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In randomization based significance testing, a result is compared with the results obtained 
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CHAPTER 1
Introduction

In this chapter, we give motivation for using randomization methods to assess
data analysis results and outline the contributions of this thesis.

1.1 Motivation

Data mining is an interdisciplinary research area developing general methods
for finding interesting and useful knowledge from large real life collections
of data [HMS01]. The data mining community has introduced various effi-
cient algorithms for automatically extracting knowledge from databases. The
algorithms are widely used in many application fields, such as in information
technology and bioinformatics where the traditional methods are not sufficient.

Assessing the quality and significance of the results is an important part
of scientific work. Traditional statistics has long been considering the issue
of significance testing. There are various traditional statistical methods for
measuring the significance [FPP07, GCSR03, MH06]. However, significance
testing has been given less attention in the data mining community, partly be-
cause the traditional statistical tests are not directly applicable to most of the
data mining tasks.

In a randomization-based significance testing a result is considered to be
significant if it is unlikely to obtain such a result on randomized data shar-
ing some basic characteristics with the original data [Goo00, Edg95, Bes04,
CB01]. Randomization methods are applicable to many real world problems.
For example, in some applications, a result in a binary matrix can be consid-
ered to be interesting if it is not explained by the row and column sums. There
are various randomization-based approaches for significance testing of data
mining results on binary matrices and contingency tables [CC03, GMMT07].

1



1 INTRODUCTION

Milk Bread Banana Cheese Ham Salmon

Store 1 0.69 2.49 0.99 5.49 6.49 5.99
Store 2 0.79 2.79 1.19 6.69 7.13 6.99
Store 3 0.79 2.49 1.29 6.39 7.59 6.49
Store 4 0.89 2.89 0.99 6.59 6.99 7.49
Store 5 0.89 3.19 1.49 7.09 7.39 11.69
Store 6 0.99 3.59 1.79 8.09 8.69 9.59
Store 7 0.99 3.29 1.69 6.89 9.19 12.99
Store 8 1.19 4.59 1.99 8.49 8.59 16.99
Store 9 1.19 4.29 2.49 8.99 9.39 18.99
Store 10 1.29 3.99 2.19 7.79 9.99 14.49

Table 1.1: An example dataset of product prices in different grocery stores.
The prices are in euros per kilogram for the same product in each store.

However, there are many data analysis tasks for which randomization meth-
ods do not exist. For example, in bioinformatics, gene expression measure-
ments produce large real-valued matrices where data mining methods are used
to find relevant information [BH02, BV01]. Nevertheless, the problem of ran-
domizing real-valued matrices for assessing whether data mining results are
independent of basic row and column statistics has not been previously stud-
ied in the literature.

In Table 1.1, we give an artificial example of retail prices of basic food
products in ten different grocery stores. This is an example of a real-valued
matrix with different types of features. From such dataset, we can for example
observe that the prices of milk and bread have a strong correlation, 0.93, i.e.,
if milk is cheap, bread is also cheap in the same store. But is this observation
interesting or is it just a consequence of some simpler fact? If we look the
dataset more closely, we notice that some stores are generally much cheaper
than the other stores. That is, the strong correlation between the prices of
milk and bread is likely to be explained by the general price levels of the
stores. Thus some basic background properties of the data can explain other
seemingly significant patterns in the data. Later, we will consider this example
more closely and show how to randomize a dataset of this type.

The objective of this thesis is to develop new randomization-based signif-
icance testing methods for different types of data and for various data min-
ing tasks. As data types, we consider different kinds of matrices, relational
databases, and labeled data. The general computational task in this thesis is
the following.

2



1.2 Summaries and Contributions of Publications

Problem 1.1 (General randomization). Given a dataset D, generate a random-
ized dataset D̂ chosen independently and uniformly from the set of all datasets
having the same values of the predescribed basic statistics as the original
dataset D.

There are three main phases in developing new randomization methods for
a given type of data. The first phase is to analyze the underlying phenomena
and distinguish what are the general features of the given type of data and
what features are specific to each dataset. The aim is to formulate what type of
random datasets should be used in the sense that if results similar to an original
result are obtained on randomized data, then the original result is considered to
be uninteresting. Otherwise, the result is considered to be specific to the given
data and not explained by the general features of the data.

The second phase is to develop methods that produce randomized datasets
having the properties formulated in the first phase. We concentrate on Markov
chain Monte Carlo methods where the randomized datasets are produced by
starting from the original data and performing local transformations until the
chain has converged [Bes04]. The tests are valid even without proper con-
vergence [BC89]. However, better convergence provides more powerful test.
Thus, the main problem is to control that the methods produce well-randomized
datasets preserving the formulated properties with sufficient accuracy.

The last phase is to analyze the algorithms both theoretically and empir-
ically. The methods have different running times and they produce different
degrees of randomness. The usefulness of the methods are tested on artificial
and real datasets, and the methods are compared to other existing methods that
are mainly simple permutation methods. If the methods do not yet work sat-
isfactorily, the developing process is restarted either from the first or second
step and iterated until a good method is found.

In this thesis we employ the above procedure for different types of data and
for various data mining tasks. We formulate new statistical null-models for di-
verse data mining applications and develop new randomization methods to im-
plement the corresponding statistical tests. Theoretical properties of the meth-
ods are studied in detail. The developed randomization algorithms are tested
and applied to real world applications where various data mining methods are
used. The main result of the thesis is a set of practical algorithms for random-
izing different types of data for significance testing of data mining results.

1.2 Summaries and Contributions of Publications

Brief summaries of the original publications included in this thesis are given
below with detailed contributions by the author.

3



1 INTRODUCTION

Publication I

Markus Ojala, Niko Vuokko, Aleksi Kallio, Niina Haiminen, and Heikki Man-
nila. Randomization Methods for Assessing Data Analysis Results on Real-
Valued Matrices. Statistical Analysis and Data Mining, 2(4):209–230, 2009.

In Publication I we consider the problem of assessing data mining results on
real-valued matrices containing rows of similar type as well as columns of
similar type. We introduce two tasks for randomizing real-valued matrices.
The first task is to generate randomized real-valued matrices having approxi-
mately the same value distributions in each row and column as the given orig-
inal matrix. In the second task only the row and column means and variances
are preserved in randomized matrices. These tasks are generalizations of the
randomization approach of binary matrices [GMMT07] where the number of
ones is preserved in each row and column. We give two algorithms, SwapDis-
cretized and GeneralMetropolis , with various local modifications and differ-
ence measures for solving the tasks. The methods are analyzed theoretically
and empirically showing the usefulness of the concept. In the preliminary
version [OVK+08] of Publication I only the second task was considered with
simple algorithms and concise theoretical and experimental evaluation.

The concept and the basic approach of randomizing real-valued matrices
were developed jointly by all authors. In the preliminary version [OVK+08]
of Publication I, the methods were developed jointly with Niko Vuokko, the
experiments were mainly performed by the author, and the text written by all
authors. The idea of the new randomization task in Publication I was devel-
oped jointly. Most of the other improvements in Publication I, including the
new algorithms, experiments, and analysis, were made by the author of this
thesis.

Publication II

Markus Ojala. Assessing Data Mining Results on Matrices with Randomiza-
tion. In ICDM’10: Proceedings of the 10th IEEE International Conference on
Data Mining, pages 959–964. IEEE, 2010.

In Publication II the concept of Publication I is generalized to a practical tool
for assessing results on different types of matrices. A new approach is intro-
duced for randomizing matrices containing features measured using different
scales. In such matrices, the feature-wise ranks in each row are preserved in
randomization as well as the value distributions of the features. A new al-
gorithm, SwapConstrained , is given that can preserve the value distributions
more accurately. Furthermore, it supports matrices containing dissimilar fea-
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1.2 Summaries and Contributions of Publications

tures, nominal values, non-Gaussian value distributions, missing values, and
sparse structure. Extensive experiments on various real-life datasets show the
usefulness of the improved approach.

The author of the thesis is the sole author of Publication II.

Publication III

Sami Hanhijärvi, Markus Ojala, Niko Vuokko, Kai Puolamäki, Nikolaj Tatti,
and Heikki Mannila. Tell Me Something I Don’t Know: Randomization Strate-
gies for Iterative Data Mining. In KDD’09: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 379–388. ACM, 2009.

In Publication III we consider the problem of finding independent patterns
from a single dataset. We give a general approach where the previously found
patterns are fixed in randomization and other patterns not explained by them
are considered to be interesting. An iterative strategy is given for finding sig-
nificant patterns. Specifically, the approach is applied to binary matrices where
the clustering structure or itemset frequencies are preserved in addition to the
row and column sums. By experimental analysis it is observed that some very
different types of data mining patterns can explain each other.

The concept of the iterative data mining and the basic approach and algo-
rithms in Publication III were developed jointly by all authors. The detailed
methods were developed by the author and Sami Hanhijärvi. These two also
contributed the most to the experiments and analysis. The final text was written
by all the authors.

Publication IV

Markus Ojala, Gemma C. Garriga, Aristides Gionis, and Heikki Mannila.
Evaluating Query Result Significance in Databases via Randomizations. In
SDM’10: Proceedings of the 10th SIAM International Conference on Data
Mining, pages 906–917. SIAM, 2010.

In Publication IV we apply the randomization approach to assess queries in
multi-relational databases. In multi-relational databases there is no unambigu-
ous way to randomize. We propose to randomize each binary-relation in the
query and each connection between two relations in the query separately. In
this way we can find what is the structural impact of each relation to the query.
Theoretical connections between the randomizations are shown. Various hy-
potheses are studied on a MOVIELENS database by using the approach.

5



1 INTRODUCTION

The main ideas, concepts, and theoretical framework in Publication IV
were developed jointly by all authors. The analytical results were developed
and written mostly by the author. The experiments were performed and written
by the author. The rest of the paper was written jointly.

Publication V

Markus Ojala and Gemma C. Garriga. Permutation Tests for Studying Clas-
sifier Performance. Journal of Machine Learning Research, 11(Jun): 1833–
1863, 2010.

In Publication V we use permutation tests for studying classifier performance.
We propose a new test for assessing whether the classifier exploits the de-
pendencies between the features to improve the classifier accuracy. The ran-
domized datasets are produced by permuting the columns inside each class.
For comparison we also study the traditional permutation test that assesses
whether the classifier has learned a real connection between the data and the
class labels. The properties of the tests are extensively analyzed theoretically
and empirically. In the preliminary version [OG09] of Publication V the new
test was briefly introduced with short analysis.

The idea of the new test was developed jointly with Gemma Garriga. The
theoretical and experimental analysis of the methods was performed and writ-
ten by the author. The rest of the paper was written jointly.

1.3 Outline of the Thesis

The purpose of the introductory part of this thesis (Chapters 1–5) is to provide
the necessary background for a reader to understand the publications and to
summarize the main results of the publications. We discuss in further detail
the related work, introduce the contributions of the publications and perform
some new experiments.

In Chapter 2, we first discuss data mining in general and describe a few
common data mining tasks and methods including clustering, principal compo-
nent analysis, frequent itemset mining, and classification that are used through-
out this thesis. Next, we discuss how randomization can be applied in signifi-
cance testing and introduce the basic approach with empirical p-values that is
used in all publications of this thesis.

In Chapter 3, we discuss different approaches for generating randomized
datasets. First we give a brief background to Markov chain Monte Carlo meth-
ods. Next, we discuss how the randomized samples are produced in the publi-
cations of this thesis.

6



1.3 Outline of the Thesis

In Chapter 4, we apply the new randomization methods to different data
mining problems. We discuss the practical properties of the methods and give
a few case examples. Chapter 5 concludes the introductory part of the thesis
with discussion on the randomization approaches studied in the thesis.
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CHAPTER 2
Randomization and Data Mining

In this chapter, we introduce the basic concepts of this thesis. First, we discuss
data mining in general and describe a few common data mining algorithms
that are also used in the experiments of this thesis. After that we discuss how
to apply randomization to assess the significance of data mining results, and
give a small example with a binary dataset.

2.1 Data Mining Methods

Data mining is the process of extracting new useful information from large
amount of data [HMS01]. Machine learning is a closely related field that
shares a majority of the methods with data mining [DHS00]. In this section,
we describe a few traditional data mining methods [WKRQ+07] for some spe-
cific problems. Note, however, that the randomization based significance test-
ing approach given in this thesis can be used to assess the results of any data
mining or machine learning method. Here, we just give some examples of
basic data mining methods. They are, however, widely used in many real ap-
plications and also in the experiments of this thesis.

Consider a dataset D that can be, for example, an n×d binary table or an
n× d real-valued matrix. Throughout this thesis, the rows of the tables cor-
respond to sample points (observations) and the columns to dimensions (fea-
tures). We denote by Di the row i of the dataset D, by D j the column j of D,
and by Di j the element of D in the row i and column j. Assume that some data
mining task, such as clustering, is performed on D. We assume that the quality
strength of the result can be described by a single number S(D) ∈ R that we
call a structural measure of D:

9



2 RANDOMIZATION AND DATA MINING

Definition 2.1. A structural measure S for a data analysis task is a function
that maps each dataset D to a real number S(D).

The structural measure can be, for example, the clustering error of the
matrix, the correlation between some specific columns, or the number of fre-
quent itemsets. Any function can be used, as long as it can be summarized by
one number so that smaller (or larger) values mean stronger presence of the
measured structure. In the following subsections, we will give examples of
structural measures for various data mining methods.

2.1.1 Clustering

In clustering, the task is to assign a set of observations into a number of subsets
called clusters so that the observations in the same cluster resemble each other
in some sense. There are various clustering methods for different types of data
with different objectives. However, in this thesis we only discuss the most
classical k-means clustering problem in detail. See Xu and Wunsch [XW05]
and Berkhin [Ber06] for good surveys of different clustering algorithms. Clus-
tering algorithms are used in Publications I, II, and III.

