to the 

corresponding results with the higher p
II� . This can be assumed to occur due to the 

sensitivity to statistical effects of the grit blasting quality and interface’s setup process 

during application of q. In Figure 11, there exists only very small scatter in the response 

as 
 �1.0 mm, i.e. as the assumed fully damaged state is approached. A comparison of 

Figures 10 and 11 clearly shows more ductility for the reinforced interfaces cured at 

room temperature as compared to the similar heat-cured specimens involving identical 

testing conditions. 

    Although test data includes moderate statistical scatter, the developed damage 

evolution model can be assumed to provide realistic results when used in the FEM 

environment. This claim is supported by the results shown in Figure 19, from where a 

coherent match between the experimental and simulation results can be observed for the 

each case of q. With the observed overall scatter in mind, a sensitivity to unification of 

the material constants can be interpreted as insignificant based on Figures 14 and 19. 

    Based on Figures 20-22, cGII  was attained as �
 1.0 mm and increased with the 

higher values of q. A good agreement between the directly numerically integrated 

experimental data and Eq. (26) can be observed from Figure 20 for both the results 

involving the unified material parameters and with the constants based on the original 

individual data sets. However, sensitivity to unification of the material constants can be 

interpreted as moderate based on Figure 20. 

    The results for the non-reinforced grit blasted specimens are shown in Figure 15 and 

for the ground interface finishes in Figure 16. For the grit blasted interfaces, the 

significant decrease in II� (1.0) involving the decreasing gradient can be noticed 

especially for the experiment with the highest q. In addition, slip hardening occurred for 

the non-reinforced coarse ground contact surfaces for all q; this observation corresponds 

to the previous results by Courtney-Pratt and Eisner (1957). Finally, the experiments on 

the non-reinforced specimens with the fine ground surface finish most closely followed 

the classical Coulomb’s law of friction. 
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7.2 Full-scale lap-connections 

Determination of the outer limit radius of the annular interface ar  was based on the 

reference FE model. With reference to Figure 25a, it is observed that the plates deform 

so as to leave a rather well defined contact surfaces. This contact area for the pre-

defined clamping load fP  determines ar . The normalized normal pressure at the 

interface computed using the FE model is shown in Figure 27 with comparison to the 

classical approximation (Rötscher 1927) and more complex analytical solution 

(Chandrashekhara and Muthanna 1979). These alternative methods to determine ar  

were provided in order to present the more direct solutions for a design of reinforced 

joints, e.g. if no further FEA is considered. The resulted normal pressure 3� (r) 

distribution calculated using the solution derived by Chandrashekhara and Muthanna 

(1979) was close to FEA. 

    The shear fracture was fully brittle for all the experimented adhesive reinforced 

connection interfaces involving fP �[35,50] kN. The grit blasted annular interfaces 

showed predominantly cohesive fracture as indicated by Figure 24a. See also Appendix 

B for more details concerning observations on interfacial damage behaviour. For all 

reinforced specimens listed in Table 8, a sudden fully brittle fracture occurred after 

attaining the maximum shear load carrying capacity pP . Two replicate experiments 

were performed for the reinforced specimens. Attempts to fully determine interfacial 

degradation behaviour were unsuccessful due to the sudden drop in shear load at pP . 

    Using the grit blasted napkin ring specimens with heat cure, the pre-stress 

independent portion of the interfacial shear stress B was experimentally determined for 

the normal stress range of q�[50,150] MPa. Based on Figure 26, 3� ( br ) ≈ 150 MPa, 

and q�[50,150] MPa thus involves the normal stress distribution range of the annular 

connection interface clamped to fP = 50 kN. For fP = 35 kN, 3� ( br ) ≈ 110 MPa. 

