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1. Introduction

Waves in their various forms are all around us. Our speech is an ensemble

of different kinds of sound waves. When we talk over the mobile phone,

the conversation is sent over the air as an electromagnetic wave. Natu-

rally, problems related to waves are frequently faced in the design of new

devices. For example, how should the antenna of the mobile phone be de-

signed for the best signal strength? Or what kind of materials should be

chosen to the concert hall for the best possible musical experience?

To make good design decisions related to practically any engineering

problem, numerical simulations are required. For example, before a phys-

ical prototype of a new mobile phone antenna is built, it has long before

existed as an virtual model in memory of the computer. The virtual model

allows the properties of the new design to be studied before costly proto-

types are built. For example, the transmission properties of the mobile

phone antenna can be simulated beforehand and the best design can be

chosen for further development.

Studying the properties of any device using a computer requires mod-

eling and numerical simulation steps. In the modeling step, the designer

identifies the physical phenomena relevant for the device and defines a

suitable set of equations capturing this phenomena. For example, the an-

tenna might be modeled using time-harmonic Maxwell’s equations. After

the model is fixed, numerical simulations are used to obtain information

on the properties of the device.

In most engineering problems, the numerical simulation step consist of

a discretization of a partial differential equation (PDE) and a solution of

the resulting system of equations. The system of equations can be either

linear or non-linear. The non-linear equations are solved using iterative

methods, which leads to solving series of linear problems. After a solu-

tion is obtained, its quality has to be assessed to guarantee good design

9



Introduction

decisions.

The numerical simulation step is especially difficult for wave-type equa-

tions, see [32]. The two main issues are difficulties with discretization

and with the solution of the resulting linear systems. The first of these

difficulties is related to the large number of unknowns required for the

solution of the PDE. The engineering explanation for this phenomenon

is the Nyquist sampling theorem, which states that a certain number of

sampling points per wavelength is required to resolve a wave. For exam-

ple, when solving the Helmholtz equation, the engineering rule of thumb

is that the minimum number of elements required for each wavelength

is 10-12. If this rule is obeyed, the discretization step typically produces

very large systems. For example, a simulation of the acoustic properties

of a concert hall with the dimensions 20× 20× 50 meters is computation-

ally a very large scale problem. As the wave length of human speech is

roughly in the range from four meters to thirty centimeters, following the

engineering rule of thumb leads to approximately 70 million unknowns.

Unfortunately, the situation is even worse. A detailed mathematical anal-

ysis reveals that the required number of unknowns grows in powers of the

wave length (see [17, 18]).

Large number of unknowns is not necessarily untolerable. This is the

case for mechanical engineering problems, where the largest models can

have millions of unknowns, usually arising from very complex models cou-

pling several different physical phenomena. The main difference to wave

equations is the availability of efficient solvers for linear systems. Such

solvers are available for many mechanical engineering problems, but un-

fortunately not for the linear systems arising from time-harmonic wave

problems. As we will see, the work required to solve a time-harmonic

wave problem grows as a function of the frequency of the modeled field

In this thesis, the main focus is in the numerical simulation step for

wave problems. All of the research has been made in the context of fi-

nite element methods. The motivation of the work comes from the nu-

merical simulation of time-harmonic Maxwell’s equations. The Maxwell’s

equations contain two difficult phenomenon, the large kernel of the curl-

operator and the wave nature of the solution. Our focus will be solely on

the difficulties related to the wave nature of the solution. Hence, we have

studied the Helmholtz equation, which is a simple time-harmonic wave

equation. As same basic principles, and even the same governing equa-

tions, apply for numerical simulation of different kinds of time-harmonic
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wave equations, the obtained results can be applied in several different

fields.

The main contributions of the thesis are in the iterative solution of lin-

ear systems arising from the discretization of time-harmonic wave equa-

tions. Two different solution strategies have been studied, a domain de-

composition based method and a preconditioned GMRES method. In ana-

lyzing the domain decomposition based method, preconditioners for mixed

systems were studied, which led to a new preconditioner. In addition to

the solution of the linear system, a minor contribution was made in the

assessment of the quality of the solution to different simplifications of the

Maxwell equations.

The organization of this thesis is as follows. First, we will discuss the

Maxwell’s equations and show what kind of wave equation is obtained

from this system. Then we will introduce the model problem. With the

help of the model problem, we will demonstrate the difficulties faced in

numerical simulation of wave equations. Finally, a discussion of the arti-

cles, which form the main part of the thesis, is given.
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2. Maxwell’s equations

The Maxwell’s equations

−∂tD + curl(H) = J (2.1)

∂tB + curl(E) = 0 (2.2)

div(B) = 0 (2.3)

div(D) = �. (2.4)

are the governing equations of electromagnetic phenomenon. They de-

scribe the interactions between currents J , electric charges �, electric field

E, electric field density D, magnetic field H, and magnetic field density

B. The Maxwell’s equations are present in several different engineering

applications, ranging from the design of antennas to the design of electric

motors.

The Maxwell’s equations are coupled with the constitutive relations

D = D (E) and B = B (H) , (2.5)

which are material dependent. The constitutive relations can be very com-

plicated, for example the relation between magnetic field and magnetic

field density in steel is highly non-linear and depends on the past values

of the fields.

In many engineering problems, the electromagnetic properties of the

media are modeled with sufficient accuracy by assuming the relationships

(2.5) linear. In linear material, the simplest form of constitutive equations

is

D = εE B = μH. (2.6)

13



Maxwell’s equations

where ε, μ ∈ Rand ε > 0, μ > 0.

As we know from basic physics, the electric field causes charged parti-

cles to move. For Maxwell’s equations this behavior is modeled by gen-

eralized Ohm’s law relating the current density to the electric field. In

linear material, the generalized Ohm’s law has the form

J = σE + JS , (2.7)

in which σ ∈ R is the called conductivity and JS the imposed current den-

sity. The imposed current density is a useful modeling tool. For example,

a current loop can be modeled as an impose current density.

