
9HSTFMG*aeciff+

ISBN 978-952-60-4286-2 (pdf)
ISBN 978-952-60-4285-5
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 8

5
/2

011

Panu Silvasti
A

lgorithm
s for X

M
L Filtering

A
alto

 U
n
ive

rsity

Department of Computer Science and Engineering

Algorithms for XML
Filtering

Panu Silvasti

DOCTORAL
DISSERTATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80703982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University publication series
DOCTORAL DISSERTATIONS 85/2011

Algorithms for XML Filtering

Panu Silvasti

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the the Faculty
of Information and Natural Sciences for public examination and
debate in Auditorium T2 at the Aalto University School of of Science
(Espoo, Finland) on the 28th of October 2011 at 12 noon.

Aalto University
School of of Science
Department of Computer Science and Engineering

Supervisor
Prof. Eljas Soisalon-Soininen

Instructor
Prof. Seppo Sippu

Preliminary examiners
Prof. Pekka Kilpeläinen, University of Kuopio, Finland
Prof. Veli Mäkinen, University of Helsinki, Finland

Opponent
Prof. Dr. Alexander Markowetz, University of Bonn, Germany

Aalto University publication series
DOCTORAL DISSERTATIONS 85/2011

© Panu Silvasti

ISBN 978-952-60-4286-2 (pdf)
ISBN 978-952-60-4285-5 (printed)
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934 (printed)

Aalto Print
Helsinki 2011

Finland

The dissertation can be read at http://lib.tkk.fi/Diss/

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Panu Silvasti
Name of the doctoral dissertation
Algorithms for XML Filtering
Publisher School of Science
Unit Department of Computer Science and Engineering
Series Aalto University publication series DOCTORAL DISSERTATIONS 85/2011
Field of research Software Systems
Manuscript submitted 6 June 2011 Manuscript revised 21 September 2011
Date of the defence 28 October 2011 Language English

Monograph Article dissertation (summary + original articles)

Abstract
In a publish-subscribe system based on XML filtering, the subscriber profiles are usually
specified by filters written in the XPath language. The system processes the stream of XML
documents and delivers to subscribers a notification or the content of those documents that
match the filters. The number of interested subscribers and their stored profiles can be very
large, thousands or even millions. In this case, the scalability of the system is critical.

In this thesis, we develop several algorithms for XML filtering with linear XPath
expressions. The algorithms are based on a backtracking Aho-Corasick pattern-matching
automaton (PMA) built from ``keywords'' extracted from the filters, where a keyword is a
maximal substring consisting only of XML element names. The output function of the PMA
indicates which keyword occurrences of which filter are recognized at a given state. Our best
results have been obtained by using a dynamically changing output function, which is
dynamically updated during the processing of the input document.

We have conducted an extensive performance study in which we compared our filtering
algorithms with YFilter and the lazy DFA, two well-known automata-based filtering methods.
With a non-recursive XML data set, PMA-based filtering is tens of times more efficient than
YFilter and also significantly more efficient than the lazy DFA. With a slightly recursive data
set PMA-based filtering has the same performance as the lazy DFA and it is significantly more
efficient than YFilter.

We have also developed an optimization method called filter pruning. This method improves
the performance of filtering by utilizing knowledge about the XML document type definition
(DTD) to simplify the filters. The optimization algorithm takes as input a DTD and a set of
linear XPath filters and produces a set of pruned linear XPath filters that contain as few
wildcards and descendant operators as possible. With a non-recursive data set and with a
slightly recursive data set the filter-pruning method yielded a tenfold increase in the filtering
speed of the PMA-based algorithms and a hundredfold increase with YFilter and the lazy DFA.
Filter pruning can also increase the filtering speed in the case of highly recursive data sets.

Keywords XML stream processing, string processing, XPath, automata-based filtering
ISBN (printed) 978-952-60-4285-5 ISBN (pdf) 978-952-60-4286-2
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Location of publisher Espoo Location of printing Helsinki Year 2011
Pages 147 The dissertation can be read at http://lib.tkk.fi/Diss/

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Panu Silvasti
Väitöskirjan nimi
Algoritmeja XML-dokumenttien suodattamiseen
Julkaisija Perustieteiden korkeakoulu
Yksikkö Tietotekniikan laitos
Sarja Aalto University publication series DOCTORAL DISSERTATIONS 85/2011
Tutkimusala Ohjelmistojärjestelmät
Käsikirjoituksen pvm 06.06.2011 Korjatun käsikirjoituksen pvm 21.09.2011
Väitöspäivä 28.10.2011 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
XML-dokumenttien suodattamiseen perustuvassa julkaisu-tilaus -järjestelmässä suodattimet
esitetään useimmiten XPath-kielellä. Järjestelmä käsittelee XML-dokumenttien virtaa ja
lähettää tilaajille tiedon suodattimien läpäisemistä dokumenteista. Tilaajia ja heidän
tallentamiaan suodattimia voi olla paljon, jopa tuhansia tai miljoonia, jolloin järjestelmän
skaalautuvuus suhteessa suodattimien lukumäärään muodostuu hyvin tärkeäksi
ominaisuudeksi.

Tässä väitöskirjassa esitetään useita algoritmeja XML-dokumenttien suodattamiseen
lineaarisilla XPath-lausekkeilla. Algoritmit pohjautuvat peruuttavaan Aho-Corasick-
automaattiin (pattern matching automaton, PMA). Automaatti on muodostettu suodattimissa
esiintyvistä avainsanoista, missä avainsana on pisin vain XML-elementtien nimiä sisältävä
osajono. Automaatin tulostusfunktio määrittelee, mitkä avainsanat tunnistetaan missäkin
tilassa. Parhaat koetulokset on saavutettu algoritmilla, jossa tulostusfunktiota muutetaan
dynaamisesti syötedokumentin prosessoinnin aikana.

Väitöskirjassa on suoritettu laaja kokeellinen tutkimus, jossa on vertailtu PMA-pohjaisia
suodatusalgoritmeja kahteen tunnettuun XML-suodatusalgoritmiin, YFilteriin ja lazy
DFA:han. Ei-rekursiivisella XML-aineistolla PMA-pohjainen suodattaminen on kymmeniä
kertoja tehokkaampi menetelmä kuin YFilter ja selvästi tehokkaampi kuin lazy DFA. Lievästi
rekursiivisella aineistolla PMA-pohjainen suodattaminen on edelleen selvästi tehokkaampi
menetelmä kuin YFilter ja yhtä tehokas kuin lazy DFA.

Väitöskirjassa esitetään myös suodattimien operaattoreiden karsimismenetelmä, jossa
suodattamista tehostetaan käyttämällä hyväksi dokumenttien tiedossa olevaan syntaksia
(DTD:tä). Menetelmässä lineaarinen XPath-suodatin korvataan joukolla karsittuja lineaarisia
suodattimia, joissa on mahdollisimman vähän jokerimerkkejä (*) ja esi-isä-jälkeläis-
operaattoreita (//). Ei-rekursiivisella ja lievästi rekursiivisella XML-aineistolla
karsimismenetelmä kasvattaa PMA-pohjaisen suodattamisen tehokkuutta yli
kymmenkertaiseksi ja YFilterin sekä lazy DFA:n tehokkuutta yli satakertaiseksi. Kokeissa
havaittiin, että karsimismenetelmä voi tehostaa suodattamisen tehokkuutta myös erittäin
rekursiivistenkin aineistojen kanssa.

Avainsanat XML-tietovirran käsittely, merkkijononkäsittely, XPath, automaattipohjainen
suodattaminen

ISBN (painettu) 978-952-60-4285-5 ISBN (pdf) 978-952-60-4286-2
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2011
Sivumäärä 147 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Preface

I wish to thank my supervisor, Professor Eljas Soisalon-Soininen, for in-
troducing the research topic of XML filtering to me five years ago. Since
then we have developed several new algorithms in this research field with
him and with my instructor, Professor Seppo Sippu from the University of
Helsinki. This work has been interesting and satisfying. I wish to thank
them for always having time for me, for answering all my questions, and
for giving constructive feedback on my work. I am grateful for having
had the opportunity to work in their guidance. I have learned so much
during the doctoral research.

I would also like to thank Professors Pekka Kilpeläinen (University of
Kuopio) and Veli Mäkinen (University of Helsinki) for their detailed and
valuable comments on the manuscript, and Professor Alexander Markowetz
(Rheinische Friedrich-Wilhelms-Universität, Bonn) for kindly agreeing to
be the opponent.

The research presented in this dissertation was carried out at the De-
partment of Computer Science and Engineering at the Aalto University
School of Science. The research was partly funded by the Academy of
Finland. I am grateful for the possibility to have been primarily able
to concentrate on the research work and for being able to visit several
distinguished scientific conferences around the world.

I wish to thank all my colleagues at the computer science laboratory
for all the discussions we have had about doing computer science research.
Especially I would like to thank Dr. Riku Saikkonen, who gave me im-
portant comments in the early stages of the research, and who, together
with Dr. Tuukka Haapasalo, helped with the LATEX word processor.

Finally, I would like to thank my family for their love and support.
This dissertation would not have been completed without their encour-
agement.

Jyväskylä, September 2011

Panu Silvasti

vii

PREFACE PREFACE

viii

Contents

Contents ix

1 Introduction 1

1.1 The Filtering Problem . 1
1.2 Automata-based Filtering . 2
1.3 Schema-Conscious Filtering 3
1.4 Organization of the Dissertation 4

2 XML Filtering 7

2.1 XPath Filters and XML Streams 7
2.2 Automata-based Filtering . 9
2.3 NFA-based Filtering . 12

2.3.1 XFilter . 12
2.3.2 YFilter . 12
2.3.3 Other NFA-based Algorithms 13

2.4 DFA-based Filtering . 13
2.4.1 Lazy DFA . 13
2.4.2 XPush . 15

2.5 Hybrid Finite Automaton . 16
2.6 Other Automata-based Algorithms 17
2.7 Other Approaches . 17
2.8 Summary . 20

3 XML Filtering by Pattern-Matching-Automata 23

3.1 Backtracking Aho–Corasick Pattern-Matching Automaton 24
3.1.1 The Algorithm . 24
3.1.2 Complexity Analysis 32

3.2 Filtering with Wildcards and Descendant Operators 33
3.2.1 The Algorithm . 33
3.2.2 Complexity Analysis 37

ix

3.3 Using a Dynamic Output Function 41
3.3.1 The Algorithm . 41
3.3.2 Complexity Analysis 44

3.4 Optimization by Fast Backtracking 48
3.4.1 The Algorithm . 49
3.4.2 Complexity Analysis 53

3.5 Online Dictionary Matching of XML Documents 54
3.5.1 The Algorithm . 54
3.5.2 Complexity Analysis 54

4 Experiments on PMA-based Filtering 57

4.1 Description of the Test Environment 57
4.1.1 Hardware and Software 57
4.1.2 Statistical Analysis 58
4.1.3 Data Sets Used in the Experiments 58

4.2 Initialization of the PMA . 62
4.3 Filtering Performance . 63

4.3.1 Filtering with the bare AC 63
4.3.2 Filtering with the dynamic PMA and PMA FB . . 64
4.3.3 Filtering with the static PMA 73

4.4 Memory Usage . 76

5 Optimization by Filter Pruning 79

5.1 DTD and Graph Schema . 79
5.2 Filter Pruning Algorithm for Tree-Like DTDs 82
5.3 Filter Pruning Algorithm for Complex DTDs 85
5.4 Characteristics of Pruned Workloads 90
5.5 Related Work . 93

6 Performance Gain of Filter Pruning 95

6.1 Performance of the Pruning Algorithm 95
6.2 Performance Gain in Filtering 97

6.2.1 Data Sets Having a Simple DTD 97
6.2.2 Data Sets Having a Complex DTD 106

6.3 Summary . 109

7 General XPath Filters 111

7.1 Nested XPath Filters . 111
7.1.1 Evaluation as Post-Processing: YFilter 112
7.1.2 Holistic Evaluation 112

x

7.1.3 Other Methods . 114
7.1.4 Evaluation with the PMA-based Algorithms 115
7.1.5 Pruning Nested XPath Filters 118

7.2 Predicate Evaluation . 118
7.2.1 Inline and Selection Postponed: YFilter 119
7.2.2 Automata-based Evaluation: lazy DFA and PFilter 120
7.2.3 Pushdown-automata-based Evaluation 121
7.2.4 Evaluation with the PMA-based Algorithms 121
7.2.5 Filter Pruning with Filters Having Predicates . . . 123

8 Conclusions 125

Bibliography 129

xi

xii

CHAPTER 1

Introduction

A publish-subscribe system consists of one or more publishers and many
subscribers, where the publishers provide a stream of documents and the
subscribers specify their interests with filters that match some of those
documents. The system processes the stream of documents and delivers
to subscribers a notification or the content of those documents that match
the filters. Publish-subscribe systems have emerged in everyday use on
the Internet; examples include Google Alerts [1] and Yahoo! Alerts [3].

The document stream is a potentially unbounded sequence of docu-
ments. In a traditional database management system the data is persis-
tent and queries volatile, but in a data stream management system, such
as a publish-subscribe system, the queries (or filters) are persistent and
the incoming data stream volatile. Saving the document stream onto disk
and indexing it for querying with the filters is not feasible: the stream
must be processed online. This dissertation presents new algorithms that
can be used for filtering the data stream online.

In a publish-subscribe system based on XML filtering, the filters are
usually specified in the XPath language [11]. Designing efficient tech-
niques for the filtering of XML documents has received much atten-
tion [6, 8, 15, 19, 21, 24, 28, 30, 33, 37–40, 49, 51, 72, 73], and XML
filtering techniques have been applied in areas such as routing real-time
air traffic control data [68].

1.1 The Filtering Problem

The primary problem addressed in this dissertation is defined as the XML
filtering problem: given a set of XPath expressions and an input stream
of XML documents, identify the filters that match the documents in the
stream. More specifically, for each document in the input stream, we
must determine the set of filters that match the document.

1

CHAPTER 1 INTRODUCTION

The goal is to build a system that is able to process the input stream
at a sustained throughput even when the number of filters is large. The
number of filters can be very large, thousands or even millions. The
scalability of the system with respect to the number of filters is critical.

Two other problems related to the filtering problem are the language
recognition problem and the online dictionary-matching problem. In lan-
guage recognition the task is to determine whether or not the input doc-
ument belongs to the language described by the union of the filters. This
problem is easier to solve than the filtering problem, because it is not nec-
essary to identify which of the filters match. In online dictionary matching
for XML document streams the problem is to determine, for each XML
document in the stream, all occurrences of all the XPath patterns in an
online fashion.

This dissertation presents new algorithms for solving the filtering prob-
lem for linear XPath filters without predicates. Linear XPath filters do
not have branches in their query trees. We also show how these algorithms
can be extended to solve the online dictionary-matching problem.

1.2 Automata-based Filtering

Several approaches to XML filtering use a finite automaton as a basis of
the filtering algorithm [6, 21, 24, 28, 30, 49, 51, 72]. Diao et al. [24] report
an XPath filtering method, called YFilter, that applies nondeterministic
finite automata (NFAs). YFilter is an improvement upon its predecessor,
called XFilter [6], which uses a separate NFA for each filter but executes
them simultaneously in processing the input document. YFilter uses a
single NFA that combines the effect of the individual NFAs and achieves
considerable improvements in performance by path-sharing; that is, by
merging states that correspond to common prefixes in different query
paths.

The lazy DFA algorithm by Green et al. [28] is based on a single
deterministic finite automaton (DFA). The state explosion of the DFA
is tackled by constructing the DFA lazily. In other words, the DFA is
constructed at runtime, on demand: if in processing the stream of XML
documents, no next state is defined on the current input symbol, the
corresponding new state will be computed and the process is continued
at this new state. While exponential in the worst case, this approach
works extremely well in many cases, when the incoming XML documents
obey a schema or a document type definition (DTD) that is nonrecursive
or contains only simple cycles (a cycle is simple if its nodes do not occur

2

1.3 Schema-Conscious Filtering

in other cycles).
The new XML filtering algorithms presented in this dissertation are

based on a backtracking deterministic finite automaton derived from the
classic Aho–Corasick [5] pattern-matching automaton (PMA). The PMA
is constructed from the set of filters in the preprocessing phase of the
algorithm. The automaton has a size linear in the sum of the sizes of the
filters.

The classic Aho–Corasick PMA solves the online dictionary-matching
problem for linear text, where for a set of keywords and an input text,
the task is to identify all occurrences of the keywords in the text. The
starting point of our filtering algorithms is a simple backtracking PMA
that can efficiently process linear XPath filters without wildcards (“*”)
and non-leading descendant operators (“//”) [63]. An extension of this
algorithm can also process linear XPath filters having wildcards and de-
scendant operators [66]. These algorithms have a static output function,
as is the case with the classic Aho–Corasick PMA. We also present a
new Aho–Corasick-based filtering algorithm (later referred to as the dy-
namic PMA) that has a dynamically changing output function; the output
function is dynamically updated during processing of the input document.
A preliminary version of our dynamic PMA has been published in a con-
ference article [65]. This algorithm can process linear XPath filters that
have descendant operators, but not wildcards. Recently we have further
developed this algorithm so as to also handle wildcards [67].

Our PMA-based filtering algorithms have been experimentally bench-
marked with YFilter [24] and the lazy DFA [28] using XML data sets
obtained from the XML Data Repository of the University of Washing-
ton [71]. With a non-recursive data set PMA-based filtering is 40 times
more efficient than YFilter and 5 times more efficient than the lazy DFA.
With a slightly recursive data set the performance of PMA-based filtering
is comparable to that of the lazy DFA and three times better than that
of YFilter. However, with a highly complex data set YFilter was found
to be more scalable. The lazy DFA is inapplicable with this data set.

1.3 Schema-Conscious Filtering

The above-mentioned filtering methods are general in that the input doc-
uments to be filtered are not required to comply with any predefined
schema or DTD; they are only expected to obey the generic syntax of
XML. However, in practice the documents published by a specific site
may very well be restricted to a few different topics and described by a

3

CHAPTER 1 INTRODUCTION

specific XML schema. This raises the question of whether filtering speed
or throughput could be improved by utilizing knowledge about a DTD in
building the filtering automaton. Fernández and Suciu [25] have presented
a technique called query pruning for optimizing regular path expressions
with graph schemas. Inspired by their work, we have developed an op-
timization method, called filter pruning [63–65], that takes as input a
DTD and a set of linear XPath filters and produces a set of pruned linear
XPath filters that contain as few wildcards and descendant operators as
possible without increasing the number of different filters too much. The
set of pruned filters is equivalent to the set of original filters in that each
original filter is represented by the union of a set of pruned filters that
matches the same set of XML documents, provided that the documents
obey the DTD.

Our experiments with data sets obtained from the XML Data Repos-
itory [71] show that filter pruning can significantly accelerate automaton-
based filtering. In two recent conference articles [64, 65] we have published
experimental results of the effect of filter pruning on the performance of
YFilter [24] and the lazy DFA [28]. However, our recent experiments
show even better performance increase than presented in these articles.
With a non-recursive data set and with a slightly recursive data set the
filter-pruning method yielded an increase in the filtering speed of the
PMA-based algorithms by a factor of 10–70. With the same data sets the
filtering performance of YFilter and the lazy DFA increased even more
than hundredfold.

The DTDs of the above-mentioned data sets are simple and tree-like.
They have only a small number of nodes with many incoming edges. In
addition to these data sets, experiments have been run with complex
and highly recursive data sets [35, 71]. Imposing some simple conditions
stating when an operator may be eliminated, a polynomial bound can be
guaranteed on the total size of the pruned filters. Our experiments show
that pruning can increase the filtering speed of PMA-based filtering and
YFilter also in the case of complex and highly recursive data sets.

In this dissertation we give a thorough overview of results obtained by
experimenting with the filter-pruning method and with our PMA-based
algorithms, YFilter, and the lazy DFA.

1.4 Organization of the Dissertation

This dissertation is organized as follows. The next chapter gives an
overview of existing XML filtering algorithms. In Chapter 3 we present

4

1.4 Organization of the Dissertation

the new PMA-based XML filtering algorithms. Chapter 4 contains an
experimental study of the PMA-based filtering, benchmarking the PMA-
based algorithms with YFilter [24] and the lazy DFA [28]. Chapter 5
describes the filter-pruning optimization, and in Chapter 6 we present an
experimental study of filter pruning. Chapter 7 discusses the evaluation
of branching filters (twig filters) and filters with value-based predicates.
Chapter 8 concludes the dissertation.

5

CHAPTER 1 INTRODUCTION

6

CHAPTER 2

XML Filtering

This chapter gives an overview of XML filtering literature. The XML fil-
tering algorithms can be classified into automata-based algorithms, index-
based algorithms, sequence-based algorithms, and other approaches. As
the focus of this dissertation is on automata-based filtering, a more thor-
ough overview of the automata-based algorithms is given. The research
area is fairly new; the first XML filtering algorithm [6] was published in
2000.

2.1 XPath Filters and XML Streams

The XML filtering systems presented in the literature usually support
some subset of the XPath [11] language in expressing the profiles. Some
systems can process only linear XPath expressions (e.g. the lazy DFA
algorithm [28]), for which the query tree is a linear list. An example of
such a linear query is

/a/b/c[text() =’C1’]

that finds all c elements occurring exactly on a path <a><c> and hav-
ing a text node child ’C1’. The query tree for the expression is presented
in Figure 2.1(a).

One popular research subject in XML filtering has been efficient pro-
cessing of twig expressions [6, 24, 30, 38]. A twig expression can have
many nested paths and the query is a branching tree. An example of
such an expression is

/a/b[c[text() =’C1’]]/e[text() =’C2’]

that finds XML trees whose c element on a path <a><c> has a text
node child ’C1’ and e element on a path <a><e> has text node child

7

CHAPTER 2 XML FILTERING

(a) a

b

c

’C1’

(b) a

b

c

’C1’

e

’C2’

Figure 2.1. Query tree of a linear XPath expression (a) and query tree
of a twig XPath expression (b).

’C2’. The prefix path <a> has to be the same for both paths. The
query tree of the expression is presented in Figure 2.1(b). As can be seen,
the branching node of the twig expression is b. Evaluation of twig filters
will be discussed in more detail in Section 7.1.

XML filtering systems usually evaluate XPath filters in two phases:
structure navigation and evaluation of value-based predicates. The struc-
ture part of the filter /a/b/c[text() =’C1’] is /a/b/c/ and the value-based
predicate is text() =’C1’. In this chapter the emphasis will be on methods
for structure navigation. Different methods for predicate evaluation will
be discussed in Section 7.2.

