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1. Introduction

The location of acoustic reflections, i.e., the image-sources, is a useful

piece of information in room acoustic studies, auralization, room geometry

inference, and in-situ measurement of acoustic properties of surfaces from

room impulse responses. In spatial room impulse response rendering [1,2]

the locations of the reflections are used in spatial reproduction. Incorrect

or inaccurate reflection localization will lead to incorrect auralization of

the space. Moreover, the locations of the reflections can be used together

with the source location to deduct the normals and the locations of the

reflective surfaces [3–5], that is, to infer the room geometry. In addition,

the location of the reflection is needed for accurate time windowing of the

reflection from the room impulse response when estimating, for example,

the absorption coefficient of the surface from in-situ measurements [6,7].

The standardized way of studying room acoustics is to measure an im-

pulse response using a sound source in the performance area and a mi-

crophone in the audience area [8]. The impulse response is considered to

consist of three parts that have their distinct features. The direct sound

arrives first, then the early reflections, followed by the late reverberation.

The important difference between early reflections and late reverberation

is that late reverberation or reverberation refers to the part of the impulse

response, which has some specific statistical properties [9–11]. The early

reflections are the discrete events before the late reverberation which do

not have these statistical features.

The topic of this thesis is the objective localization of early reflections

and the direct sound, using measurement devices and related applied

mathematics. Instead of a mono room impulse response, a spatial room

impulse response is preferred when studying the location of reflections.

The spatial impulse response is measured with a microphone array in-

stead of a single microphone. Special microphone arrays and techniques
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are presented and applied to this problem [12, 13]. Typically the spatial

impulse response measurement is done with techniques such that the au-

ralization of the enclosure is also possible. In our studies [14], the aural-

ization is based on sound intensity vector analysis and synthesis [1,2], and

therefore a specially designed open spherical microphone array is used.

1.1 Scope

This thesis studies localization and tracing of early reflections, as well as

calibration of measurement system, and measurement of room impulse

responses. All of the analysis is based on measured spatial room impulse

responses. Figure 1.1 shows the subtasks required in the localization of

reflections. Reflection locations can be used in several applications, for

example in speech source localization [15].

Initially, the main motivation for this study was to better explain some

objective properties of the acoustics of the concert halls together with the

subjective evaluations, as in [16]. This is not yet completed and it is the

future work of the author.

The contributions of this thesis are shown in Table 1.1. In detail, the

contributions are:

1. Room impulse response measurement

A measurement technique that improves the spatial and temporal sep-

arability of reflections has been developed. The method is based on the

use of highly directional loudspeaker. The method was demonstrated

with a Panphonics panel loudspeaker in Publication I. Comparison be-

tween the standard omni-directional, and two directional loudspeakers

is given in Chapter 4.

2. Localization methods

The study of the theoretical and practical performance, and the develop-

ment of localization methods in the acoustic reflection localization task

is done in Publications IV, V, and VI. Some results for the theoretical

performance are presented in Publication II and in Chapter 6. Addi-

tional results for practical situations are presented in Chapter 8.
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Table 1.1. Contributions of this thesis to various subtasks of acoustic reflection localiza-
tion.

Measurement of room Automatic calibration

impulse responses

- Sparse impulse response tech-

nique [I]

- Source position estimation [II]

Localization of reflections Visualization

- Comparison of methods [VI] - Tracing of reflections I

- Interpolation methods [V]

- Sound intensity based direction

estimation [III]

- Localization of reflective surfaces

from speech [IV]

Figure 1.1. Subtasks in the localization of acoustic reflections.

3. Calibration of the measurement system

A method, robust with respect to noise, to be used in acoustic measure-

ments for the calibration of the loudspeaker and microphone array posi-

tions is developed in Publication II.

4. Visualization of reflections

A technique for visualization of early reflections is presented in Publica-

tion I. The method is based on inversely using the ray-tracing approach.

In the Appendix, a comparison between the different visualization tech-

niques is given.
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1.2 Organization

This thesis presents 6 publications and related background information.

Chapter 2 gives some basic information about signal processing techniques

and room acoustics. Chapter 3 lists the research related to the reflection

localization. In Chapter 4, the standard measurement and the proposed

room impulse response measurement techniques are presented. Relevant

localization methods are reviewed in Chapter 5, theoretical and practi-

cal performance of the methods are presented in Chapters 6 and 7, re-

spectively. Visualization examples of early reflections are provided in the

Appendix. A summary of the work is given in Chapter 8.
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2. Background

The goal of this thesis is to study estimation and methods related to lo-

calization of acoustic reflections. This chapter outlines the background on

estimation theory, sound, and acoustics, as related to the localization of

reflections in the context of this thesis.

2.1 Estimation theory

The measurement or estimation of some physical phenomenon always in-

cludes a random error. This error is due to unideal conditions in real

situations and is commonly referred to as noise.

In the scope of this thesis the noise is always considered to be additive.

That is, if the parameter to be measured is θ, then the measurement or

the estimation can be given as [17]:

θ̂ = θ + ε, (2.1)

where ·̂ denotes an estimate, ε is the error term. A set of logical operations

and calculations which produce the estimate is called the estimator. The

estimator is unbiased if in overall it produces the correct value, i.e.:

E{θ̂ − θ} = 0, (2.2)

where E{·} denotes the expectation. Usually the error is assumed to be

normally distributed with zero mean. Within this assumption the random

error term can be described by only one term, the variance:

σ2
e = var(ε) = E{[ε− µε]2}, (2.3)

where µε = E{ε}. Perhaps a more intuitive quantity describing the error

variance is the signal-to-noise ratio (SNR)

SNR = θ2/σ2
e , (2.4)
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which is given in decibel-scale as

SNR [dB] = 10 log10{θ2/σ2
e}[dB]. (2.5)

In a typical estimation task, instead of a single parameter θ, a parameter

vector

θ = [θ1, θ2, . . . , θK ]T ∈ RK

is estimated, and the estimation vector is then given as

θ̂ = θ + e. (2.6)

In that case also the noise term is a K-dimensional vector

e = [ε1, ε2, . . . , εK ]T ∈ RK .

Again, if the estimator is unbiased

E{θ − θ̂} = 0. (2.7)

The error vector is described by the error covariance matrix,

Σ = E
{

[e− µe][e− µe]T
}
, (2.8)

where

µe = E{e}.

The individual components of the error covariance matrix are given as

cov(εx, εy) = E
{

[εx − µεx ][εy − µεy ]T
}

(2.9)

In the case studied in this thesis, the parameter vector θ is the 3-D loca-

tion of the reflection.

Often the parameters cannot be measured directly. Instead some other

variable χ̂ is measured, which is then related to the estimated parameter

by a linear or non-linear model, i.e. χ(θ).

2.1.1 Maximum likelihood estimation

The parameter θ can be estimated in several ways. One of the most pop-

ular methods is the maximum likelihood estimation (MLE) method. The

MLE can be considered as two-step estimation approach. Firstly, the mea-

surements

χ̂ = [χ̂1, χ̂2, . . . , χ̂N ], χ̂ ∈ RN ,
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are assumed to have an error probability density function f(χ̂i;χi(θ))

where the true values of the variable are related to the parameter,

χ(θ) = [χ1(θ), χ̂2(θ), . . . , χ̂N (θ)],χ(θ) ∈ RN×K .

The joint probability density function for the variables χ(θ) given the

measurements χ̂ is formed by multiplying the individual density func-

tions [17]

L(χ(θ); χ̂) = f(χ̂;χ(θ)) =
N∏

i=1

f(χ̂i;χi(θ)) (2.10)

This joint density function is referred to as likelihood, and it is denoted

with L(·; ·). Assuming the normal distributions in Eq. (2.10) give a multi-

variate normal distribution [17]

L(χ(θ); χ̂) =
exp(− 1

2
[χ̂1−χ1(θ),...,χ̂N−χN (θ)]Σ−1[χ̂1−χ1(θ),...,χ̂N−χN (θ)]T)

(2π)(N)/2
√

det(Σ)
, (2.11)

where Σ is the covariance matrix that includes the variances of the in-

dividual error probability functions and their covariances. In the case of

independent variables, Σ is a diagonal matrix with diagonal components

corresponding to the error variances σ2. In the dependent case, the covari-

ance matrix is symmetric and it includes information on the correlation

between the variables.

In the second part of MLE, the likelihood is maximized. However, it is

often more common to use the log-likelihood instead

λ(χ(θ); χ̂)
4
= log{L(χ(θ); χ̂)} =

N∑

i=1

log{f(χ̂i;χi(θ))}. (2.12)

The argument that maximizes the likelihood function is called as the max-

imum likelihood estimate

θ̂ = arg max
θ
{λ(χ(θ); χ̂)}, (2.13)

where θ̂ is the N-dimensional estimated parameter vector.

2.1.2 Gauss-Markov theorem

The Gauss-Markov theorem states that [18, p. 217], in the case when the

noise variances are equal var{εi} = σ2, zero mean E{εi} = 0, and the

noise terms are uncorrelated, i.e., cov{εi, εj} = 0, the best linear unbiased

estimator (BLUE) is the ordinary least squares estimator, i.e.,

θ̂ = arg min
θ

{
N∑

i=1

(χ̂i − χi(θ))2

}
. (2.14)

27



Background

This is also called the minimum mean squared error estimator (MMSE).

It is straightforward to show that Eq. (2.14) is a direct result of Eq. (2.12)

with the given assumptions.

2.1.3 Monte-Carlo simulations and error metrics

Monte-Carlo simulations are a useful tool for inspecting the performance

of an estimator. In the simulations the modeled process is simulated N

times, with selected models for the signal and error. The output of the

estimator is then observed, and the estimator variance can be calculated

directly from the output values. Often, instead of the variance, root mean

squared error (RMSE) of the estimator is calculated

RMSE(θ̂) =

√
MSE(θ̂) =

√
E{‖θ̂ − θ‖2}. (2.15)

Other alternatives for the error measure are the mean absolute error or

median error. These measures do not weight large errors as heavily as

RMSE.

Another metric used in the estimation is the number of anomalous esti-

mates or the anomaly percentage. It is defined as the ratio between the

estimates that have an error greater than some threshold and the total

number of estimates

AN(θ̂) = E
{
1
{∥∥∥θ̂ − θ

∥∥∥ > ε
}}

(2.16)

where 1{·} = 1 if the condition is true and 0 otherwise.

2.1.4 Cramér-Rao lower bound

The lower bound for the estimator covariance is given by the Cramér-Rao

lower bound (CRLB). In the multivariate case, it is given by the matrix

inverse of the Fisher information matrix J(θ) [17, Ch. 3]

cov(θ̂) ≥ J(θ)−1. (2.17)

In the single variable case, the Fisher information is one dimensional

and the covariance is simply variance. The Fisher information matrix

is defined as the squared derivative of the log-likelihood of the estimate

probability density function, and it is given in the single parameter case

as [17, Ch. 3]

J(θ) = E

{[
∂λ(χ(θ); χ̂)

∂θ

]2
}
, (2.18)
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and in the multivariate case as

J(θ) = E

{[
∂λ(χ(θ); χ̂)

∂θ

] [
∂λ(χ(θ); χ̂)

∂θ

]T
}
. (2.19)

The mean squared error is limited by the CRLB

MSE(θ̂) ≤ trace{J(θ)−1} (2.20)

If the estimator achieves the CRLB and is unbiased, it is called as an

efficient estimator. The CRLB may not be achieved by any estimator. Es-

pecially, if the measured variable is not an injection, an efficient estimator

does not exist [19] and thus the CRLB is not achieved by any estimator.

2.2 Sound

A sound source emits sound energy in a medium. The sound energy

causes the fluid particles of the medium to move from their initial state.

The movements of the particles are described by the instantaneous par-

ticle velocity. On the other hand, the pressure of the medium changes

due to different densities introduced by the particle movements. That is,

the sound pressure is the effect of the sound power emitted by a sound

source. This pressure is often referred to as acoustic pressure. The sound

field has certain characteristics that are different in the near-field and

the far-field. The sound field in the near-field is called active and in the

far-field reactive [20]. In this thesis, the source is always considered to be

in the far-field.

2.2.1 Sound pressure

The total sound pressure is the superposition of atmospheric pressure p0

and the acoustic pressure p [11,21–23]:

ptot = p0 + p; (2.21)

Often, in acoustics, a quantity called the sound pressure level is used

instead of the total sound pressure. It is given as the relative change

in the acoustic pressure respective to the just audible hearing threshold

(2× 10−5 Pa) [11].
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2.2.2 The wave equation

Using Newton’s laws of motion, and assuming that the air has no net

velocity, i.e. the air does not move, sound pressure can be expressed using

the wave equation [11,23]

52p− 1

c2

∂2p

∂t2
= 0, (2.22)

where t is time and c is the speed of sound. In this case, the sound pres-

sure is a four-dimensional scalar function consisting of three coordinate

components and time, i.e., p = p(x, y, z, t).

2.2.3 Sound intensity

Particle velocity v describes the speed of the air (fluid) particle move-

ments. Together with sound pressure they define the instantaneous sound

intensity [21–23],

I = pv. (2.23)

Note that the sound intensity is a vector quantity as is the particle veloc-

ity. Sound intensity is perhaps best described as the flow of energy or the

sound power per area.

2.3 Measurement of sound pressure and intensity

Sound pressure is measured with a pressure microphone. The micro-

phones that are used in this thesis, translate the mechanical vibration of

the diaphragm (membrane) of the microphone into electric current using

capacitance change, or electromagnetic induction. Although there exist

special intensity sensors, such as the ones Microflown has developed [24],

here the intensity is measured using pressure microphone pairs.

2.3.1 Fourier transform and spectral density

The pressure signal recorded with a microphone is denoted with p(t). The

Fourier transform of the continuous time signal p(t) is given as [25,26]

P̃ (ω) = lim
T→∞

TP (ω) (2.24)

=

∫ ∞

−∞
p(t)e−jωtdt (2.25)
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(a) TKK-3-D microphone array

2

1

4
3

5

6

(b) G.R.A.S. sound intensity probe

Figure 2.1. Microphone arrays used in this thesis. TKK 3-D microphone array has 12
microphones equally spaced on two spheres with diameters of 10 mm and
100 mm. G.R.A.S. array has a 6 microphones on a single sphere with diame-
ter of 100 mm. Spacing dspc is equal for microphone pair on a single axis on a
single sphere. See Table 2.1 for the locations of the microphones in the array.

where ω = 2πf is the angular frequency and the discrete Fourier trans-

form of the signal of length T is given by

P (k) =
1

T

∫ T/2

−T/2
p(t)e−jktω∆dt (2.26)

with ω∆ = 2π
T . The discrete signal has a power spectral density which is

equal to [25,26]

E[P (k)P ∗(k)] =
1

T
Gp,p(k), (2.27)

where ·∗ denotes the complex conjugate. The spectral density of the con-

tinuous signal approaches [25,26]

E[P̃ (ω)P̃ ∗(ω)] = G̃p,p(ω). (2.28)

2.3.2 Sound intensity measurement using microphone pairs

Throughout this thesis, the microphone array design that is used is an

open spherical microphone array. Examples are shown in Fig. 2.1. The

microphones are omni-directional. This setup is the optimal six-microphone-

setup for localization, as shown in [27]. The use of this kind of array

makes it possible to measure sound intensity on 3-D coordinate system.

Other microphone configurations can be used as well to obtain the 3-D

sound intensity [28]. Since sound intensity can be measured, auraliza-

tion using spatial impulse response rendering technique (SIRR) is possi-

ble [1, 12]. In SIRR the features relevant for human perception are ana-

lyzed from the sound intensity vectors.
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Table 2.1. Origin centered coordinates for the microphone arrays. Spacing dspc is equal
for each microphone pair on a single axis.

Microphone No. X [m] Y [m] Z [m]

1 dspc/2 0 0

2 −dspc/2 0 0

3 0 dspc/2 0

4 0 −dspc/2 0

5 0 0 dspc/2

6 0 0 −dspc/2

On a certain axis x, the instaneous reactive sound intensity is given in

the frequency domain as

Ix(ω) = <{P ∗(ω)Ux(ω)}, (2.29)

where P (ω) and Ua(ω) are the frequency presentations of the sound pres-

sure and of the particle velocity with angular frequency ω [12]. In ad-

dition, <{·} is the real part of a complex number and (·)∗ denotes the

complex conjugate.