The Maxwell’s equations are a detailed model of the physical phenom-

ena related to electromagnetic fields. In many cases, such a detailed

model is not required and a simpler set of equations describing the rele-

vant phenomena with sufficient accuracy is derived from the full Maxwell

system. For example, when devices operating at the low-frequency range,

such as transformers, generators, or electric motors are studied, a much

simpler eddy-current model is usually applied, see [1].

The simplest wave equation derived from the Maxwell’s equations is

the time-harmonic vector wave equation. This equation is derived under

the assumptions that all materials are linear and all excitations are si-

nusoidal, which is often the case in practical applications. Under these

assumptions, all fields are also sinusoidal and the time dependency can

be described as

E (x, t) = �
(
E (x) eiωt

)
. (2.8)

Such time dependency allows elimination of all time derivatives and leads

to the time-harmonic Maxwell’s equations in the frequency domain. The

equations (2.1) and (2.2) take the form

−iωD + curl(H) = J (2.9)

iωB + curl(E) = 0. (2.10)

In materials satisfying constitutive relations (2.6), electric and magnetic

field densities can be eliminated. The term σE in Ohm’ s law (2.7) is taken

into account by introducing complex permittivity

14



Maxwell’s equations

ε̃ = ε

(
1 +

iσ

ωε

)
. (2.11)

Using this notation, leads to equations

−iωε̃E + curl(H) = Js (2.12)

iωμH + curl(E) = 0. (2.13)

These equations can be further simplified by eliminating either E or H

field. Eliminating the H field leads to the vector-wave equation

curl
(
μ−1curl(E)

)
− κ2E = Js (2.14)

where the wave number κ2 = ω2ε̃. This equation represents the simplest

wave-type equation derived from the system (2.1)-(2.4).

In mathematical analysis, problem (2.14) is interpreted in its weak form.

For this purpose, we will assume that the problem is posed in a simply

connected domain Ω with perfectly electrically conducting (PEC) surface

such that

n×E = 0 on ∂Ω.

Under these assumptions, the weak form of the problem (2.14) is: Find

E ∈ H0(curl; Ω) such that

(μ−1curl(E), curl(u))− κ2(E,u) = (Js,u) ∀u ∈ H0(curl; Ω). (2.15)

Here, (·, ·) is the standard L2(Ω)-inner product and the space H0(curl; Ω)

is defined as

H0(curl; Ω) =
{
u ∈ L2(Ω) | ‖u‖curl < ∞ and n× u = 0 on ∂Ω

}
.

where the norm ‖u‖curl is defined as

‖u‖2curl := ‖u‖20 + ‖curl(u)‖20.

This function space is very natural for the Maxwell’s equations. The func-

tions from H0(curl; Ω) have continuous tangential components over mate-
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Maxwell’s equations

rial interfaces, which is also the case for the electric field E.

In the first finite element solvers for Maxwell’s equations, the weak

problem (2.15) was solved using [H1(Ω)]3-conforming finite element meth-

ods. This approach led to difficulties in the numerical simulation step,

for example spurious modes appeared in eigenvalue computations of non-

convex domains, [24, 1]. These difficulties were due to the [H1(Ω)]3 -

conforming finite element methods being incorrect for Maxwell’s equa-

tions. Nowdays, these difficulties have been overcome, e.g., by using the

H(curl; Ω)-conforming methods in finite element simulations.

From mathematical point of view, the Maxwell equations contain two in-

teresting phenomenon, the large kernel of the curl-operator and the wave

type behavior of the solution. As in [24], these two phenomenon can be

isolated in the mathematical analysis by using the Helmholtz decomposi-

tion of vector fields.

The Helmholtz decomposition splits a vector field into two parts, u =

u0+∇p. Several alternative decompositions with different kind of require-

ments for the fields u0 and p exist. Here, we will use the decomposition

such that

(u0,∇ξ) = 0 ∀ξ ∈ H1
0 (Ω).

The Helmholtz decomposition divides the space H0(curl; Ω) into two parts

H0(curl; Ω) = X0 ⊕∇H1
0 (Ω),

where the space X0 is defined as

X0 := { u ∈ H0(curl; Ω) | (u,∇p) = 0 ∀p ∈ H1
0 (Ω) }. (2.16)

Using the Helmholtz decomposition, the vector wave equation is split into

two parts: find E0 ∈ X0 and p ∈ H1
0 (Ω) such that

−κ2(∇p,∇ξ) = (Js,∇ξ) ∀ξ ∈ H1
0 (Ω) (2.17)

(μ−1curl(E0), curl(u0))− κ2(E0,u0) = (Js,u0) ∀u0 ∈ X0 (2.18)

The first of these equations is the Poisson problem related to the kernel of

the curl-operator. It does not exhibit any wave-type behavior. The second

equation has the structure typical for time-harmonic wave equations: a

differential operator and a lower order shift term. As the main focus of

16



Maxwell’s equations

the thesis is in time-harmonic wave equations, this structure motivates

us to consider a simpler model problem with the same properties, namely

the Helmholtz equation.

2.1 The model problem

The Helmholtz equation is a prototypical time-harmonic wave equation.

It arises in several physical situations, for example in the simulation of

sound waves. From mathematical point of view, the Helmholtz equation

has a similar structure with the wave-part of the time-harmonic vector

wave equation (2.18), namely a differential operator with a lower order

sifth term. Naturally, the curl-operator present in vector wave equation is

much more complicated than the Laplace operator, but similar properties

are shared by the two. For example, the Poincare inequality is valid in

both spaces H1
0 (Ω) and X0.

The Helmholtz equation is: Find u such that

−Δu− (κ2 − iσ)u = f in Ω. (2.19)

for simplicity, we will consider either the homogenous Dirichlet boundary

condition

u = 0 on ∂Ω (2.20)

or the absorbing boundary condition

∂u

∂n
− iκu = g on ∂Ω. (2.21)

The domain Ω ⊂ R
d, d = 2, 3. The functions f and g are from the spaces

L2(Ω) and L2(∂Ω), respectively. The parameters κ and σ are both real

valued κ, σ ∈ R. The parameter κ is always positive κ > 0. The parameter

σ is positive, σ > 0, for the Dirichlet boundary condition case (2.20) and

zero, σ = 0, for the absorbing boundary case (2.21).

