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Abstract 
Near-infrared light can be used as a three dimensional imaging tool, called diffuse optical 
tomography (DOT), in the study of human physiology. Due to differences in the extinction 
coefficients of oxygenated and deoxygenated haemoglobin at different wavelengths, 
concentrations of the haemoglobins can be resolved from measurements at a few wavelengths. 
Therefore, DOT is a fascinating modality for biomedical applications, such as functional brain 
imaging, breast cancer screening, etc. Moreover light is a safe tool, because it is non-ionizing 
and at intensity levels used in DOT, it does not cause burns at skin or in organs. 

 
There are a few different models to describe light propagation in tissue-like media. One of 

the simplest, called the diffusion approximation (DA), was used in this thesis. The optical 
properties, the absorption and the scattering coefficients, are the parameters which determine 
the light propagation in the DA model. When optical properties are known and one is 
interested in estimating the photon flux at the boundary, the problem is called a forward 
problem. Likewise, when the photon flux at the boundary is measured and the task is to find  
the optical properties, the problem is called an inverse problem. The inverse problem related 
to DOT is ill-posed, i.e., the solution might not be unique or the solution does not depend 
continuously on data. 

 
Due to ill-posedness of the inverse problem, some regularization methods should be used. 

In this thesis, regularization methods for a stationary and nonstationary inverse problems was 
considered. By the nonstationary inverse problem, it is meant that the optical properties are 
not static during the measurement and the whole evolution of the optical properties is 
reconstructed in contrast to the stationary problem, where the optical properties are assumed 
to be static during the measurement. 

 
The regularization for the inverse problem could be implemented as the Tikhonov 

regularization or using statistical inversion theory, also known as the Bayesian framework. In 
this thesis, two different regularization methods for the static reconstruction problem in DOT 
were studied. They both allow discontinuities in the optical properties that might occur at 
boundaries between organs. For the nonstationary reconstruction problem, an efficient 
regularization model is presented. 
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Tiivistelmä 
Lähi-infrapunavaloa voidaan käyttää kolmiulotteiseen kuvantamiseen ihmiskehon 
fysiologian tutkimuksessa. Menetelmää kutsutaan diffuusiksi optiseksi tomografiaksi (DOT). 
Hapellisen ja hapettoman hemoglobiinin erilaisista valon vaimennuskertoimista eri aallon 
pituuksilla johtuen hemoglobiinien konsentraatiot pystytään määrittämään käyttämällä 
useampaa aallonpituutta mittauksissa. Sen takia DOT on mielenkiintoinen menetelmä 
lääketieteellisiin sovelluksiin, kuten aivojen funktionaaliseen kuvantamiseen, rintasyövän 
seurantaan jne. Lisäksi valo on turvallinen säteilyn muoto, koska säteily ei ole ionisoivaa eikä 
käytetty intensiteettitaso aiheuta palovammoja ihoon tai muihin elimiin. 

 
Valon kulun mallintamiseen on esitetty muutamia malleja. Yhtä yksinkertaisimmista 

kutsutaan diffuusioapproksimaatioksi (DA), jota käytetään tässä työssä. Optiset 
ominaisuudet, erityisesti absorptio- ja sirontakerroin, ovat mallin parametreja, jotka 
määräävät valon etenemisen DA:ssa. Kun optiset ominaisuudet ovat tunnetut ja ollaan 
kiinnostuneita arvioimaan fotonivuo kohteen pinnalla, tehtävää kutsutaan suoraksi 
ongelmaksi. Kun fotonivuo pinnalla on mitattu ja tehtävänä on selvittää optiset ominaisuudet, 
tehtävää kutsutaan käänteisongelmaksi. Käänteisongelma DOT:ssa on heikosti aseteltu, mikä 
tarkoittaa sitä, että ratkaisu ei ole välttämättä yksikäsitteinen tai ratkaisu ei riipu jatkuvasti 
mittausdatasta. 

 
Heikosti asetetusta käänteisongelmasta johtuen, on käytettävä jotakin 

regularisointimenetelmää. Tässä työssä on tutkittu regularisointia sekä DOT:in 
stationaarisessa että epästationaarisessa käänteisongelmassa. Epästationaarisella 
käänteisongelmalla tässä työssä tarkoitetaan sitä, että optiset parametrit muuttuvat 
mittauksen aikana ja optisten ominaisuuksien koko muutoshistoria rekonstruoidaan. Sitä 
vastoin stationaarisessa käänteisongelmassa optiset parametrit oletetaan muuttumattomiksi 
koko mittauksen ajan. 

 
Regularisointi käänteisongelmaan voidaan toteuttaa esimerkiksi Tikhonov-regularisaationa 

tai käyttämällä tilastollisia käänteisongelman ratkaisumenetelmiä, joita kutsutaan myös 
Bayesilaisiksi menetelmiksi. Tässä työssä tutkittiin kahden erilaisen 
regularisaatiomenetelmän soveltuvuutta stationaariseen DOT:aan. Kummatkin menetelmät 
sallivat epäjatkuvuuksia optisissa parametreissa, mikä voi tapahtua kudosten rajapinnoilla. 
Epästationaariseen käänteisongelmaan on työssä esitetty tehokas regularisointimenetelmä. 
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Preface

It is 25 September, 00:27 am and I am finalizing this thesis. This is the

first time, and I hope the last time, when I am working in the night. This

thesis will end my 22 years long journey in the Finnish education system

from Kirkonkylän ala-aste to Aalto University. It does not mean that I

know everything but rather it is just the beginning for a lifetime of learn-

ing.

My journey to optical imaging began in 2003 in the Laboratory of Biomed-

ical Engineering (currently Department of Biomedical Engineering and

Computational Science) with the easiest job interview in my life so far.

The former head of the Laboratory, Professor (emer.) Toivo Katila said:

“You can go with Ilkka, he has something for you.” Starting from that

moment D.Sc. Ilkka Nissilä introduced me into the fascinating world of

optical imaging. I would like to thank him for these years we have been

working together.

Soon after that I started to build my own code for diffuse optical to-

mography. At that time, I was mentored by Professor Erkki Somersalo.

I would like to thank him for all the knowledge he has passed to me in

our face-to-face conversations. Also, his published materials have been

excellent references.

In 2008, I made a short visit to University College London in UK. That

was quite an exciting time. I would like to thank Professor Simon Arridge,

who gave me the possibility to work in his research group, one of the

leading groups in the field of optical imaging.

Most of the time, my doctoral studies have been unsupervised learning.

In the beginning, I did not have an official supervisor for my thesis, but I

had an opportunity to work with many great scientists. Only at the end,

Professor Jouko Lampinen started to supervise my work. Even though he

is not an expert in optical imaging, he was able to convert his knowledge
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and expertise to the field. I only wish that we had started our collabora-

tion earlier. I have been very pleased to work with him.

I would also like to thank everyone who has helped me preparing this

thesis – PhD Tanja Tarvainen, D.Sc. Nuutti Hyvönen and the prelimi-

nary examiners PhD Ville Kolehmainen and PhD Oliver Dorn. It would

not have been possible to complete this thesis without a supporting work

environment. I would like to thank all the current and former members

of the optical imaging group – Tiina Näsi, D.Sc. Jaakko Virtanen, Kalle

Kotilahti, D.Sc. Juha Heiskala, D.Sc. Tommi Noponen, Lauri Lipiäinen,

D.Sc. Jenni Heino, Atte Lajunen and many others. I also want to thank

whole staff of the Department for all these years and memories that we

have of the work and a little bit of the leisure as well.

Finally, I would like to thank my lovely better half Reetta, who has given

me all her support during this work.

