
9HSTFMG*aedgjc+

ISBN 978-952-60-4369-2
ISBN 978-952-60-4370-8 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Electrical Engineering
Department of Communications and Networking
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 119

/2
011

Nowadays computational methods and
results are present in a wide variety of areas,
making them an interesting and relevant
object of research. The increasing
importance is due to the growth of
knowledge and computational power
enabling new viewpoints to old problems.
For instance the LDPC (low density parity
check) codes were discovered already in the
1960s but only recently have the practical
applications for these near optimal
performance codes emerged. Also the recent
advances with Monte-Carlo tree search
(MCTS) in computer go would not have been
possible ten years ago. In this thesis a
heuristic search method called tabu search
and exhaustive search are used to tackle the
combinatorial problem of minimizing the
size of several types of covering codes. The
similarity of exhaustive search and
solving/playing combinatorial games is
discussed and the information-theoretic
concept of entropy as a way to measure
complexity of games is introduced.

E
sa A

. Seuranen
C

om
putational M

ethods in C
odes and G

am
es

A
alto

 U
n
ive

rsity

Department of Communications and Networking

Computational
Methods in Codes
and Games

Esa Seuranen

DOCTORAL
DISSERTATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80704042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University publication series
DOCTORAL DISSERTATIONS 119/2011

Computational Methods in Codes and
Games

Esa A. Seuranen

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Electrical Engineering for public examination and debate in
Auditorium S4 at the Aalto University School of Electrical
Engineering (Espoo, Finland) on the 25th of November 2011 at 12
o’clock.

Aalto University
School of Electrical Engineering
Department of Communications and Networking

Supervisor
Patric R. J. Östergård

Instructor
Patric R. J. Östergård

Preliminary examiners
Kris Coolsaet, University of Ghent, Belgium
Lucia Moura, University of Ottawa, Canada

Opponent
Faina Solov'eva, Sobolev Institute of Mathematics, Russia

Aalto University publication series
DOCTORAL DISSERTATIONS 119/2011

© Esa A. Seuranen

ISBN 978-952-60-4370-8 (pdf)
ISBN 978-952-60-4369-2 (printed)
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934 (printed)

Unigrafia Oy
Helsinki 2011

Finland

The dissertation can be read at http://lib.tkk.fi/Diss/

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Esa A. Seuranen
Name of the doctoral dissertation
Computational Methods in Codes and Games
Publisher School of Electrical Engineering
Unit Department of Communications and Networking

Series Aalto University publication series DOCTORAL DISSERTATIONS 119/2011

Field of research Information Theory

Manuscript submitted 30 May 2011 Manuscript revised 31 October 2011

Date of the defence 25 November 2011 Language English

Monograph Article dissertation (summary + original articles)

Abstract
This dissertation discusses exhaustive search algorithms and heuristic search methods in
combinatorial optimization, including combinatorial games.

In this work unidirectional covering codes are introduced and some theoretical foundations

for them are laid. Exhaustive search is used to construct asymmetric covering codes,
unidirectional covering codes and multiple coverings with given parameters---or to show that
no such codes exist. Integer programming formulations, bounds on maximal coverages of
partial codes and code isomorphisms are used to prune the search space.

Tabu search is used to construct asymmetric and unidirectional covering codes---with

several record-breaking codes for the former. A new definition for neighborhood is derived.

The traditional board game of go and computer go results are reviewed. The concept of

entropy is introduced into the game context as a metric for complexity and for relevance (of
features---like distance to the previous move). Experimental results and questionnaire
studies are presented to support the use of entropy.

Keywords covering codes, exhaustive search, go, tabu search

ISBN (printed) 978-952-60-4369-2 ISBN (pdf) 978-952-60-4370-8

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Espoo Location of printing Helsinki Year 2011

Pages 52 The dissertation can be read at http://lib.tkk.fi/Diss/

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Esa A. Seuranen
Väitöskirjan nimi
Laskennalliset menetelmät koodeissa ja peleissä
Julkaisija Sähkötekniikan korkeakoulu
Yksikkö Tietoliikenne- ja tietoverkkotekniikan laitos

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 119/2011

Tutkimusala Informaatioteoria

Käsikirjoituksen pvm 30.05.2011 Korjatun käsikirjoituksen pvm 31.10.2011

Väitöspäivä 25.11.2011 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Väitöskirjassa käsitellään täydellistä hakua sekä heuristisia hakumenetelmiä
kombinatorisessa optimoinnissa, mukaanlukien kombinatoriset pelit.

Tässä väitöskirjatyössä esitellään unidirektionaaliset peittokoodit sekä niiden

perusominaisuuksia. Täydellistä hakua käytetään listaamaan annetuilla parametreilla kaikki
asymmetriset peittokoodit, unidirektionaaliset peittokoodit ja monipeittokoodit---tai
osoittamaan, ettei koodeja ole olemassa kyseisillä parametreilla. Täydellistä hakua rajoitetaan
kokonaislukuoptimoinin keinoilla, tarkistamalla koodien isomorfisuutta sekä huomioimalla
koodisanojen yhteinen maksimipeittävyys.

Tabuhaun avulla löydetään asymmetrisiä ja unidirektionaalisia peittokoodeja. Hakuun

kehitetään uusi määritelmä naapurustolle. Asymmetrisien koodien osalta monia olemassa
olevia tuloksia parannetaan huomattavasti.

Tietokone-go:ssa saavutettuja tuloksia käydään lävitse. Entropia esitellään menetelmänä

mitata pelien kompleksisuutta sekä (pelillisten piirteiden---kuten edellisen siirron etäisyys)
merkitsevyyttä. Sekä laskennallisia tuloksia että kyselytuloksia käytetään motivaationa
entropian käyttämiselle.

Avainsanat go, peittokoodit, tabu haku, täydellinen haku

ISBN (painettu) 978-952-60-4369-2 ISBN (pdf) 978-952-60-4370-8

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942

Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2011

Sivumäärä 52 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Preface v

Preface

This research was done at the Communications Laboratory (known as the
Department of Communications and Networking from 2008 onward) of
Helsinki University of Technology during 2005–2008. The finishing touches
were done in 2011.

I am deeply indebted to Prof. Patric Österg̊ard for his supervision of the the-
sis, for the many helpful comments and ideas—as well as for encouragement
to (finally) finish the thesis. I would also like to thank my colleagues for
productive (well—if not always, then at least entertaining and delightful)
discussions over the years.

The work has been funded by the Academy of Finland under Grants
No. 100500, No. 107493 and No. 110196. I also give my thanks to the
Graduate School of Electrical and Communications Engineering, Tekniikan
edistämissäätiö and Nokia Foundation for their financial support.

Otaniemi, 31.10.2011

Esa Seuranen

List of publications vii

List of publications

This thesis consists of an overview and of the following publications which
are referred to in the text by their Roman numerals.

I P. R. J. Österg̊ard and E. A. Seuranen, Constructing asymmetric
covering codes by tabu search, Journal of Combinatorial Mathemat-
ics and Combinatorial Computing 51 (2004) 165–173.

II P. R. J. Österg̊ard and E. A. Seuranen, Unidirectional covering
codes, IEEE Transactions on Information Theory 52 (2006) 336–
340.

III E. A. Seuranen and P. R. J. Österg̊ard, New lower bounds on
asymmetric covering codes, Congressus Numerantium 178 (2006)
57–63.

IV E. A. Seuranen, New lower bounds for multiple coverings, Designs,
Codes and Cryptography 45 (2007) 91–94.

V E. A. Seuranen, Introducing playing style to computer go, in: J. van
den Herik, J. Uiterwijk, M. Winands, M. Schadd (eds.), Proceedings
of Computer Games Workshop 2007 (CGW 2007), MICC Technical
Report Series, Amsterdam, The Netherlands, 2007, pp. 81–91.

VI E. A. Seuranen, Entropy in go, ICGA Journal 32 (2009) 34–40.

viii Author’s contribution

Author’s contribution

In publications [I–III] the author of this thesis has been responsible for
the development of the algorithms and for the computation of the results.
Of the analytical results the author can be attributed II.A.3) in [II] and
Theorem 5 in [III]. The overall effort of writing the text in publications
[I–III] has been quite evenly divided between the authors.

The author of this thesis is the sole author of publications [IV–VI].

