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Nomenclature

A magnetic vector potential in Chapter 3 Wb/m
A coefficient matrix of linear equations in Chapters 4 and 5
B magnetic flux density T
Cdif dimensionless number
cfl courant number
D electric flux density C/m2

E electric field strength V/m
f , F function
F flux of variable φ
FL Lorentz force N
h nearest cell center distance from the wall m
H magnetic field strength A/m
�i,�j,�k Cartesian vector components
J electric current density A/m2

k turbulence kinetic energy m2/ s2
m mass kg
ṁ mass flow rate kg/ s
meq highest order of differentiation in equation
mP accuracy of prolongation operator
mR accuracy of restriction operator
n surface normal vector
p pressure Pa
P pressure matrix
P turbulence production
R residual
R∗ restricted residual in GMG
R forcing function for residual in GMG
R̂ modified residual in GMG
Rem magnetic Reynolds number
s source term
S cell-face area m2

Sij strain rate tensor
t time s
u, v, w velocity components in x-, y- and z-directions m/ s
uτ wall-friction velocity m/ s
ui fluctuation of velocity component i m/ s
Ui average of velocity component i m/ s
V velocity m/ s
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V contravariant velocity at cell face m/ s
V volume m3

x, y, z Cartesian coordinates
y+ dimensionless cell center height at wall

Greek letters

αu, αp under-relaxation coefficients for velocity and pressure
δij Kronecker’s delta
ξ, η distance between successive cell centers in i- and j-

directions
λ diffusion coefficient
Λ diffusion coefficient and friction factor
ε turbulence dissipation rate m2/ s3
εm permittivity F/m
ν kinematic viscosity m2/ s
νm magnetic viscosity m2/ s
μ dynamic viscosity Pa s
μT eddy viscosity Pa s
μm magnetic permeability H/m
ρ density kg/m3

ρm electric charge density C/m3

φ reduced electric scalar potential V
ψ source term
σ electrical conductivity S/m
τij = −ρu′

iu
′
j Reynolds stress

ω modified residual in AMG

Superscripts

m grid level
n,l iteration counts
* updated velocity value after momentum equation
′ fluctuation of variable; also used in pressure-correction

algorithm as a correction
L, R left, right
C, D convection, diffusion
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Subscripts

i,j grid coordinate directions; also used as tensor notations
k component of the equation system
k also relates constants to turbulence kinetic equation
e, w, n, s compass points in grid; east, west, north and south cell
p middle cell

Operators

∇ grad operator
∇· divergence operator
∇× curl operator
max() maximum operator
min() minimum operator

k-ε Turbulence Model Constants

Cμ = 0.09
Cε1 = 1.44
Cε2 = 1.92
σk = 1.0
σε = 1.3

CT =
√
2

Ck = 0.5
Cε = −2Ck

Abbreviations

MG Multigrid
AMG Algebraic Multigrid
FAS Full Approximation Storage
GCA Galerkin Coarse Grid Approximation
GMG Geometric Multigrid
LGS Line-Gauss-Seidel
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
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1 Introduction
Equations and a solution procedure for a two-dimensional turbulent in-
compressible flow and a magnetohydrodynamic laminar flow in a curvi-
linear grid are presented in this work. Turbulence is modeled with a
k-ε model with cross-diffusion terms. Continuity and momentum equa-
tions are solved with a pressure-correction algorithm. Electromagnetic
phenomena are approximated with a magnetic vector potential equa-
tion. The solution procedure consists of an implicit time-stepping algo-
rithm applied in a control-volume method with a multigrid (MG) accel-
eration. MG schemes are used for both linear and non-linear equation
systems. From an engineering point of view MG methods in the litera-
ture are analyzed with complex mathematics. Practical MG algorithms
for incompressible flow problems are still rare. Therefore, the MG al-
gorithms in this work are presented in detail so that a reader who has
basic skills in fluid dynamics, numerical methods and programming
can gain an insight into how to transform a single grid solver into an
MG solver.

2 Turbulence Model Equations
A simulation of the turbulent Navier-Stokes equations without simpli-
fications is very time consuming. A statistical approach can be used to
reduce the computational work. In the following chapters the averag-
ing method of the N-S equations and turbulence energy modeling are
described. This chapter was written on the basis of Wilcox’s book [1] as
well as the article by Rahman and Siikonen [2].

2.1 Reynolds Averaged Incompressible Navier-Stokes
Equations

Averaging can be performed in several ways. The most common meth-
ods are time averaging, spatial averaging and ensemble averaging.
Time averaging is chosen for this work. This is the most suitable choice
for stationary turbulence. Time averaging is defined for flow variable
f(x, t) as follows:

F (x) = lim
T→∞

1

T

∫ t+T

t

f(x, t)dt (1)
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In the case of stationary turbulence the flow variables can be expressed
as the sum of a mean, Fi(x), and a fluctuating part f ′

i (x, t). Thus instan-
taneous velocity can now be described as

ui(x, t) = Ui(x) + u
′
i(x, t) (2)

Below, the continuity and momentum equations are presented in a con-
servation form respectively in the case of incompressibility and con-
stant viscosity.

∂ui

∂xi

= 0 (3)

∂ρui

∂t
+

∂ρuiuj

∂xj

= −∂pi
∂xi

+
∂

∂xj

(
μ
∂ui

∂xj

)
(4)

Here, the velocity components and pressure include mean and fluctu-
ating parts. The resulting Reynolds-averaged equations have the fol-
lowing form:

∂Ui

∂xi

= 0 (5)

∂ρUi

∂t
+

∂ρUiUj

∂xj

+
∂ρu′

iu
′
j

∂xj

= −∂Pi

∂xi

+
∂

∂xj

(
μ
∂Ui

∂xj

)
(6)

Only the momentum equation differs from the original incompressible
laminar equations with a single term. A new term is the Reynolds
stress tensor τij = −ρu′

iu
′
j. The line over the term denotes time averag-

ing the product of the velocity component fluctuation parts. This term
is symmetric so it has six unknown components in a three-dimensional
case. Hence there is a need for additional equations. Here we use a
Boussinesq eddy-viscosity approximation. Eddy viscosity μT is a prop-
erty of the flow and describes how turbulent eddies transport momen-
tum, mass and energy alongside the mean flow convection. The Boussi-
nesq approximation suggests that turbulent eddies are transported by
diffusion. For this approximation to be valid it is assumed that turbu-
lence is homogeneous and in a state of equilibrium. In the momentum
equation Reynolds stresses are correlated as:

τij = μT
∂Ui

∂xj

(7)

Now the momentum equation has a new form as Reynolds stress is
considered as a diffusive term:
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∂ρUi

∂t
+

∂ρUiUj

∂xj

= −∂pi
∂xi

+
∂

∂xj

[
(μ+ μT )

∂Ui

∂xj

]
(8)

To retain the Boussinesq approximation, turbulence energy has to be
modeled using at least one or two equations. Turbulence energy equa-
tion models have been developed to incorporate non-local and flow his-
tory effects into the eddy-viscosity equation. One-equation models re-
late the turbulence length scale to some typical flow dimension and are
described as incomplete. Two-equation models provide an equation for
the turbulence length scale. [1]

2.2 Applied Two-Equation Model for Turbulence En-
ergy

Turbulence kinetic energy k is defined by

k =
1

2
u′
iu

′
i =

1

2

(
u′2 + v′2 + w′2

)
(9)

where squared velocity fluctuations (u′, v′, w′) are time averaged and
summed. Turbulence energy is modeled with the transport equations
of turbulence kinetic energy k as in Ref.[2]:

∂ρk

∂t
+

∂ρUjk

∂xj

=
∂

∂xj

[(
μ+

μT

σk

)
∂k

∂xj

]
+ P − ρε+ Ek (10)

and its dissipation rate ε̃:

∂ρε̃

∂t
+

∂ρUj ε̃

∂xj

=
∂

∂xj

[(
μ+

μT

σε

)
∂ε̃

∂xj

]
+

Cε1P − Cε2ρε̃− ρDe−(Ry/80)
2

Tt

+ Eε

(11)
which determines the rate at which turbulence kinetic energy is con-
verted into thermal energy. In the last two equations ε = ε̃ + D and
turbulence timescale Tt = max

(
k/ε̃, CT

√
ν/ε
)

. The eddy viscosity and
some of the other necessary variables are modeled by

μT = CμfμρkTt (12)

D =
2νk

y2n
(13)

Ry =

√
kyn
ν

(14)
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where ν is kinematic viscosity and yn the normal distance from the
wall. The constants associated with the equations are Cμ = 0.09, Cε1 =
1.44, Cε2 = 1.92, CT =

√
2, σk = 1.0 and σε = 1.3. The damping function

fμ located in the eddy viscosity equation is a function of Rλ. These are
defined by

fμ = 1 + e(−0.01Rλ−0.0068R3
λ) (15)

Rλ =
yn√
νk
ε̃

=
yn√
νTt

(16)

where
√
νTt is a Taylor microscale. To incorporate nonequilibrium flow

effects, which are present in separated and reattaching flows, cross-
diffusion terms Ek and Eε are present in the turbulence kinetic energy
and dissipation rate equations. The cross-diffusion terms enhance en-
ergy dissipation in non-equilibrium flows. They are defined by

Ek = CkCμ
∂

∂xj

(
k3

ε̃2
∂ε̃

∂xj

)
(17)

Eε = CεCμ
∂

∂xj

(
k
∂k

∂xj

)
(18)

which have a simplified form as

Ek = CkμT min

[
∂ (k/ε)

∂xj

∂ε̃

∂xj

, 0

]
(19)

Eε = Cε
μT

T 2
t

[
∂ (k/ε)

∂xj

∂k

∂xj

]
(20)

where the model constants are Ck = 0.5 and Cε = −2Ck. The turbulence
production term P in the kinetic energy equation equals

P = τij
∂Ui

∂xj

(21)

where the following Boussinesq approximation is used for Reynolds
stress:

τij = 2μTSij − 2

3
ρkδij (22)

Here Sij is the mean-strain rate tensor and δij Kronecker’s delta. This
means that the second term on the right-hand side of the equation con-
tributes only in the tensor diagonal. The strain-rate tensor can be ex-
pressed with velocity derivatives:
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Sij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
(23)

After manipulation, the turbulent production term can be presented in
2D-form as a function of derivatives of the velocity components u and v.

τij
∂Ui

∂xj

= 2μT

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]
+ μT

(
∂u

∂y
+

∂v

∂x

)2

(24)

Derivation of the result is shown in Appendix A1.