The pressure in the middle of the array, shown in Fig. 2.1, can be esti-

mated as the average pressure of the microphones [12,29]:

P (ω) ≈ 1

6

6∑

n=1

Pn(ω). (2.30)

In the frequency domain, the particle velocity is estimated for the x-axis

as:

Ux(ω) ≈ −j
ωρ0d

[P1(ω)− P2(ω)], (2.31)

where d is the distance between the two receivers, j is the imaginary unit,

and, for example, with the speed of sound c = 343 m/s, the median density

of air is ρ0 = 1.204 kg/m3. The particle velocity is calculated similarly for

y-axis

Uy(ω) ≈ −j
ωρ0d

[P3(ω)− P4(ω)], (2.32)

and for z-axis

Uz(ω) ≈ −j
ωρ0d

[P5(ω)− P6(ω)]. (2.33)

The overall sound intensity vector for a frequency ω is then noted with

I(ω) = [Ix(ω), Iy(ω), Iz(ω)]. The sound intensity estimation with micro-

phone pair technique is limited by the distance between the microphones.
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Frequencies above

f >
c

d
(2.34)

are spatially aliased and the sound intensity for them cannot be properly

estimated using the above equations. The low frequency limit is typically

set by the properties of the pressure microphones.

The estimation of sound intensity vectors using Eqs. (2.30) and (2.31) is

shown to be biased [29]. The bias is described by the equation [29]

g(θ) = arc tan

(
sin(ωd sin(θ)/(2c))

sin(ωd cos(θ)/(2c))

)
. (2.35)

The unbiased estimate θunb is obtained via the inverse function as θunb =

g−1(θ). The bias is caused by the fact that the pressure gradient is a sinu-

soidal one instead of the assumed constant. The bias cannot be corrected

for frequencies [29]

f >
1√
2

c

d
, (2.36)

which is much lower than the previously set threshold by the spatial alias-

ing.

In this thesis, the bias correction is not used since the highest frequency

in the experiments is selected to be so low that the bias can be neglected.

2.4 Directivity of the sources

Assuming a homogeneous medium and a free path between the source

and the sensor, the direct sound wave arriving at a sensor depends on

the characteristic of the sound source. The most used characterization

is the directivity of the source [30]. It is a measure of how much energy

the source emits to a certain angle at a certain distance. It is measured

in free-field conditions: in an anechoic chamber, or in a room where the

reflective surfaces are sufficiently far so that windowing can be applied

to isolate the direct sound from the reflections. The more measurements

made around the source, the more accurate estimation of the directivity

is achieved. The acoustic power can be estimated with a surface integral

over the directivity measurement, defined by an ISO-standard [31]. Fig-

ure 2.2 shows examples of the directivities of three loudspeakers.

The directivity and acoustic power measurements assume that the sound

source is a point source. This is not true with real sound sources. For ex-

ample, a violin has a vibrating body which emits energy in addition to that

emitted from the f-holes [30]. Also, loudspeakers are not point sources.
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(a) Standard omni-directional
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(b) Genelec 1029A
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(c) Panphonics panel loudspeaker

Figure 2.2. Pictures and dimensions of three loudspeakers, and their directivity mea-
sured in 1/3-octave bands, at 12 m distance at every 10 degrees azimuth. The
speaker is facing the microphone when azimuth angle is 90 degrees.

For instance, a widely used monitor loudspeaker Genelec 1029A has two

elements, the bass-element and the tweeter, which both emit sound en-

ergy. The bass-element reacts more slowly to the changes that the coil

passes on than the tweeter. For this reason, and due to the different lo-

cations of the elements, the high frequencies arrive at a sensor placed in

front of the loudspeaker earlier than the low frequencies, as shown in Fig.

2.3 where the impulse response is filtered at the cross-over frequency of

the loudspeaker. The fact that a loudspeaker consists of several sound

sources affects the phase of the received signal. When the single location

of the sound source is wanted, the acoustic center of the source is used,
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which is the weighted average of the sound energy over an area.

Near-field acoustic holography [32,33] is a useful tool for describing the

sound source. Acoustic holography is concerned with the inverse prob-

lem of what the sound source has emitted given the observations of sound

pressure at some distance. Typically, a grid of sensors is placed in the

vicinity of the source, and the Kirchhoff-Helmholtz integral is used to in-

versely to predict where the energy is distributed on a hologram plane

[34]. It can be used, for example, in noise source measurements or to

investigate which parts of an instrument emit sound energy.
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Figure 2.3. Impulse response of Genelec 1029A, measured at approximately 5.1 m dis-
tance, in front of the loudspeaker. The low frequencies arrive later at the
microphone than the high frequencies.

2.5 Geometrical quantities

Useful geometrical quantities in acoustic source localization are time of

arrival (TOA) and time difference of arrival (TDOA). The calculation of

these quantities depend on the selected wave propagation model. Two

commonly used wave propagation models are the spherical and the plane

wave propagation models. Fig. 2.4 illustrates the principles of these two

models in 2D. The plane wave propagation model is usually assumed and

used, if the intra-sensor distances are small and the source is far away

from the sensors.
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(a) Plane wave propagation (b) Spherical wave propagation

Figure 2.4. Plane and spherical wave propagation models. Time of arrival (TOA) and
time difference of arrival (TDOA) are presented also for both cases.

2.5.1 Time of arrival

Time of arrival (TOA), often also referred to as time of flight, is the time

that the sound wave takes to travel from the source to the receiver. In the

case of spherical wave propagation model it is given as:

t(rn;x) = c−1‖rn − x‖ (2.37)

and for plane wave propagation model as

t(rn;x) = |c−1nT(rn − x)|, (2.38)

where c is the speed of sound and n is the direction of the plane wave.

2.5.2 Time difference of arrival

Time difference of arrival (TDOA) for a spherical wave propagation model

is the difference of two TOAs:

τ(ri, rj ;x) = c−1(‖ri − x‖ − ‖rj − x‖), (2.39)

where c is again the speed of sound and (·)T denotes vector transpose. For

the plane wave propagation model, the TDOA formulates into

τ(ri, rj ;x) = c−1nT(ri − rj). (2.40)
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2.6 Propagation of sound in enclosures in short

The inspection of sound phenomena are now restricted to room conditions.

In a room environment, when a wave confronts a surface S, the reflected

wave depends on the features of the surface. The surfaces considered

here are impenetrable, rigid, or porous. An impenetrable surface does not

transmit any waves to the other side of the surface [22]. A rigid surface

is stationary, i.e. does not move, and a porous wall is not necessarily rigid

or impenetrable [22]. A porous surface can transmit some of the arriving

energy through refraction [35].

2.6.1 Speed of sound

Particle velocity describes the speed of the particle movements. However,

the more interesting quantity in room acoustics is the speed of the prop-

agating sound pressure wave, commonly known as the speed of sound. In

room air, the most prominent factors that affect the speed of sound are the

temperature, relative humidity, barometric pressure, and carbon dioxide

content [36].

Several approximations, all derived from fluid theory, exist for the speed

of sound calculation [36]. Throughout this thesis the speed of sound is

calculated using the approximation presented in [36, p. 1046], and as-

suming that the carbon dioxide content and the barometric (atmospheric)

pressure are 0 % and 1013 hPa, respectively. The relative humidity of

the air and the temperature are measured using commercially available

equipment. Based on measurements by the author, during an acoustic

measurement, for example in a concert hall, these factors change over

time. In this thesis, it is assumed that the air in the enclosure is homoge-

neous during each measurement.

2.6.2 Attenuation and air absorption

In general, the amplitude of the sound pressure decreases in relation to

1/r, where r is the distance from the source, for spherical waves, and by

1/
√
r for cylindrical waves. This is caused by the fact that the energy is

spread over a bigger area, thereby attenuated.

In addition to attenuation, the air absorbs some of the energy of the

sound wave [35, 37, 38]. Air absorption is a function of frequency, and in

general it depends on distance and the same physical quantities as the
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speed of sound [38].

2.6.3 Specular reflections

An impenetrable surface S can be stationary or vibrating. Consider a

point xS on the surface S with velocity of the (moving) surface vS = dxS/dt

near the point xS . The velocity of the fluid v at the boundary has to be

equal to the velocity of the particles near the boundary, i.e. [22]:

v · nS = vS · nS , (2.41)

where nS is the normal component of the surface at xS .

On stationary surfaces, the surface does not move (vS = 0), and one has

v · nS = 0 [22]. This implies that the particle velocity at the boundary is

0. Therefore, a plane wave at a flat rigid surface is reflected according to

the law of mirrors (also included in Snell’s law), i.e. the reflected wave is

the mirrored angle with respect to the normal of the surface as shown in

Fig. 2.5. The specularly reflected wave can be modeled conveniently using

the image-source principle [39], shown in Fig. 2.6.

Figure 2.5. A plane wave at flat rigid surface is reflected according to the law of mirrors.
After [23].

2.6.4 Specific acoustic impedance and absorption

A boundary condition where the surface is not necessarily rigid or impen-

etrable is described by the specific acoustic impedance. Specific acoustic

impedance Z is the relation between sound pressure p and particle veloc-
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Figure 2.6. Concepts of image-source and image-sensor.

ity v on the surface S, i.e. [22]:

Z(ω) =
p(ω)

v(ω)
. (2.42)

This is analogous to the electrical circuits, i.e. the relation between impedance,

current, and voltage. Note that in this case, the particle velocity is not

written in the vector form because the measurement is considered at

one connection point. The specific acoustic impedance consists of specific

acoustic reactance and resistance, which are the real and imaginary parts

of Z(ω), respectively. The resistance can be seen as the part where energy

is lost, and reactance as the part where energy is stored.

A closely related quantity to the specific acoustic impedance is the pressure-

amplitude reflection coefficient β which describes the relation between

pressures of the incident arriving waveform and the reflected wave. Through

some theoretical examination (see [22] or [23] for details) the relation to

specific acoustic impedance is given:

Z(ω)

ρc
=

1 + β(θ, φ, ω)

1− β(θ, φ, ω)
, (2.43)

where ρc is the characteristic specific impedance of air, and θ is the angle

of the incident wave. So, β(θ, φ, ω) depends on the angle of incident and

frequency. For a plane wave at a flat rigid surface the reflection coefficient

is independent of the angle of incidence.
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If the reflection coefficient is less than 1, the material absorbs energy.

The absorption coefficient is defined as [22]:

α(θ, φ, ω) = 1− |β(θ, φ, ω)|2. (2.44)

Measurement of the absorption coefficient can be done using an impedance

tube measurement [40, 41], various in-situ measurement methods [6, 7,

42], or the reverberation chamber technique [43].

2.6.5 Diffraction

Diffraction occurs when a sound wave confronts an edge. A practical ex-

ample of this is confronted in everyday-life: a person is able to hear what

someone is speaking on the other side of a corner. There are three regions

around the corner where different waves besides the diffracted wave oc-

curs. In the first region, only reflected wave is possible, in the second

region there is only direct wave and no reflected wave, and in the third re-

gion there is only diffracted wave. The formal definitions for these cases

are given in [23]. It is found to be important to model the diffraction for

auralization purposes [44].

2.6.6 Scattered reflections or diffusion

When the surface is rough or someway uneven, the measurement or the

modeling of specular reflections becomes difficult. In this case, scattering

and diffusion coefficients are a useful way to describe the behavior of the

sound field [43]. The phenomenon that causes diffuse reflection is the

diffraction in very small scale [45]. Scattering and diffusion coefficients

describe the reflection from a surface that is not perfectly specular. For

example, the scattering coefficient is calculated by dividing the reflection

in to two components: the specular reflection, and the scattered reflections

[46]. Several measurement approaches and different definitions for the

coefficient exist for diffusion and scattering [43,47].

2.6.7 Definitions of the diffuse sound field

A sound field is perfectly diffuse if the directional energy density inside a

volume is equal for each point and direction [22]. In practice this means

that direction and the phase of the sound field are uniformly distributed

and the amplitude is equally distributed for each point. Thus, the sound
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field is spatially homogeneous and isotropic. Another definition for diffuse

sound field is that the net energy flow over the volume is zero, i.e. the

sound intensity over the surface S of the volume V
∫

S
IdS = 0, (2.45)

where dS is a surface element. A way of constructing a diffuse sound field

is by superpositioning infinite number of plane waves with random phases

in the volume. In practice, a finite number of plane waves, e.g., 1145, will

produce a diffuse sound field [48].

The diffuseness of a sound field can be measured with spatial correla-

tion function [48–50], its variations [51–53], spatial coherence [54], its

variations [53], or spatial uniformity of the sound field [51].

2.6.8 Measurement of instantaneous diffusion

All of the above methods measure the diffuseness of a sound field over

a large set of measurements. A more interesting method in the context

of this thesis is the one that can describe the diffusion of a part of the

room impulse response. Examples of this kind of method is the diffuse-

ness analysis used in SIRR [1, 12, 55]. Other methods are presented in

Publication VI and [56].

2.7 The room impulse response

When a sound wave propagates in an enclosure, it is affected by the phe-

nomena listed above. The signal received in the sensor is therefore a mod-

ified version of the signal emitted by the source. If the source signal is a

single impulse, the signal arriving to a sensor is called the impulse re-

sponse. In the context of this thesis, the impulse response can be pre-

sented as

h(t) =
K∑

k=1

hk(t) + w(t)dω + w(t) (2.46)

where

hk(t) =

∫
αk(ω)ejω(t−tk+φk(ω))dω (2.47)

is a single reflection, αk(ω) is the frequency dependent attenuation factor

for each sound wave k, tk is the time delay related to the distance of the

path of a reflection, and w(t) is measurement noise that is assumed to be
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independent and normally distributed. The attenuation factor αk(ω) is de-

pendent on the properties of the surface and air absorption [11]. Quite of-

ten in real situations the phase term φk(ω) is dependent on the frequency.

Here the frequency dependency of the phase term φk(ω) is acknowledged,

but the analysis of the room impulse responses assumes that with early

reflections the phase is independent of the frequency, i.e. φk(ω) = 0, ∀k.

The first arriving sound wave in Eq. (2.46) is referred to as the direct

sound. The sound waves arriving after the direct sound are called the

early reflections, up to a time instant called a mixing time tm [10]. The

early reflections are considered to be discrete events, with only small devi-

ations in the phase of the sound wave. After the mixing time, the impulse

response is called late reverberation. The impulse response, especially

the late reverberation, exhibits some statistical behavior [9–11]. The re-

flections cannot therefore be identified or localized from the late reverber-

ation. Figure 2.7 illustrates the three parts of the impulse response.

2.7.1 Modal and echo density

The modal density, the number of modes, i.e., resonance frequencies, at a

frequency f is given as [11, p. 61]

dNf

df
= 4πV

f2

c3
, (2.48)

where V is volume, c is speed of sound, and Nf is number of modes. The

echo density, the number of reflections arriving at time t is [11, p. 92]

dNr

dt
= 4π

c3t2

V
, (2.49)

where Nr is the number of reflections. Both of these equations apply to

rooms with arbitrary shape [11, p. 92]. When frequency increases, modal

density becomes large and when time increases, echo density becomes

large.

2.7.2 Central limit theorem

In the discrete time domain, the samples {h(i)
k }, i ∈ {1 . . . L} of a reflection

n arriving within the time window dt are considered random variables

with mean E{hk} = µ, variance var{hk} = σ2, and some unknown prob-

ability density function. According to the central limit theorem, as K

approaches infinity, the mean of the samples approaches a normal distri-

42



Background

bution [57, p. 357]:
1

K

K∑

k=1

{h(i)
k }

d→ N (µr, σ
2
r ), (2.50)

with some mean µr and variance σ2
r . Thus, the sum of an infinite num-

ber of reflections can be considered normally distributed in the discrete

time domain. Note that if {h(i)
k }Li=1 is normally distributed, then the

mean of the reflections is always normal. If {h(i)
k }Li=1 is not normally dis-

tributed, then it takes K = ∞ reflections to achieve normality, as stated

by Cramér’s theorem.

In practice, it is not required to have infinite number of reflections to

achieve normality. The number of reflections at which the average of them

is normally distributed depends on the reflection signals hn. However, no

matter what the reflection signal hn is, it is inevitable that after a certain

number of reflections the time distribution of their average is normal.

Since the modal density and echo density are differential measures,

the frequency and time intervals in them are infinitesimal, respectively.

Then, in those infinitesimal intervals the distributions of the time domain

and frequency domain pressure signals are normally distributed when the

number of modes and reflections is high enough. This model is introduced

by Schroeder [9] and later complemented by Polack [58] and they are sum-

marized in the following section.