The“/”operator between nodes denotes a parent-child relationship, as
in a/b. The “//” denotes an ancestor-descendant relationship; for exam-
ple a//c locates all c elements occurring somewhere under an a element.
The wildcard “∗” denotes any element name. For example, the query
/a/b/∗[text() =’C1’] finds all elements occurring under a child element of
a b element and having text node child with value ’C1’. The descendant
and wildcard operators in the XPath filters complicate XML filtering.
Most of the algorithms presented in this chapter can handle these opera-
tors. In Section 3.1 it is shown how linear XPath filters without wildcards
and non-leading descendant operators can be processed with a simple and
efficient algorithm.

XPath allows several comparison operators in value-based predicates,
such as =, <, ≤, >, ≥, and ≠. Logical operators such as AND, OR and NOT
can also be specified in the filters. Some XML filtering systems support
only the equality operator [28], and some a wider range of operators [30].

XPath also has aggregate functions for counting the sum, average,
minimum or maximum of element values, or the count of elements. Only
few of the algorithms presented in the literature of XML filtering with
XPath filters, however, support evaluation of such aggregate functions [54].

Most XML filtering systems use an event-based parser, such as a SAX
parser [62], for processing the input XML documents. The input for the

8

2.2 Automata-based Filtering

filtering algorithm is then the event stream produced by the parser. The
parser generates the following types of events: startDocument, startEle-
ment, characters, endElement, and endDocument. For example, the XML
document <a>4 is converted by the parser into the following
sequence of events:

startDocument()

startElement(a)

startElement(b)

characters("4")

endElement(b)

endElement(a)

endDocument()

In filtering of XML documents, the task is to identify matching XPath
filters for each XML document in the input stream. For example, given a
filter workload consisting of the filters Q1 = /a/b/c, Q2 = /e/f , Q3 = /a//c,
Q4 = /a//d, Q5 = /a/ ∗ /c, and Q6 = //c, and an XML input document
<a><c></c>, then filters Q1, Q3, Q5, and Q6 are found to
match the document.

2.2 Automata-based Filtering

Several approaches to XML filtering with XPath filters use an automaton
as a basis of the filtering algorithm. A linear XPath filter can be rep-
resented as a nondeterministic finite automaton (NFA) [32]. Figure 2.2
shows example filters and corresponding NFAs. Building an NFA of a lin-
ear XPath filter is straightforward. If the filter begins with a descendant
operator, then the NFA will have a “∗” loop in the initial state, where “∗”
denotes any element (filter Q3). A descendant operator appearing in the
middle of a filter is represented as an “ǫ” transition (i.e., a transition on
the empty string) to a new state that has a “∗” loop (filters Q2 and Q4).

Several XML filtering algorithms build a single combined NFA for the
set of all the XPath filters [21, 24, 49, 72]. Simulating a single combined
NFA is more efficient than simulating several separate NFAs. A combined
NFA is build by using the path sharing principle; it means that for a set
of common prefixes of filters are merged into a single path in the filtering
automaton [24]. Figure 2.3 shows the combined NFA of the example filters
of Figure 2.2; it can be seen that filters Q1 and Q2 share the states for
the prefix /a/b.

9

CHAPTER 2 XML FILTERING

Benefits of an NFA-based algorithm are that its size is linear in the
size of the XPath filters and that it is easy to insert and delete filters,
which are important properties for an XML filtering system.

Q1 = /a/b/c

0 1 2 3
a b c

Q2 = /a/b//c

4 5 6 7 8
a b ǫ c

∗Q3 = //b/∗/c/d

9 10 11 12 13
b ∗ c d

∗

Q4 = /∗/a/c//d

14 15 16 17 18 19
∗ a c ǫ d

∗

Figure 2.2. Example filters and corresponding NFAs.

An NFA can be converted into a deterministic finite automaton
(DFA) [32], which is the most efficient machine for language recogni-
tion. A DFA can process one input symbol (or SAX event) in O(1) time.
However, the size of a DFA can be exponential in the number and size of
the XPath filters.

As an example, consider the set of filters Q1 = //a1, Q2 = //a2, . . . ,Qn =
//an. Filtering with respect to these filters can be done by a DFA that
accepts the language L = a1 ∪ a2 ∪ . . . ∪ an, and decides by final states
which of the n filters are matched. The minimized DFA for the case when
n = 3 is shown in Fig 2.4. At final state i,1 ≤ i ≤ 3, only filter Qi is
recognized, at final states 4, 5 and 6, the filter sets {Q1,Q2}, {Q1,Q3},
and {Q2,Q3}, respectively, are recognized, and at final state 7, the set
{Q1,Q2,Q3} is recognized. Note that the DFA of Figure 2.4 cannot be
further minimized, because the final states all accept different subsets of
{Q1,Q2,Q3}.

10

2.2 Automata-based Filtering

0

1 2

3

4 5

6 7 8 9 10

11 12 13 14 15

a

b

c

ǫ c

ǫ b ∗ c d

∗

a c ǫ d
∗

∗

∗

Q1 = /a/b/c

Q2 = /a/b//c

Q3 = //b/∗/c/d

Q4 = /∗/a/c//d

Figure 2.3. A combined NFA built with the path-sharing principle.

0

1 4

2 5 7

3 6

other

other other

other other any

other other

a1

a3

a1

a2

a3

a2

a3

a2

a3

a2

a1

a1

Figure 2.4. Minimal DFA that solves the filtering problem for filters
Q1 = //a1, Q2 = //a2, and Q3 = //a3.

11

CHAPTER 2 XML FILTERING

2.3 NFA-based Filtering

2.3.1 XFilter

XFilter [6] by Altinel and Franklin is a pioneering automata-based XML
filtering algorithm. It is based on building a separate NFA for each XPath
filter and executing them simultaneously during processing of the input
document. XFilter can process linear and twig filters having value-based
predicates with comparison operators.

With XFilter matching of linear XPath filters without predicates works
as follows. The workload of example filters Q1 = /a/b/c, Q2 = /a/b//c,
Q3 = //b/∗/c/d, and Q4 = /∗/a/c//d is represented as a machine similar
to Figure 2.2. For an XML document <a>, when the SAX
parser encounters the start-tag of element a, states 1, 5, 9, and 15 will
be accessed. When processing the start-tag of element b, states 2, 6, 10
will be accessed. When an accepting state of an NFA is reached, then
the corresponding filter matches the XML document. Processing an el-
ement end-tag causes backtracking of NFAs; the states of the automata
are changed into the states that were active before processing of the cor-
responding start-tag started. For example, when processing the end-tag
of element b, states 1, 5, 9, and 15 will be selected again.

In the worst case, one SAX event can trigger n state transitions, where
n is the number of XPath filters.

2.3.2 YFilter

YFilter by Diao et al. [24] is a successor of XFilter. YFilter builds a
single combined NFA for the set of all the XPath filters and it achieves
considerable improvements in performance by path sharing.

With YFilter the SAX events are processed as follows. When the
beginning of an XML element is encountered, the set of current states will
be pushed onto the stack and new states will be the ones accessed from
current states by the element label (current states are the active states of
the NFA). For example, with XML document <a><c></c>,
when processing the start-tag of element a with the NFA of Figure 2.3,
states 1, 6 and 11 will be accessed and state 0 will be pushed onto the
stack. When processing the start-tag of element b states 2, 4, 6, and
7 will be reached and the set {1,6,11} will be pushed onto the stack.
On the start-tag of element c states 3, 4, 5, 6, and 8 will be set as the
current states; now we find that filters Q1 and Q2 have matched the input
document.

12

2.4 DFA-based Filtering

When the end of an XML element is encountered, the automaton has
to be backtracked into the state it was before processing the beginning
of the element. This is done by setting the set of states on top of the
stack as the current state of the automaton, and popping the stack. For
example, when processing the end-tag of element c, the set {1,6,11} will
be set as the current states and removed from the top of the stack.

With YFilter, one SAX event can also trigger n state transitions,
where n is the number of XPath filters. However, in practice path sharing
works effectively and YFilter is much more efficient than XFilter [24].

2.3.3 Other NFA-based Algorithms

The BUFF algorithm by Moro et al. [49] is also based on representing
XPath filters by a combined NFA. However, BUFF evaluates XML trees
bottom-up. The XML document tree is thus evaluated in post-order
instead of the pre-order traversal used in top-down approaches. For this
the XPath filters are reversed before building the NFA. For example, filter
//a/b/c//d is turned into //d//c/b/a before inserting it into the NFA. While
YFilter’s NFA applies path-sharing, BUFF thus groups filters according
to their common suffixes. In the experiments [49] BUFF was found to be
even 20% more efficient than YFilter’s top-down NFA.

Chen et al. [21] present the GFilter system, which also evaluates XML
paths bottom-up. GFilter builds a combined NFA for the set of all filters
and applies both prefix- and suffix sharing. GFilter supports complex twig
filters and value-based predicates. It can also process GTP (generalized
tree pattern) [22] queries. In the experiments [21] GFilter was found to be
more than twice as fast as YFilter when processing linear XPath filters.
With twig filters GFilter was more than 50% more efficient than YFilter.

Byun et al. [17] propose an automata-based PFilter algorithm that is
based on YFilter. The structure matching is done by a combined NFA
as in YFilter, but the method for predicate evaluation is different (see
Section 7.2).

2.4 DFA-based Filtering

2.4.1 Lazy DFA

The lazy DFA filtering algorithm by Green et al. [28, 29] is based on a
deterministic finite automaton (DFA). The state explosion of the DFA
is tackled by constructing the DFA lazily during processing of the XML

13

CHAPTER 2 XML FILTERING

document stream. The lazy DFA can process linear XPath filters hav-
ing value-based predicates of the form text() =’S’, where S is a string
constant.

The lazy DFA constructs the DFA in the following way. Each XPath
filter is first compiled into an NFA. These NFAs are then combined into a
single NFA similarly to YFilter (see Figure 2.3). Then, during processing
of an input document, a DFA is constructed from the combined NFA.
The construction of the DFA is done lazily. Initially the DFA has only
the initial state, and whenever a transition is being performed into a
non-existing state, this state is constructed. The main difference between
the lazy DFA and the NFA-based algorithms is that the lazy DFA stores
constructed states into memory whereas the NFA-based algorithms do
not.

SAX events are processed as follows. When the beginning of an XML
element is encountered, the current state q will be pushed onto the stack
and the new current state will be the one accessed from q by the element
label. When the end of an XML element is encountered, the state on top
of the stack is popped and set as the new current state.

Assume processing of an XML document <a1><a3></a3></a1><a2>

</a2> with the DFA of Figure 2.4. When the DFA is constructed lazily,
the transitions constructed are only those that are reachable upon reading
a1a3 or a2 from the initial state and lead to states 5 and 2, respectively.

The lazy DFA is very efficient in processing XML data that has a sim-
ple tree-like DTD, such as the protein and NASA datasets [71]. However,
with complex datasets (such as the treebank dataset [71]) too many states
may be created and the system can run out of memory.

Onizuka [51] proposes several techniques for improving the memory
usage of the DFA. He also extends the lazy DFA algorithm for processing
twig filters. Onizuka has developed a clustering algorithm that divides the
XPath filters into clusters according to axis types (“/”, “//”) at each depth
level. The observation behind the clustering method is that the number of
states in the DFA grows exponentially with the number of “//”operators.
As the “/” axis is much more common than “//”, it is reasonable to group
filters containing “//” into their own clusters. A separate filtering DFA
will then be constructed from each cluster, so if there are n clusters, then
n DFAs will be created. In spite of the fact that a SAX event will have
to be processed with each of the n DFAs, the clustering increases filtering
performance. In the experiments the best performance was acquired with
n = 8. In this case the memory usage of the DFA was reduced 40-fold
when compared to n = 1 [51].

Altinel et al. [6] show how a prefiltering technique can enhance the

14

2.4 DFA-based Filtering

performance of the XFilter algorithm. In prefiltering each XML document
is parsed twice, and XPath filters having elements not present in the XML
document are not considered in filtering. Chen et al. [20] have applied
prefiltering in the context of the lazy DFA algorithm. They also show
how the DTD can be used to check the validity of XPath filters; filters
not consistent with the DTD can be ignored in filtering. Moreover, they
present techniques for optimizing the construction of lazy DFA states.

2.4.2 XPush

The XPush algorithm [30] is also based on automata; it builds a sin-
gle deterministic pushdown automaton (PDA) [32] of the XPath filters.
Whereas a DFA makes a state transition based on its current state and
the input symbol, a transition of a PDA is based on its state, input sym-
bol and contents of a pushdown stack. The transition function of a PDA
determines when symbols are added onto the stack and when the stack is
popped.

With XPush the PDA is constructed lazily. XPush builds NFA rep-
resentations of the XPath filters in a way similar to YFilter and the lazy
DFA algorithms. YFilter combines these NFAs into a single NFA. The
lazy DFA builds a single DFA from the NFAs; as explained above, to
avoid the exponential state growth the DFA is constructed lazily during
processing of the XML input stream. XPush, on the other hand, com-
bines the NFAs into a single PDA that is also constructed lazily. The NFA
construction phase of YFilter, lazy DFA and XPush are similar, but the
XML trees are evaluated bottom-up in XPush and top-down in YFilter
and lazy DFA. YFilter and the lazy DFA share the processing of common
prefixes in the structure navigation part of XPath filters. XPush focuses
on eliminating redundant work in the predicate evaluation part.

In has been experimentally shown that a fully computed XPush ma-
chine processes each SAX event in constant time. However, in practice
the XPush machine becomes too large and it needs to be computed lazily.
It was shown that the running time and memory requirements of the lazy
XPush machine are moderate. The hit ratio of successful lookups from
the state transition tables not requiring construction of states versus the
total number of lookups was over 90 %. It was also shown that the sev-
eral optimization techniques improved the running time and reduced the
number of states of the XPush machine considerably [30].

All automata-based XML filtering algorithms have characteristics of
a PDA, since they all use a stack in order to backtrack the automaton on
an element end-tag. However, with these algorithms the state transitions

15

CHAPTER 2 XML FILTERING

are based only on the current state and the input symbol read, not on
the contents of the stack (except when backtracking).

2.5 Hybrid Finite Automaton

The benefit of NFA-based filtering is that it consumes only a small amount
of memory. The lazy DFA, on the other hand, is very efficient, but it may
run out of memory in filtering complex XML data. When the lazy DFA
runs out of memory, the DFA is restarted and so far constructed states
are cleared from memory. With complex XML data this restarting may
occur often, which consumes much processing time.

The two-tier hybrid finite automaton (HFA) [72] is a combination of
lazy DFA and NFA. HFA uses a lazy DFA to process XML elements under
a given depth and an NFA to process XML elements beyond that depth.
Thus the HFA keeps in memory only the frequently accessed states.

When the two-tier HFA runs out of memory, it needs to be restarted.
The cost of restarting the HFA can be reduced by a three-tier HFA [72].
The first tier of the HFA is a pre-expanded DFA, the second tier is the lazy
DFA and the third tier is the NFA. When a memory overflow happens,
only the second tier needs to be cleared to release the memory. Two
parameters are specified: Dpre and Dexp. In processing XML documents
(with depth denoting the current depth in the XML document tree), when
depth ≤ Dpre the fully computed DFA is used, when Dpre < depth ≤ Dexp

the lazy DFA tier is used, and when depth > Dexp the NFA tier is used.
Parameters Dpre and Dexp can be adjusted according to the available
physical memory and the input XML stream. Setting higher values of
Dpre decreases the time needed to restart the algorithm in case of memory
overflow. Increasing the Dexp consumes more memory, but can increase
the filtering speed.

In their experiments Sun et al. [72] concluded that when the average
depth of XML documents increases, the performance of the lazy DFA
decreases quickly, but the performance of the two- and three-tier HFA
decrease only somewhat. On average, the performance of the hybrid ap-
proach was 30 % better than non-hybrid algorithms (YFilter [24] and lazy
DFA [28]).

16

2.6 Other Automata-based Algorithms

2.6 Other Automata-based Algorithms

He et al. [31] propose a filtering algorithm that is based on the lazy
DFA. The algorithm is optimized to utilize the hardware cache of modern
processors. Their basic idea is that the most frequently used states of the
automaton are stored into the cache. Their experiments show that cache-
consciousness can improve the performance of automata-based filtering by
16–46%. Yin et al. [76] have developed a similar technique for improving
the performance of the lazy DFA; their method is called frequent access
technology.

The XSQ [54] system uses an NFA augmented with a buffer. XSQ
supports value-based predicates and aggregations. In a recent article,
Onizuka [52] also proposes an NFA-based algorithm for evaluating XPath
queries over XML streams. However, these algorithms can evaluate only
one XPath query at a time.

Miliaraki et al. [45, 46] present a method for distributing the execu-
tion of YFilter by using distributed hash tables [69]. They show how to
balance the filtering load across several servers and in this way enable effi-
cient parallel processing of millions of XPath filters. Uchiyama et al. [74]
have developed a method for distributing the execution of the lazy DFA
algorithm.

2.7 Other Approaches

Some XML filtering algorithms are based on index structures. XTrie [19]
builds a trie-based index structure of the keywords occurring in XPath
filters, where a keyword is a maximal substring consisting only of XML
element names. The Hybrid approach described by Diao et al. [24] uses
a similar idea of a trie index. Bruno et al. [15] propose an algorithm
called Index-Filter that indexes the XML input stream to be filtered.
The main difference between Index-Filter and the trie-based algorithms
is that Index-Filter creates a B-tree index of the element occurrences in
the XML documents whereas the trie-based algorithms create an index
structure of the XPath filters. An open question with Index-Filter is how
it works with very large input documents. Its index structure may become
too large to fit into the main memory.

The AFilter system by Candan et al. [18] can evaluate linear XPath
filters without predicates. It is also based on a trie structure and it
exploits both prefix and suffix commonalities in XPath filters. In the
experiments, AFilter was found to be more than twice as fast as YFilter.

17

CHAPTER 2 XML FILTERING

FiST [38] and its successors iFiST [40] and pFiST [39] are based on
encoding the XML input stream and the XPath filters into Prüfer [56]
sequences. The matching is then performed bottom-up by using a sub-
sequence matching algorithm. BoXFilter [49] is a similar sequence-based
algorithm that differs from the FiST family in that it groups filters accord-
ing to the similarity of their Prüfer encodings. XFIS system by Antonellis
and Makris [8] is yet another sequence-based XML filtering algorithm.

Tian et al. [73] propose an XML filtering system in which the XPath
filters are stored into the tables of a relational database. The system
supports processing of value-based predicates and twig filters. Using a
relational database provides good scalability and is memory-efficient. The
matching algorithm exploits commonalities in both XPath filters and also
in the XML paths to be matched.

Hou and Jacobsen [33] present a predicate-based XML filtering algo-
rithm. In their system each XPath filter is represented as an ordered set
of predicates. A predicate is a triple (a, o, v) that determines the relation
of adjacent elements in the XPath filter. In the triple, a is either a tag
name or a pair of tag names, o is = or ≥ operator, and v is a distance
value. For example, the XPath expression /∗/a is represented as an abso-
lute predicate (a,=,2), and expression /∗//a as (a,≥,2). A relation a/∗/b
is represented as predicate (d(a, b),=,2) and a//b as (d(a, b),≥,1). The
predicate in this sense has a meaning different from that of a value-based
predicate in an XPath filter. However, Hou and Jacobsen also show how
value-based predicates and twig filters can be processed with the algo-
rithm.

In the algorithm of Hou and Jacobsen [33] the XML stream is pro-
cessed with a SAX parser, but each path in the document tree is consid-
ered separately. An XML path is decomposed into a set of attribute-
value pairs and these pairs are matched against the predicates. The
algorithm stores and evaluates only distinct predicates. In the experi-
ments, the predicate-based filtering algorithm was found to have filtering
performance comparable to YFilter and Index-Filter.

Mitra et al. [48] show how XML filtering can be done with field-
programmable gate arrays (FPGAs). The filtering algorithm is imple-
mented in VHDL (very high speed integrated circuit hardware descrip-
tion language) and deployed on the FGPA board. The idea is to repre-
sent the XPath filters as regular expressions, which can be translated into
VHDL [47]. This architecture has a high degree of parallelism and it is
very efficient; in the experiments the hardware implementation was found
to be around 100 times more efficient than YFilter. However, extending
the FPGA architecture for processing twig filters has been left for future

18

2.7 Other Approaches

work.
Gong et al. [27] present an XML filtering algorithm that is based on

Bloom filters [12]. A Bloom filter is a data structure that can be used to
efficiently test whether or not an element is member of a set. In this case
linear XPath expressions are encoded into a Bloom filter. The filtering
result is approximate, since there is a small probability that a Bloom filter
produces a false positive match. The system is more efficient than YFilter
with shallow XML data, but when the depth of the XML documents
increases, the performance of the Bloom-filter-based algorithm decreases
quickly. One benefit of the algorithm is that inserting and deleting filters
is fast.

Some recent systems for XML filtering use web ontology languages
(OWL) [10] for XPath filter matching. M-Filter [34] can process twig fil-
ters and the system by Saigaonkar et al. [60] twig filters having value-based
predicates. In the experiments M-Filter was found to perform better than
YFilter. Saigaonkar et al. did not yet present a performance study. Qeli
and Freislebeln [57] present an idea of using aspect-oriented programming
for implementing the filtering algorithm.

A problem related to XML filtering with XPath filters is the case
when filters are described in the XQuery [13] language. The XSM filtering
system presented by Ludäscher et al. [44] is based on building transducers
of XQuery filters. The filter workload is compiled into a C program that
simulates the execution of a transducer. The XSM does not support the
descendant axis in a query.

Koch et al. [37] also consider evaluation of XQuery and XPath filters
over XML streams. They propose a prefiltering technique that is based
on the Boyer-Moore [14] and Commentz-Walter [23] string-matching algo-
rithms. Instead of tokenizing the XML input documents by using a SAX
parser they process the documents as an unparsed character stream. Their
prefiltering technique can significantly speed up the QizX [2] XQuery pro-
cessor and the SPEX [50] XPath engine. However, they only consider the
case of evaluating one filter at a time.

The TurboXPath algorithm by Josifovski et al. [36] is another system
for evaluating XQuery queries over XML streams. The algorithm compiles
the input query into a single parse tree and matches the input XML
document against the parse tree nodes. TurboXPath also evaluates only
one query at a time and it is not known how it would apply to XML
filtering, when the number of boolean queries (or filters) can be large.

19

CHAPTER 2 XML FILTERING

2.8 Summary

Table 2.1 presents a summary of the above-described XML filtering algo-
rithms. The table describes the basic idea of the filtering engine, XML
parsing scheme used, and whether or not predicates and twigs are sup-
ported. Most of the algorithms use a SAX parsing scheme either with
top-down or bottom-up evaluation. If bottom-up parsing is used, buffer-
ing of SAX events is required. Tian et al. [73] and Jacobsen et al. [33]
consider processing each path in the XML document separately. Algo-
rithms by Koch et al. [37] and Mitra et al. [48] do not use SAX, but
process XML documents as character stream.