These observations were assumed to justify the use of B = ctII , i.e. the critical interface 

traction stress of the CZM shown in Figure 17a. With reference to Figure 26, the 

solution of ar  ≈ 19 mm was obtained from the abscissa as the normal stress at the 

interface 3� (r)�0. For both the test specimens and damage simulations, the outer limit 

radius of the annular interface was selected to ar  = 20. This small rounding was done 

due to assumed over closure of rough contact surfaces subject to fP . Interfacial micro-
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slipping was not allowed, and therefore the interface stiffness parameter was selected to 

II	  = � . With these definitions, simulations closely resembled to the experimental 

observations on the full-scale test specimens. Based on the fundamental experimental 

data presented in Figures 10 and 11, II	 �[3∙103,104] N/mm3 can be approximated. The 

use of II	 �[3∙103,104] in trial simulations, however, did not improve the linear-elastic 

slopes of computed P(
~ ) as compared to the corresponding measured responses. 

    With reference to Figures 29 and 30, pP  of the adhesive reinforced lap-joints is not 

sensitive to the pre-load of the bolts for the range fP �[35,50] kN. Hence, the 

contribution of the reinforcement bonding on pP  is significant. A good agreement 

between the test and simulation results was observed until attaining pP . However, the 

exceptions were the replicate experiments on the parallel lap-connections involving fP  

= 35 kN. This diverging result can be explained with the help of Figure 25b. Opening of 

the interface can be observed on the right side due to the combined loads fP  and P. In 

consequence, the corresponding left half is closing due to elastic continuum behaviour. 

This non-linear effect most influences on the first fastener of the row joint, i.e. the bolt 

nearest to P. Therefore, single fastener connections are more influenced on this 

phenomenon than multi-fastener row connections. When the number of fasteners z in a 

row connection is increased, the computed pP / z decreases as can be observed from 

Table 9. This occurs due to elastic continuum behaviour. 

    The simulated P(
~ ) responses have exclusively been validated until 
~  

corresponding to pP  due to the experimentally observed sudden brittle fracture of the 

connection interfaces. Despite the previous fact, an assumed softening part was included 

in the adapted CZM shown in Figure 17a and simulation runs were computed until the 

full damage was accumulated. Consistently, Figures 29 and 30 show that the computed 

P(
~ ) are approaching to the steady state involving exclusively frictional behaviour as 


~ �1.0 mm. 

    Based on Figure 31, P(
~ ) of the non-bonded lap-joints involving fP �[35,50] follow 

expected degradation behaviour, i.e. wear of HSS. In contrast to the reinforced 

interfaces, pP  of the identical non-bonded connections can be observed as sensitive to 

fP . This is the disadvantage of non-bonded lap-joints also due to the known challenges 

in tightening of HS bolts to the precise fP  (Kulak et al. 1987; Bouwman and Piraprez 

1989). The measured responses of the non-bonded test specimens presented in Figure 
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31 show that pP / z was clearly higher for the row connections as compared to the 

parallel layout with fP �[35,50] kN. With reference to Figure 25b, this presumably 

occurred due to concentration of 3�  at the left portion of the interface. Consequently, 

the local high 3�  plastically deformed the rough contact surfaces resulting to highly 

damaged HSS. To this end, recall the fundamental data based on the non-bonded napkin 

ring specimens presented in Figure 15. 

7.3 Positioning optimization of fasteners 

For eccentrically loaded multi-fastener joints, the traditional elastic vector sum concept, 

which assumes that the direct shear load is evenly divided among all fasteners, is 

computationally convenient. In the current study, geometric optimization was based on 

the vector superposition method using the traditional uniform direct shear load 

assumption. The use of the function fmincon included in the MATLAB optimization 

toolbox (The MathWorks 2011b) which exploits SQP was effective for the cases in this 

study due to the number of variables in which both the objective function and 

constraints were non-linear functions of the design variables. 

    As can be seen from Figure 34, the assumed direct shear load distribution has led to 

an arc-shaped fastener distribution. The arc radius depends on the spacing constraint s 

and the eccentricity of the joint loading ar . The connection, having all fasteners 

symmetrically distributed about an eccentric point load, was assumed to rotate about the 

common IC point (Gullander 1914). In order to justify this assumption, both the bracket 

and boom plates have to follow linear-elastic behaviour (Muir and Thornton 2004; 

Oinonen et al. 2010). 

