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Abstract 
This research presents a shared cognition concept for building a cognition model 
collaboratively by robot and human. The proposed concept is based on an object-oriented 
approach that abstracts robot's perception, cognition, and knowledge to separate but 
interconnected elements. The shared cognition concept allows the human and robot share 
information related to objects in the environment for effective task execution and information 
exchange. The concept enables building a model using sensors, as well as inputting data from 
the user. User can utilize also robot’s sensor data for inputting information. This utilizes the 
robot’s perception of the environment in conjunction with human’s cognitive understanding. 

 
The proposed concept can be used for exchanging information on the objects, their classes, 

identities, appearances, locations, structures, and states. Representation of perceived entities 
is done through observed objects, robot's cognitive understanding of the objects is represented 
by real objects, and the knowledge of objects' classes by meta-objects. Observed objects are 
created with segmentation which can be autonomous or assisted by human. Real objects are 
used to transfer the actual object information between human and robot. Recognition of 
objects is done by matching real and observed objects. Uncertainties of recognition and 
localization are handled by probabilistic approach. The model enables learning from 
perceived information allowing the model to improve its performance as more data is 
gathered. 

 
The cognition model can be used for collaborative task execution. Several aspects of the 

model are validated with two different platforms, WorkPartner service robot and Avant 
machine based semi-autonomous robot. Based on the tests, the proposed model is an effective 
mechanism for collaboratively exchanging spatial information between a robot and a human. 
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Tiivistelmä 
Tutkimuksessa esitetään jaetun kognition konsepti, jota käytetään robotin ja ihmisen 
yhteisen kognitiomallin muodostamiseen. Ehdotettu konsepti perustuu oliolähtöiseen 
lähestymistapaan, jolla abstraktoidaan robotin havainnointi, kognitio ja tietämys erillisiin 
mutta toisiinsa liittyviin elementteihin. Jaetun kognition konsepti mahdollistaa ihmisen ja 
robotin informaation jakamisen liittyen ympäristössä oleviin kohteisiin. Tällä 
mahdollistetaan tehokas tehtävien suoritus sekä tiedon jakaminen. Kognitiomalli voidaan 
rakentaa käyttäen robotin antureita sekä ihmisen syöttämää tietoa. Käyttäjä pystyy 
hyödyntämään robotin anturidataa informaation syöttämisen apuna. Tällä tavalla 
hyödynnetään robotin ympäristön havainnointi yhdessä ihmisen kognitiivisen ymmärryksen 
kanssa. 

 
Ehdotettua konseptia voidaan käyttää tiedonvaihtoon liittyen kohteisiin, niiden luokkiin, 

identiteetteihin, ulkonäköön, sijainteihin, rakenteisiin ja tiloihin. Havainnot esitetään 
havainto-olioina, robotin kognitiivinen ymmärrys todellisina olioina sekä robotin tietämys 
kohteiden luokista esitetään meta-olioina. Havainto-oliot muodostetaan segmentoinnilla, 
joka voidaan tehdä autonomisesti tai avustaen. Kohteisiin liittyvä tieto siirretään ihmisen ja 
robotin välillä todellisten olioiden avulla. Kohteiden tunnistus tapahtuu yhdistämällä 
todellisia ja havainto-olioita. Tunnistuksen ja paikantamisen epävarmuudet käsitellään 
todennäköisyysjakaumamallien avulla. Malli mahdollistaa oppimisen havainnoista, jolloin 
mallin toimintaa voidaan parantaa sitä mukaa kun tietoa kerääntyy. 

 
Kognitiomallia voidaan hyödyntää tehtävien suoritukseen. Mallin osia on testattu kahdella 

eri alustalla, WorkPartner-palvelurobotilla sekä Avant-työkoneeseen perustuvalla 
puoliautonomisella robotilla. Testien perusteella esitetty malli on tehokas menetelmä 
yhteistyössä tapahtuvaan tiedonvaihtoon robotin ja ihmisen välillä. 
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Glossary

Robot’s cognition model Robot’s understanding of its environment through sensors and other
data sources. A cognition model distinguishes entities from each other.

Shared cognition model A cognition model used collaboratively between a human and robot.
A shared cognition model includes information from sensors and from human. In addition,
the sensor input can be interpreted by a human.

Perception Observation of the environment using sensors. Perception does not yet contain in-
formation on object’s identities or classes, but it contains a snapshot of the sensor data and
features extracted from it.

Physical entity A concrete distinctive real-world object that can be distinguished. A physical
entity does not necessarily have to be discrete, but it may also be, for example a pile of sand.
However, a piece of flat textureless ground cannot be held to be a physical entity because it
cannot be distinguished by using sensor data.

Object Instantiation of a physical entity in a cognition model.

Object class A group of objects, such as “human”, “car” or “work machine”. There can also be
a more specific description such as “male”, “Toyota Avensis” or “Avant 600”. However, an
object class does not yet identify the target. An exception is a case where there is only one
of this kind of object in the world. In this case, a looser definition of the object class may be
necessary.

Named object A unique entity. An instance of an object class.

Anonymous object An object whose identity and class are not known.

Appearance Describes what kind of response is got from sensors measuring the object. The ap-
pearance may be color, texture, or shape, but also the physical size of the object. Appearance
does not only cover what the object looks like to a camera or to the human eye, but it also
covers other sensors, such as laser scanners.

Detection Detecting something interesting. The class of the target is not yet known.

Object recognition Generic term for both object class recognition and object identification.
Means anything where some recognition or identification information is got from sensor data.

Object class recognition Recognizing the class of the target.

Object identification Determining the identity of a named object.

xxv





Chapter 1

Introduction

1.1 Background

Robots are slowly but surely becoming part of our everyday lives. The service robots of the
future need the ability to work with people in unstructured environments. Unlike industrial robots
working in controlled environments, service robots may need to cope with very complex scenes,
recognize objects of interest, and avoid collision with possibly unexpected obstacles. This requires
a capability to understand the environment in a way that enables them to work in interaction with
the objects that are present. This understanding is built from perceptual information based on the
robot’s sensor data. In addition, these data may be inputted by a human operator, for example in
the form of a map of the environment.

The advantage of using robots is that they are able to execute repetitive, boring, heavy, and
dangerous tasks independently. Still, creating a fully autonomous service robot that never needs
any assistance seems unrealistic in the near future. In practice, the first wave of useful multi-
purpose service robots will probably be collaborative companions instead of completely autonomous
agents. When working in cooperation with a human, the robot can get assistance on various levels
related to task execution and perception. A robot can ask for help when a problematic situation
is encountered, or the user can intervene in the task when he or she considers it necessary. This
may occur, for example, when a robot comes across a real-world object that it cannot recognize.
In addition, the whole task does not necessarily need to be defined before the execution starts,
but part of the task definition can be done during the course of the task. For example, a target
object of a robot’s task can be defined when the robot perceives it, and it is not necessary to
define it explicitly before the task starts. Non-trivial tasks requiring adaptation to a real-world
environment are called skilled tasks. [Heikkilä, 2009] In its simplest form, it means moving around
without colliding with obstacles. In more complex tasks, adaptation means planning and executing
manipulative actions to cope with real-world objects.

Cooperation between robots and humans needs to be efficient. Using a robot should not increase
the human’s workload, but after getting the required information, it should be able to cope with the
task as independently as possible. The problem focuses on the question of how a human operator
can describe tasks in a complex world to the robot in the easiest and most straightforward way. An
important aspect is to form a way for the robot and the human to communicate with each other
about real-world objects and their interrelationships in such a way that they both understand them
in the same way.

1
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We humans understand our environments through our senses. Our brain processes the signals
from the sensing receptors in our eyes, ears, skin, mouth, and nose, and forms an understanding
of what is actually there. In other words, our brain translates our perception to cognition, more
specifically spatial cognition. In other words, cognition is the understanding of what we perceive.
[Encyclopædia Britannica, 2010] With spatial cognition we understand where objects are, what
class they belong to, what their identities are, and what their spatial states are, that is, what
the locations and orientations of the objects are and their other properties, such as color, more
detailed structure, or material. We are able to recognize objects that we have seen before, but also
learn about new objects. The new objects may be taught to us by another person, we may have
acquired the information on the objects by ourselves, or we may base the learning on our previous
knowledge and understand their connection to what is being learned. In this context, objects are
distinctive boundable parts of the world. They are not necessarily physically separated from other
objects.

Spatial cognition is description of the environment. Using this description, we are able to
perform tasks that require interaction with the environment, such as picking up and manipulating
objects, avoiding obstacles while walking, and finding our way to an object whose location we
know. Spatial cognition goes beyond perception in that we do not necessarily need to see an object
to know where it is, if we have seen it before, provided it is not moving. Spatial cognition also
involves memory of what has been perceived.

1.2 Robot cognition

To perform skilled tasks and to cooperate with humans, a robot needs to understand its environ-
ment. The sensor data are interpreted to the robot’s perception. This is a low-level concept that
deals directly with what the robot perceives. The perception information is translated to under-
standing. The robot’s understanding basically means that it knows how to interpret the perceived
data. This could be thought of as the robot’s spatial cognition. More specifically, a cognition model
of the environment is built. The robot’s cognition is not an ability generated by evolution like the
cognition of natural creatures, but it needs to be defined. Various approaches to robotic cognition
have been proposed, for example by Vasudevan [2008] and Kaupp [2008]. The cognition model
presented in this research focuses on the following three aspects.

1. What are the locations of the objects?

2. What are the types and identities of the objects?

3. What are the spatial states of the objects?

A robot’s cognition is conceptually different from human cognition in that a robot’s cognition only
concentrates on the three above-mentioned things, and is not necessarily able to understand, for
example, beauty or other emotional meanings of objects. In addition, the cognition model does
not include higher-level interpretations of objects, such as what a person is doing or where he or
she is going to.

Building a robot’s cognition model requires data to be gathered from various sources and
translated into cognitive information. Interpreting sensor data as cognitive information is called
recognition, more specifically object recognition. The latter term emphasizes that a cognition model
is built from separate objects. A classical theory of recognition in artificial intelligence looks for
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methods and algorithms for automatic recognition. However, in many practical situations this is
an extremely difficult task compared to what human brains can solve. Information can also be
entered into a cognition model in a way that does not require the interpretation of sensor data.
For example, if a human describes the class, name, and location of an object, this information can
be directly entered into the cognition model. This can be used to assist a robot in recognizing the
objects, and, in general, in understanding its environment.

1.2.1 Shared cognition

A robot’s cognition describes how the robot understands its environment. However, the information
on the environment does not necessarily come from the robot’s sensors only. If the information
is gathered with robot’s own sensors, it may still be interpreted by an external agent, which, in
practice, means a human. The human can be considered to transfer part of his or her cognitive
understanding to the robot’s cognition. Shared cognition is an extension of robot cognition that
allows a human to input and read information from the cognition model. Once information has
been inputted to the model, it is also part of the robot’s understanding. Therefore the term
shared cognition may be used. The information exchange can be partly based on the robot’s
sensor information while utilizing a human’s cognition. This is a tool for a human and robot to
cooperatively build an understanding of the environment.

A shared cognition model can also be presented to a human. If a robot is uncertain about how
to interpret its perceptual information, it can ask the user for help in, for example, recognition.
The shared cognition allows the robot and human to understand the scene in a similar way. This
makes it easier for the human to assist the robot.

Shared cognition is used to share spatial and other measurable information between robots and
humans. Robots are not, in general, able to understand emotional meanings, such as the beauty
of objects. These are highly subjective, and dependent on a human’s opinion, and therefore not
suitable for sharing with a robot. Shared cognition requires the information shared through it to
be objective and measurable.

Figure 1.2.1 illustrates some concepts related to human cognition, robot cognition, and shared
cognition. The human has recognized the class of the object, and therefore is able to know that it
is a box. He also estimates the location and color of the box on the basis of his intuition. The robot
has also recognized the box, and describes it with its own measures. If the robot cannot recognize
the box, shared cognition can be used. The robot shows its sensor data to the user, who in turn
marks the region representing the box. The human has therefore used his cognition to interpret
the robot’s perceptual data. Because marking the object is done in the robot’s own sensor data,
it can immediately relate it to its own sensors and coordinate system.

1.3 Problem definition

The objective of this research is to create a concept that enables robots and humans to collabora-
tively build a shared cognition model, that is, a representation of the environment that not only
states where the objects are, but also what their classes, names, and their spatial states are. The
basic problem is how to do this in the best way so that the human-robot collaboration is effective
and productive in task execution. The building of the model is based on human input and the
robot’s sensor information. As a result, the robot would be able to recognize objects it perceives
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Figure 1.2.1: Robot cognition, human cognition, and shared cognition

with its sensors, and it should be able to determine their properties.

The human should be able to utilize his or her cognition as effectively as possible to assist the
robot in recognizing and locating the objects and determining their states. This requires a robotic
shared cognition model that can be used to communicate sensor information and its interpretation
between the robot and the user in a collaborative manner. The cognition model should also be able
to learn from prior knowledge of the objects. The cognition model may not be tied to one human,
but any human should be able to use it to exchange information with the robot. Therefore, the
cognition model cannot store subjective information, but only the measurable properties of objects.

The objective is not to create new algorithms for autonomous object recognition, but rather
to utilize the methods and algorithms that already exist. However, the focus is especially on how
the user and robot can collaboratively form the cognition model. This research does not define a
software architecture that implements the cognition model, but it focuses on describing the model
itself.

As a summary of the above, this research answers the following questions.

1. How can the robot’s cognition be modeled in such a way that the model includes identifying
information on objects: appearances, locations, spatial states, classes, and names?

2. How is the model used for recognizing objects using the robot’s perception?

3. How is the information needed for recognition inputted to the model by a user, and what
kind of robot optical perception data are considered in this process?
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1.3.1 Use cases

The following use cases illustrate more specifically different aspects related to the above description
of how a cognition model is built and of what kind. These cases are described in greater depth
later when the related techniques are being presented. The tests also follow these use cases.

1.3.1.1 Marking an object from sensor data

An approach that focuses especially on shared cognition is using the robot’s sensors along with
a human’s cognition to build the cognition model. The user defines which part of the robot’s
sensor data represents the object in question. This definition can be created, for example, from a
three-dimensional set of points gathered with stereo cameras or a laser scanner. The robot learns
part of the appearance on the basis of this definition. In such a case the user action replaces,
e.g., an algorithm that tries to segment the sensor data. The robot can learn even more about
the appearance of the object by tracking the object while approaching it and perceiving it from
different angles.

Defining the sensor data can be performed by showing the user the data from the robot’s
sensors, after which the user defines a segment that represents the object. Another possibility is
to communicate through the robot’s perception by marking the object with signs, with a pointer
stick, or by illuminating the object. The robot then gets the required input through its camera
image.

An example of this type of case is one where the robot encounters an object that is hard to
define and recognize automatically. One example of such an object is a pile of sand. As every pile
of sand is different and even the boundaries of the pile may be ambiguous, collaborative recognition
and object localization enable the user to utilize his or her cognition to build the shared cognition
model that the robot can then utilize. With traditional object recognition methods it would be
very difficult or even impossible to define the pile in such a way that the robot could recognize it
automatically. The problem can be solved with a collaborative approach.

1.3.1.2 User describing an object to robot

The user can assist in building the cognition model by describing objects in various ways and
inputting this information to the cognition model. Recognition is then based on this description
inputted by the user. The user can input the information in various ways, describing the object’s
features verbally or numerically, defining a code associated with an object, showing the robot one
or many photographs of an object, or defining which class the object belongs to.

An example of such a case is describing the color of the object to the robot. To make sure that
the robot and human interpret the colors similarly, a predefined color map can be used. The colors
on the map are interpreted by the user by looking, and by the robot by their numeric codes, which
represent the recognition parameters. After that the robot can search for all the potential objects
and present them to the user. If the robot can recognize the objects reliably, it can also perform
the manipulation without asking for further advice. The need for further cooperation depends on
the reliability of the recognition.
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1.4 Scientific contribution

The research presents a model for the shared cognition of a robot and a human that is based on the
robot’s perception and human input. The structure of a cognition model, as well as a model for
recognizing the objects, is presented. The research makes a scientific contribution in the following
areas:

• the research defines the components needed for building a shared cognition that allows infor-
mation to be exchanged between a robot and a human using the robot’s perception combined
with user input;

• a shared cognition concept is proposed. The concept abstracts the robot’s perception, cog-
nition, and knowledge, and presents them with objects;

• the concept enables the cognition model to be built and utilized collaboratively. The user can
train the model by defining objects from the robot’s sensor data, inputting external sensor
data, and by defining rules for recognizing objects;

• the definition of the cognition model includes essential elements related to the recognition.
The concept does not restrict the use of recognition modalities, and enables multiple sensors
to be used for recognition.

1.5 Structure of the thesis

• Chapter 2 presents an overview of the current state of the art related to building a cognition
model.

• Chapter 3 presents the theoretical framework of the thesis. This chapter defines the various
concepts and principles which the cognition model is built on, requirements for the shared
cognition model, and building blocks of the model.

• Chapter 4 describes how the model is built and used in practice. The chapter first presents
the aspects of building the cognition model using its sensors, then the discussion is expanded
to present human involvement, and finally the task execution utilizing the cognition model
is presented.

• Chapter 5 evaluates the validity of the model through four experimental tests: measuring
the shape of a sand pile on the basis of user-defined boundaries of the pile, recognizing an
object on the basis of appearance description from the user, recognizing and collecting pieces
of litter from the ground in cooperation with the human, and carrying boxes in the order
indicated by human using a pointer stick and a flashlight.

• Chapter 6 goes through the whole model, and discusses the applicabilities of its features. This
chapter discusses the results from the experiments and also aspects that were not validated
experimentally.

• Chapter 7 presents conclusions to the dissertation guidelines for future research related to
the field.



Chapter 2

Related work

2.1 Introduction

Building a cognition model is a task that consists of subtasks on many levels. In a shared cognition
model, the information can be inputted both from the robot’s sensors and from a human. Both
geometric and appearance information are extracted and processed on the basis of the input. This
information is the base of the cognition model. Figure 2.1.1 illustrates the building blocks of the
cognition model and their relationships.

The rough division presented in Figure 2.1.1 is based on concentrating on two measurable
features of the real world: the geometry of the physical entities and their appearance. ’Appearance’
as used here means the response measured by any sensor, not merely the visual appearance as
perceived by a camera. The features in the figure refer specifically to the description of the
appearance. In a shared cognition between a robot and a human, both aspects of the cognition
model should be able to be affected by both the robot and the human. This chapter reviews the
current state of the art related to these subjects.

Section 2.2 covers different representations of the cognitive model of the robot. This section
makes a state-of-the-art analysis of techniques used to form the cognition model basis presented
in Chapter 3.

Section 2.3reviews different approaches for exchanging spatial information between a human
and a robot. The analysis is the basis of Section 4.2 in Chapter 4.

Section 2.4 presents high-level architectures that consider the spatial representation as well as
the human-robot interaction as parts of the architecture. This section provides the background for
Section 4.3 in Chapter 4.

Section 2.5 reviews the techniques needed for building the cognition model. This section dis-
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Figure 2.1.1: Building blocks of cognition model.
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cusses building a geometric representation of the environment using the sensors, as well as different
approaches to recognizing objects from the sensor data. This section presents the basic techniques
related to Section 4.1.

Section 2.6 includes a summary of the reviews and a discussion about what aspects can be
utilized from the architectures and methods that have been described and what limitations in the
present state of the art need to be overcome.

2.2 Spatial cognition in robots

Cognitive understanding of the environment is an essential part of a mobile robot and is therefore
studied widely. There are various approaches to forming a model of the environment. This section
presents different representations for spatial cognition in robots. The following aspects of the
presented approaches are evaluated:

• their ability to provide a general cognitive understanding

• the information contained by the representations and their applicability to enable manipula-
tion and navigation

• their ability to cope with uncertainty

• how the objects are defined by both using predefined descriptions and by learning from the
sensor data (possibly in cooperation with a human)

• how the cooperation with a human is considered in general

The simplest approach is to treat everything as obstacles. This approach facilitates autonomous
navigation and obstacle avoidance. Simultaneous localization and mapping (SLAM) can be exe-
cuted on the basis of data from a camera or a range sensor.

Cognitive environment maps go further as they build a semantic map of the environment. In
addition to the raw sensor data needed for navigation, a semantic map contains information on
the appearance and names of places.

Vasudevan et al. [2007] and Vasudevan [2008] proposed an object-oriented hierarchical prob-
abilistic representation of cognitive spatial information. The representation aims to enable the
robot to understand not only where it is in metric coordinates, but also to understand what kind
of place it is in and possibly to recognize places visited earlier. The representation does not pri-
marily aim to enable manipulation tasks. The representation involves both forming a high-level
representation of space and understanding and reasoning about the place. In this representation,
a place refers to a spatial abstraction. When working indoors, rooms can be considered as places.
Recognizing objects is based on SIFT features, nearest neighbor searching, and feature grouping,
as described by Lowe [2004]. The learning of the recognition is done automatically by mapping
the environment. The research focuses mainly on the representation of the space as a hierarchical
interconnected structure of objects. Places are objects that connect to each other through doors
that are regarded as objects too. There can be objects recognized within places, and they are
hierarchically connected as being part of the corresponding places. The locations as well as the
identities of the recognized objects are presented as a probabilistic representation. The model
is focused on classifying, recognizing, and learning about the places. The model defines a set of
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Figure 2.2.1: Components for building the cognition model proposed by Vasudevan [2008]. Adapted
from [Vasudevan, 2008]

actions for reasoning related to the mentioned processes. The representation aims to be under-
standable by humans, but it does not enable input from a human operator. Figure 2.2.1 presents
the components used to build the cognition model.

A related approach was proposed by Thrun [1998]. The representation combines grid-based
metric maps and topological maps to increase the reliability of the mapping of the environment.
The metric maps are related to interconnected topological places. This approach is studied with a
robot equipped with an ultrasonic sonar sensor. The representation is only aimed at autonomously
solving the SLAM problem of the robot rather than cognitively understanding the environment.
The uncertainty is modeled by probabilities of the occupancies of the grid representing obstacles.

Mozos et al. [2007] presented an approach that fuses 2D laser scanner and panoramic camera
data to recognize places. This approach also combines metric and topological mapping. A laser
scanner is used for building a geometric map of the environment and to classify regions based on
geometric primitives representing walls and corners. This classification is used to determine the
type of each region. Camera images are used for recognizing objects. The recognition is based
on Haar-like features proposed by Lienhart and Maydt [2002]. In addition to the use of image
data, the topological location is used as additional information. This is based on the probability
of the occurrence of each object related to the location. For example, one is more likely to find a
computer in an office than in a kitchen. Also in this representation, the cognitive understanding
focuses on localization of the robot rather than manipulation of the objects. Building the model
is based on supervised learning. Thus, human cognitive understanding is utilized in forming the
model.
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Figure 2.2.2: Combination of semantic and spatial knowledge. S-Box represents the spatial re-
lations between the objects, and T-Box the semantic relations. Adapted from [Galindo et al.,
2008]

Another supervised learning -based approach was proposed by Ranganathan and Dellaert
[2008]. The approach uses stereo cameras for classifying places. The places are classified on the
basis of the occurrence of objects and their relative locations. The recognition is based on SIFT
features, combined with other corner detection methods, to describe the appearances. In addition,
3D models of the objects are built and integrated into the constellation describing the places. The
uncertainty of the locations is modeled as Gaussian posterior distributions. The probability is also
calculated for recognition on the basis of the prior probabilities of the components used for the
recognition. As this approach is based on supervised learning, a human is needed to teach the
classes of the objects represented by sensor data.

Nuchter and Hertzberg [2008] classified the environment using 3D data acquired with a laser
scanner. Different components (such as the ceiling, floor, walls, doors, and humans) were classified
by applying a Haar-like classifier to the depth data. In addition, the RANSAC algorithm was used
to extract planes from the depth data. In practice, the approach basically leads to rules where,
for example, horizontal flat surfaces are interpreted either as floors or ceilings and vertical surfaces
as walls. The semantic labels that were extracted were attached to each piece of 3D data. No
human involvement was considered in this representation. The cognition model was not used for
any particular tasks, and only map building was tested. However, because the model includes pure
3D data, it could even be used for manipulation tasks. However, using this representation requires
a sensor that is able to produce 3D measurements of the environment.

The actual purpose of building a cognition model is usually to guide a robot’s actions. Galindo
et al. [2008] studied the use of a cognitive environment map in robot task execution. The robot can
be guided on the basis of its knowledge of the environment. The robot can be given commands such
as “Go to the kitchen”, because the location of the kitchen is known in the cognition model. Figure
2.2.2 shows a representation of the knowledge in the model. The description of the objects is done
through T-boxes (terminological boxes), while the spatial information is stored in S-boxes (spatial
boxes). The T-boxes use a heavily structured representation for the information, based on a verbal
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description that can be considered a programming language. The descriptions of the objects do
not involve using sensor data in teaching. No human involvement other than programming the
descriptions is considered. The uncertainties are also not modeled in the representation.

2.3 Sharing spatial information between humans and robots

In a collaborative task, a robot and a human often need to share spatial information. This can be
information about the location of an object, the location of a working area, or similar information
related to the task at hand. As the previous section also evaluated approaches with some human
involvement, this section focuses on techniques whose primary aim is to enable spatial and cognitive
information sharing between the human and the robot. The technologies are evaluated based on
the following:

• how the information is exchanged to and from the model

• modalities of describing objects to the robot

• human involvement in assisting the robot in recognition

Kaupp [2008] and Kaupp et al. [2007] studied the exchange of perceptual information between the
parties in a human-robot team. The research presents a probabilistic framework for combining
sensor data from one or more robots and input from a human. The approach integrates human
to the framework simply by considering the human as a sensor. Human input is translated into
machine representation through human sensor models that apply likelihoods to the observations.
Another option is that the human applies the uncertainty to the observations. In addition to
inputting information to the model, the user gets a view of the state of the world as stored in the
model. The uncertainties are represented with multi-level Bayesian networks. The highly detailed
sensor models consist of multiple Gaussian distributions. The framework primarily focuses on
coping with obstacles and ground formations.

