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Name of the doctoral dissertation 
Dynamics of Quantized Vortices in Applied Flow in Superfluid 3He-B 

This thesis is mostly focussed on studies of dynamics of superfl uid 3He-B at temperatures 
below 0.4Tc where the fl ow of quantized vortex lines was expected to be generally turbulent. 
The damping in vortex motion changes many orders of magnitude in a small temperature 
interval making vortices in superfl uids an ideal tool to study turbulence. The quantum nature 
of vortices in superfl uids allows for exotic hydrodynamics that does not exist in classical fl uids. 
Earlier research had showed that vortices become unstable and lead to turbulence when the 
superfl uid Reynolds number exceeds unity. The question remained open whether vortical fl ow 
is inherently unstable at lower temperatures. This thesis addresses issues surrounding the 
instability of quantized vortices in applied fl ow in the zero-temperature limit. Using the non-
invasive nuclear magnetic resonance measurement technique, we have studied the dynamics 
of vortices in transient states during spin-up experiments where the rotation velocity of the 
system changes in a step-like manner. We found transition temperatures where the vortices 
connected to the cylindrical container become unstable and, ultimately, start a turbulent 
burst of vortex formation. This is in contrast to the laminar motion at higher temperatures, 
where the vortex ends smoothly slide in helical motion on the cylindrical surface. The exact 
conditions for this onset temperature to turbulence are established in terms of the applied 
fl ow, and the perturbation of the superfl uid state by so-called seed vortices. The spin-up 
and spin-down experiments in the zero-temperature limit show diff erent vortex dynamics. 
The vortex motion in applied fl ow is laminar for a cylindrical container, while in a cubical 
geometry the motion is expected to be partly turbulent. Our experiments on turbulent front 
propagation after injection of seed vortices from the AB-phase boundary (via the Kelvin-
Helmholtz instability) into the rotating Landau state show a change over from quasi-classical 
turbulence at high temperatures, to quantum turbulence in the low temperature regime where 
the energy cascade of Kelvin wave excitations starts to contribute to the dissipative process. 
The eff ect of a bottleneck in this energy cascade is expressed in the front propagation velocity. 
The contribution of the density anisotropy to the textural energy of the superfl uid in rotation 
is measured from the high to the zero-temperature limit. Comparison with theory allows 
determination of the superfl uid energy gap. We have mapped the superfl uid order parameter 
fl are out textures in terms of applied fl ow and temperature. A quartz tuning fork with a high 
quality factor has been studied in superfl uid 3He-B. The device is found to be an excellent tool 
to measure temperature, pressure and viscosity. In the zero-temperature limit, where other 
temperature measurement devices start to saturate, the fork’s sensitivity increases due to the 
exponential dependence on the quasiparticle density.
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1 Introduction

The research on the dynamics of topological objects in superfluid 3He has been an ongoing
long term goal of the ROTA group. The work presented in this thesis started with a particular
interest in the dynamics of vortices in the low temperature limit where the superfluid was
expected to express turbulent behaviour under most conditions of strong externally applied
flow. Unlike turbulence in classical fluids, the vorticity in superfluids is quantized. The
mutual friction in superfluid 3He-B, which controls the damping of the vortex motion, changes
more than three orders of magnitude in a small temperature regime. The dynamics of
vortices under applied rotating flow had been studied earlier at relatively high temperatures,
but the zero-temperature limit was not explored until now. In this regime, the contribution
to the viscosity by the normal component vanishes and the question arises how this affects
the dynamics of vortices. This thesis answers this question with the presentation of an
unexpected result.

In this chapter we start with the hydrostatic theory of superfluid 3He-B. The terms
contributing to free energy of the order parameter texture are listed. These are needed later
for the interpretation of measured and calculated spectra. The section on NMR shows how
the texture can be probed non-invasively. The theory is expanded by introducing vortices
and we show the dynamics of a single vortex line in a rotating cylindrical container. Flow
profiles of the superfluid are given for different vortex cluster configurations. The chapter is
concluded with a description of turbulent behaviour of quantized vortices.

The second chapter discusses the rotating cryostat and the experimental arrangement for
the NMR setup. The focus is on the improvements of the cryostat which enabled us to reach
the low temperature regime down to 0.2 Tc.

Our contribution to the research of quartz tuning forks deserved its own chapter. The
properties of this mechanical resonator with a high quality factor are discussed both in
vacuum as well as in normal and superfluid 3He. The response of the fork is shown from
the relatively high temperature of 50 mK down to 0.44 mK. The sensitivity of the fork is
demonstrated by a bolometric measurement of the heat release from NMR absorption and
an experiment showing Andreev reflection of quasiparticles on a vortex tangle.

Chapter 4 reports on the analysis of NMR spectra on rotating superfluid with a variation
of vortex clusters. The measurements not only provided a calibration of the vortex number
from a NMR absorption peak, but also allowed for a comparison with hydrostatic theory.
The calibration can now be used to analyze transients in vortical flow. The analysis of the
NMR spectra as a function of the azimuthal counterflow velocity also provides a fit of the
density anisotropy and thereby of the superfluid energy gap.

Chapter 5 addresses the question of the dynamics of vortices in the zero-temperature
limit. The formation of vortices in applied flow is discussed in a variety of scenarios, ranging
from the single vortex multiplication process to an injection of a bundle of vortices directly
into the Landau state. The reverse, vortex annihilation, is discussed for spin-down experi-
ments where the relaxation of the vortex cluster is monitored when the rotation is abruptly
stopped. We conclude the section with a detailed study on the propagating turbulent vortex
front which is a major constituent of the complex process by which the vortex-free Landau
state is replaced by the equilibrium rotating vortex state.

1
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Figure 1: The phase diagram of 3He. Below the melting curve at p ≈ 34 bar liquid 3He
is either superfluid or a normal viscous fluid. The transition at Tc (pressure-dependent)
from the normal fluid (Fermi-liquid theory) into a superfluid (BCS theory) is of second
order. At high pressures and high temperatures and zero external magnetic field, the A-
phase is favoured, while at low temperatures the B-phase is the ground state. The AB-phase
transition is of first order. By applying an external magnetic field the AB-phase transition
is moved to lower temperatures.

1.1 Superfluid 3He and 3He-B

The first inert element in the periodic system is Helium, which can exist as two stable
isotopes: 3He and 4He. While the two only differ in one neutron in the nucleus, the hy-
drodynamic properties of the superfluids at low temperature are very distinct due to the
involved quantum-statistics: 3He atoms are fermions, while 4He atoms are bosons. In this
work we concentrate on the 3He isotope. At the temperature of T = 3.2 K, 3He condenses
into a liquid at the pressure of p = 1 bar. Down to ∼ 0.1 K the fluid is described by classi-
cal fluid theory, while below this temperature the fluid description comes from Fermi-liquid
theory [1]. At temperatures 1 ÷ 2.5 mK, the 3He fluid becomes a superfluid. See Fig. 1 for
the pressure dependence of the critical temperature Tc of the superfluid transition.

Superfluidity in 3He liquid emerges through the Cooper pairing of two 3He atoms, similar
to how superconductivity appears in a superconductor as described by BCS theory [2]. In
the 3He superfluid the hard-core repulsion in the inter-atomic potential forces the Cooper
pairing to occur in the orbital triplet state (L = 1), leading to a 3 × 3 complex order
parameter matrix Aµν , where the first index refers to the spin and the second to orbital
degrees of freedom. Three stable bulk phases exist in the superfluid 3He: A, B and A1. See
the temperature, pressure and field dependent phase diagram in Fig. 1.
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The A-phase is the Anderson-Brinkman-Morel (ABM) state [3]. Here the Cooper pairing
is formed by aligning the spins, with spin projection Sz = ±1 (|↑↑〉 and |↓↓〉) states. This
phase is not considered in this thesis, since our measurements are in the low temperature
regime at low magnetic fields.

The B-phase is the Balian-Werthamer (BW) state [4]. This is the preferred state at low
magnetic field and low temperatures. Here the projected spin state is Sz = 0,±1. The order
parameter describing the structure of the superfluid, can be written as [5]

Aµν = ∆(T )Rµν(n̂, θ)eiφ, (1)

with ∆(T ) the temperature-dependent energy-gap, φ the condensate’s phase, and Rµν the
rotation matrix describing the rotation of the spin and orbital coordinates relative to each
other by the angle θ around the axis oriented along the unit vector n̂:

Rµν(n̂, θ) = cos θδµν + (1− cos θ)n̂µn̂ν − sin θǫµνkn̂k. (2)

Due to the spin-orbit interaction, the dipolar energy is in equilibrium when the angle θ =
arccos(−1

4
). The unit vector n̂ can be specified with the azimuthal angle α and the polar

angle β. The orientation of the n̂-vector over real space is called the texture.

1.2 Hydrostatic theory of 3He-B

The textural anisotropy arises from small residual interactions which distort the spherical
symmetry of the orbital or spin spaces, such as the applied magnetic field H [6]. The

texture of the orbital anisotropy axis l̂ = ( ~H/H)R(n̂, θ) prefers l̂ ‖ ~H, while the walls of
a container orient l̂ perpendicular to themselves. The magnetic field H gives rise to the
magnetic orientational free energy term

FDH = −a

∫
d3r(n̂ · ~H)2, (3)

while the relative flow of the superfluid and normal fractions leads to a dipole flow velocity
term

FDV = −λDV

∫
d3r [n̂ · (~vs − ~vn)]

2 . (4)

Here ~vs − ~vn is the counterflow velocity between the superfluid and normal component as
described by the two fluid model (see section 1.4). The stiffness of the order parameter is
reflected by the gradient term

FG =

∫
d3r

[
λG1

∂Rαi

∂ri

∂Rαj

∂rj
+ λG2

∂Rαj

∂ri

∂Rαj

∂ri

]
, (5)

which arises from the coherence of the superfluid state: rapid spatial changes are suppressed.
The anisotropy axis l̂ prefers to align with the direction of the counterflow ~vn − ~vs, which
changes the direction of the anisotropy axis of the energy gap ∆. The associated energy is
the field velocity term

FHV = −λHV

∫
d3r

[
~H · ←→R · (~vs − ~vn)

]2

. (6)
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At the surface, the contribution to the surface energy arises from the suppression of those
pairing interactions where the orbital angular momentum is oriented parallel to the wall.
Here we assume that the curvature of the surface is small and that the length scale of the
distortion, the superfluid coherence length ξ(T ), is small compared to the dipole healing
length ξD. The latter is obtained by equating the energy density associated with a particular
orienting force to the bending energy density. The surface gives rise to the surface field term

FSH = −d

∫
S

d2r( ~H · ←→R · ê2
s ). (7)

Here the unit vector ês is perpendicular to the surface and points towards the superfluid.
We refer to formulas (35)...(40) in Ref. [7] for the parameters a, λDV, λG1 and λG2. The
temperature-dependent field velocity parameter

λHV =
ρ

∆2

m∗/m
(1 + 1

3
F s

1Y )2

[ 1
2
~γµ0(1 + 1

5
F a

2 )

1 + F a
0 (2

3
+ 1

3
Y ) + 1

5
F a

2 (1
3

+ (2
3

+ F a
0 )Y )

]2

×
[
Z3 − 9

10
Z5 +

9

10

Z2
5

Z3

− 3

2
Z7 +

3F a
2 Z3

50(1 + 1
5
F a

2 )
(3Z5 − 2Z3)

]
(8)

expresses the magnitude of the density anisotropy of the superfluid along l̂. Here ρ is the fluid
density, m∗ the effective mass, γ/2π = −32.435 MHz/T the gyromagnetic ratio of 3He, F s

l the
symmetric and F a

l the anti-symmetric Fermi-liquid parameters. The temperature-dependent
functions Zj are defined by

Zj = πkBT∆j−1
∞∑

n=−∞
(ǫ2

n + ∆2)−j/2, (9)

where the Matsubara energies are ǫn = πT (2n− 1) with n = 0,±1, ...,±∞ and the Yoshida
function is given by Y = 1−Z3(T ). In publication [P1] we have measured the field velocity
parameter λHV as a function of temperature and extracted information on the energy gap
∆(T ). The results are discussed in section 4.2.

