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Preface

In the beginning of my undergraduate studies, over ten years ago, I did

not know what I was about to start. After my freshman year at Helsinki

University of Technology, I got recruited to the TRAKLA2 research group

and started work as a TA in programming courses. Soon, I was doing more

teaching and maintaining some of our assessment tools. Finally, I drifted

into running a programming course with a dozen TAs and hundreds of

students.

In 2007, I left teaching, research, and Finland for two years to work for

Google. I moved first to Ireland and then to Switzerland. I gained new

skills, friends, and experiences. I believe that this adventure speeded up

my research rather than slowing it down, and enabled me to finish this

manuscript, indeed, earlier.

I have received many great opportunities, for which I am truly grate-

ful. I have had the pleasure to see the birth and growth of computing

education research in our department. Some of my publications are from

the very early days of this development while others are from this year. I

have met many wonderful personalities who have made this manuscript

possible – too many that I could list you all. Thank you!
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1. Introduction

Programming skills are needed not only by computer scientists, but also

in other disciplines. Many students do take programming courses, espe-

cially on beginner and intermediate levels. In all courses, large or small,

assessment and prompt feedback are important aspects of learning.

Assessment provides feedback for the learner and the teacher about the

learning process – from the level of a whole course down to a single stu-

dent and some specific topic being assessed. Continuous assessment dur-

ing a programming course ensures that the students practice and that

they get feedback on the quality of their solutions. Even for small class

sizes, providing quality assessment manually means that feedback can-

not be as immediate as in one-to-one tutoring. As the class size grows, the

amount of assessed work has to be cut down or rationalized in some other

way. Automated assessment, however, allows instant feedback regardless

of the class size.

1.1 Thesis Scope

Learners and teachers interact with the assessment tools that are the

scope of my thesis. My point of view is technical: I explore technologies

potentially suitable for building better assessment tools. This technical

perspective differs from that of educational science. In particular, how

learning occurs and details of how automated assessment impacts learn-

ing are out of my scope.

Learning to program can be supported with different exercises and many

of those can be assessed automatically. Carter et al. [19] lists multiple-

choice questions, questions with textual answers (e.g. essays), assign-

ments with visual answers (e.g. diagrams), peer assessed assignments

and programming assignments – all being assessed automatically. In

this thesis, I focus on automated assessment of programming assignments

where students get feedback from the correctness of their programs and

1



Introduction

the quality of their tests. I have ruled out of scope, for example, feedback

from style and plagiarism detection. From now on, assessment will refer

to assessment of programming assignments.

Level of automation in the assessment process varies from managing

manual feedback down to automating the whole process [4, 19]. In this

thesis, I research fully automated assessment1 of programming assign-

ments.

1.2 Automated Assessment and Feedback

Feedback is the outcome of assessment. It can be further divided between

formative feedback that aims to improve learning, and summative feed-

back that is a judgment. Teachers use summative feedback for grading

purposes. Learners, on the other hand, are interested in both – summa-

tive feedback as it tells them the grade and formative feedback as it tells

how to improve.

Automated assessment takes place in an assessment platform (e.g. Web-

CAT [30] or BOSS [51, 50]). Most modern assessment platforms are web

based [28]. Students use them with their browsers and submit programs

to the server where the programs are typically tested. Many of the plat-

forms include course management features – taking care of submissions,

finding the best submission and collecting results for the teacher.

Figure 1.1 gives an overview of automated assessment with the assess-

ment platform at the center. Teachers and learners interact through the

platform. Ideally, automatically assessed assignments, just like all other

assignments, are designed based on learning objectives. What makes au-

tomatically assessed assignments different is the strong influence of the

selected assessment platform. Each platform has its own strengths and

weaknesses that affect the assignment design. To highlight that an auto-

matically assessed assignment is tied to the assessment platform, I sep-

arate assignment from assignment implementation. An assignment is a

task for students to perform together with an idea for how to assess that

performance. An assignment implementation is how an assignment is

implemented on a specific assessment platform.

Students interact with the platform by uploading their programs to be

assessed. The feedback is typically almost immediate and it can be deliv-

1I also use automatic assessment as a synonym because both terms are used in
the original articles.
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ered both to teachers and learners, as also illustrated in Figure 1.1. Later,

students can revise their submissions, fix them and submit again to get

new feedback.
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Figure 1.1. Teacher, learner and an automatically assessed assignment. Solid arrows de-
note data flows – learner submitting his or her program and getting feedback,
for example. Dashed arrows illustrate influence of something on something
else – assignments, for example, are influenced by the learning objectives and
the limitations/strengths of the assessment platform.

1.3 Overarching Research Questions

The goal of this thesis is to improve automated assessment of program-

ming assignments by 1) adding visual elements to formative feedback, 2)

implementing assignments that are easier to port from one assessment

platform to another and 3) exploring new ways to give feedback on stu-

dents’ testing skills. These three themes are the titles of the following

subsections. Short motivation and high-level research questions, related

to each of these themes, are presented in this section. These questions

are operationalized later in Chapters 4, 5, and 6 – after the background

presented in Chapters 2 and 3.

1.3.1 Visual Feedback

The use of visualizations in automated assessment of programming as-

signments is rare. Students get textual feedback on various aspects2 of

their textual programs. Yet, visualizations are widely applied elsewhere

2These will be discussed in Section 3.1.2.
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in computer science (CS) education to support the learning process (see

Chapter 2). Visual feedback on functionality of students’ programs is

especially rare. The gap in between the use of visualization and auto-

mated assessment of programming assignments motivates the following

research question:

How to provide visual feedback on automatically assessed programming

assignments?

I am interested in developing visualizations describing behaviors and

functionalities of students’ programs. Figure 1.2 illustrates what this can

look like. The technical side of how visualizations can be constructed and

included in the existing assessment platforms will be presented in Chap-

ter 4. In addition, usefulness of visual feedback will also be discussed in

Chapter 4.

Figure 1.2. Visual feedback from an assignment where the task is to read a text file and
initialize chess board data structures based on the data. The images are
shown to a student after he or she makes a submission to the assignment.
The students can compare the images to find how his or her output differs
from the model output. (figure originally published in Publication IV).

1.3.2 Assignment Mobility

An assignment implementation is typically tightly coupled with the as-

sessment platform. A teacher implements assignments for a specific as-

sessment platform making it difficult to reuse the assignments on other

platforms. For example, how the assessment process is carried out or how

different factors affecting the grade are weighted are defined differently

on most assessment platforms. My second research question is:

4
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How to allow assignment implementations and visual feedback to be more

independent from assessment platforms?

I use the term assignment mobility throughout my thesis in the contexts

of sharing assignment implementations between teachers and porting as-

signments from one assessment platform to another.

A common format that multiple assessment platforms could use to share

assignments, as proposed by Edwards et al. [31], would be the obvious

solution to the problem. Unfortunately, so far no such format has become

popular. I chose instead to explore the potential of three approaches to

support assignment mobility in Chapter 5:

1. Integrating visualization tools into the assessment platforms.

2. Integrating assessment into general purpose learning management

systems already used by many.

3. Moving assessment and other responsibilities from the server to the

clients (i.e. browsers).

1.3.3 Assessing Testing Skills

For several years, students in a programming course at my university

have been required to test their own programs and submit their tests for

assessment. The assessment has been based on structural test coverage

and static analysis to ensure that tests indeed have meaningful asser-

tions. Although students score well, we felt that at least some of the stu-

dents get good scores from tests of really poor quality. Thus, my third and

the last top level research question is

How to better evaluate students’ testing skills?

The question will be operationalized in Chapter 6 where an alternative

test quality metric (mutation analysis [24]) will be compared against the

previously used metric.

1.4 Thesis Structure

This summary part (Chapters 1 – 7) of my article dissertation highlights

how publications I – IX are related to the research themes explained in
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the previous section. The rest of this thesis is organized in the following

manner:

Chapter 2 discusses some educational theories and gives background to

the context where the results of this work can be applied.

Chapter 3 summarizes the state of the art in automated assessment of

programming assignments.

Chapters 4, 5 and 6 focus on each of the research topics – visual feed-

back, mobility of assignments and assessing testing skills, respec-

tively.

Chapter 7 concludes this thesis with a summary of what has been done

and outlines opportunities for future work.

Table 1.1 explains how publications I – IX are mapped to the remaining

chapters of this summary.

The chapters sometimes emphasize aspects of the publications that are

different from those emphasized in the originals. For example, many of

the publications describing client-side assessment include additional con-

tributions which go beyond the scope of this thesis and are not discussed

in Chapter 5. I will also provide additional material not present in the

original publications but needed to tie my work together.
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Table 1.1. To which publications the following chapters (excluding Chapter 7, Conclu-
sions) are mostly based on.
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Pub. II: Review of recent systems for automatic

assessment of programming assignments
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Pub. III: Creating and visualizing test data from

programming exercises
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Pub. IV: Automated Visual Feedback from Pro-

gramming Assignments
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Pub. V: Taxonomy of effortless creation of algo-

rithm visualizations
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Pub. VI: Adapting moodle to better support CS

education

x

Pub. VII: Two-dimensional Parson’s puzzles: the

concept, tools and first observations

x

Pub. VIII: Automatic Assessment of JavaScript

Exercises

x

Pub. IX: Mutation analysis vs. code coverage in

automated assessment of students’ testing skills

x
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2. Learning Frameworks

According to Hill [43], theories describing how people learn are important

for two reasons:

1. To give a common framework and a vocabulary to describe learning

related observations.

2. To suggest from where to look answers to real learning and teaching

related problems.

In addition, Ala-Mutka argues that the use of automated assessment

should always be pedagogically justified [3]. Although this thesis is not

teacher or learner oriented, it is good for the developers to know in what

kind of context their tools are used.

In this section, I will present some learning related theories and point

out connections from the theories to teaching programming, assessing

programming assignments and providing visual feedback. The rest of

this chapter is divided into four sections. Section 2.1 summarizes theo-

ries of how learning occurs – is learning something that can be pushed

from outside or does it originate from the learners? Section 2.2 uses the

Felder-Silverman learning style model to discuss the aspects of automated

feedback. Section 2.3 defines the field of program visualization and how

learners can interact with visualizations. Finally, Section 2.4 is about

measuring the learning.

2.1 Epistemologies

Most of the theories on how learning occurs can be divided between three

“Isms” – behaviorism, cognitivism, and constructivism. In the following, I

briefly describe these labels with some connection points to programming

education.
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Behaviorism focuses on observable behaviors. In a way, behaviorism

considers educational sciences to be like other natural sciences –

response to a stimulus can be predicted based on the previous mea-

surements.