Espoo, 25 September 2011

Petri Hiltunen
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1. Introduction

1.1 Background

In medical imaging, the spectrum of the electromagnetic radiation is used

broadly, such as x-rays and γ-rays in computed tomography (CT) and in

positron emission tomography (PET), the radio frequencies in magnetic

resonance imaging (MRI), and the visible light in endoscopes. A new

emerging imaging modality called diffuse optical tomography (DOT) uses

visible and near-infrared (NIR) light. Compared to methods using ioniz-

ing radiation (x-ray and γ-ray) the DOT method is non-ionizing and non-

invasive. Typical building costs and the physical size of the device are

smaller than in MRI or PET devices and no special environment, e.g. a

magnetically shielded room, is needed. The instrumentation can be made

portable and suitable for continuous bedside motoring, for monitoring in-

fant and adult subjects. On the other hand the spatial resolution and

depth sensitivity of DOT is lower than in MRI, but the temporal resolu-

tion can be higher [1].

The NIR light absorption in water at wavelengths 650 – 950 nm is

low [2]. Therefore, NIR light can be used in biomedical applications, be-

cause the human tissue consists of mainly water and photons can propa-

gate through the tissue without completely being absorbed. Propagation

through tissue photons experience several elastic scattering events, where

the photons do not lose energy but change their direction. A mathematical

model for the photon propagation can be built on the absorption and the

scattering coefficient of the tissue. The light propagation model is called

the forward model, which gives the measured photon flux at the boundary

of the illuminated medium when the optical properties of the medium, the

absorption and the scattering coefficients, are known. In DOT, the pho-

ton flux is measured on the boundary. The process, in which the optical
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Introduction

properties are determined based on given measurements is called the re-

construction of the optical properties and it is an inverse problem.

Medical imaging modalities can be divided into two different categories:

structural and functional modalities. MRI and CT are examples of struc-

tural imaging modalities. They produce an image of the structures of the

human body. Functional imaging modalities are, e.g., PET and functional

MRI (fMRI). DOT can be seen as a structural imaging modality if differ-

ent structures inside the tissue have different optical properties. Primar-

ily, DOT is a functional imaging modality when spectroscopic imaging is

done, i.e., several wavelengths are used. Extinction coefficients of oxy-

genated and deoxygenated haemoglobin at different wavelengths differ.

Based on measurements of changes in absorption coefficients at several

wavelengths, it is possible to make reconstructions of changes in de- and

oxyhaemoglobin concentrations. In contrast to DOT, in fMRI the blood

oxygen level dependent (BOLD) signal, which is sensitive to the param-

agnetic properties of deoxyhaemoglobin, is measured.

DOT has potential for many interesting clinical applications in medi-

cal imaging because of its ability to reconstruct de- and oxyhaemoglobin

concentration changes, tissue oxygen saturation and some other clinically

interesting variables. Safe and portable imaging modality will provide a

powerful tool for monitoring neonates. Hebden et al. [3] were first who

made whole head images of the preterm infant who suffered from a cere-

bral haemorrhage within the left ventricle. They were able to see ex-

pected asymmetry in the blood volume images. Hebden et al. [4] have

studied how the whole head optical properties change when the setting of

the ventilation has changed in a preterm infant. Gibson et al. [5] have re-

constructed changes in the haemoglobin concentrations induced from the

motor evoked responses. There are also studies related to tomographic

imaging of event related adult brain functions, such as [6, 7, 8, 9]. Another

promising area would be breast cancer screening, e.g., [10, 11, 12, 13].

In multimodal imaging, several different imaging modalities are com-

bined. DOT has great potential for multimodal imaging, because NIR

light and optical fibers do not interfere with the magnetic or the electrical

fields. Imaging devices such as magnetoencephalography (MEG) or elec-

troencephalography (EEG) can be combined with DOT. This combination

allows us to study simultaneously neuronal and heamodynamic activity.

Combination of MRI and MEG is more technically challenging (cf. low-

field MEGMRI [14]).

14
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1.2 Research objectives

The inverse problem in DOT is ill-posed, which mean that the problem

does not have unique solution or the solution does not depend continu-

ously on data, i.e. small errors in data can produce large errors in the

solution. To overcome issues related to ill-posedness the Tikhonov reg-

ularization methods can be used. In this thesis, regularization methods

for DOT are studied. Both stationary and nonstationary cases are con-

sidered. In this thesis the nonstationary inverse problem is defined such

that an object is measured over a finite time period at constant time inter-

vals and the optical properties of the object can change during the mea-

surement. Then the optical properties at every time instance are to be

reconstructed. In the stationary inverse problem the optical properties

are static and one reconstruction is calculated.

The Tikhonov regularization methods have well known connection to

the prior distributions in the statistical framework. In this thesis, the in-

verse problem is solved using classical Tikhonov regularization, but the

connection is kept in mind in the design of the regularization functional.

In this thesis, two different regularization methods for the static recon-

struction problem in DOT was studied. They both allow discontinuities

in the optical properties that might occur at boundaries between organs.

For the nonstationary reconstruction problem, an efficient regularization

model is presented.

The optical imaging device used in this thesis was constructed at Aalto

University Department of Biomedical Engineering and Computational

Science [15, 16]. It is a frequency domain system, i.e., the source light

is intensity modulated. The attenuation of the amplitude and the phase

shift of the light is measured. Therefore, in this thesis modelling of light

propagation in the frequency domain is discussed. In DOT, two other

widely used instrument types are the continuous wave and the time do-

main systems. Methods are tested in phantoms which are designed for

certain fixed wavelengths only. Therefore, spectroscopic imaging is not

discussed in this thesis.
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2. Methods

In this section, the mathematical theory behind the forward model and

the inverse problem is described. This section is divided into three sub-

sections. In the section 2.1, the forward model which predicts the photon

flux at the boundary given known optical parameters, is described. In this

thesis, the diffusion approximation to the radiative transfer equation has

been used. Theoretical background of the model is briefly discussed; a

detailed derivation can be found in the references. Due to the approxima-

tions made, there are some limitations in the model that should be con-

sidered when the method is used in biomedical applications. In the end

of the first subsection, a short review of different forward models used in

DOT is given.

In the section 2.2, the theory behind the DOT inverse problem is dis-

cussed. First the basic theory of the linear inverse problems are reviewed.

Since, the inverse problem of DOT is nonlinear, a nonlinear reconstruc-

tion method is presented. The inverse problem can be solved using the

Bayesian framework, which is presented in this subsection.

In the section 2.3, nonstationary inverse problems are discussed. A state

space model of the optical properties is presented in a statistical frame-

work and the method of solving it, the Kalman filter, is presented. Several

different regularization methods for this problem have been presented in

the literature and these are discussed in this section.

2.1 Forward model

2.1.1 Physical model

Maxwell’s equations describe the propagation of electromagnetic waves,

such as light. However, for diffuse optical imaging, the wave theory can

17



Methods

be ignored due to strong scattering [2]. Therefore, the radiative transfer

equation (RTE), which is derived from the energy conservation of the par-

ticles, is a sufficient model for the propagation of photons. The RTE is an

integro-differential equation

1

c

∂L(r, t, s)

∂t
+ s · ∇L(r, t, s) + (μa(r) + μs(r))L(r, t, s) =

μs(r)

∫
4π

fs(s, s
′)L(r, t, s)ds′ + q(r, t, s), r ∈ Ω (2.1)

where the radiance L(r, t, s) defines the power radiated through a given

unit area and unit solid angle in a direction s at a location r and time

t. The absorption coefficient μa(r) and the scattering coefficient μs(r) de-

fine the probabilities that a photon undergo an absorption or a scattering

event in a unit length. The scattering phase function fs(s, s
′) is a proba-

bility density function, which defines the probability that a photon from

a direction s scatters to the direction s′. The coefficient c is the speed of

light in the medium Ω ⊂ R
3.

