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Abstract 
The electromagnetic properties of a material arise from its intrinsic microstructure, which 
may often be very complex. However, materials are usually characterized more simply using 
macroscopic material parameters, electric permittivity and magnetic permeability. This 
thesis considers the principles of material modeling from the electromagnetics point of view. 
The analysis is mostly based on electrostatics. The aim of the thesis is to enhance the 
understanding of the interaction between matter and the electromagnetic fields, and further, 
the relation between matter and geometry. 

 
The contents of the thesis can be divided into three parts. The first part discusses the 

concepts of polarization and polarizability and considers the electric reponses of particles 
with different geometries. Polarizabilities of a three-dimensional hemisphere and a two-
dimensional half-disk are solved. 

 
The second part studies negative material parameters. The emphasis lies on negative 

permittivity. Interfaces between permittivities of opposite signs are found supporting surface 
plasmons, or electrostatic resonances. The occurrence of these resonances is especially 
studied for a hemisphere and a half-disk. Moreover, it is showed that sharp edges with 
negative permittivity may support unphysically singular field modes, which in numerical 
simulations can result in non-convergent solutions. The most efficient way to overcome this 
problem in computational modeling is to slightly round all sharp corners. 

 
The third part focuses on homogenization of composite media. Effective material 

parameters modeling the response of a thin dielectric composite slab are retrieved. 
Computational homogenization techniques and their limitations are studied. The results 
indicate that for a successful homogenization, the unit cells of the slab must remain very small 
compared with the wavelength. Also, the boundary layers of the slab show higher effective 
permittivity than the corresponding bulk medium. 
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Tiivistelmä 
Aineen sähkömagneettiset ominaisuudet määräytyvät sen sisäisestä mikrorakenteesta, joka 
voi usein olla hyvinkin monimutkainen. Tavallisesti materiaaleja kuitenkin mallinnetaan 
yksinkertaisemmin makroskooppisten materiaaliparametrien, sähköisen permittiivisyyden 
ja magneettisen permeabilisuuden, avulla. Väitöskirjassa perehdytään materiaalien 
mallinnukseen sähkömagnetiikan näkökulmasta. Analyysi perustuu pitkälti sähköstatiikan 
yhtälöihin. Tutkimuksen tavoitteena on lisätä ymmärrystä aineen ja sähkömagneettisten 
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Sisällöllisesti väitöskirja voidaan jakaa kolmeen aihealueeseen, joista ensimmäinen 
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resonanssien esiintymistä tutkitaan erityisesti puolipallon ja puoliympyrän tapauksissa. 
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1. Introduction

In introductory electromagnetics, materials are usually modeled with two ma-

terial parameters, electric permittivity ε and magnetic permeability μ. These

parameters describe the response of the material in a macrosopic sense. For

a homogeneous isotropic material, ε and μ are scalar constants. However, if

we tune our scale of observation, we find that every seemingly homogeneous

material hides an intrinsic heterogeneous structure that gives rise to the char-

acteristics of the material. Sometimes this structure is visually observable, like

the grains of sand, sometimes microscopic, like a lattice of molecules or atoms.

Obviously, it is quite convenient to embed these complex microscale effects into

simple effective macroscopic parameters. In a general case, where the material

may show, for instance, anisotropy or non-local effects, two scalar parameters

are not enough and extended material models are needed. In order to derive

the most suitable effective models with the most accurate parameters, the re-

sponse of the material’s geometric microstructure must be explored. That is,

electromagnetic material research, or studying the interaction between matter

and electromagnetic fields, eventually comes to studying the relation between

matter and geometry. However, like the title of the Thesis implies, the analysis

of even the simplest looking geometries may sometimes become rather compli-

cated. In other words, complex geometries are tried to be simplified, but even

simple geometries may show complex responses!

The objective of the Thesis is to enhance the fundamental understanding of

this matter–geometry relation. We consider responses of single particles and

geometries, and finally, we study how a combination of particles could behave

as a new effective material.

The Thesis consists of an overview and six peer-reviewed articles. The orga-

nization of the Thesis is the following. Chapter 2 gives a brief review of the

related electromagnetic theory introducing the most important concepts and

the used notation.

19



The rest of the of the overview can be divided into three parts. First, Chap-

ter 3 considers the fundamental relation between matter and geometry. The

Clausius–Mossotti model for dielectric media is discussed and the concept of

polarizability [1] as a measure of particle’s electric response is introduced. The

related Publications are I and III that by semianalytical methods study the

polarizabilities of a hemisphere and a half-disk, respectively.

Chapter 4 then expands the analysis for negative material parameters. The

characteristics and possibilities of such ’negative index media’ are discussed.

A brief overview is given on proposed realizations of negative material param-

eters using novel artificial metamaterials [2–7]. Particles and interfaces with

negative permittivity are also found supporting strong resonances called sur-

face plasmons [8]. This phenomenon has recently given rise to an independent

field of research called plasmonics [9]. The Thesis considers surface plasmons,

also referred to as electrostatic resonances [10], from a theoretical point of view.

Publications II and III study the plasmonic responses resonances supported by

a negative-permittivity hemisphere and a half-disk, respectively. Publication

IV gives a general overview of surface modes related to some of the most com-

mon canonical geometries and discusses the problems related to computational

modeling of negative-permittivity objects.

Chapter 5 considers effective modeling, or homogenization, of composite me-

dia [11]. An introduction to classical analytical electrostatic mixing formu-

las [12] is given. Furthermore, the retrieval of effective permittivity is consid-

ered in a dynamic case. Homogenization of dielectric composite slabs is studied

in Publications V and VI. Two homogenization methods are discussed, one

based on reflection and transmission data, or S-parameters [13, 14], and the

other on field averaging.

Finally, Chapter 6 summarizes the main results of the included Publications

I–VI.
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2. Electromagnetics

The electromagnetic theory builds on four principal laws that are based on em-

pirical observations made in the 19th century and named after Faraday, Am-

père and Gauss. These laws were combined and further generalized by James

Clerk Maxwell in 1864, which is the reason we nowadays refer to them as the

Maxwell equations. A modern way of writing these equations, thanks to vector

analysis and Oliver Heaviside, is to present them as partial differential equa-

tions as [15]

∇×E(r, t)=−∂B(r, t)
∂t

, (2.1)

∇×H(r, t)=J(r, t)+ ∂D(r, t)
∂t

, (2.2)

∇·D(r, t)= �(r, t), (2.3)

∇·B(r, t)= 0, (2.4)

where E is the electric field, B the magnetic flux density, H the magnetic field,

J the electric current density, D the electric flux density, or displacement, and �

the electric volume charge density. All these quantities are functions of location

r and time t. The equations (2.1)–(2.4) are not perfectly symmetric due to the

fact that the magnetic charge and magnetic current remain undiscovered in

nature and, therefore, are considered nonexistent. The theory is completed

with the constitutive relations, which for homogeneous isotropic media read

D= εE, (2.5)

B=μH, (2.6)

where ε is the electric permittivity, μ the magnetic permeability. Moreover, the

relation between the current and the electric field is defined by Ohm’s law

Jc =σE, (2.7)

where Jc is the conduction current density and σ the electric conductivity of the

medium. In (2.2), term J includes both the primary source current density and
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this conduction current density, which is a secondary field term arisen from a

conductive material’s response to the electric field. Relations (2.5)-(2.7) describe

the interaction between the fields and matter. The permittivity and permeabil-

ity of a certain material are often expressed as dimensionless parameters εr

and μr, relative to the corresponding values of vacuum ε0 and μ0, respectively,

that is, ε= εrε0 and μ=μrμ0.

2.1 Time-harmonic fields

Considering the analysis and actual computation of electromagnetic fields, it is

often very convenient to only consider time-harmonic, or monochromatic, fields

that oscillate sinusoidally at a certain angular frequency ω. In this case, the

fields are treated as complex-valued vectors. In the Thesis, the time convention

e jωt is used. This enables us to replace all time derivatives by jω and further

forget the time dependency. The time-harmonic Maxwell equations in a homo-

geneous isotropic material become

∇×E(r)=− jωμH(r), (2.8)

∇×H(r)=J(r)+ jωεE(r), (2.9)

∇·D(r)= �(r), (2.10)

∇·B(r)= 0, (2.11)

where the conductivity losses predicted by Ohm’s law (2.7) are embedded into

the permittivity as

ε= ε0

(
ε′r − j

σ

ωε0

)
. (2.12)

With the chosen time convention, we write both εr = ε′r− jε′′r and μr =μ′
r− jμ′′

r as

complex numbers, whose imaginary parts, for passive media, must be zero or

negative meaning that the parameters ε′′r and μ′′
r are real and non-negative [16].

2.2 Plane waves

The solutions to (2.8)–(2.11) considered in the Thesis are plane waves whose

wavefronts are infinite parallel planes. The waves propagate into a coordinate

direction denoted by the wave vector k that is perpendicular to the constant

phase planes. For time-harmonic plane waves, the Maxwell equations simplify
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to

k×E(r)=ωB(r), (2.13)

k×H(r)=−ωD(r). (2.14)

For a plane wave that propagates into the direction of the positive z-axis in

a homogeneous and isotropic medium, the wave vector becomes k= kuz, where

k = k′− jk′′ is the wave number in the medium and uz the z-directed unit vector.

The electric field is of the form

E(r)=E(z)=E0e− jkz, (2.15)

with

k ·E0 = 0. (2.16)

2.3 Statics and quasi-statics

When the frequency ω tends to zero, we are left with static fields and the con-

nection between electricity and magnetism disappears. The physics is then

divided into two branches, namely electrostatics and magnetostatics. The elec-

trostatic Maxwell equations are

∇×E(r)= 0, (2.17)

∇·D(r)= �(r), (2.18)

whereas the corresponding magnetostatic ones are

∇×H(r)=J(r), (2.19)

∇·B(r)= 0. (2.20)

As Faraday’s law (2.17) in statics states that the electric field is conservative,

that is, its curl vanishes, the field can be given as a gradient of a scalar potential

function as

E(r)=−∇φ(r). (2.21)

The analysis reduces to solving the electrostatic potential φ which, in source-

free space, satisfies the Laplace equation

∇2φ(r)= 0. (2.22)

The analysis presented in the Thesis is mostly based on electrostatics. How-

ever, we consider concepts like negative permittivity, which can only occur with
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frequency dispersion. Moreover, we study interaction between the medium and

a propagating plane wave. In these cases, the primary assumption is that all

considered geometrical details, either the studied separate particles or the in-

trinsic microscopic heterogeneities of a composite material, are much smaller

than the wavelength of the impinging fields. From (2.15), we see that if the

electrical size of the studied object with maximum dimension d remains very

small and the losses are moderate, that is, |kd| << 2π, the phase of the oscil-

lating field is approximately constant over the whole object, e− jkd ≈ 1, and the

situation is considered locally static. This borderland between statics and dy-

namics is herein referred to as quasi-statics. The studies reported in the Thesis

mostly fall within this area. For instance, Publications II–IV consider objects

and geometries with negative permittivity, which is a dynamic phenomenon,

with means of electrostatics. That is, by first finding the solution for the po-

tential function from (2.22), polarizabilities of different geometric objects are

computed. In addition, Publications V and VI study the homogenization of het-

erogenenous material. Again, the material interacts with a propagating wave,

but since its microscopic details are very small compared with the wavelength,

it is modeled effectively homogeneous. An important scope of the Thesis is to

find safe and reasonable limits for this homogeneity assumption.

