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1. Introduction

Conformal mappings, besides their theoretical significance in complex analysis,

are also important in certain applications, such as electrostatics and aerodynam-

ics [21]. In this paper we study numerical computation of conformal mappings

f of a domain Ω ⊂ C into C. We assume that the domain is bounded and

that there are either one or two simple (and non-intersecting) boundary curves,

i.e., the domain Ω is either simply or doubly connected. It is usually conve-

nient to map the domains conformally onto canonical domains, which are in our

case a rectangle Rh = {z ∈ C : 0 < Re z < 1, 0 < Im z < h} or an annulus

Ar = {z ∈ C : e−r < |z| < 1}. While the existence of such conformal mappings

is expected because of Riemann’s mapping theorem, it is usually not possible to

obtain a formula or other representation for the mapping analytically.

Several different algorithms for numerical computation of conformal mappings

have been described in literature. One popular method involves the Schwarz-

Christoffel formula, which can also be generalized for doubly connected domains.

A widely used MATLAB implementation of this method is due to Driscoll [7]

and FORTRAN version due to Hu [12]. For theoretical background concerning

these methods see [8, 9, 23]. In addition, there are several approaches which

do not involve the Schwarz-Christoffel formula, e.g., the Zipper algorithm of

Version September 30, 2011.
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Marshall [17, 18]. For an overview of numerical conformal mappings and moduli

of quadrilaterals, see [19]. Historical remarks and outline of development of

numerical methods in conformal mappings is given in [8, 15, 20].

In this paper, we present a new method which is based on the harmonic conjugate

function and properties of quadrilaterals, which together form the foundation

of our numerical algorithm. The algorithm is based on solving numerically the

Laplace equation subject to Dirichlet-Neumann mixed-type boundary conditions.

The outline of the paper is as follows: First the preliminary concepts are intro-

duced and then the new algorithm is described in detail. Before the numerical

examples, the computational complexity and some details of our implementation

are discussed. The numerical examples are divided into three sections: validation

against the Schwarz-Christoffel toolbox, simply connected domains, and finally

ring domains.

2. Foundations of the Conjugate Function Method

In this section we introduce the required concepts from function theory and

present a proof of the theorem laying the foundation for the numerical algorithm.

Definition 2.1. (Modulus of a Quadrilateral)

A Jordan domain Ω in C with marked (positively ordered) points z1, z2, z3, z4 ∈
∂Ω is called a quadrilateral, and denoted by Q := (Ω; z1, z2, z3, z4). Then there

is a canonical conformal map of the quadrilateral Q onto a rectangle Rh =

(Ω′; 1+ ih, ih, 0, 1), with the vertices corresponding, where the quantity h defines

the modulus of a quadrilateral Q. We write

M(Q) = h.

Note that the modulus h is unique.

Definition 2.2. (Reciprocal Identity)

It is clear by the geometry [16, p. 15] or [19, pp. 53-54] that the following

reciprocal identity holds:

(1) M(Q) M(Q̃) = 1,

where Q̃ = (Ω; z2, z3, z4, z1) is called the conjugate quadrilateral of Q.

For basic properties of modulus of quadrilaterals, we refer to [16] and [19, Chap-

ter 2].

Remark. The identity (1) leads to a method for estimating the numerical accu-

racy of the modulus. For discussion and several numerical examples see [10].
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2.1. Dirichlet-Neumann Problem. It is well known that one can express the

modulus of a quadrilateral Q in terms of the solution of the Dirichlet-Neumann

mixed boundary value problem [11, p. 431].

Let Ω be a domain in the complex plane whose boundary ∂Ω consists of a finite

number of regular Jordan curves, so that at every point, except possibly at finitely

many points of the boundary, a normal is defined. Let ∂Ω = A ∪ B where A,B

both are unions of regular Jordan arcs such that A ∩ B is finite. Let ψA, ψB be

real-valued continuous functions defined on A,B, respectively. Find a function

u satisfying the following conditions:

1. u is continuous and differentiable in Ω.