The RTE is computationally complex and sometimes it can be approxi-

mated by a simpler equation. In the PN approximation, the radiance, the

scattering phase function, and the source term are approximated by the

truncated spherical harmonic series of order N . As a result we obtain a

set of (N+1)2 coupled partial differential equations. The scattering phase

function is assumed to depend only on the cosine of the scattering angle,

f(s, s′) = f(s · s′). An approximation, called the diffusion approximation

(DA), which is frequently used in DOT, is derived from the P1 approxima-

tion [17]. Many authors have presented the derivation of the PN approxi-

mation, e.g. [18, 19]. DA approximates the photon fluence, also called the

photon density, u(r, t) =
∫
L(r, t, s)ds, by a partial differential equation

1

c

∂u(r, t)

∂t
−∇ · κ(r)∇u(r, t) + μa(r)u(r, t) = q0(r, t), r ∈ Ω, (2.2)

where q0(r, t) is the isotropic component of the source

q0(r, t) =

∫
q(r, t, s)ds. (2.3)

The diffusion coefficient is κ(r) = (3(μ′
s(r) + μa(r)))

−1, where μ′
s(r) = (1−

g)μs(r) is the reduced scattering coefficient and the anisotropy factor g is

the average cosine of the scattering angle

g =

∫
s · s′f(s · s′)dsds′. (2.4)

In this thesis, a frequency domain system was used, where the source,

q0(r, t) = q0(r) exp(iωt), is modulated at an angular frequency ω. From
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which, the DA in the frequency domain is derived

−∇ · κ(r)∇u(r) +

(
iω

c
+ μa(r)

)
u(r) = q0(r), r ∈ Ω. (2.5)

Validity of the DA in biomedical applications is discussed in section 2.1.3.

2.1.2 Boundary conditions, sources and measurables

If there are no photons entering the object, the boundary condition of the

RTE is

L(r, s, t) = 0, r ∈ ∂Ω, s · n < 0, (2.6)

where n is an outwards directed boundary normal vector. Because the

DA does not contain any directional information, it cannot fully satisfy

equation (2.6). Therefore approximations, such as the total photon flux

entered into the object is zero,∫
s·n<0

L(r, s, t)s · nds = 0, (2.7)

have been presented by Ishimaru [20]. The presented boundary condition

says that there is no inbound flux at the boundary and it does not take into

account the reflections at the boundary. On the other hand, it is assumed

that the reflected part of the outward directed flux is equal to the photon

flux entering the object∫
s·n<0

L(r, s, t)s · nds =
∫
s·n>0

Rn(s)L(r, s, t)s · nds, (2.8)

where Rn(s) is the reflection coefficient which is dependent on the refrac-

tion index n of the object [21]. It is assumed that the refraction index of

the object is constant and the object is surrounded by air (n ≈ 1). Two

different approximations of equation (2.8) have been presented in the lit-

erature: (i) Rn(s) is approximated by two step functions [21] or (ii) Rn(s)

is approximated by a constant Rn, which is obtained experimentally [22].

Using the P1 approximation of the radiance, both methods (i) and (ii) lead

to the boundary condition in the frequency domain

u(r) + 2ξκ(r)
∂u(r)

∂n
= 0, r ∈ ∂Ω, (2.9)

where the coefficient ξ takes into account mismatch of the refraction in-

dices at the boundary. In the case (ii) the mismatch coefficient is ξ =

(1 +Rn)(1−Rn)
−1 [22] and in the case (i) the mismatch coefficient is

ξ =
2(1−R0)

−1 − 1 + | cos θc|3
1− | cos θc|2 , (2.10)
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where θc is the critical angle and R0 = (n−1)2(n+1)−2 [21] . Both methods

have been compared to each other by Schweiger et al. [23]. They found

out that the difference between these two models is small in the time

domain measurement model, where they measure the amplitude and the

mean flight time of the photon package. The mean flight time and the

phase shift are close to each other when the modulation frequency is less

than 200 MHz [24]. The mismatch coefficient presented by Groenhuis et

al. [22], ξ = (1 +Rn)(1−Rn)
−1, was used in Publications I–IV.

Two different source conditions can be used: the collimated source model

and the diffuse source model. In the collimated source model, a collimated

photon beam at the boundary is modelled as an isotropic point source

inside the object. The source function q(r) = Qδ(r − rq), where δ is the

Dirac delta function, is located at the depth of the mean free path, μ′−1
s ,

below the boundary.

The diffuse source model can be presented as an inward directed bound-

ary flux J−(r, t), where the volume source term q(r) is set to zero. The

boundary condition 2.8 can be modified to∫
s·n<0

L(r, s, t)s · nds = Rn

∫
s·n>0

L(r, s, t)s · nds+ (1−Rn)J
−(r, t), (2.11)

where the transmission coefficient Tn = 1 − Rn is calculated using the

same approximation as in case (ii) above [25]. In the frequency domain,

this leads to the boundary condition

u(r) + 2ξκ(r)
∂u(r)

∂n
= 4J−(r), r ∈ ∂Ω, (2.12)

where the mismatch coefficient is ξ = (1 + R)(1 − R)−1. A comparison of

the source models is presented by Schweiger et al. [23]. Their results sug-

gest that the models have a constant multiplicative difference except near

sources and the collimated source condition is better matched with Monte

Carlo simulation results. In Publications I–IV the diffuse source model

was used, because the collimated source model requires information of

the mean free path.

The measurable quantity is the photon flux coming out of the object,

called the exitance, defined as [20]

Γ(r, t) =

∫
4π

L(r, s, t)s · nds, r ∈ ∂Ω. (2.13)

Using the P1 approximation, it gives

Γ(r) = −κ
∂u(r)

∂n
(2.14)

20



Methods

in the frequency domain. Another measurement function has been pre-

sented

Γout(r, t) = (1−R)

∫
s·n>0

L(r, s, t)s · nds (2.15)

in [26, 27]. This will lead to exactly the same equation as equation (2.14)

if the P1 approximation is used.

Equations (2.5), (2.12), and (2.14) define the forward mapping1, f :

R
np → R

nm , where np is the number of the optical parameters and nm is

the number of the measurements, from the optical parameters to the mea-

sured flux at the boundary for given measurement locations {rm,1, . . . ,

rm,nm} and source currents J−(rs,i), at source locations {rs,1, . . . , rs,ns},

where ns is the number of sources. There are several different methods,

such as the finite difference method (FDM) and the finite element method

(FEM), to numerically solve the elliptic partial differential equation de-

fined by equations (2.5) and (2.12). In this case, FEM is more convenient

because the domain Ω usually has a complex shape, especially in biomed-

ical applications. Often, the optical parameters are presented in a small

dimensional basis (dimension of np), which is interpolated to a more dense

grid used in the FEM computation.

2.1.3 Validity of the physical model

The RTE itself is an approximation of the electromagnetic wave propaga-

tion. It does not take into account wave phenomena, such as diffraction,

polarization, or changes in the refractive index [20, 18]. However, diffrac-

tion and polarization can be neglected in DOT due to strong scattering.

The refraction index is mostly constant in the different tissues and the

largest change in the refraction index occurs at the skin-air interface [2].

In the following, the approximations and assumptions behind the P1 and

DA are presented.

Firstly, the P1 approximation is valid when μa � μs [17]. In the biomedi-

cal application this assumption is mostly valid. One exception is the cere-

brospinal fluid (CSF), which has a low scattering coefficient. The brain

is surrounded by the CSF, which makes RTE more attractive for brain

imaging, because it is valid in the low scattering regions. However, Custo

et al. [28] presented, that the experimental reduced scattering coefficient

1Here we use discretized optical properties instead of optical parameters from
space such as L2(Ω). Similarly measurements are point measurements instead
of continuous measurements over the boundary.

21



Methods

μ′
s = 0.3 mm−1 for small CSF regions in the adult studies, should not affect

reconstructions much. However, there might be large regions of CSF in

the the preterm infants’ brain [Publication II]. Secondly, the P1 approx-

imation is not valid close to the source. The source-detector separation

should be much larger than 1/μ′
s [17]. This should be taken into account

in designing the source-detector grid. However, this is not a major issue

in difference imaging, where data is difference of the measurement at two

different state, because some of the systematic errors are cancelled.