Algorithms capable of handling twig filters [8, 15, 19, 24, 38, 40, 49]
are discussed in more detail in Section 7.1, where the evaluation of twig
filters is discussed. In Section 7.2 we discuss predicate evaluation and
review techniques for predicate evaluation presented with YFilter [24],
XPush [30], and PFilter [17].

20

2.8 Summary

System Filtering engine Input stream
parsing

Predi-
cates

Twigs Notes

XFilter [6] builds an FSM for each fil-
ter

SAX, top-down yes yes

YFilter [24] single NFA for all the filters SAX, top-down yes yes
BUFF [49] single NFA for all the filters SAX, bottom-up yes yes
GFilter [21] single NFA for all the filters SAX, bottom-up yes yes GTP filters
PFilter [17] single NFA for all the filters SAX, top-down yes yes built upon

YFilter
Lazy DFA [28] single DFA that is con-

structed lazily
SAX, top-down yes -

XPush [30] single PDA that is con-
structed lazily

SAX, bottom-up yes yes

HFilter [72] combination of DFA and
NFA

SAX, top-down - -

cache-conscious
automata [31]

utilizes the processor cache SAX, top-down - -

XSQ [54] uses an NFA augmented
with a buffer

SAX, top-down yes yes only one filter
at a time

DHT [45] distibutes processing of
YFilter

SAX, top-down yes - built upon
YFilter

Uchiyama et
al. [74]

distibutes processing of lazy
DFA

SAX, top-down yes - built upon lazy
DFA

Lazy XTrie [19] trie-based indexing of the
profiles

SAX, bottom-up yes yes

Index-
Filter [15]

indexes the XML stream to
be filtered

SAX, bottom-up yes yes

AFilter [18] trie-based indexing of the
profiles

SAX, top-down - -

FiST family
[38–40]

subsequence matching SAX, bottom-up yes yes

BoXFilter [49] subsequence matching SAX, bottom-up yes yes
XFIS [8] subsequence matching SAX, bottom-up - yes
Tian et al. [73] stores profiles into rela-

tional database
SAX, each path
separately

yes yes

Hou and Jacob-
sen [33]

filters are represented as or-
dered sets of predicates

SAX, each path
separately

yes yes

Mitra et al. [48] FPGA-based filtering character stream - -
Gong et al. [27] uses Bloom filters for ap-

proximate filtering
SAX, top-down - -

M-Filter [34] uses a web ontology lan-
guage

SAX, top-down - yes

Koch et al. [37] string matching approach character stream - - XQuery filters
TurboXPath [36] compiles the input query

into a parse tree
SAX, top-down yes yes one XQuery fil-

ter at a time

Table 2.1. XML filtering systems for filtering with XPath and XQuery
filters.

21

CHAPTER 2 XML FILTERING

22

CHAPTER 3

XML Filtering by

Pattern-Matching-Automata

In this chapter we present new algorithms for solving the filtering prob-
lem for linear XPath filters without predicates. The new algorithms are
based on a backtracking deterministic finite automaton derived from the
classic Aho–Corasick [5] pattern-matching automaton (PMA). The PMA
is constructed from the set of filters in the preprocessing phase of the
algorithm. The automaton has a size linear in the sum of the sizes of the
filters.

In Section 3.1 we describe a simple and efficient version of the PMA-
based algorithm that can process linear XPath filters without wildcards
and non-leading descendant operators [63]. We call this algorithm the
bare AC. Then in Section 3.2 we extend the bare AC so as to handle also
wildcards and non-leading descendant operators [66]. This algorithm is
called the static PMA. In Section 3.3 we present a more efficient version
of the algorithm that uses dynamic modification of the output function
of the PMA during processing of the input document. We have published
this algorithm in a recent conference article [67], and it is called the
dynamic PMA. In that article we also outlined an optimization called
“fast backtracking” (PMA FB); this optimization is described in detail in
Section 3.4.

A problem related to XML filtering is the online dictionary-matching
problem for XML document streams, where the task is to locate all occur-
rences of all XPath patterns in the input XML document. In Section 3.5
we extend the algorithm of Section 3.4 for online dictionary matching of
XML documents.

23

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

3.1 Backtracking Aho–Corasick Pattern-Matching Au-

tomaton

In this section we describe the simple and efficient bare AC algorithm for
matching linear XPath filters without wildcards and non-leading descen-
dant operators.

3.1.1 The Algorithm

The classical Aho–Corasick PMA [5] for a finite setW of nonempty strings
called keywords over a finite alphabet Σ is a deterministic linear-time
finite-state recognizer of the regular language Σ∗WΣ∗. The size of the
PMA is O(∣W ∣), where ∣W ∣ denotes the sum of the lengths of all keywords
in W . In processing input string x, the PMA makes at most 2∣x∣ moves.

For each prefix y of some keyword in W , the Aho–Corasick PMA has a
unique state, denoted by state(y), different from all state(y′) where y′ /= y.
The state state(ǫ), where ǫ is the empty string, is the initial state of the
PMA. The number of states in the PMA is at most ∣W ∣+1 and the states
are numbered with positive integers.

The goto function of the PMA is defined by the equation
goto(state(y), a) = state(ya), where ya is a prefix of some keyword and
a is a symbol in Σ. For any state q we denote by string(q) the unique
string y with state(y) = q. Thus, string(q) is the string upon which state
q is reached from the initial state via the goto function. We denote by
depth(q) the length of string(q).

The fail function of the PMA is defined by the equation
fail(state(uv)) = state(v), where uv is a prefix of some keyword and v

is the longest proper suffix of uv such that v is also a prefix of some
keyword. The fail function is organized as an array indexed by state
numbers.

We modify the standard PMA so that, upon recognition of a keyword,
the PMA is able to report exactly which of the filters match. Each key-
word w is given a unique identifier, id(w), and the output function of the
PMA maps each accepting state q to id(string(q)). The output function
is constructed in conjunction with calculation of the goto function, but it
is not completed while constructing the fail function, as with the original
algorithm by Aho and Corasick [5]. This means that output(q) contains
only the integer id(string(q)) and not the identifiers of the keywords found
in the fail path from q. The fail path of state q includes those states that
are found by traversing the fail arcs from q to the initial state. In our

24

3.1 Backtracking Aho–Corasick Pattern-Matching Automaton

construction the output function is of linear size instead of quadratic size,
which is the case with the traditional Aho–Corasick PMA. Algorithms 3.1
and 3.2 present the pseudo code for the construction of the goto and fail
functions of the automaton.

We use the function output-fail(q) to traverse the output path for
state q. The function is defined by: output-fail(q) = failk(q), where k

is the greatest integer less than or equal to the length of string(q) such
that string(failm(q)) is not a keyword for any m = 1, . . . , k −1. Here failm

denotes the fail function applied m times. Thus, the output path for state
q includes those states in the fail path from q for which output(q) is not
empty.

procedure build-goto(W):
1 newstate← 0
2 for each keyword w in W do

3 enter(w)
4 end for

5 for each a in the alphabet such that goto(0, a) is undefined do

6 goto(0, a)← 0
7 end for

procedure enter(a1a2 . . . an):
1 state← 0
2 j ← 1
3 while goto(state, aj) is defined do

4 state← goto(state, aj)
5 j ← j + 1
6 end while

7 for p← j to n do

8 newstate← newstate + 1
9 goto(state, ap)← newstate

10 state← newstate
11 end for

12 output(state)← id({a1a2 . . . an})

Algorithm 3.1. Construction of the goto function for the set of keywords
W [5].

In our setting, the alphabet Σ contains the set of elements occurring
in the DTD plus an additional symbol # denoting the beginning of any
XML document. The set W of keywords is derived from the XPath filters

25

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

procedure build-fail():
1 queue← empty
2 for each a such that goto(0, a) = s ≠ 0 do

3 queue.enqueue(s)
4 fail(s)← 0
5 end for

6 while queue ≠ empty do

7 r ← queue.dequeue()
8 for each a such that goto(r, a) = s do

9 queue.enqueue(s)
10 state ← fail(r)
11 while goto(state, a) is not defined do

12 state← fail(state)
13 end while

14 fail(s)← goto(state, a)
15 end for

16 end while

Algorithm 3.2. Construction of the fail function differs from the original
algorithm of Aho–Corasick [5] in that the output function is not com-
pleted.

26

3.1 Backtracking Aho–Corasick Pattern-Matching Automaton

provided by the subscribers. We decompose each filter into keywords as
follows. First, we remove all child operators “/” from the filter. Then we
define the keyword of the filter to be the string consisting of XML elements
only. Here XML element names are represented as unique lexical symbols
in our alphabet Σ, rather than as strings of characters. If the filter begins
with an “/”, then the symbol # is added in front of the keyword. Now a
linear XPath filter containing no wildcards“∗”nor non-leading descendant
operators “//” gives rise to a single keyword w in Σ∗.

For example, the filters Q1 = /a/b/f , Q2 = //b/f , Q3 = /a/c/f , and Q4 =
/a/d/e/f are represented as keywords w1 = #abf , w2 = bf , w3 = #acf ,
and w4 = #adef . The Aho–Corasick PMA is constructed for the set of
all keywords thus obtained. Figure 3.1 shows the PMA for matching the
example keywords.

1

other
2#

6
b

3
a

4

b

8
c

12

d

5f

{1}

7
f

{2}

9
f

{3}

13
e

14
f

{4}

Figure 3.1. The Aho–Corasick automaton for matching keywords w1 =
#abf,w2 = bf,w3 = #acf and w4 = #adef . The dashed lines denote fail
arcs. There is also a fail arc to the initial state 1 from states 2, 3, 6, 7, 8,
9, 12, 13 and 14. The output function maps states 5, 7, 9, and 14 to the
identifiers of the keywords recognized at those states.

To turn a PMA that recognizes linear text to a PMA that filters tree-
structured text such as XML, we must do the following. A backtracking
facility must be added so that the state of the automaton can be restored
after scanning a subtree of the input document. The state is restored
into the state that was active just before processing the element start-tag
of the subtree started. This makes it possible to continue the matching
process with the next sibling sub-element.

The input stream for the PMA consists of tokens produced by a SAX
parser. When the SAX parser encounters an element start-tag, the current
state of the automaton is pushed onto a stack, and the symbol correspond-

27

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

ing to the element name is consumed by the automaton. The automaton
changes its state according to the PMA’s goto and fail functions, and
keeps track of the matching filters. On each element end-tag the automa-
ton is backtracked: the state on top of stack is set as the current state
and the stack is popped. When the input document has been processed,
the algorithm reports the filters that match the input document.

The algorithm uses the following data structures, where #keywords
is the number of distinct keywords, #filters is the number of filters and
#states is the number of states.

• goto[1 . . .#states]: an array representing the goto function of the
Aho–Corasick PMA. For state q, the entry goto[q] is a hash table
of pairs (a, q′) indexed by input symbols a.

• fail[1 . . .#states]: an array representing the fail function of the
PMA.

• output[1 . . .#states]: an array representing the output function of
the PMA.

• filters[1 . . .#keywords] is an array where filters[id(w)] contains the
numbers of those filters that contain the given keyword w.

• result[1 . . .#filters] is a boolean array where result[i] is true if i’th
filter matches the input document.

• output-visited[1 . . .#states] is a boolean array where output-visited[s]
is true if state s has been visited during the processing of the input
document. When state s has been visited, we set output-visited[s]
to true and do not scan the same output path again for the input
document.

• symbol-table[1 . . . ∣Σ∣] is a hash table indexed by XML element
names. The table contains the unique input symbol in Σ for the
given XML element name.

The operating cycle of the algorithm is presented in Algorithm 3.3. The
input for the procedure are the tokens produced by the SAX parser. When
the input document has been processed, the filtering result can be read
from the boolean array result. The procedure print-result prints the result
to the user.

Figure 3.2 presents an example of processing an XML input document
<a><f></f><c><f></f></c> with the PMA of Figure 3.1.

28

3.1 Backtracking Aho–Corasick Pattern-Matching Automaton

procedure operating-cycle():
1 scan-next(token)
2 while token was found do

3 if token is a document start-tag then

4 initialize()
5 stack.push(state)
6 sym←#
7 state← goto(state, sym)
8 else if token is a document end-tag then

9 print-result()
10 else if token is a start-tag of element E then

11 stack.push(state)
12 sym← symbol-table[E]
13 while goto(state, sym) = fail do
14 state ← fail(state)
15 end while

16 state← goto(state, sym)
17 report-output(state)
18 else if token is an element end-tag then

19 state← stack.pop()
20 end if

21 scan-next(token)
22 end while

Algorithm 3.3. Operating cycle of the backtracking PMA.

procedure initialize():
1 state← initial state
2 for i = 1 to #states do

3 output-visited[i] ← false
4 end for

5 for i = 1 to #filters do

6 result[i] ← false
7 end for

Algorithm 3.4. Procedure initialize.

29

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

procedure report-output(state):
1 q ← state
2 traversed ← false
3 while not traversed do

4 if output-visited[q] = false then

5 id← output[q]
6 for each i in filters[id] do
7 result[i]← true
8 end for

9 output-visited[q]← true
10 else

11 traversed ← true
12 end if

13 if q = initial-state then

14 traversed ← true
15 else

16 q ← output-fail(q)
17 end if

18 end while

Algorithm 3.5. Procedure report-output(state).

30

3.1 Backtracking Aho–Corasick Pattern-Matching Automaton

1

other
2#

6
b

3
a

4

b

8
c

12

d

5f

{1}

7
f

{2}

9
f

{3}

13
e

14
f

{4}

1

other
2#

6
b

3
a

4

b

8
c

12

d

5f

{1}

7
f

{2}

9
f

{3}

13
e

14
f

{4}

(a) Processing of the XML document
starts from the initial state.

(b) Processed start of document. S = ⟨1⟩.

1

other
2#

6
b

3
a

4

b

8
c

12

d

5f

{1}

7
f

{2}

9
f

{3}

13
e

14
f

{4}

1

other
2#

6
b

3
a

4

b

8
c

12

d

5f

{1}

7
f

{2}

9
f

{3}

13
e

14
f

{4}

(c) Processed start of element a. S =
⟨1,2⟩.

(d) Processed start of element b. S =
⟨1,2,3⟩.

1

other
2#

6
b

3
a

4

b

8
c

12

d

5f

{1}

7
f

{2}

9
f

{3}

13
e

14
f

{4}

1

other
2#

6
b

3
a

4

b

8
c

12

d

5f

{}

7
f

{}

9
f

{3}

13
e

14
f

{4}

(e) Processed start of element f. S =
⟨1,2,3,4⟩.

(f) Processed end of element f. Back-
tracking to state 4. S = ⟨1,2,3⟩.

1

other
2#

6
b

3
a

4

b

8
c

12

d

5f

{}

7
f

{}

9
f

{3}

13
e

14
f

{4}

1

other
2#

6
b

3
a

4

b

8
c

12

d

5f

{}

7
f

{}

9
f

{3}

13
e

14
f

{4}

(g) Processed end of element b. Back-
tracking to state 3. S = ⟨1,2⟩.

(h) Processed start of element c. S =
⟨1,2,3⟩.

Figure 3.2. Processing XML document <a><f></f><c><f></f>
</c> with the backtracking PMA. S denotes the contents of the
stack.

31

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

The processing starts from the initial state (Figure 3.2(a)). As we read
the beginning of the XML document, the PMA enters state 2, and the
previous state is pushed onto stack (Figure 3.2(b)). As we read the start-
tag of element a, the PMA enters state 3, and the previous state is pushed
onto stack (Figure 3.2(c)); similarly for elements b (Figure 3.2(d)) and c

(Figure 3.2(e)). At state 5 we notice that filters Q1 and Q2 have matched.
The numbers of matched filters are collected by traversing the output fail
arc starting from state 5 down to state 7. This is called the output-
path traversal. Next the output sets of states 5 and 7 can be cleared (by
setting the output-visited flag for these states to true), because the filters
have matched. As we process the end-tag of element f, the automaton
returns to the state that was on top of the stack, and the stack is popped
(Figures 3.2(f) and 3.2(g)). As we process the start-tag of element c, the
PMA enters state 8. On the next f element filter Q3 matches, concluding
the example.

3.1.2 Complexity Analysis

Processing an element start-tag requires a lookup from the goto[q] hash
table, which takes O(1) time. Here we assume the size of the alphabet
Σ (or the number of distinct XML elements in the filters) is a constant.
The output path of each state is traversed at most once, as can been
seen in the while-loop of procedure report-output (Algorithm 3.5), where
the output-visited flag is set for each visited state. Processing an element
end-tag is also an O(1) operation. Reporting each matched filter in the
report-output procedure adds the term k to the total complexity result,
where k is the number of matched filters. Preprocessing that includes
the construction of the Aho–Corasick PMA takes time linear in the total
size of the filters. The time bound of filtering is stated by the following
theorem.

Theorem 3.1. The time complexity of filtering with XPath filters that
do not contain wildcards or non-leading descendant operators is

O(∣x∣ + k),

where ∣x∣ is the size of the input x, that is the number of XML elements
in the input document, and k is the number of matched filters.

32

3.2 Filtering with Wildcards and Descendant Operators

3.2 Filtering with Wildcards and Descendant Opera-

tors

In this section we present an extension of the Aho–Corasick based [5]
filtering algorithm of the previous section. This static PMA algorithm can
process linear XPath filters having wildcards and descendant operators.
The supported XPath fragment is described by the following grammar:

P := /E | //E | PP

E := label | *

where label denotes an XML-element label. The static PMA has been
published in our recent journal article [66].

For solving the filtering problem with wildcards and descendant oper-
ators we construct the PMA as defined in the previous section from the
set of all keywords that appear in the filters. This idea was previously
used to solve the single-pattern matching problem with wildcards [55] (see
also articles by Rahman et al. [59] and Rahman and Iliopoulos [58]). In
single-pattern matching we collect all occurrences of a single pattern in
the input text. However, the algorithms presented in these articles cannot
be directly extended to yield an efficient solution to the case when there
are multiple patterns (or filters). Also the algorithms are designed for
processing only linear text; tree-structured input is not considered.

3.2.1 The Algorithm

As a preprocessing task, we construct an Aho–Corasick PMA from the
filters as follows. Again the alphabet Σ contains the set of elements occur-
ring in the DTD. Now we decompose each filter into keywords and gaps
as follows. First, we remove all child operators “/” from the filter. Then
we define the keywords of the filter to be maximal substrings consisting
of XML elements only. The gaps of the filters are defined to be maximal
substrings consisting of descendant operators “//” and wildcards “∗”. If
the filter ends at a nonempty gap, then we assume that the last keyword
of the filter is the empty string ǫ. Each filter is considered to begin with
a gap, which thus may be ǫ.

We number the filters and their gaps and keywords consecutively, so
that the ith filter Qi can be represented as

Qi = gap(i,1)keyword(i,1) . . . gap(i,mi)keyword(i,mi),

where gap(i, j) denotes the jth gap and keyword(i, j) denotes the jth

33

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

keyword of filter Qi. For example, the filter //a/b/∗/c//∗/d/∗/∗ consists
of four gaps, namely //, ∗, //∗, and ∗∗, and of four keywords, namely ab,
c, d, and ǫ. The filter /a/b/∗/c//∗/d consists of three gaps, namely ǫ, ∗,
and //∗, and three keywords, namely ab, c, and d.

For filter Qi, we denote by mingap(i, j) and maxgap(i, j), respec-
tively, the minimum and maximum lengths of element strings that can
be matched by gap(i, j). The length of the jth keyword of filter Qi is
denoted by length(i, j). We also assume that #keywords(i) gives mi, the
number of keywords in filter Qi.

For example, if the filter //a/b/∗/c//∗/d/∗/∗ is the ith filter Qi, we
have

mingap(i,1) = 0, maxgap(i,1) = ∞, length(i,1) = 2,
mingap(i,2) = 1, maxgap(i,2) = 1, length(i,2) = 1,
mingap(i,3) = 1, maxgap(i,3) = ∞, length(i,3) = 1,
mingap(i,4) = 2, maxgap(i,4) = 2, length(i,4) = 0.

If the filter /a/b/∗/c//∗/d is the ith filter Qi, we have

mingap(i,1) = 0, maxgap(i,1) = 0, length(i,1) = 2,
mingap(i,2) = 1, maxgap(i,2) = 1, length(i,2) = 1,
mingap(i,3) = 1, maxgap(i,3) = ∞, length(i,3) = 1.

In the case of XPath filters, we have, for all i and j, either mingap(i, j) =
maxgap(i, j) or maxgap(i, j) = ∞, because in any XPath expression the
number of wildcards is fixed.

For the set of all keywords in the filters, we construct a backtracking
Aho–Corasick PMA with output sets containing output tuples of the form
(i, j). A tuple (i, j) is attached to state q, where q = state(keyword(i, j)),
the state reached from the initial state upon reading the jth keyword of
filter Qi. The output sets are organized as an array output[1 . . .#states],
where entry output[q] contains a doubly linked list of output tuples.

The basic idea of the algorithm is to collect, for each filter Qi, partial
matches of Qi that represent matches of maximal prefixes ofQi found thus
far. When a match up to and including the last keyword of Qi has been
found, we have a full match of the pattern. Partial matches of keyword
j of filter i are recorded in set partial-matches(i, j) containing values p,
where p is the current path length in the input document that matches
the filter prefix Qi,j. Here

Qi,j = gap(i,1)keyword(i,1) . . . gap(i, j)keyword(i, j).

Each set partial-matches(i, j) is organized as a balanced binary search
tree (red-black tree) indexed by p.

34

3.2 Filtering with Wildcards and Descendant Operators

Algorithm 3.6 gives the operating cycle of the program. When visit-
ing state q, its output set is checked for possible matches of keywords in
the procedure call traverse-output-path(q) (see Algorithm 3.8). An out-
put tuple (i, j) represents a match of the jth keyword of filter Qi. The
algorithm checks if a partial match (a match of a filter prefix) is found
and stores the possible match into the set partial-matches(i, j). Now if
the jth keyword is the last one in filter Qi, then this indicates a match of
the entire filter Qi.

When the filter Qi has matched, we may delete all output tuples for i
(line 6 in Algorithm 3.8). This can be done efficiently, since the deletion
of an output tuple from a doubly-linked list is an O(1) operation. Deleted
output tuples are stored into list deleted-output. This list is used to restore
the output sets when the PMA is initialized for a new incoming XML
document in the procedure initialize.