    With reference to Figure 35, ten iteration runs were needed to obtain final 

convergence. Figure 35b shows that the initial objective function value was lower than 

the final converged value. In this case, however, the constraint equations were not 

initially satisfied. The initial coordinate estimates for the fasteners were far from the 

final optimized values, indicating the robustness of the mathematical optimization tool 

used. 
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7.4 Future research 

The main limitation in the modelling of full-scale adhesive reinforced bolted lap-

connections is due to an assumption that interfacial damage does not depend on 

variation of the normal stress during application of the direct shear load. Shear lag in the 

joint necessarily causes the normal pressure to change during tensile loading. The 

assumption of a constant normal pressure can lead to non-conservative estimates in the 

case of interfaces which are sensitive to releasing of the normal pre-stress. The 

dependency between the normal pre-stress and material model could be incorporated in 

FEM using the solution dependent state variables (ABAQUS Inc 2010). However, the 

aspect of variation of the mode I stress during the direct mode II loading still lacks 

experimental validation. Therefore, the FEM implementation of the more complex CZM 

with contact pressure monitoring is left for future work. In addition, an extensive 

experimental programme would be needed to be initiated. 

    The current study has been limited to include only the linear elastic strength of HSS 

plate members. This assumption is justified due to the very high yield strength of the 

HSS plates. If applicable, e.g. von Mises plasticity could be included in 

ABAQUS/Explicit based FEA. Moreover, the current thesis is exclusively concentrated 

with the quasi-static assessment of adhesive reinforced frictional connections. Fatigue 

and cyclic slip behaviour of the identical reinforced specimens are currently being 

studied as an alternative joining method for thin sheet structures in HSS (Hurme et al. 

2011). 
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8 Conclusions 

In this thesis, new fundamental information on combined decohesive and frictional 

behaviour of epoxy reinforced interfaces has been developed and adapted to 

computational mechanics using cohesive zone model (CZM) and non-local friction 

laws. 

    The influence of the clamping load, surface roughness and cure temperature of epoxy 

on the quasi-static shear strength of mechanically clamped high strength steel (HSS) 

interfaces reinforced with adhesive have been studied experimentally. Interface 

constants for the computational damage evolution model have been fitted based on the 

least squares method. The shear energy release rate vs. relative displacement curves 

have been plotted. A shear damage evolution modelling procedure that can be 

incorporated in the finite element method (FEM) has been suggested. The FEM based 

damage modelling procedure developed for 2D has been applied to the interface damage 

simulations on the full-scale adhesive reinforced bolted double lap-joints. 

    A computationally efficient fastener layout optimization problem has been 

formulated and programmed based on constrained geometric optimization. The 

equations of the classical vector superposition analysis have been derived in a vector 

calculus form. An eccentrically shear loaded multi-fastener bracket-to-beam connection 

has been studied as the example problem. 

    The following conclusions can be summarized based on the main results reported and 

discussed in this thesis. 

 

1. For each of the three surface finishes tested, the shear strength of the bonded and 

non-bonded interfaces increased at a near constant rate with normal pressure. 

Therefore, for abraded HSS interfaces reinforced with high modulus epoxy, the 

principle of superposition is applicable. 

2. The contribution of the epoxy adhesive to the total shear strength of the interface 

varied with interface roughness. It was found to be highest for the fine ground 

surface finish and lowest for the grit blasted surfaces. 
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3. For all values of normal pressure, the epoxy reinforced grit blasted interfaces 

with heat cure resulted in the highest measured total shear stress values p
II� . 

Hence, both surface roughness and cure temperature significantly influence on 

the quasi-static shear load carrying capacity of adhesive reinforced interfaces. 