Suomela et al. [2005] studied collaboration of a multi-entity rescue team consisting of humans
(particularly firefighters) and robots. Both the robots and the humans were localized within a pre-
built map of the environment. The humans also carried a sensor set for this purpose. In addition
to sensors, the humans could also update the state of the model using a graphical user interface.
The state of the model was not affected by the sensor data apart from the locations of the entities.
Therefore object recognition was not performed. The cognition model, called common presence,
enabled the human to view the state of the model through a wearable display device. The aim was
to provide a common representation for all the entities of the system.

Topp and Christensen [2006] proposed a framework for Human Augmented Mapping. The aim
was to allow human label regions mapped by the robot using SLAM. The space is partitioned into
regions either automatically or by a human. The regions are then labeled by a human. Recognition
of the regions (rooms in this experiment) does not require global location of the robot. Instead,
recognition is based on a statistical classification of the features measured from the region. The
concept was made more concrete in Topp et al. [2006] through a practical experiment where the
human gave the robot a “guided tour” of the environment. The robot followed the guide, who gave
verbal commands to the robot. Peltason et al. [2009] further extended the concept by allowing
the robot to first try to recognize the regions on the basis of its previous experience in similar
places. The robot asked the user for confirmation, who either confirmed the robot’s hypothesis
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or presented correct information. All the descriptions to the robot were given by describing the
robot’s sensor data.

Collaborative control of a robot executed by a robot and a human was studied by Nielsen
and Bruemmer [2007]. The robot’s world model was rendered as a 3D model and shown to a
human. In addition to the 3D model, the camera images were incorporated in the visualization
providing an efficient fusion of the snapshot of the robot’s cognitive understanding and raw sensor
data for human interpretation. Visualizing the cognition model through a 3D model ensures that
the robot and human understand the world in the same way. The human gets his task-related
perception through this visualization. This reduces the possibility that the robot and the human
would interpret the scene differently. The human input is not utilized in the recognition, but just
in controlling the robot on the basis of the model.

Nagata et al. [2010] studied object manipulation, specifically picking up objects from the table
using a robot manipulator equipped with a gripper. The user instructed the robot in three phases.
First, the human showed the target object on the camera image. The robot used this information
to determine the location of the object. Then, the human determined the object class from a
few options. The object classes did not necessarily represent the exact geometry of the object in
question, but they represented a general classification such as “plate”, “bowl”, and “mug”. Finally,
the human instructed the robot on how it should grip the object. For each class, there were a set of
predefined grasp modes for the gripper. The object classes and grasping modes were all predefined
in the system. The only input from the human was the choice of the object. However, the robot’s
sensor information was used to determine the accurate position using stereo cameras.

2.4 Cognition model as a part of a higher level model

As mentioned earlier, the cognition models mainly tackle the problem of localization. Even though
the discrete objects in the environment may be recognized, this information is often used just for
recognizing the place where the robot is at. Higher level tasks, however, may need to execute tasks
more advanced than merely navigating around. A typical high-level task is manipulating objects,
possibly in addition to navigation. To perform such a task, the robot must be equipped with a
suitable manipulator.

The review in this section evaluates the techniques with respect to the following features:

• their ability to cope with high-level task planning and motion planning

• suitability for manipulation tasks

• representations for the object description used to recognize objects

• user involvement in building and utilizing the models

Ng-Thow-Hing et al. [2007, 2008, 2009] studied task execution with the Asimo robot [Honda,
2011] with an architecture that considers the task execution and user interaction in addition to
the cognition model. The architecture, called the Cognitive Map, stores the sensory inputs as
well as inputs from higher-level data interpretation modules such as object recognition. The
model is based on a blackboard architecture that stores the information so that any module can
write or read the data using the Cognitive Map. The model has been used to demonstrate tasks
such as playing a memory card game with a human and grasping various objects (such as a
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Figure 2.4.1: Overview of Cognitive Map robot architecture. Adapted from [Ng-Thow-Hing et al.,
2009]

wine glass). A typical characteristics of this architecture is that it abstracts the building of the
cognition model on a relatively high level. The object recognition is implemented in separate
modules, and they produce very refined data. The architecture does not specifically define the
internal structure of the recognition itself. The Cognitive Map can store appearance information
about the objects, but its interpretation depends on the other modules. Figure 2.4.1 shows an
overview of the Cognitive Map robot architecture. The different modules for recognizing objects
and for user interaction communicate through the CognitiveMapWB component, which contains
the actual map of the environment. The CognitiveMap catalog component is a database containing
persistent information. Task execution occurs through the TaskWB component. The suitability of
this approach for task and motion planning, as well as for user interaction, depends on the task
modules. After all, the cognitive map does not restrict the data content much. Because of this,
however, the architecture does not accurately define the exact representation of the cognition.

Sian et al. [2006] proposed a different kind of system for controlling biped robots HRP-2P
[Yokoyama et al., 2003] and HRP-2 [Kaneko et al., 2004]. A system-level architecture is defined
for controlling the robots. The architecture allows controlling both low-level actions (such as hand
and leg movements) and high-level tasks based on behaviors. Figure 2.4.2 shows the block chart
of the system architecture. The environment models of the robots are built using stereo cameras.
Objects are recognized using a CAD-model based recognition modality proposed by Sumi et al.
[2002]. Using this, the robots are able to execute relatively advanced tasks, such as grasping a can
of soda and taking it out of a refrigerator and assisting a human in carrying heavy objects. The
architecture is very specific to these robots and is not necessarily applicable to other applications.
Also the software architectures of the later generations, such as HRP-3P [Akachi et al., 2005], are
designed in a similar way.
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Figure 2.4.2: System architecture of HRP-2P robot. Adapted from [Sian et al., 2006]

2.5 Building the cognition model using sensors

This section reviews different techniques used to build cognition models, and their advantages and
limitations. The sensors are used to provide a geometric model and a semantic interpretation of
the environment, which together form the cognition model.

2.5.1 Cameras

Cameras can be used for recognizing objects, providing rich information about the environment.
Stereo cameras (and to some extent monocular cameras) can be used to build a 3D geometric
model of the environment. For these reasons, cameras are currently used in almost every robotic
system. They have been used as a part of the system in all the examples described in this chapter.

While cameras are very useful in many situations, they also have limitations. Cameras don’t
work well in poor lighting conditions. Low light forces the camera to either use longer shutter
times or allow more noise in the image, which are both undesirable. Therefore a camera with a
sensitive sensor is required when working in low light.

2.5.1.1 Measuring the structure with cameras

Monocular camera Measuring the full 3D geometry with a monocular camera requires solving
a structure-from-motion problem. The methods required have been presented by [Ma et al., 2003].
The method is based on simultaneously estimating the motion of the camera and the structure
that the camera is imaging.

Full 3D geometry is not always needed. The locations and sizes of objects can often be estimated
if assumptions about the locations of the objects can be done. For example, if the object is known
to lie on flat ground and the observer’s own location and orientation are known, the estimated
position of the object can be determined by projecting the observation onto the ground plane
[Hoiem et al., 2008].

If an object can be recognized using methods described in Subsection 2.5.1.2 below, the size
can be calculated on the basis of that. This technique is used in Gordon and Lowe [2006]. The 3D
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structure of the object is known, and the size in the image is related to this information.

Stereo cameras Stereo cameras provide more information than a single camera does. They can
be used to generate a true 3D model even from a single image pair. Stereo cameras were used by
Vasudevan et al. [2007] and Vasudevan [2008] to build a 3D model.

Stereoscopic vision simulates the average human’s way of viewing the world with two eyes. The
distance to the camera is calculated on the basis of the differences between the two images. Match-
ing points are found in both images. The corresponding 3D points are calculated by triangulation.

There are basically two different ways to use stereo cameras for creating a 3D model: the dense
approach and the sparse approach [Trucco and Verri, 1998].

Dense stereo matching compares camera images from two different views and tries to determine
the correspondence between every point in both camera images. The result is called a disparity
map. It contains lots of 3D information, but some of the disparities may be incorrect, because
the disparity is also determined for the image regions with few image features. In these image
areas, it may be difficult to unambiguously determine the correspondence between the images.
The calculation of the disparities can be based on various techniques. The simplest one is based
on calculating the sum of squared differences (SSD) between small image batches in the left- and
right-hand images and comparing them to each other. Sub-pixel accuracy can be achieved by
fitting a second-order curve to a local fitness function [Anandan, 1989]. Outliers can be partially
eliminated by checking the match consistency from the left-hand image to the right-hand image
and then from the right-hand image to the left-hand image. If the matches are equal, they can
be considered reliable; otherwise, the match is discarded [Fua, 1993]. Algorithm 2.1 describes a
combination of the two approaches, bidirectional matching and sub-pixel refinement.

The reconstruction of 3D points on the basis of disparities does not depend on the type of
disparity map. The reconstruction is calculated for each disparity point with triangulation on the
basis of the geometry of the cameras. If the stereo system is rectified, the reconstruction can be
done simply with ⎡

⎢⎣
x3D

y3D

z3D

⎤
⎥⎦ =

t

d
·K−1

⎡
⎢⎣

x

y

1

⎤
⎥⎦ , (2.5.2)

where x3D, y3D, and z3D are the 3D coordinates, x and y are the pixel coordinates, d is the corre-
sponding disparity value, t is the distance between the cameras, and K is the camera calibration
matrix. With non-rectified images, noise in detected locations usually causes the rays to not in-
tersect, and the reconstruction needs to be done on the basis of finding the point in space where
the rays are closest to each other. This can be done using various methods. Hartley and Sturm
[1995] presented a method that minimizes the polynomial describing the distance. Other methods
are mainly based on estimating a solution to a linear case.

The calculation of the dense disparity map can be made faster by rectifying the images so
that the matching features are always found from the same pixel row in both images. This means
transforming the images in such a way that the epipoles are transferred to infinity. In practice,
homography transforms that use projection matrices are calculated for the images [Fusiello et al.,
2000].

While stereo cameras are useful for many situations, they have limitations. The maximum
distance that can be measured with stereo cameras is limited. The accuracy of the distance
measurement is also inversely proportional to the distance. The surface needs to have a visible
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Algorithm 2.1 Determining a dense stereo map with stereo cameras
The algorithm assumes two calibrated input images with geometric distortions corrected and
epipoles set to infinity. The following constants need to be determined.

• Size of image patch size used for comparison: w

• Disparity search range in pixels [a, b]

1. For each w × w image patch IL at (xL, yL) in left-hand image

(a) Loop xR from xL + a to xL + b.

i. For each image patch IR in the right-hand image, calculate the sum of squared
differences between IL and IR:

SSD (xR) =

w−1
2∑

i=−w−1
2

w−1
2∑

j=−w−1
2

(IL (xL + i, yL + j)− IR (xR + i, yR + j)) (2.5.1)

(b) Choose the xR with the smallest calculated SSD.

(c) Refine the x-coordinate by fitting a parabola to local SSD’s around the chosen xR: t

x′
R = xR +

0.5 · SSD (xR − 1) + SSD (xR)− 0.5 · SSD (xR + 1)

SSD (xR − 1) + 2 · SSD (xR) + SSD (xR + 1)

if 0.5 · SSD (xR − 1) + SSD (xR) + 0.5 · SSD (xR + 1) > 0 and xR − 1 < x′
R < xR + 1.

(d) Save x′
R to the disparity map

2. For each w × w image patch IR at (xR, yR) in the right-hand image

(a) Loop xL from xR − b to xR − a.

i. For each image patch IL in the left-hand image, calculate the sum of squared dif-
ferences between IR and IL using the formula 2.5.1.

(b) Choose the xL with the smallest calculated SSD.

(c) If xL and corresponding xR do not match, discard the element in the disparity map.

texture for matching; otherwise, the matching becomes ambiguous. In case of a highly reflective
surface, the different cameras may observe different lighting, which may negatively affect the
performance. A fundamental problem with stereo cameras is the presence of occlusion. With two
cameras and variations in depth, there are always regions that are only visible in one camera and
not in the other. It is not possible to measure the distances to those points. With more cameras,
this problem can be at least partially solved. In addition, on the sharp edges, the resulting 3D
measurement may appear smoothed. If the image-to-image matching is done using a moving
window, the window causes a smooth transition instead of a sharp edge.

2.5.1.2 Recognizing objects with cameras

Cameras are widely used for object recognition applications. They are used in almost every appli-
cation described in earlier sections of this chapter. When building a cognition model, the semantic
information is easiest to collect with cameras.

Sumi et al. [2002] used a CAD-based model of the target objects. The model was combined with
depth information from stereo cameras to provide an accurate match. Based on the CAD model,
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the location and orientation of the object with the known geometry could be determined. Ulrich
et al. [2009] proposed a pyramid-based approach that enables the object to be searched for in a
single image without any prior information. This approach also fits a geometry to the lines present
in the image. This is done on many pyramid levels, which allows the shape to be searched for
anywhere in the image instead of just near a predetermined initial position or previously observed
position.

Local image features, such as Scale Invariant Feature Transform, SIFT Lowe [2004], and
Speeded Up Robust Features, SURF Bay et al. [2006] locate keypoints from the images and extract
feature descriptors on the basis of their environment in the image. The descriptors are in general
invariant to changes in illumination, scale, and two-dimensional planar rotation. A group of such
features describes the object when viewed from one direction. SIFT and SURF are widely used
for object recognition because they are easy to apply, and the learning can be done on the basis of
single images only.

If larger areas of image are analyzed, then segmentation techniques are required. Typical
ways to perform segmentation is to find areas with similar colors, for example by searching for
edges. Another technique is the MSER algorithm [Matas, 2004]. This algorithm finds any area
that is brighter or darker than any of the surrounding pixels. Grayscale segmentation can also be
generalized from the grayscale channel of an image to any channel, as in color analysis.

The color of an object is a very commonly used feature in object recognition . It can be
combined with segmentation as a criterion for segmentation, or after segmentation the color can
be analyzed from the extracted region. The color comparison is usually based on comparing color
histograms of the reference image and the target image Swain and Ballard [1991].

Texture is a feature similar to color, as it describes the appearance of the surface. Various
representations have been developed to present texture, for example, Local Binary Patterns [Ojala
et al., 2000] and Textons [Shotton et al., 2006].

2.5.2 Ranging sensors

Laser scanners and radars are widely used sensors in robotics. Laser scanners are found in almost
every platform used in robotics research. Their main advantage over cameras is their ability to get
reliable distance measurements, even from long distances. Laser scanners are often used mainly
for robot navigation and are installed with that purpose in mind. Typically, a 2D laser scanner
is installed to scan in the horizontal plane to allow the detection of obstacles and landmarks. An
environment model built with this kind of sensor is usually considered to be a 2D map viewed from
above. Data of this type can also be used for limited object recognition if the geometric models of
the objects are known [Fayad and Cherfaoui, 2007].

If the laser scanner can be pointed in different directions, the measurements can be combined
to form a 3D model of the environment. This requires the sensor’s location and orientation at each
instant in time to be known. The locations of the measured points can be calculated on the basis
of the known translation and rotation [Underwood et al., 2010]. The problem with this approach
is, however, that the accurate determination of orientation often requires expensive sensors.

Using a 3D laser scanner often acquires the most accurate representations of the scene when
compared to other sensors. The problem with these sensors is that they are generally very slow.
They scan the entire scene in two directions using just one laser beam. 3D laser scanners are often
used for the stationary monitoring of an area, or they are used to get reference data that are later
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refined with other sensors.
Object recognition can also be performed using 3D data acquired with laser scanners. The

advantage of this approach is that the actual geometric information can be utilized when finding
the object in the sensor data. Point signatures [Chua and Jarvis, 1997] describe the structural
neighborhoods of points to allow the points to be recognized in 3D data. The signatures describe
the local shapes in terms of surface curvature in different directions. The shape is mapped to
a one-dimensional vector that can be easily matched. Spin images [Johnson and Hebert, 1999]
describe the intersections of 3D data in different directions. A keypoint is chosen in the 3D
model. Intersections of the model are projected to small image patches, called spin images. Similar
projections are sought from the 3D sensor data.

2.6 Discussion and conclusions

There are various approaches for representing the cognitive understanding of robots. Understand-
ing the environment for the purpose of localization is an especially widely researched subject. The
techniques described in Section 2.2 are all primarily aimed toward this purpose. None of the test
platforms have a manipulator, therefore the robots were designed mainly for research on naviga-
tion. The same trend can be seen in the techniques that share the spatial cognition model with a
human. In Section 2.3, there are mainly techniques that utilize human cognition in naming places
on a map. Only the approach proposed by Nagata et al. [2010] was aimed at manipulating the
objects. Human assistance was used for the difficult task of determining how the object should be
gripped. Section 2.4 described systems that are used to perform advanced tasks. The manipulation
is considered in these cases, but they are in general very task-specific.

The modularity of the presented techniques, and their applicability to different domains, varies
a lot. This can be measured with two factors: the possibility to use the approach in another
system, and the possibility to affect the model itself when it is running in the described system.
The overall trend seems to be that the more advanced the system and its tasks are, the more specific
the architecture is used to run the system. The biped robots Asimo and HRP series were designed
to execute the most advanced tasks with movement and manipulation of objects. However, the
spatial cognition is not very well defined, and the algorithms and models are mostly task-specific.
On the other hand, the techniques for place recognition were well defined and clearly aimed for
generic use. Their applicability for manipulation tasks is not known because it is not tested in
practice.

Object recognition and measuring the geometry of the environment are key technologies in
forming a cognitive understanding of the environment.

Stereo cameras usually provide very rich and useful information for environment perception.
They are not a silver bullet for perception, though they are probably the most applied sensors with
robots. In the presence of heavy occlusion or for large distances, a stereo camera pair does not
provide any additional information than a single camera does. In addition, when working in low
light, passive cameras are less applicable than laser scanners.

The most applicable and general object recognition methods are based on recognizing SIFT
features, color, or shape of the objects. Each method works well with some objects but might not
work at all with other objects. For example, SIFT features are good for recognizing solid objects
with colorful covers, while they provide much less information when viewing large single-colored
surfaces. Color recognition can be used in these cases, but they may not be the best choice for
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recognizing objects that get dirty easily and thus change color. In addition, color recognition may
suffer from variations in illumination. It is generally impossible to define one recognition method
that would outperform all the others.

A reliable recognition is a very difficult problem in general. Many of the approaches described
only rely on automatic recognition, but the practical experimental cases are usually greatly sim-
plified. The external disturbances are minimized to allow the algorithms to work well. A robot
working in a realistic environment has to allow human assistance, because sooner or later it will
be needed in any case.

An alternative to object recognition is to only provide the cognition model with essential pa-
rameters and not worry about the recognition itself. In [Nagata et al., 2010], the robot did not
really recognize the target object, but the user only marked the corresponding part of the sensor
data to allow localization. The specific information required for the manipulation, such as grasping
mode, was inputted by a human.

The assisted recognition and the inputting of the cognitive information can both be considered
as part of the shared cognition between a human and a robot. While the robot provides its sensor
data, the human provides cognitive understanding.

All the approaches studied limit the representations for object description and modalities to
provide that information. Some approaches use model-based recognition of objects, while others
learn to recognize objects using the sensor data of the robots themselves. None of these approaches
allowed multiple modalities for recognition. In a real case, it would be crucial to allow a user to
describe objects using different representations. Sometimes it is not possible to show the robot
what an object looks like. In these cases, a description like “blue box near the location (X,Y)” could
often be descriptive enough to unify the target. Then again, sometimes it is impossible to describe
an object using simple attributes such as color. For example, many objects are distinguished by
their shape. In these cases, the appearance could be taught using sensor data. The most difficult
cases are objects whose appearance does not necessarily unify them. An example is a pile of sand
surrounded by more sand. All of the sand looks the same, but only part of the sand forms the pile.
The pile can be recognized by measuring its shape, but as soon as part of the sand is taken away
from the pile, the shape changes. In this case, the pile should be defined by its location.

To cope with various kinds of tasks, a unified approach for forming a cognition model is needed.
Its applicability should not be limited to a specific task, but it should be expandable to different
domains. As it is virtually impossible to take into account all the specific details that the cognition
model would need to cope with, the description should not go into too much detail (e.g., limiting
the algorithms used), but it should concentrate on high-level elements and their interrelationships.
In addition, the model should allow using various kinds of sensor data and not be limited to specific
sensor types. Before designing a complete stand-alone system, a conceptual model of the cognition
model and its building blocks needs to be formed and verified.
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Chapter 3

Proposed model for robot’s
perception and cognition

3.1 Introduction

The objective of the research is to enable a robot and a human to collaboratively build a cognition
model, that is, a model of the environment that not only indicates where the objects are, but also
what their classes, identities, and states are. Building the model is based on human input and
the robot’s sensor information. As a result, the robot recognizes the objects it perceives with its
sensors, and it is able to share their properties with the human using the shared cognition.

The human can assist in building the cognition model by defining which parts of the robot’s
sensor data represent the objects. In a way, a human inputs part of his or her cognitive under-
standing to the robot’s cognition. After this, the robot is often able to gather more information
by itself.

This chapter presents a shared cognition concept that enables the cognition model of the robot
to be built in cooperation with a human. In addition, the model permits recognition and learning
that is based on prior knowledge of the objects.

The model abstracts the perception and cognition of the robot to separate but interconnected
concepts. A more exact definition of robot perception and cognition as they are considered in
this model is given below. The advantage of the separation is that the cognition is not directly
dependent on perception, but different modalities can be used to exchange data with the cognition
model.

The concept presented in this chapter is illustrated with four example cases: recognizing and
measuring a shape of a sand pile, locating a box whose appearance has been defined numerically,
indicating a target using only robot’s sensors, and detecting and locating pieces of litter on the
ground.

3.1.1 Perception, cognition, and recognition

The first step towards the cognition model is to define more closely what robotic perception and
cognition are, and how they are modeled and connected to each other through recognition. The
discussion below is illustrated in Figure 3.1.1.

21
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Figure 3.1.1: Observed objects represent the perception of the robot. The objects are created from
sensor data. Real objects represent the cognition. Perception and cognition are connected to each
other with recognition.

Perception is the input from the robot’s sensors. However, perception is a higher-level concept
than just sensor data. It represents information that is extracted from the sensor data. Prepro-
cessing phases, such as segmentation and feature extraction, transfer the sensor information to
observed objects. An observed object is a piece of sensor data that represents a separate physical
entity. An observed object includes information on what the corresponding physical entity looks
like to the robot.

Cognition is understanding of the perception. Cognition represents interpretation of what the
robot perceives. It is the robot’s understanding of the identities and classes of the entities. The
physical entities are represented by real objects in the robot’s cognition model.

The process that connects perception and cognition is called recognition. It compares the
perceptual information with knowledge of the appearances of objects, and creates links between
the observed and real objects.

3.1.2 Shared cognition

The abstraction of perception and cognition to separate elements enables the cognition model to
be shared between a human and a robot. A human can also access the perception information by
observing its visualization, but he or she cannot directly input anything into the robot’s perception.
Cognition, however, is a higher-level concept. The robot’s cognition can be designed in such a way
that a human can access it by both observing and modifying it. This is called shared cognition.

Affecting the cognition can be done in various ways. The factor common to all approaches is that
a human helps in interpretation of the robot’s perceptual information as cognitive information. The
human can define the boundaries of objects seen by the robot, name them, or indicate which one
is the target of the current task. Thereby the human transfers his or her cognitive understanding
to the robot’s cognition.
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Figure 3.1.2: Robot’s sensor data and a segment of it defined by human. The human has now
defined a pile of sand as an object from robot’s perception and transferred his of her cognitive
understanding of the physical entity to robot’s cognition.

3.1.3 Example cases

The first example of shared cognition is a case where a human marks a segment of a 3D point
cloud to instruct that it represents a separate entity. In the cognition model, the object is defined
as the volume inside the marked boundaries. It is defined using the spatial location. In practice
the object represents the solid matter inside the boundaries. When the robot knows which part
of its sensory information represents the physical entity in question, the robot can learn about its
appearance on the basis of this segmentation. This example is depicted in Figure 3.1.2.

The second example presents a more traditional object recognition case where the user has
defined the appearance of the object to the robot using numeric descriptions, such as hue of the
color and size. The robot uses this description to identify the object as soon as it encounters an
object that matches the criteria.

In the third example of shared cognition the user describes an object class called “litter”. The
definition of a piece of litter is that it is something that is on the ground but does not look like
ground. The user does not describe the actual appearance of a piece of litter, not the location(s),
and not even the number of the pieces of litter. After the robot has found candidate pieces, the
user can help the robot by ruling out the false matches. Figure 3.1.3 shows an example of this
case.

In the fourth example the shared cognition approach is evaluated in a box-carrying case. The
user indicates a target object to the robot using real-world pointing methods. The human assists the
robot in indicating the target object among many alternatives, therefore also this case represents
shared cognition. Figure 3.1.4 shows a real example case where a human indicates the target object
to the robot using this method.

The experimental validation of the proposed concept is based on these four cases. The actual
experiments and the results are described in Chapter 5.
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Figure 3.1.3: Possible objects segmented from robot’s sensor data. The images of the objects are
shown to the user, who then defines which ones really are the objects in question, and which ones
are just false matches detected by the automatic segmentation algorithm.

Figure 3.1.4: Human using a pointer stick to indicate which one of the detected boxes is the target
one.

3.2 Requirements for the model

The above description assumes that real objects contain some description that can be used as
a basis for the segmentation and recognition of objects. The object is initially perceived and
processed by human cognition. In the model the description of the robot’s cognition can be made
in several ways. Basically, the different approaches are divided into two main categories: presenting
a preprocessed description to a robot, or instructing the robot how the description is extracted from
its own perceptual information. The former is a traditional approach to object recognition, and is
based on a given database of features. It is a bottom-up approach, where the robot’s understanding
of the world is based on a description of how to interpret the perception. The latter represents a
top-down approach, where the cognitive information is presented to the robot and it tries to learn
the description itself. The model described in this thesis integrates these two approaches while
concentrating on the latter, that is, the top-down approach.