2. u(t) = ψA(t), for all t ∈ A.

3. If ∂/∂n denotes differentiation in the direction of the exterior normal, then

∂

∂n
u(t) = ψB(t), for all t ∈ B.

The problem associated with the conjugate quadrilateral Q̃ is called the conjugate

Dirichlet-Neumann problem.

Let γj, j = 1, 2, 3, 4 be the arcs of ∂Ω between (z1, z2) , (z2, z3) , (z3, z4) , (z4, z1),

respectively. Suppose that u is the (unique) harmonic solution of the Dirichlet-

Neumann problem with mixed boundary values of u equal to 0 on γ2, equal to 1

on γ4 and with ∂u/∂n = 0 on γ1, γ3. Then by [1, Theorem 4.5] or [19, Theorem

2.3.3]:

(2) M(Q) =

∫∫
Ω

|∇u|2 dx dy.

Suppose that Q is a quadrilateral, and u is the harmonic solution of the Dirichlet-

Neumann problem and let v be a conjugate harmonic function of u such that

v(Re z3, Im z3) = 0. Then f = u+ iv is an analytic function, and it maps Ω onto

a rectangle Rh such that the image of the points z1, z2, z3, z4 are 1 + ih, ih, 0, 1,

respectively. Furthermore by Carathéodory’s theorem [13, Theorem 5.1.1], f has

a continuous boundary extension which maps the boundary curves γ1, γ2, γ3, γ4

onto the line segments γ′1, γ
′
2, γ
′
3, γ
′
4, see Figure 1.

Lemma 2.3. Let Q be a quadrilateral with modulus h, and let u be the harmonic

solution of the Dirichlet-Neumann problem. Suppose that v is the harmonic

conjugate function of u, with v(Re z3, Im z3) = 0. If ũ is the harmonic solution

of the Dirichlet-Neumann problem associated with the conjugate quadrilateral Q̃,

then v = h2ũ.
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Figure 1. Dirichlet-Neumann boundary value problem. Dirich-

let and Neumann boundary conditions are mark with thin and

thick lines, respectively.

Proof. It is clear that v, ũ are harmonic. Thus ṽ = h2ũ is harmonic, and v and

ṽ have the same values on γ1, γ3. Let n = (n1, n2) be the exterior normal of the

boundary. Then on γ2, γ4 we have

∂v

∂n
= 〈∇v, n〉 = vxn1 + vyn2 = uyn1 − uxn2 = 0,

because u is constant on γ2, γ4, it follows ux = uy = 0. Thus v and ṽ also have

same values on γ2, γ4. Then by the uniqueness theorem for harmonic functions

[2, p. 166] we have v = ṽ.

Suppose that f = u+ iv, where u and v are as in Lemma 2.3. Then it is easy to

see that the image of equipotential curves of the functions u and v are parallel

to the imaginary and the real axis, respectively.

Finally, we note that the function f constructed this way is univalent. To see

this, suppose that f is not univalent. Then there exists points z1, z2 ∈ Ω and

z1 6= z2 such that f(z1) = f(z2). Thus Re f(z1) = Re f(z2), so z1 and z2 are on

the same equipotential curve C of u. Similarly for imaginary part, z1 and z2 are

on the same equipotential curve C̃ of v. Then by the above fact of equipotential

curves, it follows that z1 = z2, which is a contradiction.

2.2. Ring Domains. Let E and F be two disjoint and connected compact sets

in the extended complex plane C∞ = C ∪ {∞}. Then one of the sets E,F is

bounded and without loss of generality we may assume that it is E. Then a set

R = C∞\(E ∪ F ) is connected and is called a ring domain. The capacity of R is

defined by

capR = inf
u

∫∫
R

|∇u|2 dx dy,
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where the infimum is taken over all non-negative, piecewise differentiable func-

tions u with compact support in R ∪ E such that u = 1 on E. Suppose that a

function u is defined on R with 1 on E and 0 on F . Then if u is harmonic, it

is unique and it minimizes the above integral. The conformal modulus of a ring

domain R is defined by M(R) = 2π/capR. The ring domain R can be mapped

conformally onto the annulus Ar, where r = M(R). In [3] numerical computation

of modulus of several ring domains are studied.