2.7.3 Statistical models of the room impulse response

For a given room impulse response, when considered in the frequency do-

main, if the distance from the source to the receiver is sufficient, and if

enough room modes are excited simultaneously, then the real and imag-

inary parts can be considered independent Gaussian processes [9]. The

amplitude of the frequency domain room impulse response H(f) there-

fore follows the Rayleigh distribution, i.e. ‖H(f)‖ ∼ R(σ2
f ), where σ2

f is

the standard deviation in the frequency domain [9, 59]. This applies for

frequencies above the Schroeder frequency [9],

fSchroeder ≈ 2000

√
T60

V
, (2.51)

where T60 is the reverberation time and V is the volume of the room.

It should be noted that the energy follows exponential distribution, i.e.,

‖H(f)‖2 ∼ E(λe), where λe > 0 is a parameter, which can be calculated

from σf .

43



Background

(a) Time-domain

(b) Frequency-time-domain

Figure 2.7. Impulse response from a concert hall. Early reflections appear before mixing
time and late reverberation.
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In the time domain, a statistical model of the room impulse response

can be applied after the mixing time [10]. Discussion about the mixing

time is presented in the next subsection. The statistical model in the time

domain is given as [10,60]:

h(t) = b(t)f(t), (2.52)

where f(t) is a monotonically decaying function, and b(t) is zero mean

normally distributed noise, i.e. b(t) ∼ N(0, σ2
t ), and σt is the fixed standard

deviation. The decaying function is dependent on the reverberation time

T60 of the room determined by the following relation [10]:

f(t) = e−δt, (2.53)

where δ = 3 log(10)/T60 is the damping factor. The reader is reminded

that the total distribution of h(t) is not normal since it is multiplied with

the decaying function f(t). However, the frequency domain transform

F{h(t)}, where F{·} is the Fourier transform, follows the Rayleigh dis-

tribution with variance

σ2
f = σ2

t

E{f2(t)}
2

(2.54)

where E{·} denotes the expected value.

In real rooms, the reverberation time and the decaying function are a

function of frequency, i.e. δ(f) = 3 log(10)/T60(f). Figure 2.7, shows an ex-

ample of the frequency dependent reverberation time in a concert hall, es-

timated as proposed in [10]. A generalization of Eq. (2.52) to the frequency

dependent case (originally suggested by J.-D. Polack according to [10]) is

given by the ensemble average of the Wigner-Ville distribution:

< W (t, f) >= ‖H(f)‖2 e−2δ(f)t (2.55)

where ‖H(f)‖2 is the power spectral density. That is, the average of the

Wigner-Ville distribution over a set of time instants and frequencies has

an exponentially decaying shape in the time domain multiplied by the

power spectral density.

The Wigner-Ville distribution itself is defined as [10]:

W (t, f) =

∫ ∞

−∞
h(t− τ/2)h(t+ τ/2)e−j2πfτdt. (2.56)

The Wigner-Ville distribution has the following properties. The integra-

tion of Eq. (2.56) with respect to frequency produces the temporal energy

density

h2(t) =

∫ ∞

−∞
W (t, f)df, (2.57)
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and integration with respect to time gives the spectral energy density

‖H(f)‖2 =

∫ ∞

−∞
W (t, f)dt. (2.58)

Equation (2.56) allows the attenuation factor δ in Eq. (2.52) to be depen-

dent on frequency.

2.8 Mixing time

Mixing time appears in various applications and research studies that use

or study room impulse responses [10, 37, 61–73]. Generally, in impulse

response analysis and synthesis, the mixing time is used as the time af-

ter which the impulse response can be approximated by an appropriate

model. This is generally much more efficient than modeling all of the

reflections in the impulse response. Consequently, the use of statistical

models can save considerably on computation time and/or required sys-

tem memory, which are important aspects, for example, in auralization

applications [37, 61, 62, 68, 69], particularly if real-time interaction and

dynamic source and receiver positioning are required.

Traditionally, the mixing time is subjectively defined simply to be 80 ms

[8, 74]. Furthermore, values from 50 to 200 ms have been suggested for

the mixing time from the human hearing point of view [75–77]. Although

these figures are reasonable as a subjective parameter, they might not

correspond to the objective mixing time. That is, as the objective mixing

time is dependent on the physical properties of a concert hall, it is not rea-

sonable to assume that these physical properties do not change between

concert halls. Therefore, there is a need to estimate the mixing time from

a room impulse response directly.

2.8.1 Formal definitions

Echo density, i.e. Eq. (2.49), is related to the room volume through the

billiard theory [10, 60]. A sufficiently large echo density should also indi-

cate the mixing time of a room. Different values for the sufficiently large

echo density have been proposed, varying from 1000 to 10000, according

to [62].

Several authors define the mixing time, as the time instant when 10 or

more reflections overlap in a time window of 24 ms [10, 58, 78, 79]. This
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corresponds to approximately [10]

tm ≈ γ
√
V (2.59)

where γ = 1× 10−3 [s/m3] is a normalizing constant.

Another approach is to define the mixing time through energy. In [67],

the mixing time as the time when the energy of the impulse response has

decreased a certain amount from the overall energy level. Values from -20

dB to -15 dB are used [67].

2.8.2 Estimation methods

The estimation of mixing time is an ungrateful research area, because

absolute reference, i.e. ground truth, for the mixing time does not exist.

Yet, several research articles about the topic exist [59,63–66,70–73]. The

approximation in Eq. (2.59) is based on theoretical developments and has

not been verified by experimental results from real data. In addition, it is

debatable whether the mixing time should be given as a transition time

zone, rather than a strict transition time. Therefore, all that can be done

is to compare the output of the methods in different situations, as done,

for example, in [72].

There exist several methods that estimate the mixing time of a room

impulse response based on statistical assumptions of the properties of the

signal. Mixing time is estimated as the time when the kurtosis and stan-

dard deviation ratio are close to that of a Gaussian distribution [63]. The

same approach is used for separating the late reverberation of impulse

responses in order that the spatial coherence and correlation functions of

impulse responses might be examined [53, Fig 5.]. In addition, the echo

density, for some reason, is estimated with the standard deviation ra-

tio [80]. However, the actual relation between standard deviation ration

and echo density is not shown.

The relation in Eq. (2.59) suggests that the room volume or echo density

can be used to calculate the mixing time. Hence, if the echo density or

the volume of the room is estimated from a single impulse response, as

in [81], then the mixing time is also estimated.

In [64, 70], the mixing time is estimated from the phase of the impulse

response, assuming that the phase of the impulse response is linear when

the early reflections are dominant and non-linear when the late reverber-

ation starts. From this non-linearity the mixing time can then be deter-

mined. Theoretical relation between the non-linearity of the phase of the
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impulse response and the mixing time has not been presented in [64,70].

It is suggested in [65, 66] that matching pursuit can be used for finding

the reflections within a room impulse response to estimate the mixing

time. Matching pursuit, in this case, is essentially the same as calculating

the cross correlation between a prototype of the direct sound signal and

to the rest of the impulse response. The time instant when the number of

reflections no longer follows a predefined cubic model of the echo density,

given in Eq. (2.49), is then the mixing time.

According to [59], mixing time can be identified when the correlation be-

tween the amplitude of certain frequencies of the whole impulse response

and late sound is sufficiently low. This is proposed as the definition of

mixing time and the relevance of this definition and its relation to other

acoustic parameters is discussed. It is found that mixing time and re-

verberation time have the highest correlation out of the studied acoustic

parameters [59].

The temporal overlap of reflections is used to define the mixing time

in [71]. The basic assumption is that the original emitted sound wave

from the sound source widens after each reflection. The width of these

reflections is compared to the time differences between the reflections to

deduce the mixing time.

In [73] the room’s free path temporal distribution is considered to be an

indicator of the mixing time. The free path temporal distribution is ob-

tained by ray tracing and it describes the energy of the reflections at each

time instant. In ergodic rooms, the energetic average of the path lengths

converges rapidly after the mixing and the free path value becomes inde-

pendent of the time.
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3. Related research

Previous work and related research on localization of reflections are de-

scribed. Measurement of room impulse responses is presented. The most

relevant localization methods are discussed, and different approaches and

setups for localization of reflections used in the previous research are re-

viewed. Possible application areas for reflection localization are listed in

the end of the chapter.

3.1 Room impulse response measurement

The standard way of studying room acoustics is to measure a room im-

pulse response [8]. The standard states that an omni-directional source

and also, in most of the cases, an omni-directional microphone are to be

used in the measurement.

Recently, advanced microphone array techniques have been applied for

room impulse response measurements [1,13,82–91]. The advantage over

traditional omni-directional microphone measurement is that spatial anal-

ysis of the impulse response can be applied. In addition, auralization of

the space is made possible [1,2,83].

3.2 Localization methods

Source localization methods are based on time of arrival estimation (TOA),

time difference of arrival (TDOA), or directly on the signals.

TDOA estimation is a far more popular topic than TOA estimation. This

is due to the fact that time of arrival (TOA) cannot be directly measured

with unknown source signals. More than ten methods have been devel-

oped for the TDOA problem over the last decades [25, 92–98]. One of the
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most popular approaches is the generalized correlation [25]. Other meth-

ods include time domain difference function [96], and the use of some ad-

ditional information such as the fundamental frequency [93]. The theoret-

ical performance of TDOA estimation is well known in theory for the case

when additive noise is present [99, 100]. Lower bounds, such as Cramér-

Rao, describe the variance of the TDOA estimation in the case of additive

noise [99]. The accuracy of TDOA based localization is limited by the

sampling frequency. In [101] parabolic fit and in [102] exponential fit are

proposed for interpolating the TDOA estimate.

The most straightforward algorithm for TOA estimation is a simple

peak-picking algorithm [65,66,103]. In addition, it has been proposed that

statistical features, such as kurtosis, can be used to detect peaks [104].

Other methods are based on correlation or some other similarity measure

and they usually require a priori knowledge of the signal [66, 103]. In

principle, the onset detection methods used in music signal analysis could

be used here [105]. The theoretical performance of TOA estimation is not

studied extensively under additive noise to the knowledge of the present

author. TOA accuracy can be improved by basic Fourier-interpolation or

by assuming a shape for the estimation function, similarly as in TDOA

estimation.

When two- or three-dimensional localization is desired, the TDOAs, TOAs,

or the signals are combined spatially using an acoustic source localization

function. Popular acoustic source localization functions are the maximum

likelihood estimation (MLE) function [106], steered response power (SRP)

functions [106,107], and pseudo-likelihood functions [108].

MLE methods have been formulated for TOA [109], TDOA [106, 109–

111], and signal models [112–117]. Advancements in MLE for a signal

model come from an updated noise model [117] or an updated signal model

[112].

The MLE for TDOA, with certain assumptions, can be presented as a

least squares (LS) problem. The TDOA LS problem has gained lot of at-

tention in research [109, 118–126, 126–136], mostly because the LS solu-

tion can be given in closed form by making first some assumption on the

error or on the signal. The LS solutions and problems are so addressed in

research that several textbooks deal with them (e.g. [137,138]).

Also, the MLE for TOA can be presented as a LS problem. Closed form

solutions for the TOA LS problem have also been applied [139–142].

The SRP-Phase Transform algorithm has been studied extensively [106,
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107, 116, 143–146] and it has been followed by various modifications and

optimizations [116, 144, 145, 147–150]. The SRP method is shown to be

equivalent to basic beamforming [151,152].

The performance of the localization can be studied with CRLB [17], dilu-

tion of precision, which is a special case of CRLB [153, Ch.3.3], or similar

variance analysis [128,154].

The direction of arrival of the sound wave can be estimated using the

sound intensity vectors [1,12,29,155–159]. These vectors can be measured

using a special microphone, such as first order B-format microphone. The

location of the source can be estimated as the average of the intensity

vectors over time or frequency.

3.3 Localization of reflections and room geometry estimation

A relevant topic to the localization of reflections is the localization of the

reflective surfaces, or the blind estimation of room geometry. Namely, the

estimation of reflective surfaces is equivalent to localization of first order

reflections. The localization of reflections and estimation of room geom-

etry from room impulse responses have been studied in several research

articles [1,3–5,12,13,85–87,160–165]. The approaches are based on TOA,

TDOA, and direction of arrival (DOA) estimation. TOA estimation re-

quires that the loudspeakers and microphones are time-synchronized, and

the TDOA and DOA based methods do not require synchorinization.

In [1, 12] a technique called spatial impulse response rendering (SIRR)

is developed. The analysis part of SIRR inspects the direction of arrival of

the reflection and the diffuseness of the sound field. Since the analysis is

done in short time windows, the location of the reflections can be deduced

using the a priori knowledge of speed of sound, the time of arrival and the

estimated DOA which is calculated from sound intensity vectors.

In another study, a spherical microphone array with an integrated video

camera is used in [13, 85, 160] for visually inspecting the reflections. The

energy of the spherical beamformer output that is applied for an impulse

response that is divided into short time windows is overlayed on top of a

panorama video image from the center of the microphones. The location of

the reflection is then inspected visually for each frame. The maximum of

the beamformer output corresponds to the DOA of the reflection and the

distance to the reflection is calculated from the time stamp of the current
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frame.

In [161] the reflections are localized using TDOA estimation with a mi-

crophone array that consists of 8 microphones. The method is demon-

strated in an auditorium.

In [5] the room geometry is estimated by rotating a B-format microphone

around a loudspeaker, directed towards the microphone. The estimation

is based on the TOA and the DOA of the first arriving reflection in each di-

rection. For each direction a single TOA and DOA estimate is obtained. In

the post-processing phase the TOA and DOA measurements are grouped

using hierarchical clustering to avoid estimating the same plane multiple

times.

The reflecting plane parameters are estimated by rotating an omni-

directional microphone around a loudspeaker which is directed towards to

microphone in [3]. The impulse responses are transformed into an acous-

tic localization map from where the local maxima correspond to the plane

locations. As the source position is known, the plane parameters can be

calculated.

In [4] the reflecting plane parameters are estimated with a common tan-

gent algorithm in two dimensional space. The problem is first formulated

into quadractic equation that describes the relation between the TOAs

and plane parameters and source location. For a single reflection the solu-

tion of this quadratic equation provides the parameters of a single plane.

The solution is called the common tangent algorithm (COTA). For mul-

tiple planes, the estimated TOAs are first grouped using the generalized

Hough transform and then the plane for each group is solved using the

COTA. The generalized Hough transform detects the TOAs that describe

the same plane. The approaches in [4] are extended to three dimensions

in [164]. Moreover, a closed form solution for the plane parameter estima-

tion from the quadratic equation is presented in [165].

COTA is applied in [162] for the estimation multiple plane parameters

in two dimensional space. Whereas in [4] the grouping was done with

the generalized Hough trasnform in [162] the grouping is done with an

iterative search. The iteration proceeds as follows. First the parameters

of the closest plane are estimated. Then the TOAs associated with the

first plane are removed and the search is performed again. This iteration

is performed as many times as there are a priori known planes.

In [163] a closed form solution to the above mentioned quadratic equa-

tion that describes the relation between the TOA and plane parameters is
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presented for the 2-D case. In the solution, two planes are selected where

the cost function is inhomogeneous. Then, the gradients of the cost func-

tion on these planes are solved analytically. The minimum of the obtained

solutions corresponds to the plane parameters. Moreover, the generalized

Hough transform is applied to improve the estimation of the parameters

of a single plane.

The room geometry has also been estimated from continuous signals

[15, 166–169]. The advantage of these approaches is that they are blind,

i.e. there is no need for controlled source signal.

Inverse mapping of the multi-path propagation problem for first order

reflections in TDOA framework is presented in [15]. The mapping is used

together with acoustic source localization to estimate reflective surfaces

from speech signals in meeting rooms.

In [167] a circular microphone array is used around a loudspeaker to es-

timate the room geometry. A constrained room model and L1-regularized

least-squares method is used to obtain the locations of walls. This method

can be considered as semi-blind since it requires the knowledge of the

number of walls.

Acoustic imaging for finding room geometry and other acoustic proper-

ties of enclosure is applied in [86,87]. Acoustic imaging is based on the in-

verse extrapolation of the Kirchoff-Helmholtz and Rayleigh integrals. An

acoustic image can be created by measuring multiple impulse responses,

for example, on a line grid with B-format microphone [86,87].

In [166], the location of the reflections is found by beamforming a speech

signal. The direction of the source is found from the maximum direction

and the direction of the reflections corresponds to smaller local maxima in

the beamformer output. The TDOA between the reflection and the direct

sound can be estimated from the beamformer output. From the directions

and the TDOA the location of the reflector can then be deduced.