The structure of the model is designed to answer the following two questions.
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Figure 3.3.1: Meta-object represent the knowledge of the object classes, that is, the features that
are common to all the objects of a certain type. Real objects are instantiations of real life entities in
robot’s cognition. Observed objects are extracted pieces of perception information that represent
presumedly separate physical entities.

1. How can real and observed objects be matched on the basis of perceptual information and
prior knowledge of the appearances of the objects?

2. How can the appearances of objects be taught in a way that permits both pre-defined de-
scription and learning about the appearance using the robot’s own sensors in cooperation
with a human?

By using the proposed concept, a cognition model of the robot’s environment is built. As discussed
earlier, the following three types of information are required from the cognition model:

1. locations of objects

2. types and identities of the objects

3. the objects’ spatial states

With this information the robot will be able to cope with various complex tasks in real-life scenarios.

3.3 Components for building the cognition model

The model is based on dividing the “robot’s mind” into three conceptually different blocks: per-
ception, cognition, and knowledge. As described above, perception represents what the objects
look like, and cognition describes how the robot interprets the perception. Knowledge represents
a yet higher-level concept related to object classes. Cognition is built from real objects which are
instantiations of real-life entities. Object classes represent groups of real objects each belonging
to the same class. Object classes are represented by meta-objects that contain the information
related to the class. Figure 3.3.1 shows an example case with two observed and two real objects.
Both the real objects are of the same class, and therefore they are based on the same meta-object.
More thorough explanation on objects is presented in Section 3.4.



26 CHAPTER 3. PROPOSED MODEL FOR ROBOT’S PERCEPTION AND COGNITION

3.3.1 Automatic and assisted segmentation

Extracting observed objects from sensor data requires the segmentation of the data. In practice,
this means dividing the sensor data into blocks that are each presumed to represent a separate
object. The segmentation can be automatic, using prior information on the objects and heuristic
rules for segmentation, or human-assisted, using user input to determine the segmentation. After
segmentation, the spatial location of each segment can be determined. The location can either
be measured accurately on the basis of 3D sensor data, or it can be estimated on the basis of 2D
measurements, such as a monocular camera image. Combining 3D sensor data and a camera image
produces rich 3D data that contain even more information for segmentation.

As a result, the segmentation fulfills the first requirement of the cognition model, namely the
locations of the objects.

3.3.2 Recognition

Object identification occurs when real and observed objects are connected to each other. The robot
understands that an observed object represents a unique physical entity that it knows already.
Another type of recognition is object class recognition. In this case the robot understands that an
observed object belongs to some specific object class, but the object cannot be identified uniquely.

An example involving object identification is the case where the robot sees the pile for the
second time. It has previously acquired enough information and is able to uniquely identify it
when seen again. On the other hand, object class recognition occurs when the class “piece of litter”
is defined. When the robot encounters a potential piece of litter, it is recognized with object class
recognition.

Object recognition is not based on one type of sensor information only, but it can be based on
the appearance of an object in images, 2D data, 3D data, and rich 3D data (a combination of 3D
data and image features, described in Section 4.1.1.2, and shown in an example in Figure 3.3.2), as
well as their locations, orientations, and motion information. In addition, object recognition may
need to take into account the physical structure of an object, the relative spatial configurations of
its components, and the shapes of deformable objects.

Recognizing an object is always based on the information gained through sensors, prior knowl-
edge, and information inputted by the user. Still, all these recognition modalities introduce uncer-
tainty. The recognition can never be considered absolutely sure. Therefore, the recognition needs
to take into account the certainty of each recognition modality and include this in the model.

Object recognition can be divided into two subtasks: feature extraction and pattern recognition.
In feature extraction, higher-level information is extracted from sensor data. In pattern recognition
the features are matched against known features that exist in the database.

Recognition is the key to the second requirement of the cognition model. Recognition answers
the question of what objects there are.

3.3.3 Object’s spatial states

In addition to recognition, the location, orientation, shape, and motion components may need to
be determined. Some of the parameters, such as location and speed, can be directly drawn from
the recognition result. The determination of the shape of a deformable component or the relative
orientations of the components of a multi-part object need the more thorough modeling of the
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Figure 3.3.2: Rich 3D data is created by combining image features with their 3D coordinates.

object. For this reason, it is necessary to combine structural and perceptual information, as well
as to determine the kinematic transforms between the components of a multi-part object.

An example of determining object’s spatial state is measuring the sand pile. The robot uses its
3D vision capabilities to measure the shape in addition to the appearance of the pile. This shape
information can later be utilized for example in planning how the pile is scooped with a bucket
attached to the robot.

Determining the spatial state of an object is the third requirement of the robotic cognition
model.

3.3.4 Teaching

Teaching an object to a robot basically occurs through real objects. A user or another agent inputs
information into real objects that can then be used for recognizing the corresponding physical
entities in the real world. The information can either be directly inputted to the real object, or a
cue for interpreting the perceptual information can be given.

An example of direct input is a case where the user describes the size of an object, or defines
its color from a color map. With this information the robot can then identify the object. Other
examples are photographing an object to describe its appearance, or describing its shape, size, or
surface texture. More complex methods of describing an object are its CAD model or mathematical
edge model.

An example of perception interpretation information is a case where the user chooses a segment
of the robot’s sensor data and labels it as an object, as illustrated in Figure 3.1.2. The robot extracts
features from the segment and associates them with the corresponding real object. After this, the
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robot can observe the real-world entity more closely and gather more appearance information.
Teaching connects the human to the robot’s cognition. As explained in the above examples,

the proposed model enables a shared cognition to be created between a robot and a human.

3.4 Objects

The three aforementioned object types, observed, real, and meta-objects, form the basis of the
model. Observed objects collect perceptions related to objects. Real objects represent physical
entities in the robot’s cognition. Meta-objects represent the classes of objects; that is, they describe
features common to all objects of a certain type.

3.4.1 Observed object

The sensor data of real-world objects are stored as observed objects which represent the robot’s
perception. The observed object itself does not represent any physical entity in the robot’s cog-
nition, just observations related to it. If an observed object is recognized, it is connected to a
real object as described below. In that case the observed object represents the sensor data of that
real object. If an observed object is not recognized, it represents an anonymous object, that is, an
object that is perceived but whose identity is unknown. In addition to sensor data, an observed
object also contains the location and time when the data were acquired.

In the example cases, observed objects are created through segmentation. In the sand pile case,
an observed object represents the segment of the sensor data that falls within the boundaries of the
region defined by the user. In the user-assisted litter recognition -case, observed objects are created
on the basis of the regions of the automatically segmented image. In the box case, an observed
object represents the part of the image that has the predefined appearance characteristics, for
example color. If the human uses a physical pointer to indicate the objects, the pointer segmented
from the image also represents an observed object.

3.4.2 Real object

The actual cognition is represented by real objects. They represent named physical entities, that
is, entities that have unique identities. Real objects contain all the available useful information
on the corresponding entities. The information can be perception features, structural information,
location, and miscellaneous metadata.

Real objects can be created in two ways. First, if a robot observes an object of a known class,
and no real object has yet been associated with it, a new real object is created. An example of
this type of real object creation is locating pieces of litter. The robot does not initially know
the locations and not even the number of the pieces of litter. When a potential piece of litter is
found, a corresponding real object is created. Alternatively, a user or a similar agent can create
a real object. Information can be inputted to the real object either by the robot’s perception or
by a human. This information is then used for recognizing the actual object. An example of the
latter type of creation is describing an object using some specific measures, such as location, color,
size, or preferably a combination of all of these. The robot knows that there is one specific entity
present, and its parameters are represented by the real object.

When a user updates information about a real object, it is possible to describe the appearance,
location, or both for the corresponding entity. Therefore it is possible that the robot knows the
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appearance of an entity, but does not know where it is. If the robot encounters the entity and
recognizes it, the robot then also knows its location. As an opposite case, it may also be possible
that the robot knows where the object is, but does not know anything else about it. For example,
if the user described the boundaries of the sand pile on a map instead of using robot’s sensor data,
the robot may not yet see the pile but is aware of its location, and is able to recognize it on the
basis of its location as soon as it arrives near the location.

The information content of a real object is based on what data the robot has been able to
gather that are related to the object. It is possible that some of the information may be wrong.
After all, a real object is just the robot’s cognitive representation of an object, and it contains the
best available information that describes the object. If there is wrong information, a real object
can sometimes be associated with a wrong physical entity as a result of false recognition. The
techniques presented in this concept try to ensure the information contained in a real object is as
correct as possible.

Functional features In addition to the visual and measurable properties of the physical entities,
real objects can also include non-measurable features, such as weight, fragility, or even instructions
on how the corresponding physical entity is used. These attributes don’t affect the recognition but
they carry information that is useful for task execution. If such functional features are included to
a real object, then as soon as the robot recognizes an object, it already knows how to handle it.
This enables the information sharing between the robot and the human in a detailed level.

3.4.3 Meta-object

Meta-objects represent knowledge of object classes. These objects do not represent any named
physical entities, but just general knowledge of all the objects of a certain type. In other words,
a meta-object represents all the knowledge of a physical entity before it is actually seen. This
knowledge can be used to recognize the classes of the entities that are perceived.

In practice, meta-objects may contain either specific pieces of information, such as “ball-
shaped”, or range information, such as “size between 1 and 2 meters”. More generally, meta-objects
contain extracted features from data acquired from several typical objects of a certain class. In
addition to the feature information, accepted uncertainty ranges are stored.

A description of a piece of litter is a typical meta-object. The description may contain for
example that the piece is something that is located on the floor and surrounded by an edge. If
the floor is known to be sufficiently evenly colored, it does not contain any visible edges, but if the
color of a piece of litter is not exactly the same as the floor, the piece can be detected on the floor.

Meta-objects generally do not contain position or orientation information, because the meta-
objects are not associated with any physical entity.

The structure of a meta-object is generally similar to that of a real object. Basically, mera-
objects are like real objects, but they just lack the specific location and identity information. Also
meta-objects can include functional features that describe typical non-observable characteristics to
all the objects of the corresponding class.

3.4.4 Definition of objects

The basis of an object is always created by a human. The definition of an object is based on one or
more physical entities. The human transfers his or her understanding of the corresponding physical
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entity to the robot by creating a real object or a meta-object. These objects are further used as a
basis of creation of observed objects. In other words, objects are instantiations of the real-world
entities in robot’s cognition, but their representation is defined by a human thus utilizing human’s
cognition.

3.5 Structure of the model

Fulfilling the requirements of a cognition model requires a concept with the above components.
The creation of observed objects from sensor data is handled, associating the observed objects with
real objects and meta-objects with recognition, determining the spatial states of the objects, and
teaching the model. The following subsections cover these aspects.

3.5.1 From sensor data to observed and real objects

A simplified case of one observed object and one real object is presented in Figure 3.5.1. The figure
represents relationships of sensor data, real and observed objects, what data the objects contain,
how they are interconnected, and in which phases a human can be a part of building the cognition
model.

In the first phase, the sensor data are segmented to represent separate physical entities. As
a parallel process, features are extracted from the sensor data. Observed objects are composed
from the appearance features associated with the segments. In addition, raw sensor data related
to an object can be stored to an observed object. Location and orientation information can also be
extracted from the sensor data features and recognition result. Finally, the observed object stores
a timestamp relating to when the corresponding sensor data were gathered.

In this example, the cognition model already contains a real object that is matched to the
observed object with recognition. A probability is assigned to the match, representing the uncer-
tainty of the recognition. The information from the observed object is processed and copied to the
real object. The pieces of information that are immediately affected are the location and structural
state. The location is updated simply on the basis of the observation. The spatial state of the
object can be updated on the basis of the direct interpretation of sensor data and reasoning on the
basis of the extracted features. The spatial state represents, for example, the spatial configuration
of the components of a physical entity consisting of multiple parts.

In time, the model learns about the appearance. The more data that are gathered, the better
the robot knows what the object looks like. Appearance features are copied from observed objects
to real objects when similar features are detected several times.

Other cognitive information is anything that is related to other aspects than perceiving the
object. For example, it could include information on what a machine is doing, or how a box should
be grabbed to avoid breaking it.

3.5.2 Sharing the cognition with a human

Various parts of the model can be affected by a human. The human figures in Figure 3.5.1 show
which parts of the model can be affected by a human.

Segmentation and recognition can be assisted by showing which part of the sensor data repre-
sents a certain physical entity. In the sand pile -example, the user defined which part of the sensor
data represents a certain physical entity. The user instructs the robot that the region needs to be
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Figure 3.5.1: Components of the system. An observed object consists of features extracted from
the segmented part of the sensor data. A real object is connected to the observed object with
probability that describes the uncertainty of the recognition process. A meta-object describes
features common to all objects of a class. Segmentation and recognition can be assisted by a
human. In addition, human can create real and meta-objects and input various types of data
them.

segmented to a separate observed object. Then the human forcibly connects the observed object
to a real object in the robot’s cognition. The human has therefore made a cognitive link to the
robot’s cognition by using his or her understanding of the world. Figure 3.5.2 extends Figure 3.1.2
by showing how this case is handled in the model.

Another way for a human to affect the robot’s cognition is to directly modify real objects. A
human can describe the appearance and location of a real object to allow the robot to recognize the
object when it is encountered. These mechanisms directly modify how the robot understands the
object. As an example, a human can describe the color of an object to the robot by modifying the
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Figure 3.5.2: Transforming a human defined segment of robot’s sensor data to observed object and
matching that to real object. This example visualizes 3D data from stereo cameras viewing a pile
of sand that is extracted from the data.

color parameter of the corresponding real object in the cognition model. This can be considered as
teaching the robot. In addition, the human can affect the functional features that describe other
cognitive information that is not part of the recognition process.

3.5.3 Dealing with uncertainty and ambiguity

Matching perception to cognition always introduces some uncertainty. Two different objects may
look alike, especially when observed with sensors that do not provide enough appearance informa-
tion. An example of such a sensor is a simple laser scanner that only measures a 2D plane and
does not provide reflectance information. In addition, recognition algorithms may be imperfect in
various ways. Feature extraction usually reduces the amount of information in sensor data, and
this may lead to ambiguities. Therefore it is necessary not to assume that the recognition result is
always one-to-one, but to allow one-to-many and many-to-many links in the recognition process.
In addition, the connections should include information on how certain they are.

Figure 3.5.3 presents a case where multiple observed and real objects are connected to each
other. In the figure there are also some objects that were not matched to any of the objects.
Unmatched real objects just represent physical entities that have not been observed with any
sensor. Unmatched observed objects, in turn, represent observations whose identity is unknown.
They are called anonymous objects.
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Figure 3.5.3: Real and observed objects matched. Each real object is matched to every observed
object that looks enough like the corresponding real object. This may lead to situation where
many real objects are linked to one observed object, and in turn, one real object may be linked to
many observed objects, if they look similar enough. Probability of the links denotes the reliability
of the matches.
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Chapter 4

Building and using the cognition
model

This chapter presents the principles and techniques of building and using the cognition model
presented in Chapter 3. Section 4.1 describes how the robot’s sensors are used in building the
model. Section 4.2 describes how a human can share the cognition model with a robot. Section
4.3 describes how the cognition model can be utilized in task execution.

4.1 Using robot’s sensors to build the cognition model

The cognition model represents the robot’s understanding of its environment. Inputted sensor
data are interpreted to elements of the cognition model. The first phase is turning the sensor data
to observed objects. In the second phase observed objects are recognized against the database of
known objects and object classes. Only the objects that are needed in the present application case
are matched. Other objects are considered as obstacles.

4.1.1 Observations from sensor data

First, the sensor data are interpreted to observed objects that represent observations from the
world using the robot’s sensors. The phases are illustrated in Figure 4.1.1.

Automatic and assisted segmentation The first phase is segmentation. Data from different
sensors are fused together on the basis of their relative positions and orientations. The segmentation
of these data can be done on the basis of depth information, image edges, motion, or recognition
of objects, or the segment can be defined by a human. If the user has defined an object from the
sensor data by determining its location or features in the sensor data, this information will be used
for the segmentation.

Appearance feature extraction The second phase is the extraction of appearance features
from the sensor data. Appearance features describe various aspects extracted from the sensor
data, for example the color or shape of an object, or they can be descriptions of the appearances
and relative positions of local keypoints in an image or similar sensor data. Depending on the
algorithm, feature extraction is executed either to segmented parts individually or to the whole

35
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Figure 4.1.1: Sensor data are segmented and features are extracted. Observed objects are created
on the basis of the result.

batch of sensor data. The extracted features are stored to a dynamically allocated array that is
not yet associated with any observed object.

Creation or association of observed objects The third phase is the comparison of the
location of the segmented region and the content of the extracted features to previously created
observed objects. If the current observation is close to one of the previously observed objects,
the current feature data are associated with that. If there is no observed object that matches the
current observation, a new observed object is created, and the feature data are associated with it.
All the available data of the features and object location are stored to the observed object.

Structural feature extraction The fourth phase is an optional extraction of structural features.
Real objects contain information on whether structural features need to be extracted. This is
described in greater depth in Section 4.1.1.2. The structure data consist of the orientations of the
parts of the object and the shapes of parametrically defined geometric structures, such as elevation
maps of the ground.

4.1.1.1 Segmentation of an object

Segmentation means dividing the sensor data into parts that belong to different objects. In practice,
when working with a limited set of objects, it is not necessary to perform a complete segmentation
of the scene, but just extract the objects of interest.

Recognition-based automatic segmentation The most reliable means of segmenting an ob-
ject is based on recognition. If the class of an object is recognized, or if the object is identified,
its appearance is already known, and it is easier to find it from sensor data. This applies mainly
to image data or 3D or rich 3D data, because identification by means of range data produced by
scanning sensors is ambiguous, and knowledge of the appearance of the object may not provide
additional information when compared to depth-based segmentation.

Recognition-based segmentation does not fully conform to the model where first the segmenta-
tion is needed, and the recognition is done only after that. If the recognition is already done in the
segmentation phase, the object recognition phase takes place simultaneously with segmentation.
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Depth-based segmentation If available, depth is very useful information for segmentation.
Physical real-world entities can often be distinguished by depth information. An exception is a
case where the objects touch or are very close to each other. If no a priori information on the
behavior of the objects is available, it may be impossible to distinguish the objects from each other.

Segmentation based on full 3D information can be improved with simple rules. For example,
the ground must be distinguished from the other objects. Separate objects must remain separate
even if the ground forms a physical connection between them. In addition, if the connection is
very thin, it can be neglected. For example, if two people shake hands, their physical connection is
very thin in relation to their total volumes. Depth-based segmentation with 3D data can therefore
be performed on the basis of the following principles:

1. each object not touching other objects can be considered separate

2. the connection of the object to the ground is neglected

3. the connection of the object to another object through a thin connection is neglected. Clas-
sifying a connection as “thin” depends on the object class.

Depth-based segmentation can also be performed with data from a 2D scanning sensor. The sensor
data are limited in the sense that they provide just a slice of the 3D world. The best assumption
based on this data is that every part of the scan data that appears to be separated is considered
as a separate object.

Edge-based segmentation In image data, edges often separate objects from each other. The
edges can be found, for example, with Canny’s edge detector [Canny, 1986]. The edge detection
can be improved with post-processing operations, for example morphological dilation or closing.
The image can then be divided into regions split by the edges.

The downside with edge-based segmentation is that it does not usually produce very good
segmentation in practice. Edges can exist inside an object, in addition to the physical boundaries.
The edges may be caused by the surface texture, shadows, or partial occlusion. In addition, separate
objects may not have a visible edge between them. Many of these phenomena are unforeseeable,
and may cause the segmentation to fail. Edges should mostly be used in conjunction with other
techniques.

Motion-based segmentation The relative motion of the objects with respect to each other or
to the observer is a very powerful cue for segmentation in the segmentation of an image. Motion
in an image can be determined with optical flow, for example with the method developed by
Lucas and Kanade [1981] and further refined by Bouguet [1999]. The problem with motion-based
segmentation is that different parts of one object may move at different speeds and even in different
directions with respect to the observer. The other problem is that not all the changes in images
are caused by motion, but also by changes in illumination, or even the appearance of the object
itself. An example of the latter case is a machine with a blinking warning light.

Motion can also be used as a means of segmentation with depth information. If different
movements can be identified, there is a strong probability that the regions belong to different
objects. This assumption may fail in cases when the object is not rigid, or when parts of an object
occlude and reappear.
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Location-based segmentation If the location of an object is known in the sensor data, seg-
mentation basically just involves extracting the corresponding piece of data. However, the robot
may be equipped with multiple sensors, and the location of the object may only be known in the
coordinate frame of one sensor. In this case the known object boundary coordinates need to be
projected to the coordinate frames of other sensors. This requires a model for inter-sensor transfor-
mations. This is usually determined with a calibration procedure, for example with the procedure
proposed by Underwood et al. [2010].

Another problem with location-based segmentation is caused by the movements of the object
and the robot itself. If the robot moves, the coordinates in the sensor data can be updated on the
basis of navigation data. In addition, the localization of the region can be improved by tracking
it in the sensor data. In the case of a moving object, the location changes, and therefore other
means, such as recognition-based segmentation, need to be used.

Human-assisted segmentation Sometimes it is not possible to perform the segmentation of
sensor data automatically. In this case, human assistance may be needed. A human can determine
manually which parts of the sensor data belong to different objects. It is usually enough to perform
the segmentation on the basis of only rough outlines, the bounding boxes of the objects, or even
one point of interest. When one point is determined, the surrounding area in the sensor data is
also considered. In an image, a circle around a point is interpreted as being part of the object.
This may lead to a case where the object is not recognized as a whole, but only a part of it is
recognized. If more accurate segmentation is needed, then edges can be drawn. After human-
assisted segmentation, the recognition can either be done automatically or assisted by a human.

It is not feasible to assume that the user performs the segmentation of the sensor data contin-
uously. After the segmentation and recognition have been performed, the segmentation can later
be performed on the basis of recognition or the location of the object.

Choice of the segmentation modality Choosing the segmentation technique requires under-
standing the constraints of the task and the environmental conditions at hand. Therefore it is
not usually possible to do this automatically, but the choice needs to be made by a human. If
the appearance of the object can be defined well, then a recognition-based segmentation is usually
the most effective modality. On the other hand, if the location of the object is the most accurate
information, then location based segmentation is a natural choice. In cases where the appearance
or location are not known accurately, edge-, motion-, or depth-based segmentation modalities can
be used depending on the sensors. In situations with no information enabling automatic segmenta-
tion, then human-assisted segmentation can be used. The human input can be handled in a similar
way as the outputs of other segmentation methods, and therefore the human-assisted segmentation
can be used interchangeably with other modalities.

In this research, recognition-, edge-, and location-based segmentation modalities, as well as
human-assisted segmentation are used as a part of experimental evaluation presented in Chapter
5. The recognition-based segmentation is used in cases where the appearance is defined with local
image features or color. Edge-based segmentation is used in a case where the objects are known to
be distinctive from background, and user interaction is provided to validate the result. Location-
based segmentation is used after human-assisted segmentation in a case where the location of a
vaguely defined object, a sand pile, is segmented from a sensor data.
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4.1.1.2 Extracting information

After segmentation, appearance and structure information are extracted from the sensor data.

Appearance features Features are used for recognizing the object or its parts. Several different
feature types can be extracted from the sensor data. The extraction can be done either during or
after the segmentation step.

The extraction of some features requires heavy preprocessing of the sensor data, and it is often
feasible to execute the extraction for the whole set of data instead of smaller subparts one by
one. Features extracted in this way can later be divided into individual objects. This kind of
feature extraction requires the features to be local. One feature should not span several objects.
An example of features that should be extracted in this way is SIFT and SURF features. They
require heavy filtering of the image, and usually it is much faster to process the whole image just
once instead of piece by piece.

The other way to extract features is to do it after the segmentation step. Some features do not
require heavy processing, but instead they depend on the boundaries of the region. An example of
this type is a color histogram. The histogram is calculated to a relatively large area, which should
correspond to the actual object. The histogram cannot be calculated before the division of the
image.

Structure Extracting the structure information means measuring the physical properties of an
object from the sensor data. There are various aspects related to this: measuring the orientation
and location of the object; measuring the relative poses of the subparts of a multi-part object, and
measuring the shape of a parametric geometric model, such as an elevation map. The location
and orientation information of objects and their subparts is acquired as a part of the recognition
process, and therefore the structure measurement phase consists only of measuring the parameters
of a parametric geometric model.

Determining the structure requires 3D data from the sensors. Estimating the shape of an
elevation map or another non-rigid object is not possible from 2D data only, and therefore 3D data
are needed. An algorithm for extracting an elevation map from 3D data is presented in Subsection
4.1.1.3.

Combined appearance and structure It is often possible to combine 3D structure data with
appearance features from, for example, an image. This rich 3D data can later be used for more
reliable post-processing than plain appearance or structure data. To calculate rich 3D data, 3D
information is needed at the points where appearance features are calculated. In practice, the 3D
coordinates are projected to an image where the features are calculated, and the closest coordinates
are found using interpolation. This procedure is explained in Algorithm 4.1.

4.1.1.3 Algorithm for measuring an elevation map

Measuring an elevation map on the basis of 3D data basically requires projecting the measured
3D point cloud to ground plane and calculating the elevations with respect to the base level. This
procedure basically consists of two steps. First, the ground orientation needs to be normalized
because the 3D point cloud acquired for example with stereo cameras is not necessarily aligned
along the ground level. The nominal ground level is usually simultaneously approximated. The
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Algorithm 4.1 Calculating rich 3D data
This algorithm is used for calculating rich 3D features based on image features F calculated from
image I, and array of 3D coordinates (x3D, y3D, z3D).