2.4 Complex media

Unfortunately, the constitutive relations written as (2.5) and (2.6) are not ap-

plicable in all imaginable cases. For instance, due to the recent boost in the re-

search of artificial metamaterials [2–7], it has become evident that extra atten-

tion must be paid to what is really meant by constitutive material parameters.

Parameters ε and μ are a way to model simple media from the electromagnetic

point of view, but if the complexity of the material is increased, two scalar pa-

rameters are no longer enough. For instance, in a general bi-anisotropic case,

the constitutive relations become [16,17]

D= ε ·E+ξ ·H, (2.23)

B=μ ·H+ζ ·E, (2.24)

where the material parameters are given as dyadics [16], or second rank ten-

sors, and the number of individual scalar parameters increases up to 36. The

parameters ξ and ζ are introduced to model magnetoelectric coupling, which

potentially gives rise to complex material properties such as non-reciprocity
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and chirality [17, 18]. Within the scope of the Thesis, the magnetoelectric cou-

pling is not further considered. The materials are also assumed linear and

time-invariant.

In Publications V and VI, homogenization of dielectric composite slabs is stud-

ied. The purpose is to find an effective macroscopic model for the permittivity

to replace the actual intrinsic microstructure of the slab. The applied homoge-

nization model includes the effect of frequency dispersion as

〈D〉 = εeff(ω)〈E〉, (2.25)

where 〈D〉 and 〈E〉 are macroscopic, averaged fields.

However, with increasing frequency, the electrical size of the composite het-

erogeneities increase and eventually become comparable to the wavelength in

the material. In this case, the inhomogeneous microstructure is no longer in-

visible to the impinging field. This is seen as spatial dispersion, or non-locality,

which means that the flux densities D and B cannot anymore be defined point-

wise from the field values E and H, respectively, as in (2.5) and (2.6), but also

the behavior of the fields in the vicinity of the point of observation, that is,

the spatial derivatives of the fields, must be taken into consideration. For a

plane wave, this means that the material properties become dependent on the

direction of wave propagation, such as

ε= ε(k). (2.26)

For instance, magnetoelectric coupling included in (2.23) and (2.24) is a first-

order, and artificial magnetism a second-order effect of weak spatial disper-

sion [17]. Spatial dispersion strongly limits the applicability of simple homog-

enization models in case of complex artificial media, especially for the afore-

mentioned metamaterials [19]. Therefore, new characterization methods are

constantly under development [20,21].
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3. Of matter and geometry

In our everyday life, we find ourselves surrounded by a great variety of different

materials. Many of them exist naturally, such as air, water, stone or wood, but

many of them are man-made, like plastic or glass. From the electromagnetics

point of view, nature consists of materials that are described by their material

parameters, electric permittivity ε and magnetic permeability μ. However, com-

pared with the everyday speech, we must be more specific with our definitions.

For instance, using terms like wood, rock and metal is not accurate enough,

since, for example, copper, silver, and gold have all their own electromagnetic

material parameters. Moreover, materials like sand and snow become prob-

lematic, as they clearly have an intrinsic heterogeneous structure, that is, they

are not homogeneous materials accurately described by two scalar numbers.

Instead, they are mixtures of different constituents [12]. Fortunately, in some

cases it is possible to model heterogeneous materials using effective material

parameters, which is the focus of Chapter 5.

The current chapter, instead, studies the electrostatic response of dielectric

matter and further the relation between matter and geometry. However, cer-

tain analogies can be drawn between these topics. If we zoom deep enough

into the structure of any material, we see that nothing remains homogeneous

anymore. Finally, we are facing just elementary particles, like electrons and

protons. It becomes evident that the material parameters, ε and μ, and further-

more, the whole macroscopic field theory, are only approximative models of the

reality of nature.

To understand the idea of modeling dielectric matter with electric permittiv-

ity ε, we study the concept of polarization. Furthermore, we discuss how the

geometry and the permittivity of a macroscopic particle affect its response to

an external electric field. This relation is described by a parameter called po-

larizability.
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3.1 Polarization of dielectric matter

By dielectrics, we mean non-magnetic and non-conducting materials with μ =
μ0 and σ = 0. Such materials can be portrayed as a collection of positive and

negative charge carriers that are bound to the atomic structure and cannot

move freely. In the absence of an external electric force, they cancel out each

other’s effects and the material is observed electrically neutral. When a dielec-

tric material is exposed to an external electric field E, positive and negative

charges experience oppositely directed forces making them form small dipoles

with dipole moments p that are aligned with respect to the external field. We

say that the material becomes polarized. In this case, the electric displacement

(2.5) can be written as [22]

D= εE= ε0E+P, (3.1)

where ε0E corresponds the displacement in vacuum and P is the average polar-

ization, whose relation to the external field is given by electric susceptibility χ,

such as

P= ε0χE. (3.2)

Thus, it is convenient to embed this effect of polarization into the material

parameter permittivity, which becomes of the form

ε= ε0(1+χ). (3.3)

On the other hand, polarization P stands for the volume density of the in-

duced dipole moments p within the material. That is,

P= np, (3.4)

where n is the number of dipoles per volume unit. The magnitudes and direc-

tions of the induced dipoles are proportional to the polarizing electric field. This

relation can be written as

p=αEloc, (3.5)

where the parameter α is called the polarizability and Eloc is the local electric

field seen by each individual dipole. In a very dilute material, where the in-

teraction between the dipoles can be neglected, Eloc ≈ E. However, in a more

general, denser material, we must take into account that each dipole also feels

the effect of its surrounding neighbors. A common, relatively simple model for

such field is obtained by considering an empty spherical cavity in the polarized

material, where the local field is of the form [22]

Eloc =E+ 1
3ε0

P. (3.6)
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Finally, following from equations (3.2)–(3.5), for permittivity, we obtain

ε= ε0 + nα
1− nα

3ε0

, (3.7)

which is know as the Clausius–Mossotti, or Lorenz–Lorentz, relation [12]. This

equation is a classical example of how the microscopic response of individual

dipoles within the material is integrated into one macroscopic parameter, the

permittivity ε.

3.2 Polarizability of a dielectric particle
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Figure 3.1. When exposed to an external electric field, an electrically neutral dielectric object
(left) becomes polarized (middle). In a macroscopic scale, the polarized object can be
approximated as an electric dipole (right).

Above, polarization was studied in a microscopic scale as an intrinsic phe-

nomenon characteristic to all dielectric matter. However, in the following, we

consider the polarization in a macroscopic sense. We notice that the polarizabil-

ity α is an important factor in equation (3.7). It is a measure for the response

of each individual microsopic dipole that together form the material, whereas

permittivity ε is a macroscopic measure for the total polarization of the mate-

rial. Also macroscopic dielectric objects can be polarized by an external electric

field, as depicted in Figure 3.1. Let us form a particle by taking a small sample

out of our material. The external electric force again induces charges to form

microscopic dipole moments within the particle and, due to its finite size, the

entire particle can be seen in an averaged sense as one total macroscopic dipole

ptot. We can define the polarizability α also for a finite-size particle as a ratio

between the magnitudes of this macroscopic dipole moment and the external

polarizing field as

ptot =αEe. (3.8)
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Considering relation (3.7) in a larger scale, a collection of dielectric particles

can be seen as a new material and modeled by an effective permittivity εeff.

Analytical formulas for approximating this effective quantity for collections of

particles, or mixtures, are known as mixing rules [11, 12]. One could say that

the foundations of the theory of mixtures largely lie in the relation (3.7). More-

over, according to this theory, artificial materials with the desired effective per-

mittivities can be designed by tuning the polarizability and the density of the

mixture constituents.

The polarizability of a certain particle is largely determined by its geome-

try [1]. This also means that the macroscopic response of the material is de-

termined by the microscopic geometric details of its internal structure. As Jo-

hannes Kepler (1571–1630) has stated: ’Ubi materia, ibi geometria’ - ’Where

there is matter, there is geometry’ [23].

Polarizability α is a convenient measure for the electrostatic response of dif-

ferent particles. However, it must be stressed that we are dealing with a sim-

plified model, as by the definition (3.8), only the dipolar response is taken into

account. In reality, the response of the particle may be rather complex, and

can only be accurately presented by an infinite sum of higher order multipoles.

The higher order terms, however, are significant only in the near vicinity of

the particle and rapidly decay as a function of distance. That is, observed from

a distance large enough, the polarized particle is seen causing only a dipolar

perturbation to the original external field.

Despite the seeming simplicity of definition (3.8), considering dielectric ob-

jects with arbitrary ε, ellipsoids are the only geometries whose polarizability

can be written in a simple analytical closed form [1]. Nevertheless, polarizabil-

ities of various, dielectric or conducting, geometries have been studied using

both analytical and numerical methods. In the literature, polarizability studies

can be found, for instance, for circular cylinder [24], regular polyhedra [25, 26]

and variations of a system of two spheres [27–30]. Also, [31] provides a collec-

tion of rather complicated analytical expressions for polarizabilities of various

geometries in the limiting case ε→∞.

Polarizability has been an important keyword in at least two preceding doc-

toral theses in the Author’s department [32,33]. The contribution of the Thesis

to this field of research are Publications I and III, which study the polarizabil-

ities of a 3D hemisphere and 2D half-disk, respectively. These geometries are

special cases of more general configurations simultaneously studied by Pitko-

nen in [29, 34]. The analysis in [29, 34] is, however, much more mathematical

and the obtained exact solutions are given in an integral form. In this compar-
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ison, the Author’s approach, which follows the idea of [35], is more straightfor-

ward yielding approximate results with very reasonable accuracy.

3.3 Computation of the polarizability components

The polarizability is obtained by solving the electrostatic boundary value prob-

lem depicted in Figure 3.1, where the object with permittivity εi is placed into

an external uniform electric field Ee. The constitutive relation (3.1) for the

displacement Di inside the object is now written as

Di = εrε0Ei = ε0Ee +P. (3.9)

Herein, we assume that the object is surrounded by vacuum and the dimension-

less relative permittivity εr = εi/ε0 denotes the permittivity contrast between

the object and its environment. In a more general case where the object is not

surrounded by vacuum but some other homogeneous material, ε0 could sim-

ply be replaced with the corresponding permittivity of environment εe and the

relative permittivity defined as the ratio εr = εi/εe.