Because keywords of length zero may have to be recognized, the oper-
ating cycle of the backtracking PMA also contains the call traverse-output-
path(state) for the initial state, and the procedure traverse-output-path
has been structured so that it also observes possible output tuples for
the initial state. The global variable path-length is incremented whenever
an element start-tag is scanned, and decremented whenever an element
end-tag is scanned. The variables document-count and element-count are
used in the algorithm of Section 3.4.

The backtracking stack now contains information about states visited
and partial matches inserted into the partial-matches structure during
traversing a root-to-leaf path in the current input document. The PMA
backtracks when an element end-tag is scanned; then elements from the
stack are popped, insertions of partial matches are undone, and the con-
trol of the PMA is returned to the state that was entered when scanning
the previous element start-tag (see the procedure backtrack given as Al-
gorithm 3.10).

Figure 3.3 shows how the XML document <a><c></c>

is processed with the PMA. The PMA has been constructed from filters
Q1 = //a/b//c and Q2 = //b/∗/∗/c. In this case there are three keywords:
ab, b, and c, leading to states 3, 4, and 5. After the initialization of
the PMA, the output set of state 3 contains the tuple (1,1) representing
keyword ab of filter Q1, the output set of state 4 contains the tuple (2,1)
representing the first keyword of filter Q2, and the output set of state 5
the tuples (1,2) and (2,2) representing the second keyword of filter Q1

and the second keyword of filter Q2.
The processing of the XML document starts from the initial state

(Figure 3.3(a)). After processing the start-tags of elements a and b, the

35

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

procedure operating-cycle():
1 document-count← 0
2 deleted-output ← ∅
3 scan-next(token)
4 while token was found do

5 if token is a document start-tag then

6 document-count← document-count + 1
7 element-count← 0
8 path-length← 0
9 initialize()

10 state ← initial-state
11 push-onto-stack(state)
12 traverse-output-path(state)
13 else if token is a document end-tag then

14 print-result()
15 else if token is a start-tag of element E then

16 element-count← element-count + 1
17 path-length← path-length + 1
18 push-onto-stack(state)
19 sym← symbol-table[E]
20 while goto(state, sym) = fail do
21 state← fail(state)
22 end while

23 state ← goto(state, sym)
24 traverse-output-path(state)
25 else if token is an element end-tag then

26 backtrack()
27 path-length← path-length − 1
28 end if

29 scan-next(token)
30 end while

Algorithm 3.6. Operating cycle of the filtering PMA that can handle
filters with wildcards and descendant operators.

36

3.2 Filtering with Wildcards and Descendant Operators

procedure initialize():
1 for all keywords (i, j) in filters Q do

2 partial-matches(i, j)← ∅
3 end for

4 for all filters Qi do

5 result[i] ← false
6 end for

7 for all (i, j) ∈ deleted-output do
8 insert (i, j) into output(state(keyword((i, j)))
9 end for

10 deleted-output← ∅

Algorithm 3.7. Procedure initialize().

PMA has entered state 3 and stored visited states onto the stack. In
state 3, keywords ab and b have matched (Figure 3.3(c)). Current path
length 2 is stored into sets partial-matches(1,1) and partial-matches(2,1)
(Figure 3.3(d)). Modifications to partial-matches are also stored onto
the stack. Here i(i, j, p) denotes the insertion of a value p into partial-
matches(i, j).

The processing of the start-tag of element c leads to state 5 (Fig-
ure 3.3(e)). Now filter Q1 has matched, since partial-matches(1,1) ≤
path-length− length(1,2)−mingap(1,2). When we process the end-tag of
element c, the automaton enters state 3 and the stack is popped (Fig-
ure 3.3(f)). Processing the end-tag of element b causes the undoing of
operations stored into the stack before the next state change operation.
As we process the end-tag of element a, the automaton enters state 1
(Figure 3.3(h)), concluding this example.

3.2.2 Complexity Analysis

Each filter Qi is of the form

Qi = gap(i,1)keyword(i,1) . . . gap(i,mi)keyword(i,mi).

Whenever a keyword keyword(i, j) has been recognized at some element
position in the algorithm, it can trigger a lookup and a possible insertion
into the set partial-matches(i, j) (in Algorithm 3.8), which is a balanced
binary search tree. The maximum size of the tree (the number of keys) is
the depth of the input document (the largest value that the path-length
variable can have). When we denote this by L, we get a time bound

37

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

procedure traverse-output-path(state):
1 q ← state
2 traversed ← false
3 while not traversed do

4 for all (i, j) ∈ output(q) do
5 if result[i] = true then

6 delete (i, j) from output(q)
7 insert (i, j) into deleted-output
8 else

9 p← path-length − length(i, j) −mingap(i, j)
10 if j = 1 then

11 if maxgap(i, j) = ∞ and p ≥ 0 then

12 advance-match(i, j)
13 else if p = 0 then

14 advance-match(i, j)
15 end if

16 else

17 if maxgap(i, j) = ∞ and partial-matches(i, j − 1) contains
some p′ ≤ p then

18 advance-match(i, j)
19 else if maxgap(i, j) < ∞ and partial-matches(i, j − 1) con-

tains p then

20 advance-match(i, j)
21 end if

22 end if

23 end if

24 end for

25 if q = initial-state then

26 traversed ← true
27 else

28 q ← output-fail(q)
29 end if

30 end while

Algorithm 3.8. Procedure traverse-output-path(state).

38

3.2 Filtering with Wildcards and Descendant Operators

1

other

2

a

4
b

5

c

3
b

{(1,1)}

{(2,1)}

{(1,2), (2,2)}

1

other

2

a

4
b

5

c

3
b

{(1,1)}

{(2,1)}

{(1,2), (2,2)}

(a) Processing of the XML document
starts from the initial state.

(b) Processed start of element a. S = ⟨1⟩.

1

other

2

a

4
b

5

c

3
b

{(1,1)}

{(2,1)}

{(1,2), (2,2)}

1

other

2

a

4
b

5

c

3
b

{(1,1)}

{(2,1)}

{(1,2), (2,2)}

(c) Processed start of element b. S =
⟨1,2⟩.

(d) Updated partial-matches. S = ⟨1,2,
i(1,1,2), i(2,1,2)⟩. P (1,1) = P (2,1) =
{2}.

1

other

2

a

4
b

5

c

3
b

{(1,1)}

{(2,1)}

{(1,2), (2,2)}

1

other

2

a

4
b

5

c

3
b

{(1,1)}

{(2,1)}

{(1,2), (2,2)}

(e) Processed start of element c. Filter
Q1 matched. S = ⟨1, 2, i(1,1,2), i(2,1,2),
3⟩. P (1,1) = P (2,1) = {2}.

(f) Processed end of element c. Back-
tracked to state 3. S = ⟨1, 2, i(1,1,2),
i(2,1,2)⟩. P (1,1) = P (2,1) = {2}.

1

other

2

a

4
b

5

c

3
b

{(1,1)}

{(2,1)}

{(1,2), (2,2)}

1

other

2

a

4
b

5

c

3
b

{(1,1)}

{(2,1)}

{(1,2), (2,2)}

(g) Processed end of element b. Back-
tracked to state 2. S = ⟨1⟩.

(h) Processed end of element a. Back-
tracked to state 1. S = ⟨⟩.

Figure 3.3. Processing XML document <a><c></c> with
the backtracking PMA. The filter workload consists of two filters: Q1 =
//a/b//c and Q2 = //b/∗/∗/c. As before, S denotes the contents of the
stack. P (i, j) denotes the contents of the set partial-matches(i, j).

39

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

procedure advance-match(i, j):
1 if j = keywords(i) then
2 result[i]← true
3 else

4 insert path-length into partial-matches(i, j)
5 push-onto-stack(inserted⟨i, j,path-length⟩)
6 end if

Algorithm 3.9. Procedure advance-match(i, j).

procedure backtrack():
1 pop the topmost element s from the stack
2 while s is not a state do

3 if s is inserted⟨i, j, p, ⟩ then
4 delete p from partial-matches(i, j)
5 end if

6 pop the topmost element s from the stack
7 end while

8 state ← s

Algorithm 3.10. Procedure backtrack().

O(logL) for a lookup from or an insertion into the search tree. For a set
of filters and an input document x, denote by occ(keywords) the number
of occurrences in x of all keyword instances in the filter workload. This
adds the term O(logL × occ(keywords)) to the time complexity of the
filtering algorithm.

Processing the input document requires additionally at most O(K×∣x∣)
time, where ∣x∣ is the length of the input document (the number of XML
elements in the document) andK denotes the maximum number of proper
suffixes of one keyword that are also keywords. The multiplier K is due
to the fact that all states on the output path must be traversed (by using
the function output-fail) in order to check all possibilities to continue the
currently matched filter prefix. This gives the time bound O(K × ∣x∣ +
logL × occ(keywords)) for filtering. However, because occ(keywords) ≥
K × ∣x∣, the multiplier K can be removed. The term ∣x∣ is needed, because
in some cases there might be no keyword occurrences.

Now we can state the time complexity of the filtering algorithm with
the following theorem.

Theorem 3.2. The static PMA filtering algorithm that can process
linear XPath filters having wildcards and descendant operators runs in

40

3.3 Using a Dynamic Output Function

time
O(∣x∣ + logL × occ(keywords)),

where ∣x∣ denotes the number of XML elements in the input document x,
L is the depth of x, and occ(keywords) denotes the number of occurrences
in x of all keyword instances in the filter workload.

3.3 Using a Dynamic Output Function

In this section we present an enhanced version of the PMA-based filtering
algorithm of the previous section. This dynamic PMA algorithm has
dynamically changing output sets; the output function is dynamically
updated during processing of the input document. With this algorithm
we recognize only those keyword occurrences that have a matching filter
prefix ending with this keyword occurrence. The dynamic PMA has been
published in our recent conference article [67]. With practical data sets
the dynamic PMA is more efficient than the static PMA.

3.3.1 The Algorithm

For the set of all keywords in the filters, we construct a backtracking
Aho–Corasick pattern-matching automaton with a dynamically changing
output set current-output containing tuples of the form

(q, i, j, b, e),

where q = state(keyword(i, j)), the state reached from the initial state
upon reading the jth keyword of filter Qi, and b and e are the earliest
and latest element positions on a path in the input document at which
some partial match of filter Qi up to and including the jth keyword can
possibly be found. The latest possible element position e may be ∞,
meaning the end of the path.

Initially, the set current-output contains all output tuples for the first
keywords in the filters, that is, tuples (q, i,1, b, e), where q is the state
reached from the initial state upon reading the first keyword of filter Qi,

b =mingap(i,1) + length(i,1), and
e =maxgap(i,1) + length(i,1)

(see the procedure initialize given as Algorithm 3.11). Here e = ∞ if
maxgap(i,1) = ∞.

41

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

In the case of XPath patterns, we have, for all i and j, either
mingap(i, j) = maxgap(i, j) or maxgap(i, j) = ∞, because in any XPath
expression the number of wildcards is fixed. However, as will be evident
from the presentation below, our algorithm can also handle any variable-
length gaps with mingap(i, j) <maxgap(i, j) < ∞.

The backtracking stack now contains information about states visited
and output tuples inserted into and deleted from the current output when
traversing a root-to-leaf path in the current input document (see the pro-
cedure backtrack given as Algorithm 3.13).

The operating cycle of the algorithm is the same as with the previ-
ous algorithm (see Algorithm 3.6). When visiting state q, the current
output of the PMA is checked for possible matches of keywords in the
procedure call traverse-output-path(q) (see Algorithm 3.12). A current
output tuple (q, i, j, b, e) is found to represent a match of the jth keyword
of filter Qi if b ≤ path-length ≤ e, where path-length is a global variable
that maintains the number of elements scanned from the current path in
the input document. Now if the jth keyword is the last one in filter Qi,
then this indicates a match of the entire filter Qi. Otherwise, an output
tuple (q′, i, j +1, b′, e′) for the (j +1)st keyword of filter Qi is inserted into
the set current-output, where q′ is the state reached from the initial state
upon reading the (j + 1)st keyword of filter Qi,

b′ = path-length +mingap(i, j + 1) + length(i, j + 1), and
e′ = path-length +maxgap(i, j + 1) + length(i, j + 1).

Here e′ = ∞ ifmaxgap(i, j+1) = ∞. If e′ = ∞, we could delete from current-
output all output tuples (q′′, i, j′′, b′′, e′′) with j′′ ≤ j. In this case we are no
longer waiting keywords of filter Qi with j′′ ≤ j to be recognized and the
output tuples for these keywords can be removed from the current output.
However, since tuples (q′′, i, j′′, b′′, e′′) with e′′ < path-length are deleted
later by the procedure traverse-output-path (lines 7–9 in Algorithm 3.12),
we only delete here tuples (q′′, i, j′′, b′′,∞) with j′′ ≤ j (which can be done
efficiently, see below).

The set of current output tuples is organized as an array current-
output[1 . . .#states] containing balanced binary search trees (red-black
trees). Each such tree is indexed by b and a node contains a pointer to
a doubly-linked list of current output tuples (q, i, j, b, e). In the proce-
dure traverse-output-path, when visiting state q, the search tree current-
output[q] is used to locate the output tuples (q, i, j, b, e) with b ≤ path-
length. Figure 3.4 exemplifies the structure.

Current output tuples having e = ∞ are also stored into an array
current-output2 [1 . . .#filters], where entry current-output2[i] holds a poin-

42

3.3 Using a Dynamic Output Function

5

3

2 4

8

9

#states:

5:

4:

3:

2:

1:

3, i, j,5,∞ 3, i, j,5,5

3, i, j,8,∞ 3, i, j,8,8

3, i, j,9,∞

Figure 3.4. The set of current output tuples is organized as an array
indexed by states and containing balanced binary search trees. Each such
tree is indexed by b and a node contains a pointer to a doubly-linked list
of current output tuples (q, i, j, b, e).

ter to a linked list of current output tuples (q, i, j, b,∞). Array current-
output2 is used to locate tuples (q′′, i, j′′, b′′,∞) for deletion in proce-
dure traverse-output-path (lines 20–23 in Algorithm 3.12). Triple (i, j, b)
defines a unique key for each output tuple and we also use a three-
dimensional array current-output3 [i, j, b] for storing the current output
tuples. This array is used to prevent the creation of duplicate tuples
when backtracking.

When the filter Qi has matched, we may delete all output tuples for
i permanently, that is, without recording the deletions onto the stack.
This will be also done in the traverse-output-path procedure (lines 5–6
in Algorithm 3.12). When the doubly-linked list pointed by key b in
the search tree current-output[q] becomes empty (because of deletions of
tuples), then b can be removed from the tree.

Figure 3.5 shows how the example document <a><c></c>
is processed with the dynamic PMA. Again, the PMA has been con-
structed from filters Q1 = //a/b//c andQ2 = //b/∗/∗/c. After the initializa-
tion of the PMA, the output set of state 3 contains the tuple (3,1,1,2,∞)
representing keyword ab of filter Q1 and the output set of state 4 the tuple
(4,2,1,1,∞) representing the first keyword of filter Q2.

The processing of the XML document starts from the initial state
(Figure 3.5(a)). After processing the start-tags of elements a and b, the
PMA has entered state 3 and stored visited states onto the stack (Fig-
ure 3.5(c)). In state 3, keywords ab and b have matched. The output
tuple (3,1,1,2,∞) is removed from the output set of state 3 and the out-

43

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

procedure initialize():
1 current-output ← ∅
2 for all filters Qi do

3 result[i]← false
4 q ← state(keyword(i,1))
5 b← mingap(i,1) + length(i,1)
6 e←maxgap(i,1) + length(i,1)
7 insert (q, i,1, b, e) into current-output
8 push-onto-stack(inserted⟨q, i,1, b, e⟩)
9 end for

Algorithm 3.11. Procedure initialize().

put tuple (5,1,2,3,∞) of the next keyword of filter Q1 is inserted into the
output set of state 5. The output tuple (5,2,2,4,4) of the next keyword of
filter Q2 is inserted into the output set of state 5 (Figure 3.5(d)). Modifi-
cations to the current output are stored onto the stack. Here i(q, i, j, b, e)
denotes the insertion of an output tuple, and d(q, i, j, b, e) the deletion of
a tuple.

The processing of the start-tag of element c leads to state 5. Now
filter Q1 has matched, since b ≤ path-length (b = path-length = 3). The
output tuple (5,1,2,3,∞) can be removed from the current output. This
modification is not recorded. When we process the end-tag of element
c, the automaton enters state 3 and the stack is popped (Figure 3.5(g)).
Processing the end-tag of element b causes the undoing of operations
stored into the stack before the next state change operation. However,
the operations regarding the matched filter Q1 do not need to be reversed.
The automaton enters state 2 (Figure 3.5(h)), concluding this example.

3.3.2 Complexity Analysis

Each filter Qi is of the form

Qi = gap(i,1)keyword(i,1) . . . gap(i,mi)keyword(i,mi),

and whenever a prefix Qi,j of Qi,

Qi,j = gap(i,1)keyword(i,1) . . . gap(i, j)keyword(i, j),

has been recognized at some element position in the algorithm, a new
output tuple (q′, i, j + 1, b′, e′) will be inserted into the current output in
Algorithm 3.12. The recognition of prefix Qi,j may also trigger a deletion

44

3.3 Using a Dynamic Output Function

procedure traverse-output-path(state):
1 q ← state
2 traversed ← false
3 while not traversed do

4 for all (q, i, j, b, e) ∈ current-output with b ≤ path-length do

5 if result[i] = true then

6 delete (q, i, j, b, e) from current-output
7 else if e < path length then

8 delete (q, i, j, b, e) from current-output
9 push-onto-stack(deleted⟨q, i, j, b, e⟩)

10 else if j = #keywords(i) then
11 result[i]← true
12 delete (q, i, j, b, e) from current-output
13 else

14 q′ ← state(keyword(i, j + 1))
15 b′ ← path-length +mingap(i, j + 1) + length(i, j + 1)
16 e′ ← path-length +maxgap(i, j + 1) + length(i, j + 1)
17 insert (q′, i, j + 1, b′, e′) into current-output
18 push-onto-stack(inserted⟨q′, i, j + 1, b′, e′⟩)
19 if e′ = ∞ then

20 for all (q′′, i, j′′, b′′,∞) ∈ current-output with j′′ ≤ j do

21 delete (q′′, i, j′′, b′′,∞) from current-output
22 push-onto-stack(deleted⟨q′′, i, j′′, b′′,∞⟩)
23 end for

24 end if

25 end if

26 end for

27 if q = initial-state then

28 traversed ← true
29 else

30 q ← output-fail(q)
31 end if

32 end while

Algorithm 3.12. Procedure traverse-output-path(state).

45

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

1

other

2

a

4
b

5

c

3
b {(3,1,1,2,oo)}

{(4,2,1,1,oo)}
1

other

2

a

4
b

5

c

3
b {(3,1,1,2,oo)}

{(4,2,1,1,oo)}

(a) Processing of the XML document
starts from the initial state.

(b) Processed start of element a. S = ⟨1⟩.

1

other

2

a

4
b

5

c

3
b {(3,1,1,2,oo)}

{(4,2,1,1,oo)}
1

other

2

a

4
b

5

c

3
b

{(4,2,1,1,oo)}

{(5,1,2,3,oo),(5,2,2,4,4)}

(c) Processed start of element b. S =
⟨1,2⟩.

(d) Updated output sets of states 3
and 5. S = ⟨1,2, d(3,1,1,2,∞),
i(5,1,2,3,∞), i(5,2,2,4,4)⟩.

1

other

2

a

4
b

5

c

3
b

{(4,2,1,1,oo)}

{(5,1,2,3,oo),(5,2,2,4,4)}

1

other

2

a

4
b

5

c

3
b

{(4,2,1,1,oo)}

{(5,2,2,4,4)}

(e) Processed start of element c. Filter
Q1 matched. S = ⟨1, 2, i(5,1,2,3,∞),
i(5,2,2,4,4),3⟩.

(f) Updated output set of state
5. S = ⟨1,2, d(3,1,1,2,∞),
i(5,1,2,3,∞), i(5,2,2,4,4),3⟩.

1

other

2

a

4
b

5

c

3
b

{(4,2,1,1,oo)}

{(5,2,2,4,4)}

1

other

2

a

4
b

5

c

3
b

{(4,2,1,1,oo)}

(g) Processed end of element c.
S = ⟨1,2, d(3,1,1,2,∞), i(5,1,2,3,∞),
i(5,2,2,4,4)⟩.

(h) Processed end of element b. Updated
output set of state 4. S = ⟨1⟩.

Figure 3.5. Processing XML document <a><c></c> with
the dynamic PMA. The filter workload consists of filters: Q1 = //a/b//c
and Q2 = //b/∗/∗/c. As before, S denotes the contents of the stack.

46

3.3 Using a Dynamic Output Function

procedure backtrack():
1 pop the topmost element s from the stack
2 while s is not a state do

3 if s is inserted⟨q, i, j, b, e⟩ then
4 delete (q, i, j, b, e) from current-output
5 else if s is deleted⟨q, i, j, b, e⟩ and result[i] = false then

6 insert (q, i, j, b, e) into current-output
7 end if

8 pop the topmost element s from the stack
9 end while

10 state← s

Algorithm 3.13. Procedure backtrack().

of an output tuple.
An insertion into the current output requires a lookup and a possible

insertion of a key into the balanced binary search tree. The maximum size
of the tree (the number of keys) is the largest value that the b′ component
of the new output tuple can have. This is bounded by L +M +N , where
L is the depth of the input document, that is, the maximum length of a
path in the input document, M is the maximum number of consecutive
wildcards in any filter in the filter workload Q, and N the maximum
length of a keyword. For example, if the filter workload consists of a filter
//a//b/∗/∗/∗/∗/∗/c/d, then M = 5 and N = 2. Thus an insertion into the
current output takes O(log(L+M+N)) time. The deletion of a tuple from
the doubly-linked lists is an O(1) operation, but a deletion can also cause
the deletion of a key from the search tree, which takes O(log(L+M +N))
time.

For a set of filters and an input document x, denote by occ(pref(Q))
the number of occurrences in x of all filter prefixes ending with a whole
keyword, that is, all prefixes of the form Qi,j above. An occurrence of
such a filter prefix can cause the insertion of a tuple into the current
output or the deletion of a tuple. This adds the term O(log(L+M +N)×
occ(pref(Q))) to the time complexity of the filtering algorithm.

With this algorithm processing the input document requires addition-
ally at most O(K×∣x∣) time, where ∣x∣ is the length of the input document
(the number of XML elements in the document) and K denotes the max-
imum number of proper suffixes of one keyword that are also keywords.
This is due to the fact that in some cases occ(pref(Q)) ≤K × ∣x∣, that is,
the output path of some state can contain states with empty output sets.
We can now state the time complexity as follows.