1. For each coordinate tuple (x3D, y3D, z3D) that does not yet have corresponding image coor-
dinates (xI , yI) calculated

(a) Project the coordinates (x3D, y3D, z3D) to the image plane to coordinates (xI , yI).

2. For each feature F

(a) Find the group of closest projected image coordinates (xI , yI)

(b) Interpolate the 3D coordinate for F with the 3D coordinates corresponding to the chosen
image coordinates

(c) Store the 3D coordinates to the same datastructure with feature vector F .

second step is to calculate the distances of the 3D points from the ground level, and to project
these distances as elevations to the elevation map.

The first phase, ground-level alignment can be done with various approaches. V-disparity ap-
proach [Labayrade et al., 2002] is a method designed to measure road profiles on the basis of stereo
image pair. Its strengths are at detecting discrete obstacles and its computational effectiveness.
Another possibility is to fit a plane to the 3D point cloud. This assumes that the ground can
be seen in the data as a relatively large plane. Further assuming that there are no other large
planes in the 3D data, the found plane can be considered as the normal level of the ground. Its
orientation with respect to the sensors denotes the coordinate system of the ground related to the
sensor coordinates. Two main techniques used for fitting the plane are Hough transform [Vossel-
man et al., 2001] and RANSAC algorithm [Se and Brady, 2002]. They both result in parameters of
the estimated plane. As discussed by Tarsha-Kurdi et al. [2007], RANSAC algorithm is in general
more effective for fitting planes from 3D data, and therefore it is chosen for the purpose.

The following description is an adaptation of the RANSAC algorithm as described in [Se and
Brady, 2002]. The algorithm requires a relatively large number of measured 3D points. This can
be acquired with a relatively wide-angle stereo system or with a 3D laser scanner. The ground
plane is found with the RANSAC algorithm, which fits the plane equation

ax+ by + cz + d = 0 (4.1.1)

to the data set. After the plane has been found, the 3D data points are translated and rotated
with ⎡
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where cx is the short form of cos (x) and sx for sin (x), x, y, and z are the original coordinates, x′,
y′, and z′ are transformed coordinates, and h is the height of the ground plane from the XY-plane.
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The parameters are calculated with the known plane equation coefficients
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α = b

c

β = −a
c

h = d
a .

(4.1.3)

As a result of the ground level alignment, the 3D data is now transformed to the same coordinate
system as the ground plane. Therefore, the x-, and y-coordinates of the 3D data now represent
the corresponding coordinates of the ground plane and the z-coordinate is the height from the
ground plane. The second phase, coordinate projection, is basically just associating the x- and
y-coordinates with the corresponding bins in the elevation map, and determining the elevation on
the basis of the z-coordinate. However, there are two problems. There is usually more than one
point associated with each elevation map bin, and there are often outliers in the 3D data. Oniga
et al. [2007] chose the highest of the points that falls into the elevation map element. However,
outliers in the data may cause high peaks on the elevation map if the highest of the 3D points is
chosen. To avoid this, all the points that are associated with the same bin are grouped together
and analyzed. There is usually a condensation of points around ground level, while the outliers
are just individual points or small groups. The most effective way is to build a linked list for each
elevation map bin and then analyze the points on the basis of that. The points in the list are sorted
and the condensed set is found by sliding a window through the data and looking for the group
with the smallest standard deviation. The corresponding z- coordinate is chosen as the height on
the elevation map.

Algorithm 4.2 summarizes the alignment of the ground plane and the projection of the 3D
points to the elevation map. The ground plane alignment is a similar to the algorithm described
by Se and Brady [2002]. The projection algorithm is developed by the author.

4.1.2 Object recognition

After the observed objects are created or features are associated with previous observed objects,
the object recognition is executed. In practice, object recognition links observed and real objects to
each other. Recognition is based on comparing cognitive information in real objects and perceived
information in observed objects. The different types of object recognition and tracking are shown
in Figure 4.1.2. The following subsections describe the recognition procedure. All of the described
recognition modalities are used in the experimental validation in Chapter 5.

Matching the features to the database

The first phase of object recognition is matching the features of the observed object to a database
of features from all the real objects and meta-objects. The features are indexed separately to
speed up the matching procedure. Matching with real objects or with meta-objects is technically
equal and can thus be combined in one matching operation. In addition to feature vectors, the
physical structure model and prior information on the locations and orientations of real vectors
are also used for recognition. The pose of the object affects which side of it is visible to the robot.
This information can be utilized in determining the orientation. The physical structure also affects
which parts of the object are visible.

As a result of the matching procedure, the observed object can be matched to either one or
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Algorithm 4.2 Building an elevation map on the basis of measured 3D points.
The elevation map consists of an array E (xE , yE) with discrete bins. The values of the bins
correspond to heights. The calculation is based on an array of 3D points (x3D, y3D, z3D). The
algorithm consists of two phases: ground normalization and projection.
Ground normalization

1. Choose three points (x3D, y3D, z3D)

(a) Fit a plane to the points, and determine the coefficients for Equation 4.1.1.

(b) Count the number of 3D points in the plane.

(c) Save the chosen points and the result of (b) to an array A.

2. Repeat phase 1 n times.

3. From array A

(a) Choose the set of three points corresponding to the largest number of points in the
corresponding plane.

(b) Fit a plane using all the matching points, and determine coefficients a, b, c, and d.

4. Rotate the 3D points using equations 4.1.2 and 4.1.3.

Projection to elevation map

1. For each 3D point (x3D, y3D, z3D)

(a) Calculate the coordinates of the corresponding element (xE , yE)

(b) Add the point to the linked list associated with (xE , yE)

2. For each element E (xE , yE)

(a) Sort the associated linked list on the basis of the z-coordinates

(b) Run a moving window through the linked list

i. Calculate the standard deviation of the z-coordinates for each window
ii. Store the minimum standard deviation and corresponding z value

(c) Choose the z-coordinate corresponding to the smallest standard deviation and store it
to E (xE , yE)

several real or meta-objects. Probabilities based on the reliabilities of the matches are stored to
the links between real and observed objects. The calculation of the probabilities is described in
Section 4.1.3.

Object identification

An object can be identified in two ways. The observed object can either be connected to a matching
real object, or the observed object can be connected to another observed object that, in turn, is
connected to a real object. The two topmost diagrams in Figure 4.1.2 present these two cases.

If sensor data are associated with an observed object that is already associated with a real
object, the connection between them is retained. If an observed object is not yet connected to any
object, but there is a match between the observed object and a real object, the connection between
them is established.
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Figure 4.1.2: On the left side are new observed objects that are based on the newest sensor data,
on the right side are real, observed, and anonymous objects that have been created before. The
relationships between different recognition modalities and object types are shown in the numbered
diagrams.

Connecting an observed object and a real object also requires spatio-temporal conditions to be
fulfilled. If the spatial location of the real object is known, but the location of the new observation
is not feasible, the connection is discarded. It is also possible that only a relative topological
location is known. In this case, the feasibility is evaluated against the rules of topology. If the
feasibility of the topological location is unknown, the connection is retained. An example of such
a situation is a case where the only information on the location of the object is that it is indicated
by a certain sign, but the sign itself has not yet been seen. In this case it is not possible to know
whether the object is indicated by the sign or not, and the feasibility cannot be explicitly confirmed
or rejected.

If there is a match between an observed and a real object, the possible matches to meta-objects
are discarded, because object identification is much stronger information than just knowing its
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class.

Object class recognition

If the features and spatio-temporal properties do not match any real object, but the class of the
object is recognized, a new real object is created. The third diagram in Figure 4.1.2 presents this
case. The current observed object is associated with it. Automatic generation can occur erro-
neously as a result of inaccurate sensor data or information on the positions of objects. Therefore
the real object that is created will retain the information that it was automatically generated. It
can be merged with another real object at a later time if it seems probable that the two objects
actually represent the same physical entity.

Tracking an observed object

If the observed object cannot be matched to any real or meta-object, it is tracked. The observed
object will remain unmatched to any real object, and it will be marked as an anonymous object.
This means that there is no meta-information related to it, but the only information is the sensor
data gathered from it. The diagram 4 in Figure 4.1.2 presents this case. If any anonymous
objects already exist, the features of the current observed object are matched against those of the
anonymous objects. This is presented by the diagram 5 in Figure 4.1.2 presents this case. If no
observed object is associated with a previously created anonymous object, it is removed, as shown
in the diagram 6 in Figure 4.1.2. In the event of unreliable sensor data, the anonymous object is
not removed immediately, but only after being unmatched for a few rounds.

Tracking may be necessary in cases where the robot knows the target but cannot recognize
it. If the user has marked the target in the sensor data, the robot may need to approach the
object before it can really recognize it. Tracking is generally a relatively unreliable procedure,
and errors can be accumulated, so tracking-based object localization cannot be used for planning
manipulation where recognition of the target object is required.

4.1.3 Handling uncertainty

4.1.3.1 Match certainty

Some features are more reliable cues for recognition than others. For example, the color of an object
is not a very unifying feature, but a set of rich 3D features can be used for much more reliable
recognition. Another aspect affecting the match certainty is the match score. If the observed and
reference features have a very close match, the recognition can be considered more certain than
when the match is not as good. Further, the observation can be compared to available data, and
the consistency can be evaluated. If there are many similar observations of a certain object, it
is probable that a new observation is similar to the previous ones. If the new observation differs
considerably, it may represent some other real object.

These three aspects, feature type, match score, and consistency, affect the probability of the
recognition. This probability, here called match certainty, is associated to the link between the
observed and real objects. Match certainty, written pm, and based on feature-related certainty pf ,
match score p, and match consistency pc, is calculated simply with

pm = pfpspc. (4.1.4)
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Figure 4.1.3: Observations outside the 2σ uncertainty region are considered to be too far from
the previous location to represent observations of the same object, and therefore the pc score is
assigned value 0. Observations inside the uncertainty region get pc = 1. This value is used in
Equation 4.1.4.

Feature-related certainty can be determined on the basis of experience. It is usually not possible
to determine an exact certainty related to a feature type.

The certainty drawn from the match score requires the score to be scaled to the [0, 1] range.
Generally, the match score of one feature is related to the Euclidean distance between the observed
and reference features. With several features grouped together, the sum of the individiual scores,
as well as the number of matches, also affects the score.

Match consistency pc gets a discrete value of 0 or 1 depending on the result of the comparison
of the current observation to the previous ones. The locations of the objects are compared. If the
location of the new object is within the location uncertainty region of the other object, pc is set
to 1; otherwise it gets the value 0. The acceptable location uncertainty region is 2σ of the normal
distribution covariance. The location uncertainty covariance is described in Section 4.1.5. Figure
4.1.3 shows the principle for calculating pc.

4.1.3.2 Multiple candidates

Several observations may be associated with the same real object. Each match has its own certainty.
In many cases, several candidates can be retained. Over time, one of the candidates may become
more reliable than the others. If a decision needs to be made while there are multiple candidates,
the one with the highest certainty can be chosen. If none of the candidates is superior to the
others, an ambiguity may remain. In these cases, user assistance may be needed.

There may be multiple candidates for one object. All the candidates are included; that is, there
may be links from one observed object to several real objects.

4.1.3.3 Choosing just one candidate

The most probable candidate is chosen to represent which observed object relates to which real
object. The other candidates are also preserved in case the chosen cancidate was wrong. The
candidate is chosen on the basis of the match probabilities. If the probability of the best match is
more than double than the second best match, and the probability of the best match is more than
0.5, the candidate match can be considered as the best match.
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Figure 4.1.4: Learning occurs from observed objects to real objects, and from real objects to
meta-objects. Only characteristic features are copied.

4.1.3.4 Comparison to other techniques

This kind of object tracking problem has been considered in robotics research, and various other
solutions have been proposed. JPDAF (Joint Probabilistic Data Association Filter) [Bar-Shalom
and Fortmann, 1987] deals with unrecognized measurements in space. It aims to associate new
localized objects to previous ones even without knowing their identities. The association is done
on the basis of the locations and velocities of the objects only. However, this kind of approach
requires estimation of the velocities using a Kalman-filter. Such estimation would require constant
measurements of the objects. The model presented in this research does not require tracking
the motion, but can be applied on single measurements as well. Therefore the much simplified
approach is applicable. The approach is used in this research uses the similar principles as JPDAF
in determining if the locations of the detected objects in two time instances are consistent, and
therefore, if they represent the same physical entity or not.

4.1.4 Learning the appearance

The model allows learning from actual sensor data. The observed objects contain features that are
matched to real objects, but also features that are not matched. The non-matched features may
be caused by noise, or they may actually be features characteristic of the object. When enough
similar features are related to an object, they can be regarded as characteristic. This process can
be considered as learning. The learning occurs on two levels, from observed objects to real objects,
and from real to meta-objects. The different types of learning are depicted in Figure 4.1.4.

4.1.4.1 Learning from observed objects

The observed objects contain features from actual sensor data. The features that are determined
as characteristic are copied from the observed object to the connected real object. In this way the
model learns about new aspects of a real object by gathering new sensor data. The copied features
are marked as less reliable than the previously existing features. When a feature is matched to a
real object, its reliability is reinforced. Over time the reliability of the features will depend on how
often they are matched to the same object as the other related features.

This type of learning is evaluated in the experiment described in Section 5.3.1.
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4.1.4.2 Learning from real objects

Real objects represent samples of an object class. If there are several real objects that have the
same feature, it can be considered as characteristic of the whole object class. The feature can
be added to the corresponding meta-object, that is, an object that describes the object class.
Automatic learning from just one real object is not possible, because one object may not represent
the whole class, and therefore at least two different real objects are needed to enable the similar
features to be copied to a meta-object.

This type of learning is not experimentally evaluated in this thesis. However, its applicability
is discussed in Section 6.2.1.2. The practical implementation of this type of learning is part of the
future work of the research.

4.1.5 Object location and orientation

The pose of the object, that is, its location and orientation, determines its spatial state.

4.1.5.1 Spatial location

Spatial location means the exact x-, y-, and z-coordinates in the three-dimensional space. This is
the actual location of the object. The coordinates are based on a predefined origin that represents
the location (0, 0, 0). There can be several origins defined, and one needs to determine which origin
the coordinates are based on. Additionally, the origin of the object itself needs to be defined.

In many cases, the exact location of the object is not known. The uncertainty of the location
can be expressed with a covariance matrix. This approach assumes that the uncertainty is an
(x, y, z)-centered Gaussian distribution. This is a typical way to model location uncertainty robotic
applications. [Thrun et al., 2005] The representation based on Gaussian distribution is compatible
with Kalman filter and other similar algorithms.

The covariance of the location uncertainty is generally determined on the basis of the model
of the measurement process itself. In addition, dynamic objects can move, which causes more
uncertainty about the location as time has passed since the last measurement. The covariance of
the location right after the measurement can be determined with the formula

P = RP0R
−1 (4.1.5)

where P0 is the unrotated covariance matrix

P0 =

⎡
⎢⎣
σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

⎤
⎥⎦ (4.1.6)

σx, σy, and σz being the standard deviations along the axes of the local coordinate system, and R

is the rotation matrix

R =

⎡
⎢⎣

cαcγ − cβsαsγ cγsα + cαcβsγ sβsγ

−cβcγsα − cαsγ cαcβcγ − sαsγ cγsβ

sαsβ −cαsβ cβ

⎤
⎥⎦ . (4.1.7)
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Figure 4.1.5: Uncertainty of the measured location of an object. α is the angle to an object related
to reference coordinate system, d is the distance, and σx and σy are the standard deviations along
the axes.

Here the sin and cos functions are written in a shorter form; sin(x) = sx and cos(x) = cx.
The angles α, β, and γ are the angles from the sensor to the object in Euler coordinates. The
covariance matrix is often assumed to be constant, but it can also depend on, for example, the
movements of the sensor itself, the environmental conditions, or other variables. Figure 4.1.5
illustrates the uncertainty area. In reality, because normal distribution is used, there is no sharp
edge for the distribution. A threshold, such as σ or sometimes 2σ, can be used to determine where
the distribution “ends”.

The calculation of the uncertainty caused by the time since the last measurement is not as
straightforward. The simplest model would be to assume an equal probability of movement in any
direction. In this case the covariance P of the location at time t could be calculated with

P(t) = P0 (t− t0) pmv, (4.1.8)

where P0 is the covariance of the measurement, t0 is the time instant when the measurement was
made, pm is the probability of the object moving, and v is the average movement velocity of the
object. The term pm is used because in some cases the object is more likely to move than in other
cases. A person taking part in the task execution is more likely to be in a specific position than a
person who is just passing by.

The assumption that the object moves in any direction is very simplifying. For example, a
non-holonomic vehicle, such as a car, would more probably move forward than sideways. The
movements also depend on the dynamics of the objects. This kind of calculation of the covariances
requires a model and measurements of the kinematics and dynamics of the object. In addition, the
movements of the object can be predicted on the basis of some prior knowledge. For example, a
car is more probably going to stay on the road than drive into the gutter. If additional information
is not available, Equation 4.1.8 can be used. Basically, this represents a worst-case scenario of
location uncertainty. More thorough models are not discussed in this research.

4.1.5.2 Orientation

In many cases, the orientation of the object also needs to be known. Basically, orientation
means rotation from global coordinates to the object’s own coordinate system. There are sev-
eral parametrizations to express the orientation of an object. Euler angles are widely used because
of their easy interpretation. They define three angles, α, β, and γ, that are rotation angles around
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Figure 4.1.6: Example of topological connections to determine the location of a target object.

the x-, y-, and z-axes, respectively. The rotation of the coordinate system can be calculated with

C′ = RC, (4.1.9)

where C is the original coordinate system defined by a 3× 3 matrix, C′ is the rotated coordinate
system, and R is the rotation matrix calculated with Equation 4.1.7.

In world coordinates, the x- and y-axes are elongated along the ground plane, and the z-axis
points up. With objects, the x-axis is defined as the principal axis. This means that if the object
points in some specific direction, the x-axis defines this direction. Furthermore, vehicles and other
moving objects have their x-axis pointing forward, or in the direction in which their movement
usually occurs.

4.1.5.3 Coordinate origins

The spatial location and orientation are based on a coordinate system origin. It is not feasible to
measure the locations of all the objects in the same global coordinate frame, but local coordinate
frames are needed. One coordinate frame could be fixed to one point in the working area, another
coordinate frame can be fixed to the base station of the robot, and yet another coordinate frame
could be located at some global origin like the GPS point (0.0, 0.0).

Using navigation technology such as GPS it is usually easy to determine the inter-origin trans-
lation and rotation. In this case, the 4x4 transformation matrix between the coordinate origins
can be defined. The origins are organized as a hierarchical tree, where the global origin is the base
of all the other coordinate systems.

Though possible, the absolute translation between the coordinate origins is usually not required.
The tasks are generally executed in a bounded area, and only one local coordinate origin is needed.
A coordinate system can be fixed to a local landmark that is used as a point of reference. The
local coordinate system can be determined with the robot’s own localization techniques.

4.1.5.4 Topological position

It is not always necessary or even possible to know the exact position of an object. It is often enough
to know if an object is next to, on top of, or attached to the side of another object, or if it is a sign
pointing at another object or indicated by a sign. Figure 4.1.6 shows an example of determining
the position of the target object using the topological connections between objects. These cases
may occur especially when the information is not gathered by the robot using its sensors, but the
information is inputted by a human. The topological connections are not necessarily fixed, but
may depend, for example, on the direction of another object. If an arrow-shaped sign is pointing
to another object, the orientation of the arrow effectively defines the target object in question.
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Figure 4.1.7: Sign pointing towards the direction of the smaller ball. [Heikkilä et al., 2006]

Figure 4.1.7 presents an example of such a sign. The smaller ball is interpreted as the tip of the
arrow. By measuring the locations of the two balls, the pointing direction can be determined.

Topological connections between two objects can be defined with two properties: distance and
direction. Both of them can contain lower and higher limits. For example, the distance to an object
could be between 2 and 5 meters from the reference object, and its direction between 30 and 60
degrees. The direction can be defined either in a global coordinate system, or in the reference
object’s own coordinate system. In the latter case, the orientation of the reference object affects
the pointing direction. If an object is attached to another object, its distance can be defined as 0.

The topological position is different from the spatial position in the sense that it does not
necessarily uniquely define the location of an object. Furthermore, when actual manipulative
operations are being conducted on an object, its spatial location needs to be known. The topological
location can mainly be used to determine target objects for the robot. When doing the actual
manipulation, the robot needs to locate the object in terms of its spatial coordinates. This does
not have to override the topological location information, but both modes of location information
may coexist.

4.2 Sharing cognition

Humans and robots can share their cognitions by exchanging information on different levels. On
the lowest level, the user can label parts of the sensor data to represent a certain object. This can
also be done by affecting the scene viewed by the robot with a pointer stick, signs, or illumination.
A human can also describe the object to a robot either by giving a verbal or numeric description of
the object, or by inputting external sensor data, such as a photograph of an object that represents
a certain object. The human can also get information from the model on the basis of the existing
real and observed objects. This information can be used for delivering information from a remote
scene, as well as for verifying that the robot has interpreted the scene correctly.

4.2.1 Referring to the robot’s sensor data

One way of sharing the cognition is to use the human’s cognition to interpret the robot’s sensor
data. The interpretation can be done by accessing the acquired sensor data, or delivering the
information through the scene that the robot is viewing.
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4.2.1.1 Explicitly selecting sensor data

The user can select a segment of the sensor data to define it as an observed object and associate
it with a real object. The user therefore executes the segmentation and recognition for the robot.
In the segmentation phase, an observed object is created. Features extracted from the sensor data
are then associated with this object. In the recognition phase the user either creates a new real
object with which the observed object is associated, or he or she associates the observed object
with a real object that already exists. This procedure is depicted in Figure 3.5.2 in Chapter 3.

4.2.1.2 Pointing objects in the real world

A human can point to objects with a physical object or otherwise make a target entity distinctive
to the robot. This is related to the previous case, but now the robot needs to perform the sensor
data interpretation itself. The user just assists the robot and makes the interpretation easier. So
instead of having to understand the whole scene, the robot just needs to recognize a predefined
object or detect an illuminated area to recognize the target object. Different means for pointing
are using a distinctive-looking stick, using predefined signs, like arrows, or illuminating the target
entity with a laser pointer or a flashlight.

From the following pointing methods, the pointer stick and illumination are used in the ex-
periment described in Section 5.3.2. The use of an arrow-type sign is experimentally evaluated by
Heikkilä [2009].

Pointer stick A distinctive-looking pointer stick is defined as a real object in the robot’s cogni-
tion. When recognizing the stick, the robot follows the direction it is pointing in and thus finds the
target object. In practice, the stick is defined to have a topological connection towards the direc-
tion it is pointed in. The connection is not initially linked to anything, but when it is recognized,
the robot determines the target of the topological link.

Signs An arrow-type sign can be used to identify objects in a similar way to a stick. Another way
of using signs to mark objects is to surround an object with them. When they are seen, the robot
knows that they surround the target, and it is able to perform the segmentation of the sensor data
on the basis of this. A sign can be deliberately made very distinctive, and thus it is easy to see it
with the robot’s sensors. However, determining the orientation of a sign may cause errors if it is
done with only one camera. Because the orientation of the sign is often important information, a
pair of stereo cameras is usually necessary to interpret signs.

Pointing with illumination Another way of leading the robot’s attention to an object is to use
a light source, such as a laser pointer or flaslight. The robot can see what is being pointed to, but
the pointer itself is not a rigid object. The pointer just modifies the perceived scene. In practice,
a virtual real object is created. The only definition in the object is that it is recognized with hue
segmentation, possibly combined with background extraction. The real object is therefore not a
physical entity, but it just represents the light. When the illuminated target is found, it is defined
as being the object in question.
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4.2.2 Describing an object

The user can describe an object to the robot. The description may include complete information,
including the location, orientation, and appearance of the object, or it may contain only some
information, for example its color. Any of this information can be utilized when building the
cognition model. The reliability of the features affects the certainty of the recognition, so the more
information is available, the better the recognition is.

Describing an object is done by creating a new real object or processing an already-existing
one. This can be done offline with a separate computer, or it can be done directly with the actual
online cognition model. When working offline, the changes and additions are made to the actual
model after the editing is finished. In the online case the information can be directly associated
with a real object that can even be used in a task. After the real objects are modified, the feature
database and its index need to be updated for feature matching.

The following subsections describe a few case examples of how the user can input data to the
model and how this is utilized in task execution. The modalities used in the experiments in Chapter
5 are numeric descriptions described in Subsection 4.2.2.3, unifying codes described in Subsection
4.2.2.4, and object’s location as described in Subsection 4.2.2.5.

4.2.2.1 Photographs of an object

Taking one or more photographs can be used to train the robot in the appearance of an object.
Features are extracted from images, and they are associated with the real object. With one
photograph, the features represent only one side of the object, and thus the object can be recognized
from that side. If the images are taken from several directions, the recognition becomes more
reliable. If only a few photos are used, many different types of features need to be extracted
to improve reliability. In practice, SURF features should be extracted for accurate appearance
recognition, and a color histogram description for coarser long-distance recognition. The robot
has to be equipped with a camera to recognize the object trained with the camera image, because
the images do not contain any 3D information that would be needed for recognition with scanning
sensors, such as laser scanners.

It may be impossible to determine which part of the photograph belongs to the object and
which one to the background. When a human takes a photograph of an object, it is a reasonable
assumption that the object is usually in the middle of the image. Therefore the certainty of the
features at the center of the image is higher than the certainty of the features located at the edges.

4.2.2.2 Plain or rich 3D data

A pair of stereo images can be used to produce a set of 3D points that describe the object. In
addition, the feature information can be assigned to the points to create rich 3D data. With data of
this kind fewer samples are needed for training than with just 2D image features, but the training
is more complicated.