3 Magnetohydrodynamic Model
Magnetohydrodynamics means that a electromagnetic field is coupled
with the flow field. This coupling can be bi-directional. The coupling in
the momentum equation is taken into account with a source term that
is a result of a force generated by the electromagnetic field. This term
is called a Lorentz force. Electromagnetic phenomena can be solved
with an induction equation or magnetic vector potential equation. In
two-dimensional problems the latter is a better choice since only one
equation in addition to the momentum equations need to be solved to
take magnetohydrodynamic phenomena into account. But a vector po-
tential describes indirectly a magnetic flux density, therefore, compli-
cated magnetic boundary conditions cannot be included in the mag-
netic vector potential equation. These two equations can be derived
from Maxwell equations

∇× �H = �J +
∂ �D

∂t
(25)

∇× �E = −∂ �B

∂t
(26)

∇ · �B = 0 (27)

∇ · �D = ρm (28)

where E, H, D, B, J and ρm are an electric field strength, a magnetic
field strength, an electric flux density, a magnetic flux density, an elec-
tric current density and an electric charge density, respectively. Three
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material parameters are also needed. These are permittivity εm, per-
meability μm and electric conductivity σ, which are presented in the
constitutive relations:

�D = εm �E (29)
�B = μm

�H (30)
�J = σ �E (31)

To avoid confusion with the flow parameters, such as the turbulence
dissipation rate ε, the molecular viscosity μ and density ρ, subindex m
is used with the permittivity, the permeability and the electric charge
density. It is possible to determine criteria for omitting the time deriva-
tive responsible for the displacement current in Eq. (25). By combining
Eqs. (25), (29), (30) and (31) we get

∇× �B = σμm
�E − μmεm

∂ �E

∂t
(32)

The relative orders of magnitude of the right-hand side terms are esti-
mated to be

σμm
�E ∼ σμm

�E0 , μmεm
∂ �E

∂t
∼ μmεm

�E0

t0
where E0 and t0 are the characteristic values for the electric field strength
and time, respectively. By studying the ratio of these terms an inequal-
ity

εm
t0σ

� 1 (33)

can be determined. When this is true, Eq. (25) has a new form:

∇× �B = μm
�J (34)

When a conducting fluid moves in a magnetic field, an electric field is
induced if there exists velocity and magnetic field components that are
perpendicular to each other [3]. This additional field can be taken into
account with

�E ′ = �V × �B (35)

which is added to Eq. (31):

�J = σ
(
�E + �V × �B

)
(36)

In this work, material properties are assumed to be constant. Local
charge density and magnetic dipoles are assumed to be in equilibrium.
Also, magnetohydrodynamic shock waves are omitted.
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3.1 Equation for Magnetic Vector Potential
A magnetic vector potential is defined by:

�B = ∇× �A, (37)

but this does not uniquely define the vector potential. Adding the gra-
dient of any scalar function f to the vector potential does not affect the
result, since ∇ × ∇f ≡ 0. Thus ∇ · �A can be specified for the sake of
convenience. In electromagnetic problems considered in this work, the
Coulomb gauge

∇ · �A = 0 (38)

is assumed to hold [4]. Substituting magnetic vector potential into
Eq. (34), a connection with the vector potential and the current den-
sity can be found:

∇×∇× �A = −∇2 �A = μm
�J (39)

where the simplification can be made using

∇×∇× �A = ∇
(
∇ · �A

)
−∇2 �A = −∇2 �A (40)

and the Coulomb gauge Eq. (38). Eq. (40) is derived in Appendix A2.
Next the vector potential is substituted into Eq. (26)

∇× �E = − ∂

∂t

(
∇× �A

)
= −∇× ∂ �A

∂t
(41)

from where the inverse of the curl is taken:

�E = −∂ �A

∂t
+∇φ (42)

This equation has a gradient of a reduced electric scalar potential ∇φ
as a new term. This term vanishes when operated by the curl and,
therefore, represents the irrotational part of the electric field. In the
current density Eq. (36), E is replaced by Eq. (42):

�J = σ

(
−∂ �A

∂t
+∇φ+ �V × �B

)
(43)

Now an equation for the magnetic vector potential can be derived by
combining Eqs. (37), (39) and (43), and reorganizing the terms:

∂ �A

∂t
= �V ×∇× �A+

1

μmσ
∇2 �A+∇φ (44)
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In order to restrain magnetic and Lorentz force fields into xy-plane,
vectors �A = Az

�k and �J = Jz�k. Thus the magnetic flux density in terms
of vector potential is

�B = ∇× �A =

∣∣∣∣∣∣∣∣
�i �j �k
∂

∂x

∂

∂y

∂

∂z
0 0 Az

∣∣∣∣∣∣∣∣
=

∂Az

∂y
�i− ∂Az

∂x
�j (45)

and a convection term

�V ×∇× �A =

∣∣∣∣∣∣∣∣
�i �j �k
u v 0

∂Az

∂y
−∂Az

∂x
0

∣∣∣∣∣∣∣∣
=

(
−u

∂Az

∂x
− v

∂Az

∂y

)
�k (46)

which is substituted into Eq. (44):

∂Az

∂t
+ u

∂Az

∂x
+ v

∂Az

∂y
=

1

μmσ
∇2Az +

∂φ

∂z
(47)

where the Ax and Ay components are neglected. Since the current den-
sity exists only in the z-direction, the reduced scalar potential has the
same restriction and acts as a source term for the z-component of the
vector potential. Because the flow is incompressible, a continuity equa-
tion is ∇ · �V = 0. Thus velocity components u and v can be put inside
the partial derivatives:

∂ρAz

∂t
+

∂uρAz

∂x
+

∂vρAz

∂y
=

ρ

μmσ
∇2Az +

Jsρ

σ
(48)

where a source term is replaced with:

∂φ

∂z
=

Js
σ

(49)

Now a two-dimensional equation for the magnetic vector potential is
essentially a convection-diffusion equation in the conservation form.
This equation is multiplied by ρ so it resembles other equations and
keeps the notations simpler. The reduced scalar potential depends on
the source current density JS in the z-direction.
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3.2 Equation for a Magnetic Induction and a Mag-
netic Reynolds Number

An induction equation can be derived by taking the curl from Eq. (44)
and changing the vector potential to the magnetic flux with Eq. (37):

∂ �B

∂t
= ∇×

(
�V × �B

)
+

1

μmσ
∇2 �B (50)

The magnitudes of the terms on the right-hand side of the equation
above are estimated with

∇×
(
�V × �B

)
∼ V0B0

L0

(51)

1

μmσ
∇2 �B ∼ B0

μmσL2
0

(52)

where B0, V0 and L0 are the characteristic values for the magnetic
flux density, velocity and linear dimension, respectively. The magnetic
Reynolds number [5] can be obtained by dividing Eq. (51) with Eq. (52),
resulting in:

Rem ≡ V0L0μmσ (53)
Using a quantity called a magnetic viscosity νm = 1/(μmσ), this di-
mensionless number can be made to resemble the Reynolds number
associated with hydrodynamics:

Rem =
V0L0

νm
(54)

3.3 Lorentz Force Source Term for a Momentum Equa-
tion

The Lorentz force is an electromagnetic body force which represents
the force per unit volume exerted by the magnetic field upon the electric
currents [3]. The Lorentz force

�FL = �J × �B (55)

is at right angles to both J and B. In the two-dimensional model ex-
plained earlier, current density J has only a z-component and magnetic
flux density B x- and y-components. Thus

�FL =

∣∣∣∣∣∣
�i �j �k
0 0 Jz
Bx By 0

∣∣∣∣∣∣ = −JzBy
�i+ JzBx

�j (56)
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where the Lorentz force exists only in the xy-plane as magnetic flux
density B. Since B can be calculated from the vector potential A the
only unknown is current density Jz. This can be calculated from Eq. (43):

Jz = σ

(
−∂Az

∂t
+

∂φ

∂z
+ uBy − vBx

)
(57)

where
∂φ

∂z
is a source term.

4 Implicit Solution Procedure for a System
of Equations

A solution strategy for the system of two-dimensional equations consid-
ered in this work is an iterative time stepping algorithm applied with
a control volume method. With an initial guess, explicit residuals are
calculated for the equations to be solved. The equations are linearized
implicitly into delta form and the resulting linear system containing
the explicit residual is solved through iterative matrix inversion. Vari-
ables are updated using new values from the solved linear equations.
Although only steady-state cases are considered here, this algorithm
can be easily modified to solve time-accurate cases. All equations are
solved as segregated. Continuity and momentum equations are solved
with a pressure-correction method. All methods and algorithms pre-
sented in this chapter are based on the postgraduate course material
written by Siikonen [6].

4.1 Linearization Method
All iteratively solved equations in this work except a pressure-correction
equation can be described with a system of equations:

∂�Φρ

∂t
+

∂u�Φρ

∂x
+

∂v�Φρ

∂y
= ∇ ·

(
�Λ · �Φ

)
−∇ · P + �Ψ (58)

Where �Φ is a vector that consists of variables to be solved, and P is a
matrix containing pressure in the momentum equation. Λ is a vector
containing diffusion coefficients and a nabla operator. Source terms are
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inside vector �Ψ. These are defined as:

P =

⎛
⎜⎜⎜⎜⎝
p 0
0 p
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎠ Λ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(μ+ μT )∇
(μ+ μT )∇(
μ+ μT

σk

)
∇(

μ+ μT

σε

)
∇

(ρνm)∇

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝
λ1∇
λ2∇
λ3∇
λ4∇
λ5∇

⎞
⎟⎟⎟⎟⎠ (59)

Φ =

⎛
⎜⎜⎜⎜⎝

u
v
k
ε̃
Az

⎞
⎟⎟⎟⎟⎠ Ψ =

⎛
⎜⎜⎜⎜⎜⎝

−JzBy

JzBx

P − ρε+ Ek

Cε1P−Cε2ρε̃−ρDe−(Ry/80)2

Tt
+ Eε

ρJs
σ

⎞
⎟⎟⎟⎟⎟⎠ (60)

where the diffusion term for the vector potential does not contain the
eddy viscosity. Eq. (58) is integrated over volume V and some of the
terms are transformed into surface integrals using a divergence theo-
rem of Gauss:∫

V

∂�Φρ

∂t
dV = −

∫
S

�Φρ
(
�V · �n

)
dS +

∫
S

(
�Λ · �Φ

)
�ndS

−
∫
S

P�ndS +

∫
V

�ΨdV
(61)

where �n = nx
�i + ny

�j is a surface normal vector. This integral equation
is then changed into a discretized form

δ(�Φρ)

δt
V = −

∑
l

[
�Φρ
(
�V · �nS

)]
l
+
∑
l

[(
�Λ · �Φ

)
�nS
]
l

−
∑
l

(P�nS)l +
�ΨV

(62)

where surface and volume integrals are approximated using a mid-
point rule. The discretized equation is applied to curvilinear Cartesian
two-dimensional cell-centered grid:

ρ
δ�Φi,j

δt
Vi,j = �Ri,j = �Fi−1/2 − �Fi+1/2 + �Fj−1/2 − �Fj+1/2 +

[
�ΨV
]
i,j

(63)

where i and j are indexes in a structured mesh. Eq. (63) is used to cal-
culate explicit residual vector Ri,j for control volume (i, j). The resid-
ual consists of fluxes (= �Fi−1/2, �Fi+1/2, �Fj−1/2, �Fj+1/2) of Φ in and out of a
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cell i,j i+1,ji-1,j

i,j+1

i,j-1

i+1,j+1

face i+1/2,j face i+3/2,j

Figure 1: Indexing system

control volume through surfaces Si−1/2,j, Si+1/2,j, Si,j−1/2, Si,j+1/2 and the
source (Ψ) of Φ inside the volume. In other words the imbalance of Φ
inside the control volume produces the residual. For the sake of sim-
plicity surfaces are referred to in the equations with only a single index,
since one of them (the whole number) is always the same as the con-
trol volume. The index system is presented in Fig. 1. Flux of Φ for the
surface (i− 1/2, j) is calculated with:

�Fi−1/2 =
[
�Φρ
(
�V · �nS

)
+
(
�Λ · �Φ

)
�nS − P�nS

]
i−1/2

(64)

where pressure contributes only to the momentum equations. The first
component of this vector is

F1,i−1/2 =

[
φ1ρ

(
�V · �nS

)
− λ1

(
nx

∂φ1

∂x
+ ny

∂φ1

∂y

)
S − P�nS

]
i−1/2

(65)

where φ1 is the first component of �Φ and λ1 a diffusion coefficient in
the first component of Λ. Velocity V and pressure P at the cell faces

18



are calculated as averages from cell-center values. To avoid numerical
oscillation related to the convection term, an upwind discretization for
the convective flux term is formulated as