Classical conditioning (e.g. Pavlov’s dog experiment) is the extreme

of behaviorism. Broadly speaking, any person seeking “hypotheses

about psychological events in terms of behavioral criteria” [84] is a

behaviorist. This connects behaviorism to many of the evaluation

studies used to measure the effectiveness of automatic assessment

systems and compare this to a control group not using the tool.

Cognitivism states that learning cannot be forced outside without hu-

mans actively participating, thinking, and interacting. Understand-

ing how all this happens is of interest in Cognitivism.

Schemas are a good example of insights cognitivism can bring into

CS education. Schemas are abstract plans or other information on

how a certain type of a problem can be solved. For example, how

to search the “best” element from a list by looping over all values

and using one variable to hold the “best” element found so far. An

experienced programmer having that schema in his mind can easily

spot the schema from a program. He does not need to trace the code

line by line to understand what it does. He is also able to write

and apply the schema with other schemas, which is essential when

writing complex programs. [86, 25]

Caspersen and Bennedsen discuss broadly how to design an intro-

ductory programming course based on cognitive load theory, cogni-

tive apprenticeship, and worked examples (a key area of cognitive

skill acquisition) [20]. One of their suggestions is to better sup-

port learning of schemas. In addition to how to design courses,

schemas are related directly to the automatic assessment, for ex-

ample, through efforts to recognize problem solving strategies auto-

matically from students’ programs (e.g. [92]).

Constructivism argues that we all build our understanding of reality by

reflecting on our experiences. Students construct mental models to

explain their observations instead of storing information poured or

provided from outside. Thus, learning is simply adjusting our men-

tal models to the new observations we make. In its extreme, con-

structivistic epistemology states that a single truth is not a mean-
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ingful concept as everyone constructs his own reality.

Today, constructivism is widely accepted and it is widely applied on

multiple fields, including teaching natural sciences. However, Ben-

Ari, for example, has argued that computer science (CS) is different

from the other disciplines. Viable and “correct” mental models of

a computer, program execution, etc. do exist and students do not

have these models in the beginning. Therefore, although students

construct their own knowledge, it is important to explicitly teach

these models to ensure students have viable mental models at the

end. [10, 9]1

Active research on students’ mental models is inspired by construc-

tivism. For example, Ben-Ari’s worry about students not getting the

viable models (if not explicitly taught) is experimentally supported

by Linxiao et al. [63]. Authors observed that on an introductory

Java programming course, two thirds of the students held a viable

model of value assignment operation whereas only 17% held a viable

model of reference assignment operation. To avoid students having

non-viable mental models, the authors propose use of visualizations

and creating mental conflicts (i.e. situations that force students to

see where their non-viable model fails).

The three “Isms” are labels to many more theories – like cognitivism is

the label of cognitive load theory, cognitive apprenticeship, and worked

examples. Different learning theories can also support each other and be

combined together. For example, the portion of non-viable mental models

(constructivism) can be reduced by using visualizations (cognitivism) [63].

To create viable models and good schemas, feedback is essential. When

exercises are designed well, automatic assessment can help students to

identify non-viable models. After all, exercises and assessment are effec-

tive ways to direct the learning process [14, Chapter 9]. However, Green-

ing argues that from the constructivist point of view, automatically as-

sessed programming exercises can be too restricting [37, pp. 53–54]:

Usually, however, the tasks required of the student are highly structured

and meticulously synchronized with lectures, and are of the form that asks

1This might be case in some other disciplines as well. For example, models of an
atom needs to be taught just like the execution model of a program needs to be
taught.
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the student to write a piece of code that satisfies a precise set of specifica-

tions created by the instructor. The desired product outcome is typically so

trivial and predictable that it makes sense to have students submit their

work for automated marking as a matter of convenience. [. . . ] Although

some practical skills are certainly gained, the exercise is essentially one of

reproduction.

Yet, automated assessment of programming exercises is widely used and

good experiences have been reported in surveys [3, 19, 28]. Moreover,

closed, small assignments are often justified when students start to learn

programming. Indeed, automated assessment is often used on beginner

and intermediate levels and less later when design aspects of program-

ming, for example, are more important.

2.2 Felder-Silverman Learning Style Model

Learning styles vary. For example, some students prefer facts and hard

data before theories. Others prefer visual information, i.e., pictures and

animation, before written or spoken information. Some like individual

studying and others might prefer interactive learning in groups.

The purpose of learning styles, or learning models as they are sometimes

called, is to identify and classify different learning preferences. A learning

model can be used for designing a course to meet the needs of different

students better.

Learning style models are controversial and the related studies have

been criticized by many. Trying to identify learning styles and label stu-

dents based on that is considered harmful. In addition, the validity of

the learning style assumption (e.g. some learners learn better visually)

is doubtful and results of various evaluation studies are contradictory.

Pashler et. al conclude this by saying [76]:

The contrast between the enormous popularity of the learning-styles ap-

proach within education and the lack of credible evidence for its utility is,

in our opinion, striking and disturbing.

Despite the criticism (or as the criticism states), learning styles are

widely applied in many fields of education, including computer science
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education (see e.g. [60, 99]). Although the existence of learning styles

as part of personality is questionable, people have opinions and prefer-

ences how they would like to learn [76]. Following these preferences can

increase motivation. However, my main motivation to introduce learning

models here is that they provide a framework for the developers of assess-

ment systems so that they can think how to provide versatile feedback –

as discussed in Publication I.

While we were writing Publication I, we were not aware of all the prob-

lems of learning style models. For example, we stated that:

We strongly believe that incorporating analysis of learners’ preferences

into design of courses, automatic feedback systems, and learning environ-

ments leads to better learning.

Based on Pahsler et al.[76], this is likely not true. Thus, I will not use

learning models to label students but to discuss different options in auto-

mated feedback.

In the following, I describe only the Felder-Silverman learning model

as an example. This model was selected because of its popularity in the

context of CS education. The variety of possible learning models is huge.

Coffield et al. lists 50 different learning models grouped into five cat-

egories [22]: stable personality types (e.g. Myers-Briggs [69]), flexible

learning preferences (e.g. Kolb [58] and Felder-Silverman [33]), constitu-

tionally based learning styles, styles reflecting deep seated features of cog-

nitive structures, and learning approaches/strategies. Of these, at least

Felder-Silverman, Kolb’s, and Myers-Briggs’s learning models are often

applied in CS education.

The Model

The Felder-Silverman model characterizes students’ learning styles by us-

ing the following dimensions, each of which has two extremes.

Sensory vs. Intuitive – i.e., what type of information does the student

preferentially perceive. Sensing learners are practical and oriented

toward facts. They typically like straightforward things like work-

ing with details or memorizing data. Methodologically they like ex-

perimentation and problem solving by standard methods. Intuitive

learners like conceptualization. They often prefer theories, prin-
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ciples, innovations, complications and grasping new concepts. All

these issues include assignments, analysis and feedback of solutions

such that require complicated reasoning.

Visual vs. Verbal – i.e., what sensory information is most effectively

perceived. Visual learners prefer visual information like pictures

before verbal information. In the other extreme verbal learners like

written or spoken language.

Active vs. Reflective – i.e., how does the student prefer to process in-

formation. Active learners are group workers who learn by trying

things out and prefer continuous interaction. Reflective learners

first think things through by themselves, i.e. they do reflective obser-

vation. The interaction should drive them to rethink their solution

anew promoting their need for theoretical understanding.

Sequential vs. Global – i.e., how does the student progress towards un-

derstanding. Sequential learners proceed linearly with small steps

whereas global learners learn holistically in large steps. Global

learners like to get a holistic view

Programming Assignments

Although Publication I focuses on how to apply learning styles on al-

gorithm simulation exercises2, we also did some observations and recom-

mendations related to programming assignments. These are summarized

here.

For my thesis, the most interesting observation of Publication I is that

many of the popular assessment systems providing feedback from pro-

gramming assignments support only textual feedback. Visual feedback is

rarely used, and when it is used, differences to textual feedback are small.

For example, instead of providing purely verbal feedback, VIOPE [96]

highlights parts of the code that failed to pass tests. Web-CAT [30] uses

a similar approach to highlight lines of the code that the student has not

tested3.

The other common characteristic is that assessment systems analyze

only complete solutions submitted by students. Thus, little aid is given

2These are programming related assignment where the answers itself are visual
and what PILOT [17] and TRAKLA2 [59], for example, provide.
3In Web-CAT, part of the grade comes from how well students test their own
programs.
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during the process itself. Such mode of working suits intuitive learn-

ers who already master, at least partially, the concepts and processes

involved. Active learners’ preference towards continuous interaction is

also not supported if the feedback loop takes too long. Some of the recent

tools, however, can address this problem. Marmoset [87], for example, in-

tegrates with the development environment and creates an invisible sub-

mission whenever the student saves his or her files. Authors have used

the logs to study students’ behavior but the information could also be used

to produce immediate feedback. On some level, smaller assignments may

provide a similar effect. This, the size of assignments, is also a good way

to support different ends of the sequential vs. global axis because solving

large assignments requires a holistic approach. Finally, the amount of for-

mative feedback is often small and interpreting the summative feedback

requires reflective processing.

In summary, most assessment systems do not give much support for

sensory, visual, and active learners. We must, however, recognize that

programming is inherently an activity that requires intuitive, verbal, re-

flective and global approaches. Writing program code, of course, is an

active process but without a strong intuitive understanding of the goals

and concepts used and an ability to reflect the results, it is very hard to

solve a given programming exercise.

In Publication I we suggest that program visualization tools, as well

as visual debuggers should be used more in teaching programming. Such

tools can support sensory and visual learners by giving a better insight

into what happens while the program is executed. In addition, we should

design exercises where active experimentation plays a key role. These

could include, for example, studying a working program and preparing

data that produce the required output, added with a requirement to rea-

son how the student proceeded to the solution. For sequential learners

we could devise a sequence of exercises, where they gradually develop a

working program by preparing small incremental changes and additions.

Automatic assessment tools can be used to support the process by giving

feedback on whether the program is working correctly. Even if such feed-

back would be merely summative and verbal, the learning process itself

can still be designed to support different learning styles.
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2.3 Visualizing Software and Interacting with Visualizations

At the end of the previous section we stated that program visualizations

should be used more with programming assignments. In the next sub-

section I will define this and some other related terminology. After that,

the engagement taxonomy [72] describing the ways of how learners can

interact with the visualizations will be introduced.

2.3.1 Software Visualization

Price et al. [78] define software visualization (SV) as

the use of the crafts of typography, graphic design, animation, and cine-

matography with modern human-computer interaction technology to facili-

tate both the human understanding and effective use of computer software.