The relation between the polarization P and the field Ei inside the object

becomes from (3.2) and (3.3)

P= ε0(εr −1)Ei. (3.10)

As illustrated in Figure 3.1, the average polarization of the particle first arises

from the intrinsic microscopic polarization. This relation for an infinite amount

of material was simply defined by (3.4). Inside a finite-sized particle, the micro-

scopic dipoles may not, however, be perfectly aligned. In this case, the induced

total dipole moment vector ptot of the particle is obtained by volume integra-

tion,

ptot =
∫

V
PdV (3.11)

and the polarizability component in the direction of the external field Ee can be

computed from

α= 1
Ee

∫
V
ε0(εr −1)Ei dV . (3.12)

Solving the polarizability this way requires that we first have a solution for

internal electric field Ei. In a general case, the analytical solution may not

be available. Instead, for numerical computation, this solution is the most

straightforward.

Another approach to solve the polarizability is to study the external response

of the polarized object. The electrostatic potential φ must satisfy the Laplace
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equation (2.22), which can be solved by separation of variables in several co-

ordinate systems. The potential outside the object is written as a series ex-

pansion and the coefficients of the terms are solved by applying the boundary

and interface conditions. The polarizability α can be determined by the dipolar

component of the potential. A semianalytical method based on this kind of a

series solution for solving the potential for a hemispherical object [35] is im-

proved and applied in Publication I. Publication III then repeats this analysis

in two dimensions for a half-disk.

For an arbitrary particle, the polarizability depends on the direction of the

external field and to fully determine the polarizability of a 3D object, the po-

larizability values must be solved in three orthogonal directions. That is, the

polarizability can be written as a dyadic α, which collects the information of all

three perpendicular polarizability components. For an introduction to dyadics

and dyadic operations, see [16]. Also, the equation (3.8) becomes in a more

general form

ptot =α ·Ee. (3.13)

The average polarizability of an object is the average over three perpendicular

components, which can also be written by means of the trace [16] of the dyadic

α,

αav = 1
3

tr
(
α

)
= 1

3
α : I, (3.14)

where I is the unit dyadic.

In 3D, a sphere, which is a special case of an ellipsoid, is the most symmetric

of all objects. Due to the spherical symmetry, the polarizability of a sphere

reduces to

αsph =αsphI. (3.15)

That is, the polarizability of a sphere is determined by one scalar component

αsph. Moreover, this component has a closed-form analytical solution. A di-

electric sphere with relative permittivity εr and radius a in a uniform external

electric field is a classical example of a 3D electrostatic boundary value prob-

lem [15]. The secondary field caused by the sphere is purely dipolar, and the

magnitude of the electric field inside the sphere is

Ei =
3

εr +2
Ee. (3.16)

As Ei is constant with respect to the spatial coordinates, equation (3.12) gives

αsph =Vε0(εr −1)
3

εr +2
, (3.17)
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where V is the volume of the sphere. The same solution is easily obtained also

by solving the dipole moment of the polarized sphere. This is also the minimum

value for average polarizability among all 3D geometries [31,36].

Moreover, for convenience, instead of the absolute value α, the polarizability

is often given as a dimensionless number normalized by the permittivity of the

environment and the volume of the object,

αn = α

Vε0
. (3.18)

For instance, for the sphere, we usually write

αsph,n = 3
εr −1
εr +2

. (3.19)

Also, the polarizability components of general ellipsoids have analytical ex-

pressions [12]. Obtaining simple analytical solutions for general objects, how-

ever, seems to be very difficult, if not impossible. Using modern computational

methods, it is no problem to compute the polarizability, or related quantities, of

any arbitrary object with reasonable accuracy [37]. The emphasis of the Thesis,

however, lies on an analytical approach, as we trust that analytical solutions

can provide more fundamental understanding on physics and the nature itself.

3.4 Duality relation of 2D geometries

The polarizability of a two-dimensional particle is determined by two perpen-

dicular components α1 and α2. A conjecture has been made that for any 2D

geometry, these components are related by [38]

α1(εr)=−α2(ε−1
r ). (3.20)

The simplest example of a 2D geometry is a disk, a 2D sphere, for which α1 =
α2. The normalized polarizability of the disk reduces to a single component,

which is of the form [12]

αd,n = 2
εr −1
εr +1

. (3.21)

We notice that substituting εr by its inverse ε−1
r in (3.21) yields the original

polarizability value with a negative sign, which satisfies the conjecture (3.20)

in the special case where α1 and α2 are equal.

Publication III verifies the relation (3.20) for a half-disk. It is also shown that

in the case of a half-disk, all the higher multipole moments are also related by

this same duality.
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This general duality feature of 2D media [11] was originally reported in works

of Keller [39], Dykhne [40], and Mendelson [41], which studied the effective

conductivity of two-phase media.
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4. Negative material parameters

Let us expand our point of view and consider the possibility of the electromag-

netic material parameters to be negative. This may sound like quite an exotic

idea, since for a vast majority of all natural materials, ε≥ ε0 and μ≥ μ0. How-

ever, allowing both ε,μ< 0 gives rise to interesting effects, which originally were

theoretically studied by Victor Veselago in the late 1960’s [42]. Such ’double-

negative’ material would support so-called backward waves, whose wave vector

k is antiparallel to the Poynting vector S, meaning that the phase and the

power of the wave are propagating into opposite directions, as depicted in Fig-

ure 4.1 [43].

E

H S,k

ε,μ> 0

E

H Sk

ε,μ< 0

Figure 4.1. Illustration of the wave propagation. An ordinary plane wave in a natural material
(left), and a backward wave in a medium where both the permittivity ε and the
permeability μ are negative (right).

Moreover, the medium would have a negative index of refraction. This is

not automatically obvious, since the refractive index is usually written as n =
�
εrμr, and it seems that the negative signs of εr and μr should cancel each

other. However, the negative branch of the square root must be chosen [42].

Actually, a better way of writing n, especially for numerical evaluation, is

n =�
εr
�
μr, (4.1)

where the square roots are taken separately. In this case, the negative parame-

ters yield (positive) imaginary square roots, which after multiplication give the
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wanted minus sign. Instead, the impedance η=√
μ/ε remains positive written

either way.

Negative permittivity can actually be observed in nature. One example of

such a medium is the plasma that occurs in the ionosphere located in the outer-

most layers of the atmosphere and is ionized by the solar radiation. Moreover,

much more tangible examples for an earthly human being are noble metals at

optical frequencies [44, 45]. On the contrary, isotropic negative magnetic per-

meability is not found readily existing anywhere. Therefore, much effort has

lately been put in research and development of artificial magnetism. Negative

permittivity has also been engineered for lower frequencies by artificial meta-

materials [6].

Within the scope of the Thesis, we mainly focus on the negative permittivity.

This kind of ’single-negative’ medium also offers a stage for fascinating physics.

It is found that the interface between permittivities with opposite signs is ca-

pable of supporting resonances of sub-wavelength scale. These resonant modes

are usually referred to as plasmons. In optics, such an interface exists between

a metal and a dielectric, offering new intriguing possibilities for scientists to

manipulate light [46]. Also, small particles with negative ε may show strong

resonant responses [44,47]. Small metallic nanoparticles, for instance, can have

resonances at visible wavelengths and appear in different bright colours. This

plasmonic effect has actually been exploited, without the slightest idea of plas-

mons or modern nanotechnology, already centuries ago when stained glass was

made by mixing, for instance, gold and silver particles in the glass. The most

famous example of such handcraft is the Lycurgus cup from the 4th century

A.D., nowadays held in the British Museum [48].

If the size of the particle is much smaller than the wavelength, the fields in

the vicinity of the particle can be considered locally (quasi-)static, even though

we would study optical frequencies, which are required for negative ε with nat-

ural materials. That is, plasmonic resonances are also found by electrostatic

analysis as a solution to the Laplace equation (2.22) and, therefore, we also

often call them electrostatic resonances [10]. The Thesis studies how the geo-

metry of the particle determines the permittivity value, or values, which yield

resonant responses. In a lossless case, where ε is purely real and negative, the

response may become singular. Even the canonical geometries studied in Pub-

lications II and III show quite complex behavior when negative ε allowed. This

is an essential theme within the Thesis, to which its title also refers.
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4.1 The quest for Negative Index Media

It was not until 30 years after Veselago’s paper [42] that the negative material

parameters really became topical. The famous publication that resurrected

Veselago’s idea of negative refraction was Pendry’s article on the perfect lens

[49], which would overcome the diffraction limit of conventional lenses. Figure

4.2 presents the wave refraction as a ray diagram in a slab with refractive index

n = −1. As the wave refracts negatively, a focus is formed inside the slab and

another one on the other side of the slab. That is, the radiation from the source

is converged into one point and a perfect image is obtained. Pendry further

explained that the focusing is achieved by the evanescent components of the

wave, which by negative n are amplified in magnitude.

n = 1 n =−1 n = 1

Figure 4.2. Negative refraction makes a perfect lens. The arrows show the direction of the
phase propagation

What really started the boom was that the missing medium with negative ε

and μ was finally available, at least in theory [50]. One could artificially con-

struct a material that would mimic the behavior of such naturally nonexistent

medium, at least for a plane wave excitation and for one polarization. Negative

permittivity would be achieved by wire media, that is, a lattice of thin metal

wires, which can be tuned to imitate the behavior of plasma at microwave

frequencies [43], and negative permeability by strong magnetic resonance of

small inclusions, which would behave as artificial molecules. The most famous

suggestion for this kind of a magnetic particle was the so-called split-ring res-

onator (SRR) [51]. A little later, the first example was built and experimentally

tested [52]. The era of metamaterials had begun.
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Since then, numerous research groups have put a lot of effort in the analysis

and realization of simultaneously negative material parameters. The desired

materials with ε,μ< 0 have also been given many names, such as negative in-

dex media (NIM), negative refractive index (NRI) media [2], double-negative

(DNG) media [3], backward-wave media (BWM) and, in honor of their discov-

erer, Veselago media [43]. Also, the name left-handed media (LHM) is often

used [5,6]. This sounds natural, since for a backward wave, the (E,H,k) triplet

becomes left-handed, see e.g. Figure 4.1. However, this term may be confus-

ing [53], since the handedness of the material is usually related to chirality,

that is, material’s capability to rotate the polarization of a propagating wave,

which is an effect of magnetoelectric coupling, discussed in Chapter 2, and not

of negative material parameters.