1.3 Nuclear magnetic resonance

The 3He atom is a fermion with an odd number of spin 1/2 particles, which allows us to probe
the superfluid order parameter using the non-invasive nuclear magnetic resonance (NMR)
measurement technique. The nuclear magnetic moment of the 3He atom in a magnetic field
can be excited to resonance at the frequency ω = γH by using a small transverse rf field
∝ eiωt. The response to small rotations ~θ′ of the spin density ~S is described by the Leggett
equations [8]

∂~θ′

∂t
= −γ ~H +

γ2

χB

~S, (10)

∂~S

∂t
= γ~S × ~H − χB

γ2
Ω2

Bn̂(n̂ · ~θ′), (11)
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where χB(T ) is the B-phase susceptibility and ΩB(T ) the B-phase longitudinal resonance
frequency. The transverse resonance response occurs at a frequency which is shifted from
the Larmor frequency. In the high-field limit (H ≫ 2.5mT) the shift depends on the polar

angle β of the unit vector n̂ with respect to the external magnetic field ~H [9]

ω ≈
√

ω2
L + Ω2

B sin2 β ≈ ωL +
Ω2

B

2ωL
sin2 β, (12)

with ωL = |γ|HL the Larmor frequency. The frequency shift is zero when the n̂-vector is

parallel to the magnetic field ~H . In continuous wave (cw) NMR experiments the resonance
circuit operates at a fixed frequency νrf = ωrf/2π and the NMR absorption χ (see section
2.2) is scanned as a function of the externally applied magnetic field H . The absorption
spectra in the magnetic field domain H can be converted to the frequency domain ν using
the relation

∆ν =
(HL −H)H

H2
L

νrf , (13)

where H is the value of the applied field and HL = ωrf/γ the Larmor field. Using (12) the
reduced frequency shift ν̃ is free from frequency-dependent parameters and is defined as

∆ν̃ ≡ 2ωL

Ω2
B

(ω − ωL) = sin2 β. (14)

The normalized signal amplitude χ(ω) can be expressed in terms of the dc susceptibility χN

and the measured absorption signal Vs as

χ(ω)

χN

=
ωLπ

2

χB(T )

χN

Vs(ω)∫
Vs(ω′)dω′

, (15)

where χB(T )/χN is defined as the ratio of the total integrated NMR absorptions in the
superfluid phase and the normal phase, which can be experimentally determined,

χB(T )

χN
=

(
∫

Vs(ω
′)dω′)T

(
∫

Vs(ω′)dω′)Tc

. (16)

The theoretical expression for the static susceptibility using weak-coupling theory is [10]

χB

χN

= (1 + F a
0 )

2
3

+ 1
3
Y (T )

1 + F a
0 (2

3
+ 1

3
Y (T ))

T→0
−→

2(1 + F a
0 )

3 + 2F a
0

, (17)

where F a
0 is the anti-symmetric Fermi-liquid parameter. The Kramers-Krönig relation tells

that the area below the measured absorption χ(H) signal is a constant, hence one can
normalize the spectrum without loosing information when only relative signal strength is
needed. The spectrum in the frequency domain and reduced frequency domain is obtained
by dividing out the area between the line shape and the baseline 1

χ′(ν) =
χ(ν)∫
χ(ν)dν

, (18)

χ̃′(ν̃) =
χ(ν̃)∫
χ(ν̃)dν̃

. (19)

1Here the symbol χ′ is used for the normalized absorption signal and not to be confused with the symbol
used in literature for the dispersion signal.
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The NMR line shape χ̃′ is normalized in the reduced frequency domain ν̃ and is free of the
NMR resonance frequency parameter νrf .

In numerical calculations we use the local oscillator model where the resonance response
takes place at the frequency determined by the local value of β(r) [11]. The NMR line shape
is then a sum of the individual contributions in the volume V

f(ω) =
1

V

∫
d3rδ[ω − ω(~r)]. (20)

Dephasing of the local oscillators is caused by the inhomogeneity ∆H of the polarizing field
around the average field value H . The characteristic dephasing time τH is of the order of

τH =

(
ωrf

∆H

H

)−1

(21)

and the delta function in equation (20) becomes a Lorentzian whose width is determined from
the NMR line shape in the normal phase or a fitting parameter when the NMR spectrum is
compared with numerical calculations.

1.4 Vortex lines in 3He-B

The two-fluid model is a phenomenological description of the superfluid [12]. The model
treats the superfluid as two interpenetrating fluids: a normal component and a superfluid
component. The total fluid density is ρ = ρn+ρs, where ρn and ρs are respectively the normal
and superfluid density. The total mass current of the superfluid is given by ~j = ρn~vn + ρs~vs.
While the superfluid component is inviscid, the normal component behaves as a classical
viscous fluid and in equilibrium co-rotates with the container at the velocity vn = Ωr.

The flow velocity in the superfluid 3He-B condensate is obtained from the momentum
operator p̂ = −i~∇. The flow velocity is then expressed as the gradient of the condensates
phase

~vs =
~

2m3
∇φ, (22)

where m3 is the mass of the 3He atom and the factor 2 originates from the Cooper Pair.
From equation (22) it follows that ∇×~vs = 0: the fluid flow is irrotational (or potential).

To mimic solid body rotation the superfluid can create an array of rectilinear quantized
vortex lines [13, 14]. The circulation κ of a quantized vortex line is obtained by following a
closed path L around the vortex core∮

L

~vs · d~l =

∫
(∇× ~vs) · d~S = nκ (23)

with κ = h
2m3

= 0.066 mm2/s. The quantum number n = 0,±1, ... gives the lowest energy

when n = 1. Although the order parameter in the vortex core in 3He-B does not vanish in the
center, as it does in the center of the core of 4He vortices, the curl within the 3He-B vortex
core is non-zero. The B-phase vortex core can be either axisymmetric or non-axisymmetric,
which depends on pressure and temperature [15, 16]. At p = 29 bar the transition between
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Figure 2: Vortex cluster configurations and corresponding velocity profiles in a rotating
cylinder in stationary state conditions. Left : vortex free state with the normal component
co-rotating with the container, while the superfluid component is at rest. The counterflow
vcf = vn − vs is maximal. Center : vortex cluster with the number of vortices less than in
the equilibrium conditions: N < Nv. The counterflow inside the cluster is vcf ≈ 0, while
outside the cluster vcf = Ωr − κN/(2πr). Right : the container is filled with the equilibrium
number of vortices Nv and no counterflow is present, except for a small layer (with a width
comparable to the inter-vortex distance) adjacent to the surface boundary.

the axisymmetric and non-axisymmetric vortex core occurs at 0.6 Tc. The vortex core radius
a ∼ 10− 80 nm is comparable to the superfluid coherence length ξ.

When superfluid 3He is set into rotation, the normal viscous component (with viscosity
comparable to olive oil) co-rotates with the container, while the inviscid superfluid conden-
sate stays at rest. See left image in Fig. 2. At the Feynman velocity Ωc1 = κ

2πR2 ln(R/a)
the free energy is minimized when a single vortex is at the center of the rotating system.
Here R and a are respectively the radius of the container and the radius of the vortex core.
For a cylinder with R = 3 mm the critical velocity is Ωc1 ≈ 0.01 rad/s (vc1 = 0.03 mm/s).
However, before a vortex nucleates, an energy barrier has to be overcome. For the magnitude
of this barrier one compares the energy of a tiny (of vortex core size ξ) single vortex loop
Evortex ≈ ρsκ

2ξ with the energy of the superfluid flow in the volume of the loop Eflow ≈ ρsv
2
s ξ

3.
With a ≈ ξ, the critical velocity where a single vortex nucleates is at the applied flow velocity
v ≈ κ/ξ ∼ 6 m/s.

In a rotating cylinder, micron-size particles or defects on the container wall can nucleate
a vortex when the flow velocity increases around the sharp corners. Our sample container
has been flushed with hydrofluoric acid (HF) to dissolve irregularities on the surface and in
places where the quartz has been fused [18]. The now smooth walled container is capable of
vortex free flow, up to the critical velocity ∼ 6 mm/s. In order to inject a single vortex or a
bundle of vortices, different methods can be applied. These are discussed in section 5.2.

A moving vortex in a superfluid mediates the interaction, called mutual friction, between
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Figure 3: Single vortex motion and the mutual friction parameter α. Left : a single vortex
where the vortex end on the surface moves with a spiraling motion around the axis of
rotation. The vortex end has the velocity components vφ = (1 − α′)ΩR in the azimuthal
direction and vz = αΩR parallel to the cylindrical axis. Right : The mutual friction parameter
α as a function of inverse temperature at p = 29 bar. In the high temperature regime
the data of Bevan et al. is shown [17]. In the low temperature regime our results are
reproduced for the effective mutual friction parameter αeff obtained from the relaxation time
τ = 1/(2αΩ) of an expanding vortex cluster in spin-down measurements (experiments and
numerical simulations) as published in [P2] and [P5]. The spin-down experiments are treated
in section 5.3.

the normal and superfluid components. A line segment of a vortex moves in the superfluid
with velocity [19]

~vL = ~vs + αŝ× (~vn − ~vs)− α′ŝ× [ŝ× (~vn − ~vs)], (24)

with ~vn and ~vs the local velocities of the normal and superfluid components and ŝ the unit
vector along the vortex line segment. The mutual friction parameters α and α′ are pressure
and temperature-dependent [17, 20, 21]. For a single vortex in applied flow, the end of
the vortex connected on the cylindrical boundary moves in a spiraling motion with velocity
components vφ = (1−α′)ΩR in the azimuthal direction in the rotating frame and vz = αΩR
parallel to the axis of rotation. Figure 3 shows an illustration of the spiraling vortex motion
in applied flow. The figure also shows measured data on the mutual friction parameter α
from spin-down measurements where the relaxation time τ of the expanding vortex cluster
is related to the mutual friction as τ = 1/(2αΩ). Spin-down measurements will be treated
in section 5.3. Fig. 7 in publication [P7] shows a measurement of a vortex bundle precessing
around the cylindrical axis along the surface. The measurement was performed by my
predecessor Antti Finne.

In the absence of vortices, i.e. in the vortex-free state, also known as the Landau state,
the counterflow velocity is at maximum at a given Ω: the normal component is co-rotating
with the system, while the superfluid is at rest. This state is metastable. In the laboratory
frame the free energy is F = Ekin − ΩI, where the extra energy of the vortex free state is
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the superfluid kinetic energy Ekin

Ekin = 2πρs

∫ R

0

(Ωr)2

2
r dr =

πρs

4
R4Ω2 (25)

and I the angular momentum of the rotating superfluid.
When the rotating superfluid system is filled with N < Nv vortices, where Nv is the

number of vortices in the equilibrium state, the N vortices form a cluster around the axis
of the rotating system with a vortex density corresponding to the applied rotation velocity
Ω. The counterflow velocity inside the cluster is zero, while outside the cluster vcf = Ωr −
Nκ/2πr. In terms of rotation velocity, the counterflow Ωcf = Ω−Ωv, where Ωv = Nκ/2πR2 is
the rotation velocity of N vortices in the equilibrium state. The system is in the equilibrium
state when the number of vortices Nv results in zero counterflow except for a small thin
layer at the boundary of width comparable to the inter-vortex distance. Fig. 2 shows the
rotating Landau state, a state with N < Nv, and the superfluid with the equilibrium number
of vortices. The corresponding flow profiles are depicted below each picture.

1.5 Classical and quantum turbulence

In classical hydrodynamics, the local forces within a compressible classical fluid are described
by the Navier-Stokes equation [22]

∂~v

∂t
+ (~v · ∇)~v = ~F/ρ−∇p/ρ + ν∇2~v. (26)

Here ~F refers to the external forces per unit volume, p the pressure, and ν the kinematic
viscosity. To compare fluids with different kinematic viscosities, the equation is generalized
by writing it in dimensionless form. The Navier-Stokes equation is transformed using x0 =
x/X, v0 = v/V and t0 = V t/X, where X and V are the characteristic values for length
and velocity. The ratio between the inertial term ∼ V 2/X and the dissipative (viscous)
term ∼ νV/X2 characterizes the stability of the flow and this is called the Reynolds number
Re = (V 2/X)/(νV/X2) = V X/ν. When Re is small, the dissipative term dominates, and
the flow is laminar. When Re is large, the inertial forces are dominant, the flow may become
unstable and turbulent [23].

It was Osborn Reynolds in the 18th century who conducted the first systematic series
of studies on the stability of classical fluids in pipe flow. He found that at Re ≈ 2000, the
fluid became unstable in a burst like manner. Recent experiments have demonstrated that
classical fluids can be stable at Reynolds numbers up to Re ≈ 105 [24]. With increasing
Reynolds number Re, however, the perturbation to trigger turbulence decreases rapidly [25].