3. Conjugate Function Method

Our aim is to construct a conformal mapping from a quadrilateralQ = (Ω; z1, z2, z3, z4)

onto a rectangle Rh, where h is the modulus of the quadrilateral Q. Here the

points zj will be mapped onto the corners of the rectangle Rh. In the standard

algorithm the required steps are the following:

Algorithm 3.1. (Conformal Mapping)

1. Find a harmonic solution for a Dirichlet-Neumann problem associated with

a quadrilateral.

2. Solve the Cauchy-Riemann differential equations in order to obtain an an-

alytic function that maps our domain of interest onto a rectangle.

The Dirichlet-Neumann problem can be solved by using any suitable numerical

method. One could also solve the Cauchy-Riemann equations numerically, see

e.g. [4], but it is not necessary. Instead we solve v directly from the conjugate

problem, which is usually computationally much more efficient, because the mesh

and the discretized system used in solving the potential function u can be used

for solving v as well.

This new algorithm is as follows:

Algorithm 3.2. (Conjugate Function Method)

1. Solve the Dirichlet-Neumann problem to obtain u1 and compute the modulus

h.

2. Solve the Dirichlet-Neumann problem associated with Q̃ to obtain u2.

3. Then f = u1 + ihu2 is the conformal mapping from Q onto Rh such that

the vertices (z1, z2, z3, z4) are mapped onto the corners (1 + ih, ih, 0, 1).

In case of ring domains, the construction of the conformal mapping is slightly

different. The necessary steps are described below and in Figure 2.

Algorithm 3.3. (Conjugate Function Method for Ring Domains)

1. Solve the Dirichlet problem to obtain the potential function u and the mod-

ulus M(R).
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2. Cut the ring domain through the steepest descent curve which is given by the

gradient of the potential function u and obtain a quadrilateral where Neu-

mann condition is on the steepest descent curve and Dirichlet boundaries

remains as before.

3. Use the Algorithm 3.2.

Note that the choice of the steepest descent curve is not unique due to the implicit

orthogonality condition.

4. Implementation Aspects

The hp-FEM implementation we are using is described in detail in [10]. For

elliptic problems, the superior accuracy of the higher order methods with rela-

tively small number of unknowns has to be balanced against the much higher

integration cost and the cost of evaluating the solution at any given point in the

domain.

In the context of solution of the conjugate pair problems, it is obvious that we

only have to integrate only once. Moreover, the factorization of the resulting

discretized systems can be, for the most part, used in both problems without

any extra work.

However, the computation of the contour lines necessarily involves a large number

of evaluations of the solution, that also become more expensive as the order of

the method increases.

4.1. hp -FEM. In the h-version or standard finite element method, the un-

knowns or degrees of freedom are associated with values at specified locations of

the discretization of the computational domain, that is, the nodes of the mesh.

In the p-method, the unknowns are coefficients of some polynomials that are

associated with topological entities of the elements, nodes, sides, and interior.

Thus, in addition to increasing accuracy through refining the mesh, we have an

additional refinement parameter, the polynomial degree p.

Let us next define a p-type quadrilateral element. The construction of triangles

is similar and can be found from the references given above.

Many different selections of shape functions are possible. We use the so-called

hierarchic integrated Legendre shape functions.

Legendre polynomials of degree n can be defined using a recursion formula

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0,

where P0(x) = 1 and P1(x) = x.
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1
0

(a) Ring domain with

Dirichlet data 0, and 1,

on the outer and inner

boundaries, respectively.

(b) Ring domain: Solu-

tion of the Dirichlet prob-

lem with contour lines.