47

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

Theorem 3.3. The dynamic PMA filtering algorithm that can process
linear XPath filters having wildcards and descendant operators runs in
time

O(K × ∣x∣ + log(L +M +N) × occ(pref(Q))),
where ∣x∣ denotes the number of XML elements in the input document,
K is the maximum number of proper suffixes of a keyword that are also
keywords, L is the depth of the input document, M is the maximum
number of consecutive wildcards in any filter in the filter workload Q, N is
the maximum length of a keyword, and occ(pref(Q)) denotes the number
of occurrences in x of all filter prefixes ending with a whole keyword.

When comparing this time bound with the time bound of the static
algorithm (Theorem 3.2) the following remarks can be made. First, the
number of all keyword occurrences occ(keywords) is always greater than or
equal to the number of occurrences of all filter prefixes occ(pref(Q)). This
is due to the fact that for each filter prefix only at most one occurrence is
recognized at each element position. For example, for the XML document
<c><a><c></c></c> and filter Q1 = //a//c, we can see that
occ(keywords) = 3, occ(pref(Q1)) = 2, and occ(Q1) = 1.

Also practical XML documents are shallow; the depth of a highly
complex XML data set is only 36 (see Section 4.1.3) and the depth of most
data sets is much less. Usually M , the maximum number of wildcards,
and N , the length of the keyword, are small. For this reason it can be
assumed that the term logL × occ(keywords) is greater than log(L +M +
N) × occ(pref(Q)). With these arguments it can be expected that with
practical XML data sets the dynamic algorithm of this section is more
efficient than the algorithm of Section 3.2. This will be experimentally
verified in the next chapter.

3.4 Optimization by Fast Backtracking

In practical XML documents the paths tend to be quite short, so that
backtracking happens often. Output tuples inserted into the current out-
put and recorded into the backtracking stack are soon deleted from the
current output because the path ends and backtracking must be per-
formed. In this section we present an organization of current output tuples
that allows very efficient backtracking. We have outlined this PMA FB
algorithm in our recent conference article [67].

48

3.4 Optimization by Fast Backtracking

3.4.1 The Algorithm

In the revised algorithm the current output is stored in a stack of blocks,
where each block is an array of #states entries, one for each state. The
stack grows and shrinks in parallel with a stack used to store the states
entered when reading element start-tags from the input document. The
stack may grow up to a height of maxdepth+1 blocks, where maxdepth is
the length of the longest path in any input document in the stream. The
block at height h stores the output tuples inserted when h = path-length+1.
Memory for the stack of blocks is allocated dynamically, so that maxdepth
need not be known beforehand. Backtracking now involves only popping
a state from the stack of states and forgetting the topmost block of the
stack of blocks of output tuples.

The stack of blocks is implemented as a single dynamically growing
array current-output of at most O(#states ×maxdepth) entries, so that
the index of the entry for state q in block h is obtained as

k = (h − 1) ×#states + q

(states q are numbered consecutively 1,2, . . . ,#states). The entry current-
output[k] stores a tuple (t, d, v), where t is (a pointer to) a balanced
binary search tree (a red-black tree) of output tuples (q, i, j, b, e) inserted
into the current output when path-length + 1 = h, document-count = d,
and element-count = v. The binary search tree is indexed by the element
positions b.

The pairs (d, v) act as version numbers of the entries in the array
current-output and they relieve us from the need to deallocate an entire
block when backtracking and from the need to reinitialize a block whose
space is reused. When inserting a new output tuple (q, i, j, b, e) into the
binary search tree t given in the entry current-output[k] = (t, d, v), we first
check whether or not d = document-count and v = element-count; if not,
the entry contains outdated information and hence must be reinitialized:
the tree rooted at t is forwarded to a garbage collector, t is initialized as
empty, and d and v are set to the current values of document-count and
element-count (see Algorithm 3.18).

When traversing an output path (in Algorithm 3.14) and finding out
which output tuples for state q stored in block hmatch (in Algorithm 3.15),
we first check whether or not d = document-count and v = element-count
for the entry in current-output ; if so, the entry is current and the output
tuples (q, i, j, b, e) stored in the search tree of the entry are checked for
the condition b ≤ path-length ≤ e. Those output tuples are selected into

49

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

set S that satisfy this condition. We must collect output tuples from each
block from 1 to path-length+1. Finally, the set of selected output tuples is
returned for further processing. Figure 3.6 illustrates the data structure
for the current output set for the fast backtracking optimization.

d, v

7

6 8

d, v

4

2 9

d, v

5

3

2 4

8

9

2 ×m +m:

2 ×m + 3:

2 ×m + 2:

2 ×m + 1:

1 ×m +m:

1 ×m + 3:

1 ×m + 2:

1 ×m + 1:

m:

3:

2:

1:

3, i, j,5,∞ 3, i, j,5,5

3, i, j,8,∞ 3, i, j,8,8

3, i, j,9,∞

3, i, j,9,∞ 3, i, j,9,9

3, i, j,8,∞ 3, i, j,8,8

Figure 3.6. With the fast backtracking optimization the array holding
balanced search trees is dispersed into blocks. The index of the entry for
state q in block h is obtained as k = (h − 1)×m + q, where m denotes the
number of states.

The backtracking stack that in the algorithm of Section 3.3 contained,
besides states pushed there when reading element start-tags, also logging
information about output tuples inserted or deleted from the current out-
put, is now reduced to a stack of pairs (q, v), where q is the state and v

is the value of element-count that were current at the time the pair was
pushed onto the stack. This stack is implemented as an array stack of
size O(maxdepth); the index of the topmost element of the stack is given
by the variable path-length + 1 (see Algorithm 3.16).

Backtracking can now be done in a single step. All the output tuples
contained in the search trees referenced in a block of the current-output
array can be set outdated in a single operation. The set of output tuples

50

3.4 Optimization by Fast Backtracking

procedure traverse-output-path(state):
1 q ← state
2 traversed← false
3 for all (q, i, j, b, e) ∈ output(state,path-length) do
4 if result[i] = true then

5 delete (q, i, j, b, e) from current-output
6 else if j =#keywords(i) then
7 result[i]← true
8 else

9 q′ ← state(keyword(i, j + 1))
10 b′ ← path-length +mingap(i, j + 1) + length(i, j + 1)
11 e′ ← path-length +maxgap(i, j + 1) + length(i, j + 1)
12 insert-output(q′, i, j + 1, b′, e′)
13 end if

14 if q = initial-state then

15 traversed← true
16 else

17 q ← output-fail(q)
18 end if

19 end for

Algorithm 3.14. Procedure traverse-output-path(state).

function output(state,path-length):
1 S ← ∅
2 for h = 1 to path-length + 1 do

3 k ← (h − 1) ×#states + state
4 (t, d, v) ← current-output[k]
5 (q, v′)← stack[h]
6 if d = document-count and v = v′ then
7 for all (q, i, j, b, e) ∈ t with b ≤ path-length ≤ e do

8 S ← S ∪ {(q, i, j, b, e)}
9 end for

10 end if

11 end for

12 return S

Algorithm 3.15. Function output(state,path-length).

51

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

procedure push-onto-stack(state):
1 stack[path-length + 1]← (state, element-count)

Algorithm 3.16. Procedure push-onto-stack(state).

procedure initialize():
1 for all filters Qi do

2 result[i]← false
3 q ← state(keyword(i,1))
4 b← mingap(i,1) + length(i,1)
5 e←maxgap(i,1) + length(i,1)
6 insert-output(q, i,1, b, e)
7 end for

Algorithm 3.17. Procedure initialize().

procedure insert-output(q, i, j, b, e):
1 k ← path-length ×#states + q
2 (t, d, v) ← current-output[k]
3 if d ≠ document-count or v ≠ element-count then
4 d← document-count
5 v ← element-count
6 initialize search tree t as empty
7 current-output[k]← (t, d, v)
8 end if

9 insert (q, i, j, b, e) into tree t

Algorithm 3.18. Procedure insert-output(q, i, j, b, e).

procedure backtrack():
1 (q, v)← stack[path-length + 1]
2 state ← q

Algorithm 3.19. Procedure backtrack().

52

3.4 Optimization by Fast Backtracking

contained in the topmost block become outdated when an element end-
tag is encountered. This method of backtracking is more efficient than
that used in the dynamic PMA that removes the outdated tuples from the
doubly-linked lists one-by-one. With a workload of multiple filters there
are usually many output tuples that become outdated when processing
an element end-tag.

3.4.2 Complexity Analysis

The current output for state q is now dispersed in h blocks, where h is
path-length + 1, the length of the current path plus one. The traversal of
the output path for a state involves searches on h ×K different search
trees, where K is the length of the output path. This means that the
term K × ∣x∣ in the complexity bound stated in Section 3.3.2 is changed
to L × K × ∣x∣. Here L is the depth of input document x, that is, the
maximum length of a path in x. An insertion into the current output
takes O(log(L +M +N)) time as with the previous algorithm. The time
bound for the algorithm is given in the following theorem.

Theorem 3.4. The dynamic filtering algorithm with the fast back-
tracking optimization runs in time

O(L ×K × ∣x∣ + log(L +M +N) × occ(pref(Q))),

where ∣x∣ denotes the number of XML elements in the input document x,
K is the maximum number of proper suffixes of a keyword that are also
keywords, L is the depth of the input document, M is the maximum num-
ber of consecutive wildcards in the filter workload Q, N is the maximum
length of a keyword and occ(pref(Q)) denotes the number of occurrences
in x of all filter prefixes ending with a whole keyword.

The time bound is worse than the one of the dynamic algorithm of
the Section 3.3 (Theorem 3.3). It is clear that when the depth of the
XML data increases, the performance of this algorithm decreases quickly.
However, in practice the paths in the XML documents are short and
L can be assumed to be a small constant. In the next chapter it will
be experimentally verified that with real XML data sets this algorithm
outperforms the previous algorithm.

53

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

3.5 Online Dictionary Matching of XML Documents

A problem related to XML filtering is the task of locating all occurrences
of all XPath patterns. The problem is to determine, for each XML docu-
ment in the stream, all occurrences of all the patterns in an online fashion.
Each matched occurrence is identified by the pattern and its last element
position in the document. Because of the descendant operator “//”, there
can be more than one, actually an exponential number of occurrences of
the same pattern at the same element position, but we can avoid this
possible explosion of the number of occurrences by reporting only one
occurrence in such situations.

All our PMA-based filtering algorithms (described in Sections 3.1–3.4)
can easily be modified to solve this problem. In this section we present
a modification to the algorithm of the previous section that locates all
occurrences of all XPath patterns in the given XML document.

3.5.1 The Algorithm

To modify the algorithm of Section 3.4 so as to collect all occurrences
of all XPath patterns only the procedure traverse-output-path needs to
be altered. Now we do not delete the last output tuple of a filter (or
a pattern) from the current output set once a match has been found,
but leave the tuple in place and collect all the positions of each match.
Algorithm 3.20 gives the new traverse-output-path procedure.

3.5.2 Complexity Analysis

The time bounds of the algorithms of Sections 3.2–3.4 are derived without
taking into account the optimization that with these filtering algorithms
the output tuples for a matched filter are removed from the output sets
permanently. Thus the time bound of this algorithm is the same as pre-
sented in Section 3.4.2. Also with this algorithm, in the worst case, a
lookup and possibly an insertion of a key into the search tree of size
L+M +K has to be performed on each occurrence of a filter prefix, where
L is the document depth, M the maximum number of consecutive wild-
cards in the filter workload, and N the maximum length of a keyword.
However, with practical XML data sets and filter workloads filtering is
more efficient than online dictionary matching, because in the filtering
case we collect only the first occurrence of each XPath filter.

When the bare AC algorithm (described in Section 3.1) is modified for
collecting all occurrences of all XPath filters, its time bound will be O(∣x∣+

54

3.5 Online Dictionary Matching of XML Documents

procedure traverse-output-path(state):
1 q ← state
2 traversed← false
3 for all (q, i, j, b, e) ∈ output(state,path-length) do
4 if j =#keywords(i) then
5 report a match of pattern Qi at position element-count in docu-

ment document-count
6 else

7 q′ ← state(keyword(i, j + 1))
8 b′ ← path-length +mingap(i, j + 1) + length(i, j + 1)
9 e′ ← path-length +maxgap(i, j + 1) + length(i, j + 1)

10 insert-output(q′, i, j + 1, b′, e′)
11 end if

12 if q = initial-state then

13 traversed← true
14 else

15 q ← output-fail(q)
16 end if

17 end for

Algorithm 3.20. Procedure traverse-output-path(state) modified for re-
porting all occurrences of all XPath filters.

55

CHAPTER 3 XML FILTERING BY PATTERN-MATCHING-AUTOMATA

occ(keywords)), where ∣x∣ is the size of the input x and occ(keywords)
denotes the number of occurrences in x of all keyword instances in the
filter workload. In this case the output-visited flag is not used and the
position of each keyword occurrence will be collected in the algorithm.

56

CHAPTER 4

Experiments on PMA-based Filtering

In this chapter we evaluate the filtering performance and memory usage
of the PMA-based filtering algorithms of the previous chapter and those
of YFilter [24] and the lazy DFA [28]. In the following the algorithm
of Section 3.1 is denoted by “bare AC”, the algorithm of Section 3.2 by
“static PMA”, the algorithm of Section 3.3 by “dynamic PMA”, and the
algorithm of Section 3.4 by “PMA FB”.

We begin by describing the hardware and software environment, sta-
tistical tools, and characteristics of the XML data sets used in the exper-
iments. This is followed by the results and analysis of our experiments.

4.1 Description of the Test Environment

4.1.1 Hardware and Software

The PMA-based filtering algorithms and YFilter are implemented in the
Java language and compiled using JDK version 6. YFilter’s implemen-
tation was acquired from the YFilter web site [4]. Execution times of
the Java-based algorithms were measured using the wall-clock time given
by the system time. Memory consumption was measured by examining
the currently used heap of the Java virtual machine. Before each mea-
surement all non-referenced objects are garbage-collected from the heap.
The specification of the Java virtual machine is available in the work by
Lindholm and Yellin [43].

The implementation of the lazy DFA algorithm was downloaded from
the XML toolkit site [9]. The matching engine was implemented in the
xdetector module in version 1.11 of the XML toolkit. The algorithm,
written in C++ [70], was compiled in Linux by GCC 4.1. Wall-clock time
was calculated by the C++’s clock() function. This setup is beneficial
for the lazy DFA, since C++ is generally faster than Java. The mem-

57

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

ory usage of the lazy DFA process (data resident size) was measured by
Linux’s ps utility.

All tests were run on a Dell PowerEdge SC430 server with 2.8 GHz
Pentium 4 processor, 3 GB of main memory, and 1 MB of on-chip cache.
The computer was running the 32-bit Debian Linux 2.6.18 operating sys-
tem with the Sun Java virtual machine 1.6.0 16 installed. The server was
dedicated to testing, and only necessary operating system processes were
active during the test runs.

In the tests the input document was read from the disk, but the over-
head of the disk operations should be fairly small. The disk-read speed
of the test hardware is more than 50 MB/sec. The throughput of the
Java JAXP SAX parser (run in non-validating mode) on the input doc-
uments was 25–28 MB/sec and the throughput of the C++ SAX parser
was 33–42 MB/sec.

4.1.2 Statistical Analysis

For each measurement, the results are averages of five independent test
runs. Error bars in the plots denote standard deviation. Standard devia-
tion was calculated by using the biased method:

σ =

¿
ÁÁÀ 1

N

N

∑
i=1

(xi − x̄)2,

where x1, x2, . . . xN are random values from a finite data set and x̄ is the
average value.

4.1.3 Data Sets Used in the Experiments

To experiment with the filtering algorithms we used four data sets. Ta-
ble 4.1 summarizes the characteristics of these data sets and their DTDs.
The document depth denotes the XML document depth and the avg. path
length the average path length of all XML elements in the document.
The number of root-to-leaf paths is counted by enumerating all non-cyclic
paths from the root node of the DTD to the leaf nodes (in this case we
define the root node as the root element of the corresponding XML data
set).

The protein-sequence database (Figure 4.1) is non-recursive. The
DTD of the astronomical NASA data (Figure 4.2) has one cycle that
makes the data recursive (the NASA DTD was generated from the data).
Both these DTDs are fairly simple and tree-like; they have only few nodes

58

4.1 Description of the Test Environment

File
size
(MB)

Document
depth

Avg.
path
length

#elements
(DTD)

#edges
(DTD)

Recursive
#root-to-leaf
paths (DTD)

Protein 24.0 7 5.1 66 83 No 66
NASA 23.8 8 5.5 61 82 Yes 67
NewsML 2.6 10 6.8 114 633 Yes 88100
Treebank 82.5 36 7.9 250 1765 Yes > 1011

Table 4.1. The DTDs and data sets used in the experiments.

ProteinDatabase

Database ProteinEntry

header

proteinorganismreference

comment

genetics

complex

function

classification keywords

feature

summary sequence

uid

accession created_date seq-rev_date txt-rev_date

name alt-namecontainssource commonformal variety

note

refinfo contents accinfo

authors citation volume month year pages title description xrefs

author anonymousgroup xref

db

statusmol-typeseq-spec exp-source

gene

map-positiongenome mobile-element gene-origin genetic-code start-codon introns intron-status other-productpathway

superfamily keyword

feature-type

lengthtype

Figure 4.1. The graph schema of a 66-element non-recursive DTD for
protein-sequence data.

datasets

dataset

history

title

tableHead keywords altnametextFile fitsFile identifierdescriptionsreference

ingest

revisions

acknowledgement datecreator

month yearday lastNamestaffaffiliation

revision

para

footnote observatory

tableLinks fields

tableLink field

definition

name

units

keyworddescription

heading

abstract details

astroObjects

astroObject

position

ra dec

sourcerelated

journal other

bibcodeauthorvolumepageno

initialsuffix

city publisher

holding ftp telneturl

xlink:simple

Figure 4.2. The graph schema of a 61-element slightly recursive DTD
for NASA data.

59

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

NewsML

Catalog

TopicSet NewsEnvelope

NewsItem

Resource TopicUse

Urn Url DefaultVocabularyFor

Comment

TopicSetRefTopic

TopicType FormalName Description

Property

TransmissionId SentFromSentTo

DateAndTime

NewsService NewsProduct Priority

Party

IdentificationNewsManagement

NewsComponent

Update

NewsIdentifierNameLabel DateLabel Label

ProviderId DateId NewsItemIdRevisionId PublicIdentifierLabelTypeLabelText

NewsItemType FirstCreated ThisRevisionCreated

Status

StatusWillChange Urgency RevisionHistoryDerivedFrom AssociatedWithInstruction

FutureStatusRevisionStatus

Role BasisForChoice NewsLinesAdministrativeMetadata RightsMetadataDescriptiveMetadataMetadataNewsItemRef

ContentItem

HeadLine SubHeadLine ByLine ByLineTitle DateLine CreditLine CopyrightLine RightsLine SeriesLine SlugLine KeywordLineNewsLine

Origin

NewsLineType NewsLineText

FileName SystemIdentifierProvider CreatorSource Contributor

Contribution

Copyright UsageRights

CopyrightHolder CopyrightDate UsageType GeographyRightsHolder Limitations StartDate EndDate

LanguageGenreSubjectCode OfInterestTo DateLineDateLocation TopicOccurrence

SubjectSubjectMatter SubjectDetail SubjectQualifier Relevance

MetadataType

MediaType Format MimeType Notation Characteristics

Encoding

DataContent

SizeInBytes

Replace

InsertBefore

InsertAfter

Delete

Figure 4.3. The graph schema of a 114-element recursive DTD for
NewsML data.

60

4.1 Description of the Test Environment

/ProteinDatabase/ProteinEntry/summary/status

//uid

/*/ProteinEntry/feature/note

/ProteinDatabase/ProteinEntry/function/pathway

/*/ProteinEntry/*/accinfo//seq-spec

/ProteinDatabase//keyword

/ProteinDatabase/ProteinEntry//superfamily

/*/ProteinEntry/organism//formal

/ProteinDatabase/*/*/note

/ProteinDatabase/ProteinEntry/organism/variety

//ProteinDatabase/ProteinEntry/*/*

/*/*/*

Figure 4.4. Part of a filter workload generated for the protein-sequence
DTD with prob(//) = prob(∗) = 0.2.

with many incoming edges and a small number of root-to-leaf paths. The
protein and NASA data sets were obtained from the XML Data Repos-
itory of the University of Washington [71]. The size of the protein data
set is 683 MB, but we have used an extract of 24 MB in our experiments.

The NewsML (Figure 4.3) and treebank data sets represent more com-
plex XML data. NewsML is a structural framework for multi-media
news. The NewsML DTD and data were obtained from the NewsML
web site [35]. The data consists of news from the Reuters news agency.
The treebank database of English sentences was obtained from the XML
Data Repository [71] (the treebank DTD was generated from the data).
These DTDs have a much higher number of edges than nodes, as can be
seen from Table 4.1 and from Figure 4.3. Thus the number of root-to-
leaf paths is high for both DTDs. The NewsML DTD has 88 100 acyclic
root-to-leaf paths. The depth-first search counted more than 1011 acyclic
root-to-leaf paths for the treebank DTD until the calculation was aborted.

We used the XPath query generator obtained with the YFilter re-
lease [4] to generate workloads of linear XPath filters without predicates.
The generated filters are consistent with the given DTD. The genera-
tion of filters can be parameterized by the number and maximum nesting
depth of filters and by the following parameters: prob(//), the probability
of “//”being the operator at a location step, and prob(∗), the probability
of “∗” occurring at a location step. The generator can be set to generate
a filter workload that can contain duplicate filters, and one that contains
only distinct filters. Figure 4.4 shows a set of XPath filters generated
using the protein DTD with prob(//) = prob(∗) = 0.2.

61

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

4.2 Initialization of the PMA

We measured the times needed for reading the XPath filters from disk and
parsing them and preprocessing the PMA. Also the number of states in the
PMA and its initial size in memory were measured. The PMA is built
only at system startup or when new filters are added into the system.
The XPath parser has been programmed by using the ANTLR parser
generator [53]. Preprocessing the automaton includes building the goto
and fail functions (see Algorithms 3.1 and 3.2), but not the initialization
of the output function.