Even though not based on negative material parameters, one cannot leave

the famous idea of electromagnetic cloaking [54, 55] without mentioning, as it

even more increased the interest towards metamaterials. The material model

for the cloak was obtained by transformation optics, and soon, the first approxi-

mate realization of a metamaterial cloak was introduced [56]. However, already

a little earlier, reducing scattering by negative permittivity/permeability meta-

materials had been considered [57]. This approach has later been referred to

as plasmonic cloaking [58].

In addition to the original wire media and split-ring resonator -based realiza-

tions, alternative configurations have been suggested. Metamaterials based on

transmission-line techniques are considered widely in the literature [2, 4] and

a recent doctoral dissertation from the Author’s department has contributed to

this field of research [59]. Furthermore, by the means of nanotechnology, very

small structures aiming at optics can be developed. One of the most famous

realizations has been the so-called fishnet structure [60–62].

However, the progress of metamaterials has not been as smooth as one could

have hoped. Future will show if the highly intriguing possibilities of metama-

terials will ever be realized as functional applications. There are opinions for

and against. Among the most severe criticism, even the original conclusions of

Veselago have been questioned [63]. In any case, there are still fundamental

issues to overcome. For instance, as negative ε and μ are based on resonance

and strong dispersion, the desired parameter values can be achieved only in a

very narrow frequency band [64–66]. Also, especially in the case of the perfect

lens, material losses would significantly decrease the focusing effect [67–69].

Furthermore, as metamaterials are supposed to behave as real homogeneous

materials, the size of artificial inclusions forming the material must be very
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small compared with the wavelength. This requirement is not that easily a-

chieved, especially when the structure is supposed to be resonant [70]. This

topic is more thoroughly discussed in Chapter 5, where material homogeniza-

tion is considered.

4.2 Plasmons and plasmonics

In the following, we focus on non-magnetic media and consider only negative

permittivity. As mentioned above, the interfaces between media with opposite

signs of ε are capable of supporting surface resonances also known as plasmons.

These surface plasmon resonances were predicted in 1957 by Ritchie [71] when

he studied anomalous energy losses of fast electrons passing through metal

films. At optical frequencies, metals can be modeled as a free-electron gas, or

plasma, from which the term ’plasmon’ clearly derives. A little later, Stern

and Ferrell pointed out that on an interface between permittivities of opposite

values, the Laplace equation could have an oscillating solution without external

excitation [72].

These resonances, or surface plasmons, are oscillations of electron density on

a metal-dielectric interface, which are experienced as strong localized enhance-

ments of electric field. Surface plasmons can be excited by light and electro-

magnetic waves can be coupled to such surfaces. The surface waves that are

due to the interaction of the photons of the incident light and the plasmons of

the surface are called surface plasmon polaritons (SPP) [8]. The wavelength

of these waves is much smaller than the free-space wavelength at the same

frequency. Therefore, SPPs offer new possibilities for light confinement and

manipulation. In the 21st century, the research of plasmons has actually cre-

ated a new discipline in physics called plasmonics [9, 46], which has also had

a close connection to metamaterials research. Surface plasmon resonances are

present, for instance, in the suggested near-field superlens that is not based

on negative refraction but only negative ε [49]. The performance of the lens is

based on the enhancement of the evanescent near-field components by surface

plasmon resonances.

Moreover, surface plasmons and plasmonics open a wide range of possible ap-

plications. For instance, surface plasmons help improving the resolution and

sensitivity in many sensor applications [73]. By the possibility of confining

light into sub-wavelength scale, plasmonics may one day lead to a revolution

in circuit technology, as the data transfer capacity of optics could be merged
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with the small nanoscale size of chip-based integrated circuits [74]. Plasmon-

ics could have many applications also in nano-optics [47] and in biology and

medicine, again, for instance, in sensor applications [75]. Plasmonics may one

day even be used for cancer treatment, where tumors could be destroyed by

heating them using plasmonic nanoparticles injected in blood [76,77]. Further-

more, plasmonics may even help us save energy, by enhancing the efficiency of

LED lighting [78] and photovoltaic cells used in harvesting solar energy [79].

4.3 Negative permittivity and electrostatic resonances

Within the Thesis, we study the resonant response of negative-permittivity

particles and geometries. In other words, we consider surface plasmons from

a rather theoretical point of view. There is nothing anomalous about plas-

monic resonances, since they are valid solutions of the Maxwell equations, and

thereby obey the laws of physics [10, 80, 81]. However, they can exist without

external excitation. The present analysis is based on electrostatics, that is, we

make the locally quasi-static assumption of the particle size being very small

compared with the wavelength of the external field. In this case, plasmonic res-

onances appear as special solutions of the Laplace equation (2.22) and we refer

to them as electrostatic resonances. In statics, the solutions do not resonate as

a function of time, but as a function of space.

Publications II and III study a negative-permittivity hemisphere and a half-

disk, respectively. In the literature, earlier studies of the plasmonic response

of a hemisphere can also be found [35]. Publication IV gives an overview of

surface modes related to some of the most common canonical geometries.

The simplest example is, again, the sphere. From the polarizability equation

(3.17), we notice that with relative permittivity εr = −2, the response of the

sphere becomes singular. This singularity is often referred to as Fröhlich res-

onance [44]. A deviation from spherical geometry makes this resonance shift

from −2. As shown in Publication IV, ellipsoids, for instance, support three

separate resonances whose relation to permittivity is defined by the axis ratio.

This singularity condition for the sphere is also know as ’Mossotti catastro-

phe’ [12]. In the light of the aforementioned fantastic possibilities and applica-

tion ideas of the plasmonics, this phenomenon seems anything but catastroph-

ical. However, from the viewpoint of computational modeling, we need to be

careful, as in some cases, mathematics and physics do not meet, as the solutions

can be non-unique and singular. The most problematic case is probably a sharp
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corner, or a wedge, which supports resonant edge modes [82]. Instead of a sin-

gle resonant permittivity value, a continuous spectrum of singularities appears

on a certain permittivity range whose breadth depends on the opening angle of

the wedge [11,82,83]. Moreover, the edge modes of a sharp wedge are unphysi-

cally singular since the energy of the electric field becomes infinite [84]. This is

a problem when modeling negative-permittivity, or negative-permeability, ob-

jects with sharp edges and corners, as numerical methods may not converge in

these cases [85].

A numerical integral equation technique was recently introduced for deal-

ing with elliptic problems including non-smooth boundaries with sharp cor-

ners [86]. Recent studies [87, 88] suggest that, based on this method, unam-

biguous and convergent solutions can be obtained also for corners with neg-

ative permittivity. However, this method allows an emergence of a complex

solution form purely real constituents. This is interpreted to mean that a sharp

corner with real but negative permittivity would actually act as an energy ab-

sorber [11, 88], which is not consistent with the assumption of the passivity of

the material.

The effect of sharp edges is clearly visible in cases of the hemisphere in Pub-

lication II and the half-disk in Publication III. A notable thing is that adding

moderate material losses does not solve the problem. Instead, rounding the

sharp edges is a possible way to remove the unphysical singularities [84]. This

important point is also verified by simulations in Publication IV.
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5. Homogenization of composite media

Let us finally focus on characterization and effective modeling of heteroge-

neous composite media [11, 89], in other words, homogenization. If the inho-

mogeneities of the material are small enough with respect to the wavelengths

of the exciting fields, the complex intrinsic microstructure can be forgotten and

it is enough to only consider the effective response of the material in a macro-

scopic scale, as illustrated in Figure 5.1. However, in order to retrieve a reason-

able effective model for the studied medium, we need to know the details of its

microscopic structure as they eventually give rise to the actual observed mate-

rial properties, as discussed in Chapter 2. This topic has yielded a preceding

doctoral dissertation in the Author’s department, as well [90].

εe
εi

εi

=⇒ εeff

Figure 5.1. The complex microstructure of heterogeneous mixture is replaced by an effectively
homogeneous model.

Homogenization theories are needed for the analysis of heterogeneous media,

but on the other hand, they can also serve as design tools for novel artificial ma-

terials that would even have electromagnetic properties not readily occuring in

nature [43]. As stated before, if the scale of observation is small enough, every

material starts to look heterogeneous. In natural materials, the intrinsic struc-

ture may often be very random, such as in snow, rocks, or biological tissue [12].

In the Thesis, the focus is, instead, on ordered artificial structures that consist
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of a periodic lattice of ’building blocks’ called unit cells. This is the case with

many suggested metamaterials [50]. In practice, these materials are usually

designed to work in microwave or even optical frequencies, which sets certain

size limitations for their artificial molecules. Homogenization approaches are,

however, sometimes used quite freely without paying too much attention on

the two fundamental limitations that are the maximum size and the minimum

number of unit cells to make the man-made structure really behave as a homo-

geneous material instead of just a special electromagnetic device performing a

certain function.

In a dynamic case, the presented analytical approaches to homogenization

have not been very simple [21, 91, 92]. Therefore, the effective parameters are

more often retrieved by measurements or simulations. In simulations, the ma-

terial interaction with a free-space plane-wave, or the dispersion of a single

unit cell, can be studied. In real-life measurements, a sample of the studied

material is usually placed into a waveguide [93,94] or a coaxial line [95].

Because the principle in the Thesis is to keep to geometries as simple as possi-

ble, we study these fundamental limits of homogenization using a simple cubic

lattice of dielectric spheres. That is, our unit cell is a cube with a concentric

sphere inside (see e.g. Publication V). Figure 5.2 depicts the particular ex-

ample considered in the Thesis, which is a lossless dielectric composite slab,

whose dimensions are infinite in the transverse plane. In the longitudinal di-

rection, instead, the slab includes only a few layers of unit cells. The presented

homogenization studies are based on simulations. The following methods for

the retrieval of effective permittivity are considered. The first one is so called

Nicolson–Ross–Weir technique [13, 14] that is based on scattering parameters,

or S-parameters [96]. The other method is based on averaging of electromag-

netic fields. Also, permittivity extraction is studied by computing the dispersion

diagram for a single unit cell by eigenfrequency analysis.

E
k

H

ϕ ⇒
E

k

H

ϕ
εeff

Figure 5.2. A plane wave is incident to a composite slab that is modeled effectively homoge-
neous.
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Both Publications V and VI study the frequency dispersion of the effective per-

mittivity retrieved with different computational methods. Publication V also

studies how the thickness, that is, the number of layers in slab, affects the re-

trieval result. In the static limit, a comparison with classical mixing formulas

is made.

5.1 Classical electrostatic mixing rules

Let us consider a non-magnetic dielectric mixture made of inclusions with per-

mittivity εi embedded into background material with εe. Permittivities are

given as dimensionless numbers relative to ε0. The inclusions occupy a volume

fraction v of the total volume. In a static case, the effective permittivity εeff of

the mixture can be approximated by various analytical formulas also known as

mixing rules, which are functions of these aforementioned parameters [11,12].