The k-means clustering

The k-means clustering is a specific problem of clustering. It is also a name
of a simple algorithm introduced by Lloyd in 1957 [Llo57, Llo82] for solving
the problem. In k-means clustering the objective is to divide the samples into
k clusters where each sample belongs to the cluster with the nearest center.
The number of clusters k is usually decided beforehand. There exist methods
for finding a suitable k by calculating the clustering for many different values
of k and selecting the best k by using different validation measures, such as
Bayesian information criterion [Sch78, PM00]. However, in this thesis, for
simplicity, we will use fixed values for k, as the problem of model selection is
not in the scope of this thesis.

In k-means clustering, the task is to partition all n samples of dataset D ∈
R

n×d into k clusters C = {C1, . . . ,Ck} while minimizing the sum of the within-
cluster squared distances,

Sk-means(D) =
k

∑
j=1

∑
i∈Cj

‖Di −μ j‖2
L2

, (2.1)

where μ j is the mean vector of the data points in cluster Cj. The Euclidean
L2 distance is used to measure the similarity. Thus, a small clustering error

10
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means a good clustering structure. The clustering error (2.1) can be used as a
structural measure S.

There are various algorithms for optimizing the clustering error (2.1). The
basic k-means method by Lloyd is given in Algorithm 2.1. It starts by ran-
domly selecting k cluster centers μ j. The algorithm repeatedly assigns each
point into the cluster Cj with the nearest center μ j, and after that updates each
cluster center μ j to be the average of the points in the corresponding cluster Cj.

Algorithm 2.1 The k-means algorithm

Input: Dataset D ∈ R
n×d , number of clusters k

Output: Clustering C = {C1, . . . ,Ck}, cluster centers μ = {μ1, . . . ,μk}
1: Randomly pick k cluster centers μ j ∈ R

d for j = 1, . . . ,k
2: while not converged do

3: for j ← 1 to k do

4: Cj ←{i | j = argminl ‖Di −μl‖L2}
5: end for

6: for j ← 1 to k do

7: μ j ← 1
|Cj| ∑i∈Cj Di

8: end for

9: end while

10: return C,μ

The clustering error decreases in each iteration of the k-means algorithm.
However, the method can converge to a local minimum. To alleviate this prob-
lem, the clustering is usually repeated a few times with different random starts,
and only the best clustering is reported. Traditionally, the cluster centers μ j are
initialized to be a random subset of the original data points Di.

Various optimizations has been introduced to the traditional k-means algo-
rithm. The k-means++ algorithm by Arthur and Vassilvitskii [AV07] is a sim-
ple modification that provides a significant improvement to the performance of
the clustering. Their method only changes the initialization of the cluster cen-
ters. The initial centers are selected step-by-step. The first center μ1 is chosen
uniformly at random from the original n points. Let δ (x) be the distance from
a point x ∈ R

d to the closest center μ j already selected. The next center μ j is
selected from the original n data points with probability

Pr(μ j = Di) =
δ (Di)2

∑n
l=1 δ (Dl)2 .

A recent pruning method by Hamerly [Ham10] can be used to make the k-
means even faster by using some clever optimization to prune out unnecessary
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2 RANDOMIZATION AND DATA MINING

calculation. It can be combined also with the k-means++ algorithm. However,
this optimization is not used in the experiments of this thesis.

2.1.2 Principal Component Analysis

Principal component analysis (PCA) is a classical linear dimensionality reduc-
tion method [Pea01, Hot33]. The task is to linearly map the original data into a
lower dimensional space while preserving as much as possible of the original
structure. There are also various nonlinear dimensionality reduction methods,
see, for example, the book by Lee and Verleysen [LV07] for a good tutorial.
Principal component analysis is used in Publications I and II.

PCA can be derived from different viewpoints. One way is to maximize
the preserved variance under some constraints as introduced by Hotelling in
1933 [Hot33]. Assume that the columns of D have zero means. The objective
is to find a projection to a lower dimension d̂ < d such that the points in the
projected data are uncorrelated and preserve as much of the variance as pos-
sible. Let W ∈ R

d×d̂ be the corresponding orthonormal axis change, that is,
W TW = Id̂ , and D̃ = DW the projected data. Then the covariance matrix of the
projected data D̃ is

Cov(D̃) =
1
n

D̃T D̃

=
1
n

W T DT DW

= W T Cov(D)W.

Let Cov(D) = V ΛV T be the eigenvalue decomposition [TI97] of the covari-
ance matrix of D. We assume that the eigenvalues are sorted in decreasing
order in the diagonal of Λ. Then the maximum variance is obtained by choos-
ing the first d̂ eigenvectors of Cov(D) as the projection, that is,

W = V Id×d̂ ,

which gives
Cov(D̃) = Id̂×dΛId×d̂ .

The method for PCA is presented in Algorithm 2.2. The notation 1n cor-
responds to a column vector of n ones and Id×d̂ to an identity matrix of size
d × d̂. In the first line, the average of each column is subtracted. The method
outputs also the fraction ρ of the explained variance. If it is close to one, the
data contains a clear inner structure and the intrinsic dimension is really close
to d̂. The value of ρ can be used directly as a structural measure.
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Algorithm 2.2 Principal component analysis

Input: Dataset D ∈ R
n×d , new dimension d̂ < d

Output: Projected data D̃ ∈ R
n×d̂ , fraction ρ of the explained variance

1: D ← D− 1
n1n1

T
n D

2: V ΛV T ← Evd(D)
3: W ←V Id×d̂

4: D̃ ← DW
5: ρ ← ∑d̂

i=1 λi/∑d
i=1 λi

6: return D̃, ρ

2.1.3 Frequent Itemset Mining

Frequent itemset mining is a popular and well researched problem in data min-
ing [AIS93]. It is especially used as a subtask in association rule learning.
Consider a binary dataset D ∈ {0,1}n×d where the rows correspond to trans-
actions and the columns to items. The element Di j is 1 if the item j is in
the corresponding transaction i, and 0 otherwise. For example, in market bas-
ket data each transaction corresponds to a basket of products a customer has
bought.

The task of frequent itemset mining is to find all sets of items that oc-
cur frequently together. For example, {milk,bread} can be a frequent itemset.
In association rule learning, the task is to find itemsets whose existence pre-
dicts other itemsets. For example, in market basket data one possible rule is
{mustard,beer}→ {sausage}, saying that if a customer buys both mustard and
beer, he or she is likely to buy also sausages. In frequent itemset mining, the
number of frequent itemsets or the frequency of some specific itemset can be
used as structural measures.

Apriori is a classical algorithm for finding frequent itemsets from binary
data [AMS+96]. It finds all itemsets whose frequencies are larger than or
equal to a given threshold ft . It proceeds in a breadth-first search manner by
generating candidate itemsets of size k from frequent itemsets of size k − 1
such that an itemset is candidate if its k− 1 sized subsets are frequent. After
that the method prunes infrequent itemsets of size k from the candidates. A
sketch of the method is given in Algorithm 2.3 without any optimizations.
Frequent itemset mining is used in Publication III.

2.1.4 Mining in Relational Databases

Next, we briefly describe relational databases and how queries are used to
answer specific questions in such databases [RG02]. A relational database
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Algorithm 2.3 Apriori

Input: Dataset D ∈ {0,1}n×d , frequency threshold ft
Output: Family F of itemsets whose frequency in D is at least ft

1: F1 = { j | ∑i Di j ≥ ft}
2: k ← 2
3: while Fk−1 �= /0 do

4: Ck ← Generate candidates from Fk−1
5: Fk ←{F ∈ Ck | ∑i ∏ j∈F Di j ≥ ft}
6: end while

7: return F = ∪Fk

Movie

DirectorActor

Age Age

Genre Year Rating

User

Gender

Occupation

Age

Figure 2.1: A simplified presentation of an example movie database with mul-
tiple relations.

consists of multiple tables, relations, each containing a set of tuples having the
same attributes. In this thesis we concentrate mainly on binary relations that
consist of pairs A ⊆ I × J between two sets I and J. For example, a movie
database could contain relations such as directors direct movies, movies are
classified by genres, and users have rated certain movies, see Figure 2.1.

In relational databases queries are used to access the data and they can be
used as part of the data mining process. For example, a query can be used to
check the number of people who have watched movies directed by a specific
director. Queries consist of three basic operations: joins, selections and projec-
tions. A join between two relations A and B, denoted by A��B, is the set of all
combinations of entries in A and B that are equal on their common attributes.
Selection σφ (A) returns all the tuples t in the relation A for which φ(t) holds.
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Projection πX(A) restricts tuples of A to attributes in X . For example, the query

q = πMovie,Age(σGenre=Drama(Genre-Movie��Movie-Director��Director-Age)

returns the ages of the directors of the drama movies. The concepts of rela-
tional databases and queries are used in Publication IV.

2.1.5 Classification

In classification, items are assigned into given groups based on their proper-
ties and a training set of samples whose real groups are known. For exam-
ple, given gene expression measurements from a patient, the task is to clas-
sify whether the patient is “sick” or “healthy”. Formally, given a training set
{(X1,y1), . . . ,(Xn,yn)}, where each data point Xi ∈ X has a known class label
yi ∈ Y , the task is to learn a classifier f : X → Y that maps any X ∈ X to its
true class label y ∈ Y .

Usually, the available set of labeled data is divided into a training set and
a test set, where the former is used for learning a classifier and the latter to
evaluate the performance of the classifier for classifying new unknown data.
The classification error, that is, the proportion of misclassified samples in the
test set, can be used directly as a structural measure for a classifier. Cross-
validation is a more general technique for assessing the accuracy of a classi-
fier [DHS00]. In cross-validation the data is divided into k folds (subsets) and
in turns each fold is used as a test set while the other folds form the training
set. When k = n it is called the leave-one-out cross-validation and then the
classification error can be calculated by

e( f ,D) =
1
n

n

∑
i=1

I( fD\Di(Xi) �= yi)

where fD\Di is the function learned by the classification algorithm by removing
the i-th observation from the data and I(·) is the indicator function. Cross-
validation can suffer from large variance [BG04]. Thus, for model selection,
other validation approaches can produce better results [MIM10]. Next, we
will briefly describe several algorithms for learning various types of classifiers.
Classification algorithms are used extensively in Publication V.

The k-nearest neighbor

The k-nearest neighbor classifier is one of the simplest machine learning meth-
ods [FH51]. An item is classified to the majority class of its neighbors, that
is, it is assigned to the most common class among its k-nearest neighbors in
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the training set where the distance is measured in the feature space. In the
case of k = 1, the item is assigned to the class of its nearest neighbor. Usually,
Euclidean L2 distance is used as the distance metric.

Decision tree

The decision tree classifier forms a classification tree where the classification
process starts from the root and at each node the samples are divided into two
children nodes according to some property of the data. Finally, each sample is
assigned to the class of the leaf node where the sample ends up. The classical
C4.5 algorithm [Qui93] builds the decision tree by choosing at each node one
attribute of the data that most effectively splits the data in separate classes.

Naive Bayes

The naive Bayes classifier is a simple probabilistic classifier applying Bayes’
rule with the assumption that the features are conditionally independent given
the class [HY01]. That is, the value of any particular feature does not affect
the probability of the value of any other feature. The classifier assigns each
new sample x to the class y having the highest conditional probability by using
the Bayes’ rule and the independence assumption:

Pr(y | x) =
Pr(y)Pr(x | y)

Pr(x)
=

Pr(y)Pr(x1 | y) · · ·Pr(xd | y)
Pr(x)

.

Support vector machine

The support vector machine classifier (SVM) is a modern versatile method
that finds the best separating hyper-plane between the samples belonging to
two classes [SC08]. Usually, the data is first mapped nonlinearly into a high
dimensional space where the classes are easier to separate linearly. In the case
of multiple classes, the SVM classifier is repeatedly applied to separate all
classes from each other.

2.2 Applying Randomization in Significance Testing

Randomization is a widely used method in statistics [Goo00, WY93, Edg95,
Bes04, CB01]. In this section, we describe the basic approach behind the
randomization tests, give the definition of empirical p-values, and present an
example of the usefulness of preserving row and column sums in randomizing
binary matrices.
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2.2.1 Basic Approach

In the previous section, we described various data mining methods and defined
some structural measures S for measuring the quality of the results returned
by the algorithms. Recall that any measure can be used as long as smaller (or
larger) values mean stronger presence of the measured structure. For example,
in k-means clustering, the clustering error given in Equation (2.1) is a natural
choice as a structural measure.

To assess whether a result S(D) is explained by certain characteristics of
the original dataset, we generate randomized datasets D̂ sharing these pre-
described statistics with the original dataset D, and compare the original struc-
tural measure S(D) against the distribution of structural measures S(D̂). If
the original structural measure S(D) clearly deviates from most of the struc-
tural measures on the randomized datasets, the result is considered not to be
explained by the preserved statistics.

The main benefit of using randomization is that the user is relieved from
the often difficult, and sometimes impossible, task of defining an analytical
distribution for the test statistic. It is sometimes easier to devise a way of
sampling from the null-hypothesis than to actually define it analytically. Also,
integrating over the analytical distribution, which is needed for the p-value
calculation, may not be straightforward.

In this thesis, we give methods for generating randomized datasets preserv-
ing specific statistics on various types of data. Thus, the general computational
task we are addressing is the following (introduced already in Section 1.1).

Problem 1.1 (General randomization). Given a dataset D, generate a random-
ized dataset D̂ chosen independently and uniformly from the set of all datasets
having the same values of the predescribed basic statistics as the original
dataset D.

To get a concrete idea, we will use throughout this chapter the random-
ization of binary matrices as an example of the approach. With binary ta-
bles, one commonly used significance testing approach is to randomize the
dataset while preserving the row and column margins, that is, the row and col-
umn sums [CDHL05, GMMT07]. Thus, for example, a k-means clustering
on binary dataset D is considered to be interesting if the clustering errors on
randomized datasets having the same row and columns sums as the original
dataset are larger than the original k-means clustering error. Thus, with 0–1
datasets the computational task is the following.