Table 4.2 gives the results for this experiment. The workloads of 1 000
and 10 000 distinct filters were generated with prob(∗) = prob(//) = 0.2.
The measurements were done with the dynamic PMA algorithm, but the
PMA FB gives the same results for this experiment. The standard devia-
tion was less than 1.5 % for each result. It can be seen from Table 4.2 that
parsing the XPath filters and preprocessing of the PMA is fast; even with
10 000 complex treebank filters parsing and preprocessing took less than
two seconds altogether. The number of states of the PMA is moderate as
well as its initial size in the memory. The size of the PMA was measured
after building the goto and failure functions, but the procedure initialize
had not been called yet, so current output was empty. In Section 4.4
we discuss memory allocation during processing of the input document,
when output sets are dynamically updated.

protein NASA NewsML treebank
XPath filters 1000 10000 1000 10000 1000 10000 1000 10000
Parsing time (sec) 0.243 0.831 0.254 0.878 0.271 0.922 0.305 1.09
PMA build time (sec) 0.118 0.393 0.121 0.490 0.118 0.464 0.156 0.717
states in the PMA 312 443 400 679 375 1474 1136 8698
Size in memory (MB) 0.857 7.91 0.972 8.32 1.07 8.65 1.73 12.7

Table 4.2. Times spent on constructing the filtering PMA, the number
of states, and the size of the PMA in memory. The filter workloads were
generated with prob(∗) = prob(//) = 0.2.

62

4.3 Filtering Performance

4.3 Filtering Performance

4.3.1 Filtering with the bare AC

We begin by measuring the filtering performance of the bare AC algo-
rithm. In this case the XPath workload will be generated with settings
prob(//) = prob(∗) = 0.0. When the maximum depth of the filters was set
to the XML document depth, the filter generator managed to generate
only 66 different filters for the protein DTD, 72 for the NASA DTD and,
1363 for the NewsML DTD. Thus in order to get meaningful results we
measure the performance of the bare AC algorithm only with the most
complex treebank data set. With the treebank DTD the XPath filter
generator can easily generate up to 100 000 distinct linear filters without
wildcards and descendant operators.

Because of the complexity of the treebank DTD, only less than 1 % of
the filters actually match the XML input document. This kind of setting
can be realistic in information filtering, even though with simpler DTDs
or workloads having wildcards and descendant operators the proportion
of matching filters is usually much bigger.

In our measurements the filtering times exclude the time needed for
parsing the XPath filters and any preprocessing tasks for the algorithms.
For the PMA-based algorithms and for the lazy DFA the filtering times
include SAX parsing the XML input document, but for YFilter the doc-
ument parsing time was not included.

Figure 4.5 shows the filtering times spent on filtering the 82.5 MB
treebank data set when the number of distinct linear XPath filters (gen-
erated with prob(//) = prob(∗) = 0.0) varies from 10 000 to 100 000. It can
be seen from the figure that the lazy DFA algorithm is the most efficient
with 10 000 filters, but when the number of filters increases, bare AC is
faster. The performance of the bare AC and YFilter is nearly constant
regardless of the number of filters.

When the filters do not have wildcards or descendant operators, the
filtering automaton for YFilter becomes close to a DFA. In fact, an NFA
without epsilon transitions is a DFA in this case. Also the performance
of the bare AC is also nearly linear in the length of the input; it has been
proven that the Aho-Corasick PMA makes at most 2∣x∣ transitions for the
input string of length ∣x∣ [5].

Because the bare AC algorithm can handle leading descendant op-
erators, we also ran tests with workloads having “//” operators at the
beginning of the filters. In the workloads created by our modified filter
generator about 80 % of the filters begin with “//”. Figure 4.6 shows the

63

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 10 20 30 40 50 60 70 80 90 100

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

bare AC
YFilter

lazy DFA

Figure 4.5. Filtering times of the 82.5 MB XML treebank data set, using
the bare AC, YFilter and lazy DFA algorithms. The distinct XPath filters
were generated with prob(∗) = prob(//) = 0.0.

filtering times spent on filtering the treebank data set with these work-
loads. Only graphs for the bare AC and YFilter are shown, because the
lazy DFA was significantly slower with these workloads. With 10 000
filters the lazy DFA took 112 seconds and with 50 000 filters 988 seconds
to process the input document. In this experiment the bare AC showed
3.7–3.9 times better performance than YFilter.

4.3.2 Filtering with the dynamic PMA and PMA FB

To measure the filtering performance of the dynamic PMA and PMA FB
we created workloads of distinct filters having also wildcards and non-
leading descendant operators. Figures 4.7–4.10 show the filtering times
with the protein, NASA, NewsML, and treebank data sets when the num-
ber of filters vary from 2 000 to 20 000 with the protein data set and from
10 000 to 100 000 with the other data sets. The workloads of distinct
linear filters were generated with prob(//) = prob(∗) = 0.2 and with the
maximum depth set as the depth of the corresponding XML document.

With the protein data set the proportion of matching filters is 90 %
with 2 000 filters and 97 % with 20 000 filters. The protein DTD is so
simple that is difficult to generate a large number of filters that do not
match the input document. It can be seen from Figure 4.7 that PMA FB
is the most scalable algorithm with the protein data set. It is somewhat

64

4.3 Filtering Performance

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 10 20 30 40 50 60 70 80 90 100

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

bare AC
YFilter

Figure 4.6. Filtering times of a 82.5 MB XML treebank data set, using
the bare AC and YFilter algorithms. The distinct XPath filters were gen-
erated with prob(∗) = prob(//) = 0.0, but the filter workload was modified
so that 80 % of the filters began with a descendant operator.

surprising that the performance of the lazy DFA was behind PMA FB,
since a DFA should be very efficient with this kind of simple data and
the lazy DFA should not construct too many states. However, with this
relatively shallow data PMA FB’s stack-based approach for storing the
current output sets seems to work very efficiently.

With the NASA data set the proportion of matching filters was 65 %
with 10 000 filters and 52 % with 100 000 filters. With this data set
the proportion of matching filters decreases as the number of distinct
filters increases. One reason for this is that when the number of filters
increase, the XPath filter generator is forced to generate more filters of
the maximum depth, but the probability of an occurrence of this kind of
path in the XML data is low. As is seen from Figure 4.8, with the NASA
data set the lazy DFA performs best.

Figure 4.9 shows the filtering times with the recursive and fairly com-
plex NewsML data set. In this case the proportion of matching filters
was 19 % with 10 000 filters and 10 % with 100 000 filters. When the
complexity of the XML data increases, YFilter starts to show the best
performance. With 100 000 filters the filtering time is 33.3 sec with YFil-
ter, 36.3 sec with the lazy DFA, and 45.3 sec with PMA FB.

Figure 4.10 shows the filtering times with the highly recursive and
complex treebank data set. In this case the proportion of matching filters

65

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 4 6 8 10 12 14 16 18 20

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.7. Filtering times of the 24 MB XML protein-sequence data set,
using the dynamic PMA, PMA FB, YFilter, and lazy DFA algorithms.
The distinct XPath filters were generated with prob(∗) = prob(//) = 0.2.

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.8. Filtering times of the 24 MB XML NASA data set, using
the dynamic PMA, PMA FB, YFilter, and lazy DFA algorithms. The
distinct XPath filters were generated with prob(∗) = prob(//) = 0.2.

66

4.3 Filtering Performance

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80 90 100

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.9. Filtering times of the 2.6 MB XML NewsML data set, using
the dynamic PMA, PMA FB, YFilter, and lazy DFA algorithms. The
distinct XPath filters were generated with prob(∗) = prob(//) = 0.2.

was 15 % with 10 000 filters and 7 % with 100 000 filters. The lazy DFA is
excluded from this experiment, because its performance decreases quickly
as the complexity of the XML data increases. With 10 000 filters it took
756 sec for the lazy DFA to filter the 82.5 MB treebank data set. It can
be seen from the figure that with this data set YFilter is the most scalable
algorithm. With 10 000 filters PMA FB is 2.1 times more efficient than
YFilter, but with 100 000 filters YFilter is 1.7 times more efficient than
PMA FB.

Figures 4.11–4.14 show the filtering times of the algorithms with re-
spect to prob(∗), when prob(//) has been set to 0.2, the number of filters
to 4 000, and the maximum depth of the filters to the depth of the cor-
responding data set. With the protein and NASA data sets the filtering
speeds of YFilter and lazy DFA decrease a bit as the number of wildcards
increases. The PMA-based filtering algorithms do not seem to be sensi-
tive to the number of wildcards. With the NewsML data set the filtering
speed of the lazy DFA is not sensitive to prob(∗), but the other algo-
rithms slow down somewhat as the number of wildcards increases. With
the treebank data set all the algorithms (the lazy DFA is excluded from
this experiment) decelerate as prob(∗) increases.

Figures 4.15–4.18 show the filtering times of the algorithms with re-
spect to prob(//), when prob(∗) has been set to 0.2. The results indicate
that with the protein data set the filtering speed of the dynamic PMA

67

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

dynamic PMA
PMA FB

YFilter

Figure 4.10. Filtering times of the 82.5 MB XML treebank data set,
using dynamic PMA, PMA FB, and YFilter algorithms. The distinct
XPath filters were generated with prob(∗) = prob(//) = 0.2.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(*)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.11. Filtering times of the 24 MB XML protein-sequence data
set with respect to prob(∗), using the dynamic PMA, PMA FB, YFilter,
and lazy DFA algorithms. The 4 000 distinct XPath filters were generated
with prob(//) = 0.2.

68

4.3 Filtering Performance

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(*)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.12. Filtering times of the 24 MB XML NASA data set with
respect to prob(∗), using the dynamic PMA, PMA FB, YFilter, and lazy
DFA algorithms. The 4 000 distinct XPath filters were generated with
prob(//) = 0.2.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(*)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.13. Filtering times of the 2.6 MB XML NewsML data set with
respect to prob(∗), using the dynamic PMA, PMA FB, YFilter, and lazy
DFA algorithms. The 4 000 distinct XPath filters were generated with
prob(//) = 0.2.

69

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(*)

dynamic PMA
PMA FB

YFilter

Figure 4.14. Filtering times of the 82.5 MB XML treebank data set
with respect to prob(∗), using the dynamic PMA, PMA FB, and YFilter
algorithms. The 4 000 distinct XPath filters were generated with prob(//)
= 0.2.

and YFilter somewhat decrease as the number of descendant operators
increases. PMA FB and lazy DFA are not so sensitive to the number of
descendant operators with the protein data set. However, with the other
data sets the filtering speed of all the algorithms decrease as the number
of descendant operators in the filters increases.

We also measured the filtering speed when the maximum depth of
the filters varies. In this case we used the recursive NASA data set and
workloads of 4 000 distinct filters generated with prob(//) = prob(∗) = 0.2.
We used values 5,6, . . . ,15 as the maximum depth. As the depth of the
XML data is 8, the proportion of matching filters decreases as the depth
of the filters increases beyond that value. When the maximum depth was
5, the proportion of matching filters was 95 % and for depth 15, 64 %
of the filters matched. Figure 4.19 shows the results of this experiment.
It can be seen that the performance of our PMA-based algorithms and
YFilter decreases as the depth of filters increases. The lazy DFA is not
sensitive to filter depth.

Our initial assumption was that PMA FB is more efficient than the
dynamic PMA; our experiments verify this. The experiments also show
that the PMA FB algorithm performs well with both simple and complex
XML data. PMA FB is significantly more efficient than YFilter with
the simple protein and NASA data sets, but with complex and recursive

70

4.3 Filtering Performance

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(//)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.15. Filtering times of the 24 MB XML protein-sequence data
set with respect to prob(//), using the dynamic PMA, PMA FB, YFilter,
and lazy DFA algorithms. The 4 000 distinct XPath filters were generated
with prob(∗) = 0.2.

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(//)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.16. Filtering times of the 24 MB XML NASA data set with
respect to prob(//), using the dynamic PMA, PMA FB, YFilter, and lazy
DFA algorithms. The 4 000 distinct XPath filters were generated with
prob(∗) = 0.2.

71

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(//)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.17. Filtering times of the 2.6 MB XML NewsML data set with
respect to prob(//), using the dynamic PMA, PMA FB, YFilter, and lazy
DFA algorithms. The 4 000 distinct XPath filters were generated with
prob(∗) = 0.2.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(//)

dynamic PMA
PMA FB

YFilter

Figure 4.18. Filtering times of the 82.5 MB XML treebank data set
with respect to prob(//), using the dynamic PMA, PMA FB, and YFilter
algorithms. The 4 000 distinct XPath filters were generated with prob(∗)
= 0.2.

72

4.3 Filtering Performance

 0

 10

 20

 30

 40

 50

 60

 4 6 8 10 12 14 16

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

filter depth

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.19. Filtering times of the 24 MB XML NASA data set with
respect to maximum depth of filters, using the dynamic PMA, PMA FB,
YFilter, and lazy DFA algorithms. The 4 000 distinct XPath filters were
generated with prob(//) = prob(∗) = 0.2.

NewsML and treebank data sets YFilter performs better. The lazy DFA
can be used to efficiently filter XML data having a simple or a moderately
complex DTD, but it is inapplicable with highly complex and recursive
XML data.

4.3.3 Filtering with the static PMA

We also measured the filtering performance of the static PMA algorithm
with the four data sets. As stated in Section 3.3.2, with practical XML
data sets the filtering performance of the static PMA is likely to be worse
than that of the dynamic PMA. The reason for this is that the number of
occurrences of all keyword instances in the filter workload occ(keywords) is
greater than the number of occurrences of all filter prefixes occ(pref(Q)).
Thus the factor O(logL×occ(keywords)) in Theorem 3.2 becomes greater
than the factor O(log(L +M +N) × occ(pref(Q))) in Theorem 3.3.

Table 4.3 shows the number keyword instance occurrences, the num-
ber of filter prefix occurrences, and the number of output tuples ac-
tually traversed by the static PMA, dynamic PMA, and PMA FB al-
gorithms. The workloads of distinct linear filters were generated with
prob(//) = prob(∗) = 0.2 and with the maximum depth set as the depth of
the corresponding XML document. For the static PMA, the number of

73

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

protein NASA
XPath filters 1000 10000 1000 10000
occ(keywords) 1.00 × 108 1.26 × 109 1.06 × 108 1.10 × 109

occ(pref(Q)) 1.58 × 107 3.06 × 108 1.41 × 107 1.35 × 108

static PMA
traversed tuples 1.15 × 107 4.15 × 107 1.35 × 107 2.70 × 108

filtering time (sec) 3.78 13.9 4.05 73.7
dynamic PMA
traversed tuples 2.01 × 105 4.66 × 106 6.86 × 105 1.33 × 107

filtering time (sec) 2.39 13.5 3.10 31.5
PMA FB
traversed tuples 9.12 × 105 5.37 × 106 1.16 × 106 1.37 × 107

selected tuples 2.00 × 105 4.65 × 106 6.72 × 105 1.30 × 107

filtering time (sec) 4.18 10.77 3.98 12.6

NewsML treebank
XPath filters 1000 10000 1000 10000
occ(keywords) 5.69 × 106 6.69 × 107 4.51 × 108 4.46 × 109

occ(pref(Q)) 3.33 × 105 4.46 × 106 5.56 × 106 5.02 × 107

static PMA
traversed tuples 3.79 × 106 5.33 × 107 3.46 × 108 3.92 × 109

filtering time (sec) 0.78 26.5 51.6 1973
dynamic PMA
traversed tuples 1.67 × 105 2.66 × 106 2.10 × 106 4.21 × 107

filtering time (sec) 0.59 8.67 11.1 88.4
PMA FB
traversed tuples 2.12 × 105 2.74 × 106 4.73 × 106 5.27 × 107

selected tuples 1.20 × 105 1.96 × 106 1.29 × 106 2.47 × 107

filtering time (sec) 0.43 2.29 12.2 32.0

Table 4.3. The number of occurrences in the input document of keywords
and filter prefixes, the number traversed output tuples, and the filtering
times with the static PMA, dynamic PMA, and PMA FB algorithms.
The filter workloads were generated with prob(∗) = prob(//) = 0.2.

74

4.3 Filtering Performance

traversed output tuples is less than the number of all keyword occurrences,
because in the filtering case we are only collecting the first occurrence of
each filter (see lines 5–7 in Algorithm 3.8). For the same reason, with the
dynamic PMA algorithm the number of traversed tuples is lower than the
number of filter prefix occurrences.

For the PMA FB algorithm, the number of traversed output tuples
can in some cases be higher than the number of filter prefix occurrences,
because in the inner for-loop of Algorithm 3.15 we have to traverse all
output tuples of state q having b ≤ path-length, but only those tuples are
selected that have e ≥ path-length. Selected tuples are collected into the
set S (line of 8 Algorithm 3.15). Only selected tuples cause insertions of
new output tuples into the current output and thus a lookup from the
search tree of Figure 3.4 and a possible insertion of a key into the tree.
Table 4.3 shows the number of selected output tuples for the PMA FB.

Table 4.3 also shows the filtering times for the algorithms. The results
are averages of five test runs and the standard deviation was less than
2 % for each result. With the protein data set the static PMA was only
slightly slower than the dynamic PMA. This can be explained by the high
number of matching filters in this case; more than 90–95 % of the filters
generated from the protein DTD matched the input document. When a
filter matches, its output tuples are deleted from the output sets and these
tuples are not traversed again during the processing of the rest of the input
document. When most of the output tuples are deleted from the output
sets quite in the beginning of the processing of the input document, the
behavior of the static PMA becomes close to that of the dynamic PMA.
With the other more complex data sets the number of matching filters
is smaller; with the NASA data set 65–75 %, with the NewsML data set
20–25 %, and with the treebank data set 15–34 % of the filters matched
the input document.

It can be seen in Table 4.3 that with the NASA, NewsML and treebank
data sets the dynamic PMA is clearly faster than the static PMA. With
the treebank data set and with 10 000 filters the dynamic PMA is even
more than 20 times more efficient than the static PMA. However, as is
evident from our experiments, the PMA FB is the fastest of the PMA-
based filtering algorithms in the case of filters containing wildcards and
descendant operators.

75

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

4.4 Memory Usage

We measured the memory consumption of the algorithms during process-
ing the XML input stream. From the PMA-based algorithms we examined
only the behavior of the dynamic PMA and PMA FB. For the PMA-based
algorithms, the state transition tables do not change once constructed, but
the dynamic modification of the output sets causes allocation of memory
during filtering. For YFilter, the state transition tables are also fixed, but
the number of active states can become large when the input document is
complex. For the lazy DFA, during filtering memory is allocated for the
state transition tables of the lazily constructed DFA.

Figures 4.20–4.23 show the memory usage of the algorithms with the
four data sets as the processing of the input document proceeds. With
the protein, NASA and NewsML data sets workloads of 10 000 distinct
filters were used. Because the memory consumption of the lazy DFA was
high with the treebank data set, a workload of only 1 000 filters was used
in that case. For each data set the distinct filters were generated with
prob(∗) = prob(//) = 0.2.

The x-axis in the figures shows the number of processed element start-
tags and the y-axis the amount of allocated memory (in megabytes) for
the data structures at that moment. The measurements show that the
memory usage of the algorithms does not grow during processing of the
XML input stream. An exception of this is the lazy DFA algorithm with
the complex treebank data set; in that case the size of the DFA grows
relatively fast as processing of the document proceeds. It can also be seen
that with each data set the lazy DFA uses more memory than the NFA-
and PMA-based algorithms.

The initial sizes of the dynamic PMA and PMA FB algorithms are
the same (both algorithms have identical goto and failure transitions), but
when the processing starts the dynamic PMA uses more memory with the
shallow data sets (protein, NASA and NewsML). The reason for this is
that the dynamic PMA maintains three access paths to current output
tuples whereas PMA FB uses only one (see Sections 3.3 and 3.4). But
when the depth of the XML data increases, PMA FB starts to consume
more memory, because the size of the stack for storing the output tuples
grows. This behavior is exemplified by the experiment in Figure 4.23,
where the memory consumptions of the PMA-based algorithms are more
or less the same. With very deep XML data, the PMA FB should consume
more memory than the dynamic PMA.

76

4.4 Memory Usage

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700

m
em

or
y

us
ag

e
[M

B
]

processed XML elements [1k element start-tags]

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.20. Memory usage of the algorithms during processing of the
24 MB XML protein-sequence data set. The workload of 10 000 distinct
XPath filters was generated with prob(//) = prob(∗) = 0.2.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400 450

m
em

or
y

us
ag

e
[M

B
]

processed XML elements [1k element start-tags]

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.21. Memory usage of the algorithms during processing of the
24 MB XML NASA data set. The workload of 10 000 distinct XPath
filters was generated with prob(//) = prob(∗) = 0.2.

77

CHAPTER 4 EXPERIMENTS ON PMA-BASED FILTERING

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35

m
em

or
y

us
ag

e
[M

B
]

processed XML elements [1k element start-tags]

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.22. Memory usage of the algorithms during processing of the
2.6 MB NewsML XML data set. The workload of 10 000 distinct XPath
filters was generated with prob(//) = prob(∗) = 0.2.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500

m
em

or
y

us
ag

e
[M

B
]

processed XML elements [1k element start-tags]

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 4.23. Memory usage of the algorithms during processing of the
82.5 MB treebank XML data set. The workload of 1 000 distinct XPath
filters was generated with prob(//) = prob(∗) = 0.2.

78

CHAPTER 5

Optimization by Filter Pruning

In this chapter we present a new optimization method, called filter prun-
ing, that takes as input a DTD and a set of linear XPath filters and
produces a set of “pruned” linear XPath filters that contain as few de-
scendant operators “//” and wildcards “*” as possible. Our experimental
results show that filter pruning can increase the performance of automata-
based filtering significantly (see Chapter 6 and our articles [63–65]).

The filter pruning method was inspired by the query pruning technique
for optimizing regular path expressions with graph schemas [25] and by
the article by Green et al. [28], in which the idea of using query pruning
in XPath processing was suggested.

Our ultimate goal is a set of pruned filters in which all wildcards and
all non-leading descendant operators have been eliminated, but this may
not always be possible because of recursion in the DTD or because the
pruning may result in too many or in too large pruned filters. Imposing
some simple conditions stating when an operator may be eliminated we
can guarantee a polynomial bound on the total size of the pruned filters.

In Section 5.1 we review the concepts of a DTD and a graph schema.
Section 5.2 presents the filter pruning algorithm for tree-like DTDs and
Section 5.3 for complex and recursive DTDs. In Section 5.4 we show
how real XML data sets can be pruned. Section 5.5 reviews some earlier
algorithms that utilize the DTD in XML processing.

5.1 DTD and Graph Schema

Given a DTD or schema, let G be its graph schema [16], that is, the
directed graph whose set of nodes is the set of XML elements in the DTD
and that contains a directed edge from node a to node b if and only if b is
a child element of a. There is a distinguished node, labeled with # and
representing the root element of an XML document that has no incoming

79

CHAPTER 5 OPTIMIZATION BY FILTER PRUNING

edges. Figure 5.1 shows a sample DTD and its graph schema. This DTD
is non-recursive, and hence its graph schema is acyclic.