One of the most famous, and perhaps the simplest one, is the Maxwell Garnett

mixing rule [97]

εeff = εe + 3vεe(εi −εe)
εi +2εe −v(εi −εe)

. (5.1)

The Maxwell Garnett formula is obtained by substituting the polarizability of

the sphere (3.17) into the Clausius–Mossotti relation (3.7). The principal as-

sumption is that the inclusions are spheres that are polarized and seen as

dipoles. The dipolar interaction between the spheres is modeled by the aver-

aged local field (3.6). Therefore, the applicability of the Maxwell Garnett rule

is limited to mixtures of separated spheres with a small volume fraction.

Another way to derive the Maxwell Garnett formula is to solve the internal

field of a polarized sphere (3.16) and consider the effective permittivity as a

ratio of the volume averages of electric displacement D and the electric field E

in one unit cell [12].

A more accurate mixing formula for a cubic lattice of spheres was derived

even before Maxwell Garnett by Lord Rayleigh [98]:

εeff = εe + 3vεe
εi+2εe
εi−εe

−v−1.305 εi−εe
εi+4εe/3 v10/3

. (5.2)

The Rayleigh formula takes also the quadrupole interaction between of spheres

into account and can, therefore, be applied for larger volume fractions than the

Maxwell Garnett rule. The most accurate solution for the cubic lattice can be

obtained by the method presented McPhedran and McKenzie [99]. The method,

being an extension to the Lord Rayleigh formula, is based on a series expansion,

where the multipole interactions between the spheres can be taken into account
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up to an arbitrarily high order. Also, an explicit formula is derived that includes

yet two orders higher multipole interactions than Lord Rayleigh’s formula. We

refer to this formula as the McPhedran–McKenzie mixing rule. However, the

use of all these formulas is strictly limited below the volume fraction v = π/6 ≈
52%, where the spheres are already touching each other.

Another famous mixing formula is the one of Bruggeman [100], often referred

to as effective medium theory or approximation (EMT/EMA) [11,101]:

(1−v)
εe −εeff

εe +2εeff
+v

εi −εeff

εi +2εeff
= 0. (5.3)

Written explicitly for εeff, the (symmetric) Bruggeman formula yields a quadrat-

ic equation. The Bruggeman formula works best for random mixtures, where

the inclusions are allowed to overlap and form clusters. Therefore, it is not very

suitable for the composites considered within the Thesis.

Furthermore, a unified mixing formula can be written as [12]

εeff −εe

εeff +2εe +γ(εeff −εe)
= v

εi −εe

εi +2εe +γ(εeff −εe)
, (5.4)

which for parameter value γ= 0, gives the Maxwell Garnett rule (5.1) and with

γ= 2, the Bruggeman formula (5.3). For γ= 3, (5.4) yields the so-called Coher-

ent potential formula. Instead, parameter value γ = 1 does not result in any

well-known mixing rule.

Mixing rules can also be given for a 2D square lattice of circular inclusions.

The 2D version of the unified formula reads [12]

εeff −εe

εeff +εe +γ(εeff −εe)
= v

εi −εe

εi +εe +γ(εeff −εe)
, (5.5)

where the parameter values γ = 0, 1 and 2 correspond to Maxwell Garnett,

Bruggeman and the Coherent potential, respectively. Lord Rayleigh also pro-

vides a formula for 2D lattice [98], and the most accurate solution is again

derived by McPhedran and McKenzie [102].

Figure 5.3 presents the behavior of the aforementioned 3D mixing formulas

for inclusion permittivity εi = 20 and background permittivity εe = 1 as a func-

tion volume fraction v. With small v all formulas give the same result. With

this permittivity contrast, Bruggeman starts to deviate from the others already

at v ≈ 0.1, whereas the other three seem to give quite consistent results up to

v ≈ 0.3. However, these three formulas are not supposed to work after v = π/6,

and the formulas of Lord Rayleigh and McPhedran–McKenzie even result in

singularities with too large v. Therefore, their curves are plotted only for lim-

ited values of v.

These considered mixing rules are only applicable in a static case. However,

in practice, effective medium models are also needed in dynamic cases. For in-
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Figure 5.3. Comparison between different mixing rules as a function of volume fraction v with
εi = 20 and εe = 1: (MG) Maxwell Garnett, (Ray) Lord Rayleigh, (MP & MK) McPhe-
dran & McKenzie and (Br) Bruggeman.

stance, Publication VI computationally studies the dynamic applicability range

for the Lord Rayleigh mixing formula when the composite is excited with a

plane wave with increasing frequency. Mixing rules including dynamic correc-

tion terms would be a fruitful subject for future research. Some extensions for

the Maxwell Garnett formula can already be found in the literature [103].

The Author’s research group has also studied the performance of classical

mixing formulas with plasmonic, negative-permittivity inclusions in an article

not included in the Thesis [104].

5.2 S-parameter retrieval

A widely applied method for material parameter retrieval is the so-called S-

parameter retrieval technique. It was first introduced in 1970’s by Nicolson and

Ross [13] and Weir [14], and the method is often referred to as the Nicolson–

Ross–Weir (NRW) technique. The technique is suitable for simulations and

actual measurements, as it is a non-destructive method based on reflection and

transmission data from a material sample. From the obtained two complex

scattering parameters [96], S11 and S21, it is possible to extract two complex
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parameters, that is, permittivity ε and permeability μ (see the illustration in

Figure 5.4). Originally, the method was developed for determination of pa-

rameters for homogeneous materials, but especially in recent years, with some

modifications, it has been used for extracting the effective parameters of meta-

materials as well [105,106].

S11 S21

d

Figure 5.4. S-parameter retrieval method is based on simulated or measured reflection and
transmission data, namely the parameters S11 and S21, from the material sample.

Unfortunately there are certain issues that complicate the use of the meth-

od. Firstly, the material parameter retrieval from S-parameters is ambigu-

ous [14,106], and usually, some a priori knowledge about the material is needed

to resolve the correct branch of the solution. Secondly, for low-loss materials,

the retrieval is ill-behaved when the electrical thickness of the material sample

becomes an integer multiple of one half-wavelength of the exciting field [95],

and thirdly, especially for metamaterials, the retrieved parameter values may

sometimes become unphysical [19, 107] showing anomalous dispersion and vi-

olating the principles of passivity and causality, that is, the Kramers–Kronig

relations [15]. These issues are discussed in more detail in the following.

In the Thesis, we have mostly followed the formulation presented in [106],

except for our different time dependency notation e jωt. It is assumed that the

studied composite slab with thickness d, shown in Figure 5.2, can be modeled

effectively homogeneous using parameters ε and μ. If the slab, surrounded by

free space, is excited with a normally incident (ϕ= 0) plane-wave, the analyti-
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cally derived S-parameters become

S11 =
z−1
z+1

(
1− e− j2nk0d)

1− ( z−1
z+1

)2 e− j2nk0d
, (5.6)

S21 =
(
1− ( z−1

z+1
)2

)
e− jnk0d

1− ( z−1
z+1

)2 e− j2nk0d
, (5.7)

where z is the dimensionless impedance normalized to free-space, n is the re-

fractive index and k0 the free-space wave number. That is, the primary pa-

rameters obtained by this retrieval method are z and n. The impedance can be

solved from

z =±
√√√√ (1+S11)2 −S2

21

(1−S11)2 −S2
21

, (5.8)

where the condition ℜ{z} ≥ 0 must be satisfied. The exponential phase factor

including the refractive index n can be written as

x = e− jnk0d = S21

1−S11
z−1
z+1

. (5.9)

When we solve this equation for n, we directly see the first issue that compli-

cates the retrieval. The solution for the real part of the refractive index becomes

ambiguous, that is,

n = 1
k0d

( j ln x+2πm), (5.10)

where m is an integer number denoting the branch of the complex logarithm

function. Finally, the relative (effective) material parameters are obtained by

εr = n
z

(5.11)

and

μr = nz. (5.12)

The ambiguity problem was already discussed by Weir [14], where he sug-

gested that the correct branch was determined by measuring the group delay

of the signal through the material sample. A more recent, mathematical solu-

tion for finding the correct branch was derived by Chen et al. [106]. Also, an

algorithm based on the Kramers–Kronig relations is proposed in [108]. The

branch selection problem is especially acute in metamaterial characterization

when both ε and μ are unknown and highly dispersive. Instead, in the case of

a dielectric composite, as in the Thesis, the correct branch can be chosen by the

condition μr = nz ≈ 1.

Another issue, more relevant to the Thesis, are the half-wavelength thick-

ness resonances, to which we refer as Fabry–Pérot resonances in Publications

V and VI. The problem occurs especially with low-loss materials, where at slab
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thickness λ/2, the reflection coefficient S11 can be very close to zero, and the

magnitude of the transmission |S21| close to unity. In this case, the retrieval of

the impedance z from (5.8) fails. The ill-defined z further ruins the retrieval for

both ε and μ making them resonant. These resonances should appear exactly

at an integer multiple of λ/2, but for composite media, we have noticed that

the effect is more broadband. Instead, the refractive index n =�
εr
�
μr is unaf-

fected by these resonances, as verified by a mathematical sensitivity analysis

in [94].

An iterative method for overcoming the thickness resonance problem was in-

troduced in [95]. Also, in [109], it was noticed that for dielectric media, with

μr = 1, the ill-behaved impedance z was not needed for solving the permittiv-

ity. In other words, physically reasonable εr can be obtained from the refractive

index as

εr = n2. (5.13)

In Publication VI, we refer to (5.13) as a compensation method.

The third issue related to the material parameters obtained by NRW-technique

could be named as an antiresonance problem [110]. Often for metamaterials,

or composites with resonant inclusions, one of the retrived material parame-

ters has a reasonable Lorentz-like curve, but for the other parameter, the curve

is inverted. In this case, the dispersion of the real part does not satisfy the

laws of causality. Also, the imaginary part of the corresponding parameter has

a wrong sign referring to an active material, which means that the retrieved

parameters are clearly unphysical. A similar behavior is also observed for loss-

less composites at Fabry–Pérot resonances in Publications V and VI. However,

NRW-technique is widely applied for metamaterial characterization and a lot

of results have been published that do not satisfy the requirements of physical

material parameters [107].

Nevertheless, despite the retrieval method, the actual problem seems to be

in the applied homogenization model. If the unit cells do not remain small

enough with respect to the wavelength, these inhomogeneities of the material

microstructure eventually give rise to spatial dispersion, that is, non-local ef-

fects that cannot be correctly captured using a local material model with only

two complex parameters, ε and μ, that we can resolve using the conventional

NRW method. It is claimed that the parameters retrieved using NRW tech-

nique do not represent the actual characteristic (effective) material parameters,

but something else [19,107]. For instance, in [21], term ’equivalent material pa-

rameters’ is used.
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5.3 Field averaging

By the broad concept of field averaging, we do not herein refer to any specific

algorithm, but to the idea of studying permittivity as a relation between the

electric displacement and the electric field averaged over a certain volume, that

is,

〈D〉 = εeff〈E〉. (5.14)

If an isotropic medium is considered, the effective permittivity is obtained from

the ratio of scalar components as

εeff =
〈D〉
〈E〉 . (5.15)

Measuring the actual fields inside the material is practically nearly impos-

sible. Therefore, the approaches to this kind of homogenization are usually

analytical or computational. Several novel methods for metamaterial homoge-

nization in a dynamic case have lately been proposed [20,21,91,92,111].