Contents ix

Contents

Abstract i

Tiivistelmä iii

Preface v

List of publications vii

Author’s contribution viii

1 Introduction 1

2 Covering Codes 3
2.1 Definitions and Terminology 3
2.2 Variants . 4
2.3 Summary of Results . 6

3 Computer Search 9
3.1 Exhaustive Search . 10

3.1.1 Our Implementation 11
3.2 Heuristic Search . 12

3.2.1 Overview . 12
3.2.2 Examples of Heuristic Search Methods 15
3.2.3 Tabu Search . 16

4 Games 19
4.1 Minimax Algorithm and αβ Pruning 19
4.2 Entropy . 21
4.3 Computer Go . 22

5 Conclusions 25

A Rules of Go 27

B Source Codes 33

References 35

C
h
a
p
te
r
I

Introduction 1

Chapter 1

Introduction

Nowadays computational methods and results are present in a wide variety
of areas, making them an interesting and relevant object of research. The
increasing importance is due to the growth of knowledge and computational
power enabling new viewpoints to old problems. For instance the LDPC
(low density parity check) codes were discovered already in the 1960s but
only recently have the practical applications for these near optimal perfor-
mance codes emerged [62]. Also the recent advances in computer go with
Monte-Carlo tree search (MCTS) [13] would not have been possible ten
years ago.

In games, generally speaking, the most common way of making a computer
player is to go exhaustively through all possible moves as far ahead as possi-
ble, which is essentially an exhaustive search. With limited computational
resources the trick of creating a strong computer player boils down to nar-
rowing the search, that is, pruning away moves of low quality. Even with
very effective pruning it is not usually possible to reach the end of the game,
hence evaluating a game situation is an important part of a successful com-
puter player. Go [10] as a game is particularly interesting, as it is the only
well known traditional game in which humans are still superior to computer
players.

In contrast to exhaustive search, the aim in heuristic search methods [1, 49]
is to provide a reasonably good solution in a reasonable time without going
through the whole search space. This is done by embedding heuristics (rules
of thumb, intuitions about good solutions, more or less educated guesses,
etc.) into the search. And similarly to game playing, evaluation of solutions
plays a vital role as it dictates to a large degree in which way the search
proceeds.

2 Introduction

In this thesis a heuristic search method called tabu search and exhaustive
search are used to tackle the combinatorial problem of minimizing the size of
(several types of) covering codes [17]. Tabu search [36] is used to construct
explicit codes showing upper bounds and exhaustive search is used to prove
non-existence of codes with given parameters. Also the field of computer
go is shortly reviewed.

The rest of this thesis is organized as follows. In Chapter 2 covering codes
are described. Computational methods (exhaustive search and heuristic
search) are considered in Chapter 3. Some discussion on games in general
(and go in particular) is provided in Chapter 4. Finally, in Chapter 5 some
concluding remarks are drawn.

C
h
a
p
te
r
II

Covering Codes 3

Chapter 2

Covering Codes

In this chapter we will go over the definitions and terminology related to
covering codes. We will consider only binary codes in this thesis as the
results in [I–IV] are for binary cases and omit discussion of q-ary codes
(although the generalization of many of the definitions and results to the
q-ary case would be rather straightforward). We end the chapter with a
summary of the obtained results.

2.1 Definitions and Terminology

Let Zn, where Z = {0, 1}, be the binary Hamming space of dimension
n. A ball B(x,R) of radius R centered at a word x ∈ Zn consist of all
words y that differ from x in at most R coordinates. A code C ⊆ Zn is a
(R-)covering code, if

⋃

c∈C

B(c, R) = Zn.

The smallest R such that C is an R-covering code is called the covering
radius. The minimal cardinality of an R-covering code is denoted with
K(n,R).

Multiple coverings are a generalization of covering codes. A code C ⊆ Zn

is a (μ-fold) multiple covering, if for each word x ∈ Zn there are at least
μ codewords c ∈ C so that x ∈ B(c, R). The minimum cardinality of a
μ-fold multiple R-covering code is denoted with K(n,R, μ). If multiple
occurrences of the same codewords are allowed, the code is called a multiple
covering with repeated codewords.

4 Covering Codes

The weight of a word is the number of nonzero coordinates in it and the
weight distribution of a code is an (n+ 1)-tuple (w0, w1, . . . , wn), where wi

is the number of codewords with weight i. For convenience, for some R
that is understood, if y is in the ball of radius R centered at x, we say that
x covers y or that y is covered by x. We will also follow the convention
of referring to the determination of the values of a function—for example,
K(n,R)—as a problem and determination of the value of such a function
for the given set of parameters as an instance.

The motivations for studying covering codes include football pools and data
compression [17]. For instance, assume one is expected to predict results
in n matches (without ties being possible). Obviously one needs 2n guesses
in order to be sure to get each match result correct. But if one settles for
getting n − R outcomes correct, then a minimal binary covering code of
length n and covering radius R—i.e., K(n,R)—tells the necessary amount
of guesses. As an example of a binary lossy compression, one can use a
codeword in a covering code to represent all the words the codeword covers:
in a such scheme one achieves the compression rate K(n,R)/2n and loses
information with at most rate R/n.

Covering codes have received a fair amount of attention in the literature—
see [17] and its references for general properties of and results on covering
codes. Recent developments regarding lower and upper bounds on the min-
imal cardinalities of covering codes can be found in [44], and [56] is an
extensive bibliography on publications regarding covering radius.

2.2 Variants

Different types of covering codes are obtained by modifying the definition
of a ball.

A downward directed ball B−(x,R) of radius R centered at the word x
consist of all words y that can be obtained from x by changing 1s to 0s in
at most R coordinates. Similarly an upward directed ball B+(x,R) is the set
of words obtainable from x by changing 0s to 1s in at most R coordinates.
A code C is an asymmetric (R-)covering code, if

⋃

c∈C

B−(c, R) = Zn.

2.2. Variants 5

Unidirectional Asymmetric

101011 110

111

100010001

000

101011 110

111

100010001

000

101011 110

111

100010001

000

Figure 2.1 Visualization of B(110, 2), B−(110, 2)∪B+(110, 2) and B−(110, 2)

Moreover, a code C is a unidirectional (R-)covering code, if
⋃

c∈C

B−(c, R) ∪ B+(c, R) = Zn.

Minimum cardinalities of asymmetric and unidirectional covering codes
with length n and covering radius R are denoted with D(n,R) and E(n,R),
respectively. The concepts of B(x,R), B+(x,R) ∪ B−(x,R) and B−(x,R)
are visualized in Figure 2.1 for Z3, R = 2 and x = 110. Note that the
definitions of covering codes and unidirectional covering codes coincide for
R = 1.

In [I–IV] variants of covering codes (asymmetric and unidirectional covering
codes) are considered along with multiple coverings. Asymmetric covering
codes were introduced in [21] and motivated by a data compression appli-
cation [27]. Afterwards asymmetric covering codes have been studied in
[3, 26, 29, 50, 80] and in [I, III].

The concept of unidirectional covering codes is introduced in [II], inspired
among other things by studies on unidirectional error-correcting codes.
Covering codes and error-correcting codes are dual objects: with a cov-
ering code each word is covered by at least one codeword, whereas with an
error-correcting code each word is covered by at most one codeword. For
certain length n and covering radius R there are codes that are simulta-
neously covering codes and error-correcting codes—these codes are called
perfect codes [55]. For the fundamentals of error-correcting codes the reader
is referred to [58].

6 Covering Codes

n\R 1 2 3 4 5
1 1
2 2 1
3 3 2 1
4 6 3 2 1
5 10 5 3 2 1
6 18 8 4 3 2
7 31 14* 7* 4 3
8 58 22*–23 12* 6 4
9 101*–106 35*–40* 18*–19 10* 6
10 179*–196 57*–70 27*–31* 14–15* 8*
11 321*–352 93*–120+ 41*–49+ 20*–25 12*–13*
12 585*–668 156*–215+ 63*–84+ 29–40+ 17*–21
13 1079*–1253 266*–414+ 98*–146+ 43–65+ 24–33+

n\R 6 7 8 9 10
6 1
7 2 1
8 3 2 1
9 4 3 2 1
10 5 4 3 2 1
11 8* 5 4 3 2
12 11–12* 7 5 4 3
13 15–18* 10*–11 7 5 4

Table 2.1 Bounds on D(n,R) for n ≤ 13, R ≤ 10

2.3 Summary of Results

Here we summarize the best known bounds on the minimum size of asym-
metric covering codes (Table 2.1), unidirectional covering codes (Table 2.2)
and multiple coverings (Table 2.3) for the parameters considered in [I–IV].
An asterisk in Tables 2.1 and 2.3 is used to denote a bound obtained in
[I, III, IV]. A plus sign in Table 2.1 denotes a bound obtained in [80]. In
Table 2.2 all the values for R ≥ 2 are from [II].