Authors divide SV further into program visualization (PV) and algo-

rithm visualization (AV). The distinction is not strict and AV includes

parts of PV and vice versa. Often, the difference is understood so that

whereas PV can take almost any program and visualize it to enhance un-

derstanding, AVs are higher-level representation designed for a specific

purpose or even for a specific program, typically related to handling data

structures. Moreover, Price et al. separate AV into static visualizations

and dynamic algorithm animations.

To complement Price’s definition, Diehl [26] states that software visual-

izations can focus on structure, behavior or evolution of software. Struc-

ture is about the static properties of a program – control-flow for example.

Behavior is about information collected by executing a program with real

or abstract input. Visualizing evolution of a program is related to the

software development process and how a program changes over time.

2.3.2 Engagement taxonomy

Before going into details of how to implement visualizations, it is good to

discuss how students can perceive or interact with the visualizations. For

this purpose, I present the engagement taxonomy [72] and the extended

version of it [70]. The original taxonomy is based on six levels of interac-

tion: no viewing, viewing without control of what is viewed, responding to

questions related to visualization while viewing, changing visualization,

e.g., by defining the input, and constructing and presenting visualizations
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for others. The extended version adds new levels between viewing and re-

sponding and between changing and constructing. Finally, it also adds a

new level above all the previous. Definitions of the levels of the extended

taxonomy, as presented by Myller et al., are provided in Table 2.1. Levels

of both versions of the engagement taxonomy are not hierarchical and a

single system can support a combination of them.

A meta study of algorithm animation effectiveness, conducted by Hund-

hausen et al. [45], states that in general, higher engagement implies

better learning. The same holds also for the extended taxonomy [70].

The visual feedback proposed in Chapter 1 and discussed more in Chap-

ter 4 provides relatively high engagement. Students construct the visual-

izations though writing code. Although students cannot do much with the

image itself, they need to modify their programs to get more feedback (i.e.

Construction in the extended taxonomy). However, the downside of visual

feedback pointing out problems from students’ programs is that only the

students who need to submit again (i.e. who did not get full points or

enough points in the beginning) will get engaged.

2.4 Levels of Cognition

Teaching goals and levels of learning vary and various taxonomies have

been developed to measure this. Such taxonomies can be valuable when

designing assignments and also when comparing/grading answers to a

specific assignment. Bloom’s taxonomy [15] (the revised version of it [8])

and the structure of observed learning outcomes (SOLO) taxonomy [13]

are well know examples of taxonomies addressing the level of learning, i.e.

cognition. Both taxonomies are also often applied in CS education. Other

similar taxonomies are the CS specific learning taxonomy developed by

the ITiCSE’07 working group [36] and the recently proposed combination

of Bloom’s taxonomy and SOLO [65].

Bloom’s taxonomy is based on six hierarchical competence levels: knowl-

edge, comprehension, application, analysis, synthesis, and evaluation.

Mastery on a certain level requires mastering all the previous levels.

More detailed definitions of the cognitive levels and examples of ques-

tions being mapped to the Bloom’s levels are provided in Table 2.2. The

revised version of Bloom’s taxonomy replaces nouns with verbs. The new

levels, starting from the lowest cognitive domain, are: remembering, un-

derstanding, applying, analyzing, evaluating, and creating. Two highest
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Table 2.1. Definitions of the levels of the engagement taxonomy quoted from the article
where the extended taxonomy was introduced [70]. Levels marked with an
asterisk are present also in the original engagement taxonomy.

Level Definition

No viewing (*) There is no visualization to be viewed but only

material in textual format. For example, the

students are reviewing the source code without

modifying it or they are looking at the learning

materials

Viewing (*) The visualization is viewed with no interaction.

For example, the students are looking at the vi-

sualization or the program output.

Controlled viewing The visualization is viewed and the students

control the visualization, for example by select-

ing objects to inspect or by changing the speed

of the animation. [. . . ]

Entering input The student enters input to a program or pa-

rameters to a method before or during their ex-

ecution.

Responding (*) The visualization is accompanied by questions

which are related to its content.

Changing (*) Changing of the visualization is allowed during

the visualization, for instance, by direct manip-

ulation.

Modifying Modification of the visualization is carried out

before it is viewed, for example, by changing

source code or an input set.

Constructing (*) The visualization is created interactively by the

student by construction from components such

as text and geometric shapes.

Presenting (*) Visualizations are presented and explained to

others for feedback and discussion.

Reviewing Visualizations are viewed for the purpose of pro-

viding comments, suggestions and feedback on

the visualization itself or on the program or al-

gorithm.
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levels of cognition are swapped in the revised taxonomy because creating

something new is considered to be more demanding than evaluating some-

thing that already exists. The revised version also adds the knowledge4

as a new dimension to the taxonomy. The Levels of the knowledge dimen-

sion, starting from the simplest, are factual, conceptual, procedural, and

meta-cognitive.

Applying Bloom’s taxonomy to classify programming assignments can

be difficult. Lister and Leaney argue that based on the size of the code,

writing code can belong to various cognitive levels of Bloom’s taxonomy [62].

In addition, Johnson and Fuller point out even experts are not able to

agree about the interpretations of the levels of Bloom’s taxonomy [49].

The SOLO taxonomy is based on five levels describing how students’ an-

swers can address to what is being assessed. Levels of the SOLO taxon-

omy, starting from the simplest, are pre-structural, uni-structural, multi-

structural, relational, and extended abstract. A pre-structural answer

misses the point of the question or is simply wrong. A uni-structural an-

swer names one item from a list of possible topics to be included in a good

answer. A multi-structural answer improves from this by providing a list

of (uni-structural) answers but the items are still not connected and val-

ues of different items are not discussed. These flaws are not present in

a relational answer where each part of a multi-structural answer is con-

nected to the whole. Finally, extended abstract, being the highest level in

SOLO taxonomy, generalizes and makes connections outside the scope of

the question. Meerbau-Salant et al. have combined both Bloom’s taxon-

omy and SOLO to create a new taxonomy and argue that SOLO’s holis-

tic vs. local perspective makes it almost orthogonal with Bloom’s taxon-

omy [65].

Taxonomies measuring the level of learning are valuable mostly for

teachers. However, I argue that developers can also benefit from these.

For example, although teachers design and select the feedback, develop-

ers of assessment systems should provide interesting and justified options

from where to choose. In this thesis, for example, I develop visual feed-

back and feedback on testing skills that teachers can try out and evaluate

in their own context.

4The knowledge here is a not the same as the simplest level competence, also
called as knowledge in the original version of Bloom’s taxonomy.
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Table 2.2. Explanations and examples of Bloom’s taxonomy, quoted from [88].

Level Explanation Sample Questions

Knowledge 1 The student is expected to

recite memorized information

about the concept.

“What is a program?”

Comprehension The student is expected to ex-

plain the concept in his or her

own words.

“How is a program simi-

lar to a recipe?”

Application The student is expected to ap-

ply the concept to a particular

situation.

“What is the output of

this program?”

Analysis The student is expected to

separate materials or concepts

into component parts so that

their organizational structure

may be understood.

“Create a topdown design

for a program to perform

a given task.”

Synthesis The student is expected to put

parts together to form a whole,

with emphasis on creating a

new meaning or structure.

“Write a program to per-

form a given task.”

Evaluation The student is expected to

make judgments about the

value of ideas or materials.

“Given two programs

that perform the same

task, which one is better

and why?”

1 Article from where this table is quoted used Recall here. However, the orig-

inal term from the Bloom’s taxonomy is Knowledge.
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3. Automated Assessment of
Programming Assignments

Whereas the previous chapter has the focus on educational aspects, this

chapter describes the state of the art in automated assessment from the

tools perspective. Section 3.1 provides an historical overview to the tools

development and explains which features of programs are typically as-

sessed automatically. The section relies on two surveys both published

in 2005. Section 3.2 complements the surveys by summarizing Publica-

tion II, which has the focus on tools reported between years 2005 and

2010.

3.1 Meta-Survey

This section is divided into two subsections looking assessment platforms

from different perspectives. Section 3.1.1 provides a historical overview.

This is based on the review of Douce et al. [28]. Based on a survey by Ala-

Mutka [3], Section 3.1.2 lists automatically assessed features of programs

(i.e. on which automated feedback can be given).

Although there are not many surveys from the field, the selected sur-

veys, while good, are not the only ones. For example, the ITiCSE 2003

working group led by Carter [19] conducted a survey among CS educa-

tors (not only programming) to find out how they use assessment tools

and what are their opinions towards the use. One interesting finding of

Carter et al. and Publication VI is that the teachers who were not fa-

miliar with automated assessment considered its potential more limited

than the respondents with experience. Finally, there is also a recent sur-

vey about programming assessment tools from 2009 [61]. This, however,

provides almost nothing new to the previous work of Ala-Mutka.

The number of educational tools (including assessment tools) reported

in the literature is high. David Valentine found out that 18% of the pa-
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pers published in SIGCSE (one of the leading conferences in computing

education research) conference between 1983 and 1993 were tools pa-

pers, whereas between 1994 and 2003 the number was 24.6% [95]. In

the Survey of Literature on the Teaching of Introductory Programming by

Pears et al. [77] from 2007, tools were the single largest group among

papers classified between tools, curricula, pedagogy, and programming

languages. Analysis of papers from the ICER, SIGCSE, ITiCSE, ACE,

Koli Calling and NACCQ conferences between 2005 and 2008 by Sheard.

et al. [85] also supports the importance of both assessment and tools.

Top three themes in their classification of programming education re-

lated papers were: ability/aptitude/understanding (40%), teaching/learn-

ing/assessment techniques (35%), and teaching/learning/assessment tools

(9%). Despite automated assessment of programming being only a small

portion of all the tools, the number of assessment platforms targeted at

programming assignments is still significant (see Publication II).

3.1.1 History of Automated Assessment

In order to create a historical overview, Douce et al. [28] divide assessment

tools into three generations. The following list presents the characteris-

tics and some remarkable assessment platforms of each generation. The

tools presented next are examples only and the list is not supposed to be

comprehensive.

1st generation – Early Assessment Systems had very little to build on.

They were big, monolithic systems targeted for teachers only. (1960s

and 1970s).

Hollingsworth presented the first assessment platform to grade punched

cards already in 1960 [44]. Interestingly, security problems related

to executing unknown code as part of automated assessment were

identified, although not addressed already in 1969 [41].