The field averaging method considered in Publication V in the Thesis is based

on straightforward volume integration, such as

εeff =
∫

D dV∫
E dV

, (5.16)

where the fields and their volume integrals are solved computationally. The

integration volume is one unit cell, and the results from consecutive cells in the

slab are averaged once more over all layers to obtain one effective permittivity

value for the whole slab. It should be noted that this homogenization model

is also based on resolving a local parameter εeff, which fails to represent any

non-local effects.

The field averaging technique allows us to study each unit cell separately.

In Publication V, we especially study the boundary effects of the composite

slab. It is found that the layers on the boundary behave differently from the

ones in the middle of the slab, which is in agreement with earlier theoretical

results [112, 113]. It is also suggested that the homogenization models of com-

posite media should include separate transition layers to characterize these

boundary effects [19,107]. Also, one approach is to define an effective thickness

for the homogenized slab [106]. Nevertheless, a composite slab should include

enough layers to make this boundary effect negligible and to behave as a bulk

medium. This effect may be even more significant for metamaterials with res-

onant inclusions as shown in [114].

In Publication V, the comparison between the results of the NRW-technique

and the field averaging is made. An obvious difference is that the field averag-

ing yields smooth curves, which are not affected by the Fabry–Pérot resonances.
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Moreover, the field averaging results suggest different effective parameters for

the boundary layers. On the other hand, by field averaging, only the effective

permittivity is obtained and with higher frequencies, the effective model does

not replicate the scattering properties of the original composite very well.

The current challenge in homogenization theories and methods is the ques-

tion how to correctly model the effects of weak spatial dispersion [19,21]. More

precisely, the objective is to combine a physically sound effective material model

with a reasonably simple retrieval algorithm.
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6. Summary of the publications

Publication I: “Polarizability of a dielectric hemisphere”

This paper studies the electrostatic response of a dielectric hemispherical ob-

ject. The response is considered by means of polarizability. Since a hemisphere

is a three-dimensional object with rotational symmetry, its polarizability be-

comes a dyadic with two independent components, that is, the axial and the

transverse polarizabilities. A semianalytical method for computing these po-

larizability components as a function of the relative electric permittivity is pre-

sented. The method is based on writing the potential function as analytical

series expansions based on the eigensolutions of the Laplace equation in spher-

ical coordinates. However, the coefficients of the expansions do not have closed-

form expressions and they must be solved from a matrix equation which can

be constructed by applying the electrostatic boundary conditions. The method

provides high accuracy but, on the other hand, it requires using large matrices

which consumes both time and memory. Also, both polarizability components

must be solved separately from their own equations. Therefore, approxima-

tive formulas for the axial and the transverse polarizability are given. These

easy-to-use formulas are based on Padé approximation and they are obtained

by nonlinear data fitting.

Publication II: “Electrostatic resonances of a negative-permittivity
hemisphere”

This paper expands the analysis of Publication I by considering a hemisphere

with negative permittivity. Negative permittivity values are not physical in

electrostatics, but for example for noble metals at optical and UV frequencies

the real part of their complex permittivity may become negative. In this pa-
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per it is assumed that the considered hemisphere is very small compared with

the wavelength of the external electric field, so that the quasistatic analysis is

still valid. It is found that the method presented in Publication I gives noncon-

vergent singular solutions between permittivity values εr = −3 and εr = −1/3.

This is caused by the surface plasmons supported by the edge and the planar

surface of the hemisphere. These resonant modes are also called electrostatic

resonances. They are eigensolutions of Laplace equation on interfaces between

media with permittivities of opposite signs which oscillate with arbitrary am-

plitude and spatial frequency without external excitation. Their occurrence

depends on the geometry of the interface and the permittivity contrast.

It is shown that the sharp edge of the hemisphere supports even edge modes

with −3 < εr <−1 and odd edge modes with −1 < εr <−1/3. At εr =−1, surface

modes occur on the planar surface of the hemisphere. The surface resonances

are effectively attenuated by already small losses. However, the most efficient

way to stabilize unphysically singular edge modes is to round the sharp edges

when modeling objects with negative material parameters.

Publication III: “Electrostatic response of a half-disk”

This paper studies the electrostatic response of a half-disk which is a 2D ver-

sion of a hemisphere considered in Publications I and II. A similar method for

computing the polarizability components of a half-disk is derived. In this case,

the solution is based on series expansions of eigensolutions of the Laplace equa-

tion in 2D polar coordinates. Again, the unknown coefficients are solved from

a large matrix equation. The polarizability of a half-disk is determined by two

orthogonal components which in this paper are named as series and parallel

polarizabilities. Unlike in the case of a 3D hemisphere where the components

had to be solved from separate equations, in 2D the orthogonal components

are related and both of them can be obtained using the same equation. This

follows from the so-called Keller–Dykhne–Mendelson duality relation of 2D ge-

ometries. Again, easy-to-use approximative formula for the polarizability is

given.

Moreover, this paper studies the response of a negative-permittivity half-disk.

The effects are very similar to the case of the 3D hemisphere. The sharp corners

of the half-disk support even edge modes with −3< εr <−1 and odd edge modes

with −1 < εr < −1/3. However, near εr = −1, the whole contour of the half-

disk is capable of supporting resonant modes. Again, introducing losses and
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rounding the corners is required to obtain converging and physically reasonable

numerical results.

Publication IV: “Surface modes of negative-parameter interfaces
and the importance of rounding sharp corners”

This paper gives a review of the surface plasmon resonances in cases of some

of the most common canonical geometries. An electrostatic approach is used.

On interfaces between materials with permittivities of opposite signs, solutions

for Laplace equation may be found which can exist without external excitation,

oscillate along the interface and decay away from it. In the dynamic case, these

oscillations occur on a length scale notably smaller than the wavelenght. Ex-

pressions for possible resonant modes are given for a half-space, a sphere, an

ellipsoid, a circular cylinder and a sharp wedge. The resonant modes occur-

ring on smooth surfaces are found to be very sensitive to losses. On the other

hand, the response of a sharp negative-permittivity wedge is shown to be un-

physically singular and also almost invulnerable to losses. Instead, an efficient

way to stabilize to edge resonances is to round all sharp corners when modeling

objects with negative permittivities.

Considering the importance of plasmonic resonances in numerical modeling,

a couple of examples are computed using the finite element method (FEM).

First, the effective permittivity of a 2D composite medium consisting of square

cylinders with sharp corners and negative permittivity is studied. The 90◦ cor-

ners make the solution nonunique and nonconvergent for −3 < εr < −1/3. It is

seen how the rounding of the corners makes the solution convergent.

Furthermore, scattering of a plane wave from a negative-permittivity square

cylinder is studied. Even though the surface resonances are very localized phe-

nomenona decaying exponentially away from the surface, it is observed that

they cause unstabilities also to the far-field results. Again, the conclusion is

that sharp corners must be rounded.

Publication V: “Homogenization of thin dielectric composite slabs:
techniques and limitations”

This paper focuses on electromagnetic modeling of composite materials. The

effective permittivity is retrieved for a thin slab consisting of a simple cubic lat-
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tice of dielectric spheres in vacuum background. The effects of frequency and

the slab thickness on the retrieval results are studied by two simple compu-

tational methods, namely the Nicolson–Ross–Weir (NRW) technique based on

S-parameters and a straightforward field averaging technique. Simulations are

performed using COMSOL MULTIPHYSICS, which is based on the finite element

method (FEM). An analytical mixing formula estimate is used as a (quasi)static

reference value for the corresponding bulk material.

The NRW technique gives both permittivity εeff and permeability μeff. In

this lossless case, the results are found suffering from Fabry–Pérot resonances

which occur when the total thickness of the slab equals an integer multiple

of a half wavelength (λ/2). Moreover, the retrieved material parameters show

unphysical anti-resonant dispersion, which violates the principle of causality.

The applied averaging method is based on the field integration over the unit

cells. By this technique the cells of the slab can be studied separately. It is found

that the unit cells on the boundary of the slab have stronger response than the

ones inside the slab. Therefore, a thin slab has higher permittivity compared

with bulk material as the boundary layers increase the average permittivity

of the slab. The simulations confirm that the permittivity of the slab in the

(quasi)static limit depends on the number of consecutive layers in the slab.

That is, enough layers are needed for the slab to behave as a bulk medium.

The main conclusion is that in order to consider a composite material homo-

geneous, the unit cells must remain very small compared with the wavelength.

If the electrical size of the unit cells exceeds λ/20, the homogeneity assumption

may no further be valid. On the other hand, when decreasing the unit cell size,

the quasistatic limit where analytical electrostatic mixing rules are applicable

is reached not until λ/100. The NRW technique can safely be used sufficiently

below the first Fabry–Pérot resonance. However, the studied slab must include

enough layers, preferably 10 or more, to resemble bulk material but at the same

time the total thickness of the slab must remain below λ/2. Both these restric-

tions limit the size of a single unit cell.

Publication VI: “Quasi-dynamic homogenization of geometrically
simple dielectric composites”

Similarly to Publication V, this article studies the homogenization of a di-

electric slab consisting of a simple cubic lattice of dielectric spheres. For the

finite-thickness slab, the Nicolson–Ross–Weir retrieval technique based on S-
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parameters is applied. The objective of this paper is to study alternative ways

to retrieve the effective permittivity εeff to eliminate the distortion caused by

the half-wavelength Fabry–Pérot resonances. Also, the frequency dispersion

of the effective permittivity of the slab is studied. A frequency limit for a 1%

deviation from the static Lord Rayleigh estimate is sought. Furthermore, the

permittivity of an infinite lattice is studied by eigenfrequency analysis for a sin-

gle unit cell. The simulations are performed using the frequency-domain solver

of CST MICROWAVE STUDIO.

By assuming the slab non-magnetic, μeff = 1, the permittivity can be retrieved

from either only reflection (S11) or transmission (S21) data. The smoothest and

most physical-looking curve can however be obtained as a square of the refrac-

tive index n that is computed using both S-parameters. Also, the otherwise

unwanted Fabry–Pérot resonances allow us to retrieve the effective permittiv-

ity at discrete points exactly at the resonance.