4. The maximum observed residual slip-strength after full decohesion, i.e. as the 

relative interface displacement approached 1.0 mm, was found to be 

considerably higher for the grit blasted reinforced interfaces as compared to the 

corresponding non-bonded cases. 

5. For 1.0 mm relative interface displacement, the highest value of the critical 

fracture energy release rate cGII  was attained for the heat-cured grit blasted 

interfaces. The value of cGII  increased with normal pressure for all surface 

finishes. This was due to the increased work needed to locally deform the 

contacting HSS surfaces. 

6. The epoxy reinforced grit blasted connection interfaces with heat cure can be 

considered suitable for engineering applications. Joint strength was good in 

comparison to other studied interface combinations and the failure mode was 

partially ductile. 

7. Based on the 2D test problem, the computed FE solution of the total shear stress 

vs. relative displacement response II� (
 ) showed a very good correlation with 

the corresponding experimental data points. 

8. Data from the small-scale specimens could be adequately adapted to full-scale 

joints using the developed CZM and non-local friction. When implemented in 

FEA, the computed ultimate shear load capacity of the full-scale double lap-

joints were in good agreement with experimentally measured values. Hence, the 

presented modelling procedure can be suggested to be used for engineering of 

adhesive reinforced connection interfaces involving friction. 

9. The contribution of the adhesive reinforcement to the ultimate shear load 

capacity of the full-scale lap-joint specimens was significant. Fastener pre-load 

had significant influence on the shear load capacity of the non-bonded full-scale 

lap-joints but had less influence on the capacity of adhesive reinforced 

interfaces. 
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10. The computed ultimate shear load capacity corresponding to the contribution of 

one fastener decreased as the number of fasteners in the row (series) connection 

was increased. 

11. The annular interfacial areas can be considered as local attachment points in 

large-scale structures. Hence, the modelling procedure presented in this thesis is 

very attractive when the positioning optimization of adhesive reinforced multi-

fastener connection interfaces is considered. 

12. As the result of the positioning optimization, an arc-shaped fastener pattern 

satisfies the exactly equally loaded configuration of fasteners based on the 

classical vector superposition analysis. More uniform distribution of the fastener 

loads should help to prevent interfacial shear fracture and slipping of the joint 

and thus improve the structural strength. 

 

 

 

 



96 
 
 

References 

ABAQUS Inc (2010) ABAQUS User’s manual - Version 6.10-1. 

Adams RD, Wake WC (1984) Structural adhesive joints in engineering. Elsevier 

Applied Science Publishers Ltd, England 

Albrecht P, Sahli AH (1986) Fatigue strength of bolted and adhesive bonded structural 

steel joints. In: Potter JM, ed. Fatigue in mechanically fastened composite and 

metallic joints (STP 927). ASTM, Philadelphia, pp. 72-94 

Albrecht P, Sahli AH (1988) Static strength of bolted and adhesively bonded joints for 

steel structures. In: Johnson WS, ed. Adhesively bonded joints: Testing, analysis, 

and design (STP 981). ASTM, Philadelphia, pp. 229-51 

Ali M, Lorrain B, Karama M, Puel B (2007) Fatigue behaviour of the screwed/riveted 

joints and the bonded joints. Fatigue Des 2007: W1.6 - Methodologies and tools for 

fatigue life assessment for assemblies, Senlis 

Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture 

specimens. Compos Struct 31:61-74 

Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24:981-8 

Archard JF (1957) Elastic deformation and the laws of friction. Proc Roy Soc London 

(Ser A) Math Phys Sci 243:190-205 

ASTM International (2009) ASTM standards on disc: Adhes 15.06 

Bao G, Suo Z (1992) Remarks on crack-bridging concepts. Appl Mech Rev 45:355-66 

Bathe KJ (1996) Finite element procedures. Prentice-Hall Inc, New Jersey 

Belegundu AD, Chandrupatla TR (2011) Optimization concepts and applications in 

engineering (2nd ed). Cambridge University Press, New York 

Belytschko T, Liu WK, Moran B (2001) Nonlinear finite elements for continua and 

structures. John Wiley & Sons Ltd, Chichester  

Birkemoe PC, Srinivasan R (1971) Fatigue of bolted high strength structural steel. J 