In addition to the limitations of the P1 approximation, in DA it is as-

sumed that the photon flux is slowly varying and the source is isotropic

[17, 19]. In section 2.1.2 it was described how the beam from the source

fibre can be modelled as an isotropic source. The DA assumes also that

cμ′
s/ω � 1, i.e., the scattering frequency must be larger than the modula-

tion frequency. This assumption is valid in biomedical applications if the

modulation frequency is less than ∼ 1 GHz [29].

2.1.4 Sensitivity of the measurement

The sensitivity of the measurement is defined as the change in the mea-

sured signal given a small change in the optical parameters. The sensitiv-

ity of the measurement defines the Jacobian matrix, Ji,j = ∂Γi/∂(μa, κ)j ,

of the forward mapping. The sensitivity can be solved by perturbing every

degree of freedom and calculating the corresponding change in the mea-

surement [30]. This is called the direct form or the forward sensitivity

analysis. It requires ns(np + 1) solutions of the forward equation. The

computation time of the forward model is often long and the size of the

basis, np, is large, therefore the forward sensitivity analysis is impracti-

cal.

Arridge [19] presented an efficient way to calculate the sensitivity of the

measurement in DOT. This method is called the adjoint formulation or the

adjoint sensitivity analysis. If the change in the diffusion coefficient at the

boundary is assumed to be zero then the sensitivity of the measurement

is

δΓ = −
∫
Ω
δκ(r)∇v∗(r) · ∇u(r) + δμa(r)v

∗(r)u(r)dr, (2.16)

where δμa(r) and δκ(r) are changes in optical parameters and v∗(r) is the
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solution of the adjoint equation

−∇ · κ(r)∇v∗(r) +
(
− iω

c
+ μa(r)

)
v∗(r) = 0 r ∈ Ω (2.17)

v∗(r) + 2ξκ
∂v∗(r)
∂n

= qm(r) r ∈ ∂Ω, (2.18)

where qm is a source at measurement location. Calculation of the Jacobian

matrix requires only ns solutions of the forward model and nm solutions

of the adjoint equation, which is more feasible method than the forward

sensitivity analysis when nm < np.

2.1.5 Other models used in the optical tomography

In this section, other methods and models which have been used in optical

tomographic reconstructions, are briefly reviewed.

Regardless of the more complex computation of the RTE, it has been

used as the forward model in the reconstructions in optical tomography

by e.g. González-Rodríguez and Kim [31] and the FEM based solution of

the RTE have been presented by Tarvainen et al. [32]. Also, stochastic

modelling of light propagation using Monte Carlo (MC) simulation has

been used. However, the MC based computation of the forward problem is

the most computer time consuming and only reconstructions based on the

linearized models are feasible, [33, 34, 35], because the computation of the

Jacobian matrix is slow. Recent developments in graphics processing unit

(GPU) computing has lead to remarkable speed-ups in the computation

times, which make MC modeling more feasible for nonlinear reconstruc-

tion purposes [36, 37, 38].

There are other approximations of RTE than PN , such as the Fokker-

Planck equation [39]. This approximation is valid when scattering is for-

ward peaked, i.e., g ≈ 1. Most biological tissues are forward peaked (see

table 1 of [2]). The Fokker-Planck equation approximates the photon prop-

agation better than the DA in forward scattering media and low scatter-

ing areas [40]. González-Rodrígues and Kim [31] have made comparisons

of RTE and Fokker-Planck based reconstructions, and the differences are

not significant, but savings in the computation time were considerable.

Other than FEM based solutions of the DA have been presented in the

literature, such as FDM and the boundary element method (BEM). FEM

is more suitable than FDM for biomedical applications, because the FDM

is practical to implement only in box shaped geometries and it does not

allow denser grids near sources. BEM is suitable for cases when the ob-
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ject can be represented by a layered structure and the inverse problem is

presented in terms of the location of the layers and the constant optical

parameters within each layer. BEM based reconstructions are presented

in [41, 42, 43]. Elisee et al. [44] presented a method which combines FEM

and BEM, where the outer layers of the head (scalp, skull, brain) are dis-

cretized using BEM and the region inside the brain is modelled by FEM.

2.2 Inverse problem

2.2.1 Linear inverse problem

The inverse problem is defined as: given data y, find a variable x such

that y = f(x), where f(·) is a known linear or nonlinear mapping from the

variable x to data y. A mathematical problem is well-posed if the solution

fulfils three conditions stated by Hadamard: (i) the solution exists, (ii)

the solution is unique, and (iii) the solution depends continuously on the

data. Otherwise the problem is ill-posed. In this section, linear inverse

problems are discussed, f(x) = Fx, where F : X → Y is compact, there-

fore continuous, and X and Y are finite or infinite dimensional Hilbert

spaces. Every compact operator can be presented using the singular value

decomposition

Fx =
∑
j

σj〈x, vj〉uj , (2.19)

where σj are singular values, vj and uj are singular vectors and 〈·, ·〉 is the

inner product in space X. If dim(Y ) = ∞, then σj → 0 when j → ∞ [45].

Let us assume that data y belongs into the range of the operator F ,

y ∈ R(F ), and the null space, or the kernel, of the operator F is trivial,

N (F ) = {0}, then the system

y = Fx (2.20)

has a unique solution x = F−1y. The solution x is continuous on data if

the operator F−1 is bounded [46]. Then the problem is well-posed, but

given assumptions are difficult to fulfil in real applications. However, in

case of the compact operators, the inverse operator is not bounded if X is

not finite dimensional [47].

The data may not belong into the range of the operator F , if the data

contains measurement noise or there is modelling errors. Then we can

seek a solution which minimizes the norm of the residual r = y−Fx. Such
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a solution, the minimum residual solution, is an orthogonal projection of

data to the range, r ∈ R(F )⊥. The fundamental theorem of linear algebra

states that R(F ) is orthogonal to N (F ∗), R(F )⊥ = N (F ∗) [47]. Therefore

we can find a minimum residual solution using the equation F ∗(y−Fx) =

0, which gives us the normal equation

F ∗Fx = F ∗y. (2.21)

The solution of the normal equation, x = (F ∗F )−1F ∗y, exists and is unique

if and only if N (F ∗F ) = {0}. Note that N (F ) = N (F ∗F ) [47]. The mini-

mum residual solution is also known as the least squares solution. How-

ever, the solution does not depend continuously on data, because the op-

erator F ∗F is also compact [47].

Next we assume that the null space is not trivial. Given a vector xn ∈
N (F ), then all x = xr + xn, where xr ∈ N (F )⊥ is a solution to equa-

tion (2.20), are solutions to equation (2.20). The generalized inverse or

the pseudoinverse, x = F †y, defines the unique solution to the mini-

mum residual problem, such that the solution has minimum norm, i.e.

‖xn‖ = 0. If the measurement is inside the range R(F ) and the null space

of F is trivial, then pseudoinverse gives the classical solution x = F−1y. If

the measurement is not inside the range but the null space is trivial, then

the pseudoinverse is the minimum residual solution. The pseudoinverse

can be calculated using the singular value decomposition

F †y =
∑
j

1

σj
〈y, uj〉vj , (2.22)

where 〈·, ·〉 is the inner product in space Y. See e.g. [48, 47, 45, 27].

The solution defined by the pseudoinverse fulfils the first two Hadamard

conditions. However, it does not depend continuously on data in case of

compact infinite dimensional operators2, which means that the inverse

problem is ill-posed [45]. Small changes in data, such as noise, can pro-

duce large changes in the solution.

In finite dimensional spaces, all operators are compact [46] and the ma-

trix system y = Fx has a unique pseudoinverse solution. In theory, the

solution is continuously dependent on data [47]. In practice it might not

be, due to numerical ill-conditioning of floating point arithmetic, i.e. the

condition number κ(F ) = ‖F‖‖F †‖ is large. If the norm is the �2-norm,

then the condition number is the ratio of the largest and the smallest

singular value.