2nd generation – Tool-Oriented Systems are command line based scripts

that benefit from small utilities and other services provided by the

operating system. Assessing other features than the functionality,

and providing feedback directly to students started to become pop-

ular. Security of the assessment platforms was also improved. As-

sessment was often based on character-by-character comparison of

the output and the expected output. (1980s’ and 1990s)

Examples of popular 2nd generation tools are TRY (1989) [79], Ceilidh
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(1993)[12], ASSYST (1997) [46] and BOSS (1998) [51]. TRY in-

troduced the ideas of limiting submission and providing immediate

feedback directly for students.

3rd generation – Web-Oriented Systems are, as the name suggests, used

online with a web browser. Nearly all tools provide some course or

content management features. Some of the command line based tool

oriented platforms evolved to web-oriented systems. (late 1990s -)

Examples of well-known 3rd generation tools are Course Marker

(successor of Ceilidh) [42], Web-CAT (2002) [30] and BOSS.

In summary, automated assessment of programming assignments has

been practiced since programming has been taught. In the beginning,

feedback was given only on the functionality by comparing the output

against the expected one. Today, feedback is based on many aspects of

programs as explained next – in Section 3.1.2.

3.1.2 Automated Assessment of Different Features

Ala-Mutka [3] lists features of programs that have been assessed auto-

matically. She divides features between the ones that need execution of

a program (i.e. dynamic analysis) and the ones derived from a program

code without executing it (i.e. static analysis). According to Ala-Mutka,

functionality, efficiency, and testing skills are typically assessed through

dynamic analysis. Static analysis, on the other hand, is used to give feed-

back on programming errors (e.g. dead code), various software metrics,

and design. In addition, both static and dynamic analyses are used to

give feedback from various special features (e.g. GUI testing).

Functionality evaluates the correctness of programs’ behavior. It is

the most common automatically assessed feature of programs and

nearly all systems are able to give feedback from it. Later on, in

Subsection 3.2, I discuss different approaches to test functionality.

Efficiency of computer programs is typically related to the usage time

and space (i.e. memory) but the usage resources like disk space, net-

work, or even power consumption of a portable device, can be rele-

vant. In the original survey, Ala-Mutka focused only on the time effi-

ciency, perhaps because it still seems to be the dominant or only effi-

ciency metric supported by automated assessment platforms. There

are many options how to present the feedback in this category. For
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example, CPU time can be plotted as a function of input size as in

the algorithm benchmark extension of OpenCPS [21].1

Test adequacy 2 of students own tests has become more interesting –

perhaps because of industry saying that new graduates lack essen-

tial testing skills [29]. Students write tests to their own or some

other programs and feedback is then given based on various test

adequacy metrics (e.g. [66, 100]). Automated assessment of testing

skills was supported already in 1997 by a tool called Assyst [46]. To-

day, Web-CAT is a widely used tool designed around the principle

that students test their own programs.

Style is perhaps the most obvious feature to be assessed through static

analysis. In most programming languages, there are (de-facto) stan-

dards defining indentation, variable naming conventions and other

typesetting features. Although modern IDEs (e.g. Eclipse3) make

it easier to write well-formatted code, giving feedback from style is

still relevant. Quality of comments and related documentation are

also part of programming style.

Programming errors includes use of un-initialized variables, dead code

(i.e. code that will newer be executed), and other errors detectable by

static analysis. Many automated assessment tools incorporate static

analysis tools such as Lint family (e.g. JSLint4) and Valgrind5.

Software metrics are easy to generate but the educational motivation

needs to be carefully considered each time. For example, statement

count, branch count, cyclomatic complexity, lines of code, lines of

comments, percentage of lines containing comments, and code depth

are useless for students unless accompanied by a desired value or

range for the measure.

Design might not be the most obvious automatically assessed feature.

Feedback is typically about the details of the design, not really about

the high level design. Examples of recent work that could be used in

automated assessment of the higher level design are work by Dong

1http://www.opencps.org/
2Original term used by Ala-Mutka is testing skills. However, to be consistent, I
wanted to use a term that is a feature of a program, not a feature of a person.
3http://www.eclipse.org/
4http://www.jslint.com/
5http://valgrind.org/
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et al. [27] to recognize design patterns from programs, and work by

Taherkhani [91] to recognize different sorting algorithms through

static analysis. Lower level design issues, that are actually used in

the existing automated assessment tools (e.g. [94, 81]) check if the

structure of the solution matches the pool of allowed structures (e.g.

there is a loop or a recursion present).

Special features are language, assignment, and topic related features

that do not fit into any of the previous categories. Examples of this

category are GUI testing, disallowing some language constructions

(e.g. use of set! in Scheme [81]), plagiarism detection (e.g. [1, 35]),

etc. Some of the special features are best addressed with static anal-

ysis while others require executing the programs under assessment.

On What the Feedback is Typically Given

Douce et al. [28] point out that the functionality has always been the most

common feature on which automated assessment is provided. Carter et

al. [19] lists functionality, efficiency, and complexity as the most common

automatically assessed features. Complexity and software metrics, dis-

cussed earlier, are closely related features.

3.2 Aspects of Automated Assessment

This section is based on Publication II where a systematic literature re-

view [16] was carried out to find out the features of automatic assessment

systems reported recently in the literature.

In Publication II we applied an iterative process to find a consensus

about how to group features of the systems. We read a set of papers,

made the first version of categories, read more papers, revised the cate-

gories, and went through the previous papers to find if something related

to the new categories were expressed there as well. This was repeated

until no new categories emerged. Our background in automated assess-

ment explains some of the results. We (i.e. author of Publication II) have

all used automated assessment several years, and we have also been de-

veloping assessment platforms and other educational software to support

CS education.

The next subsection will present the categories we found in our survey

and Section 3.2.2 will conclude this.
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3.2.1 Features of Automated Assessment Platforms

Programming Languages

A majority of the systems identified in Publication II are either targeted

primary for Java or at least support Java. This fits well with the trend

of Java being one of the most used introductory programming languages.

Other popular languages supported by the systems are C/C++, Python,

and Pascal. Pascal is no longer a common teaching language and we were

surprised that some assessment platforms, originating mostly from the

Eastern Europe, were targeted for Pascal. Examples of other supported

languages are Assembly and shell scripts.

It should be noted that some of the systems are language independent.

Especially, if the assessment is based on output comparison, any program-

ming language that can be executed on the assessment platform can also

be assessed by the platform.

Learning Management Systems

Integrating CS specific features such as the automated assessment of pro-

gramming assignments into learning management systems (LMS) has

been a popular topic for a long time. Publication II identifies several fully

automatic assessment tools supporting programming assignments built

on Moodle6 (see [5, 38, 48]), Sakai7 (see [89]), Cascade LMS8(see [40, 74]),

and Plone9 (see [6, 7]).

One argument of integrating assessment tools and LMSs is to avoid re-

implementing course management features in both systems. However, it

is not clear if separate LMSs are truly needed because some of the as-

sessment systems are capable to grow into the role of a LMS. For exam-

ple, Web-CAT, with the various assessment modules already implemented

into it, is a good candidate to become a CS specific LMS.

Executing unknown programs is always a security threat. A typical

LMS installation hosts several (not only programming) courses. Malicious

code executed in such an environment can harm all of the courses hosted

on the system. Therefore, securing assessment systems integrated into

LMSs is extremely important.

6http://moodle.org/
7http://sakaiproject.org/
8http://www.cascadelms.org/
9http://plone.org/
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How Tests are Defined

Testing the functionality is the most common approach to grade programs,

and output comparison is a common approach to do that. Survey of Ala-

Mutka [3] already reports several variations of output comparison based

grading, including running the model solution and student’s code side by

side, and use of regular expressions. In addition, many tools have been

borrowed from the software testing industry. For example, XUnit family

and web testing frameworks such as Watir10 and Selenium11(e.g. [23, 90])

are often applied to grade students’ programs.

Experimental approaches, like comparing program graphs to a pool of

correct programs, have also been suggested [73, 98]. However, these have

not gained wide popularity.

Resubmissions

Exercises should have room for mistakes and learning from them. How-

ever, to prevent mindless trial-and-error problem solving, the number of

resubmissions should be somehow controlled [64].

Different approaches to tackle the problem of resubmissions were iden-

tified in Publication II. In summary, these can be divided among limiting

the number of submissions, forcing a time penalty after each submission,

making each trial slightly different, having only a very limited time win-

dow when exercises are open (i.e. contest style), and various combinations

of these.

Possibility for Manual Assessment

It is often a good idea to combine manual and automated assessment. For

example, teaching assistants (TAs) can provide extra feedback to a man-

ually assessed submission. To enable TAs and teachers to view students’

submissions is the lightest way to support for manual intervention. Sup-

porting this through the automated assessment systems makes it possible

to separate the roles of TAs and the roles of administrators. Some systems

(e.g. Web-Cat [30]) allow combining manual and automatic feedback. This

means that TAs’ feedback and automated assessment can both exist at the

same time and support each other.

10http://watir.com/
11http://seleniumhq.org/
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Sandboxing

Since the programming assignments are typically graded by running the

students’ solutions on the server side, securing the server against possibly

malicious or just incorrect code is important. A good discussion on the

possible attacks against a grading server can be found in [34]. However,

as important as this topic is, very little attention is paid to it. Too often

security is not considered or various ad hoc solutions like using regular

expressions to filter out malicious code from C programs are proposed

(e.g. [6]).

Many of the tools that pay attention to security are built on top of ex-

isting security solutions such as systrace, Linux security module, Java

security policies, and chroot. However, this is often not enough. Secu-

rity should be enabled by default and the related documentation should

be good enough to make sure that teachers will not make shortcuts when

installing assessment systems.

An interesting, and perhaps emerging, approach is to do the assessment

on the client side. Security in the course management side is guaran-

teed by pushing the assessment away from the server. However, the new

challenge is how can we trust that the assessment on students’ machines

really does what we expect it to do.

Distribution and Availability

It is surprising, and quite disappointing, to see how few systems are open-

source, or even otherwise (freely) available. This might be one of the rea-

sons for the constant development of new tools – that are also likely to

remain in-house. In many papers, it is stated that a prototype was devel-

oped, but we were not able to find the tool. In some cases, system might

be mentioned to be open source but you need to contact the authors to get

it. Publication II argues that by open-sourcing the existing tools to some

popular online version control repository like GitHub12 or Google Code13,

the tools would be much more widespread and more willingly adopted by

others.

Exercise Topics

Assignments can set up special requirements for automated assessment.

Correspondingly, some assessment systems specialize in very specific types

of assignments. Fields of specialization, mentioned in Publication II, are

12http://github.com/
13http://code.google.com/
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graphical user interfaces, databases/SQL, concurrent programming, and

web programming. Modular assessment systems are preferable so that

a specialization can be implemented as a plugin to an existing system,

rather than implementing yet another assessment system.