In classical turbulence, the fluid motion is irregular: large variations exist in the fluid
velocity with eddies on many length scales. The biggest eddies are of size of the system,
and carry the largest kinetic energy. While the viscous dissipation is small compared to the
energy of these large eddies, kinetic energy is transferred to the smaller eddies. At the smaller
length scales viscous dissipation becomes more efficient and removes the kinetic energy from
the system. In the energy cascade, the location where the energy is removed from the system
is referred to as a sink. In fully developed homogeneous and isotropic turbulence the energy
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spectrum is according to the Kolmogorov law E ∝ ǫ
2
3 k−

5
3 [23]. Here ǫ is the transfer rate of

the energy and k the wave vector associated with the eddy.
In quantum turbulence, the circulation of superfluid flow is quantized and this simplifies

the study of turbulence. The smallest eddy here is a single vortex, while larger eddies are
constructed of bundles of several vortex lines. When the flow is locally polarized the mutual
friction force per unit volume of superfluid is

~Fmf = −αρs~ω × [ω̂ × (~vn − ~vs)]− α′ρsω̂ × (~vn − ~vs), (27)

where ~ω = ∇×~v is the averaged vorticity and ω̂ = ~ω/ω is the unit vector in the direction of
~ω. The mutual friction parameters α and α′ are discussed in section 1.4. When viscosity of
the normal fluid is insignificant and the fluid is incompressible, the Navier-Stokes equation
(26) is simplified to the Euler equation. When the mutual friction force Fmf of equation (27)
is the driving force, the coarse-grained hydrodynamic equation becomes

∂~ωs

∂t
= (1− α′)∇× [~vs × ~ω] + α∇[ω̂ × (~ω × ~vs)] (28)

Following a similar analysis as the Navier-Stokes equation (26), we see that the ratio between
the inertial term ∼ (1 − α′)V 2/X and the viscous term ∼ αV 2/X2 leads to the superfluid
equivalent of the Reynolds number Re, defined as

Reα =
1− α′

α
. (29)

At small Reα ≪ 1 the vorticity in the superfluid is over-damped and the fluid flow is laminar,
while at Reα ≫ 1, the vorticity in the superfluid is underdamped and the fluid can become
turbulent. Note that the classical Reynolds number depends on the size X and fluid velocity
V , while in superfluids it is complicated and depends first and foremost on the temperature-
dependent mutual friction parameters.

The effective dissipation of a turbulent vortex tangle depends in large part on the inter-
action between the vortices by reconnections, and thus is a function of the polarization of
the vorticity in bundles of vortices. See Fig. 4 for an illustration of a structured and random
vortex tangle. In the ”structured” tangle the turbulence is of Kolmogorov K41 type and
most of the energy is contained in the largest eddy [26]. In the free decay of the vortex
tangle, the time dependence of the energy is dE/dt ∝ t−2, which is reflected as a decay in

the average vortex line density as L(t) = (1.5/κ)aν−
1
2 t−

3
2 . Here a is the size of the largest

eddies. The decay of a ”random” tangle of vortices is known as Vinen turbulence [27]. Re-
connecting vortices create smaller and smaller loops. The time dependence of the energy is
dE/dt ∝ t−2 with a decay in the average vortex line density according to L(t) ∝ νt−1. It is
generally assumed that by measuring the decay rate of the vortex line density, the type of
turbulence in the experiment can be identified.

In superfluid 3He-B, turbulence has been measured by use of a vibrating wire which
creates a turbulent vortex tangle at temperates down to 0.15 Tc [28, 29, 30]. At these tem-
peratures the damping of the vortices by the mutual friction with the normal component is
small and has been measured to be temperature independent in the regime 0.15 ÷ 0.18 Tc.
In the rotating state, turbulent bursts have been observed as published in Ref. [31] and in
more recent experiments in Refs. [32, 33, 34].
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Figure 4: Vortex tangle configurations: Left : ”Structured” Kolmogorov type turbulence
where the eddies are formed by bundles of roughly parallel vortices which can reach in size
up to the system size and contain the largest kinetic energy of the system. The vortex line
density decreases as L(t) ∝ t−3/2. Right : ”Random” Vinen turbulence with vorticity at
many length scales. Through reconnections of the vortices, the average line density decays
as L(t) ∝ t−1. The images are artistic impressions only.

The energy dissipation in quantum turbulence has been measured in spin-down experi-
ments in superfluid 4He [35, 36, 37]. Walmsley et al. measured the decay in a cubic container
filled with superfluid 4He and discovered that for the Kolmogorov-type decay with vortex
line density L(t) ∝ t−3/2 the effective viscosity changes from νK = 0.2κ at high temperatures
(T > 1 K) to νK = 0.003κ in the low temperature regime (T ≪ 1 K). In the low temperature
regime the Vinen-type turbulence with line density L(t) ∝ t−1 was determined to have an
effective viscosity of νV = 0.1κ.
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2 Experimental setup

2.1 Rotating cryostat

The ROTA cryostat is a low temperature dilution refrigerator combined with a nuclear
cooling stage, which holds the experimental container. The cryostat is able to achieve the
lowest temperature in rotation. Throughout its history, continuous improvements have been
made on this complex machine. What follows is a description of the latest setup starting
from the support system down to the heart of the experiment, i.e. the cylindrical quartz
container with superfluid 3He and the NMR setup. For details on the nuclear stage, NMR
magnet, and melting curve thermometer (MCT) we refer to Refs. [43, 44].

Below the floor of the building a large single concrete block provides a solid foundation
with a low (eigen) resonance frequency. Four concrete pillars on the block stick through the
floor, each holding a single component of an active pneumatic vibration isolation system.
See Fig. 5 for a depiction of the setup. A control unit corrects for height displacements by
changing the ratio of the flow impedance at the control box with respect to the impedance at
the dampers [45]. The pneumatic system was introduced to isolate the frame from vibrations
of the pillars, since the resonances of the pillars are weakly coupled to the standing surface
waves of the concrete block. Additionally, the four legs are interconnected with demountable
crossed steel bars to remove the single pillar resonances. The resonant frequency of the pillars
was around 13Hz. On top of the air suspension a frame with four legs supports in the center
the axial and radial air bearings of the rotating cryostat.

The cryostat rests on a vertical air bearing (flow rate: ∂
∂t

pV = 81 bar l/min) and is kept
in the center by two radial air bearings (flow rate: ∂

∂t
pV = 14 bar l/min each). In the radial

air bearing the spacing for air flow between the cryostat’s axis and the fixed support cylinder
is ∼ 30 µm. Small size measuring electronics, which runs without mechanical cooling fans,
can be placed on a shelf directly on the rotating cryostat. The rotation of the cryostat
is provided through a guided adjustable belt system connected to a servo unit with active
feedback within the servo. The rotation velocity of the servo is set digitally from the remote
computer.

Above the cryostat a separate synchronous carousel is axially aligned with the cryostat.
This platform carries the mechanically noisy measurement equipment in order to avoid vi-
brations entering the refrigerator. The only mechanical connection between this platform
and the cryostat are the cables of the measuring instrumentation, power cables and an opti-
cal cable for control of the equipment. A high resolution optical encoder with 5000 slits/rev
on the axis of the cryostat provides positional information for the second servo control unit,
which synchronizes the position of the instrument carousel [46]. The second platform is
rotationally aligned within 1◦ with the cryostat. Between the two platforms a mechanical
safety lock ensures that the platforms do not drift too much out of sync.

Carbon slip contacts on the axis of the instrument carousel provide power from an unin-
terrupted power supply. Optical fiber connections along the axis at the bottom of the dewar
and on top of the axis of the instrument carousel allow for data communication between the
computer system and the measurement equipment. Another configuration for data commu-
nication could have been a wireless network (Wi-Fi), however, the reliability of the setup
and the effect of the EMR of the Wi-Fi signal is not known. A Linux based computer system
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Figure 5: A depiction of the ROTA cryostat. The setup consists of: 1) Safety lock and cables
to top rotating platform, 2) Optical encoder, 3) Radial air bearing, 4) Vertical air bearing,
5) Radial air bearing, 6) Vibrational isolator, 7) Cryopump, 8) Dilution refrigerator with
sequentially the 1K-pot, still, heat exchanger and the mixing chamber, 9) Quartz container,
10) Nuclear stage with surrounding superconducting magnet for adiabatic demagnetization
cooling, 11) Servo, 12) Flexible belt, 13) Still valve, 14) Dewar, 15) Concrete pillar, 16) 4He
recovery.
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controls the measurement equipment over a TCP/IP, optical fiber, and TCP/IP-to-GPIB
network.

The refrigerator assembly includes a liquid helium dewar and a cryostat insert which
contains sequentially the 1 K-pot, still, heat exchangers, the mixing chamber and the nuclear
cooling stage. The nuclear stage can be thermally decoupled from the mixing chamber with
a superconducting heat switch. A vacuum jacket and two radiation shields separate the
nuclear cooling stage from the liquid helium bath. The magnet for the nuclear stage is
outside the vacuum jacket in the helium bath.

The sample container consists of a quartz glass cylinder filled with superfluid 3He at
p = 29 bar pressure. Silver powder which is sintered directly on the nuclear stage provides
a large surface area and good thermal contact between the fluid and the nuclear stage. A
melting curve thermometer (MCT) measures the temperature of the nuclear stage. Adiabatic
demagnetization of the nuclear stage enables temperature control. The lowest liquid 3He
temperature reached is 0.44 mK. The best values for the heat-leak are < 2 nW to the nuclear
stage and < 12 pW to the 3He sample when the magnetic fields of the NMR are zero.

When the cryostat is not rotating, circulation of 3He through the dilution refrigerator is
maintained by pumping the evaporated 3He from the still with a turbo molecular pump, a
roots pump, and rotary pump placed in series. A typical preparation of the cryostat for an
experiment proceeds as follows: the copper nuclear coolant is magnetized in a magnetic field
of H = 7.1 T. The dilution refrigerator pre-cools the nuclear stage to 12 ÷ 14 mK through
the heat switch. The heat switch is aluminum which is a good heat conductor when it
is maintained in the normal state with a magnetic field. Pre-cooling of the nuclear stage
and the 3He liquid takes 2-4 days. After opening the heat switch, a slow demagnetization
(∼ 4 hours) of the nuclear stage lowers the temperature of the stage to ∼ 2 mK at a magnetic
field value of 0.9 T. The demagnetization process is close to adiabatic. It takes ∼ 6 hours for
the liquid in the cell to be in thermal equilibrium with the nuclear stage at Tc.

To enable rotation of the cryostat, the circulation is stopped by closing and disconnect-
ing the condensing line, the 1 K-pot line, and the still line. In the single cycle mode, the
evaporated 3He is absorbed by a cryopump located around the still outlet. The cryopump
houses active charcoal fixed on copper substrates which are cooled to ∼ 6 K by a flow of 4He
gas which is evaporated from the dewar bath by a heater. The 4He gas from the bath is
recovered through an axially mounted rotating joint at the bottom of the dewar. The mixing
chamber holds enough 3He to sustain the single cycle mode for up to 30 hours.

2.2 Nuclear magnetic resonance setup

In this section we discuss the two sample setups from 2005 and 2009. The main differences
between the setups are the geometry of the pickup coils, the NMR signal detection and the
setup of the quartz tuning forks. The mechanical properties of the forks are discussed in
section 3.

In our cw-NMR setup we make use of a LC-resonator circuit in a Q-meter-like circuit
where the changes in the susceptibility of the 3He fluid are measured by comparing the
voltage across the inductance L in the presence of 3He liquid to an unloaded inductance L0

of the coil,
L = L0(1 + ζχ(ω)), (30)
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Figure 6: Experimental setup from 2005: the left figure shows the experimental quartz
cylinder with a detector coil at both ends of the NMR sample volume. The right figure
shows schematically the LC-resonance circuit in a Q-meter setup. The superfluid is excited
with a high-Q LC-resonator and changes in the coil inductance are measured. The signal is
compensated by a second phase locked function generator for high resolution measurement.
The differential signal is recorded with the Stanford Research Systems SR560 differential
amplifier. A phase lock-in amplifier (Stanford Research Systems model SR844) is used for
data acquisition.

where χ(ω) = χd(ω) − iχa(ω) is the dynamic susceptibility and ζ the filling factor. The
absorption χa and dispersion χd components are measured simultaneously. The filling factor
is a measure of the volume of the 3He affected by the resonance coil. At fixed resonance
frequency, the magnetic field is swept and χ changes. The quality factor Q of the oscillator
is defined as

Q = ω
stored energy

dissipated power
. (31)

Using superconducting materials in the circuit resistive losses are reduced. The dielectric
losses in special high-Q capacitors are insignificant [47]. In the setups described below, the
detector coils are made of thin (50 µm) Nb/Ti superconducting wire in a Cu/Ni matrix.

The 2005 setup had above the sintered silver heat-exchanger two quartz tuning forks
below the 3He NMR sample volume. The main volume of the long quartz cylindrical container
with superfluid 3He was in thermal contact with the fork volume through a tiny orifice
(Ø = 0.75 mm) in the bottom plate, see Fig. 6. This division plate prevents vortices from
entering the main volume from the volume with the forks.