10

∂u
∂n=0

∂u
∂n=0

(c) Conjugate problem

for the cut domain with

new Dirichlet data along

the both sides of the cut.

(d) Conjugate problem:

Solution of the conju-

gate problem with con-

tour lines.

(e) Mapped annulus.

Figure 2. Conjugate Function Method for Ring Domains.
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The derivatives can similarly be computed using a recursion

(1− x2)P ′n(x) = −nxPn(x) + nPn−1(x).

For our purposes the central polynomials are the integrated Legendre polynomials

foe x ∈ [−1, 1],

φn(ξ) =

√
2n− 1

2

∫ ξ

−1

Pn−1(t) dt, n = 2, 3, . . .

which can be rewritten as linear combinations of Legendre polynomials

φn(ξ) =
1√

2(2n− 1)
(Pn(ξ)− Pn−2(ξ)) , n = 2, 3, . . .

The normalizing coefficients are chosen so that∫ 1

−1

dφi(ξ)

dξ

dφj(ξ)

dξ
dξ = δij, i, j ≥ 2.

We can now define the shape functions for a quadrilateral reference element

over the domain [−1, 1] × [−1, 1]. The shape functions are divided into three

categories: nodal shape functions, side modes, and internal modes.

There are four nodal shape functions.

N1(ξ, η) =
1

4
(1− ξ)(1− η), N2(ξ, η) =

1

4
(1 + ξ)(1− η),

N3(ξ, η) =
1

4
(1 + ξ)(1 + η), N4(ξ, η) =

1

4
(1− ξ)(1 + η),

which taken alone define the standard four-node quadrilateral finite element.

There are 4(p−1) side modes associated with the sides of a quadrilateral (p ≥ 2),

with i = 2, . . . , p,

N
(1)
i (ξ, η) =

1

2
(1− η)φi(ξ), N

(2)
i (ξ, η) =

1

2
(1 + ξ)φi(η),

N
(3)
i (ξ, η) =

1

2
(1 + η)φi(η), N

(4)
i (ξ, η) =

1

2
(1− ξ)φi(ξ).

For the internal modes we choose the (p− 1)(p− 1) shapes

N0
i,j(ξ, η) = φi(ξ)φj(η), i = 2, . . . , p, j = 2, . . . , p.

The internal shape functions are often referred to as bubble-functions.

The Legendre polynomials have the property Pn(−x) = (−1)nPn(x). In 2D all

internal edges of the mesh are shared by two different elements. We must ensure

that each edge has the same global parameterization in both elements. This

additional book-keeping is not necessary in the standard h-FEM.
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4.2. Solution of Linear Systems. Let us divide the degrees of freedom of

a discretized quadrilateral into five sets, internal and boundary degrees of free-

dom. The sets are denoted B,D0, D1, N
0, and N1, for internal, Dirichlet u = 0,

Dirichlet u = 1, Neumann with Dirichlet u = 0 in the conjugate problem, and

Neumann with Dirichlet u = 1 in the conjugate problem, degrees of freedom,

respectively.

The discretized system is

A =


ABB ABN1 ABN0 ABD1 ABD0

AN1B AN1N1 AN1N0 AN1D1
AN1D0

AN0B AN0N1 AN0N0 AN0D1
AN0D0

AD1B AD1N1 AD1N0 AD1D1 AD1D0

AD0B AD0N1 AD0N0 AD0D1 AD0D0

 .

Taking the Dirichlet boundary conditions into account, we arrive at the following

system of equations, using xD1 = 1,ABB ABN1 ABN0

AN1B AN1N1 AN1N0

AN0B AN0N1 AN0N0

 xB
xN1

xN0

 = −

ABD11

AN1D1
1

AN0D1
1

 .

For the conjugate problem, simply change the roles of D1 ↔ N1 and D0 ↔ N0.

Note that ABB is present in both systems and thus has to be factored only once.