FC
1,i−1/2 = ρSi−1/2

[
max(0, �V · �n)φL

1 −max(0,−�V · �n)φR
1

]
i−1/2

(66)

where values of φR
1 and φL

1 are calculated for the cell faces with a MUSCL-
formula from cell-center values. Superscripts L and R denote left-side
and right-side upwind interpolation for the face value, respectively. In
the MUSCL equation φ is limited with a second-order TVD (Total Vari-
ation Diminishing) scheme. The partial derivatives located in the dif-
fusion term are approximated by applying the divergence theorem of
Gauss. First, the gradient of φ is integrated over a volume and trans-
formed into a surface integral:∫

V

∇φdV =

∫
S

φ�ndS (67)

Next, surface integrals are changed to sums over l surfaces

∇φV =

(
∂φ

∂x
+

∂φ

∂y

)
V =

∑
l

(Sφ�n)l =
∑
l

[S (φnx + φny)]l (68)

which can be separated and divided by volume:
∂φ

∂x
=

1

V
∑
l

(Sφnx)l
∂φ

∂y
=

1

V
∑
l

(Sφny)l (69)

As the derivatives are calculated at the surfaces, a staggered grid is
used for geometry information. Staggered grid cell volumes and face
surfaces with normal vectors are calculated by averaging geometry in-
formation from the original grid. Staggered grid cells in the i- and
j-directions are presented with dashed lines in Fig. 2.
The residual equation is linearized using an implicit formulation. The
implicit residual Rn+1 can be calculated using the explicit residual Rn

and its linearization. The linearized residual consists of linearized flux
and source vectors as follows:

ρ
δ�Φi,j

δt
= �Rn+1

i,j = �F n+1
i−1/2 − �F n+1

i+1/2 +
�F n+1
j−1/2 − �F n+1

j+1/2 + Vi,j
�Ψn+1

i,j

= �F n
i−1/2 − �F n

i+1/2 + �F n
j−1/2 − �F n

j+1/2 + Vi,j
�Ψn

i,j

+
∂ �F n

i−1/2

∂t
δt− ∂ �F n

i+1/2

∂t
δt+

∂ �F n
j−1/2

∂t
δt− ∂ �F n

j+1/2

∂t
δt

+ Vi,j

∂�Ψn
i,j

∂t
δt = �Rn

i,j +
∂ �Rn

i,j

∂t
δt

(70)
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i,ji-1,j

i,j+1

i,j-1

i+1,j+1

i+1/2,j

i,j+1/2

Figure 2: Staggered grid cells at surfaces (i+ 1/2, j) and (i, j + 1/2).
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In the linearization of the flux vector F in Eq. (64) the third term al-
ways produces a zero after derivation, since it does not contain any of
the unknowns. Thus only the convection and diffusion terms need to
be considered. The first two components in flux vector F have different
properties than others, since unknown variables u and v exist outside
vector �Φ. To have a similar form for every linearized flux vector compo-
nent, the derivation is only performed with respect to Φ. The principle
of this approximation is based on Picard iteration. This simplifies the
algorithms considerably, since all unknowns can be treated in the same
way in the flux term. To show the linearization of the flux terms in
greater detail, the first component of these vectors is considered. Since
the linearization of the flux vector depends only on the vector �Φ the
following modification is made:

∂F (φ1)
n

∂t
δt =

∂F (φ1)
n

∂φ1

δφ1

δt
δt =

∂F (φ1)
n

∂φ1

δφ1 (71)

Before the derivation the convective flux Eq. (66) is changed to

FC
1,i−1/2 = ρSi−1/2

[
max(0, �Vi−1/2 · �ni−1/2)φ1,i−1 − max(0,−�Vi−1/2 · �ni−1/2)φ1,i

]
(72)

and the diffusive flux term is approximated with

FD
1,i−1/2 = −

[
Sλ1

(
nx

∂φ1

∂x
+ ny

∂φ1

∂y

)]
i−1/2

= − (Sλ1)i−1/2

φ1,i − φ1,i−1

Δξi−1/2

(73)
where Δξi−1/2 is the distance between cell centers (i, j) and (i − 1, j).
Conversely Δηi−1/2 denotes the distance between cell centers (i, j) and
(i, j − 1). Derivation of the first flux component at surface (i− 1/2, j) is
performed with respect to φ1,i and φ1,i−1:

∂F (φ1)
n
i−1/2

∂φ1

δφ1 =
∂F (φ1)

n
i−1/2

∂φ1,i−1

δφ1,i−1 +
∂F (φ1)

n
i−1/2

∂φ1,i

δφ1,i

=

[
max(0, �Vi−1/2 · �ni−1/2)ρSi−1/2 +

(
Sλ1

Δξ

)
i−1/2

]
δφ1,i−1

−
[
max(0,−�Vi−1/2 · �ni−1/2)ρSi−1/2 +

(
Sλ1

Δξ

)
i−1/2

]
δφ1,i

(74)

which corresponds to a first-order upwind discretization. Lineariza-
tions for the source terms and the flux terms for other surfaces (i +
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1/2, j), (i, j − 1/2) and (i, j + 1/2) can be found in Appendix A3. Source
and flux linearizations from all faces are substituted into Eq. (70) and
the terms are grouped to make coefficients for δφ1

Rn
i,j = Aw,i,jδφi−1,j+Ae,i,jδφi+1,j+As,i,jδφi,j−1+An,i,jδφi,j+1+Ap,i,jδφi,j (75)

where the coefficients are defined as follows:

Aw,i,j = −max(0, �Vi−1/2 · �ni−1/2)ρSi−1/2 −
(
Sλ1

Δξ

)
i−1/2

Ae,i,j = −max(0,−�Vi+1/2 · �ni+1/2)ρSi+1/2 −
(
Sλ1

Δξ

)
i+1/2

As,i,j = −max(0, �Vj−1/2 · �nj−1/2)ρSj−1/2 −
(
Sλ1

Δη

)
j−1/2

An,i,j = −max(0,−�Vj+1/2 · �nj+1/2)ρSj+1/2 −
(
Sλ1

Δη

)
j+1/2

Ap,i,j ≈ V
(
ρ

δt
− ∂ψ1

∂t

)
− Aw,i,j − Ae,i,j − As,i,j − An,i,j

(76)

Subscripts w, e, s, n and p denote west, east, south, north and middle
cell, respectively. Coefficient Ap is not exactly a negative sum of the
other coefficients added with the volume term. But in this form the
value of the diagonal is suitable for an iterative matrix inversion (Scar-
borough criteria). The linearized equation system can be now written
as

Aδφ = Rn (77)

which can be solved by inverting matrix A (δφ = A−1Rn). This is done
separately for each component of �Φ. The inversions are performed with
an iterative line-Gauss-Seidel (LGS) algorithm. As the solutions are
obtained, variables are updated with:

�Φn+1 = �Φn + δ�Φ (78)

To clarify the numerical principle that is used above a few key issues
are now repeated and further explained. In the flux components that
are included in the explicit residual Rn the values of �Φ at the faces are
approximated with MUSCL-interpolations using old values �Φn. In the
flux components that are derivated to form the coefficients of matrix A,
the values of �Φ at the faces are approximated with first order upwind.
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A lower order approximation for the implicit equations is used to keep
the computational molecule as small as possible. To solve larger com-
putational molecules a more complicated and sophisticated iterative
solver would have to be used to invert the matrix A. When a solution
has converged, the accuracy of the result is determined by the accuracy
of the explicit residual. Thus, the accuracy of the converged solution is
unaffected by the lower order approximation of the implicit flux terms.
This type of procedure was first suggested by MacCormack [7] for com-
pressible flows. MacCormack proposes that a desirable form for the
Navier-Stokes equations is

{numerics}δφ = {physics}
Here {physics} is described by the explicit residual and {numerics} by
the matrix A. Later this procedure was described as a deferred correc-
tion by Ferziger&Perić [8], where the right-hand side of the equation,
the explicit residual, is regarded as a correction.

A steady-state solution can be accelerated using a local time-step. An
optimal time step size is often empirical and differs in problems. Sta-
bility and a speed of convergence of a convective flow is related to the
Courant number:

cfl =
u · δt
Δx

(79)

which can be transformed into a curvilinear form:

cfli,j = δtCi,j
(unx)i−1/2,j + (unx)i+1/2,j + (vny)i−1/2,j + (vny)i+1/2,j

Δξi,j

+ δtCi,j
(unx)i,j−1/2 + (unx)i,j+1/2 + (vny)i,j−1/2 + (vny)i,j+1/2

Δηi,j

(80)

from where a local time step δtci,j can be solved. In low Reynolds number
flows the effect of the diffusion term should also be taken into account.
Thus another numerical parameter is defined:

Cdif
i,j =

δtDi,j max
(

1
Δξ2i,j

, 1
Δη2i,j

)
λ

2ρ
(81)

where λ is a diffusion coefficient. From these two time-step values
the smaller one is chosen for a local cell. Suitable values for Cdif

and the cfl range in most cases between 0.5 - 5. In magnetohydrody-
namic flows the momentum equation and the magnetic vector potential
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equation might have completely different ratios between diffusive and
convective fluxes. Therefore, diffusive time step sizes for these equa-
tions should be calculated separately. Either both equations are calcu-
lated with the same local minimum time step or different estimates are
used. Another approach for increasing stability or under-relaxation for
steady-state calculations locally is to neglect the term containing δt in
the coefficient Ap and just divide the diagonal values by αφ, which has
a value of 0 < αφ ≤ 1.0. This has the same effect as the time-step re-
lated under-relaxation, which is to increase the diagonal values for the
matrix A.

4.2 Pressure-Correction Method
After the momentum equations have been linearized and the velocity
components have been updated, the pressure is solved using the conti-
nuity equation. New values of u and v will satisfy the linearized mo-
mentum equation if the matrix inversion was fully completed and no
under-relaxation was made when updating the values. However, they
will not satisfy the continuity equation. New values for the velocities
from the solution of the momentum equations are defined now as u∗

and v∗. These values have to be corrected with velocities u′ and v′ to
satisfy the continuity equation:

un+1 = u∗ + u′ vn+1 = v∗ + v′ (82)

Before a mass balance can be calculated, the incompressible continuity
equation is integrated over the volume of a computational cell, trans-
formed into a surface integral and further to a sum over l surfaces:∫

V

∇ρ�V dV =

∫
S

ρ�V · �ndS =
∑
l

(
ρ�V · �nS

)
l
= 0 (83)

where �V · �n = V is later used as a velocity perpendicular to the sur-
face. The corrected velocity values are now substituted into continuity
equation to form a mass balance equation for control volume (i, j). Cor-
rections are rearranged into another side of the equation:

−(ρV
′
S)i−1/2 + (ρV

′
S)i+1/2 − (ρV

′
S)j−1/2 + (ρV

′
S)j+1/2 =

(ρV
∗
S)i−1/2 − (ρV

∗
S)i+1/2 + (ρV

∗
S)j−1/2 − (ρV

∗
S)j+1/2 = −Δṁi,j

(84)

where −Δṁi,j represents the error in mass balance for cell (i, j). Dur-
ing the very first iterations there exist large errors in the form of oscil-
lations in the velocity and pressure values. If only velocity values V ∗
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were used in the mass balance calculations, the damping of these oscil-
lations would be very slow. In other words, many iterations would be
needed to obtain an accurate solution. Fortunately, this damping can
be increased with a Rhie&Chow scheme [9]. The scheme introduces
a stronger link between the pressure and the velocity. In practice the
interpolation for the pressure is combined with the face value of the
velocity at (i− 1/2, j) as follows:

V
∗
i−1/2 =

1

2

(
�V ∗
i−1 + �V ∗

i

)
· �ni−1/2 + C

Si−1/2

4AV
p,i−1/2

(pi+1 − 3pi + 3pi−1 − pi−2)