Two NMR detector coils are placed close to the ends of the cylindrical container. The
pickup loop close to the NMR coil provides loose coupling of the measurement equipment
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Figure 7: Experimental setup in 2009: the left figure shows the experimental quartz cylinder
with the 3He superfluid. Below the main volume, two quartz tuning forks are located in an
isolated volume which separates the sinter volume from the main volume. The temperature
within the fork volume is dominated by the quasiparticle flux from the main volume. At
both ends of the main volume, two detector coils measure the superfluid 3He response.
After amplification at low temperatures, the signal is compensated with a second function
generator in the Stanford Research Systems SR560 differential amplifier. Data acquisition
is established by a phase lock-in amplifier (Stanford Research System model SR844)

to the tank circuit. The compensation signal from a second function generator is phase
locked to the resonance circuit function generator and the combined signal is amplified at
room temperature with a Stanford Research System SR560 differential amplifier. A lock-
in amplifier (Stanford Research Systems model SR844) is used for data acquisition. The
resonance circuit was tuned to νrf = 965.0 kHz which corresponds to a Larmor field of
HL = 29.75 mT in the superfluid 3He. The tank circuit has a quality factor of Q = 6050.
The field inhomogeneity was measured a number of times (after different cool downs to
liquid helium temperatures) in the Fermi-liquid state with low enough excitation not to
saturate the signal. The NMR line shape was distorted and far from ideal Lorentzian.
The determination of field inhomogeneity by fitting the superfluid NMR line shape with
calculations gave consistently ∆H/H ≈ 8.8 · 10−4 at all measured temperatures.

The 2009 setup had above the sinter two quartz tuning forks in an isolated volume
separated with a second orifice (Ø = 0.3 mm) from the sinter volume, see Fig. 7. Since the
upper orifice is much larger, the quasiparticle flux from the main volume dominates the
quasiparticle density in the fork volume. In effect, the temperature measured by the forks
reflects the temperature of the superfluid in the main volume. This fork setup allows for
measurements of the thermal signal from the dissipation produced by the propagating vortex
front when it replaces vortex-free counterflow with the equilibrium vortex state. The fork
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together with the orifice forms a bolometer and is able to measure thermal fluctuations on
the order of 0.1 pW in the background heat leak [48].

The main sample volume is a cylindrical container with a NMR resonator coil at each
end. The NMR coil geometry is not of Helmholtz type, where the separation d between the
coils is equal to the radius of the coils. Compared to the 2005 setup, the coils here had a
smaller packing factor, i.e. the volume of the sample sensitive to the NMR oscillating field,
but had a 3÷ 5 times better signal-to-noise ratio due to the addition of a cold pre-amplifier:
the resonance circuit has a pre-amp at 4K and a second amplifier at room temperature
[49]. The resonance frequency of the circuit is νrf = 1.967 MHz, which corresponds to a
Larmor field of HL = 60.65 mT. The measured field inhomogeneity in the NMR response
was ∆H/H = 8.3 ·10−4. The circuit had a quality factor of Q = 3900. The transverse rf field
of the spectrometer coil was Hrf = 3.4 nT and the coil had an inductance of L = 12.7 µH
[49]. The NMR magnet produces magnetic fields up to at least H = 61 mT for measurement
with Larmor resonance frequencies at νrf = 2 MHz. The typical sweep rate of the NMR
field is Ḣ = 9 ÷ 13 µT/s. In the spectra analysis, the magnetic field value H is obtained
by measuring the current through the coil. The actual field value lags behind owing to the
L/R time constant of the sweep magnet. In the spectrum analysis a small linear correction
is applied to the field value H , such that the NMR line shapes (absorption as a function of
magnetic field) in up and down sweeps of the magnet overlap.
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3 Quartz tuning forks in superfluid 3He

Mechanical oscillators submerged in a superfluid are useful tools to study the hydrodynamic
properties of quantum fluids. It was the torsional oscillations experiments by Andronikashvili
[50, 51, 52] (using a stack of closely spaced discs) that observed the normal (ρn) and superfluid
(ρs) components in He II. In more recent studies, alternative types of oscillators have been
used: i) spheres [53, 54], grids [55, 56], and wires [57] in 4He; ii) grids [58], and wires [59]
in 3He; iii) wires [60] in 3He-4He mixtures. In superfluid 3He, vibrating wires are typically
used to measure the viscosity as a function of temperature or dissipative effects by attached
vortex lines. A vibrating wire consists of a thin superconducting wire, either straight or
looped, in a static magnetic field, where the drive originates from the Lorentz force induced
by the oscillating current through the wire. Operating at relatively low frequencies (on the
order of 1 kHz), these wires have to be very thin to become sensitive at the very lowest
temperatures. Recently, factory machined quartz tuning forks were proposed as a new type
of mechanical oscillator in superfluids. Forks are piezoelectric resonators, which are cheap,
robust, and easy to install. For the use in electronic watches, the forks are frequency tuned to
32.768± 0.06 kHz. It was hoped that this property would give reproducible results between
different forks when used in superfluids, but this appeared not to be the case.

In this chapter we describe our collaborative research of quartz tuning fork, which resulted
in publications [P8] and [P9]. We describe the mechanical properties of the fork in vacuum
and when submerged in a (super)fluid. The response of the fork in 3He is discussed in the
linear regime in the normal and superfluid state. The measurements are compared with
results of vibrating wire experiments. As an illustration of the sensitivity of the forks, an
example of a bolometric measurement is given: the fork’s response shows an image of the
NMR line shape due to changes in the quasiparticle density when the NMR line shape of
the superfluid 3He-B is scanned at ultra low temperatures. We discuss a set of experiments
in which forks driven at high velocities are used as a generator of quasiparticles and vortex
tangles. We conclude with a demonstration of Andreev reflection: the screening effect of
quasiparticles by vortex tangles as measured by a detector fork at low velocity.

3.1 Mechanical properties and hydrodynamics

The mechanical properties of the fork are discussed in vacuum and the model is ”dressed
up” by including mass enhancement effects due to the oscillating fluid close to the surface
of the fork. When the fork is driven at sufficiently small amplitudes using a harmonic force
F = F0 cos(ωt), the drag force is linear in the velocity dependence. The equation of motion
of the prong is

d2x

dt2
+ γ

dx

dt
+

k

m
x =

F

m
. (32)

Here the parameters are the effective mass m, drag coefficient γ, the spring constant k and the
driving force F . The equation has the harmonic solution x(t) = xa(ω) sin(ωt)+xd(ω) cos(ωt),
where xa and xd are the absorption and dispersion, respectively. At resonance ω0 =

√
k/m,

the mean absorbed power 〈F dx/dt〉 = F0ωa/2 is at maximum (where F0 is the amplitude of
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Figure 8: Quartz tuning fork geometry and electrical circuit diagram: Left : In the 2005 setup
we used forks with L = 3.12 mm, W = 0.352 mm, T = 0.402 mm, and D = 1.0 mm. After
replacing the magnetic leads on the fork with superconducting wire, the measured resonance
frequency was f0 = 36293 Hz. The quality factor Q of the fork at room temperature in
vacuum was Q = f0/∆f ≈ 2.7 · 104. Right : An attenuated function generator drives the
fork. The deflection of the fork generates a current (piezo-electric effect), which is measured
– after conversion to voltage – with a lock-in amplifier.

the harmonic force). The quality factor of the fork is defined as

Q =
ω0

∆ω
, (33)

with ∆ω = γ the full width of the resonance curve at half of the maximum power.
Applying an oscillating voltage U = U0 cos(ωt) on the electrodes at the base of the fork,

the piezoelectric effect excites the prongs. The stress of the deflection induces a current
proportional to the derivative of the deflection

I(t) = a
dx(t)

dt
. (34)

The parameter a can be calibrated by comparing equation (32) with the corresponding
differential equation for the current

d2I

dt2
+

R

L

dI

dt
+

I

LC
=

1

L

dU

dt
(35)

and equalizing ω2
0 = 1/(LC), γ = R/L, and using equation (34), 1/L = (F0/U0)a/m.

The correspondence is completed when the electrical driving power U2
0 /(2R) is equal to the

dissipated power 2 · F 2
0 /(2mγ) of the two prongs. The connection becomes

F0 = (a/2)U0, (36)

R = 2mγ/a2, (37)

L = 2m/a2, (38)

C = a2/(2k). (39)
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From equation (37) parameter a can be determined by using γ = ∆ω, the width of the
fork resonance curve, and the 1/R dependence from the linear slope in the experimental
I0(U0) dependence. Here the nought (zero) refers to the fork at resonance. The resonance
curves in vacuum are

Ia =
a2U0

2

mγω2

(mγω)2 + (mω2 − k)2
=

I0(∆ω)2ω2

(∆ω)2ω2 + (ω2 − ω2
0)

2
(40)

Id =
a2U0

2

ω(mω2 − k)

(mγω)2 + (mω2 − k)2
=

I0∆ω ω (ω2 − ω2
0)

(∆ω)2ω2 + (ω2 − ω2
0)

2
(41)

The fork submerged in a viscous fluid experiences drag from the boundary layer. The depth
of the penetration into the fluid is

δ =

√
2ν

ω
=

√
2η

ρω
, (42)

where ω is the angular frequency of the oscillation, while η and ν = η/ρ are the dynamic and
kinematic viscosities of the fluid with density ρ. The back flow effectively enhances the mass
of the prongs compared to the prongs in vacuum. The additional force leads to a reduction
of the resonance frequency ω, while the resonance curve increases in the width γ:

ω2
0 = ω2

0vac(mvac/m), (43)

γ = γvac(mvac/m) + b/m. (44)

Here b characterizes the potential flow field around the fork, which depend on the geometry,
the viscosity η and the applied frequency ω.

3.2 Tuning fork response in the linear regime

Since the drag on the prongs is a function of the temperature-dependent viscosity of the
fluid, the fork can be used as a secondary thermometer. The left panel in Fig. 9 shows the
forkwidth ∆f as a function of temperature, calibrated against a melting curve thermometer.
Above the superfluid transition temperature Tc the viscosity of normal 3He varies as η ∝ T−2

and the forkwidth follows the 1/T behaviour from Fermi-liquid theory, see right panel Fig. 9.
Vibrating wires show close to Tc the so-called viscous anomaly, i.e. deviation from viscous
response [62], while the forks do not.

Cooling 3He through Tc, the fork response expressed in ∆f decreases rapidly when en-
tering the superfluid A-phase and a discontinuity is observed at the AB-phase transition at
TAB. Further cooling in the B-phase shows a continuous decrease in ∆f , primarily caused
by the rapid decline of the normal component ρn. Below 0.3 Tc the 3He-B superfluid is in the
ballistic regime and the dependence can be extrapolated using Q = f0/∆f ∝ exp(∆/kBT ),
where ∆(T, p) is the superfluid energy gap. The proportionality factor in this calibration can
be fixed at one known temperature. To summarize the calibration scheme: down to 0.3 Tc

the fork is calibrated against the MCT, while in the ballistic regime, the forkwidth follows
the exponential dependence on the quasiparticle density.

In the ballistic regime, minute changes in the fluid temperature can be observed in the
fork response ∆f . As an illustration of this sensitivity, we show the fork response ∆f when
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Figure 9: Resonance width of the quartz tuning fork in 3He-B at 29 bar pressure. Left panel :
Measured (circles) forkwidth ∆f as a function of temperature T . The width of the fork is
strongly reduced when cooled through Tc where the behaviour changes from Fermi-liquid
to superfluid. The solid line is the predicted behaviour of a vibrating wire resonator with
the same density ρ and resonant frequency f0vac [61]. The thickness of the wire is fixed to
0.25 mm, which is comparable to the dimensions of the fork’s prong. Right panel : Measured
resonance width of the fork (circles) above Tc as a function of inverse temperature T . The
solid line is a linear fit of ∆f versus 1/T . The dashed curve shows the effect from a viscosity
anomaly close to Tc as measured with a vibrating wire in [62]. The viscous anomaly is not
observed in the measurements of the fork.

49.5 50 50.5 51

H, mT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
M

R
 a

b
so

rp
ti

o
n

, 
m

V

0.97

0.98

0.99

Δ
f,

 H
z

49.5 50 50.5 51

H, mT

0.97

0.98

Δ
f,

 H
z

Magnetizing

Demagnetizing

T = 0.21 Tc

P = 29 bar

Figure 10: Bolometric measurement of the NMR absorption using a quartz tuning fork. Left
panel : The NMR absorption spectrum at zero rotation velocity is measured as a function of
the magnetic field. Right panel : The absorption Ia of the fork is recorded during the sweep of
the magnetic field of the NMR. The reconstructed fork response ∆f is shown for an upward
(top figure) and downward (bottom figure) sweep of the NMR field intensity. Differences
between the line shapes are caused by the finite relaxation time of the bolometer.
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the NMR spectrum of the simple flare out texture is measured. In this exercise the fork
is at resonance ω0, while the NMR absorption and dispersion signals were recorded. The
current in the NMR magnet was swept up/down, to record the entire NMR spectrum. The
different absorption levels during the NMR sweep change the quasiparticle density which is
detected by the fork. When the NMR scan has been completed, the response in the fork
width can be reconstructed from its absorption and dispersion signals as a function of time.
After the NMR scan, the full spectrum of the fork resonance spectrum is measured and used
as a reference in the conversion of the forks absorption signal to ∆f . Here we make use of
the relation ∆f · Ia = constant, where Ia is the absorption of the fork at resonance. Fig. 10
shows both the NMR absorption and the fork response during an upward/downward sweep
of the NMR field intensity. Differences in the fork response during the up- and downward
sweep of the NMR are due to relaxation after a significant absorption of heat, in particular
at the Larmor field H = 50.6 mT.