The location of a planar reflector is estimated in two dimensions from

direction of arrival estimates in [168]. An unconstrained least squares so-

lution is developed for quadratic constraints that represent the reflection

path parameters.

In [169] the location of planar reflector is estimated in two dimensions

using a white noise source and spherical beamforming [169]. A very sim-

ilar approach is used in [170] where reflectors are localized in three di-

mensions using music signals and spherical beamforming. The difference

is that a spherical microphone array is used in [170] and circular in [169].
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The basic idea in [169, 170] is identical to the one presented in [166], the

difference is in the beamforming techniques and in the TDOA estimation

method.

3.4 Automatic calibration

In principle, any general localization method can be used to calibrate the

positions of the loudspeakers and the microphones in the measurement

system. Previously, at least MLE for TOA or TDOA [109–111,171,172], LS

for TOA [142], Multi-PHAT for TDOA [15], and beamforming [173] have

been used to calibrate some parts of the measurement system. The re-

quirement for the number of microphones and/or loudspeakers are given

for different calibration cases in [109].

3.5 Visualization of reflections

The visualization of the reflections is an important step in studying them.

A good visualization enables intuitive and quick inspection of the reflec-

tions and their properties. The reflections can be illustrated by overlaying

them on top of an image as in [13,85,160,174]. In [1] the directions of the

reflections are plotted on top of the spectrogram of the impulse response.

3.6 Application areas

Concert hall acoustics can be studied effectively by subjective listening

tests [16,175]. The methodology used in [16] and [175] allows the compar-

ison between objectively measured physical features of the concert halls

and subjectively elicited attributes. It is not yet fully understood which

physical properties of the concert hall acoustics explain the subjective per-

ception of the acoustics [175].

The main motivation for the studies in this thesis is that it is thought

that some properties of the acoustics of concert halls and other musical

performance spaces can be explained by the features of the early reflec-

tions. As an example, the importance of temporal envelope preserving

early reflections has been recently demonstrated in concert halls [176].
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These reflections are reflected from flat surfaces.

If some feature of the reflection is to be extracted, the location of the

reflection is needed. Although the location can be calculated from the

computer aided design schemes obtained from architectural design, this

might be cumbersome if the geometry is complex. In addition, the archi-

tectural design schemes of the enclosure are not always available. Since

the spatial room impulse responses are measured in the acoustic studies

anyway, the localization of the reflections from them is a natural choice.

In addition to the main motivation of this thesis, the location of the re-

flections are useful to know, for example, in acoustic source localization

that utilizes reflections [15,177–184]. Overall, these methods exhibit bet-

ter performance than the traditional acoustic source localization methods

when strong enough specular reflections are present.
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4. Room impulse response
measurement

In a room environment, sound s(t), emitted from the sound source at posi-

tion s, and received at receiver n at position rn, is affected by the impulse

response h(t; rn, s):

p(t; rn, s) = h(t; rn, s) ∗ s(t) + w(t), (4.1)

where ∗ denotes convolution and, w(t) is the measurement noise, inde-

pendent and identically distributed for each receiver. For simplicity, the

impulse response measured at receiver n is noted with hn(t) in this sec-

tion.

4.1 Standard measurement technique

In the majority of cases, the impulse response is measured by playing

back a signal s(t) from a loudspeaker and recording it with a microphone.

The most popular signals for the source excitation are the sine-sweep

[185, 186], the maximum length sequence [187], and the optimized time-

streched pulse [188]. An estimate of the impulse response is then obtained

by deconvolution of the received signal and the source signal

ĥ(t; rn, s) = p(t; rn, s) ∗−1 s(t) + w̃(t), (4.2)

where ∗−1 is the deconvolution operator and w̃(t) is the (i.i.d.) noise term.

As well-known, deconvolution corresponds to division in the frequency

domain. The signal to noise ratio in the impulse response measurement

is defined by the ratio

SNR [dB] = 10 log10

(
ĥ2(tdir)

E{w̃2(t)}

)
, (4.3)

where tdir is the time of arrival of the direct sound. The noise variance (the

energy) can be approximated from the beginning of the impulse response,

before the direct sound, or from the end, where there is no signal.
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The ISO-standard for room acoustic parameters states that an omni-

directional source is to be used [8]. By definition, the omnidirectional

source emits equal amount of energy to all directions. In reality, accord-

ing to the standard [8], small variations up to 6 dB are allowed in different

frequency bands.

4.1.1 Sine-sweep technique

The sine sweep source signal is given as [186]:

s(t) = sin

(
ω1T

log {ω2/ω1}

(
exp

(
t

T
log {ω2/ω1}

)
− 1

))
, (4.4)

where ω1 and ω2 are the lower and upper frequency of the sweep, and

T is the total length of the sweep. The advantage of the sine-sweep sig-

nal over the maximum length sequence is that the harmonic distortion

of the loudspeaker can be removed from the impulse response as pointed

out by Farina, e.g. in [186]. Sometimes the sine-sweep with Eq. (4.4)

is referred to as logarithmic sine sweep, since in logarithmic scale the

frequency changes linearly. The SNR achieved with the sine-sweep tech-

nique is approximately from 60 to 90 dB in the measurements taken for

this thesis.

4.1.2 On the use of natural sound sources

Sometimes balloon bursts and gunshots [66, 70] are used as the source

signal. In this case, the exact source signal is unknown, and therefore the

emitted sound is usually assumed to resemble an impulse closely enough.

However, at least balloon bursts have been shown not to fulfill the ISO-

standard on the directivity of an omnidirectional source [189]. In addition,

the balloon burst has a poor repeatability if the balloon type, the pressure,

or the bursting technique changes [189].

4.2 The sparse impulse response technique

The ISO-standard measurement is well suited for the estimation of the

traditional room acoustic parameters. However, here the interest is in the

early reflections and their properties. With the omni-directional source, if

the length of the reflection path, that is the path from the source via the

reflections to the receiver, is equal with two or more reflections, then they
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arrive at the receiver at the same time and can not be localized properly.

In practical situations, a short time window is used in the analysis of

the reflections. Then the reflection paths need only to be approximately

the same when they already overlap in the analysis window and interfere

with the directional analysis. In addition, since the reflections in real

situations are often not discrete events, they tend to spread over time

and overlap with each other even more. Moreover, due to the physical

limitations of the loudspeakers in dimensions and on the frequency band,

even the emitted sound field is not a perfect Dirac-impulse, especially if

the loudspeaker consists of several elements as shown in Fig. 2.3.

Recently a novel measurement technique, the sparse impulse response

technique, for the investigation of early reflections was developed in Pub-

lication I. The technique takes advantage of directional loudspeakers. A

directional loudspeaker emits more sound in some directions than others.

When a room impulse response is measured with such a directional loud-

speaker, some reflections are excited with more energy than others. This

way, some reflections have a better signal-to-noise or signal-to-interference

ratio than others and should be more separable in the impulse response.

4.2.1 Measurement

The impulse response measured with a directional loudspeaker that is

directed to an angle {θs, φs} at time instant t is denoted with h(t, θs, φs)

and it is named in Publication I, as a sparse impulse response. Here, the

loudspeaker is only rotated with respect to the z-axis, therefore φs is no

longer used in the notation. In theory, if the loudspeaker has an infinitely

narrow directivity, all the reflections that do not have exactly the same

reflection path length should be separable in time and space. The idea

is analogous to the ray tracing method [190], used, for example, in room

acoustics simulations, where the rays are first sent from the source posi-

tion and then observed in the receiver position. However, since infinitely

narrow directionality is not practically achieved with loudspeakers, the

idea is more analogous to beam-tracing [191] than ray-tracing.

In the case of unequal reflection paths, and ideal reflections, the rotation

angle that produces the largest absolute pressure at some time instant

t gives the direction to which the loudspeaker was directed to produce

the sound pressure observed in the receiver. Thus, the direction of the

loudspeaker can be estimated as the maximum argument of the absolute
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pressure values of the sparse responses, i.e.:

θ̂s(t) = arg max
θs

{|h(t, θs)|}. (4.5)

When θ̂s(t) is used as an argument in the sparse impulse response as

h(t, θ̂s(t)), an impulse response that includes the reflections from the strongest

direction of the loudspeaker is formed. This response is named as the

compound sparse response. The separability in space, and the knowledge

of the geometry of the enclosure, allows the tracing of reflections at each

time instant from the source to the receiver.

In theory, by using only one microphone and an infinitely directive loud-

speaker that produces Dirac-impulses, and having only ideal perfectly

specular reflections, Eq. (4.5) will produce all the reflections that do not

have equal path lengths. However, since in reality, the impulses are not

perfect Dirac-impulses, not all the reflections are separable in real situa-

tions.

4.2.2 Comparison to other techniques and discussion

Other authors have also spanned a directional loudspeaker around its

axis to achieve more spatial separation. Günel was the first to present this

idea in room acoustic measurements [5]. In [5] a loudspeaker is directed

to different angles around its z-axis and a B-format microphone is at a

fixed length and direction with respect to the loudspeaker. Antonacci et

al. also span a directional loudspeaker around its z-axis [3, 4]. The setup

is otherwise the same as in Günel’s method but the B-format microphone

is replaced with an omnidirectional microphone.

The difference of the proposed method and other methods, is that the

sparse impulse response and the compund sparse impulse response can

be measured with any loudspeaker and microphone setup whereas other

methods are designed for setup where a microphone and a loudspeaker

are interconnected. Moreover, Günel’s method only considers one impulse

response in one direction at a time, whereas the presented method con-

siders all the directions simultaneously in the compund sparse phase pre-

sented in Eq. (4.5). Thus, the presented method is designed to replace the

traditional single source impulse response measurement, when the other

presented methods with loudspeaker spanning are specially designed for

a certain measurement task, e.g. room geometry estimation as in [5].

The spatio-temporal separability of the reflections can be achieved by

using directional microphone or directional loudspeakers. Here, the ad-
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vantages or disadvantages of the directional loudspeakers over the direc-

tional microphones are not studied. A comparison is made only with the

traditional omni-directional and the directional loudspeakers measure-

ments.

4.3 Experiments

The goal is to compare the proposed technique with two loudspeakers to

the standard measurement technique in same conditions. The loudspeak-

ers are Genelec 1029 A, Panphonics panel loudspeaker, and a standard

omni-directional loudspeaker. The directivities of the sources is discussed

and depicted in Section 2.4. The impulse responses are measured using

the sine-sweep technique at 48 kHz, and the frequency band is from 40

Hz to 24 kHz.

4.3.1 Setup

Experiments are conducted in two auditoria illustrated in Fig. 4.1. Au-

ditorium 1 has a volume of 250 m3. The auditorium was stripped of all

furniture and has a shoebox shape. The acoustic center of the source and

location of the microphone array center are shown in Fig. 4.1(a). In addi-

tion, the height for both the source and the array was set to 1.4 m. The

G.R.A.S microphone array with 6 microphones, shown in Fig. 2.1(b) is

used in both receiver locations.

In Auditorium 2, shown in Fig. 4.1(b), the audience area has an inclina-

tion of about 10 degrees, as the height of the auditorium decreases from

about 8 m to 5 m, leading to a volume of 1800 m3. One source position

and two array positions were used in the experiments of Auditorium 2.

The height of the source and the array in this auditorium were about 1.2

m from the floor level. Each of the receiver locations in Auditorium 2 has

the TKK-3D 12 -microphone array illustrated in Fig. 2.1(a).

4.3.2 Results

Figure 4.2 shows examples of the sparse impulse responses measured at

every 10 degrees in azimuth angle with Genelec 1029A and the Panphon-

ics loudspeaker from Auditorium 2. The corresponding compound impulse

responses are shown below the sparse responses, in Fig. 4.2. Visual in-
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Figure 4.1. Array (R) and source (S) positions and the floorplans of the auditoriums.
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spection shows that, when compared to a response measured with an om-

nidirectional source in the same position, shown in the bottom plot of Fig.

4.2, the proposed measurement technique provides higher peaks that can

be easily recognized with both tested loudspeakers. Although the sparse

response for the Panphonics loudspeaker is shown from 0 to 350 degrees

in Fig. 4.2, only the angles from 0 to 170 degrees are used in the analysis

with the Panphonics loudspeaker due to the dipole directivity pattern.

In addition to the visual inspection, the performance of the impulse re-

sponse measurement can be verified by counting the number of recogniz-

able reflections within the impulse response. A good impulse response for

the reflection tracing task is the one that has more identifiable reflections.

Here, the number of recognizable reflections is calculated using the local

energy ratio [81].

The identification of a reflection is based on the relation between the

absolute sound pressure in a small analysis window and the current ab-

solute sound pressure. The local energy is calculated for the directional

sources from the compound sparse responses as:

Eloc(t) =
1

Tloc

∫ τ=t+Tloc/2

τ=t−Tloc/2
wH(t)|h(τ, θ̂s(t))|dτ (4.6)

where wH(t) is a Hanning window function of length Tloc = 128 samples

(2.67 ms). Note that, unlike in [81], here a Hanning windowing function

is used. The decision whether the sample is a reflection or not, is given

by [81]:

hrefl(t) =





1, if |h(t, θ̂s(t))| > εEloc(t)

0, otherwise,
(4.7)

where ε is the threshold value for the detection. For the omnidirectional

source, the detection procedure is the same with the exception that the

standard impulse response is used instead of the compound sparse re-

sponse.

The number of identified reflections, noted here with K, with respect to

the threshold ε is shown in Fig. 4.3. The results are averaged over all the

measured impulse responses for each auditorium. That is, for Auditorium

1 and 2, the results are averaged over 24 measurements for each loud-

speaker type. In Auditorium 1 the 24 measurements consists of a single

source position and 12 microphones of the TKK-3D array in two different

receiver locations. In Auditorium two the 24 measurements include two

source positions and six microphones of the G.R.A.S. microphone array in

two receiver positions.
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The results indicate that the proposed measurement technique provides

more recognizable reflections than the standard measurement technique.

With an arbitrarily selected threshold of ε = 4, the omnidirectional source,

Genelec 1029A, and the Panphonics panel loudspeaker give 2, 61, and 132,

reflections for the Auditorium 1, and 3, 101, and 169, for Auditorium 2,

respectively. Thus, the more directional the loudspeaker is, the more in-

dividual reflections can be identified. The number of identified reflections

depends strongly on the threshold. However, the order of the number of

detected reflections with different loudspeakers stays the same, no mat-

ter what threshold value is selected. In addition, as expected, the larger

space (Auditorium 2) has more identifiable reflections. As the distance be-

tween the individual reflections is longer in a larger space the reflections

become more separable.
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Figure 4.2. Sparse impulse responses with (a) Genelec 1029A and (b) the Panphonics
loudspeaker on a wide band from 40 Hz to 24 kHz in Auditorium 2. The pan-
phonics loudspeaker provides sharper peaks to the sparse impulse response
due to its higher directionality. The maximum is normalized to 0 dB for the
compound sparse responses and the response measured with the standard
method.
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Figure 4.3. Number of identified reflections versus the local energy ratio threshold. The
selected threshold (ε = 4) is depicted with a thick black line. The pro-
posed measurement technique with Genelec 1029A and the Panphonics loud-
speaker provides more spatial separability than the standard measurement
technique with omnidirectional source since more reflections are found.

66



5. Localization Methods

This chapter presents methods from earlier research that are applied in

this thesis for the localization of reflections. Also some novel ad-hoc local-

ization functions are proposed. It should be noted, that the analysis does

not differentiate between a reflection and other acoustic phenomena, but

all the sound waves arriving at the receivers are considered reflections

and treated in the same manner.

5.1 Signal Model

The spherical wave propagation model (see Chapter 2) is assumed. The

formulations are the same for plane wave propagation model with the ex-

ception that the TOA and TDOA terms are replaced by those given in

Eqs. (2.38) and (2.40), respectively. The only exception is the sound inten-

sity vector based localization which is only capable of direction of arrival

estimation and assumes always plane wave propagation model.

The assumed signal model is the following

h1(t) = a1s(t− t1) + w1(t)

h2(t) = a2s(t− t2) + w2(t) (5.1)
...

...

hN (t) = aNs(t− tN ) + wN (t),

where the noises wi(t), i = 1, · · · , N are normally distributed and uncor-

related with each other and with the loudspeaker impulse response s(t).
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Then, in the frequency domain, the signal model is given as

H1(ω) = A1(ω)S(ω)e−jωt1 +W1(ω)

H2(ω) = A2(ω)S(ω)e−jωt2 +W2(ω) (5.2)
...