The shape of the domain Ω has an effect on the properties of the weak

solution u. For simplicity, we will assume that domain Ω is convex, lead-

ing to H2(Ω)-regularity of the weak solution when homogenous Dirichlet

boundary conditions are imposed, see Publication I and [6, 15]. The regu-

larity is an important property of the solution, affecting the convergence

of discretization methods for the PDE’s.
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Maxwell’s equations

The weak form of the problem (2.19) with homogenous Dirichlet bound-

ary conditions (2.20) is: Find u ∈ H1
0 (Ω) such that

(∇u,∇v)− κ2(u, v) + iσ(u, v) = (f, v) ∀v ∈ H1
0 (Ω) (2.22)

and with the absorbing boundary conditions : Find u ∈ H1(Ω) such that

(∇u,∇v)− κ2(u, v)− iκ 〈u, v〉∂Ω = (f, v) + 〈g, v〉∂Ω ∀v ∈ H1(Ω) (2.23)

The structure of the two above problems is similar with the equation

(2.18), a positive definite term and a lower order shift term. The exis-

tence of a unique solution for such problems follows from the Fredholm

alternative and a uniqueness proof, see e.g. [24, 21]. To demonstrate the

similarities between the problem (2.18) and the Helmholtz equation, we

will shortly present the existence and uniqueness proof for the Helmholz

equation with homogenous Dirichlet boundary conditions. It is easy to

see, that the exactly same techniques can be used for analysis of the equa-

tion (2.18). The only difference is that different norms and spaces are

involved, see [24].

To apply the Fredholm alternative, the weak problem (2.22) is cast into

an operator equation,

(K + I)u = F (2.24)

where K is an compact operator K : L2(Ω) → L2(Ω) and F ∈ L2(Ω). The

Fredholm alternative states that

Theorem 2.1.1 (Fredholm alternative). Let K : H → H be a compact

linear operator and H be a Hilbert space. Then either

(i) the equation (I +K)u = F has a unique solution for each F ∈ H

or

(ii) the equation (I +K)u = 0 has solutions u 
= 0.

A proof can be found in [13]. In the following denote,

a(u, v) = (∇u,∇v)− κ2(u, v) + iσ(u, v).

The bilinear form a(·, ·) satisfies

�a(u, u) ≥ |u|21 − κ2‖u‖20 ∀u ∈ H1
0 (Ω). (2.25)
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To define the operator K, we first need to define a new bilinear form

a+(u, v) = a(u, v) + (1 + κ2)(u, v). (2.26)

The new bilinear form satisfies

�a+(u, u) ≥ ‖u‖21,

i.e. it is coercive. With the help of this bilinear form, the original problem

(2.22) can be written as

a+(u, v)− (1 + κ2)(u, v) = (f, v)

From the operator equation (2.24), it follows that u = F − Ku. Using this

equation for the first term above leads to

a+(F −Ku, v)− (1 + κ2)(u, v) = (f, v)

So, we can define K as: For u ∈ L2(Ω) find Ku ∈ H1(Ω)such that

a+(Ku, v) = −(1 + κ2)(u, v) ∀v ∈ H1(Ω)

and F as: Find Fu ∈ H1(Ω) such that

a+(F , v) = (f, v) ∀v ∈ H1(Ω).

As the bilinear form a+(·, ·) is coercive and bounded, the problems defining

K and F have a unique solution by the Lax-Milgram Lemma, see [13, 21].

In addition, from the definition of operator K, it immediately follows that

‖Ku‖1 ≤ C‖u‖0.

The compactness of the operator K follows from the boundedness and the

compact embedding of H1(Ω) to the space L2(Ω). The same embedding

holds between X0 and L2(Ω), see [24]

The uniqueness of the solution is established easily: Let u1 and u2be

solutions to (2.22). Then there holds

�a(u1 − u2, u1 − u2) = 0

This is
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σ‖u1 − u2‖20 = 0,

so that u1 = u2. When the parameter σis a function or different boundary

conditions are be posed, the uniqueness result follows from the unique

continuation principle, see [20]. Identical results are used also to show

the uniqueness of the solution to Maxwell’s equations, see [24].

The existence of a unique solution follows now from the Fredholm al-

ternative. The Fredholm alternative does not state anything about the

dependence of the solution u on the load function f and the parameters

σ, κ. Establishing such a stability estimate is important for the conver-

gence analysis of the finite element method for the model problem. The

following Theorem is a simplification of Theorem 2 in Publication I.

Theorem 2.1.2. Let Ω be a convex domain, f ∈ L2(Ω), κ ∈ R, σ ∈ R and

let u be the weak solution to (2.22). Then there exist a constant C > 0,

independent on κ and σ, such that

|u|2 ≤ C

(
1 +

κ2

σ

)
‖f‖0.

This Theorem is proved by solving the problem (2.22) by using eigenbasis

of the Laplace operator. Then a Poisson problem is formed for the solution

and elliptic regularity theory is applied to obtain the desired estimate.

Similar results for the problem with absorbing boundary conditions, equa-

tion (2.23), are given e.g. in [22, 23]. In their simplest form, when g = 0,

they state that

|u|2 ≤ Cκ‖f‖0.

where the constant C > 0 is independent on κ. The results in [23] are

obtained in different fashion from Theorem 2.1.2 and are more detailed.

They also provide tools for analyzing convergence of higher order schemes

for the Helmholtz equation. The proof given in [23] is based on splitting

the solution to two parts, an analytic function and a function with limited

regularity. Then κ-explicit bounds are obtained separately for the two

terms. This technique is more general compared to the one used in Publi-

cation I and it can be applied to variety of different boundary conditions.

As the stability result given in Theorem 2.1.2 is important for the κ-

explicit convergence analysis of numerical methods for Helmholtz equa-

tion, we will illustrate it with a numerical example. We consider the unit
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square Ω = (0, 1)2 and problem with homogeneous Dirichlet boundary

conditions. In this case, a series solution is obtained as

u(x, y) =
∞∑
n=1

∞∑
m=1

αnmϕnm(x, y),

where

ϕnm(x, y) = sinπnx sinπmy

and

αnm =
4(f, ϕnm)

(πn)2 + (πm)2 − κ2 + iσ
.