3.2.2 Conclusions

The number of different assessment platforms reported in the literature

is large. Researchers and lecturers of the universities where the tools are

used develop many of these tools. Instead of constantly producing new as-

sessment platforms, institutions should collaborate more and increase the

adoption of the existing platforms. I argue that this kind of collaboration

would be easiest to establish if the platform itself is open source.

In Publication II we predicted that the importance of integrating auto-

mated assessment into learning management systems (LMS) (discussed

more in Section 5.2), usability, single-sign-on, and assessment of web pro-

gramming becomes higher. Interestingly, LMS integration and interop-

erability (i.e. single sign on in our survey) were pointed out as future

directions also in the earlier survey by Douce et al. [28]. What we did not

explicitly report in Publication II, but what clearly exists, is the lack of vi-

sual feedback – especially visual feedback related to functional behavior.

This will be the theme of the next chapter.
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4. Visualizing Data Structures for
Feedback

The question of how to provide visual feedback from automatically as-

sessed programming assignments, was raised in Chapter 1 and will get

operationalized in this. The rest of the chapter is divided into five sec-

tions. Section 4.1 will refine the scope where the results of this chapter

are valid. Section 4.2 will present the main idea of visual feedback. Sec-

tion 4.3 will present two research problems related to decreasing the level

of details in visual feedback and evaluating the usefulness of the feed-

back. These problems will get answered in the last two sections of this

chapter.

4.1 The Refined Scope

As explained in Section 2.3.1, software visualizations can focus on struc-

ture, behavior or evolution of software. My focus in this chapter is to pro-

vide visual feedback on the behavior. This means automated assessment

of functionality (see Section 3.1.2 for other possibilities).

Moreover, I limit myself to test-based assessment, which means that a

test itself is a program that executes and examines students’ programs.

A test program is often built using a testing framework such as JUnit.

The use of such frameworks, however, is not necessary. Although some of

the ideas presented later can be extended to procedural languages with

memory pointers in general, I focus on testing object-oriented programs.

4.1.1 How Test-Based Assessment Works

The main idea of software testing is simple: the program under test is

executed with some input (i.e. test data) and the consequences of exe-

cuting the program are then compared to the specification. Confidence

that the program is correct is gained if observations do not differ from the

specification.
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1 public class BstTests {

2 public void testDelete() throws Exception {

3 BinarySearchTree bst = BinarySearchTree();

4 bst.insert(1);

5 bst.insert(3);

6 bst.insert(2);

7 bst.insert(4);

8 bst.delete(3);

9 assertEquals(2, bst.getRight().getData());

10 assertEquals(4, bst.getRight().getRight().getData());

11 }

12 }

Program 4.1. An example how to test BinarySearch tree where students implemented a
delete operation.

The program under test is typically either a single method or a set of

methods. Arguments passed to the methods under test are the test data.

Program 4.1 demonstrates what a test looks like. Depending on what

methods are provided and what methods students are asked to imple-

ment, the example tests either one method only or a sequence of methods

(i.e. inserts and delete). In the latter case, the test data consists of the

empty binary search tree in the beginning accompanied with the values

inserted and deleted. However, if we can assume that the insert-method

has no defects, then the lines from 3 to 7 are test data construction. In

this case, the program under test is the delete-method.

A common way to write tests is to call a method and assert something

after that, e.g. examine how the method under test changes the object or

object hierarchy. Internal behavior of a method can also be tested. To do

this, test data passed to a method can contain mock objects that check that

they are handled as expected. For example, mock objects can check that

some pre-defined methods of them are invoked or unexpected parts of the

test data are not accessed. Libraries such as JMock1 can be used to create

mocks with such assumptions. However, based on my own experiences,

teachers often write the mocks by themselves to ensure that the error

messages and therefore the feedback better fit the needs of novices.

1http://www.jmock.org/
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4.1.2 Connections to Model Based Testing

A significant difference between testing students’ programs and indus-

trial software testing in general is that with students’ programs there is

typically a fully functional model solution that can be compared against

students’ programs.

In a way, testing students’ programs is very similar to model based test-

ing where a simplified model with the desired functionality is first im-

plemented. Tests, including inputs and assertions, are then derived from

the model. In model based testing, assertions are based on observing the

behavior of the model that is often on a different abstraction level than

the actual program. For example, a model of a multiplier can say that

the output of multiplying any two numbers with the same sign is positive.

If the signs differ the output is negative and if any of the multipliers is

zero, so is the output. It is now possible to give data (e.g. random data)

to the model and use the output to create the assertions of what should

happen when the same data is passed to a real multiplier. The previous

example is deliberately simple to demonstrate how the abstraction level

of the model and actual solution can differ.

It can be argued that in automated assessment the abstraction level of

the model (i.e. written by a teacher) and programs to be tested (i.e. written

by students) are the same. However, the level of abstraction in the model

solution that can be applied in testing is not finer than in the assignment

description. Internals of the model solution can, and most likely will, be

different from students’ programs.

Program 4.2 demonstrates how a test in an educational setup can be

build on top of a reference solution. The test first constructs two identical

binary search trees – assuming that the insert method of both trees is

either provided by the teacher or tested beforehand. After initializing the

input, the test tries to delete the same key from both trees and asserts

that the trees – model solution and student’s solution – are equal.

4.2 Visual Feedback

Static data structures (e.g. test data and expected output) can be repre-

sented with manually constructed images – similar to Figure 4.1. The

example figure illustrates the test data of Programs 4.1 and 4.2. From a

technical perspective, visualizations of dynamic input and the differences
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1 public class BstTests {

2 public void testDelete() throws Exception {

3 BinarySearchTree bst =

4 new StudentBinarySearchTree();

5 BinarySearchTree model = new ModelAnswer();

6 bst.insert(1); model.insert(1);

7 bst.insert(3); model.insert(3);

8 bst.insert(2); model.insert(2);

9 bst.insert(4); model.insert(4);

10 bst.delete(3); model.delete(3);

11 assertTreesEqual(model, bst);

12 }

13 }

Program 4.2. An example how to test BinarySearch tree where students implemented a
delete operation.

1

3

2 4

← trying to delete this node.

Figure 4.1. Test data visualization related to Program 4.2

between the expected and actual output are, however, more interesting.

Those cannot be constructed before tests are executed. Figure 4.2 provides

a sketch of what this kind of feedback could look like in our previous bi-

nary search tree example. One diagram is needed to visualize the value

of each variable of an object type – including the state of the current ob-

ject. This implies that visualizations of input, expected output, and actual

output can each consist of multiple object diagrams as in Figure 4.2.

4.3 The Problems

Now that we have sketched what we would like to achieve, it is possible

to ask how to implement this. Visualizations presented previously in this

chapter are essentially object diagrams2 – although with a “pretty” layout.

2Object diagram is the visualization of an object graph.
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Figure 4.2. Visual Feedback of input, expected output and actual output. Test tries to
delete ’3’ from the tree. The correct data-structure after the operation is in
the lower left corner. On the right is the output of the student’s program. It
deleted the whole subtree starting from the node where ’3’ is. The program
also returned null-reference instead of the modified data structure.

The state of an object (i.e. object graph) is easy to capture. To get good

visualizations and meaningful results from the comparison of two object

graphs (i.e. assessment based on the comparison against the model so-

lution), the granularity and abstraction level of the object graphs should

be controlled. This is because, not all data are useful when graphs are

compared or visualized. In addition, some educational results indicate

that abstract feedback forcing students to think is preferable to too de-

tailed feedback, which may make students passive [67]. Thus, the re-

search question we will look next is:

How to raise the abstraction level of object diagrams that are used to

provide visual feedback?

Methods to address this problem are presented in Section 4.4. Another

problem related to the usefulness of visual feedback, discussed in Sec-

tion 4.5 is:

What is the value of visual feedback for learners and for the teachers?
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To study this, a small control group experiment comparing the perfor-

mances of groups getting different feedback was carried out and described

originally in Publication IV.

4.4 Controlling the Level of Detail in Object Graphs

Typically, not all parts of an object graph are interesting. For example, in

our previously presented binary search tree example, quite likely only the

references pointing to the child nodes and data are relevant. If a student

stores some extra information in a node, this information is not needed

in the assessment and therefore needs not to be extracted. In addition,

sometimes limiting the depth of an object graph is important to ensure

that the amount of information presented is manageable. For example,

internals of a StringBuffer object, provided by the standard Java library,

are rarely interesting in the feedback.

A Lightweight Java Visualizer (LJV), introduced by Hamer in 2004 [39],

allows users to specify which of the outgoing references for each object

type are followed when constructing an object graph. It is also possible

to control, if some object combinations should be folded together, instead

of presenting each object belonging to the specified combination as a sep-

arate node in the object graph. After extraction, LJV can visualize the

graph with Graphviz3.

In Publication IV, we implemented a visualization system similar to

LJV. In addition to presenting two object diagrams (i.e. model and mea-

sured outputs), our tool also highlights where the two graphs differ. An

example of this is provided in Figure 4.3.

A different approach to raise the abstraction level was selected in Pub-

lication III, which is summarized next.

4.4.1 Generalized Symbolic Execution With Lazy Initialization

One of the key ideas in model based testing is that tests are derived from

the model. In our previously presented model based automated assess-

ment example (i.e Program 4.2), only the assertions were derived from

the model. The test data were constructed manually.

Symbolic execution [57] (and an extension of it called generalized sym-

bolic execution with lazy initialization [56]) can automate test data gen-

3http://www.graphviz.org/
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Figure 4.3. Visual feedback of output data structures based on automatically extracted
object graphs. Graphs (model solution and student’s solution) are compared
and the parts that are found matching are colored green. Differences are
colored red. If some parts are not compared, because of earlier differences,
these are black. (figure originally published in Publication IV)

eration. An interesting side effect, discussed in Publication III, is that

the abstract state from where each input is derived, can also be used to

visualize and highlight the relevant parts from the test data.

A program state in symbolic execution consists of (symbolic) values of

the program’s numeric variables, a path condition, and the program counter

(i.e. information where the execution is in the program). Path condition

is a boolean formula over input variables and describes which conditions

must be true in the state. This can be explained best with the following

example where the symbolic execution of Program 4.3 is explained.