Problem 2.1 (Binary matrix randomization). Given an n× d binary dataset
D, generate a randomized dataset D̂ chosen independently and uniformly from
the set of n×d binary datasets having the same row and column margins as D.
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In Section 3.2.2, we give an algorithm originally introduced by Gionis et
al. [GMMT07] for generating such randomized datasets. The randomization
of binary tables serves as an introduction to the more complex randomization
methods given in this thesis. It is also used as such as a part of various experi-
ments.

2.2.2 Empirical p-Values

To measure how different the original result S(D) is from the results S(D̂) on
randomized datasets, we use empirical p-values [Goo00]. In the significance
testing approach, the structural measure S(D) is used as a test statistic. Let
D̂ = {D̂1, . . . , D̂k} be a set of independent randomized versions of the original
dataset D. The one-tailed empirical p-value of the structural measure S(D)
with the hypothesis of S(D) being small is

psmall =

∣∣{D̂ ∈ D̂ | S(D̂) ≤ S(D)
}∣∣+1

k +1
.

The empirical p-value captures the fraction of the randomized datasets that
have a smaller or equal value of the structural measure than the original data.
That is, these randomized datasets contain stronger presence of the measured
structure than the original data. The addition of one in numerator and denomi-
nator guarantees a conservative estimate of the unknown true p-value, p0, with
slight bias [NCS02]. If the obtained empirical p-value is less than a given small
threshold α , we can regard the result to be independent of the characteristics
preserved in randomization. In this thesis, we will use the common value of
α = 0.05 for this threshold. Thus, if the original data contains stronger struc-
ture than 95% of the randomized datasets, the original result is considered to
be significant and not to be explained by the preserved characteristics.

The one-tailed empirical p-value with the hypothesis of S(D) being large
is defined similarly,

plarge =

∣∣{D̂ ∈ D̂ | S(D̂) ≥ S(D)
}∣∣+1

k +1
.

This definition is used when larger values of the structural measure correspond
to stronger presence of the measured structure. If we are interested in the
amount of the structure in either direction, we can use the two-tailed empirical
p-value,

ptwo-tailed = 2min(psmall, plarge). (2.2)

The standard deviation of the empirical p-value with k samples is√
p0(1− p0)

k
,
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where p0 is the unknown real p-value. This follows from the variance of bino-
mial distribution. The upper bound of the standard deviation is

1
2
√

k
,

which is obtained when p0 = 0.5.
Throughout this thesis, we will use either 999 or 99 randomized samples

in calculating the empirical p-values. These correspond to upper bounds of
0.0158 and 0.0503 for the standard deviation of the empirical p-value, respec-
tively. On the other hand, if the true p-value equals the threshold α , that is,
p0 = α = 0.05, then the standard deviations are 0.007 and 0.022, respectively.
Thus, the empirical p-values are fairly reliable with 999 and 99 randomized
samples.

In practice, we will generate most of the collections D̂ = {D̂1, . . . , D̂k} of
randomized versions of D by using Markov chains. In this approach, care has
to be taken since the samples are not necessarily independent. We use the ideas
by Besag and Clifford [BC89, BC91, Bes04] to guarantee the exchangeability
of the samples D̂i by first running the chain backwards to some state D̂0 and
then k times separately forwards from state D̂0; see Section 3.1.4 for more
details.

An alternative way would be to use sequential probability ratio test [BC91,
Wal45, FKH07], where randomizations of D are sampled until it is possible to
accept or reject the null-hypothesis. However, we do not use it as we want
to make the comparison of different randomization methods simple. With se-
quential probability ratio tests, often already 30 samples are enough for statis-
tical inference with significance level α = 0.05. This is related to the power
of a statistical test, that is, the probability that the test will reject a false null
hypothesis.

2.2.3 Example of Using Randomization

We give a simple toy example to demonstrate the concept of applying random-
ization for assessing the interestingness of data mining results. Consider the
9×8 binary dataset D given in Figure 2.2. The dataset seems to contain a fairly
clear clustering structure with two clusters where the first four rows define the
first cluster and the last five rows define the second cluster.

To analyze the clustering structure of the dataset D, we use the k-means
clustering algorithm. As the structural measure S, we use the corresponding
k-means clustering error given in Equation (2.1) with two clusters, that is,
k = 2. Thus, a strong clustering structure corresponds to a small clustering
error. When the k-means clustering algorithm is applied to the original dataset,
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1 1 1 0 0 0 1 1
1 0 1 0 0 1 0 0
1 1 1 0 0 0 0 1
1 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 1

Dataset D

Figure 2.2: An example of a 0–1 dataset D.

we obtain an expected clustering where the first four rows form the first cluster
and the last five rows form the second cluster. The corresponding structural
measure, that is, the clustering error is S(D) = 9.2.

Evaluating the quality of the clustering structure given only the original
structural measure is troublesome. What does the number S(D) = 9.2 tell
us? It gives some numerical value for the amount of clustering structure, but
without any further knowledge it is useless. To infer something about the
clustering structure on the original dataset D, we have to compare the original
result to clusterings on datasets that arguably do not contain any interesting
clustering structure. This is the point where randomization tests come to the
fore.

As discussed in Section 2.2.1, one possible approach in binary datasets is
to compare the original structural measure to structural measures on datasets
having the same number of ones in each row and in each column as the orig-
inal binary dataset but being otherwise totally random. The idea is that these
statistics define a basic background model for binary data. Any additional
structure to the row and column margins is considered to be interesting. In
Section 3.2.2, we will show how to generate such randomized datasets, that is,
we give an algorithm for solving Problem 2.1.

To assess the clustering structure of the dataset D in Figure 2.2, we gen-
erated 999 randomized datasets having the same row and column margins as
D. The same k-means clustering algorithm was applied to the randomized
datasets, and for each randomized dataset D̂ the clustering error S(D̂) was cal-
culated. The average clustering error of the randomized datasets was 11.4 with
the standard deviation being 0.7 and the minimum clustering error 8.6. There
were in total 8 randomized datasets having a smaller or equal clustering error
than the original dataset. This gives an empirical p-value of 0.009. Thus with
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significance threshold level α = 0.05, we can regard the original clustering
structure to be independent of the row and column margins. Hence, the dataset
D contains a clustering structure that is not explained by the number of ones
in rows and columns.

2.2.4 Notes about Using the Approach

In the previous example, we saw how the value of the structural measure itself
does not show whether the result is significant. Later in this thesis, we will
give examples of datasets having the same numerical value of some structural
measure but where the results have different significances when the structures
of the background models of the datasets are taken into account. In random-
ization test, the background model is explicitly parametrized with the original
data thus giving a useful null-model for analyzing the original result. There-
fore, we do not have to make strong assumptions on how the data is distributed.

When randomization is used for significance testing, it is important to per-
form exactly the same data mining procedure on the randomized datasets as
for the original dataset to guarantee the correctness of the results. Take the
previous example where we wanted to assess the significance of the cluster-
ing structure where the first four rows formed the first cluster and the last five
rows the second cluster. To obtain meaningful results, we need to use the
same k-means clustering algorithm to find the best partitions to two clusters in
the randomized datasets. Finally, the clustering errors are calculated by using
these new clusterings on the randomized data and not, for example, by using
the original clustering.

If the original pattern, for example, a clustering of the data, is chosen based
purely on some background knowledge and not on the data in question, we
have to calculate the structural measures for exactly the same pattern also in
the randomized datasets. In this case, we can use the same clustering error as
the structural measure but now the partition into the clusters is fixed for the
randomized datasets.

2.2.5 Multiple Hypotheses Testing

While assessing the significance of local structures, we typically perform mul-
tiple tests. If we test multiple hypotheses at the same time, for example, the
significances of various pairwise correlations in the data, it would be impru-
dent to use the same threshold value α for inferring the statistical significance
of the results as it is used for determining the significance of one hypothesis.
As the number of hypotheses increases, the probability of making Type I error,
that is, incorrectly rejecting one null-hypothesis, also increases.
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There exist various methods for controlling the error made in statistical
inference in multiple hypotheses testing. The classical method by Bonfer-
roni [Bon35] uses the transformed threshold value alpha α0 = α/N, where
N is the number of the tests. This approach controls the familywise error
rate (FWER), that is, the probability of making one or more false discoveries.
The Bonferroni criterion is often viewed [WY93] as quite conservative—the
probability of making Type II error, that is, the error of failing to reject a
null-hypothesis when it is not true, is high. The extended Holm-Bonferroni
method [Hol79] alleviates this problem slightly.

Controlling the false discovery rate (FDR) is a less conservative procedure
for correcting multiple comparisons. FDR measures the expected false positive
rate, that is, the proportion of incorrectly rejected null-hypotheses. It is appro-
priate for selecting a list of rejected null-hypothesis, especially in exploratory
data analysis. For example, the method by Benjamini-Hochberg [BH95] is
a simple way to limit the FDR below the chosen threshold α . If the origi-
nal p-values are p1, . . . , pN in increasing order, then the Benjamini-Hochberg
method regards the results 1, . . . ,M as significant, where M is the largest index
such that pM ≤ M

N α .
The methods for correcting multiple hypotheses are compromises between

making Type I and Type II errors. As the number of multiple comparisons is
small in this thesis, to keep the experimental results simple and easily inter-
pretable we usually do not use any correction for multiple comparisons. When
applying the methods in large real problems with multiple hypotheses, any
multiple hypotheses testing correction approach can be directly used to adjust
the p-values obtained.

2.2.6 Handling Randomness in Computed Structural Measures

In calculating the empirical p-values, we have assumed that the structural mea-
sure S(D) is constant for a given dataset D. In practice, however, the computed
values of the structural measures returned by many data mining algorithms
vary from run to run due to the randomness applied in the algorithms. The
reason for this is that many data mining problems are too hard to solve exactly.
Thus we need to rely on approximate solutions, where different runs may lead
to different results. For example, the k-means clustering algorithm starts from
an initial random clustering and improves it until convergence. So the problem
is, how can we ensure that the calculated empirical p-values are stable to such
variance?

In many cases, the variation is so small that there is no need to apply any
corrections. However, if the amount of variation is comparably large, the effect
of the variation should be taken into account. The variation of the original data

22



2.2 Applying Randomization in Significance Testing

mining result S(D) can especially have a large impact to the final empirical
p-value. We propose a couple of different solutions to this problem having
different time complexities and effects on the resulting accuracy.

A standard approach to decrease the variability of the results is to repeat the
same data mining method a reasonable number of times with different random
initial seeds and keep only the best solution. The problem with this approach
when applied to the randomization tests is that we have to repeat the same
data mining method with the same number of random starts also for producing
each randomized dataset. However, if the methods are fast and the datasets
small enough to do this in acceptable time, increasing the accuracy is a good
solution.

Since we cannot arbitrarily increase the accuracy of the structural mea-
sures S(D̂) on all randomized datasets without the calculation time growing
too large, we can concentrate on decreasing the effect of the variability of the
original structural measure S(D) as it has the most impact to the empirical
p-value. A solution to this is to repeat the data mining method (that may itself
also contain repetition for obtaining a better result) on the original dataset a
few times, and then use the median value of these as the final structural mea-
sure for the original data. Another solution is to calculate an empirical p-value
for all of these results and report the mean value of these as the final empirical
p-value. Note that in these approaches, it suffices to apply the original data
mining method only once on each randomized dataset.

The latter solution is closely related to calculating the test statistic U of the
Wilcoxon-Mann-Whitney two-sample rank-sum test [Goo00]. The proposed
solution has the same good properties as the U statistic as well as it generalizes
the concept of empirical p-value to instable results.

In the experiments, we will use the approaches explained above to decrease
the variability. However, it turns out that in the experiments of this thesis the
stability issue is not vital for the final results; the reported empirical p-values
are stable in practice.
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CHAPTER 3
Generating Randomized Datasets

In this chapter, we discuss different approaches for generating randomized
datasets. First, we describe general approaches and give a brief background to
Markov chain Monte Carlo (MCMC) methods. Next, we discuss the specific
randomizing tasks and approaches for different types of data that are studied
in the publications of this thesis. Finally, we briefly discuss other related ran-
domization methods.

3.1 General Randomization Approaches

There are three types of general approaches for generating randomized datasets.
They can be summarized as follows:

1. Direct sampling.

2. Performing local modifications with hard constraints.

3. Performing local modifications with soft constraints.

The approaches are in increasing order of generality and complexity. The
first approach is the simplest but can be used only in few cases. Direct sam-
pling means that we can produce random datasets just by drawing values from
some distribution or by permuting some values. In this approach, the random
datasets are also guaranteed to be independent of each other. Especially, all
the methods introduced in Publication V fall in this category. However, most
of the other methods given in this thesis use the last two approaches.

The last two approaches are based on MCMC methods. The idea is to
iteratively perform small changes on the original data while preserving the
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3 GENERATING RANDOMIZED DATASETS

given statistics. Sufficiently many local modifications have to be performed
to guarantee that the output is practically independent from the original data.
The difference between the two approaches is in the handling of the statistics
preserved in randomization. In the second approach, we perform local modi-
fications that preserve the given statistics exactly while randomizing the data
otherwise. However, often such local modifications do not exist. Then, we
need to use the third approach where the given statistics are preserved approx-
imately.

3.1.1 Markov Chains

In this section, we provide a brief background on the theory and notation of
Markov chains. A Markov chain is a discrete-time stochastic process where the
future depends only on the present state [RC04, GCSR03, AdFDJ03, Bes04].
Formally, a sequence of random variables X0,X1, . . . is called a Markov chain
if it satisfies the Markov property

Pr(Xt+1 = x | Xt = xt , . . . ,X0 = x0) = Pr(Xt+1 = x | Xt = xt).