2.3. Summary of Results 7

n\R 1 2 3 4 5 6
1 1
2 2 1
3 2 2 1
4 4 2 2 1
5 7 2 2 2 1
6 12 4 2 2 2 1
7 16 8 2 2 2 2
8 32 14 4 2 2 2
9 62 21–24 8 2 2 2
10 107–120 32–36 14–15 4 2 2
11 180–192 53–68 21–26 8 2 2
12 342–380 91–126 32–44 14–15 4 2
13 598–704 157–240 48–74 20–26 8 2

Table 2.2 Bounds on E(n,R) for n ≤ 13, R ≤ 6

8 Covering Codes

K(n, 1, μ)
n \ μ 2 3 4
6 20* 30–32 38–40
7 32 48 64
8 58–64 90–94 115*–124
9 104–112 154–160 206–216
10 188*–216 289–316 374–408
11 342–368 512 684–704
12 632*–704 972–1024 1262–1344
13 1172–1280 1758*–1920 2342–2528
14 2187*–2560 3356–3712 4372*–4864
15 4096 6144 8192
16 7713*–8192 11809–12288 15423*–16384

K(n, 2, μ)
n \ μ 2 3 4
6 8* 11* 14*
7 12* 15*–16 19*–20
8 16*–19 22–24 29*–32
9 24–32 35*–44 46–56
10 40–48 56–64 74–88
11 63*–64 93*–100 124*–128
12 108–128 156–192 212–256
13 190–240 269*–336 360–448
14 311*–448 465*–640 620*–768
15 557–768 814–1024 1105–1280
16 1008–1536 1437*–2048 1932–2560

K(n, 3, μ) K(n, 4, μ)
n \ μ 2 3 4 2 3 4
8 8* 11* 12-14 4 6 8
9 10*–12 13*–16 17*–20 4 6 8
10 13–18 19*–24 25*–30 8* 10*–11 12*–14
11 19*–24 28*–36 37*–48 9*–12 12–16 16*–20
12 29–48 43*–60 56–76 12*–18 17*–24 22–30
13 45*–64 67–96 88–112 17*–26 24*–36 32*–48
14 74–120 108–160 141*–192 24*–48 35*–60 46–72
15 116*–160 173*–224 229*–256 36–64 52–96 69*–112
16 197–304 286–448 378*–512 54–112 80–128 106*–188

Table 2.3 Bounds on K(n,R, μ) for 6 ≤ n ≤ 13, 2 ≤ μ ≤ 4, R ≤ 4

C
h
a
p
te
r
II
I

Computer Search 9

Chapter 3

Computer Search

In coding theory and in discrete mathematics there are numerous open
problems, for instance, determining the values of the functions D(n,R),
E(n,R) andK(n, μ, R) described in Chapter 2. Small instances can often be
treated exactly by analytical means (with computational methods extending
the scope of exact results). But for larger instances one must usually settle
for finding lower and upper bounds on the values of such functions.

Traditionally speaking mathematical and analytical results are preferred
over computational results, as analytical results can be reapplied more read-
ily to larger instances (or even in different contexts than the original results)
whereas the validity of obtained computational results can be hard to verify.

The increase of computational power and the progress in combinatorial opti-
mization [1, 20, 46, 49, 54, 75] have made the computational approach more
appealing, especially in practical applications. However, ever-increasing
computational power alone does not solve all open problems—as the theory
of computation and complexity theory has shown—so there will always be
room for novel approaches and ingenuity.

Many problems of combinatorial nature can be stated with a set of lin-
ear equations and solved efficiently with any suitable linear programming
package1. Integer programming [75, 85] steps into the picture when the
variables in the equations are constrained to be integers (as the nature of
discrete problems usually requires). Unfortunately no efficient algorithms
are known for solving integer programming formulations—in practice solv-

1Like glpk http://www.gnu.org/software/glpk/ or CPLEX
http://www.ibm.com/software/integration/optimization/cplex-optimizer/.

10 Computer Search

ing is done with an exhaustive search (most commonly using a branch-
and-bound [52] approach), hence integer programming is in between an-
alytical and computational approaches. Results for various types of cov-
ering codes with (integer) linear programming can, for instance, be found
in [3, 18, 21, 34, 37, 53, 57, 69, 91, 92]. One should note that a custom
exhaustive search approach (even an unoptimized one) tends to be much
more efficient than solving a corresponding integer programming formu-
lation with a general solver, as often the problem-specific characteristics
aiding a custom exhaustive search cannot be incorporated into the integer
programming formulations.

In this chapter we discuss computer search as a way to determine lower and
upper bounds on the values of functions D(n,R), E(n,R) and K(n,R, μ).
Exhaustive search as a means of obtaining lower bounds will be discussed in
Section 3.1. In Section 3.2 heuristic search is treated as a way to construct
explicit codes leading to upper bounds.

Some of the source codes of the computer programs that were used to obtain
the results in [I–VI] are available online, see Appendix B.

3.1 Exhaustive Search

In exhaustive search [49, 79] all possible alternatives are checked and hence
an indisputable conclusion on the problem at hand can be reached. The
naive approach would be to list all possible solutions and then iterate
through the list, but such an approach quickly becomes unfeasible. As
an example, for verifying D(n,R) > A one could check that none of all the(
2n

A

)
possible codes is an asymmetric R-covering code.

A more practical way of doing exhaustive search is to construct solutions in
several steps and in each step prune away those partial solutions that can be
proven not to lead to a solution (i.e., all solutions are still processed, but a
larger group of solutions are checked at the same time). A general flow of an
exhaustive search algorithm is shown in Algorithm 3.1. For computational
efficiency good methods for pruning as well as constructing partial solutions
(ideally any partial solution would be generated only once) are desired.

One way of reducing the search space (the entire set of solutions) is to take
symmetries of the search space into account, i.e., consider equivalence of
solutions under some notion of equivalence [43]: if there are two or more
equivalent solutions, then it is not necessary to go through all of those

3.1. Exhaustive Search 11

1 : Pcurrent ← setContainingTheStartingSolution
2 : for i = 1 to lastConstructionStep do
3 : begin
4 : Pnext ← ∅
5 : for C ∈ Pcurrent do
6 : begin
7 : for j ∈ constructionPossibilitiesi(C) do
8 : begin
9 : C ′ ← constructi(C, j)
10: if canNotPrunei(C

′,Pnext) then
11: Pnext ← Pnext

⋃
C ′

12: end
13: end
14: Pcurrent ← Pnext

15: end
16: if (Pcurrent = ∅) then
17: return “No solution“
18: else
19: return Pcurrent

Algorithm 3.1: The general flow in exhaustive search

solutions—checking just one is sufficient. The real issue is how to determine
whether two solutions are equivalent—and how to do it computationally
efficiently. An alternative for comparing (partial) solutions is to ensure that
no equivalent solutions are constructed in the first place [43, 59, 60, 84].

Exhaustive search has been used with various types of covering codes, for
instance, in [3, 7, 8, 69, 70, 72, 74, 92].

3.1.1 Our Implementation

Here we will give an overview (omitting the implementation details) of the
exhaustive search algorithms in [II–IV]. Before proceeding, we point out
that we define two codes C1 and C2 to be equivalent if and only if |C1| = |C2|
and there exists a permutation of coordinates σ so that for all x ∈ C1 we
have σ(x) ∈ C2. For general covering codes, which are not considered here,
permutations of the symbols are also allowed [43, Definition 2.100]. Our
more concise definition follows from the need to preserve weights. We will
also use term coverage of a code C to mean a (n + 1)-tuple (v0, v1, . . . , vn)

12 Computer Search

in which vw is the number of words with weight w covered by C.

Exhaustive search is used in two ways: (a) for constructing (upper) bounds
on coverages of codes with given weight distribution, and (b) and for enu-
merating all codes with given parameters—or more likely showing the non-
existence of such covering codes and therefore obtaining a lower bound on
the corresponding instance of D(n,R), E(n,R) or K(n, μ, R).

In case (a) each construction step consists of adding one codeword into a
partial code while pruning away equivalent codes. The actual equivalence
checking (i.e., pruning by the symmetries) between two (partial) codes is
done by constructing graphs of the codes and using nauty [59] to inspect
whether the graphs are isomorphic or not. After each construction step the
results with the coverages are stored.