(85)
where C(= 0.5) is an empirical coefficient for adjusting the magnitude
of the pressure term. AV

p is a coefficient from the linearized momentum
equation and can be calculated as an average of cell center values at
the face or from equation

1

AV
p,i−1/2

=
1

2

(
1

AV
p,i

+
1

AV
p,i−1

)
(86)

Now the mass balance can be calculated properly. If Eq 76 is used
in the calculation of AV

p , under-relaxation parameters cfl and Cvis can
have a small effect on the converged result. This happens because the
Rhie&Chow damping terms do not vanish completely when a solution
has reached the truncation error level. But as the error produced by
the Rhie&Chow terms is proportional to O(Δx2), this error gets very
small as the grid is successively refined. To remove the effect of the
under-relaxation parameters on the solution, one can use a different
AV

p coefficient, where the term containing time step is omitted when
calculating the damping terms. Next a connection between the correc-
tion values for velocity and pressure have to be established. First the
corrected velocity values V

n+1 from the faces are multiplied by the co-
efficients from a linearized momentum equation for staggered grid cell
(i+ 1/2, j) and terms containing V ∗ values are combined to form

AV
w,i+1/2,jV

∗
i−1/2,j + AV

e,i+1/2,jV
∗
i+3/2,j + AV

s,i+1/2,jV
∗
i+1/2,j−1

+ AV
n,i+1/2,jV

∗
i+1/2,j+1 + AV

p,i+1/2,jV
∗
i+1/2,j = 0

(87)

where the equation equals zero since the V ∗ values are assumed to sat-
isfy the linearized momentum equation. The terms containing velocity
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correction values V ′ equal

AV
w,i+1/2,jV

′
i−1/2,j + AV

e,i+1/2,jV
′
i+3/2,j + AV

s,i+1/2,jV
′
i+1/2,j−1

+ AV
n,i+1/2,jV

′
i+1/2,j+1 + AV

p,i+1/2,jV
′
i+1/2,j

= −(Sp′)i+1,j + (Sp′)i,j + p′i+1/2,j(Si+1,j − Si,j)

≈ −Si+1/2,j(p
′
i+1,j − p′i,j)

(88)

where the terms containing pressure are from the discretized momen-
tum equation in the local coordinate system. Pressure p′ is a correction
that is to be calculated from the pressure correction equation. Before
that, the equation above is simplified with a SIMPLE approximation:

AV
p,i+1/2,jV

′
i+1/2,j ≈ −Si+1/2,j(p

′
i+1,j − p′i,j) (89)

where other velocity terms are just neglected. Although the link be-
tween the velocity and the pressure gets inaccurate, this will result in
a more coherent equation for pressure. No values from the previous
time-step are used for corrections. Thus this method is implicit. The
corresponding equations for other faces are:

AV
p,i−1/2,jV

′
i−1/2,j ≈ −Si−1/2,j(p

′
i,j − p′i−1,j)

AV
p,i,j−1/2V

′
i,j−1/2 ≈ −Si,j−1/2(p

′
i,j − p′i,j−1)

AV
p,i,j+1/2V

′
i,j+1/2 ≈ −Si,j+1/2(p

′
i,j+1 − p′i,j)

(90)

where the two lower equations are derived from an equation for a stag-
gered grid cell in the j-direction. In the local coordinate system this
equation is

AV
w,i,j+1/2V

′
i−1,j+1/2 + AV

e,i,j+1/2V
′
i+1,j+1/2 + AV

s,i,j+1/2V
′
i,j−1/2

+ AV
n,i,j+1/2V

′
i,j+3/2 + AV

p,i,j+1/2V
′
i,j+1/2

= −(Sp′)i,j+1 + (Sp′)i,j + p′i,j+1/2(Si,j+1 − Si,j)

≈ −Si,j+1/2(p
′
i,j+1 − p′i,j)

(91)

Next the velocities are solved from the corrections obtained with the
SIMPLE method. These velocities are then substituted into the mass
balance equation and rearranged to form:

Ap
wp

′
i−1,j + Ap

ep
′
i+1,j + Ap

sp
′
i,j−1 + Ap

np
′
i,j+1 + Ap

pp
′
i,j = −Δṁi,j (92)
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where the coefficients Ap
w, Ap

e, Ap
s, Ap

n and Ap
p are defined as:

Ap
w = −

(
ρS2

AV
p

)
i−1/2

Ap
e = −

(
ρS2

AV
p

)
i+1/2

Ap
s = −

(
ρS2

AV
p

)
j−1/2

Ap
n = −

(
ρS2

AV
p

)
j+1/2

Ap
p = −Ap

w − Ap
e − Ap

s − Ap
n

(93)

The linear system Ap′ = −Δṁ is solved iteratively with a line Gauss-
Seidel iteration and the pressure is corrected with

pn+1 = pn + αpp
′ (94)

where the update is under-relaxed by a factor of αp. Finally, the velocity
components have to be corrected in order to satisfy the continuity equa-
tion. The velocity can be corrected with a combination of the SIMPLE
approximation and the momentum equation:

AV
p,i,ju

′
i,j ≈ −(Snxp

′)i+1/2,j + (Snxp
′)i−1/2,j − (Snxp

′)i,j+1/2 + (Snxp
′)i,j−1/2

(95)
from where the correction for the u component can be solved. By replac-
ing the normal vector component x with y the equation for v velocity
can be formulated. The pressure values at the faces are again calcu-
lated as averages from the cell centers. The velocities are corrected
with:

un+1 = u∗ + αuu
′ vn+1 = v∗ + αuv

′ (96)

where the corrections are under-relaxed with parameter αu.

4.3 Treatment of Boundaries
To simplify routines at boundaries a ghost-cell method is applied. With
the ghost cells, interpolations at the boundaries can be performed in
exactly the same way as inside the mesh. Two ghost cells are used at
every boundary to make a second order MUSCL interpolation possible.
The ghost cells and examples of velocity-vector indexes are presented
in Fig. 3. The values that are put into the ghost cells depend on the
boundary conditions and the values inside the computational domain.
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Figure 3: Ghost cells

A MUSCL-equation

φi+1/2 = φi +
1

4
[(1− κ) (φi − φi−1) + (1 + κ) (φi+1 − φi)] , V i+1/2 > 0

φi+1/2 = φi+1 +
1

4
[(1− κ) (φi+1 − φi+2) + (1 + κ) (φi − φi+1)] , V i+1/2 < 0

(97)
can be used to interpolate values of φ at the faces. Different schemes
can be used by changing the value of κ. A central difference is enabled,
when κ = 1. Other schemes are a second-order upwind (κ = 0), a
second-order upwind biased (κ = −1), QUICK (κ = 1/2) and a third-
order upwind method (κ = 1/3).

4.3.1 Boundary Conditions for the Velocity Vector

If the left side of the domain in Fig. 3 is considered as a velocity in-
let, the ghost-cell velocity values �V1 and �V2 can be solved for different
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schemes from equation pairs
�Vin = 3/2�V2 − 1/2�V1

�Vin = 1/2(�V2 + �V3)

�Vin = �V2 + 1/4(�V3 + �V1) �Vin = 1/2(�V2 + �V3)

�Vin = 3/4�V2 + 3/8�V3 − 1/8�V1
�Vin = 1/2(�V2 + �V3)

�Vin = 5/6�V2 + 1/3�V3 − 1/6�V1
�Vin = 1/2(�V2 + �V3)

(98)

where the first equation set is based on the MUSCL-equation and the
second one is a central difference (average), which is also used at the
faces. Surprisingly, all equation pairs give the same solution for the
first ghost cell:

�V1 = 4�Vin − 3�V3
�V2 = 2�Vin − �V3 (99)

A value for the second cell is obviously also the same for each scheme. If
the inlet velocity �Vin represents a velocity perpendicular to the inlet, a
value (�nV )in can be used instead. Here Vin is a velocity perpendicular to
the face. For the outlet surface a zero velocity gradient can be assumed
and thus

�V2 = �V3
�V1 = �V4 (100)

In the case of tangentially moving boundary (wall) the ghost-cell veloc-
ity values can be solved from averages

(�tV )wall = 1/2(�V2 + �V3)

(�tV )wall = 1/2(�V1 + �V4)
(101)

where �t is a tangential unit vector of the cell face at the wall. The
solutions

�V2 = 2(�tV )wall − �V3

�V1 = 2(�tV )wall − �V4

(102)

will produce nonzero normal velocities with MUSCL-interpolations at
the wall, but these velocities will be of an opposite value and, therefore,
the total mass flux through wall will be zero when Eq. (66) is used. Also
the average normal velocity is always zero at the wall. A tangential ve-
locity will only be correctly calculated with the average. A frictionless
wall can be taken into account using a symmetry condition. The ghost-
cell values are (

u2

v2

)
=

(
1− 2n2

x −2nxny

−2nxny 1− 2n2
y

)(
u3

v3

)
(
u1

v1

)
=

(
1− 2n2

x −2nxny

−2nxny 1− 2n2
y

)(
u4

v4

) (103)
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Using this equation the normal velocity of average

�Vwall · �n = 1/2�n ·
[
(u2 + u3)�i+ (v2 + v3)�j

]
(104)

produces a zero value, which can be seen after a manipulation:

�Vwall · �n = u3nx

[
1− (n2

x + n2
y

)]
+ v3ny

[
1− (n2

x + n2
y

)]
= 0 (105)

In the case of a periodic boundary condition for velocity, a mass-flow
rate has to be given initially and kept constant during iterations. If the
initial velocity profile is given, the mass flow rate can be calculated by
summing

ṁin =
1

2

J−2∑
j=3

ρS2+1/2,j�n2+1/2,j ·
(
�V2,j + �V3,j

)
(106)

where J is the last cell number in the j-direction. In the first iteration
normal inlet and outlet methods are used, but afterwards periodicity is
enforced. At the end of the iteration cycle the outlet mass-flow rate is
calculated with

ṁout =
1

2

J−2∑
j=3

ρSI−3/2,j�nI−3/2,j ·
(
�VI−2,j + �VI−1,j

)
(107)

where I is the last cell number in the i-direction. Next the ratio of the
enforced mass rate and the outlet mass-flow rate is calculated

Cr =
ṁin

ṁout

(108)

and new velocity values for the "inlet" are calculated by

�Vin,j = 1/2Cr

(
�VI−2,j + �VI−1,j

)
(109)

In the next iteration cycle these velocity values at the inlet can be used
with Eq. (99) to calculate ghost-cell values. Ghost-cell values for an
"outlet" are

�VI−1 = �V1
�VI = �V2 (110)

where the ghost-cell values from the "inlet" are just put into the ghost
cells of an "outlet". Again at the end of the iteration cycle a new outlet
mass flow rate and a new ratio Cr are calculated.
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4.3.2 Boundary Conditions for Pressure

In the case of the velocity inlet ghost cell, values for pressure can be
extrapolated from averages

p3 = 1/2(p2 + p4) p2 = 1/2(p1 + p3) (111)

which give
p2 = 2p3 − p4 p1 = 4p3 − 3p4 (112)

after manipulation. Near the walls a zero gradient condition

p2 = p3 p1 = p4 (113)

can be enforced to ensure a zero mass flow at the wall. For the outlet
the pressure should be fixed

p2 = pout p1 = pout (114)

If the whole domain is surrounded by walls, no outlet exists. Still the
pressure must be fixed at some point to enable convergence. This point
can be set at the boundary wall inside the ghost cells using the equation
above. If all boundaries are moving, a better result might be obtained
by fixing the pressure at some point inside the domain. In the periodic
case one of the periodic pairs should be set as the outlet and the other
as the inlet, and corresponding conditions used for pressure.