3.3 Andreev reflection from a vortex tangle

At low excitations, the response of the fork’s velocity ẋ to the driving force F is linear, i.e.
ẋ ∝ F . In the low temperature regime, the motion of the fork prongs are damped by the
scattering of quasiparticle excitations in the superfluid. The damping force per unit area is
[63]

FT = pF〈nVg〉
[
1− exp

(−λ pF

kBT
ẋ

)]
, (45)

where Vg is the group velocity of the excitations, pF the Fermi momentum, ẋ the velocity
of the prong, λ a constant characterizing the velocity field around the object, and 〈nVg〉 =
n(pF)kBT exp(−∆/kBT ) represents the quasiparticle flux. Here n(pF) is the density of states
in momentum space. When pFẋ≪ kBT , the first three terms of the Taylor expansion yield

FT = n(pF)p2
Fλ exp(−∆/kBT )

[
1− λpF

2kBT
ẋ

]
ẋ. (46)

The first term is the velocity-independent damping coefficient γ which is responsible for the
linear damping force F lin

T = γẋ. The second term is the velocity-dependent term β(ẋ) =
γλpFẋ/2kBT is the contribution from Andreev reflection to damping. The total damping
coefficient γ−β(ẋ) relates to the linewidth ∆f , hence the contribution of Andreev reflection
can be measured. Fig. 3 in publication [P9] shows the measured linewidth ∆f as a function
of velocity ẋ. Initially ∆f is constant, but decreases with increasing velocity ẋ ∝ F . Here
quasiparticles are screened by the vortex tangle around the fork. The exchange of the
momenta of the scattered quasiparticles is of the order of (∆/EF)pF, where EF is the Fermi
energy. At sufficiently large drive, ∆f starts to increase again. The velocity where this
occurs is the pair breaking velocity ∼ 1 mm/s (in the right panel), above which the fork’s
motion produces pair breaking and/or generates turbulence, similar to the case of vibrating
wire experiments [59, 63].
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Figure 11: Andreev reflection on a vortex tangle: Left panel : The relative change in (cor-
rected) forkwidth of the detector fork plotted as a function of the drive velocity of the
generator fork. With increasing drive the generator fork creates a tangle which partially sur-
rounds the detector fork. Quasiparticle reflection on the vortex tangle (Andreev reflection),
reduces the damping on the detector fork. The inset shows the positions of the two forks in
the quartz tube. The temperature of the fluid is T = 0.23 Tc, i.e. it is in the ballistic regime.
Right panel : Andreev reflection: reflection of the resonance amplitude of the detector fork to
a pulsating drive of the generator fork. During a pulse, the generator fork creates a vortex
tangle, which shields the detector fork from quasiparticles. The damping is reduced and the
resonance amplitude increases.

A more illustrative example of Andreev reflection is the experiment with two forks, where
one fork acts as a generator and the other as a detector. The two forks are located in the
bottom section of the quartz sample tube in the setup of 2005, as shown in Fig. 6. The
forks partially block the 6 mm diameter quartz tube, which connects to the sintered heat
exchanger. The end of the quartz tube is ∼ 2 mm from the sintered heat exchanger. When
the generator fork is excited at high drive, the heat flux Q̇ causes a temperature rise which is
registered by the the detector fork. Heat carried by the quasiparticles flows along the tube to-
ward the heat exchanger. The thermal resistance RT = ∆T/Q̇ = R0(kBT/∆) exp(∆/kBT ) is
dominated by the area Ah of the restriction. In the blackbody radiator model for quasiparticle
flux, the thermal resistance is defined as R0 = 2π2~3/(p2

F∆kBAh) [64]. In our measurements
we have determined the area of the constriction as Ah = 3 mm2. For the procedure of this
measurement, see Fig. 4 in publication [P9]. The forks experience a temperature increase
which is reflected by the increase in ∆f .

The left panel of Fig. 11 shows the relative change of the forkwidth of the detector, i.e.
corrected for the temperature increase, as (∆f − ∆f0)/∆f0, where ∆f is the measured
response of the fork and ∆f0(T ) is the temperature-dependent width in the absence of
screening. The right panel shows the recorded response of the detector fork where the drive
of the generator fork is pulsed. The detector fork is driven at low velocity (below 0.5 mm/s),
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while the square pulses of the generator are at relatively high velocity (5.6 mm/s). Although
the generator fork increases the temperature of the fluid, the measured response in the
detector fork is an apparent cooling. This phenomenon represents Andreev reflection of
quasiparticles from the vortex tangle created by the generator fork, which partially surrounds
the detector fork. The screening lowers the quasiparticle density around the detector, which
is reflected by a decrease in its fork width ∆f .
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4 Textural energies and NMR spectra

In this section we discuss the results published in [P1] on the flare out texture of the order
parameter and the comparison of the measured NMR line shape with numerical calculations.
The detailed analysis was critical for the interpretation of the counterflow spectra and for
determining the number of vortex lines, which was needed in publications [P2,P4-P6].

4.1 Flare out textures of 3He-B in applied flow

The order parameter texture of superfluid 3He-B in a cylindrical container with an applied
magnetic field H parallel to the cylindrical axis is axially symmetric. Without a magnetic
field an in-plane texture is also possible [66], but we concentrate on the axially symmetric
case. Thus ideal flare-out textures in the absence of textural defects have two important
properties: they are (1) axially symmetric and (2) they can be represented with a continuous
function. A priori, the orientation of the n̂-vector at the center and at the cylindrical wall
is already known: the n̂-vector in the center (i.e. r = 0) is parallel to ~H , hence β = 0.

Additionally, the Cooper Pair angular momentum density ~L close to the surface must be
perpendicular to the boundary, otherwise mass flow would be through the surface. With
θ = arccos(−1/4), the condition for the angle β becomes sin2 β(R) = 0.8 (i.e. β ≈ 63.4◦).
Thus in the flare out textures the n-axis orientation changes smoothly from the center of the
container from β(0) = 0◦ towards the container surface with β ≈ 63.4◦.

When the flow is applied by rotating the container, the superfluid component stays in
rest, while the normal component co-rotates with the container. The orbital anisotropy axis
l̂ wants to align in the direction of the counterflow (~vn − ~vn), which couples the orientation

of the density anisotropy δρ(n) = ρ
(n)
⊥ − ρ

(n)
‖ . This enhances the anisotropy energy FHV (8).

Finally the gradient energy FG (5) smoothens out the local variations and produces the
smoothly varying distribution of n̂ orientations. The result is the so-called simple flare out
texture in Fig. 12, as expressed in terms of the azimuthal angle α and polar angle β in the
inset. The simple flare out texture does not change as a function of the rotation velocity up
to Ωt1 & 0.2 rad/s 2.

Sufficiently large flow finally tilts n̂ enough, such that in a region where the applied flow
is largest, the angle β becomes nearly constant. This region is at large radii close to the
cylindrical surface. In NMR absorption experiments this results in the first appearance of
the cf-peak at the critical rotation velocity Ωt1. This texture is the parted flare out texture.
Fig. 13 shows in the bottom part a measurement and the corresponding NMR spectrum
of the calculated texture. Increasing the applied flow further, results in an extension of the
region of nearly constant polar angle β and a correspondingly larger counterflow peak height.

An abrupt transition occurs at the critical rotation velocity Ωt2 where the angle β now
has flipped over at the surface boundary. In the spectrum the texture change results in the
widening of the spectrum, and a shift of the cf-peak. The smoothly varying texture with
β(0) = 0◦ to β(R) ≈ 116◦ crosses in the vicinity of the cylindrical surface the 90◦ angle.
This texture is known as the extended flare out texture. Here in a region close to the surface

2In our publication [P1] the critical rotation velocity is expressed as Ωc1, but this notation is here already
reserved for the Feynman critical velocity for the creation of a single vortex.
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Figure 12: The simple flare out texture. The measured and calculated NMR line shapes of the
simple flare out textures of 3He-B in a cylindrical cell with radius R = 3 mm. The measured
spectra are presented as a function of the magnetic field H , or equivalently the frequency
shift ∆ν = ν−νL from the Larmor frequency νL, or as a reduced frequency shift ∆ν̃ = sin2 β.
On the vertical scale the signal amplitude is the normalized dynamic susceptibility χ′ from
(19). The associated textures, i.e. n̂-vector representation (by means of the angles α and
β) as a function of reduced radius are depicted in the inset and on the left. Parameters of
the simple flare out texture: fork temperature T = 0.251 Tc, pressure p = 29 bar, rotation
velocity Ω = 0.2 rad/s with no vortices, cw-NMR frequency νrf = 1.967 MHz and Larmor
field HL = 60.65 mT.

boundary where the counterflow is the largest, the angle β again is constant. Increasing
the applied flow results in a larger region of constant β. The top graph in Fig. 13 shows a
measurement of this texture and the corresponding fitted calculation.

The critical velocities Ωt1 and Ωt2 depend on the fluid’s pressure, temperature, and the
applied magnetic field, as well as the radius R of the container. Fig. 14 shows our results
a cylindrical container with radius R = 3 mm measured at a liquid pressure of 29 bar. A
comparison is made with the data of Korhonen et al. [38]. The critical velocity Ωt1 in our
measurements is roughly constant down to ∼ 0.4 Tc, but increases rapidly with decreasing
temperature below 0.4 Tc. The transition Ωt1 is a 2nd-order phase transition and does not
show hysteresis within the precision of the used velocity step ∆Ω = 0.025 rad/s. The rapid
increase of Ωt1 with decreasing temperatures shows that NMR experiments become more and
more problematic, if the analysis is based on the variations in the counterflow peak height:
the cf-peak simply vanishes even at high rotation velocities. However, our measurements
show that at 0.2 Tc, the contribution of the counterflow to the absorption spectrum is still
appreciable if the applied flow is above ∼ 0.9 rad/s.

The critical transition at Ωt2 shows similar behaviour: below 0.4 Tc the transition ve-
locity increases rapidly. Large hysteresis is seen as a function of the applied velocity and
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Figure 13: Order parameter textures and NMR spectra in applied flow. The measured and
calculated NMR line shapes of the parted and extended flare out textures are compared for a
cylindrical sample of 3 mm radius. The associated textures, i.e. n̂-vector representation (by
means of the angles α and β) as a function of reduced radius are depicted in the inset and on
the left. Parameters of the parted flare out texture: fork temperature T = 0.313 Tc, pressure
p = 29 bar, rotation velocity Ω = 0.9 rad/s with vortex cluster Ωv = 0.1 rad/s, cw-NMR
frequency νrf = 965.0 kHz and Larmor field HL = 29.75 mT; extended flare out texture:
T = 0.359 Tc, Ω = 0.7 rad/s with no vortices, νrf = 965.0 kHz and HL = 29.75 mT. In the
calculations the temperature was treated as a fitting parameter since it controls the frequency
shifts via the Leggett frequency ΩB(T ). Other fitting parameters; parted flare out texture:
field velocity parameter λHV = 3.14 kg/m3T2 and field inhomogeneity ∆H/H = 8.79 · 10−4;
extended flare out texture: λHV = 5.85 kg/m3T2 and ∆H/H = 8.79 · 10−4.
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Figure 14: Textural phase transitions: the figure shows the critical velocity Ωt1 (between
simple and parted flare out textures) and Ωt2 (between parted and extended flare out textures)
given as the cf velocity Ωcf = Ω−Ωv versus reduced temperature. The first critical velocity
Ωt1 is constant down to 0.4 Tc and then increases rapidly. The second critical velocity Ωt2

was measured in setup 2005 at constant rotation velocity by sweeping the temperature
(T ↑: increasing temperature), and in the setup 2009 at constant temperature by varying
rotation velocity (Ω ↑: rotation is increased in steps ∆Ω). The pressure of the 3He liquid was
p = 29 bar. Our results are compared with data of Korhonen et al. (1990) at p = 10.3 bar
pressure [38]. Larmor field values are given in the legend.

temperature. In the parted flare out texture, the transition velocity grows rapidly larger
with decreasing temperature such that below 0.3 Tc the velocity needed for the transition
was not achieved up to the critical velocity Ωcr where vortices spontaneously form.

The critical textural transition between the parted and extended flare out textures at Ωt2

shows hysteresis both in temperature as in the applied velocity. For an illustration of these
phenomena, see Fig. 5 and Fig. 6 in publication [P1].