Struct Div 97:935-51 

Bouwman LP, Piraprez E (1989) The tightening of high-strength bolts in Europe. Steel 

Constr Today 3:18-25 



97 
 
 

Broek D (1984) Elementary engineering fracture mechanics (3rd ed). Kluwer Academic 

Publishers Group, the Netherlands 

Camanho PP, Dávila CG (2002) Mixed-mode decohesion finite elements for the 

simulation of delamination in composite materials. NASA/TM-2002-211737 

Camanho PP, Dávila CG, de Moura MFSF (2003) Numerical simulation of mixed-mode 

progressive delamination in composite materials. J Compos Mater 37:1415-38 

Chan WS, Vedhagiri S (2001) Analysis of composite bonded/bolted joints used in 

repairing. J Compos Mater 35:1045-61 

Chai H (1988) Shear fracture. Int J Fract 37:137-59 

Chai H (2004) The effects of bond thickness, rate and temperature on the deformation 

and fracture of structural adhesives under shear loading. Int J Fract 130:497-515 

Chandrashekhara K, Muthanna SK (1979) Analysis of a thick plate with a circular hole 

resting on a smooth rigid bed and subjected to axisymmetric normal load. Acta 

Mech 31:33-44 

Chickermane H, Gea HC, Yang RJ, Chuang CH (1999) Optimal fastener pattern design 

considering bearing loads. Struct Optim 17:140-6 

Courtney-Pratt JS, Eisner E (1957) The effect of a tangential force on the contact of 

metallic bodies. Proc Roy Soc London (Ser A) Math Phys Sci 238:529-50 

Dávila CG, Camanho PP (2001) Decohesion elements using two and three-parameter 

mixed-mode criteria. Am Helicopter Soc Conf, Williamsburg 29 October - 1 

November 

De Bruyne NA (1962) The measurement of the strength of adhesive and cohesive joints. 

In: Weiss P, ed. Adhesion and cohesion. Proc Symp Adhes Cohes, GM Res Lab, 

Elsevier Publishing Company, Warren Michigan, pp. 47-64 

De Moura MFSF, Chousal JAG (2006) Cohesive and continuum damage models 

applied to fracture characterization of bonded joints. Int J Mech Sci 48:493-503 

De Moura MFSF (2008) Progressive damage modelling. In: Da Silva LFM, Öchsner A, 

eds. Modeling of adhesively bonded joints. Springer-Verlag, Berlin Heidelberg, pp. 

155-82 

Doyle G, Pethrick RA (2009) Environmental effects on the ageing of epoxy adhesive 

joints. Int J Adhes Adhes 29:77-90 



98 
 
 

Dragoni E, Mauri P (2000) Intrinsic static strength of friction interfaces augmented with 

anaerobic adhesives. Int J Adhes Adhes 20:315-21 

Dragoni E, Mauri P (2002) Cumulative static strength of tightened joints bonded with 

anaerobic adhesives. Proc Inst Mech Eng (Part L) J Mater - Des Appl 216:9-15 

Fays S (2003) Adhesive Bonding Technology in the Automotive Industry. Adhes 

Interface 4:37-48 

Galambos TV, Reinhold TA, Ellingwood B (1982) Serviceability limit states: 

Connection slip. J Struct Div 108:2668-80 

Gould HH, Mikic BB (1972) Areas of contact and pressure distribution in bolted joints. 

J Eng Indust, August, pp. 864-70 

Gough HJ (1924) The fatigue of metals. Scott, Greenwood & Son, London 

Gresnigt AM, Stark JWB (1995) Design of bolted connections with injection bolts. In: 

Bjorhovde R, Colson A, Zandonini R, eds. Connections in steel structures III - 

behavior, strength and design. Proc Third Int Workshop, Trento, 29 - 31 May, pp. 