4.2.2.3 Numeric description

Human-understandable measures such as size or color can be used as weak descriptions of an
object. All these kinds of features are usually ambiguous, and they are not sufficient for reliable
recognition when used without any additional cues. However, when combined with information on
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(a) A text string writ-
ten with machine-readable
OCR-A font.

(b) A code-128B stan-
dard barcode with num-
ber 42 encoded.

(c) A semacode
area code with
text ABCDE
encoded.

(d) Concentric
circles with
variable widths
that unify the
symbol.

Figure 4.2.1: Examples of machine readable codes that encode information.

the location of the object, these features increase reliability. A numeric description of the size of
the object can also be used together with photographs to allow recognition with a scanning sensor
too. The numeric information inputted by a human may not be exact, and therefore the numbers
cannot always be used as strict criteria for recognition, but ranges of numbers need to be used.

If a numeric description is used as the only feature of an object, the robot can pick all the
suitable objects as candidate targets and check with the user which one of them is the right one.
This technique was described in Section 4.3.2.5.

Color Humans do not understand colors in terms of numbers but with names. Each name covers
a range of different hue-saturation combinations. The ranges overlap, because a human’s color
peception is heavily subjective, and it may be difficult to determine if an object is pink, magenta,
purple, rose, or just light red. A robot and a human can understand the colors in the same way
if a color chart is used. Every color in the chart is defined in terms of a numeric color definition.
The human can compare the colors in the chart to those in the real world. This enables a shared
understanding of the colors to be attained.

Color-based recognition is not always reliable because of its low information content. Color is
usually not a very unifying feature in man-made environments, or even in the wild world of nature.
Therefore the color information always needs another description if an object is to be uniquely
recognized.

Size The size of an object is a very ambiguous concept. There are various metrics for measuring
the size of an object. Simple cube-like objects such as furniture are usually measured in three
orthogonal dimensions named “width”, “height”, and “depth”. With round conical objects, such
as trees, the only available measurement may be the perimeter or diameter of the base. When
measured with a scanning sensor, the intersection may affect the measured size, and this can also
cause false matches. Like color, size description is not a very unifying feature, and in practice it
needs to be combined with other features.

4.2.2.4 Unifying code

A special feature type is a code, such as a barcode, dot code, color sequence code, machine-readable
text, distinctive symbol, RFID tag, or a similar code that can be uniquely read by a machine by
using a camera or other sensors. These codes are often understandable also by humans, or at least
a descriptive text can be attached next to the codes. Figure 4.2.1 shows examples of machine
readable codes and text. In addition to this type of codes, there are various optically recognizable
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tags used mainly in augmented reality applications, such as ALVAR augmented reality software.
VTT [2011] Because this kind of tags are not designed to carry arbitrary encoded data, they are
not considered in this research.

The OCR-A font shown in Figure 4.2.1a was originally designed for easy optical character recog-
nition. Modern optical character recognition algorithms, however, are able to read text written
with various typefaces. Because the variety of different characters and symbols is wide, the optical
character recognition is not always reliable. In addition, character recognition requires relatively
heavy computing.

A barcode depicted in Figure 4.2.1b is originally designed for robust machine reading. Barcodes
are used for countless applications, for example to label consumer products. However, the barcode
is designed to be read perpendicularly. The information is encoded to the widths of the bars, and
perspective distortion could negatively affect the reliability of reading the code.

An extension to traditional barcodes is a 2D code. Figure 4.2.1c shows an example of a
Semacode-type code. This kind of codes are often used to be read with mobile phone cameras,
and they are usually used to encode addresses of WWW pages or similar information. As with
barcode, the 2D codes are also designed to be read perpendicularly, and viewing from different
directions may reduce the readability of the code.

A different kind of approach is a circle code depicted in Figure 4.2.1d. The data is encoded
to the variations of the diameters of the circles. This kind of coding scheme does not allow
encoding much data into the code. However, because the code only consists of concentric circles,
its readability is good even when not viewing perpendicularly. Locating an ellipse from an image
is a trivial task. It is equally easy to locate all the circles, and because they are concentric, the
validity can be confirmed. RCA company developed a standard called bull’s-eye for circle codes.
This standard, however, is not currently used, and there exist no software for decoding this type
of codes. Therefore, an algorithm for this purpose is developed in this research.

Detecting a circle code Circle codes are a useful form of identification because reading them
is relatively reliable. Determining if a region is circular can be determined by examining the Hu
moment invariant

I1 =
μ2,0(S) + μ0,2(S)

μ0,0(S)
2

, (4.2.1)

where I1 denotes Hu’s first moment invariant, S is the shape being analyzed, and μi,j are the shape
moments. [Hu, 1962] The circularity of the shape S can be determined by comparing the moment
to 1/2π. [Žunić et al., 2010] The concentric nature of the circles is a strong cue for recognition. In
addition, data can be encoded into the variable line widths. Algorithm 4.3 describes the location
of a circle code from an image and reading its code. The algorithm returns a numeric description
for each circle code. In addition to the midpoint coordinates, a vector describing the actual code
is returned. The vector includes the relative diameters of the circles. This can be used to unify
different codes.

A great advantage of using codes is that they can be made very distinctive and unifying. The
problem is that it is not always possible to attach a code to an object. The code may also be
distorted by the deformation of the object, or parts of the code may be occluded. Codes are rarely
designed in such a way as to tolerate partial occlusion, and in such a case an unreliable match may
occur.

Codes are special cases. Because a code is usually not part of an object, but it is just attached
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Algorithm 4.3 Reading and locating circle code
The algorithm finds a circle code from a grayscale image I (x, y). The circularity threshold T ∈ [0, 1]
needs to be defined. Higher T means a stricter requirement for circularity.

1. Execute Canny edge detector to extract the edges from the image.

2. For each 8-connected pixel region

(a) Calculate Hu’s moment invariant I1 using Equation 4.2.1.

(b) If 1
2πI1

> T

i. Calculate midpoint and radius for the region
ii. Store the parameters to an array A

3. For each parameter group in array A

(a) Compare the midpoint to every other midpoint in array A.

(b) For every circle with an equal midpoint

i. Group the circles to array B

ii. Remove from array A

(c) Normalize the radii of the circles in array B from 0 to 1.

(d) Sort B.

(e) Return a vector containing the midpoint and vector B. This is the description of the
circle code.

to it, the code is treated as a separate object, and a topological connection between the code and
the actual object is defined. Therefore, a real object describing an object does not contain the
code information, but just a topological “attached-to” connection to the code. When the code is
found, the actual object is also found by following the topological link.

4.2.2.5 Object’s location

An object can also be defined by determining its spatial or topological location. Neither of these
definitions is unifying, and these also need to be used in conjunction with other feature types.

Spatial location A spatial location describes the location of the object on a map. If the object
is static, this information leads to a correct location, but if manipulation is needed, a problem may
occur if the object is not recognized. In that case it is impossible to determine how to operate the
object. Usually, the location is used just as additional information, not the only description.

Topological location If the spatial location of the object cannot be determined accurately, a
topological location definition may be used. This may also be advantageous when the object is
not static. The object used as a reference for the topological location can therefore also be moved.
For example, if the reference object is an arrow sign, it can be moved to point to the target object
if it moves. The challenge in the definition of a topological location is that it is always tied to a
reference object. If the location of the reference object is not known, it needs to be determined
first.
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4.2.2.6 Functional features of the object

The object description can include non-perceivable features of the object in addition to the visible
features. These features describe the functional properties of the object. They are not used
for recognizing the object by appearance, but the information can be utilized on a higher level
deduction. This model does not limit what kinds of functional features can be used. The features
are described as pairs of the name of the feature along the value or textual description.

The simplest example of a functional feature is a numerically measurable non-perceivable fea-
ture, such as a weight of an object. The weight may have an effect to how the robot uses its
actuators or if it is able to lift an object at all. An example of a more loosely defined functional
feature is contents of a box. Also this does not have an effect on the appearance, but it affects how
the robot is supposed to handle the object. A box with fragile contents, such as glass, should be
carried with more care than a box with for example books. Yet another type of functional features
is the way an object is used. For example, a table can support objects, therefore they can be laid
on top of it.

These types of functional features are typically entered by human and they are utilized in a task
execution. These features don’t affect the other functionality of the model, they just are associated
to the corresponding objects for later use.

4.2.3 Getting the information from the model

The user can also get data from the cognition model. This can be needed in three different
situations. The user can check if the robot has recognized the objects correctly, and if it has
actually detected all the objects. Second, the robot may have surveyed an area, and information is
delivered to the human. In this case the robot is used as the “remote eyes” of a human. In a third
scenario, the robot may have detected various potentially interesting objects, and shows them to
a user, who can then decide which ones are significant and which ones are false alarms. All these
actions are done through a graphical user interface.

The first case, checking the correctness of recognition, can be used in situations where wrong
actions are not acceptable; otherwise the robot can sometimes be allowed to execute the wrong
action, because usually it is able to detect later that it is doing the wrong thing. When the
robot sees an object from a closer distance, correct recognition becomes more probable. Checking
the recognition result may also be needed in cases when a new object is being trained and its
performance is being evaluated.

The second case, getting a survey result, is used in cases when the user cannot or does not
want to enter some area. The reasons can be, for example, a long distance or dangerous conditions.
After a surveying task the cognition model contains a real object for each recognized target. In
addition, there may be compressed image snapshots of each object in the model. In this way the
user can also evaluate the correctness of the recognition.

A practical example of the third case is presented in Section 4.3.2.5. Snapshots of one or more
candidate objects are presented to a human operator, who needs to choose the interesting objects
from among the observed objects. Choosing the object is done either by associating a real object
with one of the observed objects or by choosing an observed object as the target.
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4.3 Task execution

The robot’s decisions during the task execution are based on the present cognition model. The
movements and actions are planned in a way that depends on whether the objects exist in the
cognition model and what their locations are. Target objects are approached and manipulated,
and obstacles are avoided. The cognition model gives support to all such operations.

Sometimes reactive perception is also needed. This is not handled in the cognition model, but
should be executed as a parallel process. An example of reactive perception is emergency braking,
when an object is detected with a proximity sensor, such as a laser scanner. In this case, there
may be no further information needed about the object than the mere fact of its existence. As an
analogy to humans and many other animals, this kind of perception can be considered as a “reflex”
of the robot, and therefore does not utilize the cognition model.

4.3.1 Objects in cognition model

The high-level task description defines the tasks and their targets. In practice, the targets are
objects. A real object is generated for each target object of the task. These real objects are passed
to the cognition model, which uses them to build the actual cognition model. This is done with
the procedure described in Section 4.1. Building the cognition model is done automatically on the
basis of the object data from a higher level. Basically, the task does not need to take care of the
perception, but it can utilize the cognitive information as it is generated from the sensor data.

The cognition model also contains information about obstacles. Obstacles are anonymous
objects that are not necessarily associated with any meta-object, but the only information in the
cognition model is the sensor data related to the objects. The model knows the locations, sizes,
and shapes of the obstacles. The robot can use this for planning its movements.

4.3.2 Related tasks

The following discusses a few case examples and how they are handled by the model. The examples
are typical tasks executed by a mobile service robot.

4.3.2.1 Path planning

The most elementary task that a mobile service robot can execute is moving from one place to
another. In a completely empty working area this is a very elementary task that requires only
local positioning based on, for example, odometry, and knowing the kinematics of the robot in
order to plan the movements. However, in an area with obstacles, more advanced path planning
is required. Planning is based on information on obstacles present in the area. There are several
algorithms for path planning, for example, A* [Hart et al., 1968] and D* [Stentz and Mellon,
1993]. The algorithms generally try to find a balance between finding the shortest, fastest, or most
energy-saving path while keeping the path collision-free.

Cognition model can be used as a tool for path planning. In practice, the cognition model
is built using robot’s sensors. This requires 3D mapping or 2D distance scanning capability to
produce a map of the locations and sizes of the objects. To plan a collision-free path it is not
required to know the identities of the objects but they can all be considered just as obstacles.
This can be thought of as hiding the objects under “hoods” or replacing them with boxes of equal
size. The locations of the objects are then inputted to the data structure of the path planner.
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The path planners are usually based on an occupancy grid that represents the space as an array.
The elements of the array represent certains point in the space, and the values of the elements
indicate if the corresponding points are traversable or not. The objects in the cognition model
are now placed to the occupancy grid. The elements that are on or inside the objects’ boundaries
are marked as untraversable, while everything else is considered free space. Finally, if the path
planning algorithm does not take into account the robot’s size, the obstacles are extended by the
robot’s size, and the robot can be considered as a zero-dimensional point.

One challenge is caused by moving objects that may require replanning of the path during the
course. This means that the cognition model needs to be updated continuously in order to detect
moving obstacles. Parts of the cognition model may not be up to date continuously. In addition,
inaccuracies of the sensors may cause uncertainty in the locations of objects. This inaccuracy is
included in the model with the covariances of the locations. The simplest approach is a pessimistic
approach; that is, everything that is not known to be free space is assumed to be untraversable.
Another approach is to plan the robot’s actions to gather more data from the areas with incomplete
sensor data. This needs to be executed as a part of higher-level task planning, because, depending
on the task, it may be unacceptable to perform maneuvers that are not part of the actual task.

4.3.2.2 Planning the robot’s actions to gather the required information

If the robot needs to get information from an area that is not yet covered by sensors, it may need to
move itself to another position to get a better view of the area. In general, this is called perception
planning. The movements need to be planned on a higher level, because they may affect the actual
task execution. The planning is done on the basis of the present cognition model.

Each observed object in the cognition model contains a timestamp that indicates when the
object was last measured. This also applies to anonymous objects, obstacles, and walls, basically,
everything that has been measured. In this way the perception planning module can determine
which parts of the working area have not been updated lately, and can plan the movements ac-
cordingly. In practice, the goal of the task is then to move to a position where it sees the missing
areas. The sensor model is used to determine how the area is covered by sensors when moving to
a certain position.

4.3.2.3 Working with a completely described object

If the appearance and location of the object are known, the manipulation of the object is done in
three phases: coarse approach, fine approach, and manipulation.

A coarse approach means that the robot moves towards the known location of an object. In
this phase the movement can rely on the robot’s navigation capabilities. The path is planned as
described above, avoiding possible obstacles on the course.

When the robot is close to the object, for example, within about three meters, it needs to start
the accurate approach phase. In this phase, it is no longer feasible to assume that the location
of the object is accurate enough if it is not measured relative to the robot. The task needs to
make sure that the robot does not carry on with the task execution before the accurate location is
measured and updated to the cognition model. Because the object is measured using the robot’s
sensors, the relative location of the object is accurate, even though there may be error in the
self-localization of the robot. The more accurate approach can thus be carried out on the basis of
the location information from the cognition model.
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In the manipulation phase, the robot needs to know the position and possibly the orientation
of the target object. The model is used to measure these parameters. They are then used for
planning the manipulation actions of the robot.

4.3.2.4 Finding an object on the basis of appearance and approximate location

When the appearance of an object is known but its location is not explicitly defined, the robot may
need to search for the object. In this case, the user transfers his or her cognitive understanding of
the object to the robot’s cognition. In practice, the target object is defined as a real object that
has some features describing its appearance. In the first phase, a perception planning subtask is
required. This part of the task plans the robot’s movements in such a way that every part of the
working area is seen by the sensors. The cognition model is updated continuously. The searching
area is also included as a location definition to the real object. The location may be an approximate
spatial location, or a topological location defined relative to another object. After the target area
has been covered, if the robot has recognized the object, one or more observed objects have been
associated with the real object, and thus the location of the object should be fixed. From here on,
the next phases are the same as when working with a completely described object.

4.3.2.5 Finding candidate objects for later manipulation

As a further extension of previous cases, sometimes the number of target objects is unknown.
There may not be any objects or there may be many. Sometimes the definition of an object may
be so weak that false positive matches may occur. For example, when searching for garbage on the
ground, a piece of garbage may be defined as a bump on the ground. Because there may be other
bumps too, for example rocks, clumps of grass, etc., there will probably be lots of false positives
in addition to the true positives. The robot stores compressed images of each observed object it
encounters. After the search has finished, the user can view the images related to the observed
objects, and determines the types of candidates which are correct matches and those which are
just false positive matches. The location of each object is stored in the corresponding real object.
With this information the robot can later process the objects again.

4.3.2.6 Determining the robot’s own state with perception

Many robots do not get perfect measurements of their own state. The manipulator angles may
not be known accurately, and the robot’s own position in relation to the target may not be as
accurate as is needed for manipulation. If the sensors are able to see some of the robot’s parts,
their states can be measured with similar methods to those used for the states of other objects.
This is called proprioceptive sensing, or proprioception. The robot can be defined as one object.
The most accurate method is to build a CAD model of the robot or its manipulators, and use
model fitting mechanisms for measuring the position and orientation of the moving parts. A less
accurate method, but one which is simpler to use, is just to search for the moving parts on the
basis of their appearance. In this case, their appearance is defined as a set of image or 3D features
that are used for finding the moving parts. The information on the poses of the robot’s moving
parts is utilized in the higher-level task. This can be used as feedback to the motion control, for
example, when visually servoing the robot’s manipulator.
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Chapter 5

Experimental validation

The proposed model for robot cognition is validated through tests that evaluate the model from
several different perspectives. The experiments are divided to two sections. Section 5.2 goes into
building the cognition model in collaboration with the human. The experiments presented in this
section do not include any task execution, but concentrate entirely on building the model. Section
5.3 presents two cases in which the robot performs a simulated task on the basis of the information
included in the cognition model.

The concept is not implemented as a complete system, but only separate concepts of the system
are tested. The algorithms that are tested are mainly implemented with Matlab, and do not work
in real time. The robot’s movements in the experiments with actual tasks are manually controlled
by the author to ensure repeatability and full control on the test setup.

5.1 Test platforms

Two different kinds of test platforms, the WorkPartner service robot and Avant-based semi-
autonomous machine, are used in the tests. They differ in their mechanical structure, their sensors,
and their application area.

5.1.1 WorkPartner

WorkPartner is a centaur-like service robot at the Department of Automation and Systems En-
gineering of Aalto University. [Halme et al., 2003] The subsystems of WorkPartner have been
extensively reported by Ylönen [2006]. An image of WorkPartner is shown in Figure 5.1.1. The
robot was mainly built between 1998 and 2005, but the further development of its systems, es-
pecially related to task execution [Heikkilä, 2009] and mobility [Leppänen, 2007], has continued
since then. The robot has a hybrid locomotion system with both legs and wheels in order to equip
it with a capability to cope with various kinds of terrain. The manipulator is a human-like torso
consisting of two hands, an upper body, and a head. The robot is actuated by electrical motors.

WorkPartner’s environmental sensing is based on five different types of sensors: one camera,
a laser pointer, a laser scanner, three ultrasonic range meters, and a pair of stereo microphones
for hearing. Most of the sensors are attached to the robot’s manipulator and head, which enables
them to be pointed in different directions.

The camera is a color camera whose image is grabbed to an Axis image server that delivers
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Figure 5.1.1: WorkPartner service robot

Figure 5.1.2: Close-up photograph of WorkPartner’s head equipped with laser pointer and color
camera.

images to programs. The camera is attached to the robot’s head, which can be turned with a
pan-tilt unit. It can therefore be used to focus and track objects in different directions. An image
of WorkPartner’s head in shown in Figure 5.1.2.

The laser pointer is mounted next to the camera. It can measure distances to a point with a
theoretical accuracy of 1 mm. The laser pointer is in the robot’s head and can be used to assist
the camera in determining the distances to objects. The camera and laser pointer are in fixed
positions in relation to each other. The location of the laser pointer in the camera image can be
calculated on the basis of known geometry.

The laser scanner is a SICK LMS-291 type indoor device. It is mounted on the middle of the
torso of the robot’s manipulator. The manipulator can be tilted, and thus the direction of the
scanning plane of the laser scanner can be varied. With this method the robot can build a 3D
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(a) Simple finger-type gripper. (b) Gripper equipped with extensions.

Figure 5.1.3: Gripper configurations alternative to the gripper shown in Figure 5.1.1.

Link Variable θ α l d

1 90
2 body rotation θ1 90 54
3 body inclination θ2 + 90◦ 563
4 −90◦ −90 −42 11
5 head pan θpan 90
6 head tilt θtilt

Table 5.1.1: Denavit-Hartenberg parameters between WorkPartner’s coordinate origin and laser
point.

model of its environment by using the scanner in different orientations.
The stereo microphones are mounted on the robot’s shoulders. They are used to determine the

direction of loud command words.
The ultrasonic sensors are located at the rear of the robot, facing backwards. The sensors are

similar to those used in cars to assist parking and backing.
In the test case, the camera and laser pointer are used for recognizing objects and measuring

their positions. Because the objects are located in different directions the pan-tilt unit needs to be
used to direct the robot’s perception.

The gripper of the robot is customizable to various applications. Figure 5.1.1 shows WorkPart-
ner equipped with a spike suitable for picking up some types of pieces of litter from the ground.
Other alternative is a gripper with two finger-type pieces that can be opened or closed. Yet another
option is to install extensions to the fingers providing a better grip to various objects. The two
latter types of gripper are shown in Figure 5.1.3.

5.1.1.1 Sensor model of laser pointer

The laser pointer measures the distance to one point. Its location can be determined by the
measured distance and orientations of the pan-tilt unit (PTU) and the robot’s manipulator. The
kinematic transform from the robot’s coordinate origin to its head is expressed with Denavit-
Hartenberg parameters which take into account the angles of the joints. [Forsman, 2005][Craig,
2004] Table 5.1.1 lists the parameters. Figure 5.1.4 shows the dimensions of the robot and the
locations of the coordinate origins. One row of parameters is used to build a transformation
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Figure 5.1.4: Coordinate origins listed in Table 5.1.1 and dimensions of WorkPartner’s manipulator.
The WorkPartner’s coordinate origin is the one closest to the ground.

matrix

n−1Tn =

⎛
⎜⎜⎜⎜⎝
cos θn − sin θn cosαn sin θn sinαn rn cos θn

sin θn cos θn cosαn − cos θn sinαn rn sin θn

0 sinαn cosαn dn

0 0 0 1

⎞
⎟⎟⎟⎟⎠ (5.1.1)

that does the rotation and translation from the coordinate system n−1 to the coordinate system n.
The matrices are multiplied in a chain to produce the whole transform. In addition to the Denavit-
Hartenberg parameters, the transform from the head to the end of the laser point is expressed with
a simple translation

6T7 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0.041 + d

0 1 0 0.090

0 0 1 0.067

0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (5.1.2)

The 3D coordinates of the point are obtained by calculating

⎡
⎢⎢⎢⎢⎣

xc

yc

zc

1

⎤
⎥⎥⎥⎥⎦ =

(
6∏

k=0

kTk+1

)⎡⎢⎢⎢⎢⎣
0

0

0

1

⎤
⎥⎥⎥⎥⎦ . (5.1.3)

The measurement performed with the laser pointer is very accurate. On the basis of practical
experience, the standard deviation of the location uncertainty is about 0.01 m. The uncertainty is
assumed to be the same in every direction. On the basis of this assumption, the covariance of the
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Figure 5.1.5: Geometry for estimating the locations of objects with monocular camera used in
WorkPartner. θtilt is the tilt-angle, h is the height of the camera from the ground, d is the
estimated distance, and x, y, and z are the estimated coordinates of the object. P is the 2σ area
of the covariance of location uncertainty. The dimensions of the diagram are not drawn to scale.

measurement uncertainty for the laser pointer is simply

P =

⎡
⎢⎣

0.012 0 0

0 0.012 0

0 0 0.012

⎤
⎥⎦ . (5.1.4)

The covariance matrix is a scaled identity matrix describing a ball-symmetric distribution. There-
fore, rotation does not affect it. This is different from a case where the correlation terms are
non-zero. The camera model explained below is an example of a case where the covariance ma-
trix is not a scaled identity matrix, but an arbitrary diagonal matrix, and is therefore affected by
rotation.

5.1.1.2 Sensor model of camera

WorkPartner is equipped with only one camera, and therefore it cannot determine the exact dis-
tance to the targets by using the camera only. It is assumed that the ground is sufficiently flat
and located 0.74 m below the origin of the robot’s coordinate system. The coordinates of a target
object are set to halfway between the camera and the estimated ground, and the covariance of the
location is set in such a way that the distribution covers the area between the camera and ground.
This is illustrated in Figure 5.1.5.

The camera coordinates are calculated with the same transformation matrices as the laser
pointer, with one exception; the last matrix is

6T7 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0.041 + d
2

0 1 0 0.090− yc

0 0 1 −0.067 + xc

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (5.1.5)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d = h

sin θtilt

xc = xi−ox
fx

d

yc =
yimoy
fy

d.

(5.1.6)
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Parameter Explanation Value
ox Image center, x 360.0
oy Image center, y 288.0
fx Focal length, x 785.4
fy Focal length, y 785.4

Table 5.1.2: Parameters of WorkPartner’s camera

Variables h and θtilt are shown in Figure 5.1.5, variable h is the height of the camera from the
ground, θtilt is the tilt angle of the camera, (xc, yc) are the image coordinates of the object in meters,
(xi, yi) are object’s image coordinates in pixels, and ox, oy, fx, and fy are camera parameters
acquired with the calibration procedure. [Bouguet, 2008] Their values are listed in Table 5.1.2.
Other parameters, such as lens distortion, are considered negligible, and are not included in the
camera model. The estimated 3D coordinate of the object is calculated using Equation 5.1.3.

The covariance of the location is calculated with

P = R

⎡
⎢⎣

d 0 0

0 0.01 0

0 0 0.01

⎤
⎥⎦R−1, (5.1.7)

where R is the rotation matrix

R =

⎡
⎢⎣

cos θx cos θy − cos θx sin θy sin θx

sin θy cos θy 0

− sin θx cos θy sin θx sin θy cos θx

⎤
⎥⎦ , (5.1.8)

where ⎧⎨
⎩θx = tan−1 xi−ox

fx
− θpan

θy = tan−1 yi−oy
fy

− θtilt.
(5.1.9)

This produces a covariance that characterizes a distribution whose σ = d
2 , meaning that the ±2σ

range (95% of the distribution) covers the range between the camera and ground, as shown in
Figure 5.1.5.