4.2 Counterflow and density anisotropy

The counterflow between the normal and superfluid components is maximal when the rotat-
ing superfluid is vortex free. When vortices enter the system, the counterflow is reduced and
this is reflected as a decrease in the counterflow peak height. Since the pickup coils surround
the whole cross section of a part of the cylindrical container only the global counterflow can
be measured. In publication [P1] we studied the height and the frequency shift of the coun-
terflow peak as a function of temperature, as well as a function of the number of vortices.
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Figure 15: NMR absorption spectra as function of the size of the central vortex cluster:
The left figure shows the experimental (thick solid) and the optimal calculated (dashed)
line shape of vortex free flow at 0.232 Tc rotating at Ω = 0.9 rad/s. The NMR resonance
frequency was at νrf = 1.97 MHz. The optimal value for the field velocity parameter was
λHV = 0.94 kg/m3T2. The thick solid line represents a measured spectrum for vortex-free
counterflow to which the calculations have been fitted (dashed line shape). The gray curves
show the calculated line shapes with an increasing number of vortices; the differences between
the adjacent lines shapes is ∆Ωv = 0.05 rad/s. With increasing number of vortices, the
counterflow peak decreases. The top right panel shows the absorption at the counterflow
peak as a function of the vortex number N and the corresponding value of Ωv. The bottom
right figure shows the frequency shift of the counterflow peak as a function of N and Ωv.

Earlier systematic measurements were performed down to ∼ 0.45 Tc and we extended this
range down to 0.2 Tc [6, 9]. Fig. 15 shows the measured and calculated NMR line shapes
in rotation with varying number of vortices in the parted flare out texture. At low vortex
numbers, the counterflow peak height reduces rapidly, while at a large number of vortices the
cf-peak becomes less sensitive. The cf-peak vanishes completely when the transition velocity
Ωt1 = Ω − Ωv is reached. This condition is valid when the number of vortices expressed as
Ωv is small compared to the drive Ω. With increasing number of vortices the frequency shift
decreases until close to Larmor frequency where the cf-peak disappears. The graphs on the
right in Fig. 15 show the cf-peak height and frequency shift as a function of the applied flow
and number of vortices.

The integrated absorption in the spectra is a function of the rf excitation applied to
the NMR coil, the amplification of the detector, and the static susceptibility χB/χN of the
3He fluid. Hence, it is preferred to perform the analysis of the cf-peak height dependence
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Figure 16: Fitting procedure for the field velocity parameter λHV: the main panel shows
the measured spectrum (blue) of the superfluid at 0.34 Tc rotating at 0.9 rad/s with a vortex
cluster of Ωv = 0.1 rad/s. The calculated spectrum (dashed green) is shown for the optimal
value λHV = 5.3 kg/m3T2. The different line shapes drawn with gray curves are calculated by
varying λHV around the optimal value (the bottom inset shows the corresponding n̂-vector
textures). This gives the dependence of the cf peak on λHV, which is used for estimating the
uncertainty in λHV. Taking the absolute difference between the measured spectrum (blue)
and the calculated spectrum (dashed green) isolates the surface peak (red). Note that the
area under the surface peak is the main contributor to the uncertainty in λHV as it directly
influences the normalization of the measured spectrum.

on the number of vortices in the normalized spectrum. In the normalized spectrum, the
counterflow peak height depends on the alignment of the orbital anisotropy axis l̂ with the
global flow, and reflects the change in density anisotropy δρ

(n)
‖ − ρ

(n)
⊥ expressed through the

parameter λHV. By comparing the experimentally obtained spectra to the calculated spectra,
the density anisotropy parameter λHV can be determined.

Fig. 16 shows a line shape measurement of the order parameter texture in a cylindrical
cell with radius R = 3 mm. The optimal value for the parameter λHV was found when the
cf-peak height and frequency shift agreed with those of the calculated NMR line shape. Since
the field inhomogeneity also influences the absorption at the cf-peak, the solution for λHV is
not uniquely determined. However, a unique solution can be found when λHV is extracted
using both the parted and the extended flare out texture measured at the same applied
flow and temperature. Additionally, λHV can also be extracted from the first appearance of
the cf-peak in the parted flare out textures, but with loss of precision. The uncertainty in
the optimal value of λHV was determined by relating the uncertainty in the area under the
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Figure 17: Field velocity parameter λHV as a function of inverse temperature. Our data
using NMR line shape measurements (gray markers, 350 individual NMR spectra), λHV was
obtained using the fitting procedure as described in Fig. 16. Blue markers show averages
within the inverse-temperature bins; on these markers the error-bars indicate ±1 standard
deviation. In the low temperature regime, data is shown where λHV is obtained from fitting
λHV in experiments with magnons in the potential well [67]. In the high temperature regime
data is shown from Korhonen et al. [42]. Dashed and solid lines represent the model of the
field velocity parameter λHV (8) with the energy gaps ∆sc and ∆scaled, respectively.

measured absorption line shape to the cf-peak height in a linear manner. From the upper and
lower boundaries of the cf-peak height, the corresponding upper and lower boundaries of λHV

were determined, see top inset of Fig. 16. The bottom inset shows the n̂-vector orientations
in the calculated order parameter textures, as expressed in terms of the angles α and β. In
general, the counterflow peak depends strongly on λHV in the measured temperature range
where λHV itself changes almost two orders of magnitude.

The difference between the measured and calculated NMR line shapes in Fig. 16 reveals
an absorption peak in the measured spectrum. The peak is only present in the extended
flare out texture below ∼ 0.45 Tc and is never observed in the parted or simple flare out
texture. In publication [P1] we have concluded that this absorption relates to a spin-wave
resonance in the potential well near the surface boundary as earlier suggested by Salomaa
[39]. Fig. 12 in publication [P1] shows its reduced frequency shift as a function of temperature
and the inset shows the corresponding potential well, U ∝ sin2 β, from the calculated order
parameter texture. The frequency shift of the peak with decreasing temperature corresponds
qualitatively with the change in the potential well.

Measurements on the parameter λHV using the procedure as depicted in Fig. 16 have
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been performed with a variety of vortex cluster sizes (Ωv = 0, 0.1, 0.25 rad/s) and rotation
velocities (Ω = 0.4 ÷ 2 rad/s). Fig. 17 shows the resulting parameter λHV as a function of
temperature. The two curves show the predictions from theory using different values for the
energy cap ∆(T ), see equation (8). From the measurements below T ∼ 0.3 Tc the data show
better agreement with the scaled energy gap, ∆scaled, than with the strong-coupling corrected
energy gap from weak-coupling theory, ∆sc. The corrected gap is also known as wc+ (weak-
coupling plus). From the measurements by Davis et al. [40], the extrapolated value for the
gap at p = 29 bar in the low temperature limit corresponds to ∆sc(0) = 1.87 kBTc. The
gap we use is the scaled energy gap, ∆scaled = ∆exp(0)∆sc(T )/∆sc(0), where we use linear
scaling of the strong-coupling corrected energy gap, ∆sc(T ), such that in the low temperature
limit the energy gap corresponds to ∆exp(0) = 1.97 kBTc, as measured by Todoshchenko et
al. [41]. The temperature measurement of the data in Fig. 17 was determined from the
calibrated forkwidth ∆f against the MCT and extrapolated in the ballistic regime T < 0.3 Tc

using the dependence of the width on the quasiparticle density: ∆f ∝ exp(−∆/kBT ). In the
above described comparison between theoretical curves with different gap values, we rescaled
the temperature axis for both energy gaps such that the appropriate energy gap was used
consistently. For the temperature axis in Fig. 17 we have used the gap ∆exp(0) = 1.97 kBTc.
A rescaling of the temperature axis with ∆sc(0) = 1.87 kBTc moves the points below 0.25 Tc

to slightly lower values, but not significantly. Better agreement with the theoretical curve of
λHV is obtained with ∆exp(0) = 1.97 kBTc.
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5 Vortex dynamics in superfluid 3He-B

5.1 Preparing the Landau state in rotation

In the temperature range 0.7 Tc ≤ T < TAB the dynamics of superfluid 3He-B at p = 29 bar is
overdamped, since the superfluid Reynolds number (29) Reα ≪ 1. Here TAB is the AB-phase
transition, see Fig. 1. In this regime when the rotation velocity Ω is increased from rest to
a final rotation velocity Ωf (spin-up experiment) no vortices are created in the process if
the final rotation velocity does not exceed the critical velocity Ωcr. The normal component
co-rotates at Ωf with the cylinder, while the superfluid is at rest. This is the meta-stable
Landau state in rotation with the kinetic energy Ekin = πρsΩ

2
f R

4/4. Probing the superfluid
order parameter with NMR reveals a large counterflow peak in the spectra. If the system
contains a small number of vortices, these would expand along the cylinder and their number
would remain constant. The vortices would form a cluster in the center of the cylinder. For
a numerical calculation of the reorganization of remanent vortices, see Fig. 2 in publication
[P4]. From this point on, the vortex free state, or the state with a small cluster of vortices,
can be cooled down to a temperature of at least 0.2 Tc without the creation of additional
vortices. This procedure has been crucial in the study of vortex injection experiments as
described in section 5.4.

5.2 Vortex formation in applied flow

The vortex number is not necessarily conserved in applied flow experiments if the superfluid
Reynolds number Reα ≫ 1. Earlier measurements by A. Finne et al. had showed a transition
to turbulence when the rotating Landau state was perturbed by injecting a bundle of closely
spaced small vortex loops [44]. In those experiments, the bundle of loops was released
from the AB interface using the Kelvin-Helmholtz instability of the AB-phase boundary.
After injection, the number of vortices in the B-phase increases rapidly in a sudden short
burst of turbulence. This phase transition in the vortex dynamics marks the onset to the
temperature regime where bulk turbulence becomes possible. The transition temperature is
TBulk

on ≈ 0.59 Tc at p = 29 bar pressure. See Fig. 4 of [P5] and Ref. [33] for a phase diagram.
The onset to turbulence was also observed in experiments where the rotating superfluid in
the Landau state was irradiated with thermal neutrons. Close to the cylindrical surface the
neutron undergoes the capture reaction: n+3

2 He→ p+3
1 H+764 keV. The localized heating

from this exothermic reaction leads to vortex formation via the Kibble-Zurek mechanism
[70, 71, 72, 73]. These vortices are introduced in the form of small rings in the counterflow.
At temperatures below the onset to turbulence they may interact to produce a sudden
turbulent burst of vortex formation.

In this section we describe the process which leads to turbulence in spin-up experiments:
the instability of expanding vortices with respect to loop formation and reconnections at
the cylindrical wall. We conclude this section with the unexpected observation of laminar
vortex flow in the bulk volume in the zero temperature limit. The laminar bulk region is
surrounded by a thin surface layer which coats the cylindrical wall. Within this surface layer
the new vortices are continuously created in surface reconnections.

Remanent vortices in applied flow : The evolution of a low number density vortices at
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zero rotation velocity has been studied by increasing the rotation velocity of the container,
and thereby subjecting the remnants to the applied flow. As a result the remnants start
expanding in order to become rectilinear vortex lines. Typically their both ends are connected
to the cylindrical surface, where these end points describe a helical trajectory during the
spirally expanding motion. At high temperatures these expanding remnants are stable in
the sense that their number is conserved. A pro-found change is observed when the superfluid
Reynolds number becomes sufficiently large at low temperatures, Reα ≫ 1, below some case
dependent onset temperature Twall

on . Below this onset temperature, the expanding vortices
reconnect at the cylindrical wall and produce new independently moving small loops. These
loops similarly start expanding, but when sufficiently many loops manage to interact a
localized burst may take place. As an illustration, a numerical simulation of a vortex ring
colliding with a solid surface is depicted in Fig. 9 of publication [P5]. When a turbulent
burst is observed, enough vortices have been generated to form the equilibrium vortex state.
We have performed measurements of the onset temperature Twall

on using different numbers of
remanent vortices and concluded that the transition temperature Twall

on depends on the initial
number of remnants, their configuration, and the applied counterflow velocity. Although the
process is stochastic in nature, the onset temperature is rather sharp. An illustration of the
transition is depicted in Fig. 3 of publication [P4].

Equilibrium vortex state in elevated rotation: A rotating tilted cylinder with a vortex
cluster in the equilibrium state usually includes some outermost vortices which are not
rectilinear but connect at one end to the cylindrical surface. These so-called seed vortices
where one of vortex ends connects to the curved surface and the other end connects to the
end plate of the cylinder. The number of seed vortices depends on the size of the cluster
through the rotation velocity Ωv, the length of the cylinder, as well as the tilt of the cylinder
(in our experiments ∼ 1◦). See Fig. 4 in publication [P4]. When the flow is increased,
the seed vortices expand along the cylindrical axis with a spiraling motion on the surface
around the axis. The seed vortices become unstable when their motion is underdamped
at Reα > 1. At this onset temperature Twall

on , the vortex number initially increases slowly
with a rate of Ṅ = 0.3 ÷ 2.5 vortices/s and is then followed by a burst of turbulence. At
the moment of the burst, the rate at which the number of vortices increases is beyond
our measurement capability (maximum resolved rate: Ṅ ∼ 5 vortices/s). For examples of
a vortex multiplication measurement, see Fig. 6 and Fig. 7 in publication [P4]. The time
for the burst to occur depends on the applied flow Ωcf ∼ ∆Ω through the step change in
rotation velocity ∆Ω, as well on the temperature: the burst occurs earlier with increasing
flow, as well with decreasing temperature, see Fig. 11 [P4]. With increasing number of
seed vortices or larger applied flow Ωcf , the transition temperature Twall

on increases. For
an illustration of the dependence on the number of seed vortices, see Fig. 18. The figure
shows the probability distribution as a function of temperature at which the system becomes
turbulent. We compare measurements with different number of seed vortices, while the
applied flow is kept the same.