The eigenfrequency analysis of the unit cell indicates that the effect of spa-

tial dispersion in the composite is much weaker than the deviation from the

static limit value due to the frequency dispersion. However, a simple universal

rule for the 1% tolerance limit for analytical static mixing formulas cannot be

formed since the dispersion seems to strongly depend on the volume fraction

and the permittivity of the inclusions.

57





Bibliography

[1] A. Sihvola, “Dielectric polarization and particle shape effects,” J. Nanomaterials,
vol. 2007, no. 2, pp. 45090:1–9, 2007.

[2] G. V. Eleftheriades and K. G. Balmain, eds., Negative-Refraction Metamaterials:
Fundamental Principles and Applications. Hoboken, NJ: Wiley, 2005.

[3] N. Engheta and R. W. Ziolkowski, eds., Metamaterials: Physics and Engineering
Explorations. Hoboken, NJ: Wiley-Interscience, 2006.

[4] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory
and Microwave Applications. Hoboken, NJ: Wiley–Interscience, 2006.

[5] A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials. Singapore:
World Scientific, 2007.

[6] R. Marqués, F. Martín, and M. Sorolla, eds., Metamaterials with Negative Pa-
rameters. Hoboken, NJ: Wiley-Interscience, 2008.

[7] M. Lapine and S. Tretyakov, “Contemporary notes on metamaterials,” IET Mi-
crow. Antennas Propag., vol. 1, pp. 3–11, Feb. 2007.

[8] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface
plasmons and surface-plasmon polaritons,” Rep. Prog. Phys., vol. 70, pp. 1–87,
Jan. 2007.

[9] S. A. Maier, Plasmonics: Fundamentals and Applications. New York: Springer,
2007.

[10] D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (elec-
trostatic resonances),” Phys. Rev. Lett., vol. 91, pp. 253902:1–4, Dec. 2003.

[11] G. W. Milton, The Theory of Composites. Cambridge: Cambridge Univ. Press,
2002.

[12] A. Sihvola, Electromagnetic Mixing Formulas and Applications. London: IEE,
1999.

[13] A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of mate-
rials by time-domain techniques,” IEEE Trans. Inst. Meas., vol. IM-19, pp. 377–
382, Nov. 1970.

[14] W. B. Weir, “Automatic measurement of complex dielectric constant and perme-
ability at microwave frequencies,” Proc. IEEE, vol. 62, pp. 33–36, Jan. 1974.

59



[15] J. D. Jackson, Classical Electrodynamics. New York: Wiley, 3rd ed., 1999.

[16] I. V. Lindell, Methods for Electromagnetic Field Analysis. New York: IEE,
2nd ed., 1995.

[17] A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of
Bi-Anisotropic Materials. Amsterdam: Gordon and Breach Science Publ., 2001.

[18] I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic
Waves in Chiral and Bi-Isotropic Media. Boston: Artech House, 1994.

[19] C. R. Simovski, “On electromagnetic characterization and homogenization of
nanostructured metamaterials,” J. Opt., vol. 13, pp. 013001:1–22, Jan. 2011.

[20] C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Physica
B, vol. 405, pp. 2930–2934, July 2010.

[21] A. Alù, “Restoring the physical meaning of metamaterial constitutive parame-
ters,” Phys. Rev. B, vol. 83, pp. 081102(R):1–4, Feb. 2011.

[22] J. Vanderlinde, Classical electromagnetic theory. Singapore: Wiley, 1993.

[23] A. Sihvola, “Ubi materia, ibi geometria.” Helsinki University of Technology, Elec-
tromagnetics Laboratory Report Series, No. 339, Sept. 2000. Revised and ex-
panded version online: http://users.tkk.fi/asihvola/umig.pdf.

[24] J. Venermo and A. Sihvola, “Dielectric polarizability of circular cylinder,” J. Elec-
trostat., vol. 63, pp. 101–117, Feb. 2005.

[25] M. L. Mansfield, J. F. Douglas, and E. J. Garboczi, “Intrinsic viscosity and
the electrical polarizability of arbitrarily shaped objects,” Phys. Rev. E, vol. 64,
pp. 061401:1–16, Nov. 2001.

[26] A. Sihvola, P. Ylä-Oijala, S. Järvenpää, and J. Avelin, “Polarizabilities of platonic
solids,” IEEE Trans. Antennas. Propag., vol. 52, pp. 2226–2233, Sept. 2004.

[27] B. U. Felderhof and D. Palaniappan, “Longitudinal and transverse polarizability
of the conducting double sphere,” J. Appl. Phys, vol. 88, pp. 4947–4952, Nov.
2000.

[28] H. Wallén and A. Sihvola, “Polarizability of conducting sphere-doublets using
series of images,” J. Appl. Phys., vol. 96, pp. 2330–2335, Aug. 2004.

[29] M. Pitkonen, “An explicit solution for the electric potential of the asymmetric
dielectric double sphere,” J. Phys. D: Appl. Phys., vol. 40, pp. 1483–1488, Feb.
2007.

[30] M. Pitkonen, “Polarizability of a pair of touching dielectric spheres,” J. Appl.
Phys., vol. 103, pp. 104910:1–7, May 2008.

[31] M. Schiffer and G. Szegö, “Virtual mass and polarization,” Trans. Am. Math. Soc.,
vol. 67, pp. 130–205, Sept. 1949.

[32] J. Avelin, Polarizability Analysis of Canonical Dielectric and Bi-Anisotropic Scat-
terers. PhD thesis, Helsinki University of Technology, Electromagnetics Labora-
tory Report Series, Report 414, Sept. 2003. Available online: http://lib.tkk.
fi/Diss/2003/isbn9512268361/.

60



[33] M. Pitkonen, Exact Solutions for Some Spherical Electrostatic Scattering Prob-
lems. PhD thesis, Aalto University School of Science and Technology, TKK Radio
Science and Engineering Publications, Report R14, May 2010. Available online:
http://lib.tkk.fi/Diss/2010/isbn9789526030579/.

[34] M. Pitkonen, “A closed-from solution for the polarizability of a dielectric double
half-cylinder,” J. Electromagn. Waves and Appl., vol. 24, pp. 1267–1277, May
2010.

[35] J. Aizpurua, A. Rivacoba, and P. Apell, “Electron-energy losses in hemispherical
targets,” Phys. Rev. B, vol. 54, pp. 2901–2909, July 1996.

[36] D. S. Jones, “Low frequency electromagnetic radiation,” IMA J. Appl. Math.,
vol. 23, no. 4, pp. 421–447, 1979.

[37] A. Mejdoubi and C. Brosseau, “Finite-element simulation of the depolarization
factor of arbitrarily shaped inclusions,” Phys. Rev. E, vol. 74, pp. 031405:1–13,
Sept. 2006.

[38] A. Sihvola and J. Venermo, “Boosting numerical accuracy in calculation of polar-
izability of two-dimensional scatterers,” IEEE Antennas Propag. Mag., vol. 47,
pp. 60–65, Oct. 2005.

[39] J. B. Keller, “Conductivity of a medium containing a dense array of perfectly con-
ducting spheres or cylinders or nonconducting cylinders,” J. Appl. Phys., vol. 34,
pp. 991–993, Apr. 1963.

[40] A. M. Dykhne, “Conductivity of a two-dimensional two-phase system,” Sov. Phys.
JETP, vol. 32, no. 1, pp. 63–65, 1970. [Originally published in Zh. Eksp. Teor.
Fiz., vol. 59, pp. 110–115, 1970 (In Russian)].

[41] K. S. Mendelson, “A theorem on the effective conductivity of a two-dimensional
heterogeneous medium,” J. Appl. Phys., vol. 46, pp. 4740–4741, Nov. 1975.

[42] V. G. Veselago, “The electrodynamics of substances with simultaneously negative
values of ε and μ,” Sov. Phys. Uspekhi, vol. 10, no. 4, pp. 509–514, 1968. [Origi-
nally published in Usp. Fiz. Nauk., vol. 92, pp. 517–526, 1967 (In Russian)].

[43] S. Tretyakov, Analytical Modeling in Applied Electromagnetics. Norwood, MA:
Artech House, 2003.

[44] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small
Particles. New York: Wiley, 1998.

[45] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys.
Rev. B, vol. 6, pp. 4370–4379, Dec. 1972.

[46] H. A. Atwater, “The promise of plasmonics,” Sci. Am., vol. 296, pp. 56–63, Apr.
2007.

[47] M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser
& Photon. Rev., vol. 2, pp. 136–159, Apr. 2008.

[48] I. Freestone, N. Meeks, M. Sax, and C. Higgitt, “The Lycurgus cup - a roman
nanotechnology,” Gold Bulletin, vol. 40, no. 4, pp. 270–277, 2007.

[49] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85,
pp. 3966–3969, Oct. 2000.

61



[50] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Com-
posite medium with simultaneously negative permeability and permittivity,”
Phys. Rev. Lett., vol. 84, pp. 4184–4187, May 2000.

[51] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism for con-
ductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory
Tech., vol. 47, pp. 2075–2084, Nov. 1999.

[52] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative
index of refraction,” Science, vol. 292, pp. 77–79, Apr. 2001.

[53] A. Sihvola and S. Zouhdi, “Handedness in plasmonics: electrical engineers’ per-
spective,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Appli-
cations (S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds.), NATO SPS Ser. B,
pp. 3–20, Dordrecht: Springer, 2009.

[54] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,”
Science, vol. 312, pp. 1780–1782, May 2006.

[55] U. Leonhardt, “Optical conformal mapping,” Science, vol. 312, pp. 1777–1780,
May 2006.

[56] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and
D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,”
Science, vol. 314, pp. 977–980, Nov. 2006.

[57] A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamate-
rial coatings,” Phys. Rev. E, vol. 72, pp. 016623:1–9, July 2005.

[58] A. Alù and N. Engheta, “Plasmonic cloaks,” in Metamaterials and Plasmonics:
Fundamentals, Modelling, Applications (S. Zouhdi, A. Sihvola, and A. P. Vino-
gradov, eds.), NATO SPS Ser. B, pp. 37–47, Dordrecht: Springer, 2009.

[59] P. Alitalo, Microwave Transmission-Line Networks for Backward-Wave Media
and Reduction of Scattering. PhD thesis, Helsinki University of Technology, TKK
Radio Science and Engineering Publications, Report R8, July 2009. Available on-
line: http://lib.tkk.fi/Diss/2009/isbn9789512299874/.

[60] S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood,
“Near-infrared double negative metamaterials,” Opt. Express, vol. 13, pp. 4922–
4930, June 2005.

[61] G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index meta-
material at 780 nm wavelength,” Opt. Lett., vol. 32, pp. 53–55, Jan. 2007.

[62] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and
X. Zhang, “Three-dimensional optical metamaterial with a negative refractive
index,” Nature, vol. 455, pp. 376–379, Sept. 2008.