2‖F †uj‖ = σ−1
j → ∞, when j → ∞
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To overcome ill-posedness, Tikhonov suggested that the normal equa-

tion is altered to

(F ∗F + αI)x = F ∗y, (2.23)

which has the same solution as the minimization problem

x = argmin
x

‖y − Fx‖2 + α‖x‖2, (2.24)

where α > 0 is called the regularization parameter. Using the singular

value decomposition, the solution can be presented as [27]

x =
∑
j

σj
σ2
j + α

〈y, uj〉vj . (2.25)

The operator F ∗F + αI is bounded from below, ‖(F ∗F + αI)x‖ ≥ α‖x‖,

therefore the operator is invertible and continuous on data [47]. The

Tikhonov regularized solution is the minimum residual solution with an

augmented norm.

2.2.2 Nonlinear inverse problem in diffuse optical tomography

In the previous section, linear inverse problems were discussed. However,

the inverse problem in DOT is nonlinear. The general theory of nonlinear

inverse problems is far more complicated and is not discussed here in

detail, but in can be found from reference such as [49, 48]. For example,

uniqueness cannot be stated in case of the general nonlinear function.

Even the minimum norm solution might not be unique. Next we assume

that the Tikhonov regularized solution of the nonlinear problem is well-

posed and postpone the discussion to section 2.2.3. In this section we

discuss how to solve the given minimization problem numerically.

Let f(x) : Rnp → R
nm be the nonlinear finite-dimensional forward prob-

lem as defined in section 2.1.2. The Tikhonov regularized solution to the

nonlinear inverse problem is presented as a minimization problem

x = argmin
x∈Rnp

‖y − f(x)‖2 + αR(x) (2.26)

similarly to the case of the linear problem. Here a generalized Tikhonov

regularization is presented. A non-negative twice differentiable regular-

ization functional R(x) should reach its minimum in the proximity of the

true solution. The selection of the regularization functional is discussed

in section 2.2.6. Next we consider how the solution is found.

Traditional optimization algorithms can be used to minimize an objec-

tive functional

Ψ(x) = ‖y − f(x)‖2 + αR(x). (2.27)

26



Methods

Let assume that the functional Ψ(x) is at least twice continuously differ-

entiable. The quadratic approximation of the objective functional at x0

is

q(δx) = Ψ(x0 + δx) ≈ Ψ(x0) +∇Ψ(x0)
Tδx+

1

2
δxTHΨ(x0)δx, (2.28)

where ∇Ψ(x0) and HΨ(x0) are the gradient and the Hessian matrix of the

objective functional at x0, respectively. A necessary condition of the local

extreme of the quadratic approximation is ∇q(δx) = ∇Ψ(x0)+HΨ(x0)δx =

0. The direction δx = −HΨ(x0)
−1∇Ψ(x0) is the descent direction of the ob-

jective functional, if the Hessian matrix is a symmetric positive definite

matrix [50]. A minimum of the objective functional can be searched itera-

tively using an iteration

xk+1 = xk −HΨ(xk)
−1∇Ψ(xk), (2.29)

which is known as Newton’s method. In practise, the unit step might not

ensure decrease in the objective functional. At every step, a variable step

length xk+1 = xk + γkδxk is taken. The step length is found from the

optimization problem

γk = argmin
γ≥0

Ψ(xk + γδxk). (2.30)

Usually an inexact line search is used, such as the quadratic fit line search

[50]. The line search ensures global convergence (if the Hessian matrix

is not singular), i.e converge to a point where gradient is zero indepen-

dently of the starting point. Another method to do that, even in the case

of a singular Hessian matrix, is the Levenberg-Marquard (LM) method,

where the Hessian matrix is replaced with a matrix HΨ(xk) + τkI, where

an adaptive parameter τk > 0 ensures positive definiteness of the replaced

matrix.

In DOT, the Hessian matrix of the forward problem is complicated to

compute. Methods which approximate the Hessian matrix, such as Gauss-

Newton or quasi-Newton optimization methods, can be applied. An exam-

ple of the quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method [50]. A comparison of the damped Gauss-Newton and

the Levenberg-Marquard (with Gauss-Newton approximation of the Hes-

sian matrix) methods in DOT is presented by Schweiger et al. [51]. They

found out that the damped Gauss-Newton converged significantly faster.

In Publications I–IV the damped Gauss-Newton method was used, where

the Hessian matrix was approximated by J(xk)
TJ(xk) + αR′′(xk) and an

inexact line search was utilized.
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The optical parameters are positive physical quantities. This positivity

constraint is implemented using the change of variables x̃ = log x and the

optimization is done using the variable x̃, which is unconstrained in R
np ,

where as x lies in R
np

+ . Another possibility is to use constrained optimiza-

tion, where the limitation x > 0 is implemented in the optimization algo-

rithm. Suitable algorithms are, e.g., sequential quadratic programming,

the gradient projection method and the trust-region method [50, 52].

2.2.3 Uniqueness, existence and continuous dependence of data in
diffuse optical tomography

The general theory for nonlinear inverse problems can be found in, e.g.,

[49, 48]. There is presented sufficient conditions for existence and contin-

uous dependence of data of the Tikhonov functional ‖y−f(x)‖2+α‖x−x0‖2.
Later in this section we present results related to DOT.

Uniqueness of DOT in the case of the DA is discussed in [53] and [54].

Arridge and Lionheart [53] showed that using intensity measurements

only (steady state measurement, ω = 0) it is not possible to separate

the diffusion coefficient and the absorption coefficient. They also showed

that if the refraction index, the diffusion coefficient, and the absorption

coefficient are unknown, then there is no unique solution in both time

and frequency domain measurements. However, if the refraction index is

known then the diffusion coefficient and the absorption coefficient could

be uniquely defined from the continuous measurement over the whole

boundary. Later, Harrach [54] found out that, in case of a piecewise con-

stant diffusion coefficient and a piecewise analytic absorption coefficient,

the solution is unique in the steady state measurement, even in case of

the complete measurement on small part of the boundary.

Egger and Schlottbom [55] investigated properties of the forward oper-

ator (f(κ, μa) : L
2(Ω) × L2(Ω) → L2(∂Ω)) in DOT, such that could use the

standard regularization theory of nonlinear functions. They showed ba-

sic properties of the forward operator such as continuity, differentiability,

and compactness, i.e. the inverse problem is ill-posed as the solution does

not depend continuously on the data. They showed that the forward oper-

ator fulfils criteria of the general theory of the nonlinear inverse problems
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(weakly closedness3 and continuity) so that the Tikhonov functional

(κ, μa) = argmin
κ,μa

‖y − f(κ, μa)‖2 + α
(
‖κ− κ0‖2H1(Ω) + ‖μa − μa,0‖2L2(Ω)

)
(2.31)

has a solution ((κ, μa) ∈ L2(Ω) × L2(Ω)), which depends continuously on

data.

2.2.4 Selection of the regularization parameter

In the inverse problem literature, several methods to select the regular-

ization parameter have been proposed, such as the Morozov discrepancy

principle, the L-curve method, the generalized cross validation, and the

unbiased predictive risk estimator [45, 48]. Most of these methods as-

sume that the noise is identically independently distributed (iid) and that

the level of the noise is known. These assumptions may, however, not

hold true. However, the reconstructions in Publications II and IV im-

plicitly assume iid. The nonlinear reconstruction in DOT requires a long

computation time. Therefore, the regularization parameter selection pro-

cedures presented in the literature are usually impractical to implement.

On the other hand, the value of the regularization parameter is of ap-

proximately the same magnitude in different applications and the recon-

struction is relatively insensitive to its value. Therefore, selection of the

regularization parameter was based on visual inspection of the results in

Publications I–IV.

In statistical inversion methods, the regularization parameter selection

can be seen as a careful analysis of the measurement noise and the avail-

able a priori information of the optical parameters (see section 2.2.5).