In case (b) each construction step again consists of adding one codeword
into a partial code, but now pruning is done by both code equivalence
and insufficient coverage—in other words, a partial code C is rejected if
its coverage together with an upper bound on the coverage of remaining
unfixed codewords obtained in (a) show that the covering criterion cannot
be fulfilled.

3.2 Heuristic Search

In heuristic search the aim is to find a sufficiently good solution for the
instance at hand. The reason for settling for a good enough solution is
the simple fact that solving the instance is not possible or that solving
would require too much resources. Fortunately, good solutions can often be
constructed by exploring only a fraction of the search space. An amount
of intuition, academic guesses, rules of thumb and plain common sense are
incorporated into a heuristic search (as the word “heuristic” suggests) in
order to make it explore the part of the search space in which good solutions
are expected to reside.

3.2.1 Overview

We shall begin by describing some central concepts. An objective function
z(C) tells how good a solution C is—for instance, the length of a route, the
cost of a project or the “distance” to a valid solution (like the number of
uncovered words with covering codes). A fitness function f(C) describes the
goodness of a solution C from the viewpoint of the search method. Often

3.2. Heuristic Search 13

the objective function and the fitness function are the one and the same
(like in this thesis), but some heuristic search methods—guided local search
[87], for instance—modify the fitness function during the search. We will
assume (without loss of generality) that the objective and fitness functions
are always minimized. A neighborhood N (C) of a solution C is the set
of all the solutions that are in some sense near C. The nearness implies
that there is an efficient way to obtain C ′ ∈ N (C) from C. It is desired
that a global optimum can be reached using the neighborhood (iteratively)
while the neighborhood is a compact one (so that it can be iterated through
efficiently).

Heuristic search methods can be divided into two main branches: local
search methods and evolutionary algorithms [1, 22, 35, 49, 76]. In a local
search method the current solution is iteratively modified until a sufficiently
good solution has been found or the search has proceeded long enough
without success. In Algorithm 3.2 the general flow in a local search method
is described.

1 : Cnext ← initialSolution
2 : Cbest ← Cnext

3 : while z(Cbest) > desiredValue and continueSearching do
4 : begin
5 : C ← Cnext

6 : while C ′ ← pickASolutionFrom(N (C)) do
7 : begin
8 : if z(C ′) < z(Cbest) then
9 : Cbest ← C ′

10 : if acceptableSolution(C ′, C, Cnext) then
11 : begin
12 : Cnext ← C ′

13 : breakFromLoopIfDesirable
14 : end
15 : end
16 : end

Algorithm 3.2: The general flow in a local search

One should take notice that a search method finds a local optimum (all
the solutions nearby are worse than the solution in question). Hopefully
the local optimum found is also a global optimum (or at least nearly as
good). A wide variety of search methods arise from different approaches

14 Computer Search

of preventing a search method from getting stuck into a local optimum.
Generally speaking only very little can be said about how close the obtained
solutions are to a global optimum. See [40, 83] for an approximation point
of a view on the subject.

An outline of an evolutionary algorithm is described in Algorithm 3.3. The
main idea is to have a current population Pcurrent of solutions instead of a
single solution. The algorithm proceeds by constructing a new population
Pnext from Pcurrent with the hope that solutions in Pnext will be better than
in Pcurrent on average. The algorithm terminates with a similar criteria as
in a local search method.

1 : Pnext ← initialPopulationOfSolutions
2 : Cbest ← bestSolution(Pnext)
3 : while z(Cbest) > desiredValue and continueSearching do
4 : begin
5 : Pcurrent ← Pnext

6 : Pnext ←constructNextPopulation(Pcurrent)
7 : C ′ ← bestSolution(Pnext)
8 : if z(C ′) < z(Cbest) then
9 : Cbest ← C ′

10: end

Algorithm 3.3: The general flow in evolutionary algorithms

For designing a good search method the concepts of intensification and di-
versification are crucial. Intensification means that the part of the search
space being explored should be examined thoroughly enough (so that the
best solution in the corresponding area is found). The definition of neigh-
borhood plays a vital role in intensification. Diversification means that
different areas of the search space should be examined. A common ap-
proach to address diversification is to run the search method several times,
for instance, using randomness—or a more determined way, like greedy ran-
domized adaptive search procedures (GRASP) [32]—in the construction of
the initial solutions.

As a final note, by No Free Lunch theorems [90] one should not expect any
search method to dominate over other search methods in all problems. Of
course, usually one is not trying to get a search method to work extremely
well on a wide variety of problems—getting the search method to work well
on the problem at hand suffices.

3.2. Heuristic Search 15

3.2.2 Examples of Heuristic Search Methods

We will now give some examples of established search methods. A hill-
climbing (or greedy local search) method searches the entire neighborhood,
picks the best solution in it and never accepts a solution which is worse
than the current one. The search can be performed quickly, but usually
the obtained solution is not very good (as the search terminates when the
first local optimum is encountered). The reader is referred to [20] for a
discussion on when a local and global optimum are the one and the same.
However, hill-climbing can, for instance, be used in evolutionary algorithms
to ensure that the solutions in the population are locally optimal.

Simulated annealing [45, 51] is based on an analogy with a method of cooling
metal (known as “annealing”). The approach picks the candidate solution
from the neighborhood randomly and accepts it as the next solution if: (a)
it is better than the current one or (b) it is worse than the current, with a
probability

e(f(C)−f(C′))/T , where T is a cooling constant, temperature .

The temperature is gradually lowered as the search proceeds. Effectively
in the beginning of the search worse solutions are accepted readily, while
in the end only improvements are approved. Simulated annealing has been
proved to converge into a global optimum in many optimization problems,
although in practice the conditions required for such a convergence can be
met in a very limited number of problems [1]. Examples of using simulated
annealing with codes can be found in [25, 37, 65, 66, 89].

Genetic algorithms [41, 77] are evolutionary algorithms motivated by biol-
ogy. Two types of operations are defined for solutions: a mutation changes
a given solution in some way and a crossover operation combines two or
more solutions into one (or more) solutions. The next population is gener-
ated by using different mutation and crossover operations on the solutions
of the current population. The probability of a solution C being involved
in operations depends on f(C) with respect to the other solutions—i.e., the
better the solution, the higher the probability. In other words, the bet-
ter solutions pass their properties to the next generation more often and
by combining several good solutions even better ones are (hopefully) pro-
duced. Genetic algorithms have been used to construct codes, for example,
in [28, 86].

16 Computer Search

3.2.3 Tabu Search

Tabu search [30, 34, 36] is another well known local search method. The
general flow in tabu search is described in Algorithm 3.4. In tabu search the
entire neighborhood is searched and the best solution found is picked as the
next solution (even if it is worse than the current one). The distinguishing
feature of tabu search is its mechanism for escaping local minima: the search
maintains a so-called tabu list of recently made moves (or visited solutions)
which will be rejected in the future. The tabu list has limited size, so moves
(or solutions) which were banned once will be allowed again later. By an
aspiration criteria it is possible to accept rejected solutions—for instance,
if such a solution would be better than Cbest. In [31] a probabilistic version
of tabu search is proposed, which offers some explanation for the observed
good performance. Results with tabu search with various types of covering
codes can be found, for instance, in [12, 24, 61, 67, 68, 71, 73].

1 : Cnext ← initialSolution
2 : Cbest ← Cnext

3 : while z(Cbest) > desiredValue and continueSearching do
4 : begin
5 : C ← Cnext

6 : Cnext ← ∅
7 : for C ′ ∈ N (C) do
8 : if isNotTabu(C ′) or aspirationCriteriaApplies(C,C ′) then
9 : begin
10 : if Cnext = ∅ or f(C ′) < f(Cnext) then
11 : Cnext ← C ′

12 : end
13 : if z(Cnext) < z(Cbest) then
14 : Cbest ← Cnext

15 : addToTabuList(C,Cnext)
16 : end

Algorithm 3.4: A general flow in tabu search

As we use tabu search in [I, II] to construct explicit codes for obtaining
upper bounds on D(n,R) and E(n,R), we will now describe features of
our implementations (omitting details, as they can be found in the publi-
cations). The cardinality of the solution (code) is fixed in the beginning
and the current code is modified by changing one codeword at a time. As
the fitness function we use the number of uncovered words (ties are bro-

3.2. Heuristic Search 17

ken randomly). The initial code is constructed randomly or by removing
a random codeword from a covering code (possibly changing some code-
words randomly a bit). The neighborhood is constructed in two ways: by
discovering the (lexicographically) next uncovered word and covering it (as
in [68]), and by covering an uncovered word by a minimal change in the
current code. Two different approaches are also used for the tabu list: one
containing the recent changes in codewords (undoing or redoing a change is
not allowed), and the other containing recently changed codewords (modi-
fying recently changed codeword is not allowed). As an aspiration criterion
we either accept a code if it is a covering code or if it is a best code found
so far.