In this thesis, we study only time-homogeneous Markov chains satisfying

Pr(Xt+1 = x | Xt = y) = Pr(Xt = x | Xt−1 = y) for all t.

In case of a finite state space X , we use a transition probability matrix P that
contains the probabilities Pi j of moving from state i ∈ X to state j ∈ X :

Pi j = Pr(Xt+1 = j | Xt = i).

A Markov chain is said to be irreducible (or connected) if all states are
reachable in finite number of steps from any other state. The chain is aperiodic
(or acyclic) if returns to any state can occur at irregular times. A probability
vector π is a stationary distribution of a time-homogeneous Markov chain if it
satisfies

π = PT π.

If the chain is irreducible and aperiodic, it converges to a unique stationary
distribution regardless of the starting state. Informally, the mixing time of a
Markov chain is the number of steps needed for approximate convergence to
the stationary distribution. See Levin [LPW06] for a formal definition.

An important special case are time-reversible Markov chains for which we
cannot identify whether the chain is running forwards or backwards. A Markov
chain is time-reversible if there exists a probability distribution π satisfying the
detailed balance condition:

πiPi j = π jPji. (3.1)
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3.1 General Randomization Approaches

Summing over all states i ∈ X gives

∑
i∈X

πiPi j = π j ∑
i∈X

Pji = π j.

Thus, for a time-reversible Markov chain, a distribution π satisfying the de-
tailed balance condition is always a stationary distribution. This leads directly
to the following theorem.

Theorem 3.1. The stationary distribution of an irreducible, aperiodic Markov
chain with symmetric transition probabilities, PT = P, is uniform.

Proof. Let π be a uniform distribution. Then, πi = π j for all i and j. Because
P is symmetric, also Pi j = Pji. Thus π satisfies the detailed balance condition,
πiPi j = π jPji, and therefore, π is the stationary distribution of the chain.

3.1.2 Markov Chain Monte Carlo Methods

In general, Markov chain Monte Carlo (MCMC) methods are a class of algo-
rithms for sampling from probability distributions [RC04, GCSR03, AdFDJ03,
Bes04]. They are based on constructing a Markov chain that has the desired
probability distribution as its stationary distribution. The state of the chain af-
ter a large number of steps is then used as a random sample from the desired
distribution.

The MCMC methods introduced in this thesis are based on local modifi-
cations. Each step in a Markov chain is a local modification, that is, a small
change of the current state. Each state corresponds to a partly randomized
version of the original data. The algorithms start from the original dataset D.
Given a current dataset D̂t , the next step selects at random some local modi-
fication from the collection of allowed operations, and applies it to D̂t . If the
change is accepted, this yields D̂t+1. Otherwise D̂t+1 = D̂t .

In this thesis, we use the original dataset as the starting state as it is in gen-
eral the only dataset that we know to have the correct values in the statistics
to be preserved. Optimally, we could select the starting state from the station-
ary distribution. However, in this case, there would be no need for MCMC
methods as we could directly obtain the random samples. Recall that the mix-
ing time describes the number of steps after which the state distribution of
the Markov chain has approximately converged to the stationary distribution.
Only samples obtained after the mixing time of the chain should be accepted
as random samples from the stationary distribution.

The mixing time is usually very hard to evaluate theoretically. In prin-
ciple, the asymptotic rate of convergence is determined by the second largest
eigenvalue in magnitude of the transition probability matrix P [BDX04, MT06,
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3 GENERATING RANDOMIZED DATASETS

LPW06]. However, this is feasible only for relatively small state spaces. In this
thesis, all the Markov chains we consider have a very large number of states.
Thus, in practice, we use some distance measure to assess the convergence.
That is, when the distance between the starting state and the current state has
converged, we can assume that the distribution has converged [CC96]. Instead
of studying some distance measure, we could control that the value distribution
of the given structural measure has converged.

3.1.3 Metropolis Algorithm

The Metropolis algorithm [MRR+53] is a general MCMC method for obtain-
ing samples from a probability distribution π . Let X denote the set on which
π is defined, and let Q(y | x) be a symmetric proposal distribution on X , that
is, Q(y | x) ≥ 0, ∑y Q(y | x) = 1, and Q(y | x) = Q(x | y) for all x,y ∈ X . At
each step, the Metropolis algorithm samples a state y as a proposal for the next
state with probability Q(y | x) given the current state x. The proposal state y is
accepted as the new state with probability

min(1,πy/πx). (3.2)

Otherwise, the current state x becomes the new state. Using the method as-
sumes that sampling from the proposal density Q(y | x) is easy and that the
ratio πy/πx can be computed. This holds if the probability πx can be calculated
up to a constant factor. The next theorem follows from the detailed balance
condition (3.1) of time-reversible Markov chains [GCSR03].

Theorem 3.2. The Markov chain M produced by the Metropolis algorithm
is time-reversible. Let π be the distribution used to calculate the acceptance
probabilities in Equation (3.2) for M. If M is irreducible and aperiodic, then
π is the stationary distribution of M.

If the proposal distribution Q(y | x) is not symmetric, we can use the ex-
tended Metropolis-Hastings algorithm [Has70] where the proposal state y is
accepted with probability

min
(

1,
πyQ(x | y)
πxQ(y | x)

)
.

The proposal distribution Q has a huge impact on the mixing time. It
should be as global as possible while allowing a high acceptance rate. The
optimal acceptance rate under some general normality assumptions is around
25% [GCSR03]. In this thesis, we use the Metropolis algorithm in such cases
where we need soft constraints, that is, where there do not exist local modifi-
cations that preserve the given statistics exactly while randomizing the data.
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3.2 Specific Randomization Approaches

3.1.4 Obtaining Exchangeable Set of Samples

The samples produced by MCMC methods are generally not independent, un-
less the number of steps taken between the samples is at least the mixing time.
It is very hard to estimate this quantity in any application. Furthermore, us-
ing dependent samples in calculating an empirical p-value breaks the validity
of the result. To solve this problem, we will use the approach by Besag and
Clifford [BC89] to produce an exchangeable set of samples that guarantees
the validity of the empirical p-value. A set of samples is exchangeable if the
samples are produced from the same distribution when the null-hypothesis is
true, meaning that we cannot distinguish the samples from each other.

In the approach by Besag and Clifford, the chain is started from the orig-
inal dataset D and run backwards for I steps to produce a new starting state
D̂0. Then for the desired number k of samples, we start for each i = 1, . . . ,k
a new chain from D̂0 and run the chain I steps forwards, obtaining sample
D̂i. Then the set {D, D̂1, . . . , D̂k} forms an exchangeable set of samples. Thus,
each of the samples D, D̂1, . . . , D̂k can be produced by I steps from D̂0, includ-
ing the original dataset D. Therefore, the rank of S(D) is uniform among the
values {S(D),S(D̂1), . . . ,S(D̂k)} under the null-hypothesis, implying the va-
lidity of the empirical p-value regardless of irreducibility and convergence of
the chain. If the chain has not converged fully, we just obtain more conserva-
tive p-values [Bes04, BC89].

All the methods studied in this thesis are time-reversible, that is, running
the chain backwards is the same as running the chain forwards. In this the-
sis, we will always apply the Besag-Clifford approach when we use MCMC
methods for producing the randomized samples. Although it guarantees the
validity of the p-value, good convergence of the chain increases the power of
the randomization test.

3.2 Specific Randomization Approaches

Next we discuss the different randomization approaches used in the publica-
tions of this thesis. Additionally, we briefly discuss other randomization meth-
ods proposed in the literature.

3.2.1 Permuting Labeled Data

We start by introducing the randomization methods used in Publication V as
they are based on the easiest general technique, direct sampling. In Publi-
cation V we study how to assess the performance of a classifier on labeled

29



3 GENERATING RANDOMIZED DATASETS

data. Recall that classification as a data mining technique was discussed in
Section 2.1.5.

Assume that we have trained a classifier f on labeled data D = {(Xi,yi)}n
i=1.

In Publication V we study two statistical tests that supply answers for the fol-
lowing questions:

Test 1: Has the classifier found a significant class structure, that is, a real con-
nection between the data and the class labels?

Test 2: Is the classifier exploiting dependencies between the features to in-
crease the accuracy of the classification?

The first test is a standard test used in statistics [Goo00] whereas the second
test is new. Note, that these two tests study whether the classifier is using the
described properties and not whether the plain data contain such properties.
For studying the characteristics of a population represented by the data, other
statistical test could be used [CB01].

Producing the corresponding randomized datasets with both tests is rel-
atively easy and can be obtained by direct sampling. With Test 1 we break
the connection between the data and the class labels by permuting the la-
bels. Repeating the classification on such permuted datasets and comparing
the obtained classification accuracies to the original accuracy tells whether
the classifier has found a real class structure. The test has been used for as-
sessing the classifier accuracy [GF03, GLMP05, HAD03], for validating the
model [MIM10, BND04, MSP05], as well as for selecting the features [FW98,
Jen92].

With Test 2 the randomization is more sophisticated but still possible to
do by direct sampling. The corresponding null-hypothesis assumes that the
columns in X are mutually independent given the class, that is,

p(X1, . . . ,Xm | y) = p(X1 | y) · · · p(Xm | y).

Randomized samples are obtained by independently permuting the values in
each column inside each class. Such randomization removes the dependencies
between the features given the class. Repeating the classification on such data
will reveal whether the dependencies between the features are used in explain-
ing the class structure by the chosen classification algorithm. The inference
results of this tests can help the user to understand the properties of the clas-
sifier and to improve the classification accuracy. In Figure 3.1, an example of
labeled data and corresponding randomized versions produced by Test 1 and
Test 2 are shown.
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0.96 0.75 0.89 +
0.34 0.26 0.96 +
0.59 0.51 0.55 +
0.22 0.70 0.14 +

-0.85 -0.19 -0.80 –
-0.74 -0.76 -0.75 –
-0.16 -0.07 -0.38 –
-0.75 -0.65 -0.53 –

(a) Original data

0.96 0.75 0.89 –
0.34 0.26 0.96 +
0.59 0.51 0.55 –
0.22 0.70 0.14 +

-0.85 -0.19 -0.80 +
-0.74 -0.76 -0.75 –
-0.16 -0.07 -0.38 –
-0.75 -0.65 -0.53 +

(b) Test 1

0.22 0.70 0.55 +
0.59 0.75 0.96 +
0.96 0.51 0.14 +
0.34 0.26 0.89 +

-0.85 -0.76 -0.75 –
-0.74 -0.07 -0.38 –
-0.16 -0.65 -0.53 –
-0.75 -0.19 -0.80 –

(c) Test 2

Figure 3.1: An example of labeled data and corresponding randomized ver-
sions: (a) the original data with two classes, + and –; (b) one randomized
sample produced by Test 1; (c) one randomized sample produced by Test 2.

j1 j2
...

...
i1 . . . 1 . . . 0 . . ....

...
i2 . . . 0 . . . 1 . . ....

...

=⇒

j1 j2
...

...
i1 . . . 0 . . . 1 . . ....

...
i2 . . . 1 . . . 0 . . ....

...

Figure 3.2: A swap in a 0–1 matrix. The four elements shown are rotated and
the rest of the matrix is kept fixed. The number of ones in each row and column
does not change.

3.2.2 Randomizing Binary Matrices

We use an MCMC method, see, e.g., Cobb et al. and Gionis et al. [CC03,
GMMT07], for producing random binary matrices with given row and columns
margins, that is, a method for solving Problem 2.1. This method shares the
basic ideas with the new methods in Publications I and II for randomizing
more general types of matrices. The method is based on iteratively performing
swaps as shown in Figure 3.2. In a swap, a pair of ones is changed with a
pair of zeros preserving the row and column sums. A randomized dataset D̂
is produced by starting from the original matrix D and performing I attempts
of swaps. The method is presented in Algorithm 3.1. In Figure 3.3 is given
an example of binary data and its randomized version. The original data is the
same as in Section 2.2.3.

In the experiments by Gionis et al. [GMMT07], the authors found that
using five times the number of ones in the matrix as the number of attempts
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Algorithm 3.1 SwapBinary

Input: Dataset D ∈ {0,1}n×d , number of attempts I
Output: Randomized dataset D̂ preserving row and column margins of D

1: D̂ ← D
2: for i ← 1 to I do

3: Pick i1, i2 and j1, j2 randomly such that D̂i1 j1 = 1 and D̂i2 j2 = 1
4: if D̂i1 j2 = 0 and D̂i2 j1 = 0 then

5: D̂ ← swapped version of D̂
6: end if

7: end for

8: return D̂

1 1 1 0 0 0 1 1
1 0 1 0 0 1 0 0
1 1 1 0 0 0 0 1
1 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 1

(a) Original data

0 0 1 1 1 1 1 0
0 0 1 0 1 0 0 1
0 1 0 0 1 1 0 1
1 1 1 1 1 0 0 1
1 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0
1 0 1 1 0 0 0 1
1 0 1 0 0 0 0 0
0 0 1 1 0 1 1 0

(b) Swapped data

Figure 3.3: An example of a 0–1 data and its randomized version.

I is usually sufficient to guarantee convergence. To increase the acceptance
rate, the first two corners, D̂i1 j1 and D̂i2 j2 , are required to contain ones (and not
zeros) since binary matrices are usually sparse.

Algorithm 3.1, SwapBinary, samples uniformly from the set of all the bi-
nary matrices with the same margins as the original matrix. This follows from
Theorem 3.1: The chain is aperiodic, since it can stay in the current state.
The chain is irreducible as proved by Ryser [Rys57]. Finally, the transition
probabilities are symmetric as the probability of a reversing swap equals the
probability of the original swap.

The idea of swapping matrix elements as a randomization technique has
a long history, see Cobb et al. [CC03]. There are also various other meth-
ods for randomizing binary matrices and contingency tables [CDHL05, CC03,
BBV06, Dye03, DG95].