4.3.3 Boundary Conditions for Scalars

In the velocity inlet case scalar variable φ can be calculated for ghost
cells similarly as for velocity with Eq. (99).

φ1 = 4φin − 3φ3 φ2 = 2φin − φ3 (115)

In the case of a wall condition, scalar values can be solved from aver-
ages. The solutions are

φ2 = 2φwall − φ3

φ1 = 2φwall − φ4

(116)

for ghost cells. Since the scalars are calculated as averages at the faces
in Eq. (69), the ghost-cell values can also be based on averages. For the
outlet a zero gradient condition is suitable.
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4.3.4 Boundary Conditions for Linearized Implicit Equations

Implicit boundary conditions can be determined by linearizing the ex-
plicit boundary conditions. On the other hand the boundary conditions
of the implicit equations can be treated with some flexibility to ensure
iterative matrix inversion (Scarborough criteria). The velocity inlet
condition is linearized for the u-component as follows:

∂

∂u2

(u2) δu2 = 2
∂

∂uin

(uin) δuin − ∂

∂u3

(u3) δu3

δu2 = − δu3; δuin = 0

δu2 + δu3 = 0

Ap,2δu2 + Ae,2δu3 = 0

(117)

where a local derivative for the inlet is zero, since it is a fixed value.
The terms are then organized to the left side. Coefficient Ap,2 = 1 and
Ae,2 = 1. Coefficient Ae,2 can also be set to a zero value to ensure a
diagonal dominance. The other coefficients Aw,2, As,2, An,2 and resid-
ual R2 are equal to zero. Wall boundary conditions with a frictionless
condition can be treated identically. A zero-gradient condition for the
u-velocity is linearized as

∂

∂u2

(u2) δu2 =
∂

∂u3

(u3) δu3

δu2 − δu3 = 0
(118)

where coefficient Ap,2 = 1 and Ae,2 = −1.

5 Applied Multigrid Techniques
In practical modeling problems it is important to have efficient algo-
rithms to ensure fast convergence. Hardware and time are wasted if
advances in numerical methods are not put to use. A useful way to ex-
amine the efficiency of a numerical method is to change the size of the
mesh and see how long it takes to get a converged solution. More cells
means more equations to be solved. Then, inevitably, more time and
storage space are needed. In the optimal case with multigrid meth-
ods, work and storage requirements depend linearly on the size of the
problem.
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5.1 Algebraic Multigrid
During a single time step (=iteration cycle) most of the time is used
in the iterative inversion of coefficient matrix A in the linear equation
system, Aδφ = R. This is the case especially for the pressure-correction
equation. If only LGS is used in the inversion, the solution time de-
pends quadratically on the mesh size. An algebraic multigrid (AMG)
method has been developed to accelerate the solution of a linear equa-
tion system. To understand how the multigrid methods work, the error
has to be considered more closely. The error present in the solution
can be approximated as a spectrum of waves. The size of these waves
ranges from 2Δx to the length of the domain 2L in a one-dimensional
case. During the iterative inversion of the matrix the error waves are
smoothed cycle after cycle. Therefore, the basic matrix-inverting al-
gorithms are called smoothers. The basic property of a smoother like
LGS applied in this study is that smaller wavelengths (higher frequen-
cies) are smoothed faster than the longer ones. The bigger the mesh,
the longer (relatively) the wavelengths present. The longer the waves,
the more inefficient the smoothing and, therefore, the inversion time
increases rapidly with mesh size [10]. To improve this smoothing pro-
cess the problem is divided into several grid levels. In a structured
mesh the generation of a new grid level is very straightforward. In a
two-dimensional problem four neighboring cells are combined through
the domain to make a new level. A third grid level is generated in
exactly the same way using the second level. This process can be con-
tinued as long as the cell counts in the i- and j-directions of the mesh
are divisible by two. The second grid level has four times fewer cells
and the third 16 times fewer than the first level. The actual geometri-
cal coordinates are not needed in the coarse grid generation. Only the
knowledge of the cell neighbors is relevant. The coefficient matrix A
and the residual matrix R have to be transported to the coarser levels.
This is called restriction. The coefficients do not change during the in-
version and, therefore, can be restricted only at the beginning of the
algorithm. In Fig. 4 it can be seen how coefficients can be grouped to
the coarser level with a Galerkin coarse grid approximation (GCA) [6].
All the coefficients that are inside the coarse cell are summed together.
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Figure 4: Coarse grid coefficients of AMG
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On the second level the coefficients are as follows:

A2
w,i2,j2

= Aw,i1,j1 + Aw,i1,j1+1

A2
e,i2,j2

= Ae,i1+1,j1 + Ae,i1+1,j1+1

A2
s,i2,j2

= As,i1,j1 + As,i1+1,j1

A2
n,i2,j2

= An,i1,j1+1 + An,i1+1,j1+1

A2
p,i2,j2

= Ap,i1,j1 + Ap,i1+1,j1 + Ap,i1,j1+1 + Ap,i1+1,j1+1

+ Aw,i1+1,j1 + Aw,i1+1,j1+1 + Ae,i1,j1 + Ae,i1,j1+1

+ As,i1,j1+1 + As,i1+1,j1+1 + An,i1,j1 + An,i1+1,j1

(119)

where indexes i2 and j2 refer to the second grid level. The third level
coefficients are generated identically from the second level coefficients,
and so on. Before the restriction of the residual matrix the lowest wave-
lengths of the error are smoothed on the finest grid level with a single
cycle using LGS. Next the residual to be restricted is defined as:

ω1 = R1 − A1δφ1 (120)

which is locally

ω1
i1,j1

= R1
i1,j1

− (A1
p,i1,j1

δφ1
i1,j1

+ A1
w,i1,j1

δφ1
i1−1,j1

+ A1
e,i1,j1

δφ1
i1+1,j1

+

A1
s,i1,j1

δφ1
i1,j1−1 + A1

n,i1,j1
δφ1

i1,j1+1)
(121)

where ω1 is a modified residual that describes an error of the linear
equation system on the finest level. The residual on the second level is
the sum of the modified fine grid residuals ω1 inside the coarse cell:

R2
i2,j2

= ω1
i1,j1

+ ω1
i1+1,j1

+ ω1
i1,j1+1 + ω1

i1+1,j1+1. (122)

Now, longer wavelengths can be smoothed more efficiently on the sec-
ond grid level, since it is coarser and cannot contain as high frequency
error components as the finest grid level. System A2δφ2 = R2 is smoothed
by several iterations (=2-5) with LGS . It is more economic to smooth
more on the second level as it has four times fewer equations. If there
are more grid levels, the second level residuals need to be restricted
to the next level in the same way as before. Let us assume there are
only two grid levels. The next step is to correct the fine-level values of
δφ1. This is called prolongation. The second-level values δφ2 are trans-
ported to the fine level by summing them with the old values of δφ1,n
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as:

δφ1,n+1
i1,j1

= δφ1,n
i1,j1

+ δφ2
i2,j2

δφ1,n+1
i1+2,j1

= δφ1,n
i1+2,j1

+ δφ2
i2+1,j2

δφ1,n+1
i1+1,j1

= δφ1,n
i1+1,j1

+ δφ2
i2,j2

δφ1,n+1
i1+3,j1

= δφ1,n
i1+3,j1

+ δφ2
i2+1,j2

δφ1,n+1
i1,j1+1 = δφ1,n

i1,j1+1 + δφ2
i2,j2

δφ1,n+1
i1+2,j1+1 = δφ1,n

i1+2,j1+1 + δφ2
i2+1,j2

δφ1,n+1
i1+1,j1+1 = δφ1,n

i1+1,j1+1 + δφ2
i2,j2

δφ1,n+1
i1+3,j1+1 = δφ1,n

i1+3,j1+1 + δφ2
i2+1,j2

(123)
where the prolongation is shown for eight fine-grid cells. This type of
prolongation is called a piecewise constant interpolation or an injec-
tion, where the solution from the coarse grid is just added to those fine-
grid values that are inside the coarse cell [11]. After the prolongation
a first iteration is performed in AMG. Next, the fine grid problem can
be smoothed again and the modified residual restricted to the second
level, etc. Convergence can be monitored by taking the L2-norm from
the modified residual ||ω1||2.
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do m = 2 to M
GCA(Am−1 → Am)

enddo
δφ1 = 0

do n = 1 to N
LGS(A1δφ1 = R1)
do m = 2 to M

RES(Rm−1 → Rm)
δφm = 0

LGS(Amδφm = Rm)
enddo
do m = M-1 to 1

PRO(δφm+1 → δφm)
LGS(Amδφm = Rm)

enddo
enddo

Let us take a more detailed look of the algorithm for M grid levels.
Above is a loop structure describing the main algorithm. At the begin-
ning the coarse grid coefficients are generated with the GCA routine
for every grid level. Next the initial guess is set to zero for δφ1. After
that the main iteration loop begins. First the error is smoothed on the
finest level with the LGS routine. A new loop begins, where the grid
levels are cycled from the second level to the coarsest one. In this loop
the residuals are restricted with a RES routine, an initial guess is set
to zero, and the error is smoothed. Initialization at every iteration is
not mandatory, but it makes the algorithm faster. After the coarsest
level the loop ends. To correct the values a new loop starts, where the
levels are cycled from the second coarsest to the finest one. In this a
solution is prolongated with a PRO routine and the corrected values
can be smoothed again. Smoothing is optional in this loop, because it
might not improve overall performance. This concludes the first iter-
ation in the main loop. This type of iteration is called a V-cycle. The
main loop ends after N iterations. Optionally, convergence can be mon-
itored and the main loop can be ended if an acceptable level of error
has been reached. A more accurate interpolation can also be used for
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restriction and prolongation, but is not necessary in AMG.

5.2 Geometric Multigrid
For solving linear problems AMG is all that is needed to have an effi-
cient solution. If the problem, as in almost all flow cases, is non-linear,
AMG cannot reduce the time steps (or the amount of under-relaxation)
needed for a steady-state solution. In non-linear problems a geomet-
ric multigrid (GMG) should be applied. With the GMG algorithm the
problem is solved on multiple grid levels as with AMG. In the case of
GMG the actual geometrical data is needed for grid generation. For
every level, nodes, face areas, cell volumes etc. are created using fine-
level data. Again, four fine grid cells are combined to form a coarse grid
cell, which is the easiest way to proceed with the structured mesh. To
get the benefit from GMG, coarser levels have to represent the overall
physics of the problem. In many cases there is a minimum resolution
that can contain the main features of the problem. If even coarser lev-
els are nevertheless used, convergence is not improved and might even
stall or diverge completely. More levels could possibly be applied if the
grid were made denser where higher gradients existed. In that case
cells should be stretched with moderation so that interpolation error
would not ruin the convergence or the accuracy. In the figure below
there is a general algorithm for solving a series of non-linear equations
with a full approximation storage (FAS-GMG). Differences compared
to the AMG-routine are scarce. At the beginning the geometry is gen-
erated for every grid level. This is comparable to the coarse grid gen-
eration in AMG. Next, variables �Φ1 are initialized on the finest grid
level. In GMG an initial value can be other than zero. Also in GMG
coarse-level variables are initialized by restricting the fine-level val-
ues. Subroutines SOLVEVARS, RESTRICTVARS and PROLONGAT-
EVARS have in general the same purpose as LGS, RES and PRO in
AMG, respectively. The second argument in SOLVEVARS is related to
the solution of the equation system considered in this work and, there-
fore, might not be necessary in other problems.
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do m = 2 to M
GEOMETRY(m)

enddo
�Φ1 = �Φinitial

do n = 1 to N
SOLVEVARS(�Φ1,true,1)
do m = 2 to M

RESTRICTVARS(�Rm−1 → �Rm, �Φm−1 → �Φm,m)
SOLVEVARS(�Φm,true,m)

enddo
do m = M-1 to 1

PROLONGATEVARS(�Φm+1 → �Φm,m)
SOLVEVARS(�Φm,false,m)

enddo
enddo

The main differences between the AMG and GMG algorithms can be
found in the treatment of the residual, the restriction and the prolon-
gation. The residual is prolongated identically from the first level to
the second in GMG using Eq. (122), where the modified residual is re-
placed by the explicit residual. If several iterations or post-smoothing
are performed on the coarse levels, a forcing function is applied to the
residual. On the second level, after the explicit residual has been cal-
culated, the difference between the restricted residual R2,∗ from finest
level and the new explicit residual R2 is calculated as