77-87 

Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc Roy 

Soc London (Ser A) Math Phys Sci 295:300-19 

Gullander P (1914) Eccentric rivet connections. Eng Rec 70:518 

Hansen NG (1959) Fatigue tests of joints of high strength steels. J Struct Div 85:51-69 

Hart-Smith LJ (1985) Bonded-bolted composite joints. J Aircr 22:993-1000 

Hobbacher A (2007) Recommendations for fatigue design of welded joints and 

components. IIW doc XIII-2151-07/XV-1254-07 

Hurme S, Oinonen A, Marquis G (2011) Fatigue of bonded steel interfaces under cyclic 

shear loading and static normal stress. Eng Fract Mech 78:1644-56 

Imanaka M, Haraga K, Nishikawa T (1993) Fatigue strength of adhesive/rivet combined 

joints. Proc Conf Adhes '93, York, UK, 6 - 8 September, pp. 187-92 

Kelly G (2005) Load transfer in hybrid (bonded/bolted) composite single-lap joints. 

Compos Struct 69:35-43 

Khrulev VM (1965) Surface roughness and rheological properties of adhesives as 

factors determining optimal thickness of glue line. Mech Compos Mater 1:61-3 

Kim J, Yoon JC, Kang BS (2007) Finite element analysis and modeling of structure 

with bolted joints. Appl Math Model 31:895-911 



99 
 
 

Kinloch AJ (1987) Adhesion and adhesives: Science and technology. Chapman & Hall 

Krueger R, Cvitkovich MK, O'Brien TK, Minguet PJ (2000) Testing and analysis of 

composite skin/stringer debonding under multi-axial loading. J Compos Mater 34: 

1263-1300 

Kulak GL, Fisher JW, Struik JHA (1987) Guide to design criteria for bolted and riveted 

joints (2nd ed). John Wiley & Sons Inc 

Kuzmanović BO, Willems N (1977) Steel design for structural engineers. Prentice-Hall 

Inc, New Jersey 

Love AEH (1944) A treatise on the mathematical theory of elasticity (4th ed). Dover 

Publications, New York 

Mays GC, Hutchinson AR (1992) Adhesives in civil engineering. Cambridge University 

Press, New York 

Mann JY, Pell RA, Jones R, Heller M (1985) Reducing the effects of rivet holes on 

fatigue life by adhesive bonding. Theor Appl Fract Mech 3:113-24 

Matsui K (1990) Effects of curing conditions and test temperatures on the strength of 

adhesive-bonded joints. Int J Adhes Adhes 10:277-84 

Mengel R, Häberle J, Schlimmer M (2007) Mechanical properties of hub/shaft joints 

adhesively bonded and cured under hydrostatic pressure. Int J Adhes Adhes 27:568-

73 

Muir LS, Thornton WA (2004) Exploring the true geometry of the inelastic 

instantaneous center method for eccentrically loaded bolt groups. In: Bijlaard FSK, 

Gresnigt AM, van der Vegte GJ, eds. Proc 5th Int Workshop Connect Steel Struct 

V - behaviour, strength & design, Amsterdam, 3 - 4 June, pp. 281-6 

Nairn JA (2009) Analytical and numerical modeling of R curves for cracks with 

bridging zones. Int J Fract 155:167-81 

Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J 

Appl Mech 54:525-31 

Oden JT, Martins JAC (1985) Models and computational methods for dynamic friction 

phenomena. Comput Method Appl Mech Eng 52:527-634 

Oinonen A, Marquis G (2009) A procedure for damage modelling of shear loaded 

structural hybrid interfaces. Proc 10th Finn Mech Day, Jyväskylä, 3 - 4 December, 

pp. 286-95 



100 
 
 