...

HN (ω) = AN (ω)S(ω)e−jωtN +WN (ω),

where the signal, noise, and received signal have spectral densitiesGs,s(ω) =

E[S(ω)S∗(ω)],Gw1,w1(ω) = E[W1(ω)W ∗1 (ω)], andGh1,h1(ω) = E[H1(ω)H∗1 (ω)],

respectively. The amplitudes An(ω), n = 1, · · · , N are dependent on the

distance from the source to the microphones, the directivity of the source

and of the microphones, the properties of the reflective surfaces, and the

air absorption. Here the amplitudes are assumed to be equal to unity, i.e.,

An(ω) = 1, ∀n, ω.

This model is assumed for simplicity in the cases studied in this thesis

since omnidirectional microphones are used, the aperture size of the mi-

crophone array is small, and the loudspeaker is in the far-field. Moreover,

it is assumed that the reflections can be windowed from the spatial im-

pulse responses.

5.2 Time difference of arrival estimation

In the TDOA estimation, the task is to estimate the time delay τi,j = ti−tj
between two received signals hi(t) and hj(t). The maximum argument of

the estimation function Rhi,hj (τ) is the TDOA estimate, i.e.,

τ̂i,j = arg max
τ
{Rhi,hj (τ)}. (5.3)

Next, two approaches used in previous research for TDOA estimation are

formulated.

5.2.1 Generalized correlation method

The most used TDOA estimation approach is the generalized correlation

method [25]. The generalized cross correlation (GCC) function between

two received impulse responses hi and hj is calculated as [25]:

RGCC
h1,h2

(τ) = F−1{W(ω)Ĝh1,h2(ω)}, (5.4)

where W(ω), and F−1, are the weighting function, and inverse Fourier

transform, respectively.
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Maximum likelihood estimation

The well-known maximum likelihood weighting is given as [25]

WMLE
h1,h2

(ω) =
1

|Gh1,h2(ω)|
Ch1,h2(ω)

[1− Ch1,h2(ω)]
(5.5)

where

Ch1,h2(ω) =
|Gh1,h2(ω)|2

Gh1h1(ω)Gh2h2(ω)
(5.6)

is the magnitude squared coherence function. For the derivation of the

MLE weighting function see [25]. Since the noises are assumed to be

uncorrelated, the true spectral densities can be written as [25]

Gh1,h2(ω) = Gs,s(ω)e−jωτi,j , (5.7)

Gh1,h1(ω) = Gs,s(ω) +Gw1,w1(ω),and (5.8)

Gh2,h2(ω) = Gs,s(ω) +Gw2,w2(ω) (5.9)

Then, by using these equivalences in Eq. (5.5), one has

WMLE
h1,h2

(ω) =
Gs,s(ω)

Gw1,w1(ω)Gw2,w2(ω) +Gs,s(ω)Gw1,w1(ω) +Gs,s(ω)Gw2,w2(ω)
.

(5.10)

In practical situation, since the signal is an impulse response, it is easy to

estimate the noise auto power spectral density Gw1,w1(ω) from the begin-

ning of the impulse response. Then, the auto spectral density of the source

signal is obtained from Eq. (5.8), e.g., Gs,s(ω) = Gh1,h1(ω)−Gw1,w1(ω). The

MLE weighting then formulates to

WMLE
h1,h2

(ω) = Gh1,h2(ω)×
{Gw1,w1(ω)Gw2,w2(ω)+

[Gh2,h2(ω)−Gw1,w1(ω)]Gw1,w1(ω)+

[Gh1,h1(ω)−Gw2,w2(ω)]Gw2,w2(ω)}−1.

(5.11)

By assuming that the spectral densities of the noise signals are equal

Gw,w(ω) = Gw2,w2(ω) = Gw1,w1(ω), one has

WMLE
h1,h2

(ω) =
Gh1,h2(ω)

(Gh2,h2(ω) +Gh1,h1(ω))Gw,w(ω)−G2
w,w(ω)

. (5.12)

Note that there are three options for estimating Gs,s(ω) and two options

for estimatingGw,w(ω). One possibility is to estimateGs,s(ω) as the (weighted)

average over the different estimates, and insert them in to

WMLE
h1,h2

(ω) =
1

2Gw,w(ω) +G2
w,w(ω)/Gs,s(ω)

. (5.13)

If the noise can not be estimated, the first version of the MLE weighting

in Eq. (5.5) can be used, but the coherence should then be estimated us-

ing for example Welch’s approach [26, 192]. Coherence estimation can be

problematic for non-stationary signals [92]. In addition, since it includes

additional computational load, it is not used in this thesis.
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Other weighting functions

Practical weighting functions that do not require estimation of the noise

auto power spectral densities exist. In this thesis, direct cross correlation

(CC) weighting [25]

WCC(ω) = 1 (5.14)

and phase transform (PHAT) are used

WPHAT
hi,hj

(ω) = 1/‖Ghi,hj (ω)‖. (5.15)

5.2.2 Average square difference function

Similar to the generalized correlation method, are the difference function

based methods [96]. In these methods, two signals are subtracted from

each other, while the other signal is delayed by the TDOA. Here, the av-

erage squared difference function (ASDF) is also tested [95,96]:

RASDF
hi,hj

(τ) =

∫ T/2

−T/2
[hi(t)− hj(t− τ)]2dt, (5.16)

where T is the length of the integration window. With ASDF, instead of

the maximum, the minimum argument of the estimation function is the

TDOA estimate

τ̂i,j = arg min
τ
{RASDF

hi,hj
(τ)}. (5.17)

5.3 Time of arrival estimation

In time of arrival estimation, the delay tn of a signal is estimated. In

a short time window the maximum argument of the estimation function

Dn(t) is the TOA estimate

t̂n = tstart + arg max
t
{Dn(t)}, (5.18)

where t is limited by the starting point, and the ending point of the time

window, i.e., tstart < t < tend.

Since the problem is similar to TDOA estimation, also the TDOA es-

timation methods introduced above can be applied for TOA estimation.

This requires the knowledge of the source signal.
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5.3.1 Auto correlation method

This method requires a priori information of the sound source used. First,

a reference s(t) is measured for the sound source in free-field conditions:

in an anechoic chamber, or it can be windowed from an in-situ impulse

response. The reference represents the waveform of the emitted impulse

response from the source. The reference is then correlated with the im-

pulse response

DAC
s,h1

(t) =

∫ T/2

−T/2
s(ξ)h1(ξ + t)dξ, (5.19)

where AC denotes auto correlation, and T ms is the length of the short

time analysis window. Defrance et al. use similar auto correlation ap-

proach for detecting reflections from a single impulse response [65, 66].

In addition, similar auto correlation method has been used to detect the

TOA of a reflection as a preliminary task before absorption coefficient cal-

culations [42].

Maximum likelihood estimation

The autocorrelation function can be given in the frequency domain as the

generalized correlation function

DAC
s,h1

(τ) = F−1{Ws,h1(ω)Gs,h1(ω)} (5.20)

By definition, the maximum likelihood weighting also for this method is

given by Eq. (5.5). Since the other signal is the true signal without noise

the spectral densities can be written as

Gs,h1(ω) = Gs,s(ω)e−jωt1 ,and (5.21)

Gh1,h1(ω) = Gs,s(ω) +Gw1,w1(ω). (5.22)

Then, the MLE weighting for the auto-correlation method is given as

WMLE−AC
s,h1

(ω) =
1

|Gs1,h1(ω)|
Cs,h1(ω)

[1− Cs,h1(ω)]
(5.23)

= · · · (5.24)

=
1

Gw1,w1(ω)

(5.25)

where Cs,h1(ω) is the magnitude squared coherence between s and h1.

The analogy between the AC method for TOA and the generalized corre-

lation method for TDOA is obvious. The difficulty with the AC method is

that, a real loudspeaker emits different impulses in different directions.
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Thus, the method requires the response of the loudspeaker in each direc-

tion as a priori knowledge. This can be artificially done using the sparse

impulse response technique as in Publication I.

5.3.2 Maximum absolute pressure

Peak detection is a straightforward method to detect the TOA of a sound

wave. It is assumed that the arriving sound wave introduces an impulse,

a local maximum or minimum, that can be detected. The maximum argu-

ment is then the estimated TOA

t̂n = arg max
t
{|hn(t)|}. (5.26)

This may also include some windowing or filtering.

5.3.3 Other methods

The statistical features of impulse response differ when there is a reflec-

tion present in the analysis window [53, 63, 70, 104]. One way of measur-

ing the statistical difference is the kurtosis [104]. Other option is to detect

the peak from a local absolute pressure ratio between the current absolute

pressure and its surroundings [81]. Here, these statistical approaches are

no longer pursued in the TOA estimation.

5.4 Localization functions

When robust 3-D or 2-D localization is required, the TOA or TDOA infor-

mation is combined spatially over several microphones and microphone

pairs, respectively. Three commonly used state-of-the-art acoustic source

localization functions are formulated next for TOA, TDOA, and their com-

bination. This leads to nine different localization functions in total. That

is, for each dataset (TOA, TDOA, or their combination) three methods

are formulated. In addition, the methods are compared to a MLE func-

tion designed for the signal model. Also some least-squares localization

approaches and sound intensity vector based methods are discussed.

For each method, the maximum argument of the localization function

P (x) is the location estimate, i.e.

x̂ = arg max
x

{P (x)}. (5.27)
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For notational convenience, a TOA, t(rn;x), is denoted by tn(x), where

n = 1 . . . N , and N is the number of microphones. In addition, a TDOA,

τ(ri, rj ;x), is denoted by τm(x), where m = {i, j} = 1 . . .M is a tuple, and

M is the number of microphone pairs. The TDOA estimates are denoted

with τ̂m, and the TDOA estimation function Rhi,hj (τ) with Rm(τ). In this

thesis, the number of microphones is N = 6, and the number of micro-

phone pairs is M = 15. Then, the microphone pairs m from 1 to 15 are

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5},
{3, 6}, {4, 5}, {4, 6}, {5, 6}}.

5.4.1 Maximum likelihood estimation for time of arrival and time
difference of arrival

The MLE function for TDOA is given as the joint probability density func-

tion [109]

PMLE-TDOA(x) =
M∏

m=1

p(τ̂m; τm(x)) = (5.28)

=
exp(−1

2 [τ̂ − τ (x)]Σ−1[τ̂ − τ (x)]T)

(2π)(M)/2
√

det(ΣTDOA)
, (5.29)

where p(τ̂m; τm(x)) is the normal error probability density function for a

TDOA estimate,

τ̂ = [τ̂1, τ̂2, . . . , τ̂M ], (5.30)

τ (x) = [τ1(x), τ2(x), . . . , τM (x)], (5.31)

ΣTDOA = Iσ2
TDOA, (5.32)

with σTDOA as the standard deviation of the error and τm(x) is given by

Eq. (2.39).

The MLE function for TOAs, assuming normally distributed errors is

given as [109]

PMLE-TOA(x) =

N∏

n=1

p(t̂n; tn(x)) = (5.33)

=
exp(−1

2 [t̂− t(x)]Σ−1[t̂− t(x)]T)

(2π)(N)/2
√

det(ΣTOA)
, (5.34)

where p(t̂n; tn(x)) is the normal error probability density function for a

TDOA estimate,

t̂ = [t̂1, t̂2, . . . , t̂M ], (5.35)

t(x) = [t1(x), t2(x), . . . , tM (x)], (5.36)

ΣTOA = Iσ2
TOA, (5.37)
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with σTOA as the error standard deviation and τm(x) is given by Eq. (2.37).

For combining the TOA and TDOA information with MLE an assump-

tion is made, that the TDOA and TOA have independent errors. Then,

the MLE function for CM is given as the multiplication of MLE-TOA and

MLE-TDOA functions:

PMLE-CM(x) = PMLE-TOA(x, σTOA)PMLE-TDOA(x, σTDOA). (5.38)

If different error variances σ2
TOA and σ2

TDOA are assumed for TOA and

TDOA, respectively, the MLE-TOA and MLE-TDOA functions have dif-

ferent weightings. In Publication II, it is found that σ2
TOA = σ2

TDOA is a

reasonable choice.

The measurement errors of the TDOAs and TOAs can be highly cor-

related if certain TOA and TDOA estimation methods are used. As a

consequence, the covariance matrix of the combined method is no longer

a diagonal matrix as assumed above. A further investigation should be

conducted to study which of the estimators produce errors that correlate.

In Publication II the maximum absolute pressure ise used for the TOA

estimation and the direct cross correlation for the TDOA estimation and

it is found that in most of the cases the errors do not correlate, i.e. the

covariance matrix is diagonal. If the TDOAs are directly calculated from

the estimated TOAs then the combined method will have the same per-

formance as the MLE-TOA and will not gain any advantage.

5.4.2 Maximum likelihood estimation for the signal model

Earlier, the maximum likelihood estimation was formulated with respect

to TOA and TDOA estimates. It is also possible to formulate the MLE

directly with respect to the source signal and the measurement noise

[112–117]

P (x) =
∏

ω

p(H(ω);x) =

=
∏

ω

exp(−1/2[H(ω)−D(ω,x)S(ω)]Q−1(ω)[H(ω)−D(ω,x)S(ω)])

(2π)N/2
√

det(Q(ω))
,

(5.39)

where

H(ω) = [H1(ω), H2(ω), . . . ,HN (ω)]T, (5.40)

D(ω,x) = [e−jωt1(x), e−jωt2(x), . . . e−jωtN (x)]T, (5.41)

Q(ω) = Iσ2
F . (5.42)
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where σ2
F = E{Gw,w(ω)} is the expected noise variance and it is assumed

constant for all frequencies. Under the assumption on the independent

errors, and using the log-likelihood leads to a maximization function [112,

114,116,117]

LMLE-S(x) =

∫

ω
|
N∑

n=1

Hn(ω)ejωtn(x)/σF |2dω. (5.43)

This approach is denoted with MLE-S and it stands for MLE for the signal

model.

5.4.3 Steered response power

A popular family of TDOA-based acoustic source localization functions is

the SRP methods. In these methods, the acoustic source localization like-

lihood is evaluated as a spatial combination of cross correlation functions

Rm(τ) for each location candidate, denoted with x [106,107]:

PSRP-TDOA(x) = 1/M

M∑

m=1

Rm(τm(x)). (5.44)

The SRP using generalized correlation method with PHAT weighting is

commonly referred to as SRP-PHAT function, introduced originally in

[107].

The signals can be similarly steered using TOAs, as the TDOA estima-

tion functions were steered using TDOAs. In steered beamforming the

signals are artificially steered by delaying them towards a location. The

sum-and-delay beamformer is considered as the most basic case of beam-

forming [193]. When the sum-and-delay beamformer output is squared

the output is SRP [106]

PSRP-TOA(x) =

∫ ∣∣∣1/N
N∑

n=1

hn(t− tn(x))
∣∣∣
2
dt. (5.45)

This function is the same as MLE with the signal model in Eq. (5.43)

without the variance term. However, if Eq. (5.46) is implemented in the

frequency domain, the TOA information is lost, since SRP-TOA becomes

the same as SRP-TDOA with an additional (constant) energy term [151,

152].

Since the room impulse responses are already directly mapped into the

TOAs, the time variable becomes t = 0. The time integral over dt then has

no effect on the localization function and Eq. (5.45) is written as

PSRP-TOA(x) =
∣∣∣1/N

N∑

n=1

hn(tn(x))
∣∣∣
2
, (5.46)
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which is computationally more efficient implementation of the SRP-TOA

than the first one.

The TOA and TDOA information can be both used to measure the posi-

tion of a reflection. Intuitively, the next step is to combine both TOA and

TDOA information. The SRP function, when TDOA and TOA information

are both used, is here proposed to be calculated as

PSRP-CM(x) = (1−W )PSRP-TOA(x) +WPSRP-TDOA(x), (5.47)

where CM stands for combined method, and 0 < W < 1 is a weighting

factor, included in this function since the steered response is effectively

used twice in SRP-CM.

5.4.4 Maximum pseudo-likelihood

Recently it was shown in [108] and [153] that the use of multiplication

instead of addition is advantageous in the steering function. This leads to

a pseudo-likelihood function [108,152,153]

PPL-TDOA(x) =
M∏

m=1

Rm(τm(x)), (5.48)

where PL stands for pseudo-likelihood. It should be noted that thresh-

olding and shaping has to be done for the TDOA estimation functions so

that they are non-negative pseudo-likelihoods [15]. It is straightforward

to show that, if the maximum of TDOA estimation function is modeled

with a probability density function, PL-TDOA and MLE-TDOA methods

are the same methods.