C
h
a
p
te
r
IV

Games 19

Chapter 4

Games

Combinatorial game theory [5, 19] concentrates on games with perfect in-
formation (a player has knowledge of all the possible moves of all players at
any given move)—including two-player zero sum games (the sum of play-
ers’ scores is zero), like chess or go. Analyzing full games (of all but the
simplest) with combinatorial game theory is a too daunting task, but in
restricted game situations the theory has been applied with success. For
instance, the late end game of go can be considered to be solved in [6].
Combinatorial game theory is a part of the larger field of game theory.

In Section 4.1 we will briefly go over the fundamental algorithms of game
playing and take notice of their connection to complexity of games. We will
extend the discussion to entropy in Section 4.2. The chapter is concluded
with an overview of computer go in Section 4.3.

4.1 Minimax Algorithm and αβ Pruning

Let us consider a perfect information game in which two players—Max (hav-
ing the first move) and Min—make their moves in turns. Let score f indicate
the result of the game with a higher value for better result for Max. Sim-
ilarly, a smaller value of f is better for Min. In other words, Max aims to
maximize f on her turn while Min aims to minimize f on her turn.

In such games (as well as in many others) it is possible to arrange all possible
games in the form of a tree, in which nodes represent the options available
to players at their turns and leaves have the result of the corresponding
game (i.e., the value of f). A simple game of Max and Min having a single
move each is depicted in Figure 4.1.

20 Games

3 7 5

Min

5 4 3 6 2 1 5

a b c d

A

Max

Figure 4.1 A simple game

The minimax algorithm [64] solves such a game by completing a full depth-
first search in the tree: i.e., a =Min(3, 7, 5) = 3, b =Min(5, 4) = 4, . . . , and
finally A = Max(a, b, c, d) = Max(3, 4, 2, 1) = 4. The minimax algorithm
becomes quickly intractable for more interesting games, so instead of going
through the entire search tree the tree is cut at a specified depth and the
values of the new leaves are calculated with an evaluation function f̂ of the
score f .

The concept of αβ pruning [47] provides a mechanism for pruning nodes
in the search tree. The main idea is to have additional α and β values at
each node, representing the best values of f for Max and Min, respectively.
If Max encounters a higher value than β when processing the children of
the corresponding node, then the remaining unprocessed children can be
skipped. The same applies for Min with lower values than α.

For an example of αβ pruning we shall go back to Figure 4.1 (note that
nodes and leaves are processed in the order from left to right):

• for solving node a the search still needs to go through all the leaves
of the node, which ensures that A = α ≥ 3;

• for node b both leaves are processed, as they both are larger than the
current α—after which A = α ≥ 4;

• with node c the first encountered leaf has a smaller value than the
current α, hence the other leaves can be pruned (Min would not choose
a leaf with a higher value than the encountered 3 and Max would not
choose a node with a worse outcome than with node b);

• and similarly with node d the latter leaf can be pruned;

4.2. Entropy 21

• so finally A = Max(3, 4, c, d) = 4, in which c ≤ 3 and d ≤ 1. I.e., the
three colored leaves in Figure 4.1 could be pruned.

The number of pruned nodes with αβ pruning depends heavily on the move
ordering, i.e., the order in which nodes and leaves are processed. An optimal
move ordering would halve the search tree (but if such a move ordering
would exist, then there would be no need to do the search in the first place)
[79]. The complexity of αβ pruning is considered in [47].

Comparison of different games and discussion on their hardness (for hu-
mans and for computers) are conducted in [2, 9, 38, 39] using (among other
criteria) a metric called game-tree complexity. The game-tree complexity
of a game is the number of leaves in the search tree necessary to solve the
game. In practice the search tree refers to the search tree of the minimax
algorithm—using the search tree with αβ pruning might be more descrip-
tive of the complexity of the game, but estimating the number of leaves in
the pruned tree is harder. Obviously calculating game-tree complexity is
possible only for the very smallest games, so usually an estimate sn is used,
in which s is a branching factor (often the average number of legal moves)
and n is the average length of the game.

4.2 Entropy

Entropy [81] is a central concept in information theory. The concept of
entropy can be used to determine the maximum amount of information
which can be reliably transmitted over of a noisy channel. The entropy of
a discrete random variable X with the probability mass function p(x) is
defined as

H(X) = −
∑

x

p(x) logb p(x),

where the basis b of the logarithm is determined by the context. The base
e is used here.

In [VI] the idea of using entropy (motivated by [82]) for measuring com-
plexity (and performance) in go is presented. A predictor P turns a game
record g into a sequence of numbers p, in which the ith number pi is the
amount of guesses the predictor needed to guess correctly the ith move gi
in the game record g. With a set of game records G, given predictor P and

22 Games

frequency

qGP(j) =

∑
p∈P(G)

∑
pi=j 1∑

g∈G

∑
i 1

,

the entropy of a predictor P for game record set G is

HG
P = −n

∑

j

qGP(j) ln q
G
P(j).

A random predictor—which picks a move randomly from the set of legal
moves—naturally maximizes the entropy, whereas a predictor with a better
understanding of the game (or to be exact, how the players play the game)
achieves a considerably smaller entropy. Ultimately, if a game has one
outcome (for rational players)—like the one in Figure 4.1—then the entropy
is zero.

By using n as the average length of the game and s as the average number
of legal moves, the entropy of a game with a random predictor is

nHRandom = −n
∑

s

1

s
ln

1

s
= −n ln

1

s
= ln(sn),

which provides a connection to the game-tree complexity. As the game-tree
complexity measures the complexity of randomly played games, entropy
can be used to measure the complexity of more rationally (we shall omit
discussion on “rationality” here) played games.

As a final note, entropy has been used in other contexts in games. For
instance, in [4, 15] entropy is used to measure distances between distribu-
tions.

4.3 Computer Go

The game of go is the last classical board game in which humans are still
superior to computers. Many textbooks (including [79]) on artificial intel-
ligence mention go as the next big challenge for artificial intelligence and
state further that successful techniques for go should prove widely useful in
other applications as well. A rule set for go is provided in Appendix A with
some background information on go terminology, conventions and customs.

The history of computer go begins in the 1960s [78, 93]. Like in many other
games, computer players have been implemented essentially by designing

4.3. Computer Go 23

a high quality evaluation function f̂ and then doing a tree search as deep
as possible in the style of αβ pruning. In order for the approach to be
successful (for instance, like in chess [42]), a good evaluation function as
well as a good move ordering are needed. However, in go this approach
has not resulted in a breakthrough, probably because it is notoriously hard
to design a good evaluation function for go. A brief survey of the field of
computer go can be found in [V], whereas more detailed surveys on the
applied methods can be found in [9, 10, 16, 63, 88].

A more recent approach for computer go emerged around 2006 and is called
Monte-Carlo tree search (MCTS) [13]. The main innovation in MCTS is
to run a large number of (pseudo) random games from the current situa-
tion and use the results of those random games as an evaluation function.
The idea of using simulations as a replacement of an evaluation function is
presented in [11] for go, but for the idea to really work a sufficient amount
of random games needs to be played in the more interesting branches of
the search tree. By “interesting” we mean the nodes corresponding to good
moves, as bad moves should be recognized as quickly as possible so that
random games can be played in the part of the search tree where they mat-
ter the most. Different aspects and developments leading to Monte-Carlo
tree search have been studied for instance in [14, 23, 33, 48].

Results with Monte-Carlo tree search have been impressive1: for instance
in 2007 on a 9 × 9 board a victory in an even game and in 2009 on a
19× 19 board a victory in a 6 stone handicap game were achieved against
a professional level player [13]. It should be noted that all the current
state-of-the-art computer go players use MCTS in one form or another.

1 See http://www.computer-go.info/h-c/, Human-Computer Go Challenges, N.
Wedd.

C
h
a
p
te
r
V

Conclusions 25

Chapter 5

Conclusions

As the computational power available has increased, using computational
methods have become more appealing—for instance in classification and
enumeration of combinatorial objects. The enumeration of objects depends
on efficient exhaustive search, so research on efficient generation and prun-
ing techniques is more topical than ever. It is also possible to design an
exhaustive search in a depth-first manner so that when the search is ad-
journed, one can get the best solution found so far as well as bounds for
an optimal solution. This possibility makes (partial) exhaustive search also
a viable option for obtaining a single solution to the problem instance at
hand.