32



3.2 Specific Randomization Approaches

3.2.3 Randomizing Real-Valued Matrices

Defining an appropriate randomization approach for binary matrices was rel-
atively straightforward. The row and column margins in binary matrices, that
is, the number of ones in each row and column, describe the basic properties of
the data. Thus preserving them in randomization allows us to find patterns that
are not directly explained by the row and column sums. In Publication I we
generalize this approach to real-valued matrices where the rows are of similar
type as well as the columns. We consider two randomization problems where
we fix the statistics of the rows and columns in different degrees:

Problem 3.1 (Real-valued matrix randomization: preserving value distribu-
tions). Given an n× d real-valued matrix D, generate a matrix D̂ chosen in-
dependently and uniformly from the set of n× d real-valued matrices having
approximately the same value distributions in rows and columns as D.

Problem 3.2 (Real-valued matrix randomization: preserving means and vari-
ances). Given an n × d real-valued matrix D, generate a matrix D̂ chosen
independently and uniformly from the set of n×d real-valued matrices having
approximately the same row and column means and variances as D.

In these randomization approaches the row and column value distributions
or the row and column means and variances are thought to describe the ba-
sic properties of the underlying phenomenon. One notable difference in these
problem statements compared to Problem 2.1 for binary matrices is that the
statistics are required to be preserved approximately. We will specify later
what it means exactly. There are two reasons for using approximations. Firstly,
there is no easy way to produce exact randomized samples. Secondly, preserv-
ing the row and column value distributions exactly is sometimes too strict, as
seen by the following theorem.

Theorem 3.3. Let D ∈ R
n×d be a real-valued matrix with unique values, that

is, no value is present twice. Then, D is the only matrix D̂ in R
n×d having

exactly the same row and column value distributions as D.

Proof. Let D̂ ∈ R
n×d have exactly the same values in each row and column as

the matrix D, that is, their row and column value distributions are equal. Be-
cause all the values are unique, the value Di j appears exactly once in row i and
once in column j of D̂. This is only possible if D̂i j = Di j because otherwise D̂
would contain the value Di j twice which is a contradiction. Thus, D̂ = D.

Thus, a matrix with unique values is the only matrix having the corre-
sponding row and column value distributions exactly. By introducing uncer-
tainty to the values we overcome the problem of uniqueness and can produce
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j1 j2
...

...
i1 . . . a . . . b . . ....

...
i2 . . . b . . . a . . ....

...

=⇒

j1 j2
...

...
i1 . . . b . . . a . . ....

...
i2 . . . a . . . b . . ....

...

Figure 3.4: A swap in a discretized matrix. The four elements shown are
rotated and rest of the matrix is kept fixed. The discretized values in each row
and column do not change in a swap.

0.90 0.22 0.93 0.49 0.10 0.72
0.98 0.12 0.73 0.62 0.26 0.90
0.44 0.30 0.49 0.68 0.34 0.89
0.11 0.32 0.58 0.40 0.68 0.33
0.26 0.42 0.24 0.37 0.14 0.70
0.41 0.51 0.46 0.99 0.72 0.20
0.59 0.09 0.96 0.04 0.11 0.03
0.26 0.26 0.55 0.89 0.65 0.74
0.60 0.80 0.52 0.91 0.49 0.50
0.71 0.03 0.23 0.80 0.78 0.48

(a) Original data

0.34 0.03 0.80 0.89 0.72 0.14
0.98 0.22 0.49 0.93 0.68 0.59
0.99 0.32 0.50 0.44 0.33 0.26
0.72 0.48 0.65 0.46 0.09 0.49
0.52 0.04 0.26 0.11 0.30 0.37
0.26 0.23 0.55 0.60 0.41 0.78
0.10 0.12 0.24 0.71 0.03 0.89
0.62 0.58 0.42 0.49 0.51 0.90
0.26 0.68 0.91 0.73 0.80 0.74
0.40 0.20 0.96 0.90 0.11 0.70

(b) Randomized data

Figure 3.5: An example of a real-valued dataset and its randomized version
with SwapDiscretized .

meaningful randomizations. By allowing more uncertainty, the methods are
able to produce matrices with more randomness.

In Publication I we give two algorithms, SwapDiscretized and General-
Metropolis , for solving Problems 3.1 and 3.2. The SwapDiscretized algorithm
generalizes the 0–1 swap of binary matrices shown in Figure 3.2 to real-valued
matrices. The values are first replaced by N equally-spaced discrete values.
Then we perform swaps that preserve the discretized value distributions ex-
actly, as shown in Figure 3.4. Finally, the original values are returned back.
In Figure 3.5 an example of real-valued data and its randomized version with
SwapDiscretized is given. In Publication I we also introduce a more general
version of SwapDiscretized that can support different discretizations for rows
and columns. Note that the larger the data the better the algorithm can preserve
the row and column value distributions.
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3.2 Specific Randomization Approaches

The GeneralMetropolis algorithm uses the Metropolis method described in
Section 3.1.3 to produce samples that approximately preserve the chosen row
and column statistics. We first define a difference measure E(D̂,D) that gives
the total difference between the row and column statistics of the original matrix
D and a randomized matrix D̂. As E(D̂,D) we use the sum of the differences in
each row and column. The difference between D and D̂ in one row or column is
defined either as the L1 distance between the cumulative distribution functions
or as the sum of differences in means and variances. The sampling distribution
for randomized datasets D̂ is defined as

Pr(D̂ | D) = cexp{−wE(D̂,D)}, (3.3)

where w is an error scaling constant and c is a normalizing constant. Matri-
ces with smaller error have a higher probability to be produced. As there are
more matrices with larger error, the peak of the distribution of the error of
randomized matrices produced is not on zero. The randomized matrices are
sampled from (3.3) by using Metropolis algorithm with five different types of
local modifications that either modify one or four elements at a time. The pa-
rameter selection especially for the GeneralMetropolis method was found to
be problematic in Publication I.

3.2.4 Randomizing General Matrices

The randomization approach presented in Publication I is theoretically sound
but it suffers from various practical shortcomings. In Publication II we give
solutions to these problems and introduce a new algorithm for randomizing
different types of matrices. The first improvement is support for numerical
matrices with dissimilar features, that is, features measured using different
scales.

Problem 3.3 (Numerical matrix randomization with dissimilar features). Given
an n× d real-valued matrix D where the features (columns) are of different
types, generate a matrix D̂ chosen independently and uniformly from the set
of n× d real-valued matrices having approximately the same values in each
column as D and approximately the same column-wise ranks in each row as D.

The column-wise rank of a value is its ordinal number among the values
in the same column. Thus, the randomization preserves the distribution of
extreme values in each row when the features have equal importance. This
approach can be used also if the features are measured using the same scale
but the value distributions differ from each other substantially, causing severe
problems with the previous approaches.
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The second improvement is a new algorithm, SwapConstrained . It gen-
eralizes the SwapDiscretized algorithm by allowing different tolerance ranges
for each value. That is, we allow an original value Di j to be replaced in row i
by a value in a tolerance range R j

i , for example, R j
i = [Di j − ε,Di j + ε], and in

column j by a value in a tolerance range Ci
j. A randomized matrix D̂ satisfies

these constraints if for each row i we can reorder the original row constraints
R1

i , . . . ,R
d
i in an order R̂1

i , . . . , R̂
d
i such that

D̂i1 ∈ R̂1
i , . . . , D̂id ∈ R̂d

i ,

and similarly for column constraints. Thus, the original matrix satisfies Di j ∈
R j

i ∩Ci
j whereas a randomized matrix satisfies D̂i j ∈ R̂ j

i ∩ Ĉi
j for some legally

reordered row and column constraints R̂ j
i and Ĉi

j.
In the SwapConstrained algorithm we do similar swaps as in Figure 3.4,

but we require that each swap satisfies the new unique row and column con-
straints. Surprisingly, this can be done almost as fast as with SwapDiscretized .
To overcome the problem of value distributions having long tails and narrow
peaks, we use tolerance ranges where each element has about 1/

√
n of all ele-

ments in its column tolerance range and about 1/
√

d of all elements in its row
tolerance range. These tolerance ranges are theoretically justified by the prop-
erties of Kolmogorov-Smirnov test [Mas51, Con98] guaranteeing that the row
and column value distributions will be preserved with good statistical accuracy
while allowing as random matrices as possible. By using different constraints
we can solve both Problems 3.1 and 3.3. Furthermore, the new algorithm can
be easily modified to support sparse matrices and missing values. The theoret-
ical analysis in Publication II gives that the mixing time of SwapConstrained
on full matrices is under certain assumptions O(min(

√
n,
√

d)nd log(nd)).
The improved approach is now theoretically justified and produces good

randomizations without any manual tuning. Furthermore, the new SwapCon-
strained method reduces on binary matrices to exactly the same method as
described in Section 3.2.2. The support for sparse matrices, missing values
and any value distributions means that the approach can be used to randomize
practically any types of matrices.

In Figure 3.6, an example of real-valued data with dissimilar features is
given with randomization by SwapConstrained . This is the same dataset as in
Figure 1.1 of introduction. Recall that the rows correspond to retail stores and
the columns to products. As the original stores have very strict order between
their general price levels, the randomized dataset is also fairly close to original
dataset as the distributions of product-wise price-ranks are preserved in each
store. That is, the general price levels of the retail stores explain most of the

36



3.2 Specific Randomization Approaches

0.69 2.49 0.99 5.49 6.49 5.99
0.79 2.79 1.19 6.69 7.13 6.99
0.79 2.49 1.29 6.39 7.59 6.49
0.89 2.89 0.99 6.59 6.99 7.49
0.89 3.19 1.49 7.09 7.39 11.69
0.99 3.59 1.79 8.09 8.69 9.59
0.99 3.29 1.69 6.89 9.19 12.99
1.19 4.59 1.99 8.49 8.59 16.99
1.19 4.29 2.49 8.99 9.39 18.99
1.29 3.99 2.19 7.79 9.99 14.49

(a) Original data

0.79 2.49 0.99 6.39 6.49 6.99
0.69 3.19 1.19 6.39 6.99 6.99
0.69 2.49 1.19 6.69 7.59 6.49
0.89 2.49 1.19 6.89 7.39 9.59
0.89 3.59 1.49 7.79 7.39 6.99
0.99 3.19 1.79 7.09 8.69 11.69
1.29 3.29 1.79 7.09 7.39 11.69
1.19 4.59 2.19 7.79 9.39 16.99
1.19 4.59 1.99 8.99 9.39 14.49
1.19 3.99 2.49 8.49 9.39 18.99

(b) Randomized data

Figure 3.6: An example of a real-valued dataset with dissimilar features
(columns) and its randomized version with SwapConstrained . This is the same
original dataset as in Figure 1.1.

data. The correlation between the first two columns, milk and bread, in the
randomized dataset is 0.9466 while the original correlation is 0.9323.

3.2.5 Randomizing Multi-Relational Databases

Randomization in multi-relational databases is by no means unambiguous. In
Publication IV we discuss different approaches for producing meaningful ran-
domizations on databases consisting of multiple binary relations. Binary rela-
tions can be presented in different ways that help us to understand the different
randomization approaches. The same multi-relational database with three bi-
nary relations is shown in Figure 3.7 as standard relations, in Figure 3.8 as
binary matrices and in Figure 3.9 as bipartite graphs. Especially, the latter two
help us in forming the randomizations.

As seen in Figure 3.8 the binary relations can be presented as binary matri-
ces. This allows us to directly use the swap randomization for binary matrices
described in Section 3.2.2. By swap randomizing one relation we can find out
what is its structural impact to the final result of the query. The binary swap
is easy to understand also in the bipartite graph presentation where it corre-
sponds to swapping two edges as shown in Figure 3.10. In Publication IV a
swap randomized version of a binary relation AB is noted as sw(AB).

The other randomization studied in Publication IV is the label permutation
of a relation AB that randomly permutes the labels assigned to the attribute A
or B, as shown in Figure 3.11. In Publication IV this operation was called as
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GM

Genre Movie

Romance m1
Romance m2
Drama m3
Drama m4
Drama m5
Drama m6
Drama m7
History m6
History m7

(a) Genre × Movie

MD

Movie Director

m1 C. Waitt
m2 C. Waitt
m3 C. Waitt
m4 C. Waitt
m5 C. Waitt
m6 T. George
m7 T. George

(b) Movie × Director

DA

Director Age

C. Waitt 30
T. George 60

(c) Director × Age

Figure 3.7: A toy example of a multi-relational database with three binary
relations: movies classified by genres, GM; movies directed by directors, MD;
and ages of directors, DA.

GM

m1 m2 m3 m4 m5 m6 m7

Romance 1 1 0 0 0 0 0
Drama 0 0 1 1 1 1 1
History 0 0 0 0 0 1 1

(a) Genre × Movie

MD

C. Waitt T. George

m1 1 0
m2 1 0
m3 1 0
m4 1 0
m5 1 0
m6 0 1
m7 0 1

(b) Movie × Director

DA

30 60

C. Waitt 1 0
T. George 0 1

(c) Director × Age

Figure 3.8: The binary matrix representation of the toy database in Figure 3.7.

38



3.2 Specific Randomization Approaches

Romance

Drama

History

m1

m2

m3

m4

m5

m6

m7

C. Waitt

T. George

30

60

Figure 3.9: The multi-layer bipartite graph representation of the movie
database shown in Figure 3.8. The graph shows all the possible paths from
the source nodes, Genre, to the destination nodes, Age.
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Figure 3.10: A binary swap in a bipartite graph.
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Figure 3.11: Label permutation of attribute A.

the row-order or column-order permutation, referring to the binary matrix rep-
resentation. This label permutation breaks the connection between two binary-
relations sharing one attribute. Permuting the labels of attribute B in relation
AB is actually the same as adding an identity relation IB = B1B2 and swap
randomizing this relation, as shown in Figure 3.12.