Here it is proposed that the PL function for TOA is formed by multiply-

ing the individual TOA estimation functions, i.e.,

PPL-TOA(x) =
N∏

n=1

Dn(tn(x)). (5.49)

Thresholding and shaping can be done for the TOA estimation functions

so that they are non-negative pseudo-likelihoods. In the simplest case, the

TOA estimation function is the absolute maximum of the room impulse

response:

PPL-TOA(x) =

N∏

n=1

|hn(tn(x))|. (5.50)

The analogy between PL-TOA and MLE-TOA is the same as with TDOAs.

If only one maximum is selected in PL-TOA from the impulse response,
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and the corresponding TOA is assigned with an error probability density

function, PL-TOA and MLE-TOA are the same methods.

The combined maximum pseudo-likelihood is here proposed to be the

multiplication of the PL-TOA and PL-TDOA functions

PPL-CM(x) = PPL-TOA(x)PPL-TDOA(x). (5.51)

As in MLE-CM, also in PL-CM, weighting can be applied for PL-TOA and

PL-TDOA functions. If the shaping functions for PL-TOA and PL-TDOA

are selected as probability density functions, then PL-CM is equal to the

MLE function. Note that here the weighting of PL-TOA or PL-TDOA

similarly as SRP-TOA and SRP-TDOA in SRP-CM has not effect, since

the weighting will not change the maximum of PL-CM. However, although

the PL-CM cannot be weighted, the logarithmic version of it can be, i.e.,

λPL-CM(x) = (1−W ) log{PPL-TOA(x)/N}+W log{PPL-TDOA(x)/M}, (5.52)

where the log-pseudo-likelihoods of TOA and TDOA are normalized with

N and M , respectively. The weighting W is ad-hoc weighting and does not

correspond to anything in theory.

5.4.5 Least squares localization approaches

When independent and normally distributed errors are assumed for the

MLE-TOA, MLE-TDOA, or MLE-CM, it follows from the properties of the

normal distribution, that the mean square error function (MMSE) of the

estimates is also the MLE function of estimates [106,194]:

PMMSE(x) =
M∑

m=1

(θ̂m − θm(x))2, (5.53)

With MMSE the minimum argument is the position estimate instead of

the maximum. The solution in Eq. (5.53) is of least squares form. Pos-

sibly the most straightforward solution for TOA and TDOA data is the

unconstrained least squares (ULS).

Table 5.1 lists some of the optimization methods and closed form solu-

tions used for the least squares problem of TOA and TDOA. Possibly some

other optimization methods have also been proposed for the problem, but

the main focus in this work is not in the optimization methods. In prin-

ciple, any well behaving global optimization algorithm can be used for

the problem, as long as the initial guess given for the algorithm is good

enough.
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As shown in Table 5.1, interestingly, the ULS solution for TOA has not

been presented for planar waves. However, since the plane wave equa-

tions are linear, the ULS solutions are trivial to formulate. The ULS so-

lution for spherical wave propagation model with TOA and TDOA can be

formulated by integrating solutions in [139] and [118].

5.4.6 Sound intensity vector based localization

Sound intensity measurement assumes plane wave propagation model.

Therefore, with the microphone array used here, only the direction of the

arriving sound can be achieved. The direction of the arriving sound wave

can be estimated as the spherical mean (SME) of the sound intensity vec-

tors over a frequency band [199]

n̂ =
S

‖S‖ , (5.54)

where

S =

ω2∑

ω1

I(ω) (5.55)

with I(ω) = I(ω)/‖I(ω)‖, which is the amplitude normalized version of

the discretized sound intensity vector. The length of each sound inten-

sity vector is first normalized to unity based on the results in Publication

III, where the normalized vectors are found to provide more noise robust

results than the unnormalized ones.

In Publication III four other possibilities for estimating the direction of

arrival from the sound intensity vectors are presented and discussed. Al-

though the methods in Publication III are given in 2-dimensions they can

be extended to 3 dimensional data by using spherical probability density

functions instead of circular. It is shown in Publication VI that the sound

intensity vector based methods do not perform as well in the direction es-

timation of the reflections as the TDOA based methods. This is due to the

limited frequency band, that is a feature of sound intensity vector based

direction estimation.

5.5 Examples of the localization maps

Examples of localization maps with different methods are provided in

Fig. 5.1. The data is a simulated perfect reflection with no noise at (2,11,1.5) m,

and the array is at (0,0,0) m. As can be seen the TDOA based methods
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Table 5.1. Some of the least squares localization approaches that have been applied for
time of arrival (TOA) and time difference of arrival (TDOA)-based localization.

Wave model Data Reference Solution

/ Optimization Method

Spherical

TDOA [118] ULS

[119] SI, SX, PX

[120] SX

[121] TWLS

[124] EULS

[125] CLS

[126]1 ULS

[127] WCLS

[109,129] LM

[130] ALS

[131]1 TWLS

[132] PSO

[133] SDP

[134] CRM

TOA [139] ULS, NCLS

[140] ALS

[109] LM

[141]2 TWLS, MMA

TOA & TDOA None ULS

[195] -

[196] ALS

[197]3 -

Planar

TDOA [198] ULS

TOA None ULS

TOA & TDOA None ULS

ALS: Approximate least squares through Taylor-Series expansion, CLS: Constrained

least squares, CRM: Convex relaxation methods, EULS: Extended unconstrained least

squares, LM: Levenberg–Marquardt method, MMA: Min-max algorithm, NCLS: Non-

convex constrained least squares, PSO: Particle swarm optimization, PX: Plane inter-

section, SI: Spherical interpolation, SX: Spherical intersection, SDP: Semi-definite pro-

gramming, TWLS: Two-step weighted least squares, ULS: Unconstrained least squares,

WCLS: Weighted constrained least squares, 1: Used for joint speed of sound and position

estimation, 2: TOA and unknown time term, 3: Review article.
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Figure 5.1. Examples of acoustic source localization functions for a grid of (x, y, z)-
locations with z = 1.5 m in the case of no noise. The microphone array, with
six microphone with spacing of 100 mm, at (0,0,0) m is denoted with a star,
and the reflection at (2,11,1.5) m is denoted with a circle.

provide good information about the direction where as the TOA based

methods seem to work well in the distance estimation. When the TOA

and TDOA are combined a better localization method is made. As seen

in Fig. 5.1 SRP methods have more "ghosts" than other methods, i.e., lo-

cal maxima that do no correspond to the true reflection location. In this

example, the simplest search of the maximum is presented. That is, the

maximum can be found using a predefined grid of locations. However, this

is often not very efficient, therefore some other methods for the search of

the maximum are discussed next.
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5.6 Search of the extremum

Basically any global optimization method can be used for the search of

the extremum. In general, there is no way of ensuring that the global

optimization method will converge to the global extremum since local-

ization with spherical wave propagation model is a non-linear problem.

Therefore there is usually a need for Monte-Carlo simulations to validate

the optimization method for a certain problem. Since the literature on

optimization methods is extensive, only some selected methods used for

localization are discussed here.

In addition to the closed form solutions and optimization methods listed

in Table 5.1 used for TOA and TDOA based methods, other optimiza-

tion methods have been proposed for other ASL functions. Especially

the search of the maximum of the SRP-PHAT function has been of in-

terest [144,147–150,200,201].

The most naive and straightforward method for the search of the max-

imum is to use a (predefined) grid of location candidates. The drawbacks

of this approach is the slowness of the computation when the grid size is

large. Namely, 3D grid of a volume of say a concert hall, the number of

data points becomes very large, thus the estimation meets the curse of

dimensionality. The number of data points naturally depends on the se-

lected grid spacing. However, since the evaluation of the ASL function is

the same at each selected time instant for any data point, the process can

be parallelized as in [202]. Using parallel computation decreases the time

used for the evaluation in total, but requires special implementation con-

siderations and special equipment, such as the general purpose graphic

processing unit.

Specially designed sequential Monte-Carlo methods, a.k.a. particle fil-

tering, can be used to track speech and other sources [15, 108, 152, 203–

205]. The advantage of particle filtering is that only a small subset of sam-

ples is needed to represent the underlying probability distribution. For

reflection localization, particle filtering approaches are not useful since

the reflections are not moving targets but discrete events in the spatial

room impulse response. However, particle swarm optimization [206] has

similar features as particle filtering, i.e. it includes a randomization step,

and it has been used, for example, with the LS approach [132] and with

the MLE [207]. It could also be applied to other ASL functions.

In this thesis, the well-known Nelder-Mead method is used to find the
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extremum in the ASL functions [208]. The Nelder-Mead method requires

a proper initial guess in the source localization problem for the parame-

ters to be estimated.

5.7 Automatic calibration of the loudspeaker and microphone
positions

When the room impulse responses have been measured, the calibration of

the loudspeaker and/or microphone positions, and the estimation of speed

of sound in the measurement system can be done from the direct sound,

which is the first event in the impulse response. In principle, any of the

above methods can be used to localize the loudspeakers and/or the micro-

phones. Raykar et al. have listed the number of required microphones

and loudspeakers in different calibration schemes [109].

5.8 Localization of reflections

After the direct sound, the rest of the events in the room impulse response

are reflections. The processing of the spatial impulse response measured

with a compact microphone array is done in short time windows [1,12,13,

81,160], and [Publication I]. The analysis window size is selected so that

it includes as few reflections as possible but it is still possible to do some

processing for the data in the window. Using proper time windowing, the

reflections can be temporally and spatially separated. Since the maximum

intra-sensor distance in the microphone array is 10 cm, the minimum

time window length is about 0.3 ms. Based on previous knowledge [1,

12, 81], and [Publication I], a good window size for the analysis of early

reflections is approximately from 1 ms to 4 ms.

Naturally, the number of reflections arriving within one window de-

pends on the echo density defined by Eq. (2.49). Echo density states that

the larger the room, the larger the temporal and spatial spacing between

the reflections. In addition, the smaller the time interval, the less reflec-

tions within a time window.

In this work, it is assumed that there is only one reflection present per

analysis window. This is generally true for the first order reflections with

the suggested 4 ms analysis window in large spaces, such as auditoriums
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and concert halls. Using Eq. (2.49), on average, only one individual reflec-

tion should be present in an analysis window, when

t ≤
√
dNr

dt

V

4πc3
. (5.56)

For example, if V = 1800 m3, dt = 0.004 s, and c = 345 m/s, then less than

two reflections dNr = 2 are present in the analysis window until about

t < 0.042 s after the direct sound, which corresponds to about 14.4 m in

distance. In practice, the number of reflections within a window greatly

depends on the location of the source and of the receiver, Eq. (5.56) can be

seen as a guideline.

The case where there are more than one reflection present within one

analysis window is left for future research. In principle, it is the same

problem as the multiple source localization problem, and some of the

methods used for that problem, e.g. [209], should also be applicable here.

With the assumption of only one reflection per analysis window, the

measurement noise is the only aspect corrupting the localization results.

A recognizable feature, also shown in Fig. 2.7, is the fact that the signal-

to-noise ratio (SNR) decreases as the time increases. Thus, the reflections

that arrive later in time have lower SNR.

5.9 Computational complexity of the localization methods

Although reflection localization within the framework of this thesis is

always an offline task, some comparison between the complexity of the

methods is provided. The complexity is compared with the ’Big O nota-

tion’, O(·).
For basic beamforming the complexity is built up from the number of

ASL function evaluations E, the length of the signal L, and the number of

the microphones N . For cross correlation the complexity of the estimation

function isO(L log{L}) and since all the microphones are used twice in the

calculation of the ASL function the complexity increases by O(L2). [15]

Moreover, the complexity of the TOA estimation with the simple peak

picking method is O(L). For TOA estimation with AC approach the com-

plexity is O(L log{L}), but that approach is not used here. Since the MLE-

S method calculates the ASL function over a frequency band, its complex-

ity is increased by the number of frequencies used O(F ).

Table 5.2 lists the computational complexity of the methods introduced
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Table 5.2. Computational complexity of the localization methods in the reflection local-
ization task.

Data Method Complexity

TOA MLE-S O(EL log{L}NF )

TOA SRP, PL, & MLE O(NL+NE)

TDOA SRP, PL, & MLE O(N2L log{L}+ EN2)

TOA & TDOA SRP, PL, & MLE O(NL+NE +N2L log{L}+ EN2)

E: Number of ASL function evaluations, L: The length of the signal, N : The number of

the microphones, and F : The number of the frequency bins

in this chapter. The TOA-based methods have lower computational com-

plexity than the other methods since the room impulse responses are di-

rectly mapped into the TOAs.

As the number of evaluations increases, the computational complexity

and time of MLE-S increases. This results was also pointed out by Korho-

nen for the time domain beamformer [15]. However, when the number of

evaluations increases, the computational complexity of the time domain

beamformer (SRP-TOA) does not increase as rapidly as the computational

complexity of the conventional time-domain beamformer. This is due to

direct mapping of impulse response to TOAs, which does not require ad-

ditional calculations.

5.10 Interpolation Methods

Due to the limited sampling frequency, interpolation is required in prac-

tical situations in the TDOA and TOA based localization. Namely, the

sampling frequency sets an upper limit for the spatial resolution that

can be achieved. Here, three possibilities for interpolation are presented.

The first one interpolates the received signal, the second one interpolates

TDOA or TOA estimates by making assumption on the shape of the esti-

mation function. These estimates can be directly used in TOA and TDOA

based MLE methods. The third approach extends the function fitting for

TOA and TDOA estimation function. These interpolated estimation func-

tions can then be used in SRP and PL methods.
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5.10.1 Signal

The most straightforward way of interpolation is to upsample the signals

by Fourier-interpolation. Upsampling the signals with Fourier-interpolation

consists of two parts. First zeros are added, and then the signal is low-

pass filtered [210].

5.10.2 Time difference of arrival estimate

In traditional TDOA estimation, the interpolation is done usually by fit-

ting a parabola [101] or an exponential function [102] to the maximum

peak of the TDOA function. TDOA and its interpolation leads to a sin-

gle time delay estimate. These interpolated values can then be used in

the MLE methods. Similarly the TOA estimates can be interpolated by

assuming some shape for the energy or the pressure of the room impulse

response. This would require a priori knowledge of the impulse shape, as

does the interpolation of the TDOA estimate.

5.10.3 Time difference of arrival estimation function

In the SRP and PL methods, the spatial response is built on the TDOA

and TOA estimation functions. The above TDOA interpolation methods

can not be used directly for interpolating the TDOA estimation functions

for the SRP or PL methods. Therefore, an algorithm for using the func-

tion fitting approaches in the steered response function is developed in

Publication V. Although this approach is designed for TDOA estimation

functions, it can be directly applied also for TOA estimation functions.

Here, for clarity it is formulated for TDOA estimation functions.

The algorithm makes an assumption on the TDOA estimation function

shape near the maxima. Throughout this thesis, the exponential shape is

used:

fl(τ) = ale
−bl(τ−cl)2

, (5.57)

where al, bl, and cl are the coefficients and fl is the function for lth local

maximum. Other possibility is the parabolic shape, but it is shown to

perform worse than the exponential shape in the interpolation task of the

cross correlation function in [102] and in Publication V.

The interpolation of a TDOA estimation function is described by the

following steps. Firstly, the TDOA estimation function is normalized so
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(b) SRP-PHAT at 48 kHz, exponential inter-

polation

Figure 5.2. Example of the interpolation of SRP-PHAT function with exponential fitting
applied to the cross correlation vectors. The microphone array is at (0,0,0) m.

that it is positive. Secondly, the local maxima are searched from the TDOA

function in the region of interest. Thirdly, the coefficients in Eq. (5.57) are

solved using the local maximum and two neighboring points on both sides

of the maximum. This leads to a function fl(τ) for each local maximum l.

Finally, as a result, the interpolated TDOA function can be evaluated at

any time delay τ :

Rinterpolated(τ) = max
l
fl(τ). (5.58)

If the number of the local maxima is reduced similarly as in [145],

the method will be more efficient in terms of computational time. In

addition, an advantage of the proposed algorithm over e.g. the Fourier-

interpolation is that the TDOA function is presented with a limited num-

ber of coefficients, when in the Fourier-interpolation the number of sam-

ples increases with the sampling frequency. The interpolation method is

suitable for other TDOA estimation functions than cross correlation func-

tion as well and the shape assumption is not limited to the ones presented

here. Figure 5.2 shows an example of the interpolation with exponential

assumption for SRP-PHAT function.
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6. Theoretical performance

This chapter presents a theoretical performance limits in the acoustic

reflection localization framework. Different localization approaches are

compared in the theoretical framework.