4.3. Evaluation of Contour Lines. Let us denote the solutions u and v,

respectively. In computing the contour lines, the solutions and their gradients

have to be evaluated at many points (x, y). Evaluation of the solution in hp-

FEM is more complicated than in the standard FEM. In a reference-element-

based system such as ours, in order to evaluate the solution at point (x, y) one

must first find the enclosing element and then the local coordinates of the point

on that element. Then every shape function has to be evaluated at the local

coordinates of the point. This is outlined in detail in Algorithm 4.1. Similarly

evaluation of the gradient of the solution requires two polynomial evaluations

per one geometric search.

Algorithm 4.1. (Evaluation of u(x, y))

1. Find the enclosing element of (x, y).

2. Find the local coordinates (ξ, η) on the element.

3. Evaluate the shape functions φi(ξ, η).

4. Compute the linear combination of the shape functions
∑

i ciφi(ξ, η), where

ci are the coefficients from the solution vector.
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Finding the images of the canonical domains is equivalent to finding the corre-

sponding contour lines of u and v. Since both solutions have been computed on

the same mesh, evaluating the solutions and their gradients at the same point is

straightforward. In Algorithm 4.2 the two-level line search is described in detail.

Algorithm 4.2. (Tracing of Contour Lines: u(x, y) = c = const.)

1. Find the solutions u(x, y) and v(x, y).

2. Set the step size σ and the tolerance ε.

3. Choose the potential c.

4. Search along the Neumann boundary for the point (x, y) such that u(x, y) = c.

5. Take a step of length σ along the contour line of u(x, y) in the direction of

∇v(x, y) to a new point (x̂, ŷ).

6. Correct the point (x̂, ŷ) by searching in the orthogonal direction, i.e., ∇u(x̂, ŷ),

until |u(x̂, ŷ)− c| < ε is achieved.

7. Set (x, y) = (x̂, ŷ) and repeat until the opposite Neumann boundary has

been reached.

Estimating the computational complexity is complicated, since in the end, the

chosen resolution of the image is the dominant factor. In Table 1 the effect of

the polynomial degree on the overall execution time is described. As a test case,

two by two grid of Figure 2, has been computed using σ = 0.1, and ε = σ3,

for p = 4, 5, 6, 7, 8. In this particular case we found that doubling of accuracy

leads to doubling of time spent in computing the lines. We must emphasize

that no attempts to simplify the computations using advanced data structures

or techniques have been made and this remains an open and active research topic

for application such as mesh generation.

Table 1. Effect of p on contour lines computations. Times are

normalized so that for p=4, time = 1. The reciprocal error refers

to the cut domain. In every case 592 iterations of the contour

plotting algorithm have been computed.

p 4 5 6 7 8

Time 1 1.21 1.48 1.78 2.16

Reciprocal error 1.1 · 10−5 5.7 · 10−7 3.1 · 10−8 1.7 · 10−9 9.1 · 10−11

5. Numerical Experiments

Our numerical experiments are divided into three different categories: first we

validate the algorithm against the results obtained using the Schwarz-Christoffel
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toolbox, then study several examples of using our method to construct a con-

formal mapping from simply (see Figures 6–9) or doubly connected (see Figures

11–15) domains onto canonical domains, see Figure 3, with the main results

summarized in Tables 2 and 3, respectively.

Table 2. Summary of the tests on simply connected domains.

Accuracy is given as dlog10 |1 − M(Q)M(Q̃)|e. For the first cases

the moduli are known due to symmetry.

Example ID M(Q) / M(Q̃) Accuracy Figure

Unit Disk 5.1 1 / 1 -13 6

Flower 5.2 1 / 1 -10 7

Circular quadrilateral 5.3 0.63058735108478 / -13 8

1.585823119159254

Asteroidal cusp 5.4 0.68435408764536 / -9 9

1.4612318657235575

Table 3. Summary of the tests on ring domains. Accuracy is

given as dlog10 |1−M(Q)M(Q̃)|e, where the quadrilaterals are those

of the cut domain.