The hierarchy of all the symbolic states (i.e. symbolic execution tree) of

Program 4.3 is presented in Figure 4.4. The data inside each node are

the values of variables and the path condition (PC). A number above each

node denotes the line number that is going to be executed next. A state

underneath a line number, however, is the state after the line is (symbol-
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1 public static int min(int a, int b) {

2 int min = a;

3 if ( b < min )

4 min = b;

5 if ( a < min )

6 min = a;

7 return min;

8 }

Program 4.3. A program calculating the minimum of two arguments. Line 6 is dead code
(i.e. never executed) as one can see from Figure 4.4.

ically) executed. It should be noted that each reachable conditional in the

program leads to branching in the symbolic execution tree.

The middle node on the fourth level (first level being the topmost) of the

tree is interesting. The path condition at the end of the line is infeasible

(X<X), which means that no real execution can reach this state. Such

states, where no real execution can go, are marked with “backtrack” in the

figure. Leaf nodes with feasible path conditions provide all the possible

execution paths of the program. Thus, we can immediately see that the

program has only two possible execution paths. Input where a>b (i.e. a:X,

b:X, Y>X) results in execution of lines 1, 2, 3, 4, 5, and 7. The node in the

lower right corner is the other possible symbolic end state of the program.

It is possible to follow the nodes leading to the leaf node to find out what

the execution path is. That is, with a ≤ b, lines 1, 2, 3, 5, and 7 are

executed – in this order.

Generalized symbolic execution with lazy initialization defines that when

an unused (no previous reads or writes) field of a primitive type is ac-

cessed, it is initialized to a new symbolic variable. Whenever an unini-

tialized field of a reference type (i.e. object type) is read, it is nondeter-

ministically initialized to any of the following:

• null

• a new object with uninitialized fields

• a reference pointing to any of the previously created objects of the

same type (or subtype)

This, however, can lead into illegal states – for example by creating a

cycle to a data structure where loops are not allowed. To prevent this, a

method to identify states that cannot be completed to legal structures is
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Figure 4.4. Symbolic execution tree of the Program 4.3. Numbers in the figure are line
numbers. (figure originally published in Publication III)

needed and called after each lazy initialization. This method is specific to

the topic at hand and in some cases difficult to implement well.

Often test data are not only a list of primitive values but consist of an

object hierarchy. In both cases, it is possible that only some parts of the

data (e.g. object graph) are relevant to the execution. This means that

when the program is executed, some parts of the data are not read and

therefore the values do not affect the execution.

When generalized symbolic execution with lazy initialization is used to

produce the test data, some of the references can be found un-initialized in

the beginning. This means that the corresponding values can be anything

structurally legal. When visualizing test data, this can be abstracted

away or a visual hint advising that those parts are not relevant can be

provided. An example of this is provided in Figure 4.5 where subtrees

drawn as triangles denote parts that are not accessed by the program.

Circular nodes with a question mark inside are accessed but the data

stored in the node are not. Symbolic constraints related to the input are

presented underneath the graph.

If the program under test lacks functionality and therefore is struc-

turally simpler than the model program, input generated from the incom-

plete implementation will likely not test the missing functionality. To fix

this, manually created sanity tests, random input or input generated from
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the model solution should be used. However, abstract and only partially

initialized input structures generated from the model solution should be

completed (i.e. uninitialized references should be opened up) before they

can be used. This is because the program under test can access the objects

differently when compared to the model solution.

Figure 4.5. Excerpts of partially initialized input structures for the delete method of bi-
nary search trees. (figure originally published in Publication III)

A prototype to demonstrate symbolic visualizations was implemented in

Publication III, but we did not integrate it into any automated assessment

platform. The prototype was built on Java PathFinder (JPF) [97] and the

symbolic execution framework provided with JPF at that time.

4.5 Evaluation Study

In Publication IV, we studied the effect of visual feedback on students’ per-

formance. We divided students into three groups and gave different feed-

back from different exercises for each group. Feedback was given based

on:

• automatically extracted object graphs where the differences between

the expected and the correct outputs were highlighted (see Figure 4.3

on page 37).

• exercise specific visualizations where the semantics of the data was

taken into account when designing the presentation (see Figure 1.2

on page 4).

• specific textual feedback. Because the same assignments were al-

most unchanged from the previous years, this feedback had matured

and was of good quality.

We investigated properties like the number of submissions, time needed

to do a resubmission, and correctness of best submissions. From any of
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these properties, we were not able to find statistically significant differ-

ences between the groups.

Based on our experiences, writing high quality verbal feedback is not

easy and requires substantial amount of work. Accordingly, designing

good custom visualization can also take time. Object graph based visual

feedback, however, requires less effort from the teacher to prepare. Thus,

as argued in Publication IV, visual feedback not performing worse than

good textual feedback is a promising result. Teachers may end up spend-

ing less time to produce feedback that seems to be equally valuable for the

students.

Ben-Bassat et al. [11] have pointed out that visualizations can help by

providing a common vocabulary and model to better understand program

execution. The authors also point out that “the interpretation of the ani-

mation itself is non-trivial and must be explicitly taught.” Feedback from

our students supports both observations. Although some students found

visualizations helpful, some complained that visualizations were hard to

understand. It would be interesting to see if teaching students to read the

feedback would lead to even better results.
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5. Assignment Mobility

Many CS educators are willing and share programming assignments but

there are (technical) obstacles to prevent this. Sharing is especially prob-

lematic if assignments are assessed automatically [31]:

Most existing systems present a kind of “black hole” effect – once you con-

figure and set up your assignment, there is no effective way to export or

share your work with others or perform incremental updates easily.

Edwards et al. have proposed an open format shared by the assessment

platforms to ease the problem [31]. Unfortunately, most assessment plat-

forms do not use any such format.

The approach I selected is to seek answers to the following, perhaps

easier, problem of how to allow assignment implementations and visual

feedback to be more independent from assessment platforms. The rationale

behind the question is to make assignment implementations easier to port

from one assessment platform to another or even let assignments to work

standalone.

The rest of this chapter is divided into four sections. The first three each

provide a slightly different perspective to how to support assignment mo-

bility. The goal of Section 5.1 is to promote understanding of what fea-

tures of visualization tools affect the effortless use of them. Understand-

ing these requirements can help when selecting visualization tools to be

integrated into assessment platforms. Section 5.2 explains how Moodle,

a general purpose learning management system, could help sharing pro-

gramming assignments. Section 5.3 presents three case studies of doing

assessment (or visualizations) on students’ browser instead of on the as-

sessment server. Finally, Section 5.4 concludes this chapter.
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5.1 Effortless Creation of Algorithm Visualizations

Lack of effective development tools is one of the main reasons for teachers

not to adopt algorithm visualization (AV) tools [72]. Thus, our first goal

was to understand what features affect to the effortless use of the tools

and therefore what features of tools should be considered if visualization

tools are integrated into automated assessment.

We started our research from the simple observation that tools designed

to a very specific need are often more effortless when compared to more

generic AV systems [54]. Based on this, we conducted a questionnaire for

CS educators to identify the typical use cases for AV systems [55]. Finally,

in Publication V, we combined the results of our survey with the related

research done by others and proposed a Taxonomy of Effortless Creation

of AV. The taxonomy is based on the three categories presented next.

Scope

Category Scope is basically defined in how wide a context one can ap-

ply the system. The classification is based on four levels: lesson-specific,

course-specific, domain-specific, and non-specific. For example, when a

particular AV system is applied in education, it can be used, for example,

during a single lecture, throughout the course or in multiple courses.

Integrability

Category Integrability lists the features that support the system to be eas-

ily integrated into an educational setup. In the article, we presented the

following requirements related to the integrability: easy installation, cus-

tomization, platform independence, internationalization, documentation,

interactive prediction support (e.g. stop-and-think questions in JHAVE [71])

course management support and integration of hypertext. However, we

also recognized that the list changes rapidly and the meaning of many

features changes when the time goes on. For example, easy installation

today is not the same what it meant five years ago.

Interaction

Interaction category is divided between producer-system (PS) interaction

and visualization-consumer (VC) interaction as illustrated in Figure 5.1.

We applied a two-dimensional classification to measure the producer-system
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interaction – the first dimension indicating the task (e.g. preparing lec-

ture slides), and the second measuring the time related to the task. To

characterize the visualization-consumer interaction, we applied the en-

gagement taxonomy (see Section 2.3.2).
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Figure 5.1. Two types of interaction: Producer vs. AV system and Visualization vs. Con-
sumer (figure originally published in Publication V)

5.1.1 Conclusions

Understanding the requirements of effortless use of algorithm visualiza-

tions can help when selecting visualization tools to be integrated into as-

sessment platforms. The goal of the taxonomy presented in this section is

to promote understanding of this.

In Publication V, we applied the proposed taxonomy to four different,

actively developed open source AV systems: Animal [80], JAWAA 2 [2],

Jeliot 3 [68] and MatrixPro [53] and concluded that there is need for sys-

tems with broader scope (i.e. more generic) that are also effortless to

use. We also concluded, that the interaction techniques seem to play the

key role in the overall effortlessness (or lack of it). The trend is towards

more versatile and interactive AV systems that support several interac-

tion techniques (e.g. programming and direct manipulation) and pedagog-

ical contexts (e.g. exercises).

Since Publication V was written, many new visualization tools have

been developed. What is, however, more important is that the systematic

collection of visualizations and visualization tools has also been started.

The portal for this effort is called Algoviz1. Thus, to select a visualization

tool, I suggest searching from Algoviz and applying our taxonomy to think

what features are important for your specific needs.

5.2 Moodle and Programming Assignments

Although many universities already use learning management systems

(LMSs), for programming assignments they still often set up a separate

platform. However, if an automated assessment platform would be a plu-
1http://algoviz.org/
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gin of an LMS, then the users of the same LMS could share assignments

simply by installing the plugin. This would support assignment mobility

because popular LMSs are already more popular than assessment plat-

forms used to give feedback from programming assignments. In addition,

having one backend for different courses (not only CS or programming)

reduces the need to duplicate LMS functionalities in assessment tools.

Moodle is one of the most popular open source general purpose learn-

ing management system. One of the ITiCSE 2010 working groups, which

I also participated, investigated how Moodle supports teaching CS (Pub-

lication VI). As part of this study, we also wanted to find out how auto-

mated and semi automatic assessment of programming assignments are

supported and how teachers would like those to be supported. The study

was based on questionnaires sent to SIGCSE mailing list and surveying

potential Moodle modules we were able to find out.

We concluded that mainstream LMSs in general, and Moodle in particu-

lar, do not yet provide adequate support for automatic code management,

assessment, and visualizations. Although the level of support in these ar-

eas is not satisfactory, there are some interesting tools with good potential

– some of them being listed in Publication II. In addition, as already men-

tioned in Section 3.2.2, it is quite likely that in the future we can see more

assessment platforms being integrated to Moodle as there are certainly

many teachers interested in trying such tools.