If the distance to an object is known, for example on the basis of a laser pointer measurement, it
is possible to calculate the size of the object simply by subtracting the calculated the 3D locations
of the boundary points of the object with

⎧⎨
⎩width = max (xc)−min (xc)

height = max (yc)−min (yc)
, (5.1.10)

where xc and yc are arrays of calculated X and Y coordinates of the 3D points. It should be noted
that measuring width and height in this way is not very accurate. It depend on the viewing angle
and is prone to errors due to incorrectly measured boundaries and distance. Basically, the width
and height measures can only be used as approximations.

In addition to transforming the camera coordinates to the 3D world, also the projection from
3D coordinates to camera image is often needed. As the transformation matrix between the world
coordinates and camera coordinates is known, the projection from the world coordinates (x, y, z)

to the metric image coordinates (xc, yc) and to image pixel coordinates (xi, yi) is calculated simply
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Algorithm 5.1 Measuring the location of an object with laser pointer in conjunction with the
camera.
This algorithm is used to determine where the laser pointer should point when using it with a
camera to measure a location of a target object.

1. Calculate the 3D location of the laser point with Equations 5.1.1 and 5.1.2.

2. Calculate the projection of the laser point to the image with Equations 5.1.11, 5.1.12, and
5.1.13.

3. Calculate the horizontal and vertical angles θx and θy to the target object with Equation
5.1.9.

4. Turn the pan-tilt-unit according to the angles θx and θy.

5. Repeat from phase 1 if needed.

with ⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =6 T7

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ (5.1.11)

⎧⎨
⎩xc = x′

z′

yc = y′

z′

(5.1.12)

⎧⎨
⎩xi = fxxc + cx

yi = fyyc + cy.
(5.1.13)

5.1.1.3 Using the laser pointer in conjunction with the camera

Pointing the laser pointer to a target requires using the camera to detect the actual object and
ensure that the laser pointer actually hits the target. In a bright sunlight it may not be possible
to see the laser pointer light, therefore the location of the laser dot needs to be calculated by
projecting the measured 3D location of the point to image coordinates. It is then possible to
evaluate if the laser hits the target, or if the orientation of the laser pointer needs to be changed.
Algorithm 5.1 presents the phases required for measuring the location using the laser pointer in
conjunction with the camera.

5.1.2 Avant

Another machine used in the tests is an Avant-based semi-autonomous vehicle. [Saarinen et al.,
2007] Avant is a product of Avant Tecno Oy. It is modified and instrumented by the Center of Excel-
lence in Generic Intelligent Machines. The centre is a joint research group between the Department
of Automation and Systems Engineering of Aalto University and the Institute of Hydraulics and
Automation of Tampere University of Technology. Avant is a small machine for various tasks re-
lated to agriculture and similar tasks. The modified machine is actuated by computer-controlled
digital hydraulics. An image of the Avant machine is shown in Figure 5.1.6.

Avant’s environmental sensing is based on a pair of stereo cameras and a laser scanner. The
stereo cameras are used in the tests. The test case consists of building a full 3D model of the
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Figure 5.1.6: Avant machine based intelligent machine.

environment by using the stereo cameras. [Terho, 2010]

5.1.2.1 Sensor model of stereo cameras

The stereo cameras are used for creating a full 3D model of the scene viewed by the cameras.
The wide field of view of the camera optics causes heavy distortion of the images. Therefore the
camera images are corrected from geometric distortions. In addition, a perspective rectification is
applied to the images to equalize the scan lines to allow more straightforward stereo matching. The
image correction is done with the OpenCV imaging library. [OpenCV, 2011] Geometric distortion
correction uses the model ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
xi = fxxc

(
1 + k1r

2 + k2r
4
)
+ ox

yi = fyyc
(
1 + k1r

2 + k2r
4
)
+ oy

r2 = x2
c + y2c ,

(5.1.14)

where (xc, yc) are undistorted metric coordinates in the frame of reference of the camera, (xi, yi)

are distorted image coordinates in pixels, and ox, oy, fx, fy, k1, and k2 are camera parameters
listed in Table 5.1.3. Perspective correction is done using projection matrices

Hl =

⎡
⎢⎣

1.00000 0.00000 0.00000

0.01945 1.00000 0.00000

−0.00001 0.00000 1.00000

⎤
⎥⎦ Hr =

⎡
⎢⎣

0.98461 −0.00078 0.01889

0.03107 1.02367 −24.66674

−0.00004 0.00005 1.00000

⎤
⎥⎦

(5.1.15)
for the left- and right-hand cameras.

After the image geometries have been adjusted, the images are processed with stereo matching
and reconstruction algorithms that transform the image points to a 3D space. An elevation map
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Parameter Explanation Left camera Right camera
ox Image center, x 328.13 327.17
oy Image center, y 238.99 247.29
fx Focal length, x 372.18 370.01
fy Focal length, y 372.18 370.01
k1 2nd order distortion parameter -0.3026 -0.2924
k2 4th order distortion parameter 0.0733 0.0680

Table 5.1.3: Parameters of Avant’s stereo cameras

is calculated from the 3D points. No location uncertainty information is assigned to the elevation
map.

In addition to 3D information, features are extracted from images. By combining the extracted
feature vectors with the 3D data, a rich 3D data model is built. Section 5.2.1 goes into details of
the building of the 3D model.

5.2 Experiments on building the model

Two test cases were used for evaluating the techniques for building the model. The cases evaluate
different aspects of the proposed concept. The primary goal is to demonstrate the capabilities of
the concept in collaboration between a robot and a human. In addition, features related to the
object recognition and the probalistic representation are evaluated.

The first case tests the building of a shared cognition model based on the robot’s sensor data
and human input. In this case, the robot shows a snapshot of its sensor data to a user, who marks
an object in that. This inputs the object to the robot’s cognition. The location is determined on
the basis of data inputted by the user and the robot’s own navigation system, and the appearance is
based on the robot’s own sensor data. In time, the robot learns more about the physical structure
of the object as it gets more sensor data on the object. This is possible because the robot is able
to track the object as it changes its own location and orientation.

The second case evaluates building the cognition model on the basis of description from user.
The description does not involve using robot’s sensor data, but the user describes a blue box with
an attached circle code that the robot has not yet seen. When the robot enters the working area
it uses its sensors to find the object on the basis of the description. As the area contains similar
looking objects, the robot needs to observe it from other angles to finally find the correct object.

5.2.1 Building a shared cognition model

In this test Avant uses its pair of stereo cameras to build a rich 3D model of the environment.
The user defines part of the model to represent an object, a pile of sand, which corresponds to
a distinctive formation of sand in real life. The data of the model is gathered to a hypothetical
work task that the robot would execute. The task consists of moving the pile of sand to another
location. To accomplish this, the task needs to determine the shape and location of the pile. The
shape is presented as an elevation map of the ground.

The following description is divided into two parts. In the first part, the user assists the process
by defining a segment from the sensor data that includes the pile of sand. The model learns from
the definition and from its own sensor data, and builds a cognition model that includes the elevation
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Figure 5.2.1: Photo of the scene of the first experiment. The whole sand pile can be seen in the
image.
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Figure 5.2.2: Phases of processing the first snapshot of sensor data.

map. In the second part, autonomous operation of the robot is assumed. In the next phase the
robot updates its cognition model on the basis of its current state, which is, in turn, based on the
user input in the first part.

Figure 5.2.1 shows a photo of the scene. The pile of sand is annotated to the image. In the
first phases of this experiment, the whole pile is not visible to the sensors.

5.2.1.1 Collaboratively creating the cognition model

This subsection describes what happens initially on the basis of the first snapshot of the sensor
data. Figure 5.2.2 shows a conceptual block chart of the phases.

First phase: building raw and rich 3D models The test starts with building a rich 3D model
of the scene viewed by the robot. A 3D model is built from the camera images. A dense disparity
map is built on the basis of correlation matching. Then the 3D points are reconstructed on the
basis of the rectified geometry. The building of a 3D map based on stereo images is described in
Algorithm 2.1 on page 16. The left-hand camera image is used as the reference. In addition to the
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(a) Raw 3D data points viewed from above and slightly to the left from the observer.
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(b) Raw 3D data viewed from slightly lower position.

Figure 5.2.3: Raw 3D data points calculated from a stereo image pair. Colors indicate elevation.
Higher areas are coded with blue color. Data is rendered from two slightly different angles for
easier visualization. Part of the sand pile can be seen in the front right side corner of the data.
Especially the subfigure 5.2.3b shows that the actual pile is partially outside the measured data.
On the background, the wall of the hall can be seen.

building of the 3D model, the SIFT features are extracted from the left-hand camera image. Their
3D coordinates are calculated by comparing their image coordinates to the coordinate map. This
procedure is described in Section 4.1.1.2. The dense 3D point map is thus the raw 3D model, and
the SIFT features with their 3D coordinates represent the rich 3D data. Both types of data are
needed in later phases. Figure 5.2.3 shows an illustration of the raw 3D points, and Figure 5.2.4
shows the rich 3D data. The locations of the SIFT features are marked onto the image.

The output from this phase is perception data, and thus not yet part of the actual cognition
model.
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(a) Rich 3D data of the scene viewed from above and slightly to the left from the observer.
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(b) Rich 3D data viewed from different angle

Figure 5.2.4: Rich 3D data set calculated from the same stereo image pair as in Figure 5.2.3.
Black dots represent locations of SIFT features assigned to the model. The data is shown from
two different directions.

Second phase: user interaction The 3D model is shown to the user. His aim is to teach the
robot where the pile of sand is and what it looks like. On the basis of his spatial understanding
and interpretation of the robot’s sensor data, he defines a section of the data that represents the
pile of sand. The entire pile is not visible in the sensor data, and therefore the boundaries of
the user-defined pile object extend to an area that has not yet been covered by the sensors. By
comparing the robot-generated model and the real-world pile, the user is able to estimate where
the real boundaries of the pile are in the model.

Figure 5.2.5 shows the pile and boundaries defined by the user. The figure shows a zoomed-in
detail of the scene shown in Figure 5.2.3. In addition to the boundaries, the user defines that the
extraction of the elevation map is required for the object.

Defining the boundaries creates an observed object. The sensor data that are inside the defined
boundaries are associated with the observed object. The coordinates of the boundaries are stored
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Figure 5.2.5: Boundaries of the pile defined by user.
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Figure 5.2.6: Real and observed objects after user has segmented and connected the data to the
real object. The probability is set to 1.

to the object.
A real object is also created. Whereas the observed object represents the robot’s perception of

the pile, the real object represents a higher understanding of the pile. The class of the real object
is “Pile”; it is given the name “Pile 1”, and the boundary coordinates are also stored to the real
object.

The real and observed objects are connected with a strong link with probability 1, because the
recognition is based on user input and is thus considered certain.

Figure 5.2.6 shows the topology of the model after user interaction.

Third phase: measuring the elevation map The user has defined in the real object that
an elevation map is needed. The observed object does not yet contain the elevation map, and it
needs to be calculated. The elevation map is calculated on the basis of the raw 3D data within the
boundaries of the observed object. Section 4.1.1.3 describes the calculation of the elevation map.
The elevation map is stored in the observed object. Figure 5.2.7 shows the state of the elevation
map.

Fourth phase: learning the appearance In this phase features are transferred from the
observed object to the real object. Not all the perception data are transferred, only rich 3D features
and the elevation map. The raw 3D data are not needed after this, and are not transferred to the
real object.
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Figure 5.2.7: Elevation map and SIFT features after the first measurements

After the learning phase the real object contains all the information that can be extracted from
the sensor data in one instant in time.

5.2.1.2 Higher-level planning based on data

A higher-level task can now utilize the data in the real object. The task should consist hierarchically
of two levels: perception planning and manipulation. The perception planning level takes care that
the robot has enough information to execute the manipulation. Perception planning as such is not
part of the model, because it is heavily dependent on the actual task, and needs to be implemented
as a part of the task itself. However, the perception planning can be executed entirely on the
basis of the information in the cognition model. Any missing parts can easily be determined by
examining the real objects. If a part of a physical entity is not seen, part of the cognition model
is incomplete.

In this case it is assumed that the task examines the elevation map and detects that parts of
it are missing. In the test scenario, the sensors were turned directly towards the pile to simulate
a case where the robot focuses its attention on the target, and maximizes the area covered by the
sensors.

5.2.1.3 Refining the model automatically

The cognition model learns as more data are gathered. The next phases describe how the model
is updated as the robot moves and gathers more sensor data. These phases are repeated for each
round. Figure 5.2.8 shows the phases described below.

Fifth phase: building new 3D model After the robot has changed its pose, a new stereo
camera pair is analyzed. Again, rich and raw 3D models are built from the stereo camera data.

Sixth phase: automatic segmentation On the basis of information from the real object,
automatic segmentation can now be carried out. The segmentation is based on the known location
of the object in world coordinates. If the robot’s navigation system were perfect, nothing else would
be needed. However, because there is always some inaccuracy in navigation, the exact location
needs to be determined with recognition.

The object is recognized from the sensor data based on matching rich 3D features of the real
object and the current snapshot of the sensor data. The robot’s current location is used as an a
priori assumption for matching the features. As a result, the exact location of the known features
in the current sensor data can be determined. After the location has been determined, the sensor
data are segmented using the boundaries of the real object. This is illustrated in Figure 5.2.9.
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Figure 5.2.8: Phases of processing the sensor data on next time instances.
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Figure 5.2.9: Automatic registration and segmentation of the pile from new sensor data. The real
object information is from the previous sensor data. The sensor data shown in the figure is from
the new measurements.
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(a) First measurement (b) Second

(c) Third (d) Fourth

(e) Fifth (f) Sixth

(g) Seventh (h) Eighth

Figure 5.2.10: Elevation map in different phases of the task execution. In each phase, all the
previous information is accumulated to the map, and more area is mapped. The area on the
right hand side of the region is still occluded even after the eighth phase and therefore it remains
unknown.

Seventh phase: matching to previous objects In this phase the new sensor data are either
associated with a previously-existing observed object, or a new observed object is created. Because
the new segmented sensor data are known to represent a certain real object that is connected to an
observed object that already exists, the new information from the sensor data will be fused with
the information in the observed object that already exists.

Eighth phase: measuring the elevation map As previously, the connected real object indi-
cates that an elevation map needs to be calculated on the basis of the 3D data.

Ninth phase: learning the new appearance The extracted rich 3D features and elevation
map are updated to the real object. The new rich 3D features are compared to the previously-
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Figure 5.2.11: Target box of the task.

existing features. The features that exist in the observed object, but not in the real object, are
copied to the real object. The elevation map is fused on the basis of choosing the lower elevation for
each measured point on the map. In this way any moving objects that may have been detected in
one of the rounds will be discarded, and only the ground formations are left. Previously unmapped
areas get new information from the observed object.

5.2.1.4 Development of the elevation map over time

The procedures described above generate an elevation map whose state depends on the sensor data
available. Figure 5.2.10 shows the state of the elevation map at different instants in time. The first
map is generated with the phases described in Subsection 5.2.1.1, and the next maps are updates,
generated with the phases described in Subsection 5.2.1.3.

5.2.2 Recognizing objects on the basis of a description from the user

This test evaluates the recognition of objects on the basis of human input. Robot sensor data
is not used in describing the object, but the user describes an object that the robot has not yet
seen. The user input is transformed into the robot’s understanding of the objects’ appearances
and topologies.

Based on the description, the robot searches for the object and measures its location. Besides
the target object, the scene contains other objects that look similar to the target. But these other
objects do not require any action from the robot other than avoiding a collision with them. The
object in question is a blue box of a known size with a circle code attached to one of its sides.
Figure 5.2.11 shows the object. Figure 5.2.12 shows the setting with the target object along with
the other objects present at the scene.

The task starts by defining the object’s appearance to the robot. In the next phase, the robot
observes the scene and measures the locations of the potential target objects. Then the robot starts
moving. While moving, the robot updates the cognition model on the basis of the perception. The
robot moves until it is sure that it has found the target object. In the task setup, a human
intervenes in the middle of the task execution and changes the setting.

The topology of the model is inspected during different phases of the task execution.
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Figure 5.2.12: The scene in the beginning of the task. The blue box on the left is the target box
whose appearance the user described. The code is not visible from this angle. The code seen on
the plastic box encodes different value than the code that the user described.
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Figure 5.2.13: Hue-Saturation -chart

5.2.2.1 Describing the appearance

The user creates a real object for the box and describes its appearance by describing its color and
its physical height. In addition, the user creates a real object corresponding the circle code, and
defines a topological “attached to” connection between the box and the code.

Defining the color requires a common ground for the robot and the human. Basically, the
robot interprets the colors by numbers, while humans usually describe the colors using verbal
descriptions. A color map in the graphical user interface can be efficiently used as a common
representation for humans and robots. Figure 5.2.13 shows the color map used in this experiment
and the color of the box defined by the user.

The height is defined in metric units as 0.25 meters. The robot is able to measure the approxi-
mate physical size of the box, therefore it is possible to use the metric size as a description. If the
robot was not equipped with such a sensor, only visual features could have been used to describe
the object.

The circle code is defined by the numeric representation encoded in the circle code. As the
code is generated by a computer program, the corresponding number is known by the user.

Figure 5.2.14 shows the defined real objects, their connection, and the corresponding parame-
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Figure 5.2.14: Real objects that define the appearance of the box and the attached circle code.

(a) Image of the scene captured with the camera of the
robot

(b) Blue regions segmented from the camera image

Figure 5.2.15: Image of the scene captured with the camera of the robot.

ters.

5.2.2.2 Looking for objects at the initial location

The robot starts the task execution by looking around the working area and searching for the
target object. Figure 5.2.15 shows the scene initially viewed with the robot’s camera.

The image is segmented to create observed objects. The segmentation is based on the color
description of the real object corresponding to the target box. The segmentation is performed in
the Hue-Saturation color space. Thus, brightness differences (represented in the Value channel)
are ignored because the brightness is heavily affected by illumination. Figure 5.2.15b shows the
blue regions after the segmentation. After the segmentation, regions that are too small are filtered
out, and convex hulls of the regions are calculated. Observed objects representing the remaining
regions are created. In addition to the blue areas, circle codes are located in the image. One code
is found, and a corresponding observed object is created. The value encoded in the circle code
is read and stored in the observed object. The initial estimates of the locations of the observed
objects are calculated with Equation 5.1.10. The uncertainties of the locations are calculated using
Equation 5.1.7. Figure 5.2.16 shows observed objects annotated to the image and labels indicating
the parameters of the objects.

After estimating the initial locations, the more accurate locations are measured using the
laser pointer of the robot. The robot points to each object in turn and measures their locations.
Algorithm 5.1 describes how the pointing is done in practice. Using the laser pointer results in much
more accurate measurements than when using the camera alone, greatly reducing the uncertainty
of the locations.

After measuring the locations, the approximate physical sizes of the objects can be calculated
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Figure 5.2.16: Observed objects, their measured parameters, the connections to corresponding real
objects and the probabilities of the connections.

using Equation 5.1.10. The physical size is only approximate because only the size of the projection
is calculated. The projection is affected by the perspective, and therefore the measured height may
be higher than the actual height. The final measured locations and sizes of the objects are also
shown in Figure 5.2.16.

The next phase is to match each observed object to the real objects. Each blue observed object
is matched to the real object representing the box. The match probabilities between the real object
and each observed object are determined.

The color matching probability is equal for each of the objects. The difference between the
measured and reference colors could have been used as a measure of reliability. However, the
colors may differ for various reasons, such as an inaccurate color description in the first place,
variations in lighting, or an improperly adjusted white balance in the robot’s camera. That’s why
the “exactness” of the color is not used to measure the certainty of the match.

The size of the object, on the other hand, is used to measure the probabilities of the matches.
The measured sizes are compared to the reference inputted by the user. Probability is assumed
to be normally distributed around the reference size with standard deviation σ = 0.1m. Thus the
probability of the match is calculated with

P = ke−
(sref−smeas)

2

2σ2 , (5.2.1)

where sref is the reference size, smeas is the measured size, and k is the scaling factor. The
maximum probability is assumed to be 0.75 if the size of the object matches exactly the reference
size. Therefore k = 0.75 is used.

The detected code object is compared to the real object corresponding to the circle code.
Because the codes differ, the observed object is not matched to the real object. There are no
other real objects describing circle codes, and therefore the observed object is not matched to any
existing object. A new anonymous object is created for the observed code object.

The probabilities of the matches are also shown in Figure 5.2.16. None of the objects is clearly
more probable to be the target box than the others. Therefore, it cannot be concluded that the
object has been found.
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(a) After moving 0.43 meters from
start

(b) 1.13 m from start

(c) 1.91 m from start (d) 2.31 m from start, user has
changed the setting

(e) 2.93 m from start (f) 3.36 m from start

Figure 5.2.17: Snapshot images from the camera of the robot during the execution of the task.

5.2.2.3 Tracking the objects while moving

In the next phase, the robot starts to move. The decision to start moving is done on a higher level
task. While moving, the robot looks at the objects, providing a view from different directions.
Figure 5.2.17 shows the snapshots of the robot’s camera image during the task execution. Table
5.2.1 shows the task parameters corresponding to each of the objects during the task execution.

Measuring the location using the laser pointer is a slow procedure. Therefore the robot does
not measure the locations with the laser, but rather estimates the locations and sizes on the basis
of the camera image and the robot’s self-localization (that is, the locations are estimated from the
image), and an offset from the robot’s own pose is added. If the locations and sizes are consistent
with the previous measurements, the robot assumes that nothing has changed. Some of the objects
are not always visible. They remain in the memory even if the robot does not see them.

The changing viewpoint also affects the match probabilities between the observed objects and
the real object. When viewing from different directions, the projections of 3D objects onto a
camera image vary. Because of this, the observed heights of the objects vary over time. In
addition, different viewing angles change which parts of the objects are visible.

In the middle of the task execution, a human enters the working area. He opens the big box,
closes the plastic box with the attached code, and changes the shape of the paper bag. This causes
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1 2 3 4 1 2 3 4

(a) 0.279 0.344 0.279 0.657 0.742 0.672 0.742 0.094
(b) 0.297 0.359 0.255 0.666 0.730 0.646 0.750 0.086
(c) 0.323 0.394 0.301 0.593 0.701 0.579 0.726 0.172
(d) 0.349 0.602 0.541 0.365 0.664 0.160 0.260 0.635
(e) 0.420 0.676 0.428 0.425 0.523 0.077 0.505 0.512
(f) 0.464 0.762 - - 0.424 0.028 - -

Heights of the observed box 
objects (m)Sub-

figure

Probabilities of the matches 
to real object

Table 5.2.1: Measured heights of the objects and the probabilities of the matches to the real object
corresponding the blue box. The numbers of the objects correspond to the observed objects in
Figure 5.2.16. The Subfigure-column indicates which instances presented in Figure 5.2.17 the rows
correspond.

Figure 5.2.18: A human changing the setup.

the observed sizes of the corresponding objects to change. Now the sizes need to be calculated
again. The locations of the objects whose sizes have changed now need to be measured again using
the laser pointer. It is not enough to use the previously measured locations. It is not certain
that the objects are the same ones as before because their sizes differ. The robot needs to stop
and measure the locations of the changed objects. Each location measurement is compared to the
previously observed objects. Because the locations are consistent with the previous measurements,
no new observed objects are created, but the old ones are merely updated. The change in the
shapes of the objects did not change the interpretation of the identities of the objects. Figure
5.2.18 shows the human taking something from the paper bag, thus changing the configuration of
the objects.

The human is not detected by the robot. The robot only detects the objects that it needs to
detect. A human-type object is not actively sought (and not detected) because the task definition
only includes real objects that correspond to the blue box and the circle code.

When the robot has moved forward about 2.8 meters, the other circle code is revealed behind
the blue box. As soon as the robot is able to read the code, the corresponding observed object is
created. Now the numeric code matches the one defined in the real object, and the observed object
and real object are matched with high probability. This probability is much higher than any of
the matches already present. The location of the code is measured with the laser pointer. Because
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the distance between the code and the corresponding blue box is small (0.132 meters), the code is
considered to be attached to the box. Because of this, the match between the box observed object
and the real object is updated to the same probability as the match between the observed and real
objects corresponding to the code. This means that the target object is now found.

5.2.2.4 Utilizing the information in a higher level task

The above experiment assumes that the decisions to move the robot or its sensors to gather more
information are done on a higher level task. The task makes the decisions on the basis of the state
of the cognition model. Viewing the initial scene is not sufficient to make a conclusion about which
object is the correct one. To make such a conclusion, the object must be viewed from different
angles. The robot planned its actions to gather more information; that is, the robot executed some
perception planning.

When the human intervened on the scene and changed the configuration of the objects, the
state of the cognition model changed. This resulted in increased uncertainty in the model. The
robot executed actions to reduce the uncertainty by measuring the accurate locations of the objects
whose configuration had changed.

The final conclusion that the object was found was made based on the probability of a match
between the real object and the corresponding observed object.

5.3 Experiments on applying the model in task execution

The following two experiments expand the evaluation of the model. In addition to the model
itself, these experiments also evaluate its applicability to concrete interactive tasks performed in
cooperation with a human operator. The first case evaluates the picking up of ambiguously defined
discrete objects – pieces of litter from the ground. In the second case, the robot unloads a pile of
boxes whose appearance is taught to the robot, but the order of the task execution is taught by a
human operator using real-world pointing methods.

Both of the experiments were done with WorkPartner robot. The robot’s actions were per-
formed manually by the author. The actions tried to simulate the behavior of an autonomous
robot as accurately as possible. The task described here requires a relatively high level of in-
telligence. The various exceptions encountered during the execution and the related handling
mechanisms are described. The tasks are not described in a detailed form (such as a flowchart),
but the essential phases are described verbally.