We were able to show with exhaustive search the non-existence of codes
with given parameters on several occasions. We assume that some of the
techniques used in pruning could be of general use. For further research,
concentrating on the order in which the search tree is explored seems like
a worthy cause (results obtained from exploring a more promising branch
could be used to prune some of the less encouraging branches). Naturally,
the idea is not a new one—for example, in the context of game study the
idea is known as move ordering (or ranking).

Games in general have connections to many fields, especially if one is speak-
ing of game theory. We introduced the information-theoretic concept of
entropy to the game context as a way to measure complexity of games and
presented empirical results (computational experiments and a questionary
study) to support the relevancy of entropy. Further studies on entropy in
other games than go would be interesting, in order to see how the entropy
would compare with other complexity metrics for games. Also research on
go (being the last traditional game in which humans are superior to com-

26 Conclusions

puters) would be interesting, especially with respect to Monte-Carlo tree
search.

Heuristic search methods are powerful tools for obtaining solutions in prob-
lems that seem to be too hard to be tackled by other means. In this thesis
we used tabu search to construct several record breaking codes. Without
a doubt even better codes than the ones presented in this thesis can in
some cases be constructed by simply devoting more computing time for the
search. For further research, studying different search heuristics or concen-
trating efforts on alternative fitness functions could prove fruitful (as this
might aid with exhaustive search and branch ordering).

A
p
p
en
d
ix
A

Rules of Go 27

Appendix A

Rules of Go

The Tromp-Taylor1 rules of go are formulated to be as elegant as possible.
We will copy the 10 point rule set here directly, along with some clarifica-
tions and background information with terminology of a go player.

1. Go is played on a 19× 19 square grid of points, by two players called
Black and White.

Besides the official 19×19 board, the 13×13 and 9×9 boards are com-
monly used—especially with beginners. These boards are displayed
in Figure A.1.

2. Each point on the grid may be colored black, white or empty.

An intersection can be empty, have a white or have a black stone.

3. A point P, not colored C, is said to reach C, if there is a path of
(vertically or horizontally) adjacent points of P’s color from P to a
point of color C.

Vertically or horizontally adjacent stones of the same color belong
into the same group. A group has as many liberties as it has empty
intersections vertically or horizontally adjacent to any stones in the
group. In the left diagram in Figure A.2 there are two black groups
b and d with 3 and 4 liberties, respectively. Similarly there are three
white groups a, c and e with 3, 2 and 4 liberties.

4. Clearing a color is the process of emptying all points of that color that
don’t reach empty.

1See http://homepages.cwi.nl/~tromp/go.html, J. Tromp and B. Taylor.

28 Rules of Go

A

BC

D

EF G

H

I

A

BC

D

EF G

H

I A

BC

D

E

Figure A.1 The most common board sizes for go (19x19, 13x13 and 9x9) and
the customary placement of handicap stones (in alphabetical order).

Rules of Go 29

a

b b c

d de

e

A

B

C

Figure A.2 Examples of liberties and capturing

The removal of stones is referred to as capturing, e.g., if a player’s move
removes the last liberty of some groups, those groups are removed from
the board. In the right diagram in Figure A.2 black can capture four

stones by playing A and white can capture three stones with
B. The only other option of capturing stones in this diagram is white
playing at C and capturing the single adjacent black stone.

5. Starting with an empty grid, the players alternate turns, starting with
Black.

For players with different strength it is common to use handicap stones
to make the game more interesting (e.g., both players have equal
chances of winning). In other words, the weaker player places as her
first move as many handicap stones on the board as is the difference
between the players ranks. These stones may be placed freely or (more
commonly) in the customary way in the order listed in Figure A.1,
except that in 6 and 8 stone handicap games no stone is placed on
E. A proper handicap (roughly speaking) for 13 × 13 is obtained by
dividing the rank difference with three and for 9× 9 with nine.

Ranks start with 30 kyu and proceed up to 1 kyu. After kyu ranks
dan ranks are used in increasing order from 1 dan to 7 dan. Besides
these amateur ranks there are professional dan ranks from 1 dan to
9 dan (with the difference that one handicap stone is considered to
equal three ranks). An amateur 7 dan is usually regarded to be equal
with a professional 1 dan player. Ranks are honorary titles in the

30 Rules of Go

A A

Figure A.3 Examples of ko and scoring.

sense that they are not reduced, hence reflecting more of a player’s
peak playing performance than their current strength.

6. A turn is either a pass; or a move that doesn’t repeat an earlier grid
coloring.

The left and center diagrams in Figure A.3 demonstrate the reason
of not allowing repetition: Black can capture by playing A, but

then white could capture black stone at A by playing at , and
so on. In other words, white must move at least once somewhere
else. These kinds of repeating situations are called ko (fights), and
the moves played elsewhere (in order to break the repetition and win
the fight) are called ko threats.

In case the repeating sequence of moves is longer than two, the situa-
tion is referred to as superko. Superkos are extremely rare in human
games, but are somewhat more relevant in computer go as superkos
do occur every now and then in the thousands simulations run in the
Monte-Carlo tree search approach [13].

7. A move consists of coloring an empty point one’s own color; then
clearing the opponent color, and then clearing one’s own color.

A player either passes or places a stone of her color on board, re-
moves all opponent’s groups without liberties and then removes all
her groups which still have no liberties.

Rules of Go 31

8. The game ends after two consecutive passes.

All groups that can be captured even if their owner defends them are
removed from the board. If the players do not agree about the status
of some of the groups, then the play is resumed.

9. A player’s score is the number of points of her color, plus the number
of empty points that reach only her color.

The score of a player is the sum of her stones on the board and
the number of empty intersections surrounded by them. In the right
diagram in Figure A.3 white has 24 stones on the board, which enclose
11 empty intersections. Black has 29 stones on the board enclosing
17 intersections. That is, white’s score is 35 and black’s 46.

This type of “Stones on board + surrounded intersections” scoring
is referred to as area scoring. The other general type of scoring is
territory scoring, in which one’s score is the sum of surrounded inter-
sections and captured opponent stones. In practice the area scoring
and territory scoring give equivalent scores almost always.

The area scoring is more convenient in computer go, as the computers
can play the game to the very end—i.e., all capturable stones are
captured before passing—which makes the scoring trivial.

10. The player with the higher score at the end of the game is the winner.
Equal scores result in a tie.

Usually white gets compensation, komi, for black having the first
move. In 19 × 19 komi is usually 7.5 points (the non-integer komi
is used to avoid ties). For example, with 7.5 point komi black wins
with 3.5 points in the right diagram in Figure A.3. In handicap games
with players having the rank difference of one stone, the komi is usu-
ally 0.5 for the white player.

There are several rule sets2 for go (Japanese, Chinese, Ing, to name a few)
[10]. In practice the rule set used does not affect the game strategy and the
effect on the final scoring is minimal.

2See http://home.snafu.de/jasiek/rules.html, rule discussions, R. Jasiek.

A
p
p
en
d
ix
B

Source Codes 33

Appendix B

Source Codes

Some of the programs and scripts used in Publications [I–VI] are available
at

http://esaseuranen.fi/papers/dissertation/.

Different files are briefly described (and some examples are provided) in
README.TXT.

The source codes are provided as they are, with the notice that they were
not originally intended to be released (the documentation is rather scarse
for the most of the time).

In order to compile programs gcc is needed. In order to run the scripts,
perl should be installed (as well as sed).

Some scripts for distributing calculations (when operating with a shared file
system) to several computers can be found from the subdirectory common.

The exhaustive search algorithm (from [IV])

For compiling the program and using the scripts, nauty [59]1 and glpk2

should be installed into the system.

All the related files are in the subdirectory mcc. There are scripts (by*.sh)
for directly obtaining the same results as in [IV].

1See http://cs.anu.edu.au/~bdm/nauty/, The nauty page, B. D. McKay.
2See http://www.gnu.org/software/glpk/, GNU Linear Programming Kit.

34 Source Codes

Different versions of the exhaustive search algorithm were used in [II–III],
but it should be possible (by suitable alterations to the scripts) to recreate
the results in [II–III] with respect to the lower bounds.

The tabu search algorithm (from [80])

All the related files are in the subdirectory tabu.