2.2.5 Bayesian framework

The solution of the inverse problem can be presented in the Bayesian

framework, also known as statistical inversion theory. In the statisti-

cal framework, all unknown quantities are treated as random variables.

Everything we know about the variable x before the measurement is pre-

sented as a distribution, known as the prior distribution p(x). Similarly,

the measurement model is presented as a conditional distribution p(y|x),
called the likelihood function. If the variable x is known, then all realiza-

tions of y (measurements) are from the distribution p(y|x).
3with respect to weak topologies H1(Ω)× L2(Ω) and L2(∂Ω) [55]
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Because all unknown quantities are random variables, the solution of

the inverse problem is a distribution of these variables, called the poste-

rior distribution. Using the Bayes’ theorem, we can solve the posterior

distribution of the variable x

p(x|y) = p(y|x)p(x)
p(y)

, (2.32)

where p(y) =
∫
p(y|x)p(x)dx is called the prior predictive distribution [56].

The posterior distribution reveals everything what we know about the

variable x after the measurement with given a priori information and

the assumed forward model. Only in very simple cases can the posterior

distribution be solved in closed form. Therefore, two point estimates of

the posterior density are used: the maximum a posteriori (MAP) estimate

xMAP = max
x

p(x|y), (2.33)

and the conditional mean (CM) estimate

xCM =

∫
xp(x|y)dx. (2.34)

The CM estimate is optimal in the sense of the mean square error crite-

rion whereas the MAP estimator penalizes errors uniformly [27].

The MAP estimate can be solved using minimization techniques de-

scribed in section 2.2.2. In small dimensional problems, the integral in

the CM estimate can be solved using numerical quadratures. However, in

large dimensional problems the Monte Carlo sampling techniques have

to be used [56]. The weakness of the sampling methods is that they are

slow due to the slow computation of the forward model and large number

of samples required. An advantage is that from sampled realizations of

the x, one could calculate, e.g., the credibility interval of the CM estimate.

An approximate credibility interval could be estimated using the normal

approximation of the posterior distribution at the MAP estimate.

In section 2.2.4, it was mentioned that the regularization level is based

on the subjective selection of the prior distribution and a careful analy-

sis of the measurement noise. Let us assume that all distributions are

Gaussian, p(y|x) = N(y − f(x), σ2
yI) and p(x) = N(x0, σ

2
xI) (for simplic-

ity they are assumed to be iid). The negative logarithm of the posterior

distribution is

− ln p(x|y) = 1

2σ2
y

‖y − f(x)‖2 + 1

2σ2
x

‖x− x0‖2 + Const. (2.35)

In this case, the MAP estimate corresponds to the Tikhonov regularized

solution of the inverse problem, where the regularization parameter is

defined as α = σ2
yσ

−2
x .
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The prior distribution can contain an uncertain parameter θ, which is

called a hyperparameter. Let us assume, that we know the prior dis-

tribution p(x|θ) for a fixed θ. As in the example above, one could select

θ = {x0, σx}. The uncertainty in the parameter θ is presented by the dis-

tribution p(θ), called the hyperprior distribution. Model like this is called

the hierarchical model. Given the likelihood function, one can show that

the posterior density of the hierarchical model is

p(x, θ|y) ∝ p(y|x)p(x|θ)p(θ). (2.36)

Hierarchical models have been used in Bayesian statistics, see, e.g., [56].

Similar, methods apply in the statistical inversion theory. Examples of the

hierarchical models in inverse problems are presented, e.g, in Publication

III and [57, 58, 59, 60]

2.2.6 Regularization of the inverse problem

In this section, different choices of the regularization functional R(x) are

discussed. As mentioned in section 2.2.5, there is a connection between

the MAP estimate and Tikhonov regularization in the case of Gaussian

distributions. This connection has been kept in mind when the regular-

ization functionals were designed and analysed.

The simplest choice R(x) = ‖x‖2 will lead to Tikhonov regularization

as presented in equation (2.24). In the Bayesian framework, this corre-

sponds to the assumption that voxels xi are iid. However, there is usually

much more information which can be included in the regularization, such

as the correlation between neighbouring voxels. The simplest framework

to add this correlation, called smoothness regularization, is to use the

regularization functional R(x) = ‖L(x − x0)‖2, where the operator L is a

differential operator, such as the Laplace operator (see e.g. [27, 48, 45])4.

This corresponds to the improper Gaussian prior distribution where the

mean is x0 and the inverse of the covariance matrix is LTL. The dis-

tribution is improper because the matrix LTL is singular. The method

presented by Kaipio and Somersalo [27] or the one by Calvetti et al. [61]

and a similar method presented in Publication I can be used to generate

4The smoothness regularization presented here is based on the norm∫ |Δx(r)|2dr, i.e. the second order smoothness regularization. Others have used
the norm

∫ |∇x(r)|2dr, i.e. the first order smoothness regularization, which leads
to the discrete regularization term xTLx instead of xTLTLx, where L is the dis-
crete Laplace operator.
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proper smoothness priors. Arridge et al. [62] have developed the smooth-

ness prior further, such that there is a parameter which controls the cor-

relation length of the covariance matrix. This type of prior density allows

the inclusion of a priori information of the size of the objects inside the do-

main. Similarly, the prior density, which includes the correlation length,

could be constructed using the Gaussian distribution with the covariance

matrix from Matérn family of the covariance functions [63] as done in

Publication IV.

Sometimes the smoothness assumption is not realistic. The parameter

x might have discontinuities, while being otherwise smooth. One of the

first regularization methods suitable for these kinds of objects was the

total-variation regularization (TV) (see e.g. [27, 48, 45]). It has an edge

preserving feature. The TV regularization functional

R(x) =

∫
Ω
|∇x(r)|dr (2.37)

for smooth enough functions is minimized when the length of the bound-

ary of the inclusion multiplied with its height is minimized. Therefore, TV

regularization favour smooth blocky objects. Examples of the application

of TV regularization in DOT are given in[64, 65, 66].

TV regularization produces an unwanted staircase effect for smoothly

varying parts of the image [67]. It has been also stated that in the case

of very fine discretization, the CM estimate is not edge preserving in the

statistical framework [68]. Douiri et al. [66, 69] presented an alterna-

tive for the edge preserving regularization, where discontinuities in the

smoothness assumption are based on the gradient of the image. A simi-

lar approach has been presented in Publication I. The difference between

these two methods is that the former is based on first order smoothness

regularization and the latter is based on second order smoothness regu-

larization. They have also different diffusivity functional.

In biomedical applications, other imaging modalities can be combined

with DOT. The other modality, such as MRI, can be used as a priori in-

formation for DOT. It has been presented that the Gaussian prior distri-

bution could be constructed from samples [27, 70]. As far as the author

knows, this has not been used in DOT because samples from the opti-

cal parameter images are hard to obtain. Generally, it is assumed that

structures in the optical and MR image corresponds to each other within

reasonable accuracy. Several structural priors, which include, e.g., MRI

information in the prior distribution for DOT have been presented, e.g. in

[71, 72, 73, 74, 75, 76, 77].
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2.3 Nonstationary inverse problem

2.3.1 State space model of the nonstationary inverse problem

In the nonstationary inverse problem, we have a time series of the mea-

surements {y1, y2, . . . , ym} called the measurement process, where the mea-

surements are done at time instances tk. Contrary to the stationary in-

verse problem, where the unknown variable x is assumed to be static, in

the nonstationary inverse problem the variable xk can vary over time.