In the following two experiments, the human involvement and the cognition model were evalu-
ated. This is an essential part of the performance of the shared cognition model, as one of its main
purposes is to function as an intermediator between the human and robot in sharing the spatial
cognitive information.

5.3.1 Picking up litter

This test evaluates object recognition assisted by a human operator. The test compares two
different approaches for human assistance. In both cases, WorkPartner inspects an area and
locates possible pieces of litter on the ground. In the first case, the human looks through the
objects and decides which suspected objects are actually pieces of litter. Then the robot starts
collecting the pieces from the ground. In the second case, the robot starts collecting the pieces
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Figure 5.3.1: Photograph of the area where the pieces of litter are collected.

immediately without showing them to the user. In both cases, user assistance is requested when
problems occur.

The purpose of this test is to evaluate how the model is used in the presence of uncertainty,
and how the user can interact with the model to increase certainty. In particular, the user rejects
false matches. This enables the utilization of human cognition in executing the task.

Figure 5.3.1 shows a photo of the scene. The pieces of litter are three foam plastic cubes, one
coffee cup, two small juice cartons, and one snack container made of plastic.

The following description is divided into five subsections. The first subsection describes the task
at hand. The second subsection describes the detection and localization of possible pieces. The
third subsection describes the first case with immediate user interaction. The fourth subsection
describes the second case with user interaction only when problems occur. The fifth subsection
compares the two cases.

5.3.1.1 Task description

The goal of the task is not to pick up specific pieces of litter, but to collect any number of
pieces whose exact properties are not known beforehand. Meta-objects typically carry this kind of
information. Real objects would tie the objects to specific physical entities, which is not true in
this case. The target objects are thus described using meta-objects.

The appearance of the objects is defined through how they differ from the background. The
ground is assumed to be reasonably even, and the pieces of litter look distinctive. The ground and
the pieces of litter are assumed to be separated by visible edges. Therefore the appearance of the
objects is defined to be anything surrounded by edges. In addition, the objects can only be found
in a certain area. Figure 5.3.2 shows the area defined in the world coordinate system.

5.3.1.2 Detection of potential pieces of litter

It is assumed that the robot has just arrived at the scene. Thus the area is initially clear of observed
and real objects.

Creation of observed objects The first phase of detection is the segmentation of the sensor
data and creation of the corresponding observed objects. The segmentation is done based on what
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Figure 5.3.2: Diagram of the working area viewed from above

(a) The first camera image (b) The second camera image

Figure 5.3.3: Detected potential pieces of litter in two camera images taken to different directions

objects are being sought. As the task description only defines the “piece of litter” meta-object as
an object of interest, the corresponding edge-based segmentation method is used. In practice, the
camera image is divided into regions separated by edges, and each region is considered a separate
entity. The edges are extracted with the Canny edge detector, and separate segments are connected
with morphological closing.

To determine which part of the camera image represents the predefined working area, the
projection from the ground to the camera coordinates is calculated with Equations 5.1.11, 5.1.12,
and 5.1.13. The region is projected in the image, and only the corresponding part of the image is
processed when detecting objects. Figure 5.3.3 shows the detected regions and the working area
in two images taken from different directions.

The appearance features used for object identification are extracted after the segmentation. The
objects are identified by color. The color histograms are extracted from the segmented regions.
The histograms are three-dimensional arrays representing the hue, saturation, and value channels
of the regions. A histogram is quantized to 50 units in each dimension, thus leading to 125,000 bins
for each object. Another type of appearance feature used for visualization is an extract from the
camera image. Therefore, for each object, the image inside the bounding box of the corresponding
region is stored in the observed object.

Creation of real objects In the second phase, the observed objects are compared to the meta-
objects. If the features of an observed object match a meta-object, a new real object of the
corresponding object class is created. In this case, a new real object is created for each observed
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(b) The second camera image

Figure 5.3.4: Observed objects extracted from the two camera images, and the corresponding real
objects.

object. Because the detection is based on a relatively uncertain method, the match certainty
between the real and observed is set to a low value of 0.5. This informs the system in the later
phases that the match is not yet completely certain. Figure 5.3.4 shows the observed objects,
which regions of the image they correspond to, and the respective real objects.

When a new real object is created on the basis of a meta-object, the appearance of the object
needs to be determined. Therefore all the appearance information from an observed object is
copied to the real object.

Localization of the objects In the third phase, the objects are located using the available
ranging sensors. In this case, the laser pointer is the most applicable sensor for this purpose. The
location of each region is measured separately. The robot recognizes the objects by comparing the
color histograms of the real and observed objects, and by measuring their distances. Localization
based on a laser pointer is described in Algorithm 5.1. Table 5.3.1 presents the locations of the
objects and an approximate description of the color histograms used for the identification.
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Object X Y Z

1 2.321 0.730 0.962 Red
2 2.601 0.721 0.627 Red
3 2.466 0.709 0.289 Red
4 2.273 0.825 0.516 Gray
5 2.184 0.832 0.691 Gray
6 2.009 0.835 0.846 Gray
7 2.243 0.719 -1.347 Green-white
8 2.464 0.738 -0.594 White-red
9 1.438 0.676 -0.876 Blue-white

Location of the 
object in meters Approximate verbal 

description of the color

Table 5.3.1: Measured locations of the objects and verbal description of the measured color his-
togram.

5.3.1.3 Utilizing human cognition in picking up the objects

Asking the user for confirmation After the robot has found the possible pieces of litter,
it needs to determine which ones are true matches and which ones are false matches caused by
noise, an irregular background, or uneven illumination. The uncertainty is presented by the match
probability. The system looks through the matches and asks the user for confirmation for objects
whose match is not certain. In practice, the snapshots stored in the real objects are shown in
the user interface. The user then chooses which ones are actual pieces of litter. Based on the
user’s selection, incorrect matches are discarded, and the corresponding objects are deleted. The
probability of the matches confirmed by the user is set to 1.0. Figure 5.3.5 shows the candidate
object images shown to the user.

Picking up the objects After the confirmation phase, the robot starts to pick up the pieces of
litter. The robot collects the pieces one by one. It starts by approaching the measured location
of the first object. When it is near the object, it moves the manipulator to an orientation that
allows the gripper to reach the object. Figure 5.3.6 shows the orientation of the manipulator
when the robot has approached the first piece of litter. The orientation of the manipulator is
calculated with the kinematic transform of the robot. When picking up the piece of litter, the
manipulator is controlled so that the gripper reaches the measured coordinates of the object.
However, the self-localization of the robot introduces considerable error in the location. Updating
the previously measured location with the robot’s measured movement is not enough for controlling
the manipulator. Therefore, before picking it up, the robot needs to measure the location of the
object again. To be able to point the laser to a correct object, the robot now needs to identify
the object again. The recognition is done on the basis of the appearance description stored in the
real object. The object is located again as described in Algorithm 5.1. New observed objects are
created for each identified objects, and they are matched to the real objects. The probability of a
match is now set to 1.0. Even though the recognition is not 100% reliable, the procedure described
in this experiment does not validate the recognition, and therefore this recognition is considered
as certain and is directly used to control the picking subtask. Figures 5.3.7 and 5.3.8 show the
observed and real objects related to each piece of litter. As can be seen in Figure 5.3.8a, the mug
is not identified correctly. This is discussed below.
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(a) Object 1 (b) Object 2 (c) Object 3

(d) Object 4 (e) Object 5 (f) Object 6

(g) Object 7 (h) Object 8 (i) Object 9

Figure 5.3.5: Candidate objects shown to the user

(a) Approaching the area (b) Bending down and measuring
the location

(c) Picking up the object

Figure 5.3.6: Phases of picking up a piece of litter from the ground.
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(c) Object 3

Figure 5.3.7: First three pieces of litter viewed with camera when the robot is ready to pick up the
objects. The object names refer to those used in Figure 5.3.4. Figure 5.3.8 shows the next three
pieces.
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(b) Object 8
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(c) Object 9

Figure 5.3.8: Another three pieces of litter viewed with camera when the robot is ready to pick
up the objects. The object names refer to those used in Figure 5.3.4. Figure 5.3.7 shows the first
three pieces.
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After picking up the object, the robot first tries to determine if it can reach other objects
without moving itself. This is examined by comparing the robot’s current location, the locations
of the other objects, and using the robot’s kinematic calculations to determine if the objects can
be reached. If the robot can reach an object without moving the wheels, it adjusts the manipulator
accordingly, and repeats the aforementioned procedure. If there are no more objects within reach,
the robot backs up to the starting position, and then approaches the next object and collects it.
When there are no more objects, the robot returns to the starting position.

Problems during the task As the color of the object was originally determined from a long
distance, the color histogram may not identify the object perfectly when viewed from close range.
The difference may be caused by a different viewpoint, variation in the illumination, or noise. In
particular, this causes a problem with a mug. When viewed from a distance, the camera saw the
green side of the mug and a bit of white inside the mug. But when viewed from above, the robot
sees only the white interior. Furthermore, when viewed from a distance, the interior looked gray,
but from above, it is completely white. Therefore, the robot fails to correctly identify the mug and
moves the manipulator to a completely wrong position. As a result, the robot is not able to collect
the object.

This kind of problem again needs help from a human. The robot is not able to know if the
detection was correct before actually trying to pick up the piece. If the object still seems to be
there after picking it up, the robot is able to detect that the action failed. Now the robot can ask
for the human operator to help in recognition. This is done by rejecting the earlier appearance
information and segmenting the camera image on the basis of the edge extraction only. The human
is asked to choose the correct object from the segmented areas. After this selection, the appearance
information of the real object is updated and the robot is able to resume the work.

In many cases, it would be possible to detect the presence of an object by measuring its distance
from the ground. If the object is flat, it is probably not a real discrete object, but just an illusion.
The problem is, however, that in this case, the challenging object was a mug that when measured
with a laser pointer may appear to be flat because the laser pointer probably hits the bottom of
the mug. This could be solved by scanning a larger area with the laser pointer or using a different
kind of sensor, such as a stereo camera pair. In this setup, these options were not applicable.

Except for the mug, all the other objects were successfully recognized and collected in this
experiment. There were also three objects that did not correspond to real pieces of litter. These
are discussed below.

5.3.1.4 Postponing the user interaction

In the other version of the test case, the robot was not assisted by a human before problems
occurred. The robot assumed that all the detected objects were pieces of litter, or at least it did
no harm trying to collect them. Therefore, the robot started collecting the pieces one by one, as
described above. If the robot encountered an object that did not seem to disappear even though
it was collected, the robot showed the camera image and asked the human to verify the object’s
existence and mark its location if it really existed.

Problems during the task There were three false matches that looked like pieces of litter, but
were in fact just cracks in the floor surface. These areas are named Objects 4, 5, and 6 in Figure
5.3.4. Figure 5.3.9 shows the robot trying to grip an object that is falsely classified as a piece of
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Figure 5.3.9: Robot trying to grip an object that it thinks is a piece of litter. After the pickup
procedure, the robot observes the object again intact and asks for user assistance.

litter. Figure 5.3.10 shows all the problematic objects viewed by the robot’s camera at the pickup
position. These images were shown to the user, who then discarded all the cracks and marked the
correct location of the mug.

5.3.1.5 Comparison of the cases

There were two different approaches to the task execution: (1) utilizing human cognition in the
beginning of the task execution, and (2) postponing the user interaction until problems occurred.

The cognition model was an integral part of the task execution because information about the
identities and locations of the objects was exchanged through it. Color information was a relatively
effective way to store appearance information for object recognition. And most of the objects were
recognized correctly when viewed from a close distance, even when the appearance was taught to
the model from a longer distance and a completely different viewpoint.

The behavior was different in the case of false matches. When the human assisted the robot
in the beginning, the human had to go through all the candidate objects, but the robot did not
need to approach the false matches. In the other case, the human only had to concentrate on the
cases that were problematic. As it was not possible to unambiguously define the appearance of
the pieces of litter, it was necessary to assume that the recognition may fail and human assistance
was needed. It was not possible to assume that the robot would have been able to execute the
whole task without a human. The comparative effectiveness of these two approaches depends on
the application. In this case, the fact that the robot was able to avoid necessary moving made
the entire execution time shorter when the user had already discarded the false matches in the
beginning. In addition, every time the human had to assist the robot, he or she needed to interrupt
the current task. Therefore, it’s usually most effective to assist the robot as much as possible in
the beginning, even if that means giving a little more assistance.

5.3.2 Carrying boxes

This test presents a case where the user actively guides the task execution. The test compares
different real-world pointing methods and how they are handled in the model. The test case
involves unloading a pile of boxes in a certain order. The order is determined by the user. Two
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(c) Object 6

Figure 5.3.10: Incorrectly detected pieces of litter viewed with camera when the robot is ready to
pick up the objects. The object names refer to those used in Figure 5.3.4.
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Figure 5.3.11: Picture of the working area in the beginning of the box carrying -experiment.

cases present the different modalities for determining the order. In the first case, the user points
to the boxes one by one before the execution starts. Two different pointing methods are used –
using a flashlight or a pointer stick. With a pointer stick, the user points to the boxes only after
the previous box has been collected. The same pointing methods are used in this case. The boxes
are recognized in various ways. Some of the boxes are identified with SIFT features and some of
the boxes use color- and code-recognition modalities.

The purpose of this test is to evaluate how the model works when using physical pointing
methods without a graphical user interface. In addition, the initial configuration of the pile has
some of the boxes overlapped by others, thus causing additional uncertainty in the model. This
test evaluates how the model works in this case.

Figure 5.3.11 shows a photo of the scene before the task starts.
The following description is divided into four subsections. The first subsection describes the

pointing methods, how the model is used to detect them, and how the pointing action affects
the overall topology of the model. The second subsection describes the first case where the user
determines the order of the boxes in the beginning. The second subsection describes the case
where the user determines the order as the task proceeds. The fourth subsection compares the
approaches.

5.3.2.1 Pointing methods explained

The methods for pointing were illuminating the target object with a flashlight and placing a
distinctive-looking object on top of the target object. Figure 5.3.12 shows examples of the two
pointing methods. These methods differ from each other conceptually. Pointing with a flashlight
changes the appearance of the target object, whereas the pointing stick is a separate object, and
the correspondence to the target object needs to be defined with a topological connection.

This case differs from the previous case in that the actual indication is also detected with the
same camera as the objects themselves. The pointing means were described in the same way as
the box objects themselves.

Detecting the pointer stick The pointer stick was defined as a real object. The object had an
“on top of” -type topological connection to the target object. In practice this means that the target
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(a) Pointing with a flashlight (b) Pointing with a pointer stick

Figure 5.3.12: The pointing methods used in this experiment.

object is assumed to be under the pointer stick when detected. If no object is detected under the
pointer, no target object is associated with the pointer. The location of the pointer is not measured
with a laser pointer, but the relative locations in the camera image are used. The appearance of
the pointer stick is defined by two parameters: its color and its motion characteristics. The color
is in general distinctive, except when compared to the red boxes also present at the scene. The
motion characteristics represent knowledge that the pointer is a moving object in an otherwise
static scene. The pointer can be identified using color recognition in conjunction with background
subtraction. The actual indication occurs when the pointer is held relatively static for one second.

Detecting the flashlight Although the beam of light is not a physical object, it was possible
to define it as a real object. The characteristic appearance of the object was the change that was
detected with background subtraction. The object had an “on the side of” type of topological
connection to the target object. When a change in illumination was detected, the target object
was the one that was “behind” the detected light object. In practice, the light object was the side
of the actual box, and the target object was therefore the box itself.

5.3.2.2 Recognition of the boxes

The boxes were well-defined objects whose appearance was known in great detail. The walls of
the boxes had been photographed; therefore the appearance was described using the images on the
sides of the boxes. SIFT features and colors were extracted from the images. In addition, a circle
code was attached to one of the boxes. For each box, a real object was created. In addition to the
pure appearance description, the size and some additional metadata related to the contents were
associated with the boxes. This did not affect the recognition itself but it instructed the robot how
it should handle the boxes and what it should do with them. This issue is discussed more deeply
in Subsection 5.3.2.3 below.

Creation of observed objects The observed objects were created using recognition-based seg-
mentation. The recognition of the boxes was done combining the SIFT feature matches and the
color-based segmentation. When matching the SIFT features in the image to the features in the
box objects, the projective transform between the reference image and the camera image was
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Figure 5.3.13: View of the pile of the boxes. The measured locations of the boxes and the proba-
bilities of the matches are shown in Table 5.3.2.

Object
X Y Z

Green 
box

Red 
box 1

Red 
box 2

Red 
box 3

Blue 
box

Code

Box1 1.442 0.372 0.138 0.0 0.0 0.0 0.0 0.8 0.0
Box2 1.455 0.432 -0.291 0.0 0.3 0.3 0.3 0.0 0.0
Box3 1.454 0.101 -0.273 0.8 0.0 0.0 0.0 0.0 0.0
Box4 1.831 0.149 0.100 0.0 0.3 0.3 0.3 0.0 0.0
Code1 1.442 0.372 0.138 0.0 0.0 0.0 0.0 0.0 1.0

Location of the 
object in meters Match probability to real objects

Table 5.3.2: Measured locations of the observed objects and match probabilities between the
observed and real objects shown in Figure 5.3.13.

determined. In addition to the appearances of the sides of the boxes, the circle code detection
algorithm was used to detect the code. The locations of the objects were not limited to a specific
area, and they could have appeared anywhere in the image. The 3D locations of the boxes were
not yet determined in this phase.

Matching to real objects As the observed objects were already created on the basis of recog-
nition, the corresponding real objects were found using the existing information on the matches.
The match probabilities were calculated on the basis of the match score of the SIFT and color
matches. Figure 5.3.13 shows the initial view, the observed objects extracted from it, and the
corresponding real objects. As can be seen from the figure, the red box under the other red box
was not recognized at all in the initial configuration. In addition, the two visible red boxes were
ambiguously matched to three real objects; and therefore, from both of observed objects, there
are links to both of the corresponding real objects. This introduces a many-to-many relationship
between the red observed objects and the red real objects. The match probabilities are shown in
Table 5.3.2.

Localization of the objects The locations of the boxes were again determined using the laser
pointer of the robot. Because the boxes are relatively large objects, it is not enough to assume



5.3. EXPERIMENTS ON APPLYING THE MODEL IN TASK EXECUTION 97

�

�
�

Figure 5.3.14: Projection of the measured 3D point inside the object whose dimensions are known.

that the measured 3D point describes the location of the box completely. Therefore, the geometry
of the box is used in conjunction with the measured location. The goal, however, is not to recover
the complete location and orientation of the box, but just to gather enough information for lifting
the box. The location of the measured point is projected to the middle of the box as depicted
in Figure 5.3.14. The location information is passed to the real objects, except in the case where
there are links to multiple real objects. This information can be passed as soon as the ambiguity
has been solved. The locations of the observed objects are also shown in Table 5.3.2.

Eliminating multiple matches In this case, there are no visual features that could distinguish
the two boxes from each other. It is not possible for the model to determine the exact identities
of the boxes. If they are equivalent, having similar contents, it is possible to randomly assign
the unique links to the objects. If it is not possible to handle the two similar looking boxes as
equivalent, then the user needs to inform the system about which observed object corresponds to
which real object.

5.3.2.3 Functional features

In addition to the appearance description, some additional data was associated with the boxes.
This data described the contents and functional features of the boxes, but not their appearance.
With this information, the robot was able to know how to handle the boxes. This data could include
information on the weight of the box, whether the contents was fragile, whether the contents fall
or spill when accelerating too fast, and what kind of action needs to be performed on the box.
This information can be provided to the robot in the task definition, or it could be later provided
through additional codes attached to the boxes. In this case, it was assumed that the user provided
all the necessary information in the task description.

5.3.2.4 Indicating the order in the beginning

In the first case, the user showed the robot the complete picking order of the boxes before the
robot started to perform the task. The user indicated the boxes one by one in the correct order.
An ordered list of target objects was formed on the basis of the pointing. The two alternative
pointing methods are discussed below.

Pointing with the pointer stick The boxes are indicated in the following order: green, blue,
the red box under the green box, the topmost red box behind the blue box, and the red box under
the other red box. The pointer could be found in every case, even though the color of the red boxes
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(a) Pointing the green box

(b) Pointing one of the red boxes (c) Pointing the blue box

(d) Pointing another red box. (e) Pointing the red box behind the blue box.

Figure 5.3.15: User pointing different boxes using the pointer stick.

was close to the color of the pointer. Figure 5.3.15 shows the extracted observed objects when
pointing to the boxes. The results were good for the first four boxes because the target object
could be uniquely determined. When the pointer was in front of an object, only the object under
the pointer was considered. The fifth box was more problematic because it was occluded behind
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(a) Reaching the box and grabbing. (b) Lifting the box up.

(c) After backing up, placing the box on the platform. (d) Another view of the platform.

Figure 5.3.16: WorkPartner lifting one of the boxes from the pile to the platform.

the other box. Therefore it was not clear which box was pointed to when the user held the pointer
stick as shown in Figure 5.3.15e. This pointed to the blue box, but because it had already been
pointed to, this action was ignored. Because the model did not include the red box on the bottom,
the task description only included the four first boxes at the start.

The actual lifting procedure was performed in the following way. First, the robot approached
the box to a distance where the box was reachable by the manipulator. When the robot was at
a close distance, the location of the box was measured again. Then, if needed, the manipulator
was tilted down for a better reach. After that, the box was grabbed between the hands, and the
manipulator returned to the original position. Then the robot backed up a little and reached the
manipulator far to the side to lay the box down onto a platform. Figure 5.3.16 shows the phases
of lifting a box to the platform.

The lifting of the first three boxes was straightforward. All the boxes were initially visible and
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Figure 5.3.17: Bottom-most red box revealed behind the blue box.

identified. After the blue box was removed, the bottom-most red box was revealed (as shown in
Figure 5.3.17) and then recognized. Because the robot did not have information on what to do
with the red box at this point, it had to ask the user for assistance. Basically, the user needs to
show the new picking order of the remaining boxes to the robot. Therefore the robot discards the
order information that it has, and the user has to indicate the picking order of the two boxes at
this point. The order can now be unambiguously indicated, and the robot is able to determine the
correct picking order and deal correctly with the remaining boxes.

Pointing with the flashlight In the alternative scenario, the order was indicated with a flash-
light. The order was the same as in the previous case. The wide beam of the flashlight sometimes
illuminated an area larger than the one object. However, this did not cause problems because
only the center of the illuminated area was compared to the locations of the box objects, and the
intersecting object was chosen. Figure 5.3.18 shows the indicating of the order with a flashlight.

The first four objects were also successfully indicated in this case, but the fifth object remained
unseen. The illumination of the fifth object is shown in Figure 5.3.18e. The target of this procedure
was unknown because it did not match any of the known real objects.

The task was executed as described in the previous case. The boxes were picked up one by
one until the lower red box was revealed. Again, the user was asked for assistance. The user then
indicated the remaining boxes in the desired order, and the robot was able to carry on the task.

5.3.2.5 Indicating the order as the task proceeds

In this case, the human does not indicate the picking order of the boxes in the beginning, but
just determines the first box. The task description defines that this is enough for starting the
procedure; therefore the robot immediately starts to move. When the robot has removed the first
box, the user indicates the second one. This is continued until the task is finished. Figure 5.3.19
shows pointing the boxes with the pointer stick one by one only after the previous one has been
removed. Figure 5.3.20 shows the same procedure, but now using a flashlight for indicating the
picking order.

The ambiguity that was present in the previous case is now avoided. The indicated target box
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(a) Pointing at the green box.

(b) Pointing at the first red box. (c) Pointing at the blue box.

(d) Pointing at the second red box. (e) Pointing at third red box.

Figure 5.3.18: Indicating the objects with a flashlight.
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(a) Pointing the green box. (b) Pointing the first red box.

(c) Pointing the blue box. (d) Pointing the second red box.

(e) Pointing the third red box.

Figure 5.3.19: Pointing the order of the objects during the execution. The figures show the
boundaries of the observed objects including the pointer itself.
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(a) Pointing the green box with the flashlight. (b) Pointing the first red box.

(c) Pointing the blue box. (d) Pointing the second red box.

(e) Pointing the third red box.

Figure 5.3.20: Pointing the order of the objects with the flashlight during the execution. The
figures show the boundaries of the observed objects including the beam of the flashlight.
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was always completely visible. Therefore the robot was able to correctly recognize which object
was indicated with the pointer stick or the flashlight.

5.3.2.6 Comparison of the approaches

The two methods were similar in how they were handled in the cognition model. The only difference
was how the model was actually utilized in the task execution.

The first method, showing the whole order in the beginning, introduced problems because
the partial occlusion of one box in the initial configuration. Therefore the robot needed to ask
for assistance during the task execution. However, the user needed to assist the robot only once
during the task. The main potential problem arising from this approach is that because the human
does not necessarily realize that the robot does not see all the boxes correctly, this may lead to
incorrect interpretations by the robot, and the task may be executed in a wrong way.

The second method, showing the order during the task execution, required more involvement
from the user, but the result was more reliable. The user was better able to realize what the robot
actually saw, and the robot was able to get correct information.

The pointing methods were very similar in how they were used. In practice, using a flashlight
may be more challenging in bright light because the illumination used for indicating should over-
come the ambient light. In bright sunlight, this may be impossible without an extremely bright
light, which can be dangerous to the eyes. The pointer stick, on the other hand, may be difficult
to detect if there are similar shapes or colors in the target objects. In both cases, the described
motion detection mechanism only works if the scene is completely static. If there are other moving
objects, or if the target objects themselves are moving, other methods need to be used.

5.4 Conclusions from the experiments

The experiments evaluated several aspects of the shared cognition concept. The first experiment
presented utilization of human cognition in the segmentation of the sensor data. The second ex-
periment presented a simple example that demonstrated building the model. The third experiment
evaluated autonomously and interactively recognizing objects whose exact appearance and number
were not known before starting the task. Finally, the fourth experiment presented a case where a
relatively complex task was executed relying on the cognition model, and where the human pointed
to the target objects using a pointing method without a graphical user interface.