R2 = R2,∗ −R2 (124)

which is the forcing function for the residual. The forcing function is
updated only during the first iteration of pre-smoothing. Next the sum
of the forcing function and the explicit residual is calculated as

R̂2 = R2 +R2 (125)

which equals the restricted residual from the first level. But after con-
secutive iterations on the same level, this modified residual will differ
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from the restricted residual. The modified residual is used in context
with the linearized system. After the final iteration on the second level
the explicit residual is calculated once more with the updated vari-
ables. The latest residual is then summed with the forcing function:

R3,∗
i3,j3

=R2
i2,j2

+R2
i2+1,j2

+R2
i2,j2+1 +R2

i2+1,j2+1

R2
i2,j2 +R2

i2+1,j2 +R2
i2,j2+1 +R2

i2+1,j2+1

(126)

which equals a restricted residual for the third level. The forcing func-
tion ensures that only the change in the explicit residual is added to the
restricted residual from the previous level. After the prolongation from
the third level the same forcing function is used during post-smoothing.
This algorithm follows the method of Jameson [12]. In FAS variables
are also restricted, unlike in AMG. Values are weighted with cell vol-
ume as follows:

(φ∗V)m+1
im+1,jm+1

= (φV)mim,jm + (φV)mim+1,jm + (φV)mim,jm+1 + (φV)mim+1,jm+1

(127)

where φ∗ is important during prolongation [6]. To ensure a mesh-size-
independent rate of convergence a condition

mP +mR > meq (128)

should hold [10]. On the right-hand side meq is the highest order of
differentiation in the equation to be solved. On the left the first and
the second term are an interpolation order of a prolongation and re-
striction. The restriction described above has the order of mR = 1.
Since all equations to be solved have second-order partial differential
terms, prolongation should be of the order of mP = 2. Injection in AMG
has the order of one. Therefore, a bilinear interpolation, which has
mP = 2, should be implemented in 2-D cases. Using the indexing sys-
tem presented in Fig. 4 the bilinear interpolation can be calculated by
weighting coarse grid values as follows:

φ̂m−1
im−1,jm−1

= φm−1
im−1,jm−1

+
9

16
(φ− φ∗)mim,jm +

3

16
(φ− φ∗)mim−1,jm

+
3

16
(φ− φ∗)mim,jm−1 +

1

16
(φ− φ∗)mim−1,jm−1

Here the difference of the calculated value φm and the restricted value
φm,∗ is added after weighting to the fine-level value. There are four
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different weightings inside the grid, depending on how close the neigh-
boring coarse grid cell centers are. Corner fine-grid cell values are
interpolated from three coarse cells. All weightings are presented in
Appendix A4. The condition in Eq. (128) was confirmed in test calcu-
lations for the momentum equation. Injection for pressure was enough
during the prolongation to ensure convergence, although faster con-
vergence was achieved with bilinear interpolation. In the case of a
compressible flow with a density-based solver, Siikonen [13], [14] has
found that injection was sufficient for interpolation during prolonga-
tion for all variables. Therefore, at least in some cases in Eq. (128),
equality is a sufficient condition for convergence. In Appendix A5 the
subroutines SOLVEVARS, RESTRICTVARS and PROLONGATEVARS
are presented for solving the equation system considered in this work.
In SOLVEVARS the current grid level m is cycled Lm times. In the
loop, boundary conditions are set for every variable in BC, and local
time-steps are calculated in LOCALDT. If the calculation is at least on
the second level and in the first iteration round, mass balances are cal-
culated for every cell in MASSBALANCE. Next the forcing function is
applied for the mass residual. Restricted values of velocities are used
in the mass balances. It is important that the Rhie&Chow terms are
not included in the balance at this stage. The Rhie&Chow damping
is applied only on the finest level, and through the mass residual this
damping is transported to the coarser levels. During this work it was
noted that when the damping terms were applied on the coarser levels,
the solution diverged. After the mass residual all dependent variables
such as magnetic flux density B, electric current density J , eddy vis-
cosity μT , turbulence production P and cross-diffusion terms Ek, Eε are
calculated in subroutine CALCULATECV. Since these variables are
complementary they can be defined as functions of the independent
variables (u, v, k, ε,Az) and, therefore, do not need to be solved. Next,
equations for the independent variables are linearized and solved in
subroutine SOLVEVAR, except for pressure, which is solved in subrou-
tine PC. Before describing subroutine SOLVEVAR in detail, Eq. (63) is
rewritten into form

ρ
δφk

δt
V + Fk(φk) = sk (129)

and further to
Rk = sk − Fk(φk) (130)

where subindex k denotes a component of Eq. (63), s a source term, R
a residual and F flux terms, which are functions of φ. In SOLVEVAR
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the explicit residual is calculated for grid level m and equation k. The
forcing function is calculated in the first iteration round during pre-
smoothing and the explicit residual is modified with it. Flux terms are
linearized in subroutine LINEARIZE, and the resulting linear system
is solved with subroutine AMG. Finally, variable φk is updated with an
under-relaxation of αk. In subroutine PC mass balances are calculated
and Rhie&Chow damping is added in them on the finest grid level. The
mass residual is modified with the forcing function, and coefficients for
the pressure-correction equation are calculated in PCECOEFFS. The
pressure-correction equation is solved using AMG and, finally, the ve-
locities and the pressure field are corrected. Intergrid operations are
performed in RESTRICTVARS and PROLONGATEVARS. In the for-
mer the boundary conditions are updated first. Equations are cycled
and the explicit residual is calculated for them. The residuals and
the variables are then restricted to a coarser level in subroutines RE-
STRICT1 and RESTRICT2. Mass residuals are calculated in MASS-
BALANCE and damping terms are added for the finest-level residuals.
Finally, mass residuals and pressure are restricted to the coarser level.
Boundary conditions are again updated in PROLONGATEVARS and
then variables are prolongated to the finer level.

6 Test Calculations
Test cases include a laminar cavity flow, a laminar magneto-hydro-
dynamic flow, a turbulent channel flow and geometric multigrid test-
ing. All interpolations of the independent variables were done with the
second-order upwind method. The code was written in C++. All calcu-
lations were done with Windows XP OS using a single core of the Intel
Core 2 CPU 6700 2.66GHz processor.

6.1 Laminar Cavity Flow
The laminar cavity flow was calculated with Re=100 and Re=1000. A
uniform 128 × 128 grid (1m × 1m) was used in calculations. The top
surface velocity was set to 1.0m/ s and viscosity to 0.01 (Re=100) and
0.001 Pa s (Re=1000). Contours for the u- and v-velocity components
from Re = 100 case are presented in Fig. 5.

A comparison between cases Re=100 and Re=1000 is presented in
Fig. 6. When the Reynolds number increases, boundary layers near the
walls get thinner. Also the center of the main clockwise vortex moves
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Figure 5: Cavity flow at Re=100. u-velocity on the left, v-velocity on the
right.

closer to the center of the grid as Re increases. The velocity profiles are
in good agreement with the calculations of Goyon [15].

6.2 Laminar Magnetohydrodynamic flow
The magnetohydrodynamic interaction is taken into account by cou-
pling the momentum equations with the magnetic vector-potential equa-
tion. To reduce the magnetic field and the Lorentz force into the xy-
plane the magnetic vector potential and the current density vector have
only a z-component. Thus �A = (0, 0, Az

�k) and �J = (0, 0, Jz�k). A 1m×1m
square cavity is chosen for the geometry. Current density Js�k is set as
a source term for the vector potential equation. To produce a counter-
clockwise rotation for the fluid the source term is set as a function of
the x-coordinate as follows: Js = 10(0.5 − x)A/m2. This sets the cur-
rent density at the left boundary to 5A/m2 and at the right boundary to
−5A/m2. In the middle the source term changes linearly between the
boundary values. Viscosity is set to 0.01Pa s and density to 1.0kg/m3.
Magnetic permeability is 0.1H/m and electrical conductivity 300S/m.

First, only the magnetic vector-potential equation is solved. The ef-
fect of the source term and flow on the vector potential and the other
variables are compared later. The boundary conditions for the vec-
tor potential include a zero normal gradient for the left and the right
boundaries as well as constant values 0.1 and 0.0 Wb/m for the bottom
and the top boundaries. Constant values suggest that the magnetic
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Figure 6: Comparison of u- and v-velocity profiles.
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Figure 7: Magnetic flux density vectors and magnetic vector potential
contours.
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Figure 8: Contours for a magnetic vector potential, a flux density and
a source current density.
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Figure 9: Magnetic flux density and Lorentz force vectors.
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field is parallel to the boundary. The zero normal gradient holds the
field perpendicular to the boundary. Contours for the magnetic vector
potential equation and magnetic flux density vectors are presented in
Fig. 7. This linear system generates a 0.1 T magnetic field pointing to
the left. Next, the source term is added to the system. The magnetic
vector potential is presented again in Fig. 8. The current density com-
ponent and the x and y components for magnetic flux density can also
be found there. High and low value areas of the vector potential are ex-
panded due to the source current term. Current density component Jz
is linear from the left to the right side, since it contains only the source
current. x- and y-components of the magnetic flux density are of equal
size in the middle, but in the upper left and lower right corners the
x-component dominates, which can also be seen in Fig. 9. The Lorentz
forces are strongest near the upper left and the lower right corners. In
the middle no forces are present, because there the current density is
also zero.

When the momentum equations are coupled with the vector po-
tential, the Lorentz forces start to rotate the fluid and the flow vec-
tors distort the vector potential and the current density. The impact
of the flow on the electromagnetic properties can be seen in Fig. 10.
The flow reduces the electric currents in the middle. It can be inter-
preted that some of the ohmic resistive power (P = UJ)z is transformed
into viscous heating power of the flow field. Here, potential difference
Uz = Js/σ. The vector potential contour lines are pushed down on the
left side and up on the right side by the flow. The highest values of
the magnetic flux density are reduced and the field vectors are mainly
pointing to the left (Fig. 11). The Lorentz forces are also weakened.
The velocity vectors are presented in Fig. 12. The maximum velocity is
approximately 0.1m/ s and the fluid is rotating in a counterclockwise
direction.