Oinonen A, Marquis G (2010) A new shear decohesion damage function for combined 

clamped and bonded interfaces. 18th Eur Conf Fract, Dresden, 30 August - 3 

September 

Oinonen A, Marquis G (2011a) A parametric shear damage evolution model for 

combined clamped and adhesively bonded interfaces. Eng Fract Mech 78:163-74 

Oinonen A, Marquis G (2011b) Shear decohesion of clamped abraded steel interfaces 

reinforced with epoxy adhesive. Int J Adhes Adhes 31:550-8 

Oinonen A, Tanskanen P, Björk T, Marquis G (2010) Pattern optimization of 

eccentrically loaded multi-fastener joints. Struct Multidisc Optim 40:597-609 

Paroissien E, Sartor M, Huet J, Lachaud F (2007) Analytical two-dimensional model of 

a hybrid (bolted/bonded) single-lap joint. J Aircr 44:573-82 

Pirondi A, Moroni F (2009) Clinch-bonded and rivet-bonded hybrid joints: Application 

of damage models for simulation of forming and failure. J Adhes Sci Technol 

23:1547-74 

Prichard HS (1895) Standard connections for rolled beams. Eng News XXXIII:318-9 

Reemsnyder HS (1975) Fatigue life extension of riveted connections. J Struct Div 

101:2591-608 

Reemsnyder H (1996) Fatigue of mechanically fastened joints. In: ASM Handbook 

(Vol. 19, Fatigue and Fracture). ASM International, pp. 287-94 

Reilly C (1870) Studies of iron girder bridges, recently executed, illustrating some 

applications of the modern theory of the elastic resistance of materials. Minute Proc 

Inst Civ Eng XXIX:403-500 

Renvall S, Oinonen A, Marquis G (2010) The influence of static normal stress on shear 

capacity of bonded high strength steel interfaces. 9th Int Conf Multiaxial Fatigue 

Fract, Parma, 7 - 9 June 

Rice JR (1968a) A Path independent integral and the approximate analysis of strain 

concentration by notches and cracks. J Appl Mech 35:379-86 

Rice JR (1968b) Mathematical analysis in the mechanics of fracture. In: Liebowitz H, 

ed. Fracture: An advanced treatise (Vol. 2, Mathematical fundamentals). Academic 

Press, New York, pp. 191-311 

Richardson RSH, Nolle H (1976) Surface friction under time-dependent loads. Wear 

37:87-101 



101 
 
 

Rutenberg A (1984) Nonlinear analysis of eccentric bolted connections. Eng J 227-36 

Rötscher F (1927) Die maschinenelemente (erster band). Verlag von Julius Springer, 

Berlin 

Salmon CG, Johnson JE (1996) Steel structures: Design and behavior (4th ed). Prentice-

Hall Inc, New Jersey 

Sawa T, Yoneno M, Motegi Y (2001) Stress analysis and strength evaluation of bonded 

shrink fitted joints subjected to torsional loads. J Adhes Sci Technol 15:23-42 

Sellgren U, Björklund S, Andersson S (2003) A finite element-based model of normal 

contact between rough surfaces. Wear 254:1180-8 

SFS-ENV 1993-1-3 Eurocode 3: Design of steel structures (Part 1-3, General rules; 

Supplementary rules for cold formed thin gauge members and sheeting). Finnish 

Standards Association, Helsinki 

Shahid M, Hashim SA (2002) Effect of surface roughness on the strength of cleavage 

joints. Int J Adhes Adhes 22:235-44 

Stewart I, Chambers A, Gordon T (2007) The cohesive mechanical properties of a 

toughened epoxy adhesive as a function of cure level. Int J Adhes Adhes 27:277-87 

Swift T (1984) Fracture analysis of stiffened structure. In: Chang JB, Rudd JL, eds. 

Damage tolerance of metallic structures: Analysis methods and applications (STP 

842). ASTM, Ann Arbor, pp. 69-107 

The MathWorks (2011a) Optimization Toolbox - Least Squares (Curve Fitting). 