Thus, in a multi-relational database we have two different types of random-
izations: swap randomizing one relation or permuting the connection between
two relations. Sometimes these approaches can produce equal set of random-
ized databases, as discussed in Publication IV. For example, if relation AB has
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A

a1

a2

a3

B

b1

b2

b3

b4

b5

C

c1

c2

c3

c4

(a) Two relations AB and BC.

A

a1

a2

a3

B1

b1

b2

b3

b4

b5

B2

b1

b2

b3

b4

b5

C

c1

c2

c3

c4

(b) Label permutation of attribute B.

Figure 3.12: Label permutation of attribute B in relation AB: (a) original
database with two relations AB and BC; (b) the label permutation equals swap
randomizing an added identity relation IB = B1B2.

exactly one 1 in each column, then the swap randomization of AB equals the
label permutation of B.

3.2.6 Constraining Randomization with Previous Results

In Publication III we consider the problem of iterative data mining. In practice,
many different methods are applied to the same dataset to find the patterns that
describe the data the best. However, this can lead to problems. Firstly, the
multiple hypotheses correction should be applied as discussed in Section 2.2.5.
Secondly, some of these patterns can be dependent observations on each other.
That is, if we have found a good clustering structure in the data and a few nice
association rules in the data, how can we be sure that they are independent
phenomena?

The approach suggested in Publication III to solve this problem is simple
in principle but often complex in practice. The idea is to start with the original
data and apply some interesting data mining method. Then the significances
of the found patterns are assessed, for example, by using the randomization of
binary or real-valued matrices. Some of the assessed patterns are then discov-
ered to be significant. The next step is to find new patterns that are indepen-
dent of these previous significant patterns. This is done by applying some new
data mining method and assessing the found new patterns by randomization
method where the previously found significant patterns are preserved in ran-
domization in addition to some other basic statistics like the row and column
value distributions. This iterative process can be continued until no new sig-
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3.2 Specific Randomization Approaches

nificant patterns are found or until a sufficient number of patterns is obtained.
In the end we are left with a set of mutually independent significant patterns.

The hard part of the approach is to produce all of these randomizations
where we preserve the previous significant results. In practice, we have to
develop a new randomization method for each specific case. The generic ap-
proach consists of making a difference measure E(D̂,D) that measures the
combined difference in the preserved statistics between a randomized dataset
D̂ and the original dataset D. The problem is then the following:

Problem 3.4 (Soft randomization). Given a dataset D, a difference measure
E(D̂,D) for some statistics and a scaling constant w > 0, generate a dataset
D̂ chosen with a probability

Pr(D̂ | D) ∝ exp{−wE(D̂,D)} (3.4)

from all datasets having the same size as D.

Note that this is exactly the same equation as the one used in Section 3.2.3
to generate randomized real-valued matrices; the only change is in the dif-
ference measure E(D̂,D). If w = ∞, the statistics are preserved exactly. The
Metropolis algorithm described in Section 3.1.3 can be used to sample datasets
from the probability distribution (3.4). The problem is that when many pat-
terns are added as constraints, the randomization becomes very hard to do in
practice. One reason for this is that sometimes only few patterns are needed
to explain the other patterns. But the other more common reason is that this
randomization approach does not work with too many constraints as either we
produce too large error in the preserved statistics or the method is not able
to move away from the original data. To alleviate this problem we can use
the parallel tempering [Gey91] but still the running time can be too large in
practice.

Despite the general hardness of the problem, some specific cases are easy.
For example, in Publication III the approach is applied to study the cluster-
ing structure and frequent itemsets on binary datasets. Preserving a clustering
structure turns out to be easy. Randomized binary datasets preserving the clus-
tering structure are produced by swap-randomizing each cluster separately.
This randomization, ClusterSwap , preserves the cluster centers and variances
exactly. This approach could be generalized also to real-valued matrices. For
preserving the itemset frequencies, the Metropolis approach with soft con-
straints is used.

In Figure 3.13 examples of randomizations preserving either the clustering
structure or the frequencies of two itemsets in addition to the row and columns
sums are shown. The original matrix is the same as shown in Figure 2.2 in
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3 GENERATING RANDOMIZED DATASETS

A B C D E F G H

1 1 1 0 0 0 1 1
1 0 1 0 0 1 0 0
1 1 1 0 0 0 0 1
1 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 1

(a) A 0–1 matrix

A B C D E F G H

1 1 1 0 0 1 0 1
1 1 1 0 0 0 0 0
1 0 1 0 0 1 0 1
1 1 1 0 1 0 1 1
0 0 0 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 1 0 0 1 0
0 0 1 1 1 0 0 1

(b) Clustering preserved

A B C D E F G H

1 1 1 0 1 0 0 1
0 0 1 1 0 0 0 1
1 0 1 1 0 1 0 0
1 1 1 1 0 1 0 1
0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 1
0 0 1 1 1 0 1 0
0 0 1 0 1 0 0 0
0 0 1 1 1 1 0 0

(c) Frequencies of itemsets
AB and BH preserved

Figure 3.13: Examples of randomizations that preserve clustering structure or
itemset frequencies in addition to row and column margins: (a) original 0–1
dataset; (b) a randomized sample preserving the two clusters (dashed rule); (c)
a randomized sample preserving the frequencies of the itemsets AB and BH.

Section 2.2.3. We note that difference between the original matrix 3.14a and
the clustering-preserved randomized matrix 3.14b is fairly small, that is, the
clustering structure of the data in addition to the row and column margins
explains most of the structure in the data. Also the frequencies of itemsets AB
and BH explain most of the data.

3.2.7 Related Randomization Methods

Next, we discuss related work on randomization methods. Obviously, sig-
nificance testing has received a large amount of attention. Excellent gen-
eral sources on a variety of randomization approaches include books written
by Good [Goo00], Besag [Bes04], Westfall and Young [WY93], Casella and
Berger [CB01], and Edgington [Edg95].

Defining the significance of discovered patterns has attracted a lot of at-
tention in data mining. Many papers work on the significance of associa-
tion rules [SBM98, TKS02, Hä10]. The χ2-test is used by Silverstein et
al. [SBM98] for significance testing of correlation rules that are generaliza-
tions of association rules. Functional dependencies and logic are used for
pruning out nonsignificant patterns algorithmically by Liu et al. [LHM99,
LHM01]. Using inference to prune out nonsignificant correlations quickly
was done by Xiong et al. [XSTK04].
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3.2 Specific Randomization Approaches

Definitions and views on patterns other than frequent itemsets or associ-
ation rules can be found, for example, in DuMouchel and Pregibon [DP01],
and Jaroszewicz and Simovici [JS01]. The randomization is used by Ukko-
nen and Mannila [UM07] to study partial orders. Approaches to assess re-
sults on graphs via randomization techniques are introduced by Hanhijärvi et
al. [HGP09], Newman et al. [NWS02], and Ying and Wu [YW09]. Testing the
significance of patterns with clustering preserving randomization is studied
by Vuokko and Kaski [VK10]. The randomization of time series is studied by
Long et al. [LSF+01] and Schreiber [Sch98], and evaluating the quality of seg-
mentations by Haiminen et al. [HMT07]. Using randomization to assess gene
periodicity results is studied by Kallio et al. [KVO+11]. A more methodolog-
ical view on pruning nonsignificant patterns using multiple hypothesis testing
concepts can be found in Megiddo and Srikant [MS98].

Various null-models have been studied in many application areas. In ecol-
ogy, the use of null-models in testing the significance of discoveries is quite
widespread. For example, in the analysis of nestedness, there are several
slightly different null-models that have been under careful study in recent
years [MS07, UG07a, UG07b]. Null-models for temporal trends in biologi-
cal records are studied by Wonham and Pachepsky [WP06] and in geographic
range size evolution by Waldron [Wal07] and Storch et al. [SSR+08].

Recently, Tijl De Bie et al. have proposed a method for defining null-
models semi-automatically [De 09, KDB10, DBKS10]. The idea is to pre-
serve given statistics in expectation and choose the null-distribution that max-
imizes entropy. The principle of maximum entropy [Jay57a, Jay57b] guar-
antees that the null-model defined in this way makes the least additional as-
sumptions about the underlying null-distribution. The work by Tijl De Bie has
connections to the Rasch models widely used in psychometrics. Rasch model
is a simple randomization model that is used to assess, for example, abilities
of people or difficulties of tasks [Ras61, BF07].

Sub-sampling methods such as bootstrapping [Efr79, ET93, Man06] use
randomization to study the properties of the underlying distribution, but they
are not used for testing the data against some null-model as we intend in this
thesis. Randomization is widely used in many other context as well, for ex-
ample, in privacy preserving [AY08], in randomized algorithms for guarantee-
ing stable performance [MR95], and in physics to model the nature [Buc10].
For other types of approaches to significance testing of patterns, see work by
Jaroszewicz [Jar08] and Webb [Web07, Web08].
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CHAPTER 4
Applying Randomization

In the previous chapter we discussed various approaches for producing ran-
domized datasets. In this chapter we show how these randomization methods
can be applied in practice. For each approach we perform a case analysis and
discuss the practical properties of the methods.

4.1 Assessing Patterns in Matrices

First we study assessing patterns in matrices. The randomizations methods for
matrices were introduced in Sections 3.2.3 and 3.2.4 corresponding to Pub-
lications I and II. As the latter publication is a generalization of the former,
here we will only apply the improved approach and method of Publication II.
The implementation of the randomization method SwapConstrained is pub-
licly available [Oja10].

To demonstrate the use of SwapConstrained , we assess the results of k-
means clustering and principal component analysis on ten different datasets.
The goal is to identify whether the clustering and PCA structures are explained
by the row and column value distributions. The basic properties of the datasets
are given in Table 4.1. The RANDOM dataset is a random matrix where the
elements are independently chosen uniformly from range [0,1]. It is the same
matrix as used also in Publications I and II. The other datasets are real-life
datasets taken from NCBI’s Gene Expression Omnibus [EDL02] and UCI ma-
chine learning repository [AN11]. These datasets are not previously analyzed
in any publication of this thesis.

Short descriptions of the real-life datasets are as follows: The COMMU-
NITY dataset contains normalized socio-economic, law-enforcement and crime
data for different communities within the United States. The MOVEMENT
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4 APPLYING RANDOMIZATION

Dataset Rows Columns Missing Type Attempts

RANDOM 100 100 No Sim. 94
GDS1335 24 768 No Sim. 51
GDS1385 15 3757 No Sim. 44
GDS2481 32 1737 No Sim. 64
GDS2960 101 4132 No Diss. 126
COMMUNITIES 1994 122 0.151 Sim. 123
MOVEMENT 360 90 No Sim. 100
PARKINSONS 195 22 No Diss. 41
PAGEBLOCKS 5473 10 No Diss. 37
SECOM 1567 590 0.045 Diss. 175

Table 4.1: Properties of the datasets. For each dataset the number of rows and
columns are given as well as the proportion of missing values. Type and at-
tempts give the parameters for SwapConstrained , that is, whether the features
are similar/dissimilar and how many attempts per element is used.

dataset contains 360 time-series of the location of a moving hand, classi-
fied into different gestures. The PARKINSONS dataset contains biomedical
voice measurements from people with and without Parkinson’s disease. The
PAGEBLOCKS dataset contains features for blocks in page layouts of different
documents. The SECOM dataset contains sensor measurements from a semi-
conductor manufacturing process. The GDS1335 and GDS2481 datasets
contain gene expression measurements for juvenile hormone III effect on ante-
rior midgut in pine engraver. The GDS1385 dataset contains gene expression
measurements for hepatocellular carcinoma induced by choline-deficient L-
amino-acid-defined diet in brown rat, and the GDS2960 dataset contain gene
expression measurements of cultured skin fibroblasts from patients with Mar-
fan syndrome.

To use SwapConstrained , we have to first define which randomization ap-
proach is used, that is, whether the features are assumed to be similar or dis-
similar (that is, measured using different scales). However, if the features are
measured using the same scale but the value distributions are still very differ-
ent, the approach for dissimilar features should be used. This guarantees that
there exists enough swappable quartets for SwapConstrained . Note that we
can always apply the approach for dissimilar features to any data. However,
if the value distributions of the features are really similar, we can preserve the
distributions more accurately in randomization by using the specific approach.
In Table 4.1, the applied randomization approach is given for each dataset.
The suitable approach was automatically detected by SwapConstrained . The
number of randomization steps, attempts, is decided based on the theoretical
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Dataset Swaps Rate Time Dist. Diff. Row err. Col. err.

RANDOM 4.2 0.04 0.1s 1.40 1.00 0.0117 0.0118
GDS1335 4.5 0.09 0.1s 1.22 1.00 0.0025 0.0272
GDS1385 4.8 0.11 0.5s 1.35 1.00 0.0008 0.0370
GDS2481 5.1 0.08 0.6s 1.23 1.00 0.0014 0.0193
GDS2960 6.0 0.05 32s 1.41 1.00 0.0009 0.0104
COMMUNITIES 26.0 0.21 19s 0.75 1.00 0.0102 0.0491
MOVEMENT 5.1 0.05 0.4s 1.30 1.00 0.0131 0.0045
PARKINSONS 4.2 0.10 0.0s 1.15 1.00 0.0338 0.0065
PAGEBLOCKS 4.7 0.13 1.5s 1.16 0.99 0.0538 0.0010
SECOM 39.9 0.23 1m57s 1.23 1.00 0.0039 0.0084

Table 4.2: Statistics of randomizations with SwapConstrained . Swaps: ac-
cepted attempts per element. Rate: acceptance probability of attempted swaps.
Time: running time to produce one randomized sample. Distance: normalized
root mean square distance between the rank matrices. Difference: proportion
of changed elements. Row and column error: average L1-CDF rank error in
row or column value distributions of randomized samples.

analysis presented in Publication II. With these automatically determined pa-
rameters we can apply the SwapConstrained method to produce 999 random-
ized samples. Note that we are using the backward-forward sampling approach
by Besag to produce these samples, see Section 3.1.4.