In this setting, the semi-norm |u|2 and norm ‖f‖0 are both easy to com-

pute. This allows us to study the stability constant by computing the ratio
|u|2
‖f‖0 for different right hand sides.

For f = 1, we have

anm =

⎧⎪⎨
⎪⎩

8
π2nm

1
(πn)2+(πm)2−κ2+iσ

when n and m even

0 otherwise.

By analyzing the series coefficients it is easy to see that the stability con-

stant behaves as O(κσ−1). A numerical simulation was performed by ap-

proximating the series with the terms such that n,m ≤ 100. Such an

approximation to the ratio |u|2
‖f‖0 is presented in Figure 2.1. The resonant

frequencies of the problem with σ = 0 are responsible for the spikes visible

in the graph.

The predicted worst case behavior can be obtained for example, by set-

ting

anm =

⎧⎪⎨
⎪⎩
1 when n ≤ 100 and m ≤ 100

0 otherwise.
(2.27)

The ratio |u|2
‖f‖0 is visualized in Figure 2.2 as a function ofκ. One can clearly

observe the predicted second order growth.
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Maxwell’s equations

Figure 2.1. The ratio |u|2
‖f‖0 as a function of κ when f = 1 and σ = 2. The O(κ) - behavior

is clearly visible.

Figure 2.2. The ratio |u|2
‖f‖0 as a function of κ when σ = 2 and f is chosen such that the

series coefficients are as in equation (2.27). The O(κ2) - behavior is clearly
visible.

.
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3. Numerical simulation of wave type
phenomenon

Several different numerical methods are suitable for discretization of wave

type partial differential equations. The discretization can be done using,

for example, finite difference methods, boundary element method (BEM)

or the finite element method. Each of these methods is best suited for

certain simulations.

Due to availability of simple time-stepping schemes, the finite difference

methods are very popular in time-domain simulations. These methods

suffer from problems in modeling of devices with complex geometries, see

e.g. [30]. The boundary element method, see [27, 21], requires a grid at

all material interfaces, so it is best suited when modeling large areas of

homogenous media. As unbounded domains can be easily simulated with

BEM, it is widely applied for numerical solution of scattering problems.

In this thesis, we will consider numerical simulations done with the fi-

nite element method (FEM). The main benefits of FEM compared to other

discretization methods are the easy handling of complex geometries and

non-homogenous material parameters. The non-homogenous material pa-

rameters are encountered, for example, when non-linear medium is mod-

eled. Typically, the linear problems solved as part of the iterative solution

process of the non-linear equations have material parameters depending

on the previous iterate. An example of such a situation is the numeri-

cal simulation of electrical machines constructed from steel, which is a

highly non-linear material. In addition, the finite element method has a

solid mathematical background. Especially this makes the mathemati-

cal treatment of different phenomenon related to numerical simulation of

wave type problems using FEM possible. Good introductory texts to FEM

are e.g., [2, 19].

In the finite element method, a weak form of the partial differential

equation is solved approximately in a finite dimensional space Vh. The
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approximate problem is: Find uh ∈ Vh such that

a(uh, vh) = (f, vh) ∀v ∈ Vh. (3.1)

where (·, ·) is the L2(Ω) inner product and a(·, ·) is a bilinear form related

to the weak form of the PDE.

The finite element method is a systematic way to construct the sub-

space Vh and to assembly the matrix equation related to problem (3.1).

The finite element space Vh is connected to a partition of the domain into

smaller elements, for example triangles, quadrilaterals, or tetrahedrons.

We will consider the space of piecewise linear basis functions,

Vh :=

{
v ∈ H1

0 (Ω)

∣∣∣∣ v ∈ P1(K) ∀ K ∈ Th
}
. (3.2)

where Th is the partition of the domain into triangular or tetrahedral ele-

ments. The parameter h is defined as the diameter of the smallest sphere

containing any element of Th. This space is suitable for the discretization

of the Helmholtz equation. A different discretization space is required for

the vector-wave equation (2.14), see e.g. Publication IV.

The finite element space Vh is spanned by a set of basis functions Vh =

span {ϕi}. Each finite element function v ∈ Vh is related to a vector of

coefficients xv ∈ R
n via

v =
n∑

i=1

(xv)iϕi. (3.3)

The matrix equation arising form the finite dimensional problem (3.1) is

Ax = b, (3.4)

where Ai,j = a(ϕh, ϕi) and bi = (f, ϕi). In finite element simulations,

the two main tasks are to construct the matrix A and to solve the linear

system (3.4).

3.1 Convergence analysis and the high-frequency problem

One of the main difficulties in the numerical simulation of wave-type

equations is the high number of basis functions required to resolve the

solution, see [32]. To demonstrate this phenomenon, we consider the

Helmholtz equation (2.19) with absorbing boundary conditions (2.21). The
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Figure 3.1. The figures show the finite element solution to problem (2.23) with κ = 12π
computed on a series of refining triangulations. The mesh is coarsest in the
upper left and finest in the lower right corner. A sufficiently fine mesh is re-
quired, before the finite element approximation resembles the exact solution
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Figure 3.2. The left figure shows the error in H1(Ω)-seminorm as a function of the mesh
size h and the right figure the error in L2(Ω)-norm as a function of the mesh
size h. The convergence begins after a certain threshold mesh size is reached.

domain Ω is chosen as the unit square Ω = (0, 1)2 and the function g is

such that the exact solution is

u(x) = e−iκξ·x

where ξ = 1√
2

[
1 1

]
.

The problem is solved using a triangular mesh and linear basis func-

tions. The high-frequency problem can be easily understood based on

the results show in Figures 3.1 and 3.2. Before the finite element solu-

tion visually resembles the exact solution, a sufficiently fine mesh size is

required. Based on errors in the H1(Ω)-seminorm and the L2(Ω)-norm

shown in Figure 3.2, the finite element approximation does not have a

connection to the exact solution before a threshold mesh size is reached.

Based on the results, the threshold mesh size tends to zero when the pa-

rameter κ grows.