As in section 2.2.5, here the measurement at tk is a realization from a

probability density function, p(yk|xk), conditional on the state xk. Simi-

larly, propagation of the states is presented as a conditional probability

distribution p(xk+1|xk). It is assumed, that the process {x1, x2, . . . , xm} is

a Markov process, i.e. the next state xk+1 does not depend on the his-

tory of states p(xk+1|x1, x2, . . . , xk) = p(xk+1|xk), and it does not depend on

previous measurements, i.e. p(xk+1|xk, y1, y2, . . . , yk) = p(xk+1|xk).
For the given measurement process {y1, y2, . . . , yM}, the state process

{x1, x2, . . . , xM} can be estimated using a recursive method called optimal

filtering or Bayesian filtering. The next state can be estimated from the

evolution update equation, called Chapman-Kolmogorov equation,

p(xk+1|y1, . . . , yk) =
∫

p(xk+1|xk)p(xk|y1, . . . , yk)dxk, (2.38)

where in the first step, the distribution p(x0|y0) is equal to an initial prior

distribution p(x0). When a new measurement yk+1 is observed, the poste-

rior probability distribution can be calculated from the observation update

equation

p(xk+1|y1, . . . , yk+1) =
p(yk+1|xk+1)p(xk+1|y1, . . . , yk)∫

p(yk+1|xk+1)p(xk+1|y1, . . . , yk)dxk+1
, (2.39)

which is same as Bayes’ theorem. See proof e.g. in [27, 78].

Let us assume that the measurement model is linear and the measure-

ment noise is Gaussian, i.e.

yk = Fkxk + rk, rk ∼ N(0, Rk), (2.40)

where Rk is the noise covariance. Similarly, we assume that the evolution

model is linear and the error is Gaussian, i.e.

xk+1 = Gkxk + qk, qk ∼ N(0, Qk), (2.41)

where Qk is the model error covariance. Given these assumptions and

using the evolution update equation and the observation update equation,
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one can show that the following recursion applies [27]. The evolution step

is

m−
k = Gmk−1

P−
k = GPk−1G

T +Qk−1, (2.42)

and the estimation step is

Sk = FkPkF
T
k +Rk

Kk = P−
k FT

k S−1
k

mk = m−
k +Kk(yk − Fkm

−
k )

Pk = P−
k −KkSkK

T
k , (2.43)

where mk and Pk are posterior CM estimates of the mean and the covari-

ance and the matrix Kk is known as the Kalman gain. The method is the

well-known Kalman filter, see e.g. [79, 80]. For nonlinear models, there

are approximative methods, such as the extended Kalman filter and the

unscented Kalman filter, see e.g. [79, 80, 81]. Like in statistical inverse

problems, the posterior distribution can be explored using sampling meth-

ods. Similarly, there are sampling methods for Bayesian filtering, called

particle filters, see e.g. [81].

In Publication IV, we used the Kalman filter for the linear approxi-

mation of the measurement model. The extended Kalman filter would

have lead to long computation, because of the linearization of the for-

ward model at every evolution step. An optimal smoother, see e.g. [82],

would give a posterior density of every state given all measurements,

p(xk|y1, . . . , yM ). This was not used because the basic Kalman smoother

would require an inversion of a square matrix of the size of the state vec-

tor, which would take too long.

2.3.2 Regularization of the nonstationary inverse problems

A regularization method for the nonstationary inverse problem, based on

the Tikhonov regularization, has been introduced for the ill-posed dynam-

ical electric wire tomography [83, 84]. In the method, the Tikhonov func-

tional ‖yk − Fkxk‖2 + α‖L(xk − x0)‖2 can be represented as an augmented

measurement model

‖ỹk − F̃kxk‖2 =
∥∥∥∥∥∥
⎡⎣ yk√

αLx0

⎤⎦−
⎡⎣ Fk√

αL

⎤⎦xk

∥∥∥∥∥∥
2

. (2.44)
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The augmented measurement model F̃k is replaced with the original for-

ward model in the Kalman filter equations (2.42) and (2.43). The method

has been used in the nonstationary electrical impedance tomography (EIT),

e.g, [85, 86, 87, 88] and nonstationary DOT [65, 89]. One weakness of this

method is that the size of the measurement model is large in three dimen-

sional problems and the use of the Kalman filter is impractical. Later Kai-

pio and Somersalo [27] have presented that the augmented measurement

model corresponds to an evolution model where the evolution operator G

and the model error covariance are dependent of the matrix L in the reg-

ularization functional. This result suggests that the regularization can be

achieved with an evolution model, where the covariance matrix has as-

sumed temporal and spatial correlation structure. In Publication IV, the

evolution of the states was modelled as an Ornstein-Uhlenbeck process

[90] combined with a spatial covariance matrix from the Matérn family

[63].

The augmented measurement model and the model presented in Publi-

cation IV imitate the smoothness regularization in the stationary inverse

problems in both temporal and spatial domain. However, in some applica-

tions, such as in electrical impedance process tomography, the evolution

of the states can be modelled accurately by equations modelling fluid flow.

Then there is no need for extra regularization because a priori informa-

tion of the states is exact. Examples of the process tomography can be

found in, e.g., [91, 92, 93]. In the brain imaging, modelling the evolution

of the states is much more complex (see [94]). Therefore, the Ornstein-

Uhlenbeck process, which does not model physiology, but is the simplified

model for the brain activity, was used.

On the other hand, states can be represented as a concatenated vector

[x1, . . . , xM ]T, such that the process {y1, . . . yM} is⎡⎢⎢⎢⎣
y1
...

yM

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
F1 0

. . .

0 FM

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1
...

xM

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
r1
...

rM

⎤⎥⎥⎥⎦ . (2.45)

The Tikhonov regularized solution of this concatenated system is⎡⎢⎢⎢⎣
x1
...

xM

⎤⎥⎥⎥⎦ = argmin
x∈RnpM

∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎣
y1
...

yM

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
F1 0

. . .

0 FM

⎤⎥⎥⎥⎦x

∥∥∥∥∥∥∥∥∥
2

+ α‖Lx‖2. (2.46)

If the regularization operator L has a block diagonal structure, the so-

lution is the independent spatial Tikhonov regularized solution at every
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step. Non-diagonal blocks correspond to temporal regularization. An effi-

cient method to solve the system (2.46) was suggested by Brooks et al. [95]

in the nonstationary electrocardiography problem. Zhang et al. [96] have

shown that this method corresponds to the Kalman filter and smoother

with special choice of the regularization operator L. The concatenated

system has been applied to spectroscopic DOT by Zhang et al. [97].
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3. Summary and discussion of the
publications

In this section results and findings of Publications I–IV are summarized.

3.1 Publication I: An adaptive smoothness regularization algorithm
for optical tomography

In this study, an adaptive smoothness regularization scheme has been

introduced for DOT. The correspondence between the regularization func-

tional and Gaussian prior density was broadly used in the design of the

smoothness regularization. The a priori assumption of the object was that

it consists of regions of slowly varying optical properties and sharp vari-

ations at boundaries between regions. The discretization of the regular-

ization functional was done in an unstructured grid. In complex domains,

like in biomedical applications, generation of an unstructured grid is more

practical than a structured one. One has to note that the unstructured

grids in the forward model and in the regularization discretization were

different.

The aristotelian approach (see [61]) was used to make the joint distribu-

tion of the variables on the boundary and the interior. Previously variance

adjustment at the boundary has been presented for simple domains, such

as an one dimensional line and a two dimensional rectangular grid [61].

In this paper, the adjustment was generalized to more complex domains.

The coupling constant, which controls the mixing of the image regions,

was updated during the iteration. The update of the regularization func-

tional can be motivated by hierarchical Bayesian models.

The presented regularization method outperforms the regular smooth-

ness regularization. The reconstructed images had higher contrast be-

cause discontinuities were allowed. However, one has to observe that if

the object is not consistent with our a priori belief, then the regularization
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forces smooth transitions into sharp edges. It has been demonstrated in

simpler applications that by calculating posterior statistics one can get

better estimates of smooth transitions [98]. The computational time is in-

creased eight-fold compared to the smoothness regularization due to the

update of the regularization during the iteration.

Structural information can be incorporated into the regularization func-

tional. The coupling constant which controls the diffusivity of the regular-

ization functional was based only on the information in the image. This

parameter could have information from an auxiliary structural image as

demonstrated by Douiri et al. [69] and Arridge and Simmons [99].