[63] B. A. Munk, Metamaterials: Critique and Alternatives. Hoboken, NJ: Wiley,
2009.

[64] M. Gustafsson and D. Sjöberg, “Sum rules and physical bounds on passive me-
materials,” New J. Phys., vol. 12, pp. 043046:1–18, Apr. 2010.

[65] J. Skaar and K. Seip, “Bounds for the refractive indices of metamaterials,” J.
Phys. D: Appl. Phys., vol. 39, pp. 1226–1229, Mar. 2006.

62



[66] Ø. Lind-Johansen, K. Seip, and J. Skaar, “The perfect lens on a finite bandwidth,”
J. Math. Phys., vol. 50, pp. 012908:1–9, Jan. 2009.

[67] J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric con-
stant lenses,” Appl. Phys. Lett., vol. 80, pp. 3286–3288, May 2002.

[68] D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B.
Pendry, “Limitations on subdiffraction imaging with a negative refractive index
slab,” Appl. Phys. Lett., vol. 82, pp. 1506–1508, Mar. 2003.

[69] V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett., vol. 30,
pp. 75–77, Jan. 2005.

[70] C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Va-
lidity of effective material parameters for optical fishnet metamaterials,” Phys.
Rev. B, vol. 81, pp. 035320:1–5, Jan. 2009.

[71] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev., vol. 106,
pp. 874–881, June 1957.

[72] E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate elec-
tron gas,” Phys. Rev., vol. 120, pp. 130–136, Oct. 1960.

[73] J. Homola, ed., Surface Plasmon Resonance Based Sensors. Berlin: Springer,
2006.

[74] E. Özbay, “Plasmonics: merging photonics and electronics at nanoscale dimen-
sions,” Science, vol. 311, pp. 189–193, Jan. 2006.

[75] P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some inter-
esting surface plasmon resonance-enhanced properties of noble metal nanopar-
ticles and their applications to biosystems,” Plasmonics, vol. 2, pp. 107–118, July
2007.

[76] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price,
J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared ther-
mal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad.
Sci. USA, vol. 100, pp. 13549–13554, Nov. 2003.

[77] C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells
for integrated cancer imaging and therapy,” Nano Lett., vol. 5, pp. 709–711, Mar.
2005.

[78] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer,
“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Na-
ture Mater., vol. 3, pp. 601–605, Sept. 2004.

[79] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,”
Nature Mater., vol. 9, pp. 205–213, Mar. 2010.

[80] B. E. Sernelius, Surface Modes in Physics. Berlin: Wiley-VCH, 2001.

[81] A. Moussiaux, A. Ronveaux, and A. Lucas, “Surface plasmon oscillations for dif-
ferent geometrical shapes,” Can. J. Phys., vol. 55, no. 16, pp. 1423–1433, 1977.

[82] L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a dielectric
wedge,” Phys. Rev. B, vol. 6, pp. 3810–3815, Nov. 1972.

63



[83] J. H. Hetherington and M. F. Thorpe, “The conductivity of a sheet containing
inclusions with sharp corners,” Proc. R. Soc. A, vol. 438, pp. 591–604, Sept. 1992.

[84] L. C. Davis, “Electrostatic edge modes of a dielectric wedge,” Phys. Rev. B, vol. 14,
pp. 5523–5525, Dec. 1976.

[85] A. A. Sukhorukov, I. V. Shadrivov, and Y. S. Kivshar, “Wave scattering by meta-
material wedges and interfaces,” Int. J. Numer. Model., vol. 19, pp. 105–117,
mar–apr 2006.

[86] J. Helsing and R. Ojala, “Corner singularities for elliptic problems: Integral
equations, graded meshes, quadrature, and compressed inverse precondition-
ing,” J. Comput. Phys., vol. 227, pp. 8820–8840, Oct. 2008.

[87] J. Helsing, “The effective conductivity of arrays of squares: Large random unit
cells and extreme contrast ratios,” J. Comput. Phys., vol. 230, pp. 7533–7547,
Aug. 2011.

[88] J. Helsing, R. C. McPhedran, and G. W. Milton, “Spectral super-resolution in
metamaterial composites.” Submitted to New J. Phys., arXiv:1105.5012v1, 2011.

[89] C. Brosseau, “Modelling and simulation of dielectric heterostructures: a physical
survey from an historical perpective,” J. Phys. D: Appl. Phys, vol. 39, pp. 1277–
1294, Mar. 2006.

[90] L. Jylhä, Modeling of Electrical Properties of Composites. PhD thesis, Helsinki
University of Technology, TKK Radio Science and Engineering Publications,
Report R1, Mar. 2008. Available online: http://lib.tkk.fi/Diss/2008/
isbn9789512292387/.

[91] M. G. Silveirinha, “Metamaterial homogenization approach with application to
the characterization of microstructured composites with negative parameters,”
Phys. Rev. B, vol. 75, pp. 115104:1–15, Mar. 2007.

[92] M. G. Silveirinha, “Generalized Lorentz–Lorenz formulas for microstructured
materials,” Phys. Rev. B, vol. 76, pp. 245117:1–9, Dec. 2007.

[93] D. Sjöberg, “Determination of propagations constants and material data from
waveguide measurements,” Progress in Electromagnetics Research B, vol. 12,
pp. 163–182, 2009.

[94] D. Sjöberg and C. Larsson, “Characterization of composite materials in waveg-
uides,” in 2010 URSI International Symposium on Electromagnetics Theory
(EMTS), pp. 592–595, 2010.

[95] J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for de-
termining complex permittivity with the transmission/reflection method,” IEEE
Trans. Microwave Theory Tech., vol. 38, pp. 1096–1103, Aug. 1990.

[96] R. E. Collin, Foundations for Microwave Engineering. Hoboken, NJ: Wiley–
Interscience, 2nd ed., 2001.

[97] J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Trans. R. Soc.,
vol. CCIII, pp. 385–420, 1904.

[98] Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon
the properties of the medium,” Phil. Mag., vol. 34, pp. 481–502, 1892.

64



[99] R. C. McPhedran and D. R. McKenzie, “The conductivity of lattices of spheres I.
The simple cubic lattice,” Proc. R. Soc. Lond. A, vol. 359, pp. 45–63, 1978.

[100] D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von
heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der
Mischkörper aus isotropen Substanzen,” Ann. Phys. (Berlin), vol. 416, no. 7–8,
pp. 636–679, 1935. [Originally: Annalen der Physik, 5. Folge, Band 24, Heft 7,
pp. 636–664 and Heft 8, pp. 665–679, (1935)].

[101] G. Grimvall, Thermophysical Properties of Materials. Amsterdam: North-
Holland, 1986.

[102] R. C. McPhedran and D. R. McKenzie, “Electrostatic and optical resonances of
arrays of cylinders,” Appl. Phys., vol. 23, pp. 223–235, 1980.

[103] R. Ruppin, “Evaluation of extended Maxwell–Garnett theories,” Opt. Comm.,
vol. 182, pp. 273–279, Aug. 2000.

[104] H. Wallén, H. Kettunen, and A. Sihvola, “Mixing formulas and plasmonic com-
posites,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applica-
tions (S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds.), NATO SPS Ser. B,
pp. 91–102, Dordrecht: Springer, 2009.

[105] D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effec-
tive permittivity and permeability of metamaterials from reflection and trans-
mission coefficients,” Phys. Rev. B, vol. 65, pp. 195104:1–5, Apr. 2002.

[106] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, “Robust
method to retrieve the constitutive effective parameters of metamaterials,” Phys.
Rev. E, vol. 70, pp. 016608:1–7, July 2004.

[107] C. R. Simovski, “Material parameters of metamaterials (a review),” Opt. Spec-
trosc., vol. 107, pp. 726–753, Nov. 2009. [Originally published in Optika i Spek-
troskopiya, vol. 107, no. 5, pp. 766–793, 2009, (In Russian)].

[108] Z. Szabó, G.-H. Park, R. Hedge, and E.-P. Li, “A unique extraction of meta-
material parameters based on Kramers–Kronig relationship,” IEEE Trans. Mi-
crowave Theory Tech., vol. 58, pp. 2646–2653, Oct. 2010.

[109] A.-H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmis-
sion/reflection method for low-loss material complex permittivity determina-
tion,” IEEE Trans. Microwave Theory. Tech., vol. 45, pp. 52–57, Jan. 1997.

[110] T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and an-
tiresonant frequency dependence of the effective parameters of metamaterials,”
Phys. Rev. E, vol. 68, pp. 065602(R):1–4, Dec. 2003. [See also R. A. Depine and A.
Lakhtakia, Phys. Rev. E, vol. 70, 048601, 2007; A. L. Efros, Phys Rev. E, vol. 70,
048602, 2007; T. Koschny, P. Markoš, D. R. Smith and C. M. Soukoulis, Phys. Rev.
E, vol. 70, 048603, 2007].

[111] D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averag-
ing,” J. Opt. Soc. Am. B, vol. 23, pp. 391–403, Mar. 2006.

[112] G. D. Mahan and G. Obermair, “Polaritons at surfaces,” Phys. Rev., vol. 183,
pp. 834–841, July 1969.

65



[113] C. R. Simovski, S. A. Tretyakov, A. H. Sihvola, and M. M. Popov, “On the surface
effect in thin molecular or composite layer,” Eur. Phys. J. AP, vol. 9, pp. 195–204,
Mar. 2000.

[114] C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T. P. Meyrath, and
H. Giessen, “Transition from thin-film to bulk properties of metamaterials,”
Phys. Rev. B, vol. 77, pp. 035126:1–9, Jan. 2008.

66



Errata

Publication I

Publication I already includes a published erratum [J. Appl. Phys., vol. 102,

no. 11, 119902, 2007]. However, two additional corrections are required. In the

Appendix, on page 6, the factor (−1)m should be omitted from equation (A3).

The corrected version of the formula which is used for computing the associated

Legendre functions in this paper should read

Pm
n (ξ)= (1−ξ2)m/2 dm

dξm Pn(ξ).

Also, on page 4, the term 20 should be excluded from the list N =
20,21,22, . . . ,212.

Publication V

In the original published version of the article, several letters, mostly related to

ligatures, are missing in the text. This is apparently due to a font problem. For

the readers’ convenience, the missing letters are filled in in the version included

in the Thesis.

Also, on page 183, below Figure 9, it should read ’electric displacement D’, not

’displacement current D.’

Publication VI

The paper and page numbers are confusingly combined in references [2,5,7–

9,14,15]. The corrected page numbers should read: [2] pp. 0138071:1–11, [5]

pp. 041101:1–4, [7] pp. 036617:1–11, [8] pp. 035320:1–5, [9] RS6S21:1–40, [14]

pp. 195104:1–5, and [15] pp. 016608:1–7
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