Vortex generation in T → 0 limit: The dynamics of superfluid 3He-B under rotation in
the limit T → 0, where Reα → 1/α ≫ 1, was expected to become turbulent at any condi-
tion. The reasoning was that the damping of vortices at T < 0.3 Tc decreases rapidly since
the quasiparticle density decreases exponentially with decreasing temperature in the ballistic
regime. Measurements in superfluid 4He have been shown to be turbulent in both spin-up

34



0.35 0.4 0.45 0.5 0.55
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y
 o

f 
tu

rb
u

le
n

ce

T/T
c

0.47 T
c

turbulence vortex number 

       conserved

Ωi = 0.13 rad/s

∆Ω = 0.5 rad/s

Ωf = 0.63 rad/s

σ
T

 = 0.019 Tc
Ni,ev ≈ 23

0.35 0.4 0.45 0.5 0.55
0

0.2

0.4

0.6

0.8

1

T/T
c

P
ro

b
ab

il
it

y
 o

f 
tu

rb
u

le
n

ce

0.44 T
c

turbulence vortex number conserved

Ωi = 0.02 rad/s

∆Ω = 0.5 rad/s

Ωf = 0.52 rad/s

σ
T

 = 0.026 Tc
Ni,ev ≈ 2

bottom sample section

Figure 18: Onset temperature measurements with a varying number of seed vortices. A
comparison is made of the onset temperature to turbulence of two cases of equilibrium
vortex states with a different number of seed vortices while the applied flow is identical. In
these experiments the superfluid state was prepared with the equilibrium number of vortices
of which some vortices (seeds) connect to the cylindrical surface. The rotation velocity is
increased by ∆Ω = 0.5 rad/s and the transient process and the final state are observed.
When the final state has counterflow, no turbulent process occurred, and the final state is
marked with a zero. If the transient process was turbulent, the final state of the superfluid
shows no counterflow peak in the NMR spectrum and the state is marked as ”1”. From these
measurements, the onset temperature with a Gaussian width are determined. Left panel :
Rotation step up from Ωi = 0.02 rad/s with approximately 2 seed vortices. Right panel :
Rotation step up from Ωi = 0.13 rad/s with approximately 23 seed vortices. From these two
figures it is concluded that the onset temperature to turbulence Twall

on increases when the
number of seed vortices increases.

and spin-down experiments: see Ref. [68] for measurements in a cylinder and Ref. [36] for
a cubical geometry. The cause of turbulence in 4He is the creation of a turbulent Ekman
boundary layer close to the surface owing to strong surface pinning. However, in our ex-
periments in superfluid 3He-B, vortices are continuously created at the surface boundary
after which the vortices move in a laminar fashion towards the center to form a cluster!
This discovery resulted in publication [P2]. The main difference with superfluid 4He is the
much larger vortex core radius a ∼ 10 − 80 nm, compared to 0.1 nm in 4He. As a result
only weak surface friction is expected on smooth surfaces, such as sapphire or fused quartz.
For our system the expanding/contracting vortex cluster model applies where the essentially
rectilinear vortices move in 2-dimensional spiral motion towards the center to form a cluster.
The time dependence of the rotation velocity of superfluid component is [69]

dΩ(t)

dt
= 2αΩ(t)[Ωr − Ω(t)], (47)

35



0 50 100 150 200
t

0.2

0.3

0.4

0.5

Ω
⇑
, 

ra
d

/s

0 50 100 150 200
 , s

0.7

0.8

0.9

1.0

Ω
⇓, 

ra
d

/s

τ
⇓
= 300 s

Ω
ο

ε Ω
ο

Ω
ο
= 1.1 rad/s

τ
⇑ 

= 360 s

ε = 0.26

T = 0.22 T
c

3 3.5 4 4.5 5
Tc 

/T

10

100

τ 
Ω

0 Spin-up:
Experiment

Experiment
Numerics
Bevan et al. 

Spin-down:

Figure 19: Spin down and spin up experiments on 3He-B at p = 29 bar. Left: The superfluid
vortex flow responses Ω⇑ and Ω⇓ in respectively spin-up and spin-down experiments at
T = 0.22 Tc. Open circles are cf-peak height measurements converted to vortex flow. The
calibration of the cf-peak as a function of applied flow is shown in Fig. 1a in publication [P2].
The solid lines are fits using equation (48) and (50). Right: Normalized characteristic time
constants in terms of τΩ0 = 1/(2α) of the vortical flow as a function of inverse temperature.
The solid line is an extrapolation of the mutual friction parameter α from above 0.35 Tc, as
measured by Bevan et al. [17]. The calculated spin-down simulations are for a cylinder with
a tilt η = 2◦.

where the drive Ωr = Ω0u(t), with u(t) denoting a Heaviside step function. The solution for
the response Ω⇑ with the corresponding relaxation time τ⇑(T ) is

Ω⇑ =
ǫΩ0

ǫ + (1− ǫ) exp(−t/τ⇑)
, (48)

τ⇑(T ) =
1

2α(T )Ω0
, (49)

where ǫΩ0 corresponds to the density of vortex lines at t = 0. In these measurements we
used an experimental calibration of the cf-peak dependence on the global flow. Although
the NMR signal of the cf-peak decreases rapidly with temperature, by applying enough
counterflow by using a large step ∆Ω, the cf-peak is prominent. The left graph in Fig. 19
shows a spin-up measurement where the superfluid velocity increases due to the increasing
number of rectilinear vortices.

In the analysis the transformation of the cf-peak to the superfluid flow Ω⇑ is valid,
since the counterflow vn − vs during spin-up has solid-body form Ω⇑r. Both the height and
frequency shift of the cf-peak recorded during the spin-up measurements agree with those
measured in the calibration, see left graph in Fig. 1 in publication [P2]. The right graph
of Fig. 19 shows the characteristic time (49) in spin-up measurements. If the system would
have been in a turbulent state, the extra dissipation would have moved the data below the
mutual friction line τΩ0 = 1/(2α), which is not observed.
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5.3 Vortex annihilation

A vortex mediates the interaction between the normal and superfluid components by means
of the mutual friction (24). When the fluid is at constant rotation and contains a vortex
configuration which is not the equilibrium state, the vortices reorganize the configuration
through reconnections within the cluster or annihilation at the surface. Examples of non-
equilibrium configurations are randomly distributed remanent vortices and vortex configu-
rations in spin-down experiments. In this section we describe the processes involved during
the spin-down of vortex clusters in superfluid 3He-B in a variety of geometries. The section
is concluded with an experiment where vortices annihilate when the applied flow is reversed,
with a remarkable result.

In the zero temperature limit T → 0 of superfluid 4He, the dynamics of vortices in applied
flow was found to be turbulent [36]. The small core radius a ≈ 0.1nm of the 4He vortex
lines allows for strong surface pinning. The vortex ends on the surface are not immobile, but
less mobile than in the case of 3He-B. The vortex core size in 3He-B is significantly larger,
a ∼ 10− 80 nm, which reduces surface pinning, in particular when the surface is smooth as
is the case in our experimental cylindrical container.

The spin-down response of 3He-B, starting from the equilibrium vortex state, depends on
the geometry of the system. Numerical simulations of a vortex cluster in a cubical geometry
show that the vortex flow becomes turbulent owing to the large perturbation of the global flow
by the corners. Initially, a large overshoot of ∼ 50% is seen to develop in the vortex length
L(t) when kinetic energy is converted to a turbulent tangle in the bulk volume. Thereafter
L(t) decays with the faster rate t−3/2 as expected for a turbulent response [27] owing to the
large reconnection rate in the bulk volume. The turbulence does not develop fully, in the
center of the cube the vortices remain comparatively straight. The overall response in the
line density L(t) is shown in Fig. 18 in [P5].

In contrast, the spin-down of the superfluid in spherical and weakly inclined cylindrical
geometries is laminar. Here the average line density L(t) decays monotonically from L(0),
which is its maximum, with a slower time dependence L(t) ∝ t−1. The expanding vortex
cluster model describes the process of the 2-dimensional spiral expanding motion of almost
rectilinear vortices, see equation (47), which has the solution

Ω⇓(t) = Ω0/(1 + t/τ⇓), (50)

τ⇓ = 1/(2α(T )Ω0). (51)

Fig. 20 shows the decay of the superfluid flow Ω⇓ in a cylinder with a small inclination
angle of η < 1◦ after a rapid deceleration of rotation to zero. The temperature of the fluid
corresponds to Reα ≈ 103. In this measurement the cf-peak in the NMR spectrum was
monitored and later converted to superfluid flow by use of an experimental calibration in
the vortex free state. The cf-peak signal vanishes when the counterflow Ω⇓ drops below the
critical velocity Ωt1 (see section 4.1). To measure the superfluid velocity at a later moment,
the rotation velocity was increased to Ωf = 1 rad/s which brought the cf-peak back and
allowed one more reading to be added to the decay curve.

A naive argument countering the claim of laminar vortex flow could have been that the
signal represents the decay of a Vinen-like random turbulent tangle for which the decay with
the same time dependence in the relaxation of the vortex length L(t) ∝ t−1. This argument
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Figure 20: Spin-down experiment at T = 0.21 Tc and p = 29 bar. Left : The equilibrium
vortex state is at Ω = 0.98 rad/s, but is then rapidly decelerated and reaches zero at time
t = 0. The NMR response of the counterflow peak is monitored as a function of time and
converted to solid-body-like azimuthal flow Ω⇓. Owing to the critical velocity Ωt1, the cf
signal disappears after 3 minutes. At a later moment a fast acceleration of the system to
Ωf = 1 rad/s recovers the cf signal since Ωf−Ω⇓ > Ωt1 and Ω⇓ can be measured. The increase
of rotation velocity with the rate Ω̇ = 0.03 rad/s hardly affects the number of vortices.
(Compared to the much longer spin-up relaxation time in Fig. 19 right). The experiment is
repeated to obtain multiple late time measurements. These correspond to the 3 data points
at late time in the tail of the decay curve. Right : illustration of an expanding vortex cluster
at zero rotation velocity. The homogeneous distribution of the vortices creates a flow profile
similar to the a rotating vortex free state, but with opposite sign of the counterflow.

is simply refuted since the NMR signal indicates here a global azimuthal counterflow arising
from a decaying solid-body density of vortex lines.

Additional details of the spin-down process can be learned from numerical simulations.
In the cylindrical geometry with a small inclined angle (η = 2◦), the vortices in the center are
relatively straight and parallel to the rotation axis. However, close to the surface boundary
sharp kinks are seen on the reconnecting vortices during the spin-down process and the self
induced velocity of the vortices (from the mirror image of each vortex) give rise to a wide
range of local velocities and reconnection processes, which amounts to a disordered surface
layer for the annihilating vortices. The reconnecting events concentrate within a thin shell
adjacent to the cylindrical wall at T ≈ 0.3 Tc, while at 0.22 Tc the width of the layer has grown
towards the center of the cylinder. Hence, the unstable boundary layer appears to expand
in width with decreasing temperature, but this is not visible in the NMR measurements of
the vortices in the bulk. For bulk turbulence to exist in the spin-down measurements, the
perturbation from axially symmetric flow is only significant enough at a large inclination
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Figure 21: Response of the superfluid flow to a reversal in the rotation direction. The
inverted rotation velocity of 1 rad/s is reached at time t = 0 (main panel). First the initial
equilibrium vortex state decays slowly in laminar fashion. After a decay of about 3min the
original vortices of wrong polarization are gone and a slow increase in the number vortices
at correct orientation starts. New vortices are formed at a slow rate (Ṅ ≈ 0.15 /s) in the
single-vortex wall reconnection instability (inset). Finally, a turbulent burst intervenes and
a vortex front is observed to propagate through the NMR detection coil.

angle η. At less than 30◦ < η < 40◦ the flow is still laminar with t−1 time dependence, while
above the response is turbulent with t−3/2 time dependence. See Fig. 2c in publication [P2]
which demonstrates this transition from laminar to turbulent vortex flow in the bulk volume
as a function of the angle η.