Example ID M(R) Accuracy Figure

Disk in regular pentagon 5.5 See Table 5. 10

Cross in square 5.6 0.2862861647287473 -9 11

Circle in square 5.7 0.9920378629010557 -13 12

Flower in square 5.8 0.6669554623348065 -8 13

Circle in L 5.9 1.0935085836560234 -9 14

Droplet in square 5.10 0.8979775098918368 -9 15

5.1. Setup of the Validation Test. Validation of the algorithm for the con-

formal mapping will be carried out in two cases, first we compare our algorithm

with SC Toolbox in a convex and a non-convex quadrilateral. In the second test

we parameterized the modulus of a rectangle and map it onto the unit disk.

The comparison to the SC Toolbox is carried out in the following quadrilat-

erals: convex quadrilateral (Ω; 0, 1, 1.5 + 1.5i, i) and non-convex quadrilateral

(Ω; 0, 1, 0.3+0.3i, i), and line-segments joining the vertices as the boundary arcs.

Then comparisons of the results obtained by the conjugate function method,

presented in this paper, and SC Toolbox by Driscoll [7] are carried out. All SC
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Figure 3. Canonical domains Rh and Ar on the left- and right-

hand side, respectively.

Toolbox tests were carried with the settings precision = 1e-14. Comparison

is done by using the following test function

(3) test(z) = |f(z)− g(z)|,

where f and g are obtained by the conjugate function method and SC Toolbox,

respectively. The mesh setup of the quadrilaterals and the results are shown in

Figure 4 and 5, respectively.

Figure 4. Geometric mesh of the convex (left-hand side) and

the non-convex (right-hand side) quadrilateral used in computing

the potential functions.

All our examples are carried out in the same fashion using the reciprocal identity

(1) and a quadrilateral Q. The test function is

rec(Q) = |M(Q) M(Q̃)− 1|,
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Figure 5. Comparison of the convex (left-hand side) and non-

convex (right-hand side) quadrilateral between the conjugate func-

tion method and SC Toolbox. Result are obtained by taking the

logarithm (with base 10) of the test function (3).

which vanishes identically. See also [10, Section 4].

In the second validation test, we parameterized a rectangle respect to the mod-

ulus M(Q) and map the rectangle onto the unit disk. The mapping is given by

a composite mapping consisting a Jacobi’s elliptic sine function and a Möbius

transformation.

For every point (xj, yj) in the grid on the rectangle Rh, where xj = j/10 and

yj = jh/10, j = 0, 1, 2, . . . , 10, we compute the error ‖ej‖ which is simply the

Euclidean distance of the image of the initial point (xj, yj) computed by the con-

jugate function method and the analytical mapping. For a given modulus M(Q)

the values rec(Q), max(‖ej‖), and mean(‖ej‖), where the latter two represent

the maximal and the mean error over the grid are presented in Table 4.

Table 4. The values of rec(Q), max(‖ej‖) and mean(‖ej‖) for a

given M(Q).

M(Q) rec(Q) max(‖ej‖) mean(‖ej‖)
1 8.08242 · 10−14 1.87409 · 10−8 5.56947 · 10−10

1.2 6.35048 · 10−14 7.97889 · 10−9 7.49315 · 10−10

1.4 5.52891 · 10−14 1.21851 · 10−8 6.90329 · 10−10

1.6 8.85958 · 10−14 1.10001 · 10−8 7.90840 · 10−10

1.8 9.72555 · 10−14 1.19005 · 10−8 7.31645 · 10−10

2 9.41469 · 10−14 8.56068 · 10−9 7.67815 · 10−10
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5.2. Simply Connected Domains. In this section we consider a conformal

mapping of a quadrilateralQ = (Ω; z1, z2, z3, z4) with curved boundaries γ1, γ2, γ3,

γ4 onto a rectangle Rh such that the vertices z1, z2, z3, z4 maps to 1 + ih, ih, 0, 1,

respectively, and the boundary curves γ1, γ2, γ3, γ4 maps onto the line segments

γ′1, γ
′
2, γ
′
3, γ
′
4. We give some examples and applications with illustrations. Sim-

ple examples of such domains are domains, where four or more points are con-

nected with circular arcs. Some examples related to numerical methods and the

Schwarz-Christoffel formula for such domains can be found in the literature, e.g.,

[5, 6, 14].