The next step before calculating the empirical p-values is to assess the
quality of the randomized samples, that is, how random they are and how well
the row and column value distributions are preserved. In Table 4.2 we give
some basic statistics of the randomized datasets. We note that on the average
each element is swapped a few times. To estimate convergence we use two
difference measures. The first is the normalized root mean square distance
between the original matrix D and the randomized matrix D̂,

d(D, D̂) =
1

σD

√
∑i, j |Di j − D̂i j|2

nd
,

used in Publication I. We apply this distance measure to the rank matrices
where the values are replaced with their corresponding ordinal values. For a
fully permuted matrix where the row and column value distributions are not
preserved at all, this distance measure is approximately

√
2. The second dif-

ference measure is the proportion of changed elements; we note that in all
datasets approximately 100% of the elements have changed their locations.

The row and column errors are the average L1 errors between the cumula-
tive distribution functions of rows and columns of the original rank matrix and
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Figure 4.1: Convergence of (a) distance and difference, as well as (b) row and
column error with SwapConstrained on MOVEMENT dataset. The dashed line
corresponds to the used number of attempts.

the randomized rank matrix. For example, an average row error of 0.01 means
that on the average the ranks are preserved with 1% accuracy in each row.
In Figure 4.1 the convergence of the distances and errors are shown on the
MOVEMENT dataset. We can conclude that SwapConstrained has produced
well randomized samples preserving the row and column value distributions
accurately. Nevertheless, evaluating the statistics shown in Table 4.2 is always
a good practice before using the randomizations to significance testing.

The actual significance testing of the data mining results is pretty straight-
forward. We apply k-means clustering and principal component analysis to the
whitened data where the features are normalized to zero mean and unit vari-
ance after randomization. We use the structural measures given in Sections
2.1.1 and 2.1.2. The missing values were replaced after randomization with
column-wise medians. For most datasets, a meaningful number of clusters
was known. For others, k = 10 was used. In Table 4.3 we give the significance
testing results in the datasets for these two data mining methods. We notice
that only the results on the artificial RANDOM are nonsignificant, while all the
other results are clearly significant. Thus, the real datasets contain clustering
and PCA structures that are not explained by the row and column distributions.

4.2 Identifying Interdependent Phenomena

In the previous section we studied k-means clustering and principal component
analysis as separate phenomena. Next, we apply the approach introduced in
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k-means PCA

Dataset k Orig. Rand. p-value d̂ Orig. Rand. p-value

RANDOM 10 8.46k 8.48k 0.252 5 0.17 0.17 0.381

GDS1335 2 14.7k 16.2k 0.001 5 0.57 0.38 0.001
GDS1385 2 42.1k 45.5k 0.001 5 0.69 0.54 0.001
GDS2481 2 44.1k 48.7k 0.001 5 0.56 0.38 0.001
GDS2960 2 356k 407k 0.001 5 0.37 0.09 0.001
COMMUNITIES 10 134k 219k 0.001 5 0.58 0.13 0.001
MOVEMENT 15 10.3k 26.4k 0.001 5 0.81 0.22 0.001
PARKINSONS 2 2.80k 3.44k 0.001 5 0.88 0.51 0.001
PAGEBLOCKS 5 23.7k 36.5k 0.001 5 0.89 0.58 0.001
SECOM 2 707k 730k 0.001 5 0.17 0.03 0.001

Table 4.3: Significance testing results for normalized k-means clustering and
principal component analysis with SwapConstrained . For each dataset, the
original structural measure, the average structural measure on 999 randomized
datasets and the empirical p-value is given. The k is the number of clusters
used for k-means and d̂ is the new dimension used for PCA. The p-values in
boldface correspond to nonsignificant results with significance level α = 0.05.

Section 3.2.6 for identifying patterns that are independent of the clustering
structure. In Section 3.2.6 and Publication III the ClusterSwap method was
introduced for randomizing binary matrices while preserving the clustering
structure. Next, we generalize this approach to real-valued matrices and apply
it to assess the principal components and pair-wise correlations.

To produce randomizations preserving the clustering structure of a ma-
trix, we first apply some clustering algorithm to the original data to define the
clustering structure to be preserved. In the experiments we use the same nor-
malized k-means clustering as in Section 4.1. To preserve this structure in ran-
domization, we separately randomize each of the submatrices, clusters, using
the SwapConstrained method. This guarantees that we approximately preserve
the value distribution of points and features inside each cluster. This method,
ClusterSwap , is a direct generalization of the binary version given in Publica-
tion III. Recently, Vuokko and Kaski introduced a related clustering preserving
randomization method that uses the connection between PCA and k-means to
produce the randomizations [VK10]. It preserves the general clustering struc-
ture of the data whereas ClusterSwap preserves a specific given clustering.

To test that ClusterSwap really produces randomized matrices preserving
the original clustering structure, we assess the significance of the k-means clus-
tering using ClusterSwap when the same clustering is preserved. In Table 4.4
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k-means PCA

Dataset k Orig. Rand. p-value d̂ Orig. Rand. p-value

RANDOM 10 8.46k 8.46k 0.512 5 0.17 0.17 0.782

GDS1335 2 14.7k 14.8k 0.059 5 0.57 0.43 0.001
GDS2481 2 44.1k 44.2k 0.052 5 0.56 0.35 0.001
COMMUNITIES 10 134k 135k 0.136 5 0.58 0.43 0.001
PARKINSONS 2 2.80k 2.79k 0.746 5 0.88 0.67 0.001
PAGEBLOCKS 5 23.7k 23.7k 0.657 5 0.89 0.81 0.001

Table 4.4: Significance testing results for normalized k-means clustering and
principal component analysis with ClusterSwap using 999 randomized sam-
ples. The columns are as in Table 4.3. Empirical p-values in boldface corre-
spond to nonsignificant results with significance level α = 0.05.

we give significance testing results for a small, random subset of the datasets
using ClusterSwap . We observe that the k-means clustering results are ex-
plained by ClusterSwap as expected. None of the PCA results are explained
by the clustering structure. However, with ClusterSwap randomization most
of the PCA structural measures are closer to the original ones as with Swap-
Constrained , that is, the clustering structure explains some of the observed
PCA structure.

Until this point we have studied only single large patterns like the cluster-
ing structure of the data. Often such patterns are found to be significant as it
can suffice that there is some small part in the data that is not random. Next,
we apply the approach to study multiple smaller patterns. In such case it is
more likely to obtain both significant and nonsignificant patterns.

We apply the SwapConstrained and ClusterSwap randomizations to find
the significant pair-wise correlations between the columns. In Publication II a
similar setting was studied but then only SwapConstrained randomization and
column permutation were used. We calculate all the pairwise correlations in
the original datasets and compare them to the distribution of pairwise correla-
tions in 99 randomized datasets with both SwapConstrained and ClusterSwap .
In Figure 4.2, we present the distribution of pair-wise correlations in the orig-
inal datasets and in randomized datasets with SwapConstrained and Cluster-
Swap . We notice that ClusterSwap preserves the pair-wise correlations bet-
ter than SwapConstrained as expected. On PARKINSONS and PAGEBLOCKS

datasets we notice that ClusterSwap has preserved the complex distribution of
the correlations surprisingly well although only the structures with two and
five clusters are preserved, respectively.

In Table 4.5 we show the number of significant pairwise correlations us-
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Figure 4.2: Distributions of pairwise correlations between the columns in six
datasets for the original data and for randomized data with SwapConstrained
and ClusterSwap . Triangles: data randomized with SwapConstrained while
preserving the row and column value distributions. Circles: data randomized
with ClusterSwap while additionally preserving the clustering structure with k
clusters where k is given in Table 4.4.
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4 APPLYING RANDOMIZATION

Orig. SwapConstrained ClusterSwap

Dataset Med. Med. B-H thresh. #Sign. Med. B-H thresh. #Sign.

RANDOM 0.00 0.00 — / 0.32 0 0.00 — / 0.32 0
GDS1335 -0.00 0.00 0.69 / 0.69 3360 0.00 0.88 / 0.88 117
GDS2481 -0.00 0.00 0.68 / 0.68 23474 0.00 0.84 / 0.84 2289
COMMUNITIES 0.01 0.03 0.19 / 0.19 1671 0.02 0.74 / 0.74 179
PARKINSONS 0.44 0.26 0.41 / 0.41 120 0.37 0.74 / 0.73 56
PAGEBLOCKS 0.08 0.08 0.39 / 0.14 16 0.08 0.78 / 0.73 3

Table 4.5: Significance testing results for pairwise correlations using two dif-
ferent randomization approaches: SwapConstrained and ClusterSwap . For
each dataset, the median pairwise correlation between the columns in the orig-
inal dataset and in randomized datasets are given. The number of signifi-
cant pairwise correlations (#Sign.) is calculated using Benjamini-Hochberg
approach with SwapConstrained and ClusterSwap . The B-H threshold con-
tains the smallest significant and the largest insignificant pairwise correlation.

ing SwapDiscretized and SwapConstrained . To correct for multiple compar-
isons, we apply the Benjamini-Hochberg approach described in Section 2.2.5.
We restrict the false discovery rate below 0.05. Firstly, the dataset RANDOM

does not contain any significant pair-wise correlations when significance is
estimated by using either method. In the other five datasets, the clustering
structure explains about 75–95% of the pair-wise correlations that were signif-
icant when only the row and column value distributions were preserved with
SwapConstrained . This example shows well how adding constraints to the
randomizations can explain the significance of some other seemingly remote
patterns.

4.3 Studying Dependent Features in Classification

Next, we study the performance and properties of classification algorithms on
those of the previous datasets that contain class labels. We apply the two tests
from Publication V, introduced in Section 3.2.1, to assess whether the classifier
has found a real connection between the data and the class labels and whether
the classifier is using the dependencies between the features to improve the
classification accuracy.

Applying these two tests is easy and straightforward. First, we train a clas-
sifier on the original dataset and calculate the classification error. Then we
produce randomized datasets, and repeat the same procedure on them. We use
a decision tree classifier and 1-nearest neighbor classifier, described in Sec-
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Decision tree

Original Test 1 Test 2

Dataset Classes Err. (Std) Err. (Std) p-value Err. (Std) p-value

RANDOM 10 0.49 (0.02) 0.50 (0.06) 0.439 0.53 (0.05) 0.227

GDS1335 2 0.25 (0.00) 0.30 (0.14) 0.450 0.25 (0.03) 0.781

GDS1383 2 0.33 (0.00) 0.50 (0.23) 0.327 0.35 (0.05) 0.601

GDS2481 2 0.16 (0.00) 0.51 (0.18) 0.030 0.18 (0.01) 0.244

GDS2960 2 0.23 (0.04) 0.48 (0.07) 0.002 0.22 (0.04) 0.491

MOVEMENT 15 0.32 (0.02) 0.93 (0.01) 0.001 0.53 (0.03) 0.001
PARKINSONS 2 0.15 (0.02) 0.27 (0.02) 0.001 0.12 (0.02) 0.834

PAGEBLOCKS 5 0.03 (0.00) 0.10 (0.00) 0.001 0.03 (0.00) 0.989

SECOM 3 0.10 (0.00) 0.11 (0.01) 0.350 0.11 (0.01) 0.257

Table 4.6: Classification errors and empirical p-values obtained with decision
tree classifier for Test 1 and Test 2. The empirical p-values are calculated over
999 randomized samples. Classification on the original data is repeated ten
times. Ten-fold cross-validation is used for datasets with more than 50 rows,
for smaller datasets leave-one-out cross-validation is used. The average values
and standard deviations of the classification errors are given. The p-values in
boldface correspond to nonsignificant results with significance level α = 0.05.

tion 2.1.5. As the classification error, we use the leave-one-out cross-validation
error for small datasets, namely GDS1335, GDS1383 and GDS2481, and
the 10-fold cross validation error for the other datasets. Only the COMMUNI-
TIES dataset was left out from the previously studied datasets as it does not
contain labels. In the RANDOM dataset we assigned the points uniformly in
random into 10 classes.

To assess the performance of the classifiers, we produced 999 randomized
datasets with both Test 1 and Test 2, that is, by permuting the labels or by
permuting the features inside each class. In Table 4.6 we give the significance
testing results for the decision tree classifier and in Table 4.7 for the 1-nearest
neighbor classifier. Compared to the results in Publication V there are now
more datasets where the classifiers have not found significant class structures,
that is, the p-value of Test 1 is high. The reason is that the original class labels
especially in the GDS1335 and GDS1385 datasets are fairly meaningless.

The MOVEMENT dataset is now the only dataset where the p-value of
Test 2 is small with both classifiers, i.e., both classifiers are clearly using the
dependencies between the features to increase the classification accuracy. We
also applied the naive Bayes classifier to all of these datasets and obtained the
expected results: the dependencies between the features were not used in any
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1-nearest neighbor

Original Test 1 Test 2

Dataset Classes Err. (Std) Err. (Std) p-value Err. (Std) p-value

RANDOM 10 0.56 (0.03) 0.50 (0.06) 0.847 0.50 (0.05) 0.841

GDS1335 2 0.04 (0.00) 0.29 (0.12) 0.004 0.83 (0.02) 0.001
GDS1383 2 0.27 (0.00) 0.49 (0.15) 0.121 0.47 (0.11) 0.064

GDS2481 2 0.53 (0.00) 0.52 (0.10) 0.614 0.50 (0.00) 1.000

GDS2960 2 0.15 (0.01) 0.49 (0.06) 0.001 0.00 (0.00) 1.000

MOVEMENT 15 0.14 (0.01) 0.93 (0.02) 0.001 0.43 (0.02) 0.001
PARKINSONS 2 0.04 (0.01) 0.37 (0.03) 0.001 0.04 (0.02) 0.541

PAGEBLOCKS 5 0.04 (0.00) 0.19 (0.00) 0.001 0.06 (0.00) 0.001
SECOM 3 0.09 (0.00) 0.12 (0.02) 0.092 0.15 (0.07) 0.135

Table 4.7: Classification errors and empirical p-values obtained with 1-nearest
neighbor classifier for Test 1 and Test 2. The p-values are calculated over
999 randomized samples. Classification on the original data is repeated ten
times. Ten-fold cross-validation is used for datasets with more than 50 rows,
for smaller datasets leave-one-out cross-validation is used. The average values
and standard deviations of the classification errors are given. The p-values in
boldface correspond to nonsignificant results with significance level α = 0.05.

of the datasets. This happens because naive Bayes explicitly assumes that the
features are independent. To conclude, these two tests provide simple descrip-
tive features for the classifier performance.