Accessed 27 April. Available via http://www.mathworks.com/help/toolbox/optim/  

The MathWorks (2011b) Optimization Toolbox - Constrained Nonlinear Optimization 

Algorithms - fmincon SQP Algorithm. Accessed 27 April. Available via 

http://www.mathworks.com/help/toolbox/optim/  

Turon A, Dávila CG, Camanho PP, Costa J (2006) An engineering solution for mesh 

size effects in the simulation of delamination using cohesive zone models. Eng 

Fract Mech 74:1665-82 

Tvergaard V, Hutchinson JW (1996) On the toughness of ductile adhesive joints. J 

Mech Phys Solid 20:789-800 

Uehara K, Sakurai M (2002) Bonding strength of adhesives and surface roughness of 

joined parts. J Mater Process Technol 127:178-81 



102 
 
 

Valoroso N, Champaney L (2006) A damage-mechanics-based approach for modelling 

decohesion in adhesively bonded assemblies. Eng Fract Mech 73:2774-801 

Wegman RF (1989) Surface preparation techniques for adhesive bonding. Noyes 

Publications, New Jersey 

Yoshimi I (2008) Modular design for machine tools. The McGraw-Hill Companies Inc, 

New York 

Zhong ZH (1993) Finite element procedures for contact-impact problems. Oxford 

University Press Inc, New York 

3M United Kingdom PLC (2001) Scotch-WeldTM EPXTM Epoxy adhesive DP760 

product data sheet 

 

 

 
 



103 
 
 

Appendix  A - Details of the testing device and specimens 

In this Appendix, the supplementary photographs and sketches for Section 2 are 

provided. The polished micro-sections of the tangential bond line of the contact 

interfaces shown in Figure 3 were produced using the assembly shown in Figure A5a. 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. Pure shear loading is applied via the level arm. 

 

 

 

 

 

 

 

 

 

 

 

Figure A2. The eddy current sensor and its counterpart are directly attached onto the 

halves of the napkin ring specimen pair. 
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Figure A3. Assembly sketch of the testing device. The key components are: (1) 

specimen pair, (2) specimen holder, (3) axial load cell, (4) torque reaction, (5) support, 

(6) thrust bearing, (7) threaded rod, (8) nut, (9) torque arm, (10) rotation bearing, and 

(11) locking bushing. 

 

 

 

 

 

 

 

 

 

 

Figure A4. Workshop drawing of the napkin ring test specimen. 
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Figure A5. a) The instrumented bolt is used to load the epoxy reinforced specimen 

interface to the normal pressure q = 100 MPa. The polished interface marked by the 

dashed curve was examined using a microscope. Two outer disks (similar specimens) 

are used as the strong washers. b) General photograph of the napkin ring test specimen. 

a b
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Appendix  B - Observations on full-scale adhesive 

reinforced bolted lap-joints 

In this Appendix, some supplementary material for Chapter 5 is provided. With the help 

of Figure B1, the predominant failure mechanism of the adhesive reinforced bolted lap-

connection interfaces can be qualified. Figure B2 illustrates the assembled and 

instrumented double lap-joint specimen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B1. Damaged contact surfaces of the adhesive reinforced multi-fastener lap-

connection. Only the case with the clamping load fP  = 35 kN is shown here, but the 

observation for fP  = 50 kN was similar. Predominantly cohesive damage can be 

observed for the grit blasted area determined by r�( br , ar ). In contrast for r�( ar , cr ), 

interfacial damage is predominantly adhesive due to the smoother (ground) surface 

finish. Moreover, for r > ar , the interface opens due to geometric non-linearity, see from 

Figure 25. The average outer limit radius of the flow of uncured adhesive was 

measured, cr  ≈ 36±8 mm. The photographs a) and b) correspond to the mating surfaces, 

which were in the contact during shear testing. 

a

b

 ar

 
cr

br
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Figure B2. Positioning and attachment of the displacement transducer for the full-scale 

double lap-joint specimen. See also Figure 23. 
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