6.1 Overview

The positions of the sensors and the source as well as the signal and the

noise have an effect on the localization variance. These effects can be the-

oretically measured using Cramér-Rao lower bound (CRLB) [17] analysis.

The theoretical boundaries given in this section use the assumption that

the source signal and noise signals are white Gaussian noise. This as-

sumption is necessary and required to make the signal model in Eq. (5.2)

mathematically tractable [25,26].

6.2 Time difference of arrival estimation

The theoretical performance bounds for TDOA estimation have been a

topic of various research studies [26, 99, 100, 211–213]. In addition to

CRLB, other performance bounds have been presented. For example,

the Ziv-Zakai lower bound is of interest in the presence of large errors

[26,213]. Here only CRLB is considered.

The Fisher information for TDOA estimation is given as [26,213]

J(τ) =
2T

2π

∫ ∞

0
(ω)2 Ch1,h2(ω)

1− Ch1,h2(ω)
dω (6.1)

where T is the window length and the magnitude squared coherence is

related to the SNR via [26]
Ch1,h2(ω)

1− Ch1,h2(ω)
=

SNR2(ω)

1 + 2SNR(ω)
. (6.2)
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Note that the Fisher information above is independent of τ . Setting the

power spectral densities flat as

Gs,s(ω) =




Gs,s , |ω| ∈ [ωc −B/2, ωc +B/2]

0 , otherwise
(6.3)

with center frequency ωc. Assuming also that the noises are equalGn1,n1(ω) =

Gn2,n2(ω) = Gn,n(ω), the Fisher information formulates into [213]

J(τ) =
SNR2

1 + 2SNR
T

π
(Bω2

c +B3/12). (6.4)

This analysis is valid only for T � 2π/B and for sufficiently large SNR

values, in detail [100,213]

SNR >
12ω2

c

πTB3

[
Φ−1

( 1

24

B2

ω2
c

)]2

(6.5)

where Φ−1(x) is the inverse of the exponential integral

Φ(x) =
1√
2π

∫ ∞

x
e−µ

2/2dµ. (6.6)

6.3 Time of arrival estimation

The Fisher information for TOA estimation is given by through the deriva-

tion of the MLE function in Eqs. (5.20) and (5.23), and it is equal to

J(t) =
2T

2π

∫ ∞

0
ω2 Cs,h1(ω)

1− Cs,h1(ω)
dω (6.7)

where
Cs,h1(ω)

1− Cs,h1(ω)
=

Gs,s(ω)

Gw,w(ω)
= SNR(ω). (6.8)

With the same assumptions on the spectral densities as with in TDOA

estimation, the Fisher information becomes

J(t) = SNR
T

π
(Bω2

c +B3/12). (6.9)

Since SNR > 0, it can be seen that the CRLB is always smaller for TOA

estimation since Fisher information in TOA estimation is higher.

6.4 Localization

The log-likelihood of the localization with respect to signal model is given

by Eq. (5.39). The Fisher information matrix is formulated as [113, 114,
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214]

J(x) = 2<[H(D(ω,x))HQ−1H(D(ω,x))], (6.10)

where

H(ω,D(x)) =

[
∂S(ω)D1(ω,x)

∂x
, ...,

∂S(ω)DN (ω,x)

∂x

]

= S(ω)

[
∂e−jωt1(x)

∂x
, ...,

∂e−jωtN (x)

∂x

]
.

For a single microphone and frequency the differential with respect to

location x is given by

∂S(ω)e−jωtn(x)

∂x
= −S(ω)jω

∂tn(x)

∂x
e−jωtn(x), (6.11)

where
∂

∂x
tn(x) = c−1

(
x− rn
‖x− rn‖

)
. (6.12)

When assuming independent errors and equal error variances, the Fisher

information matrix can be expressed as

J(x) =

(
2

2π

∫ ∞

ω=0
(ω‖S(ω)‖)2 df

)
[HT

TOA(t(x))Q−1HTOA(t(x))](6.13)

where a design matrix is given for TOAs as

HTOA(t(x)) =




∂
∂x t1(x)

∂
∂x t2(x)

...
∂
∂x tN (x)



. (6.14)

Moreover, when constant spectral densities for noise and signal are as-

sumed on a certain frequency band B, and within some time window of

length T , the Fisher information formulates into

J(x) =

(
2T

2π

∫ ∞

ω=0
ω2 ‖S(ω)‖2

σ2
F

df

)
[HT

TOA(t(x))HTOA(t(x))] (6.15)

=

(
2T

2π

∫ ∞

ω=0
ω2SNR(ω)dω

)
[HT

TOA(t(x))HTOA(t(x))] (6.16)

= SNR
T

π
(Bω2

c +B3/12)[HT
TOA(t(x))HTOA(t(x))]. (6.17)

6.5 Time difference of arrival based localization

The probability density function for TDOAs is given in Eq. (5.28). The

Fisher information matrix for TDOA is given by [121,153]:

J(x) = E

[(
∂

∂x
log p(τ ;x)

)(
∂

∂x
log p(τ ;x)

)T
]

x=x0

, (6.18)
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where x0 is the true source position.

The partial derivation with respect to the source position x is

∂

∂x
log p(τ ;x) = −

(
∂

∂x
τ (x)

)T

Σ−1
TDOA(τ̂ − τ (x)), (6.19)

where for a single TDOA the partial derivate of Eq. (2.39) is:

∂

∂x
τm(x) = c−1

(
x− ri
‖x− ri‖

− x− rj
‖x− rj ‖

)
(6.20)

Following [153], the partial derivates can be re-formulated in to a matrix

HTDOA(τ (x)) =




∂
∂xτ1(x)

∂
∂xτ2(x)

...
∂
∂xτM (x)



. (6.21)

The Fisher information matrix is then given by [153]:

I(x) = HT
TDOAΣ−1

TDOAHTDOA (6.22)

and the Cramer-Rao lower bound is calculated using Eq. (2.17). The min-

imum variance that TDOA estimation can achieve is given by Eq. (6.4).

The covariance matrix can be replaced by this information which yields

J(x) =
1

σ2
TDOA

HT
TDOAHTDOA = HT

TDOAHTDOAJ(τ) (6.23)

since minσ2
TDOA = 1/J(τ), and J(τ ) = I × J(τ) due to the independence

assumption.

6.6 Time of arrival based localization

The probability density function of the error is given in Eq. (5.33). The

calculation of CRLB for TOA proceeds as previously for TDOAs. The dif-

ference is that the partial derivation in Eq. (6.20) for TOAs has the form

given in Eq. (6.12). The partial derivates are re-formulated into a matrix,

which has the form given in Eq. (6.14).

The Fisher information matrix is then given as in Eq. (6.22) by re-

placing HTDOA with HTOA, and the Cramer-Rao lower bound is calculated

using Eq. (2.17).

When the partial derivates of TOAs are substituted to the Fisher in-

formation matrix in Eq. (6.22), and the minimum variance of the TOA
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estimation given in Eq. (6.9) is used as the variance for the covariance

matrix one has

J(x) = HT
TOAΣ−1

TOAHTOA =
1

σ2
TOA

HT
TOAHTOA = J(t)HT

TOAHTOA, (6.24)

which is exactly the same as Eq. (6.17). That is, in theory, localization

using time of arrival estimation, SRP-TOA or MLE-S function have the

same performance.

6.7 Combination of time difference and time of arrival information
based localization

When the errors are independent the covariance matrix for the combina-

tion of TOA and TDOA estimates is given as

ΣCM = diag(σ2
TOA, . . . , σ

2
TOA, σ

2
TDOA, . . . , σ

2
TDOA),

where the first values are TOA variances and the rest are TDOA vari-

ances.

For notational convenience, it is of use to define a measurement vector

including both TOA and TDOA measurements χ̂ = [χ̂1, χ̂2, ...χ̂N+M ] =

[t̂1, t̂2, . . . , t̂N , τ̂1, τ̂2, . . . , τ̂M ]. That is, with the 6 microphones used in this

thesis, the 6 first values of the vector are TOAs and the rest TDOAs. Then

the combined design matrix is given as

HCM(χ(x)) =




∂
∂xχ1(x)

∂
∂xχ2(x)

...
∂
∂xχN+M (x)




=




∂
∂x t1(x)

∂
∂x t2(x)

...
∂
∂x tN (x)

∂
∂xτ1(x)

∂
∂xτ2(x)

...
∂
∂xτM (x)




(6.25)

The Fisher information matrix is then given by

J(x) = HT
CMΣ−1

CMHCM = HT
CMdiag(J(t), . . . , J(t), J(τ), . . . , J(τ))HCM.

(6.26)
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6.8 Theoretical comparison

In this theoretical comparison the frequency and the temporal parameters

are fixed to ωc/(2π) = 12 kHz, B/(2π) = 24 kHz, T = .004 s. This corre-

sponds to a situation where full bandwidth at 48 kHz sampling frequency

and 4 ms time window is used in the analysis. The idea is to compare the

localization methods in the same conditions.

Figure 6.1 presents the CLRB for TOA and TDOA against SNR. In ad-

dition, CRLB for TDOA that is calculated as the difference of two TOA

estimates is presented. TOA estimation has smaller CLRB than TDOA

estimation, which is not surprising, since in TOA estimation it is assumed

that both source and noise signals are known. The CRLB of the tradi-

tional TDOA estimation approaches the CRLB of the TDOA estimation

which is calculated as the difference of two TOAs, as expected from their

equations.

In Fig. 6.2 CRLB for TOA, TDOA, and CM are shown with parameters

at location (10.5, 8.2, 2) m. The microphone array is the one given in

Table 2.1 with dspc = 100 mm. As mentioned, the CRLB for signal model

is the same as CRLB for TOA. Clearly, CM has the smallest CRLB and

TOA the second smallest. Interestingly around -25 dB, TOA and CM have

the same performance. This is caused by the increment in the variance of

TDOA, shown in Fig. 6.1.

Figure 6.3 shows an example of the CRLB for x, y, and z components

with TOA, TDOA, and CM data with SNR= 30 dB. It can be seen that CM

has the smallest CRLB in all conditions, and TOA the second smallest.

Thus it is expected that CM and TOA will perform well in the reflection

localization with the given setup.

In the next chapter, the theoretical performance bounds are compared

with Monte-Carlo simulation results.
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Figure 6.1. Cramer-Rao lower bound versus signal-to-noise ratio (SNR) for TDOA and
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93



Theoretical performance

−60 −40 −20 0 20 40 60 80
−8

−6

−4

−2

0

2

4

6

8

10

SNR [dB]

lo
g
1
0
{t
ra
ce
(C

R
L
B
(x
))
}
[lo
g
1
0
m

2
]

TDOA

TOA / SM

CM

Figure 6.2. Cramer-Rao lower bound versus signal-to-noise ratio (SNR) for localization
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7. Experiments

This chapter presents simulated and real data experiments. The perfor-

mance of TOA, TDOA, and localization methods is under investigation.

The CRLB for each estimation task is also presented.

7.1 Monte-Carlo simulations

The reflection signal model in the following Monte-Carlo simulations is of

exponential form

sn(t|tn(x), σ2) = e−(t−tn(x))2/σ2
. (7.1)

Throughout the simulations the ’variance’ parameter of the reflection sig-

nal is set to σ = 2/fs, where fs = 10, 000 Hz is the sampling frequency. The

TOA tn(x) is calculated assuming the spherical wave propagation model.

Since the assumed reflection signal is exponential, the exponential fit-

ting for the TDOA and TOA estimates and for TDOA and TOA estimation

functions presented in [102], and in Publication V, respectively, are ap-

plied. As an example, in the case of no noise the direct cross correlation of

two exponential functions is an exponential function. This result is well

known for the example with normal distributions.

7.1.1 Time difference of arrival estimation

Time difference of arrival estimation methods, introduced in Section 5.2

are compared against signal-to-noise-ratio. The length of the time window

is set to 4 ms in this experiment and the reflection signal in Eq. (7.1) is

used. The TDOAs are randomized from a uniform distribution between -1

and 1 ms, i.e. U(−1, 1) ms.

The results of 10,000 Monte-Carlo samples are presented in Fig. 7.1.

As expected, the MLE is the most robust against noise having the small-
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est number of anomalous estimates. ASDF has the smallest number of

anomalous estimates when SNR < 20 dB, but this is due to its limitations

in the TDOA estimation. That is, the maximum TDOA error with ASDF

is half of that of the other methods.

The most accurate method is MLE when SNR < 60 dB. When 60 dB <

SNR < 80 dB, CC and ASDF, are the most accurate and when SNR > 80

dB, ASDF is the most accurate.

As shown in Fig. 7.1, ASDF and GCC-CC achieve CRLB when 25 dB <

SNR< 75 dB. Moreover, GCC-MLE is lower than the CLRB when 15 dB<

SNR < 55 dB. This result indicates that the GCC-MLE TDOA estimation

is biased. The bias is a result of the exponential fitting. With very high

SNR values the CRLB does not predict the MSE of the methods. This

behaviour was also noticed in [95]. The reason for this behaviour is the

truncated window size [95]. The two different windows include two dif-

ferent peaks that have different samples [95]. True zero delay value can

therefore only be achieved with autocorrelation and zero noise level.

Direct cross correlation (CC) is the most reasonable selection for TDOA

estimation for reflection localization since it does not require a priori in-

formation about the noise as MLE does. Moreover, CC performs well when

compared to the other methods, and the calculation is straightforward and

computationally light.

7.1.2 Time of arrival estimation

Time of arrival estimation methods, introduced in Section 5.3 are tested

against signal-to-noise-ratio. The length of the time window is set to 4 ms.

The TOAs are randomized from a uniform distribution between -1 and 1

ms, i.e. U(−1, 1) ms.

The results of 10,000 Monte-Carlo samples are presented in Fig. 7.2.

The simple peak picking method is noted with arg max{h(t)} in the re-

sults of Fig. 7.2. ASDF and CC are the most accurate methods for the

TOA estimation. MLE is the most robust against noise, but loses accu-

racy, due to the fact that the exponential fit does not describe the MLE

function shape. The peak picking method, that does not require any a

priori knowledge about the source signal or the noise signal, performs in

general better than PHAT and has smaller variance than MLE when SNR

> 20 dB. As in TDOA estimation, also here the maximum TOA errors for

ASDF are half of the maximum error of the other methods.
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Figure 7.1. Results for TDOA estimation against signal to noise ratio.
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As shown in Fig. 7.2, ASDF and AC-CC achieve CRLB when 15 dB <

SNR < 75 dB. When SNR < 15 dB, the estimation is saturated as the

large number of anomalies suggests. As with the TDOA estimation, also

here the MSEs of the methods does not achieve CRLB with very high

SNR values. The explanation for this behaviour is the same as earlier for

TDOA estimation.

The TOA estimation with GCC-MLE is not realistic, since it would re-

quire the knowledge of both source and noise signals. Here, the focus is

on the blind methods that do not require a priori information. Since the

peak picking method is the only blind method and has a performance that

is comparable to the other methods, it is the most reasonable choice in the

general case for the estimation of TOAs.

7.1.3 Localization

Nine different localization methods are tested. In detail, SRP, MLE, and

PL with TOA, TDOA, and CM data are used for localization of reflections.

The formulation for the methods is given in Section 5. Direct cross corre-

lation and direct peak picking methods with exponential fitting provided

in Sections 3 and 4 are used for TDOA and TOA estimation, respectively.

Since MLE-S will lead to the same localization result as SRP-TDOA, as

shown in [151], it is not tested here.

The reflection location is drawn 1,000 times from a 3-D uniform distri-

bution between -20 and 20 m, i.e. x ∼ U(−20, 20) m, y ∼ U(−20, 20) m and

y ∼ U(−20, 20) m. The microphone array is set to (0,0,0) and the reflection

signal is windowed with 4 ms time window around the TOA between the

reflection location and (0,0,0).

The reflection signal model is the one presented in Eq. (7.1). The location

is searched from the localization function using the Nelder-Mead simplex

method implemented in MATLAB’s fminsearch. The initial location value

for the optimization method is set to the vicinity of the true location.