The high-frequency problem refers exactly to the observed phenomenon:

a threshold mesh size, tending to zero with growing parameter κ, is re-

quired before the finite element solution resembles the exact solution. The

natural question is what is the connection between the required mesh size

and κ. For our model problem, this depends on material parameters and

boundary conditions.

A mathematical analysis of the connection between the threshold mesh

size and κ is given in Babuška and Ihlenburg, [17, 18], for the Helmholtz

equation (2.19) with absorbing boundary conditions (2.21) posed in a one

dimensional domain. The analysis is divided into two parts, pre-asymtotic

and asymptotic range. In the asymptotic range, the mesh has to satisfy

26



Numerical simulation of wave type phenomenon

the constraint κ2h � 1, and the finite element error is proportional to the

approximation error (i.e., quasi-optimal). Before the mesh size require-

ment is satisfied, i.e., in the pre-asymptotic range, an error estimate can

be given if κh is sufficiently small.

In the Publication I of this thesis, the tools from the asymptotic error

analysis for the Helmholtz equation with homogenous Dirichlet boundary

conditions are studied in connection with preconditioned iterative meth-

ods. We will give here a simplified error estimate for the problem with

homogenous Dirichlet boundary conditions using the tools of Publication

I. The applied techniques are same as in [29, 17, 18].

The finite element error estimates are classically derived by relating the

error in the finite element approximation to error in the interpolant of the

exact solution. A convergence estimate then follows from the properties

of the interpolant. For coercive problems, the interpolation and the finite

element approximation errors are related to each other via Cea’s Lemma,

stating that

‖u− uh‖1 ≤ C inf
vh∈V

‖u− vh‖1,

where C > 0 is a positive constant, u the exact solution and uh the finite

element approximation from the space Vh. The Cea’s Lemma follows from

the Galerkin orthogonality property

a(u− uh, vh) = 0 ∀vh ∈ Vh (3.5)

and coercivity of the bilinear form.

�a(v, v) ≥ α‖u‖21 ∀v ∈ V, (3.6)

where α > 0 is a positive constant. The Galerkin orthogonality holds also

for the Helmholtz equation, but the coercivity property does not. Hence,

the Cea’s lemma cannot be directly applied. However, the coercivity will

hold in a weaker sense,

�a(u− uh, u− uh) ≥ α‖u− uh‖21 (3.7)

when the mesh size is sufficiently small. It turns out, that the above

property is enough for relating the finite element approximation error to

the interpolation error for the Helmholtz equation.

The bilinear form of our model problem satisfies
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�a(u− uh, u− uh) = |u− uh|21 − κ2 ‖u− uh‖20 .

Hence, obtaining the property (3.7) requires us to relate the discretiza-

tion error in the H1(Ω)-norm to error in the L2(Ω)-norm. A suitable result

follows from the duality argument. In order for all constants to be inde-

pendent on κ, it is important to know the κ-dependency of the stability

estimate. In our case, the stability estimate is

|u|2 ≤ C(1 +
κ2

σ
)‖f‖0.

In the following analysis, we will denote CS = C(1+ κ2

σ ). The two following

Theorems are simplifications of the Lemmas 4 and 5 from Publication I.

Theorem 3.1.1. Let u ∈ V be the weak solution to problem (2.22) and

u ∈ Vh its finite element approximation. In addition, let the mesh size h be

such that

1− CCS(κ
2 + σ)h2 > 0

Then there exists a constant C > 0, independent of κ,σ, h, and CS , such

that

‖u− uh‖0 ≤
CCSh

1− CCS(κ2 + σ)h2
|u− uh|1

Theorem 3.1.2. Let u ∈ V be the weak solution to problem (2.22) and

u ∈ Vh its finite element approximation. In addition, let the mesh size hbe

such that

CS(κ
2 + σ)h2 � 1 and κ2C2

SH
2 � 1

Then there exists a positive constant α > 0, independent of κ,σ, h, and CS ,

such that

�a(u− uh, u− uh) > α‖u− uh‖21. (3.8)

The requirement for the mesh size to be sufficiently small arises from the

two above theorems. For our problem, the stability constant is

CS = 1 +
κ2

σ
,

hence, if σ stays constant the mesh size should be such that the term
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κ3

σ
h � 1. (3.9)

Thus, in the worst case the mesh size is related to the third power of

κ. When the mesh size satisfies the requirement (3.9) an error estimate

follows from the Theorems 3.1.1 and 3.1.2. Using the property (3.7) and

the Galerkin orthogonality (3.5) gives

α‖u− uh‖21 ≤ �a(u− uh, u− uh) = �a(u− πuh, u− uh).

in which πuh ∈ Vh is the nodal interpolant of u. The last term above can

be estimated as

�a(u− πhu, u− uh) ≤ |u− πhu|1 |u− uh|1 + (σ + κ2) ‖u− πhu‖0 ‖u− uh‖0

Applying Theorem 3.1.1 to the last term yields

�a(u−πhu, u−uh) ≤ |u− πhu|1 |u− uh|1+CCSh(σ+κ2) ‖u− πh‖0 |u− uh|1 .

Dividing with ‖u− uh‖1 gives the convergence estimate

‖u− uh‖1 ≤ |u− πhu|1 + CCSh(σ + κ2) ‖u− πhu‖0

which is valid only, if the assumption made on the mesh size h in The-

orems 3.1.1 and 3.1.2 are satisfied. Using standard interpolation error

estimates, see [2],

‖u− πhu‖0 ≤ ch2|u|2 and |u− πhu|1 ≤ ch|u|2

and the stability estimate gives

‖u− uh‖1 ≤ (C + CCSk
2h2(σ + κ2))CSh‖f‖0.

This error estimate was obtained under the assumption that the terms
κ2

h and κ3

σ h are small. This is a very strong requirement for the mesh size.

The practical implication is that solving the problem for high-frequencies

leads to extremely large linear systems.