Example 5.1 (Unit disk). Let Ω be the unit disk. We consider a quadrilateral

Q = (Ω; z1, z2, z3, z4), where zj = eiθj , θj = (j − 1)π/2. Note that, because of

symmetry, it follows from (1) that the modulus is 1. The reciprocal error of the

conformal mappings is 4.34 · 10−14. This example was first given by Schwarz in

1869 [22].

Figure 6. Example of the conformal map of a square onto a

disk, first obtained by Schwarz in 1869 [22].

Example 5.2 (Flower). Let Ω be the domain bounded by the curve

(4) r(θ) = 0.8 + t cos(nθ),

where 0 ≤ θ ≤ 2π, n = 6 and t = 0.1. We consider a quadrilateral Q =

(Ω; z1, z2, z3, z4), where zj = r(θj), θj = (j − 1)π/2, see Figure 7. As in Example

5.1, the modulus of Q is 1. The reciprocal error of the conformal mappings is

3.74 · 10−11. Several other examples of flower shaped quadrilaterals are given in

[10, Section 8.5].
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Figure 7. Illustration of the flower domain and the visualization

of the pre-image of the rectangular grid (Figure 3).

Example 5.3 (Circular Quadrilateral). In [10] several experiments of circular

quadrilaterals are given. Let us consider a quadrilateral whose sides are circular

arcs of intersecting orthogonal circles, i.e., angles are π/2. Let 0 < a < b < c <

2π and choose the points {1, eia, eib, eic} on the unit circle. Let QA stand for the

domain which is obtained from the unit disk by cutting away regions bounded by

the two orthogonal arcs with endpoints {1, eia} and {eib, eic}, respectively. Then

QA determines a quadrilateral (QA; eia, eib, eic, 1). Then for the triple (a, b, c) =

(π/12, 17π/12, 3π/2), the modulus M(QA) = 0.630587351084775 and M(Q̃A) =

1.5858231191592544. The reciprocal error of the conformal mapping is 1.68 ·
10−13.

Example 5.4 (Asteroidal Cusp). Asteroidal cusp is a domain Ω given by a

(5) Gc = {(x, y) : |x| < c, |y| < c},

where c = 1 and the left-hand side vertical boundary line-segment is replaced by

the following curve

r(t) = cos3 t+ i sin3 t, t ∈ [−π/2, π/2].

We consider a quadrilateral Q = (Ω; 1− i, 1 + i, −1 + i, −1− i). The reciprocal

error of the conformal mappings is of the order 10−10. The modulus M(Q) =

0.68435408764536 and M(Q̃) = 1.4612318657235575. Domain is illustrated in

Figure 9.

5.3. Ring Domains. In this section we shall give several examples of conformal

mapping from a ring domain R onto an annulus Ar. It is also possible to use the
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Figure 8. The quadrilateral (QA; eiπ/12, ei17π/12, ei3π/2, 1) and the

visualization of the pre-image of the rectangular grid (Figure 3).

Figure 9. Asteroid cusp domain with the pre-image of the rect-

angular grid (Figure 3).

Schwarz-Christoffel method, see [12]. For symmetrical ring domains a conformal

mapping can be obtained by using Schwarz’ symmetries.