Comparative calculations were made with COMSOL software. The
solution strategy for the equation system in COMSOL is based on the
finite-element method. All calculations were made with Windows XP
version 3.5a. With COMSOL, different physical phenomena can be cou-
pled by combining modules that are focused on specific isolated areas.
Magnetohydrodynamic calculations were done by using "Incompress-
ible Navier-Stokes" (IN-S) and "Magnetostatics" (MS) modules with
identical material properties, boundary conditions and source current
term as in the previous calculation. The former module solves veloc-
ity components u and v as well as pressure. The latter solves the z-
component of the magnetic vector potential. Other necessary variables
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Figure 10: Contours for the magnetic vector potential, the flux density
and the source current density, when the momentum equations have
been coupled with the vector-potential equation.
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Figure 11: Magnetic flux density and Lorentz force vectors.
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Figure 12: Velocity vectors.
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can be calculated from these four unknowns and from the source cur-
rent. Convection was coupled with the MS-module by connecting veloc-
ity components u and v into the MS-module’s subdomain settings. The
vector potential was coupled with the IN-S-module by setting the x-
and y-components of the Lorentz force as volume forces in the subdo-
main. It is possible to add customized equations to COMSOL to be
solved, but this was not necessary. Triangular elements were used
in the mesh. The vector potential equation was interpolated with a
quadratic Lagrangian polynomial. In the IN-S module the element
type was set to Lagrange-P2P1. Calculations were made with 9,440 ele-
ments that consisted of 4,841 nodes. A higher resolution mesh (37,760
elements, 19,121 nodes) was also used to check the results. In the IN-S
module the type of all boundaries was set as wall with a no-slip con-
dition. Pressure was set to 0.0Pa at coordinate point (0,0) by using a
point constraint setting. In the MS-module the left and right bound-
ary conditions were set to electric insulation. A magnetic potential was
used for the top and bottom with 0.0 and 0.1 values, respectively. The
default setting for the error norm is L2-norm, which was used for the
monitoring of the residuals. The error tolerance for the modules were
set to 1·10−6. In Fig. 13 the contours of the magnetic properties are pre-
sented in the same order as in Fig. 10. Also the contours of the velocity
components are compared in Fig. 14, where the COMSOL results are
above. It can be noted that the results are almost identical with each
other.

6.3 Turbulent Channel Flow
The turbulence model was tested with a channel entrance and with
a fully developed flow in 1.0m × 0.1m (length×width) geometry. The
mesh was stretched bi-directionally in the y-direction with a ratio of
1.1 starting from the walls in the former case. Also in the entrance
case the x-direction was stretched with a ratio of 1.05 starting from the
inlet. The total cell count was 80 × 80 and the Reynolds-number was
60000. Inlet values were set as follows: uin = 30.0m/ s, kin = 0.9m2/ s2
(= 0.001 ∗ u2

in), εin = 10.0m2/ s3 and μT = 0.01μ. The Reynolds-number
is defined for channel flow as:

Re =
L/2Vinρ

μ
(131)

where L is the channel width. Contours of the k, ε, turbulence pro-
duction and relative eddy viscosity (μT/μ) from the entrance flow are
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Figure 13: Contours for the electromagnetic properties from COMSOL-
solution.
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Figure 14: Comparison of the velocity contours. The u- and v-velocity
components from the COMSOL-solution are in the upper left and upper
right corners, respectively.
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Figure 15: Turbulence contours of a channel entrance at Re=60000.

presented in Fig. 15.
A fully developed flow was accomplished by using periodic condi-

tions for the inlet and outlet boundaries. At the beginning the inlet
velocity value was set to uin = 30.0 and the initial condition for velocity
ui = 30.0. Next, the total mass flow was integrated over the inlet area.
This "inlet" mass flow value was set as the target mass flow value that
was enforced during iterations. Calculations were done with and with-
out the cross-diffusion terms for Re = 104, 3 · 104, 6 · 104, 105 by varying
the viscosity. Results for the case of Re=60000 with the cross-diffusion
terms are presented in Fig. 16 and Fig. 17. Some disturbance from the
outlet can be seen in Fig. 17. Although small, the v-velocity component
has a maximum (≈ |0.3|mm/s) next to the outlet. In Fig. 18 developing
velocity profiles from the entrance case were combined with the fully
developed case at Re=60000. For all fully developed cases a friction
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Figure 16: Turbulence contours of the fully developed channel flow at
Re=60000.
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factor Λ was calculated with:

Λ =
8τw
ρV 2

in

(132)

where the shear force at the wall, τw, is calculated as:

τw = μ

(
∂u

∂y

)
w

(133)

The friction factor is presented as a function of Re-number in Fig. 19
and results are compared with values obtained from literature [16].
It can be seen that at least in the range of 104 < Re < 105, calcula-
tions without the cross-diffusion terms predict slightly higher friction
factor at the wall than they should. This happens because the velocity
derivative at the wall is too high. The effect of the cross-diffusion terms
clearly lower the velocity derivative at the wall, but this correction is
too high and the error is larger than in the cases without the terms.
Different grids were used in these cases. To check that the grid is re-
fined enough at the wall, a dimensionless height y+ can be calculated
with

y+ =
ρuτh

μ
(134)

where h is the distance from the nearest cell center to the wall and uτ

is the wall friction velocity. The friction velocity can be calculated from:

uτ =

√
τw
ρ

(135)

For these fully developed cases y+ values ranged from 0.45 to 0.95. The
grid is considered refined enough at the wall, when y+ ≈ 1. [16]

6.4 Multigrid Acceleration
Multigrid calculations were done with all of the previous cases. Bound-
ary conditions and material parameters were identical with equivalent
cases unless mentioned otherwise. The geometric multigrid algorithm
was FAS, as described in Chapter 5.2. The algebraic multigrid was
used for the pressure-correction, turbulence kinetic energy, turbulent
dissipation rate and magnetic vector potential equation even for a sin-
gle grid case. The maximum level count used in the AMG was five.
For the pressure-correction equation AMG iterations were stopped af-
ter the relative L2-norm dropped below 0.45 in the cavity flow case and
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Figure 17: Velocity and pressure contours of the fully developed chan-
nel flow at Re=60000.
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Figure 18: Developing u-velocity profiles for a channel flow at
Re=60000.
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0.35 in the two other cases. For the other equations the ending criteria
with AMG was 0.01. It should be noted that the fastest convergence
might not happen with the least number of iterations. The total iter-
ation count can be reduced by increasing the matrix inversions, but
this usually decreases the overall performance. The linearized mo-
mentum equation was iterated with the LGS and without the AMG.
Under-relaxation for pressure and velocities were kept as constants at
0.3 and 0.7, respectively. During the iterations all numerical parame-
ters were kept as constants. One iteration (V-cycle) in GMG consisted
of a single iteration on the densest level and two iterations per post-
and pre-smoothing. Two iterations were made on the coarsest level.
Timekeeping was realized with the help of a CPU-timer. This timer is
affected by other processes but they were kept to a minimum during
the iterations. Some of the calculations were repeated and only less
than one percent fluctuation in the total computing time was experi-
enced. Every step of the program code was included in the total time.

First GMG was tested with laminar cavity flow at Re = 1000. The
iteration count in LGS was varied for every case to get the fastest con-
vergence. Also the Courant number and Cvis were varied to achieve
the best (fastest) performance. The Courant number was changed with
0.5 increments and Cvis with 0.05. The ending criterion for the outer
iterations was the absolute L2-norm of the pressure-correction p′. Cal-
culations were automatically stopped after the residual dropped below
1 · 10−16, which is practically the machine accuracy. The coarsest grid
size was 8× 8. Even coarser sizes were not improving the performance.
The results of the testing are presented in Table 1. It is clear that
the ratio between the single-grid time and the best GMG time rises,
when mesh size increases. With a grid size of 32 × 32 the ratio is 1.6,
but with 256 × 256 the ratio is 39.8. Interestingly the optimal cfl num-
ber decreases when the mesh size increases. Also GMG results need
a smaller cfl than a single grid result, at least on the smaller grids. A
strange anomaly can be seen in Cvis with sizes 128× 128 and 256× 256
using two GMG levels. This parameter is considerably smaller than
with any other settings. This might make it hard to predict the opti-
mal value in different flow problems. The pressure residuals for grid
size 256× 256 are presented in Fig. 20.

Next, GMG was tested with a turbulent flow in a channel entrance
at Re=60000. This time the grid size was 1.0m × 0.05m with 120 × 60
cells. A symmetry condition was used at the boundary parallel to the
wall. The grid was stretched with a ratio of 1.05 in the y-direction and
between 0.0 to 0.2m in the x-direction. Evenly spaced grid points were
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 Table 1. Comparison of the geometric multigrid results.

Cavity flow
size cells GMG levels time (s) iterations cfl Cvis LGS u,v

32X32 1024 1 5.1 996 5.5 1.25 3
2 3.4 352 5 1.25 3
3 3.1 234 5 1 3

64X64 4096 1 43.1 2115 5 1.1 3
2 23.6 576 3.5 1 3
3 12.3 232 3.5 1 3
4 11.7 206 3.5 1.1 3

128X128 16384 1 526 5663 4 1.05 3
2 256 1355 3 0.4 3
3 77.5 354 4 1 3
4 51.1 225 3.5 1 3
5 47.9 212 3 1 3

256X256 65536 1 12330 27850 2.5 1 4
2 4220 4654 2.5 0.7 4
3 1440 991 2.5 1.1 4
4 561 405 2.5 1.1 3
5 362 277 3 1 3
6 310 251 2.5 1 3

MHD
size cells GMG levels relative time iterations cfl Cvis

128X128 16384 1 21.3 8360 3.8 2.5
2 5.6 1329 2.5 1.75
3 2.9 495 0.905 0.85
4 1.3 198 0.905 0.85
5 1 156 0.905 0.85

Channel entrance
size cells GMG levels relative time iterations cfl Cvis

60x120 7200 1 6.5 14692 3 0.5
2 1.0 1220 2 0.25
3 1.5 1191 1.1 0.075
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Cavity flow case (size 2562)
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Figure 20: L2-norm of pressure correction in the case of cavity flow of
grid size 256× 256.
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used between 0.2 to 1.0m. The cross-diffusion terms were included in
the calculations. It was noted during testing that convergence was
ensured only if the cross-diffusion terms and eddy viscosity were re-
stricted to the coarser grids. The solution time was registered after
the relative residual of the turbulence kinetic energy dropped below
1 · 10−13. The results are presented for one, two and three grid lev-
els in Table 1. Solution times have been divided by the shortest time.
For these three cases L2-norms are presented for the turbulence ki-
netic energy residual and pressure correction in Fig. 21. Although the
three-level case had converged with the fewest number of iterations
(V-cycles), it was about 50% slower than the two-level case. The single-
grid case was 6.5 times slower than the fastest MG case.

Finally, GMG was applied to the laminar magnetohydrodynamic
case. With grid size 128 × 128 the solution was calculated using one,
two, three, four and five grid levels. The solution time was registered
after the relative residual of the magnetic vector potential dropped be-
low 1·10−13. A comparison of the solution times can be found again from
Table 1. L2-norms are presented for magnetic vector potential residual
and pressure correction in Fig. 22 and Fig. 23, respectively. Again, a
significant reduction in the solution time can be had with GMG. The
best case is 21.3 times faster than the single-grid solution. With a
cavity flow case of similar size the best case ratio is 11.0. This could
suggest that, when an additional equation is coupled with the flow, the
use of GMG can be even more beneficial. In the channel entrance and
magnetohydrodynamic cases the values of the under-relaxation param-
eters cfl and Cvis had to be lowered considerably to ensure convergence
when the number of grid levels was increased. Only in the turbulent
case with three levels did this seem to have an adverse effect on perfor-
mance.

7 Conclusions
In this study a computer program has been written that solves an in-
compressible turbulent and a laminar magnetohydrodynamic flow in a
curvilinear two-dimensional structured grid. The program includes a
Python code for pre- and post-processing as well as a C++ code for a
solver. At the beginning the Python code creates an input file that con-
tains information about mesh, boundary conditions, initial conditions
and material properties. The solver program is started automatically
via Python after the input file has been made. The solver reads the
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Channel entrance case (size 60x120)
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Figure 21: Relative L2-norms of pressure correction and turbulence
kinetic energy residual in the case of channel entrance flow of grid size
60× 120.
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MHD case (size 1282)
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Figure 22: Relative L2-norm of magnetic vector potential residual in
the case of laminar magnetohydrodynamic flow of grid size 128× 128.
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MHD case (size 1282)

1.0E-15

1.0E-12

1.0E-09

1.0E-06

1.0E-03

1.0E+00

0 500 1000 1500 2000
Iteration count

R
el

at
iv

e 
L 2

-n
or

m

MG Levels 1
MG Levels 2
MG Levels 3
MG Levels 4
MG Levels 5

Figure 23: Relative L2-norm of pressure correction in the case of lami-
nar magnetohydrodynamic flow of grid size 128× 128.