4.4 Assessing Queries in Multi-Relational Databases

Compared to the approaches discussed in the previous sections, applying the
randomization on multi-relational databases is not as straightforward. The dif-
ferent randomization strategies for multi-relational databases were presented
in Section 3.2.5, corresponding to Publication IV. These approaches are still
more conceptual ideas than practical tools. Nevertheless, next we apply the
approaches for studying a database BOOK-CROSSING [ZMKL05] that has not
been analyzed previously in any publication of this thesis.

The BOOK-CROSSING dataset consists of ratings given by users for books
they have read, list of authors for the books, and some demographic informa-
tion for the users. In Table 4.8 we give a list of the binary relations in BOOK-
CROSSING dataset that are used in this section. We interpret that a user has
read a certain book if he or she has rated the book. From the original dataset
we have removed users that have not read any books, books that have not been
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Relation Description Rows Columns Ones / row Ones / col

UB User×Book 51525 222584 14.11 3.27
CU Country×User 186 51525 242.57 1
AU Age×User 99 51525 520.45 1
BA Book×Author 222584 85128 1 2.61
BT Book×Title length 222584 256 1 869.47

Table 4.8: Summary of binary relations in the BOOK-CROSSING dataset.

Mean (Std) p-value

Original 10.94
sw(UB)��BA 12.97 (0.00) 0.001
UB��sw(BA) 13.82 (0.01) 0.001

Table 4.9: Significance testing results for Hypothesis 4.1, “People prefer fa-
miliar authors”, on input relations UB��BA. Mean and std are the average and
standard deviation of Statistic 4.1 in the original input data (first row) and in
the different randomizations using 999 randomized samples. The randomiza-
tion UB��sw(IB)��BA is equivalent to UB��sw(BA).

read by anyone and users that have not given the demographic information.
Next, we study three simple hypotheses on this dataset to demonstrate the

use of the randomization approach.

Hypothesis 4.1. People prefer familiar authors.

As a structural measure we use the following statistics.

Statistic 4.1. The average number of different authors whose books each user
has read.

The value of the statistic in the original dataset is 10.94, that is, people have
read books on the average from about 11 different authors. For comparison,
the number of books read by an average user is 14.11. In Table 4.9 we give
significance testing results for the hypothesis by applying the randomization in
two different places. By theory we know that randomization UB��sw(IB)��BA
is equivalent to UB��sw(BA), since BA contains exactly one 1 in each row.
Both randomizations regard the original result as significant. However, ran-
domizing the connection between the books and the authors brings the value
of the statistics much closer to the number of books read by an average user.

Hypothesis 4.2. People in a given country read books with long/short title.

55



4 APPLYING RANDOMIZATION

sw(CU)��UB��BT CU��sw(UB)��BT CU��UB��sw(BT)

Country Orig. Mean (Std) p-val. Mean (Std) p-val. Mean (Std) p-val.

USA 31.78 31.31 (0.07) 0.001 32.82 (0.10) 0.001 37.66 (0.39) 0.001
Canada 31.30 31.29 (0.27) 0.469 32.82 (0.28) 0.001 37.66 (0.49) 0.001
Germany 31.07 31.31 (0.31) 0.212 32.80 (0.32) 0.001 37.63 (0.55) 0.001
UK 30.10 31.30 (0.35) 0.001 32.82 (0.35) 0.001 37.68 (0.89) 0.001
Italy 29.85 31.33 (0.73) 0.019 32.81 (0.82) 0.001 37.50 (1.57) 0.001
Australia 29.84 31.32 (0.43) 0.001 32.81 (0.48) 0.001 37.63 (1.56) 0.001
Spain 29.17 31.32 (0.40) 0.001 32.84 (0.43) 0.001 37.66 (0.75) 0.001
France 26.27 31.30 (0.63) 0.001 32.82 (0.61) 0.001 37.66 (0.87) 0.001

Table 4.10: Significance testing results for Hypothesis 4.2, “People in a given
country read books with long/short title”, on input relations CU��UB��BT for
countries having at least 1000 users. The original values of Statistic 4.2, with
mean and std over 999 randomized samples are given. The randomization
CU��sw(IU)��UB��BT is equivalent to sw(CU)��UB��BT, and the random-
ization CU��UB��sw(IB)��BT is equivalent to CU��UB��sw(BT).

Statistic 4.2. For a given country, the average of the average title lengths of
the books read by each user, measured in the number of characters.

The significance testing results for Hypothesis 4.2 are given in Table 4.10.
Here we are using the two-tailed empirical p-value (2.2). We notice that by
permuting the countries, equalling sw(CU), the average title length of the
books read by users in Canada and Germany is not surprising. All the other re-
sults are not explained by any simple structure in the data. It is worth noticing
that almost half of the users in the BOOK-CROSSING dataset are from USA
(32411) and that Canada (4977) and Germany (4120) form the next largest
user groups. Also, most of the book titles are in English. The average values
of the statistic in the randomized datasets are close to the following values:
The average title length of all books is 37.65, the average title length of a read
book is 33.00, and the average title length of the books that an average user
has read is 31.31 (this equals Statistic 4.2 when the country is left out). In this
case the randomizations have broken practically all connections and produced
results close to some preknown statistics.

Hypothesis 4.3. People in different age groups read books written by different
authors.

Statistic 4.3. The L1 distance between the distribution of authors that an av-
erage user in the given age group and an average user not in the given age
group has read.
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sw(AU)��UB��BA AU��sw(UB)��BA AU��UB��sw(BA)

Age Orig. Mean (Std) p-val. Mean (Std) p-val. Mean (Std) p-val.

–19 1.02 0.60 (0.02) 0.001 0.68 (0.00) 0.001 0.95 (0.00) 0.001
20–29 0.62 0.47 (0.01) 0.001 0.42 (0.00) 0.001 0.55 (0.00) 0.001
30–39 0.49 0.47 (0.01) 0.020 0.40 (0.00) 0.001 0.46 (0.00) 0.001
40–49 0.57 0.53 (0.01) 0.005 0.45 (0.00) 0.001 0.54 (0.00) 0.001
50–59 0.72 0.58 (0.01) 0.001 0.52 (0.00) 0.001 0.67 (0.00) 0.001
60– 0.94 0.71 (0.02) 0.001 0.70 (0.00) 0.001 0.91 (0.00) 0.001

Table 4.11: Significance testing results for Hypothesis 4.3, “People in different
age groups read books written by different authors”, on input relations AU��

UB��BA. The original values of Statistic 4.3, with mean and std over 999
randomized samples are given. The randomization AU��sw(IU)��UB��BA is
equivalent to sw(AU)��UB��BA, and the randomization AU��UB��sw(IB)��
BA is equivalent to AU��UB��sw(BA).

The last hypothesis uses a more complicated statistic as the previous two.
The significance testing results for this hypothesis are in Table 4.11. Now all
the age groups seem to read books from significantly different authors than
the other age groups using all three randomizations. However, randomizing
the table BA has preserved the structure usually the most, that is, most of the
result is due to the fact that people read certain books and not certain authors.

To conclude, by randomizing in multi-relational databases we can find
what is the structural impact of each participating relation to the final result.
However, making solid inferences from these multiple p-values is not straight-
forward. Nevertheless, we can say that practically all hypotheses studied in
this section were significant and not explained by the basic properties of the
relations. Only the average title length of the books read by Canadians and
Germans were explained by the relation between the countries and the users.
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CHAPTER 5
Conclusions and Discussion

In this thesis, we discussed randomization methods that can be used to assess
the significance of data mining results on various types of data. In random-
ization based significance testing, a result is considered to be interesting if it
is unlikely to obtain as good result on randomized data that share some ba-
sic properties with the original data. To apply the randomization approach,
we have to first define what are the basic properties that should be preserved
in randomization. Patterns that are explained by these properties are seen as
uninteresting.

We introduced specific randomization approaches and methods for four
different data mining scenarios, analyzed their properties theoretically and
performed experiments on real and artificial datasets. First, we studied ran-
domizing numerical and nominal matrices where the row and column value
distributions are approximately preserved. Next, we described a general itera-
tive randomization approach for finding new patterns that are not explained by
any previous result. We also considered how to randomize in multi-relational
databases and how to assess the structural impact of each relation. Finally, we
introduced a simple permutation method for evaluating classifier performance,
namely whether the feature dependencies are used to improve the classification
accuracy.

The randomization of numerical and nominal matrices is the most studied
problem in this thesis. In randomizing such data, we preserve the row and
column value distributions approximately. If the features are measured us-
ing different scales, the feature-wise rank distributions of the observations are
preserved instead. It is important to notice that by using the randomization ap-
proach we are specifically testing whether the obtained results depend on the
preserved statistics. Obtaining a low or high p-value does not mean that the
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result is good or bad, respectively, but merely whether it is explained by the
row and column value distributions. In extreme cases, for example, the row
and column value distributions can explain the whole data (a matrix consisting
of the same value), or some data mining patterns can always be explained by
these statistics (the highest value in the matrix). Thus, the user has to always
separately consider whether the test is suitable for the specific application.

Finding mutually independent patterns from a single dataset using differ-
ent types of data mining algorithms is a challenging task. The problem with
the iterative randomization approach is that it is not very practical in its current
form. We introduced a general idea and gave precise methods for a few dif-
ferent cases. Using the general Metropolis-Hastings approach by adding more
and more constraints becomes easily impractical. Thus, applying the approach
in new settings needs further research. Nevertheless, the general approach is
attractive for identifying interdependent data mining patterns.

In multi-relational databases, there are many possible ways to produce the
randomized datasets for significance testing. We can randomize each table in
the database separately as well as each connection between the tables. Each of
these tests provides information about the structural impact of the randomized
relation. Compared to the single matrix case where we proposed one generally
interesting test, handling these multiple tests and empirical p-values can be
more demanding. We studied using the binary swap randomization in multi-
relational databases. Applying the new SwapConstrained method in the setting
is worth further research.

The new test for assessing whether the classifier is exploiting the depen-
dencies between the features to improve the classification accuracy is rela-
tively simple and effective. However, there are two fairly similar approaches
that are not studied in this thesis and are worth further research. In the cur-
rent approach, we randomize both the training and test data together; this tests
whether the classifier algorithm can perform as well on data that do not have
any dependencies between features. Another approach would be to randomize
only the test data and keep the original classifier; this might be able to test
better whether the obtained classifier is really using the dependencies between
the features. This approach would be faster but has the problem that the test
data should be large enough so that it is meaningful to be randomized. The last
approach would randomize only the training data; this would test whether we
can find a classifier that is certainly not using the dependencies between the
features but still performs as well or better as the original classifier. However,
the current approach of randomizing the training and test data together is also
commonly used with the traditional permutation test, for example, in Golland
et al. [GLMP05].

The requirement that the same data mining method should be applied also
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on the randomized data is not as straightforward as it sounds. This is also
evident from the previous discussion on how to randomize the labeled data for
identifying if the classifier is using the feature dependencies. The conclusion is
that it all depends on what we really want to test. For example, when assessing
the significance of k-means clustering, we now repeat same k-means clustering
on the randomized data. However, sometimes we would really like to know
whether the specific obtained clustering structure is also evident on random
data and not whether the random data contains some clustering structure that
is as good as the original. To alleviate this problem, we could use the approach
presented by Webb [Web07] where we divide the original data into two parts
and use the first half to find some interesting patterns and the second half to
assess their significance by calculating the original and randomized structural
measures on that half with the fixed data mining pattern.

One significant problem with statistical tests in general is that a statistically
significant difference is totally different from a practically significant differ-
ence, see, for example, Siegfried [Sie10]. For example, a difference of 0.001
between the average values of two sets can be statistically significant although
it would not have any practical importance. This is related to the concept of
statistical power, that is, the probability that a test will correctly regard the
result as significant [Goo00]. The more observations, the larger the statistical
power is. That is, if the two sets contain each one million observations, even a
small difference in the average values seems statistically significant. Thus, the
user has to always consider if the statistical significance corresponds to a prac-
tical significance in the specific application. The statistical power is a complex
theme that is not really discussed in this thesis.

Another issue is when we assess a single data mining result that summa-
rizes the whole data, such as the clustering structure or intrinsic dimension
with PCA. Often with such global structural measures it can happen that the
result is significant, although there is only a small part of the data that makes
the whole original structural measure slightly better than on a fully random
data. In such cases, it can be more useful to assess smaller patterns in the data
to find out which parts of the data really convey some significant information
and which parts are just random.

In this thesis, we formulated several randomization approaches for differ-
ent types of data that provide useful tests for general data mining applications.
These approaches have their limitations as discussed above. The tests are not
suitable for all data mining scenarios, and hence the user has to carefully con-
sider before drawing conclusions from the obtained significance testing re-
sults. Therefore, future work should focus on generalizing the randomization
approach to new types of data mining problems. Nevertheless, the experi-
ments performed in this thesis show that the new approaches are useful on
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various applications, producing meaningful information that can be used to
further improve or understand the obtained results. Evaluating the reliability
of the results guarantees that the conclusions and recommendations are based
on solid information—the new methods developed in this thesis provide the
needed tools for various data mining applications.
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