Optimization of the parameters

The weighting parameters for the combined methods are optimized. The

question is, which weight produced the best result for each method? For

MLE the weighting factor κ is defined as the relation between the TOA

and TDOA variance, as

κ =
σTDOA

σTOA
(7.2)
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Figure 7.2. Results for TOA estimation against signal to noise ratio.
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This selection sets the following limitations as shown in Publication II:

lim
κ→∞

PMLE-CM(x) = PMLE-TOA(x), (7.3)

lim
κ→0

PMLE-CM(x) = PMLE-TDOA(x). (7.4)

For PL-CM and SRP-CM the weighting is limited to 0 < W < 1. This

gives the following obvious limits for SRP-CM function

lim
W→0

PSRP-CM(x) = PSRP-TOA(x) (7.5)

lim
W→1

PSRP-CM(x) = PSRP-TDOA(x). (7.6)

and for PL-CM

lim
W→0

λPL-CM(x) = log{PPL-TOA(x)/N} (7.7)

lim
W→1

λPL-CM(x) = log{PPL-TDOA(x)/M}. (7.8)

The weight factor κ is changed from log10{κ} = −10, . . . , 10. For MLE-

CM the variance of the TOA error is set to σ2
TOA = 1, and the variance of

the TDOA error is altered as σTDOA = κσTOA. The weight for SRP-CM and

PL-CM is 0 < W < 1, and it is calculated as W = 1/(10κ + 1).

The results of this experiment are shown in Fig. 7.3. Also shown are the

performance of TOA and TDOA based methods. All the combined methods

achieve the same performance with some weighting.

As shown in Fig. 7.3, the optimal weight for SRP-CM isW ∈
(

1
10−6+1

, 1
10−1.2+1

)
,

for PL-CMW ∈
(

1
10−7+1

, 1
10−1.4+1

)
, and for MLE-CM log10{κ} ∈ (−3.4,−0.2).

A reasonable choice for MLE-CM weighting factor is log10(κ) = −2 since

it is close to the middle region of the optimal values. For MLE-CM this

means that TOA variance is about 100 times the TDOA variance. For

SRP-CM, and PL-CM the value W = 1/(10−2 + 1) = 0.99 for the weight is

a good choice because this is in middle region of the optimal values. This

means that SRP-TOA has a weight W = .01. and the SRP-TDOA has the

weight W = 0.99. The same applies for PL-TOA and PL-TDOA in the PL-

CM method. These optimized values are used in the experiments in the

following experiments.

Simulation results for localization methods

As can be seen from Fig. 7.4 the CM-based methods have the smallest

RMSE, MLE-CM having the smallest and SRP-CM the highest, out of

the combined data methods. At 15 dB MLE-CM has smaller RMSE than

MLE-CM. This is due to the fact that at 15 dB, the probability of anoma-

lous estimate grows quite large for the TDOA estimation, which is weighted

heavily in SRP-CM and PL-CM.
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Figure 7.3. Optimization results against weighting parameter κ with signal-to-noise ra-
tio of 60 dB and with 1,000 Monte-Carlo Samples for each SNR condition.
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TOA based methods have clearly smaller RMSE than TDOA based meth-

ods. Again, MLE-TOA has the smallest RMSE and SRP-TOA the highest

out of the TOA-based methods. The results thus indicate that combining

TOA and TDOA data is advantageous in the localization of reflections in

the current framework. Moreover, methods based only on TDOA informa-

tion do not perform well in the reflection localization task with the given

setup.

As shown in Fig. 7.4, the methods achieve CRLB for TOA but not the

CRLB for CM. This is due to the selection of the TOA and TDOA estima-

tion methods. Since no a priori information of the source signal or the

noise signal is used in the localization, the CRLB-CM cannot be achieved.

As with TOA and TDOA estimation, the CRLB is best achieved when 15

dB < SNR < 75 dB. It is evident from the results that combining the TOA

and TDOA estimation benefits the localization, since without any a priori

information, the same performance can be achieved as when the source,

and noise signal would be known.

7.2 Real data experiments

Real data experiments were conducted in Lahti concert hall. The mea-

surement setup is depicted in Fig. 7.5. One source location on the stage

and one receiver location in the audience area was used. The loudspeaker

on the stage was of type Genelec 1029A, and the G.R.A.S microphone ar-

ray, introduced in Section 2.2, with dspc = 100 mm spacing, was used in

the receiver location. The height of the loudspeaker and the microphone

array from the stage level was about 1.2 m, and 1.0 m, respectively. The

sampling frequency was set to 48 kHz in the measurements. The impulse

responses were measured using the sine-sweep technique with a 6 s long

source signal with bandwidth from 40 Hz to 24 kHz.

Three reflections are windowed from the room impulse responses based

on the source and receiver positions and the geometry of the hall. The

estimated traces of the reflections are shown in Fig. 7.5. The time domain

signals and frequency responses of the reflections in microphone no. 1 (-x

direction) of the microphone array are shown in Fig. 7.6. The first two

reflections, illustrated in Fig. 7.6, are from the curved side walls. The

third reflection is a second order reflection via the same curved walls and

it is already disturbed by another reflection arriving 1.2 ms before it. This
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Figure 7.4. Results for localization against signal-to-noise ratio (SNR) from 1,000 Monte-
Carlo samples.
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Figure 7.5. The setup in the real experiments. A loudspeaker of type Genelec 1029 A is
located in the stage area, and the G.R.A.S. microphone array in the audience
area. The reflections used in the experiments are illustrated with lines.
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shows as emphasized low frequency content in the signal. As can be seen

from Fig. 7.6, the wall reflections have a quite similar shape as the direct

sound. This is due to the fact that the directionality of the loudspeaker

stays similar in the frontal plane and the wall materials are highly re-

flective. Namely, the curved side walls in the inner stalls, characteristic

to the Lahti concert hall, are of painted concrete which has a reflection

coefficient of about 0.99 over the audible frequencies [43].

The measurement noise is removed from the impulse responses using

spectral subtraction method [215]. The spectral subtraction will not ben-

efit the localization accuracy. The spectral subtraction is made so that it

can be assumed that the noise level is 0, and the SNR can be calculated in

a more precise manner. The localization result after the spectral subtrac-

tion is chosen as the reference in these experiments. White noise is added

to the clean signals as earlier in the simulations. The setup corresponds

to the situation that was simulated earlier in this chapter, the difference

is that here the reflection signals are measured in real situation.

7.2.1 Results

The localization results for the real reflections are shown in Fig. 7.7. In

overall, the performance is clearly worse in the real situation than in the

simulated situation. This is due to the fact that the real signals are not

as easily localized as the simulated ones since their frequency content

is not constant and they include several peaks instead of a single peak.

This makes the TOA-based localization especially difficult. The secondary

peak in the reflection signal causes the localization to vary between sev-

eral locations. This is visible as an increase in the RMSE in Fig. 7.7, when

35 dB < SNR < 70 dB.

The real experiments reveal the weaknesses of MLE-TOA. When SNR<70 dB,

MLE-TOA has worse performance than the other TOA-based localization

methods. This is due to the fact that the time domain impulse response

has two peaks. In the TOA estimation, only the maximum is selected.

Since both of the peaks are almost equally strong, it is very probable that

when additive noise is present the wrong one is selected.

MLE-CM and PL-CM have the best performance in the localization of

real reflections. SRP-CM has clearly worse performance than other com-

bined methods when SNR<70 dB. The reason for the weak performance

of the SRP-CM is thought to be the fact that the competing maxima in
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the TOA estimation functions induce even more ghosts to the localization

functions than with a single peak.

7.3 Discussion

The errors in the localization with all the methods might be caused by

other acoustic phenomena, for example the diffraction from chairs in the

enclosure.

The case where there are more than one reflection present within one

analysis window was not studied in this thesis. In principle, it is the

same problem as the multi-source localization problem, and some of the

methods used for that problem, e.g. the one presented in [209], should also

be applicable for this problem. The MLE method presented in this thesis

can not be directly applied for the multi-reflection localization problem.

However, the PL method is directly applicable. Therefore in future work

the PL method is preferred.

Since the SRP-CM adds the squared impulse responses and TDOA es-

timation functions, it is possible that the true reflection location gets less

evidence than a "ghost" or a competing reflection. This behavior is also

recognized in speech source localization [108]. The problem is not present

in the PL-CM method, as shown in Fig. 5.1, since the ghosts are effectively

downsized. Therefore, PL-CM outperforms SRP-CM in real situations.

One reason for the anomalous estimates with all the methods is that the

arriving sound wave from the direction of the reflection is not as "impulse-

like" as the sound wave in front of the loudspeaker. Thus, the magnitude

of emitted sound wave in the direction of the reflections is lower, and does

not contain as much high frequency energy as the impulse in front of the

loudspeaker.

Moreover, the impulse response of the loudspeaker consists of two im-

pulses instead of one, as shown in Fig. 7.6. In this case, the reflections do

not introduce sharp peaks in the localization function with the TOA meth-

ods, and the intersection of the spheres is "blurred". By analyzing the two

impulses of the loudspeaker impulse response with linear filtering, it is

revealed that the first peak consists of frequencies that are above approx-

imately 3.3 kHz, which is the cut-off frequency between loudspeaker ele-

ments, and the second peak for the frequencies below 3.3 kHz. Thus, the

lower frequencies arrive about 0.3 ms later than the high frequencies, in
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Figure 7.7. Results for localization against signal-to-noise ratio (SNR) with the real re-
flection signals.
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front of the loudspeaker.

The two peaked impulse response of Genelec 1029A is caused by two is-

sues. Firstly, the loudspeaker consists of two elements that are separated

by approximately 10 cm. This causes some differences in the delays for

low and high frequencies, depending on the direction of the loudspeaker

with respect to the microphone. Secondly, the low-frequency-element of

the loudspeaker has a higher mass, thus it does not respond to the volt-

age changes in the coil as quickly as the tweeter, thus causing the low

frequencies to be delayed. All of the above, makes accurate localization of

the loudspeaker quite difficult using only TOA information. One can also

ask: What is then the location of a two-way loudspeaker? The methods in

this thesis, assume that it is the acoustic center of the loudspeaker.

One possibility to get around the above problems related to the loud-

speaker non-idealities is to use only the phase information of the signal.

However, this decreases the SNR in the frequencies that have a low mag-

nitude and as a result decreases the performance, as seen in the simula-

tions with PHAT which uses only the phase information.

Another possibility to obtain more accurate TOA information is to mea-

sure the impulse response of the loudspeaker to a grid of directions in

free-field conditions. Then the impulse response of the loudspeaker can

be compensated from the impulse response by deconvolving the reflection

with the free-field impulse response in the corresponding direction. This

however would require a large data space of a priori measurements of the

loudspeaker. The accuracy could be further improved if a one-way loud-

speaker would be used.

TOA estimation can be also improved by applying the sparse impulse re-

sponse technique presented in Publication I. The higher the directionality

of the loudspeaker is, the better the TOA estimation accuracy is, when the

sparse impulse response technique is used.
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8. Summary

This thesis presented techniques for localizing early reflections from room

impulse responses. A measurement technique for the investigation of

early reflections was proposed and studied. Several localization methods

were proposed. The performance of the localization methods was studied

in theory, as well as in simulated, and in realistic situations.

8.1 Main results

The main results of this thesis can be summarized as follows:

• When studying the early reflections, a directional loudspeaker should be

preferred because better spatial and temporal spacing can be achieved.

The more directional the loudspeaker is, the more separability is achieved.

• One way loudspeaker is preferred in the localization of early reflections.

Each element in the loudspeaker produces a peak in the impulse re-

sponse. Therefore multi-element loudspeakers cause multi-peaked im-

pulses in many cases, which then complicate the localization.

• Localization of the reflections should use both the time of arrival and

the time difference of arrival information. The combination of these

two pieces of information was shown to provide better performance than

when only time of arrival or time difference of arrival was used.

• Simple direct cross correlation and peak-picking are good-enough-methods

for TDOA estimation and TOA estimation in the reflection localization,

respectively. Although better performing methods exist for both TDOA

and TOA estimation, they require a priori knowledge of the source or of
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the noise signals.

• Localization methods that use pressure signals directly should be pre-

ferred over the sound intensity vector based methods in the reflection

localization task.

• Maximum pseudo-likelihood and maximum likelihood estimation meth-

ods should be preferred over steered response power methods in the lo-

calization of reflections, since they have better performance. The decre-

ment in the performance of the steered response power methods was

considered to be due to the ghosts in the localization functions.

• Interpolation is needed to achieve better spatial resolution. The pro-

posed interpolation method is found to provide a clear improvement to

the baseline method. The method is based on assuming the shape of the

local maxima of the time difference of arrival or time of arrival estima-

tion functions.

• In addition to room impulse responses, it is possible to localize reflec-

tions from speech or other continuous signals, without any a priori knowl-

edge of the source signal. The localization of a reflection with speech

sources has a worse performance than with impulse responses since the

signal-to-noise ratio is typically lower for speech than for impulse re-

sponses.

8.2 Future work

Future work in the area of reflection localization includes:

• The development of an algorithm that can deal with multiple reflections

arriving during the same time window. This thesis considered the case

when a reflection arrives during a short time window.

• Theoretical performance of the localization of reflections when direc-

tional loudspeakers are used.

• The use of superdirectional microphone arrays along with superdirec-
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tional loudspeakers should be investigated. This could be applied, for

example, in the in-situ measurement of absorption coefficients.
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Appendix: Visualization examples

The visualization of early reflections is considered. Three visualization

techniques are implemented and demonstrated for two reflections in a

concert hall. Also, other visualization techniques for the reflections exist,

such as acoustic holography [86,87]. However, it requires a line or a plane

microphone array setup and differs therefore from the setup used in this

example.

Overlaying the sound intensity vectors on top of a spectrogram

Possibly the first visualization of spatial room impulse responses is pre-

sented by Merimaa et al. [216]. The same approach is further developed

and used in [1, 12]. The spatial room impulse response is divided into

short time windows. For each pre-selected frequency band at the short

time windows, the direction of arrival is estimated using sound intensity

vectors. The vector is then plotted on top of a spectrogram consisting of

these time-frequency “tiles”. The azimuth and elevation of the direction

of arrival are plotted separately.

An example of this visualization technique is shown in Fig. A. 1. The

setup for the measurements is shown in Fig. A. 2 and the measured im-

pulse responses in Fig. A. 3. The intensity vectors are calculated from two

measurements. The first measurement with microphone array spacing of

dspc = 25 mm is used for frequencies above 1000 Hz and dspc = 100 mm is

used for frequencies below 1000 Hz.
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Audio or acoustic camera

The visual and audio information is applied in several application areas

[13,85,160,174]. In [13] the output of a spherical beamformer is overlayed

on top of a 360 camera view of the enclosure. This is done in short time

windows for an impulse response and the location of the reflections are

then inspected visually. This idea is widely applied. “Acoustic cameras”

(see e.g. [217]), take advantage on beamforming to enhance speech or to

study, for example, noise sources.

An example of the same data as above is visualized with the acoustic

camera principle in Fig. A. 3. This visualization technique lacks of fre-

quency response information, but this information can be provided as an

additional plot. The visualization technique is intuitive since the visual

cues of the enclosure support the visualized reflection. One drawback is

the lack of three-dimensionality in the visualization of the reflection lo-

cation. It is obvious that this visualization technique requires interactive

user interface to be practical.

Mapping the reflections to the geometrical model

The localized reflections can be traced back to the source via the reflective

surfaces. This approach requires a priori information on the normals and

the locations of the reflective surfaces, which can be extracted from the

architectural models of the enclosures if available or estimated from the

impulse responses. A ray-tracing approach is used inversely in Publica-

tion I to trace the reflections. The tracing is iterative. The ray is traced to

the nearest surface at each iteration. Before each iteration, it is checked

that the ray is long enough to reach the nearest surface. If it is not long

enough, then the iteration is stopped, and ideally the ray should end in

the position of the source.

An example of the same data as above is traced in Fig. A. 2. This visu-

alization technique lacks frequency response information, but it could be

easily added to the visualization.
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Figure A. 1. Visualization of reflections using the SIRR-framework.
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Figure A. 2. Visualization of reflections using the tracing of reflections principle.

134



Summary

1 Direct sound, path length 16.7 m

2 Left wall reflection, path length 21.3 m

3 Right wall reflection, path length 25.2 m
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Figure A. 3. Visualization using the audio camera. The steered responses are calculated
using PL-TDOA. Also shown are the impulse responses for 6 microphones.
The numbered boxes indicate events shown in the audio camera.
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Errata

Publication IV

The character α is overloaded.
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