67



input file as well as a mesh file and initial values if these are neces-
sary. Equations are iterated by the solver until conditions for finishing
are met and solutions are then stored into files. Finally, the Python
code reads automatically the solution data and generates contour and
vector plots for the desired variables.

Continuity and momentum equations are solved with a pressure-
correction algorithm and turbulence energy is modeled with the k − ε
model using cross-diffusion terms. Magnetohydrodynamic flow is im-
plemented by coupling a convection-diffusion equation for the mag-
netic vector potential with the momentum equation. All equations are
solved using an implicit time-stepping algorithm that is accelerated
with multigrid procedures. Linearized equations are solved with an al-
gebraic multigrid and non-linear equations with a full approximation
storage scheme.

The program was tested by solving several classical test cases. Lam-
inar flow was tested for the cavity flow case and the results for the ve-
locity profiles were identical with the literature [15]. A turbulent flow
was modeled for a channel entrance at Re=60000. Friction factors were
calculated and compared with values from literature [16] for a fully de-
veloped channel flow at Re = 104− 105 with and without cross-diffusion
terms. The cases without the terms had a smaller error in friction fac-
tor values. A magnetohydrodynamic flow was modeled in a cavity and
the results were confirmed with commercial COMSOL software. The
FAS-algorithm was tested with all of the cases mentioned above. Nu-
merical parameters were varied to achieve the fastest solution time for
every case. In all cases, GMG significantly decreased the time needed
for a solution. In the case of cavity flow with a grid size of 2562 the
multigrid solution proved to be approximately forty times faster than
a single-grid solution.
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Appendix A1
A strain rate tensor Sij in a matrix form is as follows:

Sij =
1

2

⎛
⎝ 2∂u

∂x
∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
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⎞
⎠ (136)

Reynolds stress tensor is presented in a matrix form using the Boussi-
nesq approximation:

τij =

⎛
⎜⎜⎜⎝

2μT
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Turbulent production term P = τij ·∂ui/∂xj can be calculated as a prod-
uct of the tensors, resulting as a scalar:

τij
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which can be rearranged to

τij
∂Ui

∂xj

= 2μT

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+ μT

[(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2
]

− 2

3
ρk

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
(139)

where the last term on the right side can be omitted in the incompress-
ible case, since it includes the continuity equation in parentheses and
thus equals zero. In the 2D incompressible case the turbulence produc-
tion term simplifies to:
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Appendix A2
Curl of �A:
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Curl of ∇× �A:
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Next terms ∂2Ax
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Terms can be rearranged to:
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)
−∇ · (∇Ax)

]
�i

+

[
∂

∂y

(
∇ · �A

)
−∇ · (∇Ay)

]
�j

+

[
∂

∂z

(
∇ · �A

)
−∇ · (∇Az)

]
�k

(143)

and further to:
∇×∇× �A = ∇

(
∇ · �A

)
−∇2 �A (144)
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Appendix A3
Flux term linearizations on the west, east, south and north faces re-
spectively:

∂F (φ1)
n
i−1/2

∂φ1

δφ1 =

[
max(0, �V · �n)ρS +

(
Sλ1

Δξ

)]
i−1/2

δφ1,i−1

−
[
max(0,−�V · �n)ρS +

(
Sλ1

Δξ

)]
i−1/2

δφ1,i

∂F (φ1)
n
i+1/2

∂φ1

δφ1 =

[
max(0, �V · �n)ρS +

(
Sλ1

Δξ

)]
i+1/2

δφ1,i

−
[
max(0,−�V · �n)ρS +

(
Sλ1

Δξ

)]
i+1/2

δφ1,i+1

∂F (φ1)
n
j−1/2

∂φ1

δφ1 =

[
max(0, �V · �n)ρS +

(
Sλ1

Δη

)]
j−1/2

δφ1,j−1

−
[
max(0,−�V · �n)ρS +

(
Sλ1

Δη

)]
j−1/2

δφ1,j

∂F (φ1)
n
j+1/2

∂φ1

δφ1 =

[
max(0, �V · �n)ρS +

(
Sλ1

Δη

)]
j+1/2

δφ1,j

−
[
max(0,−�V · �n)ρS +

(
Sλ1

Δη

)]
j+1/2

δφ1,j+1

(145)

Since some of the source terms consist of variables that are not part
of the local φ-component, their derivation with respect to φ would pro-
duce zero. Because there exists a strong coupling between the equa-
tions, the effect of the other variables have to be damped. Damping
is especially important during the first few iterations, when a solution
contains large oscillations, which induce large gradients. Damping is
implemented so that the value of coefficient Ap increases. If the terms
have negative values, absolute values are forced. The Lorentz force
terms are linearized just by taking an absolute value from them. A
source term for the k equation is linearized as follows: From the eddy
viscosity equation ε is solved without taking the wall correction and
damping function fμ into account. This equation is substituted into the
source term and derived with respect to k:

∂ψk

∂k
=

∂

∂k

(
P − Cμρ

2k2

μT

+ Ek

)
=

P

kc
+

2Cμρ
2k

μT

(146)
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where the derivation of Ek is set to zero and an absolute value is taken
from the second term on the right. It is assumed that the production
and the dissipation terms dominate over the cross-diffusion term. The
purpose of kc is to decrease the damping effect of the production term.
Value kc = 1.0 was used in the test calculations. Finally, the eddy vis-
cosity is substituted into the linearized equation.

∂ψk

∂k
=

P

kc
+

2ρε̃

k
(147)

In the linearization of the source term in the equation of the ε̃ the cross-
diffusion term and the damping term are assumed to be small and are
neglected. The derivation of ψε̃ is approximated as

∂ψε̃

∂ε̃
=

Cε2ρ

Tt

+
Cε1P

Ttεc
(148)

where εc (=300 in calculations) decreases the effect of turbulent pro-
duction P . Finally, in the vector potential equation the source term
linearization was not necessary, since source ψAz was not affected by
any other equation. The linearization of vector Ψ is presented here:

∂�Ψ

∂t
= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

|JzBy|
|JzBx|
2ρε

k
+

P

kc
Cε2ρ

Tt

+
Cε1P

Ttεc
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(149)
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Appendix A4
Weighting functions are presented for bilinear prolongation in loca-
tions (i, j), (i+ 1, j), (i, j + 1) and (i+ 1, j + 1):

φ̂m−1
im−1,jm−1

= φm−1
im−1,jm−1

+
9

16
(φ− φ∗)mim,jm +

3

16
(φ− φ∗)mim−1,jm

+
3

16
(φ− φ∗)mim,jm−1 +

1

16
(φ− φ∗)mim−1,jm−1

φ̂m−1
im−1+1,jm−1

= φm−1
im−1+1,jm−1

+
9

16
(φ− φ∗)mim,jm +

3

16
(φ− φ∗)mim+1,jm

+
3

16
(φ− φ∗)mim,jm−1 +

1

16
(φ− φ∗)mim+1,jm−1

φ̂m−1
im−1,jm−1+1 = φm−1

im−1,jm−1+1 +
9

16
(φ− φ∗)mim,jm +

3

16
(φ− φ∗)mim−1,jm

+
3

16
(φ− φ∗)mim,jm+1 +

1

16
(φ− φ∗)mim−1,jm+1

φ̂m−1
im−1+1,jm−1+1 = φm−1

im−1+1,jm−1+1 +
9

16
(φ− φ∗)mim,jm +

3

16
(φ− φ∗)mim+1,jm

+
3

16
(φ− φ∗)mim,jm+1 +

1

16
(φ− φ∗)mim+1,jm+1

For the corner nodes, the values are interpolated using three cells from
the coarse grid. Two ghost cells are present at each boundary. There-
fore the index of the first cell inside the domain is 3. Total cell counts
including the ghost cells are for the i- and j-directions I and J respec-
tively. The index numbers of the last cells inside the domain are I − 2
and J − 2. Weighting equations for the corner nodes are as follows:
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φ̂m−1
3m−1,3m−1

= φm−1
3m−1,3m−1

+
8

16
(φ− φ∗)m3m,3m +

4

16
(φ− φ∗)m2m,3m

+
4

16
(φ− φ∗)m3m,2m

φ̂m−1
Im−1−2,3m−1

= φm−1
Im−1−2,3m−1

+
8

16
(φ− φ∗)mIm−2,3m +

4

16
(φ− φ∗)mIm−1,3m

+
4

16
(φ− φ∗)mIm−2,2m

φ̂m−1
3m−1,Jm−1−2 = φm−1

3m−1,Jm−1−2 +
8

16
(φ− φ∗)m3m,Jm−2 +

4

16
(φ− φ∗)m3m,Jm−1

+
4

16
(φ− φ∗)m2m,Jm−2

φ̂m−1
Im−1−2,Jm−1−2 = φm−1

Im−1−2,Jm−1−2 +
8

16
(φ− φ∗)mIm−2,Jm−2 +

4

16
(φ− φ∗)mIm−2,Jm−1

+
4

16
(φ− φ∗)mIm−1,Jm−2

The interpolation error for these methods are of the order O(Δx2
m−1,Δy2m−1),

which can be shown with the Taylor expansion.
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Appendix A5
Subroutines, which are present in the FAS-GMG algorithm:

SOLVEVARS(�Φm, presmooth, m) {
do l = 1 to Lm

BC(m)
LOCALDT(m)
if(l=1 and m>1 and presmooth) {

MASSBALANCE(Δmm)
Δmm = Δmm,∗ −Δmm

}
CALCULATECV(m)
do k = 1 to K

SOLVEVAR(φm
k ,k,l,m,presmooth)

enddo
PC(pm,l,m)

enddo
}

78



RESTRICTVARS(�Rm−1 → �Rm, �Φm−1 → �Φm,m) {
BC(m)
do k = 1 to K

Rm−1
k = sm−1

k − Fm−1
k (φm−1

k )

RESTRICT1(Rm−1
k → Rm

k )
RESTRICT2(φm−1

k → φm
k )

enddo
MASSBALANCE(Δmm−1)
if(m=2) {

RHIE&CHOW(Δmm−1)
}
RESTRICT1(Δmm−1 → Δmm)
RESTRICT2(pm−1 → pm)

}

PROLONGATEVARS(�Φm+1 → �Φm,m) {
BC(m)
do k = 1 to K

PRO(φm+1
k → φm

k )
enddo
PRO(pm+1 → pm)

}
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SOLVEVAR(φm
k ,k,l,m,presmooth) {

Rm
k = smk − Fm

k (φm
k )

if(l=1 and m>1 and presmooth) {
Rm

k = Rm,∗
k −Rm

k

}
R̂m

k = Rm
k +Rm

k

LINEARIZE(Fm
k )

AMG(F ′m
k dφm

k = R̂m
k )

φm,l+1
k = φm,l

k + αkdφ
m
k

}

PC(pm,l,m) {
MASSBALANCE(Δmm)
if(m=1) {

RHIE&CHOW(Δmm)
}
Δ̂m

m
= Δmm +Δmm

PCECOEFFS(m)
AMG(Am

p p
′m = −Δ̂m

m

k )
um,l+1 = um,∗ + αuu

′m

vm,l+1 = vm,∗ + αuv
′m

pm,l+1 = pm,l + αpp
′m

}
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