The convergence of finite element methods for time-harmonic Maxwell’s

equations is similar to convergence for the Helmholtz equation. For ex-
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ample, [25] presents a simple derivation of an error estimate for the finite

element approximation of vector wave equation (2.14) in lossless media in

a simply connected Lipschitz polyhedron with PEC boundary conditions,

under the assumption that the wave number is not a resonant frequency

of the problem. This bound states that there exist a constant C(κ) > 0

such that

‖E −Eh‖curl ≤
1

1− C(κ)h1/2+δ
inf

vh∈Xh

‖E − vh‖curl (3.10)

for sufficiently small h. Here is Xh is the space of lowest order Nédélec

elements, Eh ∈ Xh the finite element approximation, and δ > 0 a param-

eter depending on the regularity of the solution. This bound states that

as in the case of Helmholtz equation, a threshold mesh size is required

before the finite element method converges. The threshold mesh size de-

pends on the wave number κ via estimate similar to that presented in

Theorem 2.1.2. Such estimates are not used in [25], leading to implicit

κ-dependency. The techniques applied in [25] are similar to ones used for

Helmholtz equation, but the nullspace of the curl-operator adds an addi-

tional layer of complexity to the analysis.

Several different strategies have been explored to overcome the high-

frequency problem. The use of high-order basis functions is one possible

strategy to battle the high-frequency problem [16, 24]. Error estimates

given in [18] imply that increasing the order of the discretization is more

economical than using a finer mesh. Very high-order discretizations are

studied in Publication III. An alternative strategy is to look for basis func-

tions that are more suitable to approximate wave type solutions. For ex-

ample, plane wave basis functions are used in the ultra weak variational

formulation, see [4, 5].

As the size of the linear system increases when the frequency grows, one

approach is simply to accept the difficulties in the discretization and try to

develop more efficient solvers for the linear system. Currently, computa-

tional work required to solve the linear system increases quickly when the

frequency grows. More efficient preconditioners are studied in an effort to

eliminate this behavior, see e.g., [7, 9, 31, 11, 10, 12] .

As a priori error estimates do not give reliable information on the con-

vergence of the FEM-approximation, the role of a posterior error estima-

tion becomes important. A posteriori error estimates also have a crucial

role in deciding how the approximate solution could be improved while

keeping the number of degrees of freedom as small as possible. Such esti-
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mates are studied for Maxwell’s equations in Publication IV.

3.2 Solution of the linear system

The finite element discretization of the Helmholtz equation leads to the

linear system

Ax = b. (3.11)

where A ∈ C
n×n and x, b ∈ C

n.

The solution of the linear system is often the most demanding part in the

numerical simulation step. When solving the linear system, two factors

have to be taken into account, the computational time and the amount of

memory required in the solution process. Both of these factors depend on

the properties of the matrix A.

The matrix A for the finite element discretizations of the Helmholtz

equation is indefinite, which makes the system (3.11) difficult to solve.

This is due to lack of efficient preconditioners and large computational

cost of suitable iterative methods. In addition, if material parameters or

absorbing boundary conditions are present in the model, the matrix Ais

also non-normal. This means that it is not unitary diagonalizable, which

has to be taken into account in evaluating different solution methods.

Solution techniques for linear systems are divided into two groups, di-

rect and iterative methods. The direct methods are usually based on

transforming the matrix A to an easily to solvable form. For example,

the Cholesky decomposition for positive definite systems decomposes the

matrix as product of lower triangular matrix and its transpose. Similarly,

the Gaussian elimination transforms the system into a lower triangular

form. Problems related to triangular matrices are solved very efficiently

using back substitution.

Direct methods require the matrix to be constructed into the memory of

the computer. The linear systems arising from finite element discretiza-

tions are very large and sparse. When sparse linear systems are solved

with direct methods, some zeros in the sparse matrix will be transformed

to non-zeros. This effect is called fill-in and it is reduced by ordering

schemes, which try to eliminate the number of new non-zeros during the

solution process. Due to fill-in, using direct methods for wave problems

is limited by the available memory. This is the case especially in three
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dimensional domains.

The second strategy for solution of linear systems are iterative meth-

ods. The iterative methods construct a sequence of approximate solutions

converging towards the exact solution. These methods do not require the

matrix to be constructed explicitly into the memory, instead it is sufficient

just to implement the operation Ax. Hence, even if the linear system is

too large to fit into the memory of the computer, it is still possible to solve

the problem using iterative methods. The iterative methods for wave type

problems are typically constrained by the long computational times, not

the amount of memory required in the solution process.

The convergence of the iterative methods is dependent on the properties

of the matrix A. As we will later see, the finite element discretizations

of the Helmholtz equation lead to systems with the required number of

iterations rapidly increasing when the frequency grows or the mesh size

tends to zero. As each iteration is computationally quite expensive, such a

behavior is not desirable. The remedy comes from translating the system

(3.11) into a new one, for example as

AP x̃ = b, x = P x̃.

This is called preconditioning. The basic idea of preconditioning is to

transfer the linear system into a new one, with better iterative properties

compared to (3.11). Naturally, the transformation should be inexpensive

to compute. Finding a good preconditioner is often the most difficult step

in iteratively solving the problem (3.11).

Preconditioners can be constructed from an algebraic viewpoint or by

taking advantage of the properties of the underlying differential equa-

tion. The algebraic viewpoint usually leads to preconditioners applicable

to a wide range of different problems as black-box methods. Examples

of algebraic preconditioners are incomplete decompositions, such as the

incomplete Cholesky or incomplete LU decomposition. The precondition-

ers based on the properties of the differential equation are typically more

efficient but specific to a certain problems.

The current trend for solving the linear system related to time-harmonic

wave problems is to use a preconditioner together with a suitable iterative

method. The indefiniteness of the matrix A limits the selection of possible

iterative methods. The most common choices are Krylov subspace meth-

ods, e.g. GMRES, BiCGStab, etc. (see [14, 28]). From these methods, the

convergence properties are well understood only for the GMRES method.
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The GMRES method is computationally a very expensive solution tech-

nique. This is due to the orthogonalization process used in the algorithm.

The GMRES method stores vectors from each step into the memory and

performs operations using the stored vectors on each iteration. This trans-

lates to reasonable number of GMRES iterations to be counted in tens, not

in hundreds.