<!ELEMENT a (b|c|d)>

<!ELEMENT b (f*)>

<!ELEMENT c (f*)>

<!ELEMENT d (e*)>

<!ELEMENT e (f*)>

<!ELEMENT f (i|j)*>

<!ELEMENT i (k*)>

<!ELEMENT j (k*)>

#

a

c d

b

e

f

i j

k

Figure 5.1. A non-recursive DTD and its graph schema.

We say that a linear XPath filter Q is consistent with the DTD, if
it represents at least one path in the graph schema G of the DTD; in
other words, we can find XML elements substituting for the occurrences
of the wildcard “∗” in Q, and strings of XML elements separated by child
operators “/” substituting for the occurrences of the descendant operator
“//” in Q, such that the resulting string (of XML elements and child
operators “/”), when stripped of all child operators, is a path in G from
the root element down to some element.

As with YFilter [24], we assume that each subscriber-defined XPath
filter is first rewritten into an equivalent form in which (1) a substring of
wildcards and one or more descendant operators is replaced by a string
containing the wildcards and one descendant operator at the end of the
string (e.g., “//∗/∗//∗” is replaced by “/∗/∗/∗//”), and (2) “//” is removed
from“/∗//”occurring at the end of the filter. For example, by using these
rewriting rules the filter “//∗/∗//∗//a/∗//” is turned into “/∗/∗/∗//a/∗”.

Algorithm 5.1 checks a filter Q for consistency with a DTD, using the
graph schema of the DTD. For an element set E, the function children(E)

80

5.1 DTD and Graph Schema

procedure check-consistency(Q):
1 S← Q

2 Accessible← {#}
3 while Accessible is nonempty and S is nonempty do

4 if S is of the form /bS′ where b is an element then
5 if b ∈ children(Accessible) then
6 Accessible← {b}
7 else

8 Accessible← empty
9 end if

10 else if S is of the form /∗S′ then
11 Accessible← children(Accessible)
12 else if S is of the form //bS′ where b is an element then
13 if b ∈ descendant(Accessible) then
14 Accessible← {b}
15 else

16 Accessible← empty
17 end if

18 end if

19 S← S′

20 end while

21 return(Accessible is nonempty and S is empty)

Algorithm 5.1. Checking a linear XPath filter Q for consistency with a
DTD.

81

CHAPTER 5 OPTIMIZATION BY FILTER PRUNING

returns the set of all children of all elements in E, and the function
descendant(E) returns the set of all descendants of all elements in E.
The algorithm processes filter Q from left to right, extracting step by
step a prefix of Q, and maintaining a set Accessible that contains the set
of elements accessible in the graph schema from the root element upon
reading the so-far-extracted prefix of Q. Filter Q is consistent with the
DTD if and only if the algorithm reaches the end of Q with the set Acces-
sible nonempty. The variable S stores the non-yet-processed suffix of Q.

5.2 Filter Pruning Algorithm for Tree-Like DTDs

Pruning a filter Q with respect to a DTD is just finding all combinations
of substituting elements for as many occurrences of“∗”as possible, and all
substituting element strings for as many occurrences of “//” as possible,
such that the pruned filters Q1, . . . ,Qn obtained by those substitutions are
consistent with the DTD and that their union, denoted by Q1 ∪ . . . ∪Qn,
is equivalent to the original filter Q. That is, any XML document that
conforms to the DTD matches with Q if and only if it matches with one
of the filters Qi, i = 1, . . . , n.

Original filter Pruned filter
/a//f /a/b/f ∪ /a/c/f ∪ /a/d/e/f
//c/f//k /a/c/f/i/k ∪ /a/c/f/j/k
/∗/b /a/b
/a/∗ /a/b ∪ /a/c ∪ /a/d
/a/∗/f /a/b/f ∪ /a/c/f
/∗/∗/∗/∗ /a/b/f/i ∪ /a/b/f/j ∪ /a/c/f/i ∪ /a/c/f/j ∪ /a/d/e/f

Table 5.1. Original XPath filters and corresponding pruned filters ob-
tained by pruning with the DTD of Figure 5.1. All wildcards “∗” and
descendant operators “//” were eliminated.

Table 5.1 shows a set of filters and the result of pruning them with
respect to the non-recursive DTD of Figure 5.1 when all the “∗” opera-
tors and “//” operators are eliminated. For example, in the case of the
original filter /a//f , we find that the graph schema of the DTD contains
three paths from element a, the child of root element #, to element f ,
namely abf, acf, and adef. Thus the element strings to be substituted for
the occurrence of “//” are /b, /c, and /d/e, resulting in the pruned filter
/a/b/f ∪ /a/c/f ∪ /a/d/e/f .

82

5.2 Filter Pruning Algorithm for Tree-Like DTDs

For pruning a set of filters with respect to a DTD, we precompute
a two-dimensional array, substitutes, indexed by pairs of elements in the
DTD. For an element pair (a, b), the entry substitutes[a, b] will contain
the set of all strings /c1/c2/ . . . /cn such that ac1c2 . . . cnb is a path in the
graph schema of the DTD, if the number of such strings is finite and the
sum of their lengths falls below a preset limit; otherwise, the entry will
be set empty.

procedure prune-filter(Q):
1 Rewrite Q

2 procedure prune(Q,#, ǫ)

Algorithm 5.2. Pruning a linear XPath filter Q.

procedure prune(S,a,P):
1 if S is empty then

2 output P
3 else if S is of the form /bS′ where b is an element then
4 if b ∈ children(a) then
5 prune(S′, b,P /b)
6 end if

7 else if S is of the form /∗S′ then
8 for all b ∈ children(a) do
9 prune(S′, b,P /b)

10 end for

11 else if S is of the form //bS′ where b is an element then
12 if substitutes[a, b] is nonempty then

13 for all x ∈ substitutes[a, b] do
14 prune(S′, b,Px)
15 end for

16 else

17 prune(S′, b,P //b)
18 end if

19 end if

Algorithm 5.3. Procedure prune(S,a,P).

Algorithms 5.2 and 5.3 represent a recursive formulation of a pruning
algorithm in which all “∗” operators are eliminated exhaustively, while
the elimination of “//” operators is controlled by the precomputed array
substitutes. The algorithm can be used to prune with recursive DTDs, but

83

CHAPTER 5 OPTIMIZATION BY FILTER PRUNING

substrings a//b are, naturally, left unpruned if the DTD contains cycles on
paths from element a to element b, or if there are simply too many paths
from a to b in the DTD so that the entry substitutes[a, b] has been set
empty. All paths between two nodes of a tree-like graph can be calculated
with a simple depth-first or breadth-first search procedure (an algorithm
for calculating the substitute paths in a complex schema is presented in
Section 5.3).

A recursive call prune(S,a,P) takes as arguments a suffix S of the
filter Q to be pruned, the corresponding pruned prefix P of Q (pruned in
ancestor calls), and the last element a in P . The call extracts a prefix,
/b, /∗, or //b, from S, prunes it if needed and possible, and concatenates
the result to P , to be used as an argument to further recursive calls of
the procedure. A recursion path terminates when the suffix S becomes
empty; then the argument P represents a complete pruned filter (i.e., one
disjunct in the final union of pruned filters) and is written to the output of
the algorithm. The pruning of a filter Q in the main program is started by
the call prune(Q,#, ǫ), where # denotes the root element and the empty
string ǫ indicates a so-far-empty pruned prefix of Q.

Algorithm 5.3 is formulated so that it can also eliminate leading oc-
currences of the descendant operator “//”. Some filtering methods gain
from eliminating leading occurrences (see Section 6.2.1). To prevent lead-
ing occurrences of “//” from being eliminated, it is sufficient to set entries
substitutes[#, b] empty for all elements b.

If the graph schema of a DTD is acyclic, then the maximum number
of pruned filters for a linear XPath filter is bounded by the number of
different paths in the schema. For a path, there is only one possible
way to replace the wildcards and descendant operators. Because of the
XPath filter rewriting rules described in the previous section, we do not
need to take into account the case of a descendant operator followed by
a wildcard, such as in //∗//∗/a, where the operators can be replaced in
more than one way, while in the rewritten filter /∗/∗//a the operators can
be replaced in one way at most, for a given path. For this reason, there
can be only one pruned filter for each path in the schema. The maximum
number of pruned filters for a linear XPath filter for an acyclic graph
schema is given by by the following theorem.

Theorem 5.1. For an acyclic graph schema G and a linear XPath
filter Q, the filter pruning algorithm of Algorithm 5.2 produces at most
O(n) pruned filters, where n is the number of different paths in G. If G
is a tree, then the number of pruned filters is bounded by O(∣G∣), where
∣G∣ is the size of G.

84

5.3 Filter Pruning Algorithm for Complex DTDs

In fact many real DTDs are tree-like, composed of mostly non-recursive
elements and having only few elements with many incoming edges. These
properties are exemplified by the non-recursive DTD for the protein-
sequence database, one of the DTDs from the XML Data Repository at
the University of Washington [71] that we have used in our experiments
(see the graph schema in Figure 4.1), and by the slightly recursive NASA
DTD (see Figure 4.2).

Even in the case of a recursive DTD we may be able to eliminate all
“//” operators if we happen to know the maximum nesting depth d of the
input documents, or that the recursive rules are never applied in any input
document more than d times, where d is a small constant. However, for
highly recursive DTDs, such as that for the treebank database [71], this
will usually not help to avoid the explosion of the number of generated
pruned filters.

5.3 Filter Pruning Algorithm for Complex DTDs

The ultimate goal of exhaustive elimination of “//” operators naturally
cannot be achieved when the DTD is recursive, that is, when the graph
schema is cyclic, but exhaustive elimination of “//” or “∗” may also be
infeasible with non-recursive DTDs. A simple example of a case in which
exhaustive elimination results in an exponential increase in the size of
filters with respect to the combined size of the DTD and the filters is the
DTD having elements a1, . . . , ak, ak+1, b1, . . . , bk, c1, . . . , ck, where bi and
ci are children of ai, and ai+1 is a child of both bi and ci, i = 1, . . . , k
(see Figure 5.2). Eliminating “//” from the filter /a1//ak+1 results in a
union of 2k pruned filters of size Θ(k), although the original filter is
of size O(1) and the DTD is of size O(k). The same union of pruned
filters is also the result of exhaustive elimination of “∗” from the filter
/a1/∗/a2/∗/ . . . /∗/ak+1, which is of size O(k). Obviously, we must control
the number and size of pruned filters to be created.

It is possible to adjust Algorithm 5.3 for a specific DTD so that it
will produce a set of sufficiently pruned reasonable-sized filters. Algo-
rithm 5.4 is a pruning algorithm that is suitable for handling complex
DTDs, such as the NewsML [35] and treebank [71] DTDs. With this
algorithm there is a polynomial upper bound to the size of the pruned
filters, regardless of the complexity of the DTD. The pruning of filter Q
is started by the call prune2(Q,#, ǫ,0). The parameter max-substitutes
regulates the number entries in the set substitutes[a, b]. If there are more
than max-substitutes different paths from element a to element b in the

85

CHAPTER 5 OPTIMIZATION BY FILTER PRUNING

a1

b1

c1

a2

b2

c2

ak

bk

ck

ak+1

Figure 5.2. A non-recursive DTD that causes exponential increase in the
size of the filter when pruning filter /a1//ak+1.

graph schema of the DTD, then entry substitutes[a, b] is set empty. The
max-substitutes threshold is also used to regulate pruning of wildcard
operators. Function numchildren(E) returns the number of children for
element E. If numchildren(E) > max-substitutes, then the wildcard op-
erator following element E is left unpruned. As an example, for filter
/a/∗, if numchildren(a) > max-substitutes, then the wildcard operator is
left unpruned. The parameter pruning-count regulates how many ∗ or //
operators from the beginning of a filter Q can be pruned. For example
for the DTD in Figure 5.1, if pruning-count = 2, then pruning the filter
/∗/∗/∗/∗ results in the pruned filter /a/b/∗/∗ ∪ /a/c/∗/∗ ∪ /a/d/∗/∗. The
following theorem states that our algorithm produces a reasonable-sized
filter set regardless of the complexity of the DTD.

Theorem 5.2. When n is the number of “∗” and “//” operators in a
filter Q, then Algorithm 5.4 is guaranteed to produce at most

max-substitutesmin(n,pruning−count)

pruned filters for filter Q.

Algorithm 5.5 is a breadth-first-search-based algorithm for calculating
all possible paths between two elements a and b in the DTD graph G: the
set substitutes[a, b]. The parameter max-substitutes regulates the number
of entries in substitutes[a, b]. If G contains cycles on paths from element a
to element b or if there are more than max-substitutes different paths from
element a to element b, then calc-substitutes(a, b,G) returns an empty set.

Algorithm 5.5 starts by constructing a breadth-first search tree of
height 2 starting from node a. Algorithm 5.6 builds the breadth-first tree
and it works as follows. An edge (u, v) is added into the tree if v is a
successor of u in the DTD graph G, there exists a path from v to b in
G and u is not a descendant of v in the breadth-first tree constructed
so far. The auxiliary procedure is-descendant(tree, v, u) returns true if
node u is a descendant of node v in the breadth-first tree. The procedure

86

5.3 Filter Pruning Algorithm for Complex DTDs

procedure prune2(S,a,P,n):
1 if S is empty then

2 output P
3 else if n ≥ pruning-count then
4 output PS

5 else if S is of the form ○bS′ where ○ ∈ {/, //} and a = ∗ then
6 prune2(S′, b,P ○ b, n)
7 else if S is of the form /bS′ where b is an element then
8 if b ∈ children(a) then
9 prune2(S′, b,P /b, n)

10 end if

11 else if S is of the form /∗S′ then
12 if numchildren(a) ≤max-substitutes then

13 for all b ∈ children(a) do
14 prune2(S′, b,P /b, n + 1)
15 end for

16 else

17 prune2(S′,∗, P /∗, n)
18 end if

19 else if S is of the form //bS′ where b is an element then
20 if substitutes[a, b] is nonempty then

21 for all x ∈ substitutes[a, b] do
22 prune2(S′, b,Px,n + 1)
23 end for

24 else

25 prune2(S′, b,P //b, n)
26 end if

27 end if

Algorithm 5.4. Procedure prune2(S,a,P,n).

87

CHAPTER 5 OPTIMIZATION BY FILTER PRUNING

function calc-substitutes(a, b,G):
1 lastsize← 0
2 R ← ∅
3 for i = 2 to number of nodes in G do

4 tree← bfstree(a, b, i)
5 if tree = empty then

6 return empty
7 else if lastsize = size(tree) then
8 return R

9 end if

10 lastsize← size(tree)
11 P ← enumerate-paths(tree, b)
12 R ← R ∪P
13 if size(R) >max-substitutes then

14 return empty
15 end if

16 end for

17 return R

Algorithm 5.5. Procedure calc-substitutes(a, b,G).

is-connected(G,v, b) returns true if there exists a path from node v to
node b in the DTD graph G. Calculation of is-descendant is fast, because
in the tree structure all nodes contain a pointer to the parent node. We
also maintain a hash table accessed by node names and containing sets
of tree nodes for the keys. For example, the hash table entry for key f

contains a set of tree nodes containing key f . In this way we can quickly
locate all possible paths from the root of the tree to the given key; we
just need to locate all paths from f to the root node and reverse those
paths. The procedure enumerate-paths(tree, v) calculates all paths from
the root element of the tree into the node v. Figure 5.3 shows an example
of a breadth-first tree of height 4 constructed by applying Algorithm 5.6
to the DTD graph of Figure 5.1.

If Algorithm 5.5 finds that the beginning of some path contains a
cycle, then the calculation of substitute paths is aborted and the entry
substitutes[a, b] will be set empty. A path v1v2 . . . vn contains a cycle, if
some node vi has an edge pointing to node vj , where j ≤ i.

The procedure calc-substitutes(a, b,G) (Algorithm 5.5) continues to
construct breadth-first trees of height i until i is the number of nodes
in the DTD graph G or the call bfstree(a, b, i) (Algorithm 5.6) returns
exactly the same tree than bfstree(a, b, i − 1). Also calculation is aborted

88

5.3 Filter Pruning Algorithm for Complex DTDs

function bfstree(a, b,height):
1 tree← empty
2 queue← empty
3 queue.enqueue(a)
4 while queue is not empty and height(tree) ≤ height do

5 u ← queue.dequeue()
6 for each v in children(u) do
7 if v = b or (is-descendant(tree, u, v) = false and

is-connected(G,v, b) = true) then
8 queue.enqueue(v)
9 add edge (u, v) into tree

10 P ← enumerate-paths(tree, v)
11 if P contains a cyclic path then

12 return empty
13 end if

14 end if

15 end for

16 end while

17 return tree

Algorithm 5.6. Procedure bfstree(a, b,height).

89

CHAPTER 5 OPTIMIZATION BY FILTER PRUNING

i j i j f

f f e

b c d

a

a:

b:
c:

d:
e:
f :

i:
j:

Figure 5.3. A breadth-first tree of height 4 constructed by applying
Algorithm 5.6 to the DTD graph of Figure 5.1, starting from node a. A
hash table entry f has pointers to all tree nodes containing key f (pointers
from other table entries have not been drawn).

if bfstree(a, b, i) returns an empty object. In the worst-case the size of
the whole breadth-first tree is exponential in the size of the DTD graph.
However, in practice this algorithm works well even with the highly com-
plex and recursive treebank schema, as is demonstrated in the next sec-
tions. The reason for this is that the breadth-first tree for the whole
graph is never constructed for the given filter workloads, but the possible
non-cyclic connecting paths between given elements can be found with
breadth-first trees of only moderate height.

5.4 Characteristics of Pruned Workloads

To experiment with the pruning algorithms we used the four data sets
and the XPath query generator described in Section 4.1.3. We generated
workloads of 10 000 distinct filters for the protein and NASA DTD with
different values of prob(//) and prob(∗). These workloads were pruned
by using the Algorithm 5.3. We measured the number of pruned filters,
that is, the total number of pruned XPath expressions in the union fil-
ters produced for the 10 000 original filters. Also leading occurrences of
descendant operators were eliminated in pruning. Table 5.2 shows the
characteristics of the pruned filters. In the case of the protein-sequence

90

5.4 Characteristics of Pruned Workloads

workloads, the number of pruned filters varied between 15 699 and 16 816
when prob(∗) varied between 0.2 and 0.6 and prob(//) between 0.2 and
0.6. For the NASA workloads, the number of pruned filters varied between
17 639 and 25 498 respectively.

In pruning the protein-sequence workloads, both “∗” and “//” opera-
tors were eliminated exhaustively. In pruning the NASA workload, the
wildcards “∗”were eliminated exhaustively while not all descendant oper-
ators “//” could be eliminated because of the recursion; about 23%–48%
of descendant operators remained in the pruned filter workloads. For the
NASA workloads, the pruning was regulated by setting substitutes[a, b]
empty for element pairs (a, b) involved in a recursion cycle.

It is likely that any filtering algorithm can also gain from the fact
that filter pruning can reduce the number of distinct filters. The idea is
to perform filtering only for the distinct filters in the pruned workload,
and to maintain a mapping from pruned distinct filters to original filters,
so that matching original filters can be reported correctly. The mapping
is stored in an array original-filters, where an entry original-filters[i], for
pruned filter number i, contains the numbers of original filters from which
filter i was pruned.

We measured the numbers of distinct filters in the pruned workloads
and noticed that they were surprisingly few. The pruned protein workload
had only 90 distinct filters in each case. The number of distinct filters in
the NASA workloads varied between 486 and 532. The tree-like shape of
the DTD of these data sets is the reason for the fact that the number of
distinct pruned filters stays within moderate limits even for high values
of prob(∗) and prob(//).

Workload parameters protein NASA
prob(∗) prob(//) # pruned # pruned distinct # pruned # pruned distinct

0.2 0.2 15699 90 17670 486
0.2 0.4 15752 90 17657 522
0.2 0.6 15852 90 17639 532
0.4 0.2 16459 90 22004 469
0.6 0.2 16816 90 25498 504

Table 5.2. Characteristics of pruned filters for workloads of 10 000 dis-
tinct filters generated for protein and NASA DTD.

For experimentation with complex and recursive DTDs we used the
NewsML and treebank data sets. We searched the optimal values for
max-substitutes and pruning-count parameters for a workload of 10 000

91

CHAPTER 5 OPTIMIZATION BY FILTER PRUNING

distinct filters generated from the NewsML DTD having prob(//) = prob(∗)
= 0.2. The maximum depth of filters was set to 10, which is the maximum
depth of the NewsML data. We measured the number of distinct filters
in the pruned workload when max-substitutes had values 10,20, . . . ,100
and pruning-count had values 1,2, . . . ,10. Figure 5.4 shows the number
of distinct pruned filters in relation to max-substitutes and pruning-count
parameters. The smallest number of distinct filters 4 793 was calculated
with values max-substitutes= 10 and pruning-count= 10. With all config-
urations the number of distinct pruned filters was less than 10 000.

The previous experiment was repeated with the treebank DTD. In
this case the maximum depth of filters was set to 36, which is the max-
imum depth of the treebank data. Figure 5.5 shows the results of this
experiment. The number of distinct filters varied between 12 697 and
121 766. The smallest number of distinct filters was acquired with values
max-substitutes = 10 and pruning-count = 1. Thus with a highly complex
data set we were not able to reduce the number of distinct filters by filter
pruning.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10 10 20 30 40 50 60 70 80 90 100

 4500

 5000

 5500

 6000

 6500

 7000

 7500

distinct filters

pruning count

max substitutes

distinct filters

 4500

 5000

 5500

 6000

 6500

 7000

 7500

Figure 5.4. The number of distinct pruned filters in relation to the
max-substitutes and pruning-count parameters. The original workload
of 10 000 distinct filters was generated from the NewsML DTD with
prob(//) = prob(∗) = 0.2.

92

5.5 Related Work

 1 2 3 4 5 6 7 8 9 10 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

distinct filters

pruning count

max substitutes

distinct filters

 0
 20000
 40000
 60000
 80000
 100000
 120000

 140000

Figure 5.5. The number of distinct pruned filters in relation to the
max-substitutes and pruning-count parameters. The original workload
of 10 000 distinct filters was generated from the treebank DTD with
prob(//) = prob(∗) = 0.2.

5.5 Related Work

The filter pruning optimization was inspired by recent automata-based
methods for XML filtering with XPath expressions [24, 28, 51], and by
the query-pruning technique of Fernández and Suciu [25] who used graph
schemas to optimize regular path expressions. The idea of query pruning
is that the selectivity of the schema is embedded into the queries. The
technique of Fernández and Suciu takes a user-provided query (a path
expression) and a graph schema as input and constructs the product au-
tomaton of two NFAs: one that accepts the paths denoted by the query
and another that accepts the paths denoted by the graph schema; from
this product NFA, a pruned query is constructed by taking into account
only those paths in the NFA that lead from the initial state to one of the
final states.