Example 5.5 (Disk in Regular Pentagon). Let Ω be a regular pentagon centered

at the origin and having short radius (apothem) equal to 1 such that the corners

of the pentagon are zk = e2πik/5, k = 0, 1, 2, 3, 4. Let D(r) = {z ∈ C : |z| ≤ r}.
We consider a ring domain R = Ω\D(r) and compute the modulus M(R) and

the exponential of the modulus eM(R). Results are reported in Table 5 with the

values eM(R) from [3, Example 5] in the fourth column.
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Table 5. The values M(R) and eM(R).

r M(R) exp(M(R)) [3, Example 5]

0.1 2.35372035858745 10.524652459913115 10.5246525

0.4 0.9674246001764809 2.631159438480101 2.631159439

0.9 0.15070188000332954 1.1626499971978235 1.1626499972

0.99 0.03276861064365647 1.0333114143138304 1.03331141431

0.999 0.00934656029871744 1.0093903757950962 1.00939037579

Figure 10. Disk in pentagon (r = 0.4) with the pre-image of

the annular grid (Figure 3).

Example 5.6 (Cross in Square). Let Gab = {(x, y) : |x| ≤ a, |y| ≤ b} ∪ {(x, y) :

|x| ≤ b, |y| ≤ a}, and Gc as in (5), where a < c and b < c. Then the domain

cross in square is a ring domain R = Gc\Gab, see Figure 11. The reciprocal

error of the conformal mapping is of the order 10−10. The modulus M(R) =

0.2862861647287473.

Example 5.7 (Circle in Square). Let Ω be the unit disk. Then we consider a ring

domain R = Gc\Ω, where c = 1.5, see Figure 12. The reciprocal error of the con-

formal mapping is of the order 10−14. The modulus M(R) = 0.9920378629010557.

Example 5.8 (Flower in Square). Let Ω be a domain bounded by the curve

(4). Then we consider a ring domain R = Gc\Ω, where Gc is given by (5) and

c = 1.5. See Figure 13 for the illustration. The reciprocal error of the conformal

mapping is of the order 10−9. The modulus M(R) = 0.6669554623348065.
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Figure 11. The ring domain Gc\Gab, where a = 0.5, b = 1.2, c =

1.5, with the pre-image of the annular grid (Figure 3).

Figure 12. Disk in a square domain with the pre-image of the

annular grid (Figure 3).

Example 5.9 (Circle in L). Let L1 = {z ∈ C : 0 < Re(z) < a, 0 < Im(z) < b}
and L2 = {z ∈ C : 0 < Re(z) < d, 0 < Im(z) < c}, where 0 < d < a, 0 < b < c.

Then L(a, b, c, d) = L1 ∪L2 is called an L-domain. Suppose that D(z0, r) = {z ∈
C : |z − z0| < r}. We consider a ring domain R = L(a, b, c, d)\D(z0, r), where

(a, b, c, d) = (3, 1, 2, 1), z0 = 8/5 + 2i/5, and r = 1/5. See Figure 14.

In order to better illustrate the details of the mapping, a non-uniform grid has

been used. For the real component the points x are

x = {k/10 : k = 0, 1, . . . , 9} ∪ {99/100, 999/10000, 9999/10000, 1}.
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Figure 13. Flower in a square domain with the pre-image of the

annular grid (Figure 3).

For the imaginary component the points y are chosen on purely aesthetic basis

as:

y = {k/10 : k = 1, 2, . . . , 9} ∪
{0.316225, 0.324008,0.327831, 0.329278, 0.331005, 0.687482}.

The reciprocal error of the conformal mapping is of the order 10−10. The modulus

M(R) = 1.0935085836560234.

Figure 14. L-shaped domain with a circular hole with the pre-

image of the non-uniform annular grid of Example 5.9.
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Example 5.10 (Droplet in Square). Let QD be bounded by a Bezier curve:

r(t) =
1

640

(
45t6 + 75t4 − 525t2 + 469

)
+

15

32
t
(
t2 − 1

)2
i, t ∈ [−1, 1].

Then the domain droplet in square is a ring domain R = Gc\QD, where Gc in

given in the first example concerning ring domains. For visualization, see Figure

15. The reciprocal error of the conformal mapping is of the order 10−10. The

modulus M(R) = 0.8979775098918368.

Figure 15. Droplet in square with the pre-image of the annular

grid (Figure 3).
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