Different versions of the tabu search algorithm were used in [I–II]. For in-
stance, the implementation does not include different definitions for neigh-
borhood (i.e., the one used in [I]). The search algorithm is capable of con-
structing various covering codes, hence it should be possible to construct
codes similar to those in [I, II] (and probably even better ones, given enough
time and effort).

Predicting moves in a go game (from [VI])

All the related files are in the subdirectory go.

The source codes include functionality for selecting, parsing and cleaning
SGF3 files. The scripts provide a way to query predictions from gnugo4 or
from mogo [33]5 for the next move in a given game record.

Also the sets of the 19x19 game records used in [VI] are included.

3Smart Game Format is used for storing records for various board games.
4See http://www.gnu.org/s/gnugo/, GNU Go
5See http://www.lri.fr/~teytaud/mogo.html, MoGo.

R
ef
er
en
ce
s

References 35

References

[1] E. Aarts, J. K. Lenstra (eds.), Local Search in Combinatorial Opti-
mization, Wiley, New York, NY, 1997.

[2] L. V. Allis, Searching for solutions in games and artificial intelligence,
Ph.D. thesis, Vrije Universiteit, Amsterdam, The Netherlands (1994).

[3] D. Applegate, E. M. Rains, N. J. A. Sloane, On asymmetric coverings
and covering numbers, J. Combin. Des. 11 (2003) 218–228.

[4] N. Araki, K. Yoshida, Y. Tsuruoka, J. Tsujii, Move prediction in go
with maximum entropy method, in: Proceedings of the 2007 IEEE
Symposium on Computer Intelligence and Games, 2007, pp. 189–195.

[5] E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning Ways for Your
Mathematical Plays, vol. 1–4, 2nd ed., A. K. Peters, Natick, MA, 2001–
2004.

[6] E. R. Berlekamp, D. Wolfe, Mathematical Go: Chilling Gets the Last
Point, A. K. Peters, Natick, MA, 1994.

[7] R. Bertolo, P. R. J. Österg̊ard, W. D. Weakley, An updated table of
binary/ternary mixed covering codes, J. Combin. Des. 12 (2004) 157–
176.

[8] U. Blass, S. Litsyn, The smallest covering code of length 8 and radius
2 has 12 words, Ars Comb. 52 (1999) 309–318.

[9] B. Bouzy, T. Cazenave, Computer go: An AI-oriented survey, Artif.
Intell. J. 132 (2001) 39–103.

[10] R. Bozulich, The Go Player’s Almanac 2001, Kiseido Publishing Com-
pany, Tokyo, 2001.

36 References

[11] B. Brügmann, Monte Carlo go, Tech. Rep., Physics Department, Syra-
cuse University, NY (1993).

[12] W. A. Carnielli, E. L. Monte Carmelo, M. V. S. Poggi de Aragão, C. C.
de Souza, Upper bounds for minimum covering codes by tabu search,
in: M. V. S. Poggi de Aragão, C. C. de Souza (eds.), The Proceedings
of the II National Workshop on Combinatorial Problems, 1995, pp.
51–59.

[13] G. M. J.-B. Chaslot, Monte-Carlo tree search, Ph.D. thesis, Univer-
siteit Maastricht, Maastricht, The Netherlands (2010).

[14] G. M. J.-B. Chaslot, J.-T. Saito, B. Bouzy, J. W. H. M. Uiterwijk,
J. van den Herik, Monte-Carlo strategies for computer go, in: P.-Y.
Schobbens, W. Vanhoof, G. Schwanen (eds.), Proceedings of the 18th
BeNeLux Conference on Artificial Intelligence, Namur, Belgium, 2006,
pp. 83–90.

[15] G. M. J.-B. Chaslot, M. H. M. Winands, I. S. van den Herik, Cross-
entropy for Monte-Carlo tree search, ICGA J. 31 (2008) 145–156.

[16] K. Chen, Computer go: Knowledge, search, and move decision, ICGA
J. 24 (2001) 203–215.

[17] G. Cohen, I. S. Honkala, S. Litsyn, A. C. Lobstein, Covering Codes,
North-Holland, Amsterdam, 1997.

[18] G. Cohen, A. C. Lobstein, N. J. A. Sloane, Further results on the
covering radius of codes, IEEE Trans. Inform. Theory 32 (1986) 680–
694.

[19] J. H. Conway, On Numbers and Games, 2nd ed., A. K. Peters, Natick,
MA, 2001.

[20] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver,
Combinatorial Optimization, Wiley, New York, NY, 1998.

[21] J. N. Cooper, R. B. Ellis, A. B. Kahng, Asymmetric binary covering
codes, J. Combin. Theory Ser. A 100 (2002) 232–249.

[22] D. Corne, M. Dorigo, F. Glover (eds.), New Ideas in Optimization,
McGraw-Hill, London, 1999.

References 37

[23] R. Coulom, Efficient selectivity and backup operators in Monte-Carlo
tree search, in: Computers and Games, 5th International Conference,
CG 2006, Turin, Italy, May 29–31, 2006. Revised Papers, vol. 4630 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2007, pp.
72–83.

[24] R. Davies, G. F. Royle, Graph domination, tabu search and the football
pool problem, Discrete Appl. Math. 74 (1997) 217–228.

[25] A. A. El Gamal, L. A. Hemachandra, I. Shperling, V. K. Wei, Using
simulated annealing to design good codes, IEEE Trans. Inform. Theory
33 (1987) 116–123.

[26] R. B. Ellis, Density of normal binary covering codes, Discrete Math.
308 (2008) 4446–4459.

[27] R. B. Ellis, A. B. Kahng, Y. Zheng, JBIG compression algorithms for
“dummy fill” VLSI layout data, Tech. Rep. CS2002-0709, VLSI CAD
Laboratory, UCSD Department of Computer Science and Engineering
(2002).

[28] T. Etzion, P. R. J. Österg̊ard, Greedy and heuristic algorithms for
codes and colorings, IEEE Trans. Inform. Theory 44 (1998) 382–388.

[29] G. Exoo, Upper bounds for optimal asymmetric covering codes (2003).
URL http://ginger.indstate.edu/ge/COMBIN/ACODES/

[30] K. Fadlaoui, P. Galinier, A tabu search algorithm for the covering
design problem, J. Heuristics, to appear.

[31] U. Faigle, W. Kern, Some convergence results for probabilistic tabu
search, ORSA J. Comput. 4 (1992) 32–37.

[32] T. Feo, M. Resende, Greedy randomized adaptive search procedures,
J. Global Optim. 6 (1995) 109–133.

[33] S. Gelly, Y. Wang, R. Munos, O. Teytaud, Modification of UCT with
patterns in Monte-Carlo go, Tech. Rep. 6062, INRIA (2006).

[34] F. Glover, Future paths for integer programming and links to artificial
intelligence, Comput. Oper. Res. 13 (1986) 533–549.

[35] F. Glover, G. A. Kochenberger (eds.), Handbook of Metaheuristics,
Kluwer, Boston, MA, 2003.

38 References

[36] F. Glover, M. Laguna (eds.), Tabu Search, Kluwer, Dordrecht, The
Netherlands, 1997.

[37] H. O. Hämäläinen, I. S. Honkala, M. K. Kaikkonen, S. Litsyn, Bounds
for binary multiple covering codes, Des. Codes Cryptogr. 3 (1993) 251–
275.

[38] H. J. van den Herik, L. V. Allis, I. S. Herschberg, Which games will
survive? in: D. N. L. Levy, D. F. Beal (eds.), Heuristic Programming in
Artificial Intelligence: the Second Computer Olympiad, Ellis Horwood,
Upper Saddle River, NJ, 1991, pp. 232–243.

[39] H. J. van den Herik, J. W. H. M. Uiterwijk, J. van Rijswicjk, Games
solved: Now and in the future, Artif. Intell. 134 (2002) 277–311.

[40] D. S. Hochbaum, Approximation Algorithms for NP-hard Problems,
PWS, Boston, MA, 1997.

[41] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, MIT Press, Cambridge, MA, 1992.

[42] F. Hsu, Behind Deep Blue: Building the Computer that Defeated the
World Chess Champion, Princeton University Press, Princeton, NJ,
2002.

[43] P. Kaski, P. R. J. Österg̊ard, Classification Algorithms for Codes and
Designs, Springer, Berlin, 2006.

[44] G. Kéri, Tables for bounds on covering codes (2011).
URL http://www.sztaki.hu/~keri/codes/

[45] S. Kirkpatrick, J. Gelatt, C. D., M. P. Vecchi, Optimization by simu-
lated annealing, Science 220 (1983) 671–680.