In the first experiment, the segmentation done by the human allowed the robot to understand
what the boundaries of the sand pile really were. A sand pile is hard to define formally, because
it can look virtually like anything, therefore human cognition is valuable in this task. After the
human has marked the corresponding area in the robot’s sensor data, the robot is able to use this
information in its task execution. The robot needs to identify landmarks in the sensor data so that
it knows which part of the sand pile corresponds to which part in the sensor data, and therefore
it knows where the marked boundaries are in the real world. It is often not enough to rely just
on the navigation capabilities of the robot because the accuracy may not be good enough to know
the exact location of the marked boundary after the robot has moved.

In the second experiment, the human described the target object in a way that allowed the robot
to recognize it when it was seen. In the test case, the object did not uniquely define the object,
but there were several alternatives for the object. The model was able to handle the ambiguous
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situation by retaining several hypotheses for the recognition. Different viewpoints affected the
reliability of the recognition because of changing perspective. Finally, the topological connection
between the code object and the actual box object allowed the robot to reliably identify which of
the objects was the target one. In this case, the robot was moving around the working area. The
experiment only evaluated how the cognition model worked; it did not evaluate how the higher
level reasoning (that is, perception planning) was done. The robot was able to keep the state of
the model up-to-date during the execution.

The third experiment presented a case with a real robotic manipulation task, where the robot
collected pieces of litter from the ground. The objects to be collected were defined with vague
definitions, and therefore human verification was required. The human assistance was performed
either in the beginning or only as problems occurred. The robot was able to cope with a major
part of the case even without human assistance, but in some cases the robot needed to waste a
lot of time when trying to collect pieces that were not really interesting objects and were just
false matches. Basically, it was beneficial to preprocess the data automatically and to use human
cognition as much as possible in the classification task.

In the fourth experiment, the user interacted with the robot using concrete real-world pointing
methods instead of a graphical user interface for controlling the robot. The pointing methods
were presented using the modalities of the proposed shared cognition concept. In this way, the
pointing method and the perception of the actual task were modeled with the shared cognition
model. Recognition of the pointing methods worked relatively well, and the topological connections
provided a good way to define the target for the pointing. In practice, this modality requires an
advanced higher-level task, because it needs to figure out when the user is actually pointing to the
objects and when the actions in the scene are something else.

An actual real-time implementation was not used in any of the experiments. The manually
controlled actions were a realistic simulation of the robot’s actual actions. Implementation of
the tasks would have required a complete task execution framework in addition to the cognition
model. This was beyond the focus of this thesis, and therefore the manual approach was chosen.
In addition, the manual step-by-step execution enabled full control of the task and repeating the
algorithms to the recorded sensor data later on.
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Chapter 6

Discussion

The proposed shared cognition concept has been tested with various experiments. These have cov-
ered most of the features described in the earlier chapters. However, the proposed shared cognition
concept also contains some features that were not evaluated through practical experiments. This
chapter goes through the model and analyzes the applicability of its different aspects, either on
the basis of the actual experiments or a discussion.

6.1 Structure of the proposed model

This section discusses the overall structure of the proposed shared cognition approach as described
in Chapter 3.

6.1.1 Abstraction of robot’s perception and cognition

The proposed concept divides the way the robot understands its environment into three separate
concepts: perception, cognition, and knowledge. The perception of the robot is represented with
observed objects, its cognition with real objects, and its knowledge with meta-objects.

The division formalizes the whole process of building a cognition model. This way the appear-
ances and identities of the objects can be described in a unified way that does not heavily depend
on the robot platform used. The same modalities can be used for autonomous object recognition
by the robot and for shared cognition.

As an alternative to the approach with separate observed and real objects, the usual way of
recognizing objects is to match the sensor data directly to the objects representing the actual
physical entities. In practice, this would mean leaving out the whole concept of observed objects
and using the real objects for dealing with the sensor data directly. One of the reasons for the
chosen approach is the probabilistic approach of the model, that is, to allow uncertainty in the
recognition. When the observed objects have been created from the sensor data, the system does
not yet assume that they necessarily represent some specific real objects. The connection is formed
if there is a match between them. In this way, even multiple candidate observations for one real
object are allowed.

In practice, this model is idealizing. because it assumes that the sensor date can always be
segmented. This is not always possible, and the chosen approach may cause additional (sometimes
unnecessary) overhead to object recognition. In addition, the multiple matching observed objects
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for one real object causes ambiguity problems that are not necessarily addressed strongly enough
in the model. A concrete example was the experiment with the boxes, where multiple matches
were formed because the model could not distinguish the red boxes from each other. However,
how the information is exchanged between the observed and real objects is a partially unanswered
question. In the example case, excess matches were discarded by the task to allow an unambiguous
determination of real object’s location.

The knowledge level was covered in the litter-picking experiment. A piece of litter was defined
as a meta-object that was used for detecting possible pieces on the ground. The meta-object
represented the robot’s knowledge of a piece of litter. According to the experiment, the meta-
objects fit well with the proposed model.

Meta-objects and real objects include functional features that represent all the information
related to the physical entities that is not related to the perception process. This can include, for
example, the material of the entities, the contents and weight of containers, or instructions on how
they should be handled.

6.1.2 Shared cognition

Sharing the cognition between the robot and the human was the primary motivation for developing
the proposed model. Abstracting the robot’s understanding to different levels allows the user to
affect different aspects of building the robot’s cognitive understanding. Sensor data segmentation
by the user results in observed objects whose segmentation is usually superior when compared to
segmentation performed automatically by the robot. Forming the matches between observed and
real objects allows the user to perform the actual object recognition on behalf of the robot, which
again often leads to a better result. In addition, the user can instruct the robot by inputting
location data to the real objects. After the user has performed the segmentation, recognition, or
both of these, or has inputted other data, the robot is able to utilize this information afterwards
and autonomously proceed with the task execution.

In addition to assisting the robot in the recognition task, the meta-objects and real objects can
be used as means of expressing the task-related information to the robot. The user can create real
objects or meta-objects that represent the targets of the actual task. In this way, the task itself
does not need to worry about how the appearance of the objects is represented, but it is handled
by the model.

The experiments cover various modalities for cognition sharing. In the sand pile experiment,
the user performs the sensor data segmentation using a graphical user interface. In the first box
recognition experiment, the user formally described the appearances of the objects. In the litter-
picking experiment, the user again used a graphical user interface for classifying the objects on
behalf of the robot. In the box-carrying experiment, the user did not have to use a user interface
on a computer but was able to use a physical pointer stick and a flashlight to indicate the target.
The graphical user interface was not covered more deeply than just mentioning which tasks it is
required for. It is needed for viewing and segmenting the robot’s sensor data, creating and editing
real and meta-objects, and observing their states.
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6.2 Building the cognition model

This section focuses on how the cognition model is actually built. This section refers to the
description presented in Chapter 4.

6.2.1 Using the robot’s sensors to build the model

In a shared cognition concept, most of the aspects can either be performed automatically by a robot
or collaboratively with a human. The automatic approaches are based on algorithms and strict
definitions, whereas the collaborative methods utilize the human’s understanding. The following
subsections cover both of the approaches when applicable.

6.2.1.1 Segmentation

Several automatic segmentation modalities were presented: recognition-based segmentation, depth-
based segmentation, edge-based segmentation, motion-based segmentation, and location-based seg-
mentation. In addition to the automatic modalities, the human-assisted segmentation was covered.

Recognition-based segmentation is performed on the basis of the known appearance features
of the object. In practice, this segmentation modality does the sensor data segmentation and
also the matching of the observed and real objects simultaneously. If this was the only modality,
the rationale of the whole concept could be questioned, because the segmentation and recognition
would no longer be separate actions. However, this is just one of the several segmentation methods,
and the other methods can be used separately from the recognition methods. The recognition-
based segmentation was extensively used in the experiments because it is the most applicable for
most situations. According to the tests, it works relatively well, but its problem is that it does not
necessarily describe the boundaries of the segmented area accurately. This is caused by the fact
that, for example in SIFT-based recognition, the features are usually inside the object’s boundaries,
not on the edge, and therefore it is not known where the edge actually is.

Depth-based segmentation is based on discontinuities in the depth data. This usually requires
accurate depth information from stereo cameras, from a laser scanner, or a similar sensor producing
depth information. This kind of segmentation was not evaluated in the experiments; therefore its
applicability was not extensively evaluated in practice. However, the principle of the segmentation
is simple, and it is known to work relatively well in various applications. There are two kinds of
problems in depth-based segmentation. If the physical entities are very close to each other, they
may look like a single object. On the other hand, entities whose physical form is not compact may
look like several separate objects.

Edge-based segmentation relies on an assumption that a visible edge separates the objects
from the rest of the sensor data, particularly camera image data. This segmentation method was
evaluated in the litter-picking experiment. The method was working very well in the case where
false matches were accepted. The relatively large number of false matches was caused by other
edges that were not part of the actual discrete physical entities. In practice, this segmentation
method can never be very reliable, and human assistance is usually required.

Motion-based segmentation assumes that the physical entity in question can move. This method
was used in the box-carrying experiment to recognize the pointer stick and the flashlight beam.
In an otherwise static scene, this was a very effective segmentation method. However, if there
were several moving entities, the method would not have been as effective because all the moving
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objects would have been detected. In addition, if the robot moves, then the whole world seems to
be moving. This can be overcome by compensating for the robot’s own movement.

Location-based segmentation is used in cases where the location of the physical entity in ques-
tion is known to be in a certain area. If the robot is able to accurately relate the sensor data
to global coordinates, this method may be very effective. This method was used in the sand pile
recognition experiment. The boundaries of the sand pile were defined as a bounding box in world
coordinates, and the robot was able to perform the segmentation on the basis of this information.

Human-assisted segmentation is a means of shared cognition. It utilizes the human’s ability
to interpret the sensor data. It may often be difficult for any algorithm to reliably determine the
boundaries of an object, but it can be more easily performed by the human. This was evaluated in
the sand pile recognition experiment. It was difficult to formally define how the segmentation would
have been performed algorithmically, but by utilizing the human’s understanding, the segmentation
was performed easily. This method can also be used in various other domains where it is difficult
to automatically perform the segmentation. After the human-assisted segmentation, it is usually
necessary to use some other means for segmenting the data as the task continues. In the sand pile
experiment, this was done on the basis of the location of the pile. The shared cognition between
the human and the robot is further discussed below in Subsection 6.2.2.

6.2.1.2 Extracting information

After segmentation, the features are extracted from the sensor data. Appearance features describe
how the object looks and structural features describe its shape.

These two can often be used interchangeably. The shape of the object may be used for recogni-
tion, for example, when recognizing an object with sharp visual features that directly relate to its
shape. On the other hand, visual appearance can sometimes include essential information about
the mechanical state of the object. An example of such a case is a pot of coffee made of glass. The
level of the liquid can be determined visually, while laser scanners may only be able to measure
the shape of the pot.

Two types of appearance features were covered: sparse local image features and features ex-
tracted from the entire region of an object. Using sparse local image features, such as SIFT
and SURF features, makes it possible to recognize an object without complete segmentation. It is
enough to see only part of the object, which makes these types of features robust against occlusion.
However, these kinds of feature descriptors usually require clearly distinctive landmarks, and they
may not be the best alternative for large objects with few distinctive features. Features extracted
from the entire object region enable color-based recognition modalities. The color histogram of
the segmented area can be compared to a reference histogram, and the differences between the
histograms can be used as a metric for recognition.

Learning the appearance can be based on either of the mentioned feature types. In the litter-
picking experiment, the color features extracted from the entire area were used. However, this kind
of approach requires that the segmentation has been successfully performed. This requires that
the segmentation is based on some reliable measure. In the experiment, the potential objects were
known to be distinguishable by the edge between them and the background. If the background
had more than one color, this would not have been the case, and the segmentation should have
been based on segmenting 3D data acquired by sweeping the laser scanner.

Structural features describe the shape and spatial state of a physical entity. These features are
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typically used to measure the properties needed for manipulative tasks of the robot. In the case
of a sand pile, the robot can plan its actions on the basis of the state of the pile. It can plan the
trajectory to approach the pile from the best possible direction to allow efficient scooping of the
sand. The state of a sand pile is effectively represented as an elevation map.

Sometimes the structure of the physical entity is not significant. In the box recognition exper-
iment, some of the boxes changed their shape because the user opened and closed the boxes. The
object recognition was based only on the color and height of the objects. The shape affected the
height, but the actual orientations of the box covers were not measured.

6.2.1.3 Recognition

Two main types of object recognition were described: object class recognition and object identifica-
tion. In object class recognition, the identities of the objects are not known beforehand, but objects
are recognized based on the descriptions of typical objects of a certain class. These descriptions
are stored in meta-objects. Object identification, on the other hand, utilizes known identities of
the objects to recognize them. The objects are considered as unique entities that can be identified
on the basis of their appearance and structural state.

The object class recognition was evaluated in the litter-picking experiment. A typical piece
of litter was described using meta-objects. The description mentioned a visible edge between the
background and the object itself. In practice, every part of the image surrounded with visible
edges was considered as possible pieces of litter. This kind of description is not very unifying,
and a number of false matches were found even in a limited area. The description contained in a
meta-object can be more unifying. For example, the appearance of a typical human could include
a description of a typical shape, skin color, and motion characteristics.

Object identification was evaluated in all four experiments. Even in the litter-picking exper-
iment, the objects that were first recognized using object class recognition were later identified
using object identification. The difference between object class recognition and object identifica-
tion is mainly conceptual. The same or at least similar algorithms can often be used for both
types of object recognition. However, object identification can usually be made more reliable if the
appearance of a specific object is clearly distinctive. In addition to the possibility to describe the
appearance in a more unified manner, object identification can also utilize the existing information
on the previously measured location of the object. If there are several similar looking objects,
it may still be possible to identify one object among these if the location information is utilized.
However, if the locations change while the robot is not observing them, it may not be possible to
identify a certain object among other similar looking objects again.

6.2.1.4 Handling the uncertainty

The probabilistic approach of the shared cognition concept enables having multiple possible matches
to the object with variable probabilities for the matches. This way the robot could cope with situ-
ations where it was not possible to uniquely identify an object on the basis of the sensor data, but
several options remained. However, usually when the robot needs to make decisions about which
object to manipulate, the number of candidates should be reduced to one. If the selection cannot
be based on the probabilities, user assistance may be required.

The main challenge of the probabilistic approach is determining realistic probabilities. This
problem was encountered in various parts of the experiments. The probabilities used were some-
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times only based on approximations rather than on a deep statistical analysis of the situation.
This kind of analysis is often impossible.

The probability of the match does not necessarily describe the actual probability per se. Its
purpose is to inform the robot about the reliability of the recognition. The higher level tasks can
utilize this information in planning and executing the movements. If there is no information on
reliability, the match probability should be 1.0 in those cases.

6.2.1.5 Representing the location and orientation

The location of an object can be represented either with spatial coordinates or using a topological
representation.

Spatial coordinates use metric representation. The coordinate origin can be tied to a global
origin, or a local origin can be used. The choice depends on the application. Workspace origins were
used in each of the experiments. This is usually the most applicable choice for practical tasks. It is
usually not necessary to know the exact location of the robot with relation to a global GPS origin
because the typical tasks of a service robot are usually executed in a constrained area. However,
there may be cases where a more global presentation is required. These include vehicle-type robots
that may as well utilize the proposed model as a representation of the environment.

The exact location of an object is often not required. It may be enough to just know an
approximate location of the object and perhaps measure the exact location just before starting the
manipulation task. On the other hand, in some tasks, exact positioning of the objects is necessary.
If an object is described using only its location as a unifying feature, the location needs to be
somewhat accurate; otherwise, the object definition is too vague to be practical. In the sand pile
recognition task, the segmentation of the pile was based on its location.

A topological representation of the object location can be used in cases where it is not necessary
to know the exact metric location, but some kind of relative location information is still applicable.
An arrow pointing to a certain direction or an object attached to another one are examples of such
cases. The location may depend on the location of another object. This kind of location information
is solely based on information inputted by a user. It requires very advanced artificial intelligence for
a robot to understand the topological relationships of separate objects if no constraints are known.
Therefore, in this research, it is assumed that the user always defines the topological locations of
the objects.

Uncertainty about the location is introduced when the measurement is not accurate. This occurs
when measuring the location of an object using only a monocular camera. This measurement results
in an elongated probability distribution because the distance cannot be measured from a single
measurement. It is possible to perform an accurate location measurement on objects if motion is
present. This technique, known as ’structure-from-motion’, was not part of this research.

Uncertainty about location is useful when the robot needs to plan its actions to ensure that it
has the most accurate data possible. If the location contains large uncertainty, a different viewpoint
may provide more accurate information. The covariance matrix representing the uncertainty can
thus be utilized on a higher level task to plan the movements.

6.2.1.6 Dealing with moving targets

All the experiments in this research were done with static objects. The only moving target was a
human that changed the setting in the box recognition experiment. Then again, the human was
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not recognized because the human-type object was not defined as required information in the task
execution, and a human detection algorithm was not run.

With moving targets, the timestamps play an important role. If an object is seen in some
location, there is no certainty that the object will be there after some time. Therefore it is
important to store the timestamps of moving objects. Comparing the timestamp of the measured
location to current time, it is possible to evaluate whether it is probable that the object is still
there or not. The probability distribution of the location becomes larger when time passes. This
indicates that the object may be anywhere within the uncertainty region.

6.2.2 Sharing the cognition

This section discusses the techniques used to utilize the shared cognition in human-robot collabo-
ration. This section refers to techniques presented in Section 4.2.

6.2.2.1 Referring to robot’s sensor data

A key technique in shared cognition is marking objects in a robot’s sensor data. This utilizes
the accuracy of the robot’s sensor information and the cognitive capabilities of a human. This
technique was evaluated in the sand pile recognition experiment. It would have been very difficult
for a robot to reliably recognize the pile, but this task was much easier for a human. After marking
the sand pile, the robot was able to use this information later for segmentation of the pile.

In addition to using a graphical user interface in marking the sensor data, different kinds of
pointing techniques can be used. The target objects can be indicated with a pointer stick or by
illuminating them, as in the box lifting experiment. With these techniques the user does not need
to use a computer for communicating with the robot, but the objects can be pointed to in the real
physical world. In addition to hand-held pointers, static signs can be used. An area can be marked
by surrounding it with signs that denote the boundaries of the area. The robot can then use this
information to limit the task execution to the specific area.

Using the robot’s sensor data for teaching the appearance of an object is very effective. The
same sensors and location information that is used for teaching the properties of the object are
also used for recognizing it. In addition to the appearance, the robot already knows the location of
the object in its own coordinate system. It is then easier to track the object. This provides much
greater reliability than when the same information is inputted externally.

6.2.2.2 Describing the objects

It is also possible to describe the objects using numeric and verbal descriptions of the objects.
This can be a simple description such as the hue of the color or the size, or it can be a more
complex description such as a collection of SIFT features extracted from a photograph. A target
object can be described through real objects or meta-objects. Both of the experiments involving
boxes used description using real objects. They described specific objects and their appearance
in different ways. The litter-picking experiment, as mentioned earlier, used describing the objects
using meta-objects.

This kind of object description is a more traditional approach to object recognition than re-
ferring to a robot’s own sensor data. The sensors used for teaching are different, and often the
teaching is not actually based on any sensor data but just on an approximate description from the
user. In addition, the description does not necessarily involve location information, therefore the
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robot needs to first find the object and possibly confirm from the user whether it has found the
right object.

6.2.2.3 Getting the information from the model

The information can also be transferred in the other direction, from the robot to the human.
This is useful when the robot’s accurate sensing ability is used to acquire information about the
environment. The robot may, for example, perform a survey task and create a map of an area and
then show the map to the user. The graphical user interface can generally be used for this type of
information exchange.

Another way for the robot to provide information is to use its own mobility to indicate objects.
For example, if a user interface was not available in the litter-picking task, the robot could have
been indicated the potential pieces of litter using its laser pointer. The user would have seen
the bright red dot and understood which physical entity the robot was referring to when asking
whether it is a correctly recognized piece of litter or a false match.

Many features of the cognition model can also be summarized. For example, the robot could
just use its speech synthesizer to inform the human about how many objects it has found. The
user can then draw conclusions about whether the robot has found a specific object or has found
multiple candidates and would require assistance.

6.3 Using the model for task execution

Ultimately, the utility of the shared cognition model depends on its applicability to real tasks. Many
real task scenarios have already been discussed in this chapter. All of the experiments introduced
some kind of robotic movement, and the two latter experiments introduced real manipulative tasks.
The shared cognition model was successfully used as part of the execution of these tasks.

There are various applications to the proposed concept in real tasks. The simplest example
is path planning. An occupancy grid can be populated on the basis of the state of the cognition
model. The obstacles are placed in the corresponding locations in the grid, and the path planning
is then performed.

More challenging tasks involve the manipulation of objects. These tasks often require exact
spatial information about the objects when performing the manipulation, but coarser information
is enough when the robot is moving from one place to another. Manipulation of objects may also
require information about how the objects should be handled. If a box is full of glass vases, it
should be carried with more care than a bag filled with wool. The requirement of extra care can
be taken into account when moving the robot. In special cases, the robot is moved more slowly to
avoid sudden movements.

The experiments presented in this thesis did not involve real-time computation and manipula-
tion. A real-time case has various constraints that were not considered in this research. Probably
the most important constraint is the computation capacity. The algorithms used in perception are
generally very resource intensive and require powerful computers. Still, it is usually only feasible
to concentrate on the most important algorithms and not run all the possible algorithms at once.
In a way, this was demonstrated in the box recognition task. The human entered the working area,
but the robot did not recognize him because it was not executing a human detection algorithm.
In this task it was acceptable not to detect a human but it was enough to detect the consequences
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of the actions of the human, that is, the changed configuration of the boxes.
One possible approach to provide rich environment information while still retaining the real-time

performance is to run the algorithms at different priorities. For some algorithms it is completely
fine that they are run only every few seconds, while some algorithms need to be run several times
a second. For example, an algorithm that observes the state of a sand pile does not run constantly
because it is not likely that the state of the pile would suddenly change. On the other hand, a
localization algorithm should usually be run at a very high speed to ensure controllability of a
moving platform.

The experiments did not evaluate the accuracy requirements of the manipulation tasks. Es-
pecially tasks involving movement and manipulation may introduce large errors in positioning of
the target object and the robot itself. Therefore, practical manipulation tasks of service robots
usually require visual servoing techniques that adjust the robot’s manipulator according to the
error measured between the desired target location and the actual location of the manipulator.
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Chapter 7

Conclusions and future work

This work has presented a novel concept for building a cognition model of the environment. As
the concept enables utilizing cognition along with the sensory data of a robot, it is called a shared
cognition concept. The concept does not limit the use of the model to cases involving human-robot
collaboration; it can also be used in autonomous operations of the robot. As the concept allows
various representations for recognizing objects and building geometric models, it is a versatile
representation of robot perception. In addition to being a tool for perception, it is also a tool
for interaction. Many types of human-robot interactions can be easily handled with the proposed
concept.

The three-level abstraction of a robot’s mind is inspired by human reasoning. However, the
proposed model does not try to imitate a human. Therefore human psychology was not studied
when creating the robot cognition model. Different levels may bring additional overhead to the
system, but at the same time it makes the whole problem of robot cognition more concrete and
easier to handle.

The results from the experiments show that the proposed concept works very well. Object
recognition seems to work as expected, and the user input in segmentation, recognition, and point-
ing provided additional information. Using both topological and metric locations interchangeably
made the approach more versatile. However, the lack of real-time implementation probably caused
some potential problems to remain undetected.

As the shared cognition concept is a holistic approach to robot environment understanding,
the whole perception of the robot could have been modeled with the shared cognition model. In
practice, the recognition process of the shared cognition model is not strictly defined and limited,
but rather depends on custom algorithms. A strict formalization of the recognition process would
make it possible to define the appearances of the objects without writing a single line of code.
However, because a “silver bullet” solving the whole object recognition problem is still missing, it
is not possible to rely on one method for all possible recognition cases. But it is necessary to allow
the model to use custom algorithms that suit every application.

7.1 Future work

The components of the model were tested separately, but the whole shared cognition concept has
not yet been implemented in real-time software. Research in the field continues at the Generic
Intelligent Machines research center. In the future, the model will be implemented in a way that
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enables it to be used in different types of robots equipped with different sensors. Implementing
the proposed shared cognition concept as a complete real-time system would allow the proposed
model to be used as the basis of a new approach to human-robot interaction.

The research did not focus on the real-time aspects of the model. Object recognition algorithms
are often heavy, and it is not always possible to run multiple algorithms continuously. The model
needs to be able to determine which algorithms are needed and which features need to be matched.
This requires the recognition algorithms to be linked to higher-level tasks to allow the exchange of
information on resource allocation.

This research studied the exchange of information between one human and one robot. Extend-
ing the cognition model to enable more parties to participate would offer interesting opportunities.
Multiple robots sharing cognitive information would be able to use the cognitive information for
task planning and execution. However, this leads to many questions requiring extensive research.
Presumably, the biggest question is: what information is transferred between the agents and what
information is stored only locally? In addition, an inevitable ambiguity arises when multiple agents
interpret the real world with their sensors. If two parties disagree on the recognition result, it may
be difficult to determine whose opinion is correct.

The service robots on the market today are mainly lawnmowers, vacuum cleaners, and similar
robots that are able to work with a limited knowledge of their environments. Developing more
sophisticated service robots requires a better understanding of the environment. The shared cog-
nition concept presented in this research answers many questions related to understanding the
environment and sharing this information between a robot and human. In addition to offering
solutions to collaborative robot task execution, the model offers tools for further research aiming
towards truly cognitive robots.
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