5.3 Browsers’ Responsibilities – Case Examples

Most assessment platforms do not take the full advantage of the browser

environment yet. Today, web browsers are powerful environments with

good programming support and fat clients, where functionality is shifted

from servers to clients, has been a strong trend in web application devel-

opment [47, 93]. Unfortunately development of learning tools is slightly

lacking behind this. Interestingly many of the new visualizations and vi-

sualization tools reported in Algoviz are written in HTML/JavaScript and

thus the visualization field is catching up.

The reason why fat-client approach is important for assignment mobil-

ity is that if automatically assessed assignments are implemented so that

a browser can do nearly everything, this implies that there is very lit-

tle assessment platform specific code to be ported when assignments are

moved to a new server environment. In the following subsections, I de-
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scribe three examples of doing assessment at least partially on client side

and explain how this promotes assignment mobility.

5.3.1 Two-dimensional Parson’s Puzzles

Parson’s programming puzzles are simple assignments where the lines

of a program are given in wrong order and the task is to construct the

program by sorting the lines [75].

In Publication VII, we described a new family of Parson’s puzzles where

lines of a Python program need to be placed to a 2-dimensional grid. Puz-

zles, just like Python programs, use horizontal positioning (i.e. indenta-

tion) to define the block structure of a program. This allows creating short

but still challenging puzzles. Figure 5.3 illustrates what our puzzles look

like.

Figure 5.2. User solving two-dimensional Parson’s puzzle (figure originally published in
Publication VII).

We have also implemented online tools that allow puzzles to be created,

shared and embedded into web sites. Puzzles are standalone JavaScript

widgets that can do all the assessment inside a browser. Thus, if puzzles

are used for self-study purposes, there is no need for a separate assess-

ment server. Puzzles can also log the users’ actions (intermediate steps

of how puzzles are solved) and send the logs together with the outcome

of the assessment and final solution to the server. This helps teachers

to understand what their students are doing and where they might have

problems. Puzzles are open source and new assignments are easy to de-

fine. Tools developed in this project include a collaborative environment2

where teachers can create, share, combine, and deliver puzzles to their

students. The objective of this site is the same as in Greenroom [18] – to

support teachers in sharing the study material.

Each assessment platform has a pipeline to handle submissions. This

may include unpacking a zip file to a sandbox environment, running some

2http://www.parsonspuzzles.com/
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scripts to produce the feedback, copy the results to the database and in-

form student’s client that the results are ready. Strictly defined pipelines

of how to do assessment can raise problems when integrating assign-

ments with client-side assessment to assessment platforms. Thus, the

server-side communication mechanism we implemented for our puzzles is

slightly different. Because the feedback is already produced, the server

should only store the results. In many cases, especially if the assessment

server relies on modern web development frameworks (e.g. Ruby on Rails

or Django), defining a new pipeline is easier than adopting to the existing

pipeline. Therefore, each submission from our Parson’s widget is JSON

formatted data (i.e. feedback and logs) submitted to the URL defined in

the assignment. To integrate puzzles into a new server environment, pro-

grammer needs to understand where the results should be finally stored

and implement a separate handler for submissions of self-standing as-

signments. Implementing this is especially simple if the web framework

provides user management.

The limited nature of Parson’s puzzles makes them clearly a special

case. Assessment is straightforward because students’ programs are not

actually executed on client side. However, client-side assessment of real

programming assignments will be discussed in the next subsection.

5.3.2 Testing Programs in Browsers

In Publication VIII we implemented assessment of JavaScript program-

ming assignments on client side. Just like the previously introduced set

of tools, this work is also open source.

First, we surveyed several client-side JavaScript development tools to

find out how those can be adopted to provide feedback from programming

assignments. Based on the survey, we implemented js-assess3. This tool

demonstrates how industrial tools can be integrated to give feedback from

functionality, style, programming errors catchable by static analysis, and

software metrics. These assignments, just like the Parson’s puzzles, can

be embedded in any webpage with little effort. Figure 5.3 illustrates what

the feedback from our tool looks like.

Although our point of view in Publication VIII is in teaching Web pro-

gramming in general and JavaScript in special, the idea of implementing

in-browser-assessment by decomposing other testing tools is at least par-

3https://github.com/vkaravir/jsassess-demo/

48



Assignment Mobility

Figure 5.3. Assignment description (top left corner), code editor for solving the assign-
ment (lover left corner) and feedback produced on client side (on right) (figure
originally published in Publication VIII).

tially extendable to some other programming languages with little effort.

Python, for example, has an interpreter written in JavaScript and can

thus be executed in most browsers. Low level features and libraries like

network access are not supported because a browser does not have access

to all the resources. This problem can be avoided either when designing

the assignments or by mocking out the libraries.

5.3.3 HTML and JavaScript in Feedback

Client-side assessment removes the need for sandboxing the execution

because unknown code is no longer executed in an environment where it

could harm others. Despite this improved security, client-side assessment

introduces a new problem of how to trust the results originating from a

client. It may be easier to submit fake results than do the actual as-

signment. Moreover, this does not even require special skills, as browser

plugins to modify any submitted data already exist.

In Publication IV we did assessment on the server side but the con-

struction of visualizations was on the client side. Submitting fake results
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is not possible because tests are executed on the server side but at the

same time, there is no need to install visualization tools to the server be-

cause visualizations are constructed on the client side. Our technical mo-

tivation was to add visual feedback to the existing assessment platforms

without or with minimal changes to the platforms. To achieve this, we

used “textual feedback” containing visualizations expressed in HTML and

JavaScript. Web-CAT uses the assert descriptions as feedback, which al-

lows those descriptions (i.e. visualizations) to be dynamically constructed.

As mentioned in Section 4.5, we tried two different approaches to con-

struct the visualizations:

• HTML, CSS, or JavaScript can be used to draw the image entirely

in the browser. Figure 1.2 on page 4, for example, is an HTML table

styled with CSS.

• Image tag with a dynamically constructed url pointing to an exter-

nal web service (e.g. Google Chart API4) constructing the image can

also be used. An example of this is the following feedback:

<img src="https://chart.googleapis.com/

chart?cht=gv&chl=digraph{A->B->C->A}">

This5 is rendered to graph with three nodes and directed edges from

node A to B, B to C and C to A.

The benefit of the latter approach is that the same test oracle and the

same visualizer can be used in different assignments. What needs to be

done are a model solution and a configuration class to define how the

object graph is constructed. Then, comparison of the object graphs (model

solution and student’s solution) and construction of the visualizing HTML

are the same between all assignments.

5.4 Conclusions

Scope, integrability and interaction are all important factors that should

be considered when selecting a visualization system. Many of the visual-
4http://code.google.com/apis/chart/
5To be precise, the URL can be copied to a browser and it will render correctly
but when the URL is in an HTML document (e.g. url of an image tag) it needs
to be encoded because of the special characters in it. ′ >′, for example, should be
encoded to %3E;.
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ization tools are server-side software but as demonstrated in Section 5.3.3,

visualizations can also be constructed on client side. A benefit of this ap-

proach is that the client-side environment remains the same when as-

signments are moved to a new server environment. Thus, sharing as-

signments with visual feedback is easier if no new visualization tools are

needed on server side when assignment implementation are imported.

The lesson to learn from our JavaScript experiments is that although

doing assessment (no only visualizations) on client side helps using the

same assignments in many environments, the results may be easier to

tamper. Teachers should realize this problem if they accept grades from

a client without double checking the assessment on server side. On the

other hand, doing assessment also on server side cancels some of the ben-

efits (e.g. mobility) of client-side assessment. However, for self-studying

purposes client-side assessment is an ideal solution, which allows assign-

ments to be used even offline.

Although we relied on JavaScript to implement the tools presented ear-

lier, there are other options as well. Adobe Flash, Microsoft Silverlight,

and Java applets, for example, are often used to build Rich Internet Ap-

plications (RIAs). From many options, we selected JavaScript because it

works out-of-the-box in most environments and we subjectively believed

it has the best chances to survive the battle of RIA technologies.
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6. Mutation Analysis vs. Structural
Coverage as Feedback

The problem of how to better evaluate students’ testing skills was raised

in Chapter 1. Automated evaluation of students’ tests is often based on

structural coverage, that is what parts of the program under test are vis-

ited by the test. This, however, can tell very little about the ability of the

tests to find defects. For example,

• assertTrue(1 < 2); fibonacci(6);

• assertTrue(fibonacci(6) >= 0);

• assertEquals(8,fibonacci(6));

all achieve the same structural coverage, although their ability to tell

how well the fibonacci method under test works is quite different.

Mutation analysis provides an alternative metric to measure test ade-

quacy. It is a well-known technique performed on a set of unit tests by

seeding simple programming errors into the program code to be tested.

Each combination of errors applied to the code creates what is called a

mutant. These ”mutants” are generated systematically in large quanti-

ties and the examined test suite is run on each of them. The theory is

that the test suite that detects more generated defective programs is bet-

ter than the one that detects fewer [24]. My research question related to

using mutation analysis to provide feedback on students’ tests is:

What are the possible strengths and weaknesses of mutation analysis when

compared to code coverage-based metrics when both are used to give feed-

back on students’ testing skills?

The research method we applied to answer this question in Publica-

tion IX, is to compare the structural coverage of the tests submitted by

students to the mutation coverage1 of the same submissions and investi-
1Percentage of mutants detected.
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gate the feedback manually to find out the pros and cons of it. Mutation

scores were calculated by using a tool called Javalanche [83].

Comparison of the Metrics

Figure 6.1 illustrates the relationship between mutation score and struc-

tural test coverage in three assignments we used in our study. Histograms

on each axis show the distribution of the respective variables. Most stu-

dents get full points from the traditional metric, but the mutation scores

vary a lot. This suggests that despite good structural coverage, tests writ-

ten by students are actually not efficient in finding defects from their pro-

grams.

A well known problem in mutation analysis is that some mutants do not

behave differently when compared to the original program from which

they are derived. Such mutants are called equivalent mutants. If muta-

tion coverage2 is calculated automatically, the portion of equivalent mu-

tants distorts the results. A significant property in JavaLanche, when

compared to many preceding mutation analysis tools, is the notably low

number of equivalent mutants. However, to verify that equivalent mu-

tants do not cause the results presented in Figure 6.1, we also examined

some submissions manually. Figure 6.1 presents data collected from stu-

dents’ submissions to three different assignments. In the first and second

assignment, bad mutation score predicted low quality of tests. Submis-

sions to the third assignment, however, produced many equivalent mu-

tants and poor mutation score did not directly indicate poor test quality.