3.2.1 Preconditioned GMRES method

The main aim in studying preconditioned iterative methods is to under-

stand how the preconditioner changes the iterative properties of the linear

system. In practice, this question is answered by using a convergence es-

timate relating the properties of the matrix A to the number of iterations

required to solve the problem. The convergence of GMRES is related to

the matrix A as

|ri| = min
p∈P̃i

|p(A)r0|, (3.12)

in which ri is the residual at step i and P̃i is the set of monic polynomials

of order i. The minimization problem (3.12) is very difficult to solve and

thus it is not a practical measure of the GMRES convergence rate. More

useful bounds have been derived from (3.12) in several alternative ways,

depending on the properties of matrix A, see [28, 14, 8].

Selecting the convergence criterion depends on the spectral properties

of matrix A. The matrix arising from the model problem is non-normal,

i.e.,

AA∗ 
= A∗A.

This means, that the matrix is A is not unitary diagonalizable. For non-

normal matrices, the convergence of GMRES does not depend solely on

the eigenvalues, but also on the eigenvectors, see [14, 8]. In the Publica-

tion I, a field of values (FOV) based convergence criterion for GMRES is

used to study the iterative properties of the GMRES method. The field of

values of matrix A is defined as the set

F(A) =

{
x∗Ax
x∗x

∣∣∣∣ x ∈ C
n, x 
= 0

}
. (3.13)

The location of this set in the complex plane is related to the convergence

properties of GMRES for matrix A. A simple estimate is given in [14], let
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D = { z ∈ C | |z − c| ≤ s } be a disc containing the FOV, but not the origin.

Then, we have the convergence estimate

|ri| ≤
(

s

|c|

)i

|r0|. (3.14)

To demonstrate the difficulties in solving the Helmholtz equation using

iterative methods, we give a quick FOV based convergence analysis for the

non-preconditioned system. We will again consider the Helmholtz equa-

tion with homogenous Dirichlet boundary conditions and the first order

finite element space (3.2). The presented analysis uses techniques from

Publication I. The aim in the analysis is to give bounds for the location

of the FOV set in the complex plane, which leads to convergence estimate

via (3.14).

The field of values is related to the bilinear form a(·, ·) as

x∗
uAxu

x∗
uxu

=
a(u, u)

x∗
uxu

.

Here we have used the notation xu for the vector of coefficients of the

finite element function u, i.e.

u(x) =
N∑
i=1

(xu)iϕi(x),

where ϕi, i = 1, . . . , N are the basisfunctions of the finite element space

Vh. This notation will also be used in the following analysis.

Taking an imaginary part of bilinear form gives

�a(u, u) = σ‖u‖20 (3.15)

and real part

�a(u, u) = |∇u|21 − κ2‖u‖20. (3.16)

The Euclidian norm of the coefficient vector and the L2(Ω)-norm of the

corresponding function are related as

chdx∗
uxu ≤ ‖u‖20 ≤ Chdx∗

uxu, (3.17)

where c > 0 and C > 0 are positive constants and d is the spatial dimen-

sion, see e.g. [2]. Using this identity and equation (3.15) gives

cσhd ≤ �a(u, u)

x∗
uxu

≤ Cσhd.
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The inverse inequality, see e.g. [2], states that

|vh|1 ≤ Ch−1‖vh‖0 ∀vh ∈ Vh

where C > 0 is a positive constant independent of h. Estimating (3.16)

with Poincaré-Friedrichs and the inverse inequality gives

(C − κ2)‖u‖20 ≤ �a(u, u) ≤ Ch−2‖u‖20 (3.18)

combining this with equation (3.17) yields

chd(C − κ2) ≤ �a(u, u)
x∗
uxu

≤ Chd−2. (3.19)

These estimates state that the FOV is located inside a rectangle,

F(A) ⊂
[
chd(C − κ2), Chd−2

]
×

[
chd, Chd

]
. (3.20)

A refined estimate can be obtained in the spirit of Publication I. Let z ∈
F(A). Then there exists a function u such that

�z =
a(u, u)

x∗
uxu

.

This leads to the equality

‖u‖20 =
�zx∗

uxu

σ
. (3.21)

The real part of z satisfies

�z = �a(u, u)

x∗
uxu

=
|∇u|21 − κ2‖u‖20

x∗
uxu

.

Combining this with equation (3.21) yields

�z =
|∇u|21
x∗
uxu

− κ2

σ
�z.

Thus, the FOV set is located at the intersection of the box (3.20) and the

strip

S =

{
z ∈ C | chd − κ2

σ
�z ≤ �z ≤ Chd−2 − κ2

σ
�z

}
.

The location of the FOV set determines the convergence of the GMRES

method. As the FOV set is bounded in quite a complicated domain, we will

just state that the convergence is dependent on h,κ2, and κ2

σ . The size of

FOV set grows when the mesh size tends to zero. Growing the parameter
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κ has also a major effect to the convergence. The mesh size dependency

can be eliminated relatively easily, but eliminating the κ2-dependency is

considerable more difficult. Such methods are studied in Publication I.

The FOV sets computed using the same procedure as in Publication I

for mesh sizes h0,12h0, and 1
4h0 are presented in Figure 3.3. The mesh size

dependency of FOV is apparent from these results.

Figure 3.3. The h2-scaled field of values sets for σ = 100, κ = 12π. The mesh parameter
is largest in the upper left figure and smallest in the lowest figure. The mesh
parameter is divided into half between the figures.

3.3 Domain decomposition methods

When the linear system (3.11) is too large to fit into the memory of a

single computer or the required computational time is simply too long,

domain decomposition methods can be used. The idea in domain decom-

position methods is to divide the domain Ω into smaller subdomains. The

subdomains can be distributed to a several computers, thus relaxing the

memory requirements. To solve the problem, a set of equations connecting
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the solution at the subdomain interfaces is formulated and solved.

The domain decomposition methods for the Helmholtz equation are also

used without parallel computing. If an efficient way to solve the subdo-

main problems exists, the problem can be posed only for the interface

conditions. Such an approach is used in the ultra weak variational for-

mulation, [4, 5], in which a plane wave basis functions are used on each

element. The plane wave basis functions allow the problem at the inte-

rior of the subdomains to be solved analytically, and the resulting problem

reduces to one for the interface conditions.