[46] D. E. Knuth, The Art of Computer Programming Volume 4A, Combi-
natorial Algorithms, Part 1, Addison Wesley, Upper Saddle River, NJ,
2011.

[47] D. E. Knuth, R. W. Moore, An analysis of alpha-beta pruning, Artif.
Intell. 6 (1975) 293–326.

[48] L. Kocsis, C. Szepesvári, Bandit based Monte-Carlo planning, in:
J. Fürnkranz, T. Scheffer, M. Spiliopoulou (eds.), Proceedings of the
17th European Conference on Machine Learning, No. 4212 in Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2006, pp. 282–293.

References 39

[49] D. L. Kreher, D. R. Stinson, Combinatorial Algorithms: Generation,
Enumeration, and Search, CRC Press, Boca Raton, FL, 1998.

[50] M. Krivelevich, B. Sudakov, V. H. Vu, Covering codes with improved
density, IEEE Trans. Inform. Theory 49 (2003) 1812–1815.

[51] P. J. M. van Laarhoven, E. H. L. Aarts, Simulated Annealing: The-
ory and Applications, vol. 37 of Mathematics and its Applications, D.
Reidel, Dordrecht, 1987.

[52] A. H. Land, A. G. Doig, An automatic method of solving discrete
programming problems, Econometrica 28 (1960) 497–520.

[53] W. Lang, J. Quistorff, E. Schneider, Integer programming for covering
codes, J. Combin. Math. Combin. Comput. 88 (2008) 279–288.

[54] E. L. Lawler, Combinatorial Optimization: Networks and Matroids,
Dover Publications, Mineola, NY, 2001.

[55] J. H. van Lint, A survey of perfect codes, Rocky Mountain J. Math. 5
(1975) 199–224.

[56] A. C. Lobstein, Bibliography – covering radius (2011).
URL http://www.infres.enst.fr/~lobstein/biblio.html

[57] A. C. Lobstein, G. J. M. van Wee, On normal and subnormal q-ary
codes, IEEE Trans. Inform. Theory 35 (1989) 1291–1295; and 36 (1990)
1498.

[58] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam, 1977.

[59] B. D. McKay, nauty user’s guide (version 1.5), Tech. Rep. TR-CS-90-
02, Dept. Computer Science, Australian National University (1990).

[60] B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26
(1999) 306–324.

[61] C. Mendes, E. L. Monte Carmelo, M. Poggi, Bounds for short covering
codes and reactive tabu search, Discrete Appl. Math. 158 (2010) 522–
533.

[62] J. C. Moreira, P. G. Farrel, Essentials of Error-Control Coding, Wiley,
Chichester, UK, 2006.

[63] M. Müller, Computer go, Artif. Intell. 134 (2002) 145–179.

40 References

[64] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100
(1928) 295–320.

[65] P. R. J. Österg̊ard, A new binary code of length 10 and covering radius
1, IEEE Trans. Inform. Theory 37 (1991) 179–180.

[66] P. R. J. Österg̊ard, Upper bounds for q-ary covering codes, IEEE Trans.
Inform. Theory 37 (1991) 660–664.

[67] P. R. J. Österg̊ard, New multiple covering codes by tabu search, Aus-
tralas. J. Combin. 12 (1995) 145–155.

[68] P. R. J. Österg̊ard, Constructing covering codes by tabu search, J.
Combin. Des. 5 (1997) 71–80.

[69] P. R. J. Österg̊ard, U. Blass, On the size of optimal binary codes of
length 9 and covering radius 1, IEEE Trans. Inform. Theory 47 (2001)
2556–2557.

[70] P. R. J. Österg̊ard, H. O. Hämäläinen, A new table of binary/ternary
mixed covering codes, Des. Codes Cryptogr. 11 (1997) 151–178.

[71] P. R. J. Österg̊ard, M. K. Kaikkonen, New upper bounds for binary
covering codes, Discrete Math. 178 (1998) 165–179.

[72] P. R. J. Österg̊ard, A. Wassermann, A new lower bound for the football
pool problem for six matches, J. Combin. Theory Ser. A 99 (2002) 175–
179.

[73] P. R. J. Österg̊ard, W. D. Weakley, Constructing covering codes with
given automorphisms, J. Combin. Des. 16 (1999) 65–73.

[74] P. R. J. Österg̊ard, W. D. Weakley, Classification of binary covering
codes, J. Combin. Des. 8 (2000) 391–401.

[75] C. J. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity, Dover, Mineola, NY, 1998.

[76] V. J. Rayward-Smith (ed.), Modern Heuristic Search Methods, Wiley,
Chichester, UK, 1996.

[77] C. R. Reeves, J. E. Rowe, Genetic Algorithms – Principles and Per-
spectives: A Guide to GA Theory, Kluwer, Boston, MA, 2003.

References 41

[78] H. Remus, Simulation of a learning machine for playing go, in: C. M.
Popplewell (ed.), Proceedings of IFIP Congress 1962, North-Holland,
Amsterdam, 1962, pp. 428–432.

[79] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed., Prentice Hall, Upper Saddle River, NJ, 2003.

[80] E. A. Seuranen, Further results on constructing asymmetric covering
codes by tabu search, submitted (2011).

[81] C. E. Shannon, A mathematical theory of communication, Bell Syst.
Tech. J. 27 (1948) 379–423, 623–656.

[82] C. E. Shannon, Prediction and entropy of printed English, Bell Syst.
Tech. J. 30 (1951) 50–64.

[83] J. C. Spall, Introduction to Stochastic Search and Optimization: Es-
timation, Simulation and Control, Wiley-Interscience, Hoboken, NJ,
2003.

[84] D. A. Spielman, Faster isomorphism testing of strongly regular graphs,
in: Proceedings of the Twenty-eighth Annual ACM Symposium on the
Theory of Computing (Philadelphia, PA, 1996), ACM Press, New York,
NY, 1996, pp. 576–584.

[85] H. A. Taha, Integer Programming, Academic Press, London, 1975.

[86] R. J. M. Vaessens, E. H. L. Aarts, J. H. van Lint, Genetic algorithms
in coding theory—a table for A3(n, d), Discrete Appl. Math. 45 (1993)
71–87.

[87] C. Voudouris, E. Tsang, Function optimization using guided local
search, Tech. Rep. CSM-249, Department of Computer Science, Uni-
versity of Essex (1995).

[88] E. C. D. van der Werf, AI techniques for the game of go, Ph.D. thesis,
Universiteit Maastricht, Maastricht, The Netherlands (2004).

[89] L. T. Wille, New binary covering codes obtained by simulated anneal-
ing, IEEE Trans. Inform. Theory 42 (1996) 300–302.

[90] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimiza-
tion, IEEE Trans. Evolut. Comput. 1 (1997) 67–82.

[91] Z. Zhang, Linear inequalities for covering codes: part I—pair covering
inequalities, IEEE Trans. Inform. Theory 37 (1991) 573–582.

42 References

[92] Z. Zhang, C. Lo, Linear inequalities for covering codes: part II—triple
covering inequalities, IEEE Trans. Inform. Theory 38 (1992) 1648–
1662.

[93] A. L. Zobrist, A pattern recognition program which used a geometry-
preserving representation of features, Tech. Rep. 85, Computer Sci-
ences Department, University of Wisconsin (1970).

9HSTFMG*aedgjc+

ISBN 978-952-60-4369-2
ISBN 978-952-60-4370-8 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Electrical Engineering
Department of Communications and Networking
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 119

/2
011

Nowadays computational methods and
results are present in a wide variety of areas,
making them an interesting and relevant
object of research. The increasing
importance is due to the growth of
knowledge and computational power
enabling new viewpoints to old problems.
For instance the LDPC (low density parity
check) codes were discovered already in the
1960s but only recently have the practical
applications for these near optimal
performance codes emerged. Also the recent
advances with Monte-Carlo tree search
(MCTS) in computer go would not have been
possible ten years ago. In this thesis a
heuristic search method called tabu search
and exhaustive search are used to tackle the
combinatorial problem of minimizing the
size of several types of covering codes. The
similarity of exhaustive search and
solving/playing combinatorial games is
discussed and the information-theoretic
concept of entropy as a way to measure
complexity of games is introduced.

E
sa A

. Seuranen
C

om
putational M

ethods in C
odes and G

am
es

A
alto

 U
n
ive

rsity

Department of Communications and Networking

Computational
Methods in Codes
and Games

Esa Seuranen

DOCTORAL
DISSERTATIONS