3.2 Publication II: Significance of background optical properties
and time-resolved information in diffuse optical imaging of
term neonates

In this study, the effect of the optode grid geometry, time-resolved infor-

mation and background optical properties were studied. The study was

carried out using perturbation Monte Carlo (pMC) reconstruction tech-

nique. Monte Carlo simulation, which models light propagation by sim-

ulating individual photon interactions with matter, was used as the for-

ward model, to generate simulated data and to generate Jacobian matrix.

Both pMC and DA were used for reconstruction. Time-resolved informa-

tion, such as the mean flight time of the photon and other statistics of

the flight time, are collected using the time domain system. In the fre-

quency domain, the mean flight time corresponds to the phase at the used

modulation frequency [24].

Results suggest that a high density imaging geometry which includes

both short and long source-detector separations, is optimal for functional

brain activations studies in humans. The geometry presented by Zeff et

al. [6] was less sensitive to the errors in the assumed background prop-

erties. Reconstructions were sensitive to the linearization point, i.e., as-

sumed background properties, in sparse imaging geometries.

This study was mainly a feasibility study of the pMC method and the

DA based methods were used for comparison. One has to note that DA

based reconstruction methods has some limitations as discussed in the

section 2.1.3. The object does not fulfil the condition μ′
s � μa in CSF.

It has been suggested that using an experimental value μ′
s = 0.3 mm−1
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in the CSF instead of the correct value allows fairly correct results to be

obtained with complex thin CSF regions [28]. This result is replicated by

pMC in this paper. DA is not valid near the sources. In this study, the

smallest source-detector separation was ∼ 10 mm, which is much larger

than μ′
s
−1 ≈ 0.5 mm. On the other hand, data was difference data from a

more accurate model. Difference imaging reduces systematic errors.

Background optical properties are essential in pMC method, which is

based on linearization of the forward mapping. Accurate knowledge of

the background optical properties is also relevant issue in the linearized

DA model as used in Publication IV. The nonlinear reconstruction based

on DA should not depend on the background optical properties because

those can be reconstructed in principle.

3.3 Publication III: A combined reconstruction-classification
method for diffuse optical tomography

In medical imaging, reconstruction and segmentation are often done suc-

cessively. In this study, the combined reconstruction-classification method

has been introduced for DOT. The main concept is to do reconstruction and

segmentation/classification iteratively, so that the previous classification

result is used in the regularization functional.

The presented method can be motivated by the Bayesian framework.

Our a priori belief is that the optical parameter in every voxel is randomly

drawn from the mixture of Gaussian distribution. The proposed method

finds estimates for the optical parameters, the class probabilities and the

mean and the variance of each class. Due to computational complexity,

only the MAP estimate of the posterior distribution is used. The proposed

method consists of iteration of reconstruction with the Tikhonov regu-

larization functional and classification by the expectation-maximization

algorithm.

The presented algorithm was tested on simulated data and a real phan-

tom measurement. The prior model presented allows discontinuities in

the optical parameters as in the model presented in Publication I. There-

fore, much better contrast has been achieved than using traditional smooth-

ness methods. Simultaneously method gives a probabilistic classification

of the object. The classification error is smaller than in case of the succes-

sive smoothness regularization and classification steps.
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The presented method quite flexibly transforms into different algorithms.

If classes are known in advance, such as from a segmented anatomical

image, then this method turns out to be the method presented by Guven

et al. [72]. Heiskala et al. [35] proposed that a set of anatomical images

could be used as a priori information in the image reconstruction. Simi-

larly, the collected information could be used here as the prior distribution

for class probabilities at every voxel.

3.4 Publication IV: State space regularization in the nonstationary
inverse problem for diffuse optical tomography

In this publication, the regularization of the nonstationary inverse prob-

lems was discussed in contrast to Publication I and Publication III where

the regularization of the stationary problem was discussed. Only a few

imaging modalities, like DOT and EIT, need a regularization in the state-

space model. Often regularization could be replaced by a quite accurate

state evolution model. It has been suggested that Tikhonov regulariza-

tion could be inserted as an augmented measurement. However, in this

publication we presented a method which relies on the evolution model

with a well chosen covariance structure.

The presented evolution model is a mean reverting process, the so called

Ornstein-Uhlenbeck process. It is a stationary stochastic process, which

will decay back to the average state if no measurements are made. At

the stationary state, the spatial covariance is assumed to be from Matérn

family of covariance functions. The Matérn family has the property that

there are parameters which control the smoothness of the realizations

and the correlation length.

For this paper also a phantom with dynamical features was developed.

In that phantom, we are able to test the performance of the measurement

device and the reconstruction methods. The phantom consists of a static

body and two moving parts. The translating part simulates activations

caused by the stimulus and the rotating part simulates noise caused by

the background physiological activity.

Based on the test in simulated two dimensional geometry, the augmented

model and presented model performs equally well regarding the image

quality. The presented method has more degrees of freedom to control the

smoothness and correlation length than the traditional smoothness regu-
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larization used in the augmented model. The advantage of the presented

model is that the Kalman filter is computationally feasible in large dis-

cretizations, like in the three dimensional phantom study. It took about

45 minutes for the presented method to compute the reconstruction of the

data. Based on an estimate, it would take 90 hours to compute the recon-

struction using the augmented model. However, one has to note that the

augmented model could be implemented as a smooth evolution process

(see section 2.3.2).

In this method an auxiliary measurement, such as activation start times

or the angular frequency of the noise process, are not used as inputs. If

the noise process, which simulates background physiology, implemented

as part of the phantom were stopped then the reconstructions were bet-

ter. It would be useful to model the noise process to achieve better image

quality. Diamond et al. [94] have done some work towards including the

noise process into the reconstruction.
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4. Discussion

In this thesis, we have developed several different regularization methods

for stationary and nonstationary DOT. The classical Tikhonov regular-

ization methods were used instead of the statistical inversion methods,

however the connection was kept in mind during the design of the reg-

ularization functional. Much work was done on the regularization, but

developing the measurement model, or in the statistical framework the

likelihood functional, was not done here.

There have been much progress in the approximation error modelling,

where errors are taken into account in the likelihood functional [62, 100,

101, 102]. Utilizing these methods more, one could make more realistic

models of the errors in the measured signal. Error sources could be from,

e.g., the measurement device, the approximative forward model, the in-

correct or truncated shape of the object or the sparse discretization. A

more accurate likelihood functional would make the Bayesian framework

in DOT more feasible. Over or underestimated noise covariance would

lead to too broad or too narrow posterior distribution. However, this does

not affect on the value of the MAP estimate, but would make the sta-

tistical interpretation incorrect. Therefore, the Tikhonov-regularization

method, which corresponds to the MAP estimate, was used in this thesis.

The feasibility of the developed regularization methods was shown us-

ing measurements from simple phantoms. However, in brain imaging for

example, the object has a much more complex structure. Some additional

information, such as anatomical information, would improve reconstruc-

tions. One could combine anatomical information in the regularizations

presented in Publication I and Publication III as discussed in sections 3.1

and 3.3.

The DA based forward model was utilized in this thesis. A more accurate

measurement model, based on RTE, would require much more computer
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time. Therefore, the DA is more feasible for nonlinear reconstructions.

This might change in the near future. Both increasing computer power

and recent developments in the GPU computation will make MC simula-

tion of the photon propagation more reasonable than before.

The reconstruction methods for the nonstationary inverse problems in

the DOT have been studied much less than reconstruction methods for

stationary inverse problems even though many applications are nonsta-

tionary. In biomedical imaging, there is some interesting work, such as

[97, 94], where auxiliary measurements and hemodynamic response func-

tion are included in the state space model. Fully 3D reconstruction of this

kind would be good goal to pursue. In 3D, the degrees of freedom can

easily explode to an impractical level.
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