The benefits in reducing the original problem to one posed on the sub-

domain interfaces are better iterative properties and the reduction in the

size of the problem. Both of these benefits are important for the Helmholtz

equation.

The success of domain decomposition methods for Helmholtz equation

depends on how the interface conditions are chosen. Choosing the nodal

values at the interfaces as unknowns similarly as in methods for the

Laplace problem leads to big difficulties in the convergence. For exam-

ple, in the ultra weak variational formulation, the interface conditions

∂u1
∂n

− iκu =
∂u2
∂n

+ iκu2 (3.22)

∂u1
∂n

+ iκu =
∂u1
∂n

− iκu2 (3.23)

are imposed on the interfaces. Here u1 is the solution on the subdomain

left to the interface and u2 right to the interface. These interface condi-

tions lead to convergent method.

In the Publication III a domain decomposition-type method for solving

the Helmholtz equation is developed. This method is based on hybridized

mixed Helmholtz equation. Hybridization is a general solution strategy

for mixed system and can also be used as a tool for domain decomposition,

see [3]. In hybridization, additional variables are introduced to enforce

the continuity conditions over subdomain interfaces. This leads to subdo-

main problems that are coupled via interface conditions. The subdomain

problems are then solved, which leads to a new set of equations only for

the interface unknowns. As for all domain decomposition methods, the in-

terface conditions for hybridization of the mixed Helmholtz equation have

to be chosen with care. In [26] the normal continuity of the flux is broken

and an additional unknown is used for stability, which leads to method
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with good iterative properties.
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4. Concluding remarks

4.1 Publication I

In Publication I we study the solution of the linear system arising from

the Helmholtz equation (2.19) with homogenous Dirichlet boundary con-

ditions (2.20). The focus is in analyzing three preconditioners for the GM-

RES method. As we have discussed in Section 3.2.1, the required number

GMRES iteration without a preconditioner grows rapidly when the pa-

rameter κ increases or the mesh size tends to zero.

The simplest precoditioner discussed in Publication I is the Laplace pre-

conditioner, which eliminates the mesh size dependency from the required

number of GMRES iterations. However, a κ2-dependency still remanins.

When the frequency grows, this dependency leads to rapid growth in the

required number of iterations. However, as it is shown in the article,

the Laplace preconditioner can be evaluated using the multigrid method

making it fast to compute even for large number of unknowns.

To eliminate the κ2-dependency from the number of iterations, a two-

level preconditioner is introduced. The two-level preconditioner combines

solution on a coarse grid with the Laplace preconditioner. Such a method

succeeds in eliminating both the κ and the mesh size dependency from

the required number of iterations. Unfortunately, the same mesh size

constraints as we derived for the problem in Section 3.1 have to be sat-

isfied also by the coarse grid mesh size, leading to preconditioner that is

very expensive to evaluate.
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4.2 Publication II

In Publication II, the solution of the linear system arising from mixed

Poisson problem

−∇u+ σ = 0,

div(σ) = f,
(4.1)

is studied. The mixed Poisson problem does not exhibit any wave type

phenomenon. The motivation for studying this system was born from the

desire to mathematically analyze the method presented in Publication III,

which is based on hybridization of mixed Helmholtz equation given in

[26].

The idea in the preconditioner presented in Publication II is to use ex-

isting preconditioners for the Poisson problem also in the solution of the

mixed problem. The main benefit of this approach is the possibility to

use well tested and already implemented methods also with the mixed

system. The properties of the preconditioned system are analyzed and

numerical test verifying its efficiency are presented.

4.3 Publication III

In Publication III, a hybridization method for solving the Helmholtz equa-

tion (2.19) with absorbing boundary conditions (2.20) is presented. As dis-

cussed in Section 3.3, the hybridization is a domain decomposition method

used to reduce the mixed problem to problem posed on subdomain inter-

faces.

In this publication, the reduction is done on a structured rectangular

grid with the help of a special very high-order polynomial basis. The ba-

sis is constructed from one dimensional eigenfunctions by taking advan-

tage of the tensorial structure of the gird. The tensorial eigenbasis allows

the problems related to the interiors of the subdomains to be solved ex-

tremely efficiently, leading to cheap reduction of the system to subdomain

interfaces.

To solve the interface problem, a preconditioned iterative method is ap-

plied. Numerical examples show that the resulting solution strategy is

very efficient and it is well suited for solving high-frequency problems.

The downside of the method is the special structure required from the
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mesh. This complicates the modeling of difficult geometries, but makes it

possible to cheaply eliminate the subdomain problems.

4.4 Publication IV

In Section 3.1, a convergence estimate for a finite element method was

derived under assumptions on the mesh size. Similar estimates hold also

for other time-harmonic wave equations, e.g., the vector wave equation

(2.14). The main value of these a priori error estimates is that they guar-

antee that the finite element method eventually convergences to the exact

solution. However, in practice, it is difficult to determine when the finite

element solution is a good approximation to the exact solution. A posteri-

ori error estimates provide an answer to this question.

In the Publication IV, we present functional type a posteriori error esti-

mates for the Maxwell’s equations. We consider in detail the eddy-current

problem and shorty the vector wave equation (2.14). The presented es-

timates allow guaranteed upper bounds to be computed for the finite-

element discretization error.

The reader should note a possible shortcoming of the method presented

in this publication. The parameter y∗ ∈ H(curl; Ω) required in the es-

timate is computed by approximately solving the problem: find y∗ ∈
H(curl; Ω) such that

(β−1curl(y∗), curl(v)) + (y∗,v) =

(β−1/2(f − βũ), curl(u)) + (curl(ũ),v) ∀v ∈ H(curl; Ω)

in a finite dimensional space. The load function of this problem can be

badly behaving, even for a function f ∈ L2(Ω). This may affect the con-

vergence of y∗, in the worst case leading to different convergence rates

for the actual error and the presented estimator. Such a behavior is not

studied in Publication IV and it requires a throughout investigation.
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Errata

Publication IV

The function y∗ should be from the space H(curl; Ω) throughout Publica-

tion IV. The proofs of Theorems 1 and 2 are valid under this assumption.

The numerical examples were performed by solving equation (6) in the

whole finite element space, without imposing any boundary conditions.
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