The annihilation of vortices is thus laminar in the bulk volume in spin-down experiments
with a weakly tilted cylinder, but what happens when the spin-down is followed by spin-up
which is accomplished by reversing the rotation velocity from +|Ω| to −|Ω| ? Do we get
turbulence from newly formed vortices at the surface (correctly polarized), which interact
with the vortices in the cluster with opposite polarization? The answer is no: the initial
vortex cluster expands in laminar flow until full annihilation, with a few exceptions of rem-
nants. These manage to reverse their polarization as short loops, which flip over [75]. The
measurement in Fig. 21 shows laminar decay even in this complex process of sudden reversal
of the rotation direction. The multiplication process is the single-vortex wall reconnection
instability, which lasts for up to 15min before a local burst intervenes.
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5.4 Propagating superfluid vortex front

In rotating vortex-free counterflow, where the superfluid component is at rest with respect to
the laboratory frame and the normal component co-rotates with the cylinder, an injection of
vortices at low enough temperature results in a local turbulent burst, as described in section
5.2. The burst has not been observed directly to happen inside a NMR detection coil,
presumably because it occurs faster than the sampling time of ∼ 0.25 s of our spectrometers.
However, the evolution of the spin-up process takes a completely different nature after the
burst. In this section we describe the evolution of the moving vertex front and the trailing
twisted vortex bundle behind it at temperatures T < T bulk

on ∼ 0.59 Tc, where the superfluid
Reynolds number Reα ≥ 1.

After the burst, the vortices in the front expand along the axis in spiraling motion into
the Landau state, bring the vortex number behind the front close to equilibrium, and thereby
dissipate the kinetic energy of the vortex-free flow. See Fig. 22 for a description of the setup.
The Landau state is metastable and has a larger free energy than the stable equilibrium
vortex state. Hence the front propagation, which takes place with the velocity Vf , is a direct
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Figure 22: Experimental setup of the vortex front propagation measurements. Left : front
propagation after vortex injection from the instability of the AB-interface. Right : front
propagation after an injection of vortices from the orifice. The passage of the front through
the NMR coils is seen in the NMR spectrum as a decrease of the cf-peak height, or as a small
increase near the Larmor frequency (which reflects the axial flow created by the twist). While
above ∼ 0.4 Tc the front thickness increases during the propagation, below this temperature
the front thickness is constant at ∆(r) ≃ R, the radius of the cylindrical container.
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mark measurements with injection using the AB interface instability and orifice trapping,
respectively. The dashed line is the mutual friction coefficient α(T ) [20]. Dash-dotted,
thin solid and thick-solid lines show model approximations which sequentially account for
dissipation in the large-scale motion, turbulent energy transfer and bottleneck effect. Inset :
value of parameter b(T ) expressing the drop in the energy flux which was used in producing
the thick solid line in the main panel.

measure of the rate of dissipation of the kinetic energy E(t). If one assumes that the vortex
state behind the front is the equilibrium state, the rate of dissipation of the kinetic energy is

dE/dt = −πρsVfΩ
2R4/4. (52)

Earlier measurements by Bradley et al. showed that turbulent decay below 0.2 Tc was found
to be temperature-independent [65]. Our measurements of the front propagation show com-
plex behaviour, which at high temperatures is laminar and depend on the mutual friction
parameter α(T ). At lower temperatures the front propagation velocity is dominated by tur-
bulent dissipation and can be divided into two regimes where the dissipative process changes
in nature. Using Fig. 23 as a guide, a discussion of the different behaviours follows:

Laminar regime: At high enough temperature (≥ 0.4 Tc), front propagation is laminar
and the front velocity is determined by the mutual friction between the normal and superfluid
components: Vf ≈ α(T )ΩR, where α is the mutual friction parameter, see section 1.4. The
reduced velocity vf = Vf/ΩR ≈ α is shown as the dashed line in Fig. 23. In this approximation
inter-vortex interactions are ignored. The vortex array behind the front is twisted, due to the
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azimuthal motion of the vortices in the front. The helical vortex structure has a wave length
which is expected to be proportional to q =

VL,φ

RVL,z
. In the laminar regime the twist behind

the front creates axial flow, which gives a slight correction for the front velocity as shown
by the dash-dotted line in Fig. 23 [77]. The twist slowly unwinds at the ends of the cylinder
where vortices slide over the end plates. The axial flow produced by the twisted cluster is
along the vortex expansion direction close to the cylindrical boundary and in the opposite
direction close to the axis. In the NMR spectrum, axial flow is reflected by an increase in
absorption near the Larmor peak (see Fig. 4 in [P10]). The rate of relaxation of the twist
increases with decreasing temperature [77]. Above 0.46 Tc the front thickness ∆ increases
while it propagates into the Landau state. In numerical simulation using the vortex filament
model with full Bio-Savart equations and an additional solution of the Laplace equation for
solid wall boundary conditions [78], the thickness of the front is ∆(r) ≃ r, see left picture of
Fig. 22.

Dissipation anomaly : Measurements of the front propagation velocity below 0.4 Tc show
larger dissipation than expected for laminar propagation. This is similar to the viscous
anomaly in classical turbulence where the dissipation rate in turbulent flow does not vanish
when the viscosity ν goes to zero. In superfluid 3He-B, we call it the mutual-friction anomaly
and ascribe it to the turbulent motions in the vortex front.

Quasi-classical turbulence: In the quasi-classical turbulent regime, the front propagation
velocity Vf is significantly larger than expected from laminar viscous flow alone. In this
regime, the front has become turbulent which increases the dissipation above that expected
for laminar mutual-friction-resisted front motion. The contribution to this increase in dis-
sipation is determined by the energy flux in classical turbulence ǫ ≃ bK3/2(~r)/L(~r) at an
outer scale of turbulence L(~r), where L(~r) ≃ ∆(r), the thickness of the turbulent front as
a function of the radius of the cylinder. For the classical Kolmogorov-41 regime, bcl ≃ 0.27
[79]. The contribution to the dissipation by turbulence in the front is seen as a relatively
high front propagation velocity compared to the dissipation by laminar viscous flow. In the
figure this is shown as a plateaux in the propagation velocity. The front velocity Vf in the
zero-temperature limit does saturate to an effective αeff ∼ 0.16 as shown by the thin green
line below 0.3 Tc. Influence from the increasing instability of vortex motion at lower tem-
peratures are also seen in the twisted vortex bundle behind the front. The twist reaches a
maximum at 0.45 Tc (see Fig. 5 in [P10]), close the transition from laminar to turbulent front
propagation. Towards lower temperatures vortices become increasingly unstable and more
and more reconnections between the vortices within the bundle contribute to the decrease
of the twist.

Quantum turbulence: Below 0.3 Tc we observe a decrease of the front velocity with de-
creasing temperature. Here the energy cascade to length scales is assumed to reach the
quantum scale ℓ, owing to the rapidly decreasing mutual friction and the subsequent de-
crease in dissipation at all length scales. The length-scale ℓ is on the order of the inter-vortex
distance. At length-scales comparable to, or smaller than ℓ, vortex discreteness and quan-
tization effects become important and the nonlinearly interacting Kelvin waves dominate
the dissipation [27, 85, 86, 87, 88]. Kelvin waves are much less efficient in cascading the
energy transfer down scale than classical hydrodynamic turbulence. The latter is suppressed
at scales of order ℓ. This is called the bottleneck effect and is reflected by the drop in the
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parameter bcl to ≃ 0.1 for T < 0.2 T c (see inset of Fig. 23). The improved transfer of energy
to smaller length-scales below about 0.25 Tc, is seen as the decrease in the propagation ve-
locity of the front below 0.2 T c. The behaviour of the vortex front velocity at all measured
temperatures according to the fitted model is shown by the thick (green) line in the main
graph of Fig. 23.

The latest measurement of front propagation (not included in this thesis) demonstrates
that below 0.3 Tc the vortex density in the front and in the trailing twisted bundle, which
roughly obey the solid-body-rotation rule, starts to decrease from the equilibrium value with
decreasing temperature. This phenomenon is assumed to reflect the growing decoupling of
the superfluid component from the reference frame established by the normal component,
which at these temperatures is rapidly getting more tenuous. Thus full understanding of the
front behaviour in the zero-temperature limit requires further research.
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6 Conclusions

The motion of vortices in superfluid 3He-B becomes inherently unstable below 0.6 Tc, where
the superfluid Reynolds number Reα = (1−α′)/α exceeds unity due to the rapidly decreasing
contribution of the viscous normal component to the mutual friction parameter α. At the
transition temperature T bulk

on = 0.59 Tc (at p = 29 bar) the onset to bulk turbulence is seen
when a vortex bundle of 5 − 10 vortices is injected in the rotating Landau state from the
AB-interface. At a slightly lower temperature Twall

on , turbulence starts when the single vortex
instability takes places repeatedly at the cylindrical surface after increasing the rotation
velocity. The process occurs at expanding remanent or seed vortices along the surface of the
cylinder, where reconnections of the vortex to the wall lead to slow vortex multiplication.
Subsequently, when enough new vortices have been formed a turbulent burst intervenes
abruptly. The onset temperature Twall

on depends on the applied flow and the number of
vortices connected to the cylindrical surface. Although both transitions are stochastic in
nature, the width of the transition is sharp. Our smooth-walled container shows no preferred
location for the turbulent burst to occur, which we interpret to mean that (with the exception
of the neighbourhood of the orifice) there are no isolated strong pinning sites on the container
walls.

What happens after a local turbulent burst in the rotating superfluid? The ends of the
vortices on the cylindrical surface move in helically spiral motion and dissipate the kinetic
energy of the meta-stable Landau state. The spiraling motion of the vortices creates a
twisted state behind the front, which induces axial flow. In the laminar regime (> 0.4 Tc)
the thickness of the front (measured along the cylinder axis) increases during the propaga-
tion, while at lower temperatures the thickness is constant. Below 0.4 Tc the front becomes
turbulent, which increases the dissipation compared to that in laminar flow. However, below
0.3 Tc the energy cascade at length scales comparable to the inter-vortex spacing becomes
important. Here the transfer of kinetic energy to shorter length scales by the Kelvin waves
is much smaller than the transfer of the energy in quasiclassical Kolmogorov turbulence.
The resulting pile-up of energy at the length-scale of the inter-vortex distance is called the
bottleneck effect and is experimentally observed as a plateau-like leveling off of the front
velocity as a function of temperature.

With decreasing temperature the damping of the vortex motion decreases and turbulence
was expected to become more prevalent. This is not the case for the dynamic responses in
a cylindrically symmetric rotating container. We observe laminar global flow in spin-up
experiments if the cylinder originally contained a roughly uniform distribution of remanent
vortices. In the applied flow these remanent vortices expand along the axis on the cylindrical
surface and create new independent vortex loops when the vortices reconnect to the surface.
Rectilinear vortices are formed when these expanding vortices reconnect to each other. The
now polarized vortices spiral in a laminar motion towards the center of the container and
form a cluster. Laminar motion of vortices is also seen in spin-down experiments where
the equilibrium vortex cluster expands after the rotation velocity of the container has been
stopped abruptly. Only vortices adjacent to the container surface create a thin layer of
turbulence when the Kelvin waves and kinks on the annihilating vortices reconnect to the
surface. At temperatures where the superfluid Reynolds number Reα ∼ 103, the laminar mo-
tion of vortices was not expected, since experiments in superfluid 4He show always turbulent
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behaviour under similar conditions. Numerical simulations show that superfluid 3He-B can
become turbulent when the geometry of the container deviates strongly from axial symmetry
or the tilt of the cylinder from the rotation axis is appreciable (> 35◦).

The measured NMR line shapes of rotating superfluid 3He-B at a variety of rotation
velocities and cluster configurations agree with numerical calculations using the hydrostatic
theory of superfluid 3He-B. This allows the extraction of the density anisotropy parameter
λHV. Analysis of the density anisotropy shows that the value for the energy gap in the
zero-temperature limit is higher than predicted by weak-coupling plus theory, and confirms
earlier measurements by Todoshchenko et al. The measured phase diagram of the flare out
textures show that the rotation velocity at which the counterflow peak appears, increases
rapidly with decreasing temperature. At the magnetic field of ∼ 61 mT at 0.2 Tc, the cf-peak
appears above the rotation velocity Ωt1 ∼ 0.9 rad/s, which is experimentally feasible to reach
under those conditions. The transition between the parted and extended flare out textures
occurs at higher rotation velocities. Here the transitions show a large hysteresis in terms
of rotation velocity, and to a lesser extent also in temperature. The hysteresis in rotation
velocity increases rapidly beyond 2 rad/s. Measurements on the static susceptibility agree
with extrapolations of earlier measurements and confirm the currently accepted value of the
Fermi-liquid parameter F a

0 .
Quartz tuning forks with a high quality factor have been investigated and found to be ex-

cellent tools for low temperature measurements where the superfluid is in the ballistic regime.
This is important since the temperature-dependent longitudinal Leggett frequency is practi-
cally saturated below 0.3 Tc and the melting curve thermometer loses thermal contact with
the 3He-B sample. The extreme sensitivity of the fork in temperature measurements allows
to study Andreev reflection of quasiparticles from vortex tangles or to perform bolometric
measurements of vortex front motion.
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