Manually created faulty programs would not suffer from equivalent mu-

tants but they also could not assess tests of functions not defined in the

assignment description. Mutation analysis is able to give feedback also

from additional helper methods created and tested by students.

We concluded that mutation analysis can reveal tests that are created

to fool the assessment system but the suitability for contributing to the

grade depends on the assignments. It is possible that typical solutions to

some problems contain structures that JavaLanche fails to mutate well

(i.e. many equivalent mutants are produced). While the information from

assignments that fit poorly for mutation analysis is most easily inter-

preted and used by a teacher, the results could be valuable to the students

as well.
2The portion of mutants detected.
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(a) Assignment 1
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(b) Assignment 2
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(c) Assignment 3

Figure 6.1. Scatter plots of code coverages and mutation scores of the assignments ana-
lyzed in Publication IX.

One of the problems, pointed out e.g. by Greening [37], is that an auto-

matically assessed programming assignment is essentially one of repro-

duction. I believe mutation analysis can address this problem. It may

allow intentionally not well specified assignments where students define

how their programs should behave and test it. Mutation analysis, mea-

suring the quality of tests, can be applied only if the tests pass. The fact

that tests test something that can fail can be verified with mutation anal-
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ysis. This, however, still does not provide enough information about the

meaningfulness of requirements selected by a student. Future research is

needed to find the balance how much freedom students should be allowed

when mutation analysis is used to grade their performance.
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7. Conclusions

The main objective of this thesis has been to improve the automated as-

sessment of programming assignments from the perspective of tool devel-

opers. To achieve this, I have explored three research questions:

Q1 How to provide visual feedback on automatically assessed program-

ming assignments?

Q2 How to allow assignment implementations and visual feedback to be

more independent from assessment platforms?

Q3 How to better evaluate students’ testing skills?

Let us pause for bit to reflect on these questions and put them on a

broader context. The users of assessment tools are teachers and students.

Assessment tools are only one of the many factors affecting to the actions

of all these users. Some of the other factors and the role of assessment

tools in the process of education are illustrated in Figure 7.1. The figure

is adapted from Engeström’s activity system diagram [32] – two activity

systems. The right side of the figure presents the student’s view for learn-

ing programming, the the teacher’s is on the left. The three topmost items

in an activity systems diagram are always the subject (i.e., teacher or stu-

dent), the mediating tools (i.e., automated assessment tools), and the ob-

ject (i.e., teach programming or learn programming). These have been all

discussed in this thesis. Teachers’ and students’ connection to teaching

and learning has also been discussed. This has happened mainly through

the assessment tools. In addition, I have touched upon the connection

between assessment tools and the teacher community. This connection is

key to sharing programming assignments and making assignments easier

to share. These topics of my interest are highlighted in Figure 7.1. The

remaining corners of the activity system diagrams illustrate the formal

and informal rules related to the learning environment and teachers’ or
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learners’ way to share or divide their work. These are all out of the scope

of this thesis.
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Figure 7.1. Two activity systems both describing learning programming with assessment
tools. The right side of the figure presents the activity systems related to
students and the system on left relates to teachers. Areas of interest in this
thesis are drawn with black (cf. grey) color.

The rest of this final chapter is divided into four sections. Section 7.1

concludes Q1 and the visual feedback part of Q2. Section 7.2 answers

the rest of Q2 and Section 7.3 summarizes and concludes the findings

related to Q3. Finally, future research problems and predictions related

to the future of automated assessment of programming assignments are

presented in Section 7.4.

7.1 Visual Feedback and Portability

The existing literature suggests that the use of engaging software visu-

alizations can provide a positive impact on learning. However, visual-

izations are rarely, if at all, used as part of automated feedback on the

functionality of students’ source code (see Chapters 2 and 3). This moti-

vates the question of how to provide visual feedback from automatically

assessed programming assignments (see Chapter 4).

It appears that controlling the level of detail in visual feedback and

especially raising the level of abstraction are important. Approaches to

achieve this have been discussed. Section 4.4 describes how a test input

generation method called generalized symbolic execution with lazy initial-

ization, originally presented by Khursid et al. [56], can be applied to con-

struct visualizations of test data on a high abstraction level.

Visual feedback should be implemented in a way that is easy to port

from one assessment platform to others. This is the topic of Sections 5.1

and 5.3.3. The first approach suggested there is to integrate a software vi-
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sualization tools to the assessment platform. In this case, one should pay

attention to the capabilities and requirements related to the intended use

of visualizations. This includes a number of considerations, beginning

with the question of what should be visualized. Visualization–learner

interaction and the interaction between visualization tools and the as-

sessment platform should also be designed. Finally, one should decide

how visualizations are embedded in the feedback. The other approach,

explored in more depth, originated from the observation that most as-

sessment platforms are web based. This creates a possibility for textual

feedback to include JavaScript and HTML. Thus, visualizations and even

interactive elements can be delivered from the assessment platform to the

browsers of students in a way that requires only minimal, if any, changes

to the platform. Details of the latter approach have been discussed in

Section 5.3.3 and examples of visual feedback produced with it have been

provided in Figures 4.3 on page 37 and 1.2 on page 4.

In Section 4.5 different kinds of automated feedback were compared us-

ing various performance metrics. Although students were not trained to

deal with the visual feedback, no performance differences between the

groups were found. This is an interesting result because visual feedback

based on automatically extracted object graphs can take less time to pre-

pare than textual feedback of good quality. It has been pointed out that

teaching how to interpret and apply visualizations can be extremely im-

portant for learning [11]. Therefore, it would be interesting to see how

this kind of support would affect to the results in our study.

In conclusion, there are no major technical obstacles that prevent teach-

ers from implementing visual feedback in automatically assessed pro-

gramming assignments. Further research to evaluate the effectiveness

of visual feedback on programming assignments is still needed.

7.2 Portability of Assignments

Assignment implementations are often difficult to port from one assess-

ment platform to another. The two approaches making assignment imple-

mentations easier to share and discussed in my thesis are:

• Use of learning management systems, such as Moodle, as an assignment-

sharing platform. Unfortunately it turned out that despite clear de-

mand, mainstream learning management systems in general, and
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Moodle in particular, do not yet provide adequate support for auto-

matic code management, assessment, and visualization.

• Assessment on the client side instead of on a server. Although this

enables reuse of assignments and removes the need for sandboxing

the execution, the results are easier to tamper with. This is a prob-

lem if assignments are used for grading purposes but not if assign-

ments are self-study material. In addition, client-side assessment

has the potential to ease plugin development for learning manage-

ment systems.

The idea of client-side assessment has been presented by others as well.

For example, use of tailored email clients to assess programming assign-

ments client side was suggested in 2009 by Sant [82]. Although I have fo-

cused on web browsers, the underlying idea is similar. In addition, client-

side assessment has connections to certain 2nd generation assessment

platforms that executed programs with students permissions in a shared

Unix environment. For example, at Helsinki University of Technology we

applied this in mid-1990s. Students used the assessment tools from com-

mand line and tests were executed by using the student’s unix account.

At the end of the assessment, the grade was stored in a text file. Because

assessment was executed with the student’s privileges, all students had

write permissions to the grade files. This created an easy opportunity for

each student to overwrite any of the results if they knew where the re-

sults were stored. This problem is very similar to the reliability problem

of in-browser assessment.

Other approaches that could improve assignment mobility include a

common assignment format, hosting assignments, use of Sharable Con-

tent Object Reference Model (SCORM). These have not been discussed in

this thesis.

7.3 Assessment of Testing Skills

The motivation for asking how to better evaluate students’ testing skills

and seeking alternative metrics for measuring the quality of students’

tests is that grading based on structural coverage only can lead students

to adopt poor testing practices. Based on our experiences, students may

end up writing tests with assertions of poor quality if the ability of the

tests to detect bugs is not evaluated.
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Mutation analysis is a well-known technique performed on a set of unit

tests by seeding simple programming errors into the program code to be

tested. Each combination of errors applied to the code creates what is

called a mutant. These ”mutants” are generated systematically in large

quantities and the examined test suite is run on each of them. The theory

is that the test suite that detects more mutants is better than the one

that detects less. So far, this technique has not been commonly applied in

automated assessment.

The pros and cons of mutation analysis in automated assessment are

discussed in Chapter 6. A clear benefit of applying mutation analysis in

assessment is that it can reveal tests that were created to fool the assess-

ment system. However, the results can be valuable for learners as well

as they can reveal what kinds of faulty programs the tests are not able

to detect. However, applying mutation analysis for grading is problem-

atic because some of the mutants may actually be functionally identical

with the original program. Use of predefined faulty programs instead of

mutants can provide more accurate feedback but only on aspects that are

fixed in the assignment description.

7.4 Future Directions

One problem of client-side assessment, that needs to be addressed in the

future, is that the results are too easy to fake. To solve this, it may be

possible to execute the program on the client side and submit the output

elsewhere for comparison. In this case, securing the assessment server is

easier. A student’s program can harm only the student’s own environment

and the expected output is not known in the environment where the pro-

gram is executed. The downside of this approach is that the assessment

is not totally self-standing. More research is needed to better understand

the benefits and challenges of client-side assessment.

Another avenue for future work is to have many small independent web

services performing dedicated tasks that contribute to automated assess-

ment. Calling Google chart API from the client, as we did in Publica-

tion IV, is an example of this. Something similar could also be imple-

mented within the field of algorithm visualization, as we have also pro-

posed [52]. The existence of such services could help in integrating pro-

gramming assignments in learning management systems.

Automatically assessed programming assignments have been argued
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not to foster creativity because students merely reproduce something that

the teacher has already implemented. Mutation analysis can address this

problem. It may be possible to design programming assignments where

everything is not strictly specified. Instead, the learner needs to make

decisions regarding how his or her program should work and to test this

behavior. The quality of the solution is then indirectly estimated through

measuring the quality of the passing tests with mutation analysis. This,

although checking that the selected requirements are not trivial, still does

not provide enough information about the meaningfulness of the selec-

tions made by the student. Future research is needed to find a balance

regarding the freedom students are allowed.

I believe that online learning materials will grow in importance in the

future and that the nature of such material will become increasingly vi-

sual and interactive. Assessing programming assignments and construct-

ing visual feedback client side may play an important role in this devel-

opment.
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Errata

Program 4 on page 88 of Publication III is wrong and does not match

with Figure 2 (page 87 of Publication III). Line 7 of Program 4 should

be: static {v.add(null);} in which case constructor should add this to

the vector v whenever a new object is created. In addition, next labels in

Figure 2 should state right and getNext on page 88 should be getRight.
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