Green et al. [28] present the idea of speeding up XPath processing
on XML streams by removing the //’s and ∗’s based on the DTD, but
they did not research that any further or develop any algorithms based
on the idea. Florescu et al. [26] present the BEA XQuery evaluation en-
gine. Their system exploits schema information for removing descendant
operators from XQuery queries.

The SFilter system by Lee et al. [41, 42] utilizes the schema informa-

93

CHAPTER 5 OPTIMIZATION BY FILTER PRUNING

tion in XML filtering with XPath expressions. SFilter builds a product
automaton from an automaton representing a (regular) XPath expression
and an automaton representing the DTD. The difference of this method
when compared to our filter-pruning method is that in our method the
goal is to prune the filters such that the pruned form has the same syntax
as the original expressions, only with fewer //’s and ∗’s, thus contributing
to path sharing in automata-based filtering [24, 28]. Also the method of
Lee et al. is not applicable with complex schemas, such as the NewsML
and treebank DTDs.

Xiao-Ling and Min [75] have also developed a method similar to fil-
ter pruning, where //’s and ∗’s are eliminated based on the DTD. They
have experimentally shown that the lazy DFA gains from their method.
However, it is unclear how their algorithm can be applied in the case of
complex and recursive schemas.

94

CHAPTER 6

Performance Gain of Filter Pruning

In this chapter we examine how filter pruning improves the filtering per-
formance of our PMA-based filtering algorithms (described in Chapter 3),
and of YFilter [24] and the lazy DFA [28] algorithms. First we measure
the time needed to prune given workloads of linear XPath filters. Then
we can execute the actual filtering algorithms with original unpruned and
pruned workloads to see the performance gain achieved from filter prun-
ing.

The hardware and software environment and the XML data sets used
in the experiments of this chapter are the same than described in Sec-
tion 4.1. Again, our own algorithms (Algorithms 5.1–5.6) have been pro-
grammed in the Java language.

6.1 Performance of the Pruning Algorithm

We measured the execution time of Algorithm 5.3 with various workloads.
We generated 10 000 distinct filters for the protein and NASA DTDs
when prob(∗) and prob(//) varied between 0.2 and 0.6 and measured the
pruning times of these workloads. The pruning time included reading
the XPath filters from disk and parsing and pruning the filters. The
XPath parser has been programmed in Java by using the ANTLR parser
generator [53]. Table 6.1 shows the results of the experiment. It can be
seen that in all cases the pruning time was small, less than 2 seconds in
each setting. For both workloads, the prob(//) does not seem to have
much effect to the pruning time. However, the pruning time increases
slightly when there are more wildcards in the filters.

The previous experiment was repeated with Algorithm 5.4 and with
NewsML and treebank DTDs. We generated 10 000 distinct filters for
both DTDs having prob(//) = prob(∗) = 0.2 and measured the pruning
time with max-substitutes values 10,20, . . . ,100 and pruning-count values

95

CHAPTER 6 PERFORMANCE GAIN OF FILTER PRUNING

Workload parameters protein NASA
prob(∗) prob(//) time (sec.) time (sec.)

0.2 0.2 1.33 1.38
0.2 0.4 1.29 1.32
0.2 0.6 1.20 1.28
0.4 0.2 1.37 1.48
0.6 0.2 1.40 1.59

Table 6.1. Running time of the pruning algorithm for workloads of 10 000
distinct filters generated for the protein and NASA DTDs.

1,2, . . . ,10. Figure 6.1 shows the pruning times of the NewsML work-
load and Figure 6.2 that of the treebank workload. With the NewsML
workload the pruning time varied between 2.17 and 2.63 seconds, and
with the treebank workload between 10.43 and 23.33 seconds. Pruning
complex treebank filters is expensive, but some performance gain can be
achieved by precomputing the substitutes[a, b] entries (Algorithm 5.5) for
each combination of a, b and max-substitutes .

pruning count

max substitutes

 2.15
 2.2

 2.25
 2.3

 2.35
 2.4

 2.45
 2.5

 2.55
 2.6

 2.65

pruning time (sec)

 1 2 3 4 5 6 7 8 9 10

 10 20 30 40 50 60 70 80 90 100

pruning time (sec)

 2.15
 2.2
 2.25
 2.3
 2.35
 2.4
 2.45
 2.5
 2.55
 2.6
 2.65

Figure 6.1. Pruning time of a filter workload of 10 000 distinct filters in
relation to the max-substitutes and pruning-count parameters. The filter
workload was generated from the NewsML DTD with prob(∗) = prob(//)
= 0.2.

96

6.2 Performance Gain in Filtering

pruning count

max substitutes

 10
 12
 14
 16
 18
 20
 22
 24

pruning time (sec)

 1 2 3 4 5 6 7 8 9 10

 10 20 30 40 50 60 70 80 90 100

pruning time (sec)

 10
 12
 14
 16
 18
 20
 22

 24

Figure 6.2. Pruning time of a filter workload of 10 000 distinct filters in
relation to the max-substitutes and pruning-count parameters. The filter
workload was generated from the treebank DTD with prob(∗) = prob(//)
= 0.2.

6.2 Performance Gain in Filtering

6.2.1 Data Sets Having a Simple DTD

We studied how filter pruning affects the filtering speed of our PMA-based
algorithms, YFilter [24], and the lazy-DFA [28]. In our first experiments
we used two sets of workloads, one generated from the protein DTD and
the other from the NASA DTD. The speed of filtering was measured using
as input documents the entire 24 MB NASA data set and a 24 MB extract
from the protein-sequence data set.

Figures 6.3 and 6.4 show the performance gain achieved by pruning
the filter workloads. The original workloads of distinct linear XPath filters
without predicates were generated with prob(∗) = prob(//) = 0.2. With
the protein data set the number of filters varied from 2 000 to 20 000 and
with the NASA data set from 10 000 to 100 000. With the protein data
set 90–97 % and with the NASA data set 52–65 % of the filters matched
the input document. It can be seen that with the protein data set the lazy
DFA gains most from pruning. In that case the performance increases by
a factor of 102 with a workload of 20 000 filters. With the same workload
the performance increase was by a factor of 30 with the dynamic PMA, 9
with the PMA FB, and 78 with YFilter. Measurements with the NASA

97

CHAPTER 6 PERFORMANCE GAIN OF FILTER PRUNING

data set produce similar results. The performance increase of the lazy
DFA is by a factor of 155 with a workload of 100 000 distinct filters and
that of YFilter by a factor of 134.

Figures 6.5 and 6.6 show the absolute filtering times of the algorithms
with the pruned workloads. With the protein data set all wildcards and
descendant operators were eliminated by pruning, but with the NASA
data set some descendant operators remain in workloads because of the
cycle in the DTD. It can be seen that the lazy DFA is the most efficient
algorithm for processing pruned workloads in the case of these data sets
having tree-like DTDs. With the protein data set the filtering speed of
PMA FB is worse than that of the other PMA-based algorithms. Because
the protein workloads do not contain wildcards or descendant operators,
the bare AC algorithm can be used. However, in Figure 6.5 it can be seen
that the performances of the bare AC and the dynamic PMA are more
or less the same. In this case the dynamic PMA behaves very similar
to the bare AC. With the NASA data set, however, PMA FB clearly
outperforms the dynamic PMA.

Figures 6.7 and 6.8 show the performance gain achieved by pruning
with respect to prob(∗), when prob(//) has been set to 0.2, the number
of distinct filters to 4 000, and the maximum depth of the filters to the
depth of the corresponding data set. In the figures it can be seen that with
the YFilter and lazy DFA algorithms the performance gain of pruning in-
creases as the number of wildcards increases. However, the PMA-based
filtering algorithms seem not to gain more from pruning when prob(∗)
increases. Figures 6.9 and 6.10 show that the filtering speeds of the algo-
rithms with the pruning optimization are nearly constant when prob(∗)
varies.

We repeated the previous experiment by fixing prob(∗)=0.2 and vary-
ing prob(//). Figures 6.11 and 6.12 show the performance gain achieved
by pruning and Figures 6.13 and 6.14 the filtering speeds with the pruned
workloads. It can be seen that with the protein data set YFilter and
the dynamic PMA benefit from pruning more as the number of descen-
dant operators increases. For the PMA FB and lazy DFA algorithms the
performance gains are more or less the same regardless of prob(//). Mea-
surements with the NASA data set indicate that the performance gains of
YFilter and the lazy DFA increase with prob(//), but somewhat decrease
with the PMA-based algorithms. With both data sets the lazy DFA is
the most efficient algorithm. With the protein data set pruning is able to
remove all descendant operators and the filtering speed with the pruned
workloads is nearly constant for all algorithms. However, with the NASA
data set some descendant operators remain in the filters because of the

98

6.2 Performance Gain in Filtering

cyclic DTD, and in this case the filtering speed of the PMA-based algo-
rithms decreases as the number of filters increase. With the NASA data
set the filtering speeds of YFilter and the lazy DFA are not sensitive to
the number of descendant operators, when the filter workloads have been
pruned.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2 4 6 8 10 12 14 16 18 20

P
er

fo
rm

an
ce

 g
ai

n
fa

ct
or

Filter count [1k XPath expressions]

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.3. Performance gain of filter pruning with the protein-sequence
data set. The workloads of distinct XPath filters were generated with
prob(∗) = prob(//) = 0.2.

We also ran tests on pruned workloads in which the elimination of
descendant operators was restricted to non-leading occurrences. We gen-
erated a workload of 10 000 distinct filters with prob(∗) = prob(//) = 0.2
for the protein and NASA DTDs. For the protein data set the perfor-
mance gain from eliminating also leading descendant operators was 20 %
for the dynamic PMA, 47 % for PMA FB, 20 % for YFilter, and 31 %
for the lazy DFA. For the NASA data set the performance gains were
respectively 23 %, 40 %, 42 %, and 45 %. Thus all the algorithms gain
from eliminating also the leading descendant operator.

99

CHAPTER 6 PERFORMANCE GAIN OF FILTER PRUNING

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

P
er

fo
rm

an
ce

 g
ai

n
fa

ct
or

Filter count [1k XPath expressions]

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.4. Performance gain of filter pruning with the NASA data set.
The workloads of distinct XPath filters were generated with prob(∗) =
prob(//) = 0.2.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

bare AC (pruned)
dynamic PMA (pruned)

PMA FB (pruned)
YFilter (pruned)

lazy DFA (pruned)

Figure 6.5. Filtering times of the 24 MB XML protein-sequence data
set, using the bare AC, dynamic PMA, PMA FB, YFilter, and lazy DFA
algorithms with the filter pruning optimization. The workloads of distinct
XPath filters were generated with prob(∗) = prob(//) = 0.2.

100

6.2 Performance Gain in Filtering

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50 60 70 80 90 100

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

dynamic PMA (pruned)
PMA FB (pruned)

YFilter (pruned)
lazy DFA (pruned)

Figure 6.6. Filtering times of the 24 MB XML NASA data set, using
the dynamic PMA, PMA FB, YFilter, and lazy DFA algorithms with the
filter pruning optimization. The workloads of distinct XPath filters were
generated with prob(∗) = prob(//) = 0.2.

 0

 2

 4

 6

 8

 10

 12

 0.1 0.2 0.3 0.4 0.5 0.6

P
er

fo
rm

an
ce

 g
ai

n
fa

ct
or

prob(*)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.7. Performance gain of filter pruning with the protein-sequence
data set with respect to prob(∗), using the dynamic PMA, PMA FB,
YFilter, and lazy DFA algorithms. The 4 000 distinct XPath filters were
generated with prob(//) = 0.2.

101

CHAPTER 6 PERFORMANCE GAIN OF FILTER PRUNING

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.2 0.3 0.4 0.5 0.6

P
er

fo
rm

an
ce

 g
ai

n
fa

ct
or

prob(*)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.8. Performance gain of filter pruning with the NASA data set
with respect to prob(∗), using the dynamic PMA, PMA FB, YFilter, and
lazy DFA algorithms. The 4 000 distinct XPath filters were generated
with prob(//) = 0.2.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(*)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.9. Filtering times of the 24 MB XML protein-sequence data set
with respect to prob(∗), using the dynamic PMA, PMA FB, YFilter, and
lazy DFA algorithms with the filter pruning optimization. The workloads
of distinct XPath filters were generated with prob(//) = 0.2.

102

6.2 Performance Gain in Filtering

 0

 2

 4

 6

 8

 10

 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(*)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.10. Filtering times of the 24 MB XML NASA data set with
respect to prob(∗), using the dynamic PMA, PMA FB, YFilter, and lazy
DFA algorithms with the filter pruning optimization. The distinct XPath
workloads were generated with prob(//) = 0.2.

 0

 2

 4

 6

 8

 10

 12

 0.1 0.2 0.3 0.4 0.5 0.6

P
er

fo
rm

an
ce

 g
ai

n
fa

ct
or

prob(//)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.11. Performance gain of filter pruning with the protein-sequence
data set with respect to prob(//), using the dynamic PMA, PMA FB,
YFilter, and lazy DFA algorithms. The 4 000 distinct XPath filters were
generated with prob(∗) = 0.2.

103

CHAPTER 6 PERFORMANCE GAIN OF FILTER PRUNING

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.1 0.2 0.3 0.4 0.5 0.6

P
er

fo
rm

an
ce

 g
ai

n
fa

ct
or

prob(//)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.12. Performance gain of filter pruning with the NASA data
set with respect to prob(//), using the dynamic PMA, PMA FB, YFilter,
and lazy DFA algorithms. The 4 000 distinct XPath filters were generated
with prob(∗) = 0.2.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(//)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.13. Filtering times of the 24 MB XML protein-sequence data set
with respect to prob(//), using the dynamic PMA, PMA FB, YFilter, and
lazy DFA algorithms with the filter pruning optimization. The workloads
of distinct XPath filters were generated with prob(∗) = 0.2.

104

6.2 Performance Gain in Filtering

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

prob(//)

dynamic PMA
PMA FB

YFilter
lazy DFA

Figure 6.14. Filtering times of the 24 MB XML NASA data set with
respect to prob(//), using the dynamic PMA, PMA FB, YFilter, and lazy
DFA algorithms with the filter pruning optimization. The workloads of
distinct XPath filters were generated with prob(∗) = 0.2.

105

CHAPTER 6 PERFORMANCE GAIN OF FILTER PRUNING

6.2.2 Data Sets Having a Complex DTD

The effect of filter pruning on the filtering performance was also studied
with the complex and recursive NewsML and treebank data sets. We gen-
erated 10 000 distinct filters for the NewsML and treebank DTDs with
prob(//) = prob(∗) = 0.2. We measured the filtering time for the origi-
nal workload and for the pruned workloads with max-substitutes values
10,20, . . . ,100 and pruning-count values 1,2, . . . ,10. For each measure-
ment the results are averages of five test runs. The standard deviation
was less than 5 % for each result. Table 6.2 shows the performance gains
achieved by pruning the NewsML and treebank data sets and the con-
figuration of max-substitutes and pruning-count that produced the best
performance for each algorithm.

Original workload of 10 000 distinct NewsML filters
dynamic PMA PMA FB YFilter lazy DFA

performance gain factor 3.05 2.38 3.06 1.96
pruning-count 7 9 10 10
max-substitutes 10 10 80 10
#distinct pruned filters 4 878 4 719 6 264 4 705

Original workload of 10 000 distinct treebank filters
dynamic PMA PMA FB YFilter

performance gain factor 1.59 1.74 1.45
pruning-count 3 1 2
max-substitutes 10 10 50
#distinct pruned filters 13 225 12 668 62 439

Table 6.2. Performance gains achieved by pruning NewsML and treebank
data sets. The original workloads were generated with prob(∗) = prob(//)
= 0.2.

With the NewsML data set each algorithm did benefit from fairly high
values of pruning-count ; the best performance was acquired with values
nearly as great as the document depth. It was sufficient to set max-
substitutes= 10 with the PMA-based algorithms and the lazy DFA, but
YFilter gained from still higher values of max-substitutes.

As can be seen in Table 6.2, filter pruning increased the filtering per-
formance also with the treebank data set. The lazy DFA is excluded
from this experiment, because with the treebank data set its performance
decreases quickly as the number of filters increases beyond a few thou-
sand. The best performance gain was achieved when only a few first
wildcards or descendant operators were pruned. The PMA-based algo-

106

6.2 Performance Gain in Filtering

rithms performed best when max-substitutes = 10, but with YFilter the
best performance was achieved with a higher value of max-substitutes as
with the NewsML data set.

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80 90 100

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

dynamic PMA
PMA FB

YFilter
lazy DFA

dynamic PMA (pruned)
PMA FB (pruned)

YFilter (pruned)
lazy DFA (pruned)

Figure 6.15. Filtering times of the 2.6 MB XML NewsML data set, using
the dynamic PMA, PMA FB, YFilter, and lazy DFA algorithms with and
without the filter pruning optimization. The workloads of distinct XPath
filters were generated with prob(∗) = prob(//) = 0.2.

Figure 6.15 shows the filtering time of the dynamic PMA, PMA FB,
YFilter and the lazy DFA algorithms with NewsML data set. The work-
loads of 10 000 to 100 000 distinct XPath filters without predicates were
generated with prob(∗) = prob(//) = 0.2. The filter workloads for each
algorithm were pruned with the optimal configuration of max-substitutes
and pruning-count found in Table 6.2. It can be seen that without the
filter pruning optimization YFilter and the lazy DFA are as efficient, but
with the optimization YFilter performs better and is the most efficient
algorithm for this data set. The lazy DFA is faster than PMA FB with
the unpruned workloads, but PMA FB gains more from pruning and is
better than the lazy DFA when filter pruning is used.

Figure 6.16 repeats the previous experiment with the treebank data set
(the lazy DFA is excluded from this experiment). Even though the PMA-

107

CHAPTER 6 PERFORMANCE GAIN OF FILTER PRUNING

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Filter count [1k XPath expressions]

dynamic PMA
PMA FB

YFilter
dynamic PMA (pruned)

PMA FB (pruned)
YFilter (pruned)

Figure 6.16. Filtering times of the 82.5 MB XML treebank data set,
using the dynamic PMA, PMA FB, and YFilter algorithms with and
without the filter pruning optimization. The workloads of distinct XPath
filters were generated with prob(∗) = prob(//) = 0.2.

108

6.3 Summary

based algorithms gain more from filter pruning than YFilter (Table 6.2),
YFilter is still the most efficient algorithm with the treebank data set,
when filter pruning is used.

6.3 Summary

The performance increase of filter pruning with data sets having a tree-
like DTD is by order of magnitude; NFA-based YFilter becomes even
130 times more efficient and DFA-based lazy DFA 150 times more effi-
cient. Also filter pruning increases the performance of our PMA-based
algorithms significantly; by a factor of 10–70.

One reason for the performance increase is that filter pruning can re-
duce the number of distinct filters in the filter workload. With the simple
protein and NASA data sets filter pruning reduces the numbers of dis-
tinct filters to 1 %–5 % of the original workload, and with the moderately
complex NewsML data set to 47 % of the original workload. Clearly,
all filtering algorithms perform matching only for workloads consisting of
distinct filters.

However, with the most complex treebank data set the filtering per-
formance of PMA-based algorithms and YFilter increased even though
the number of distinct filters increased. This indicates that the method
of filter pruning contributes to path sharing, an important optimization
aspect used in automata-based filtering. YFilter applies path sharing in
building the NFA, and our PMA-based algorithms apply path sharing in
recognizing path fragments in filters that are separated by wildcards or
descendant operators.

109

CHAPTER 6 PERFORMANCE GAIN OF FILTER PRUNING

110

CHAPTER 7

General XPath Filters

The previous chapters examine evaluation of linear XPath filters without
predicates. In this chapter the evaluation of more general XPath filters
is discussed. Section 7.1 presents different methods for processing twig
filters and Section 7.2 methods for predicate evaluation.

7.1 Nested XPath Filters

Nested XPath filters, or twig filters, are described by the following gram-
mar:

P := /E | //E | PP

E := label | * | E[P]

where label denotes an XML-element label. An example of such a filter is
/a[d]/b[e/f]/c that matches, say, XML document <a><d></d><e><f>
</f></e><c></c>. Figure 7.1 illustrates the query tree of the
filter. The main path of the expression is /a/b/c and the nested subpaths
d and e/f are surrounded by brackets ([,]) in the XPath notation. In this
section we consider twig filters having only one level of nesting.

a

d b

e

f

c

Figure 7.1. Query tree of a twig XPath expression.

This section presents two different methods for matching twig filters;
evaluation as post-processing and holistic evaluation. Both methods can

111

CHAPTER 7 GENERAL XPATH FILTERS

be used to implement matching of twig filters with our PMA-based algo-
rithms described in Chapter 3.

7.1.1 Evaluation as Post-Processing: YFilter

The evaluation of twig filters in YFilter [24] is done as a post-processing
step. The filter workload is preprocessed and twig filters are decomposed
into linear filters. These linear filters are then matched using the filter-
ing NFA of YFilter. In processing the XML document, the parser gives
a unique id for each path in the XML document tree. Whenever a lin-
ear filter matches a path, the path is stored for that filter. When the
whole XML document has been processed, the matching twig filters are
calculated from the collected information.

For example, the twig filter Q = /a[d]//b[e/f]/c is decomposed into
linear filters L1 = /a//b/c, L2 = /a/d, and L3 = /a//b/e/f . Filter L1 denotes
the main path and L2 and L3 the nested subpaths. Figure 7.2 shows an
example XML document, where the elements have been numbered in
preorder. During the processing of the input document, the matching
paths for each linear filter are collected: for filter L1 the path a1b4c7, for
filter L2 the paths a1d2 and a1d3, and for filter L3 the path a1b4e5f6. It
can be seen that all the linear filters match under the same a element (id
1) and filters L1 and L3 under the same b element (id 4). Thus the twig
filter matches the input document. This calculation is done as a post-
processing step after the whole XML document has been processed. A
downside of this method is that if the XML document is very large, then
collecting all matched paths can consume a large amount of memory.

7.1.2 Holistic Evaluation

Holistic evaluation of twig filters means that the filters are evaluated
during processing of the XML input document. With this method there
is no need to collect a large amount of information into memory while
processing of the possibly large input document.

FiST [38] and its successor iFiST [40] are sequence-based algorithms
that process ordered twig patterns holistically. Ordered matching means
that the nested paths in the XML document must be in the same or-
der as the nested paths in the XPath twig filter in order for the fil-
ter to match. For example, the filter /a[b]/c matches XML document
<a><c></c>, but not document <a><c></c>,
when ordered matching of twig filters is applied.

The difference between iFiST and FiST is that iFiST merges common

112

7.1 Nested XPath Filters

segments in the filters thus applying a form of path sharing, while FiST
does not use path sharing.

FiST and iFiST build Prüfer codes [56] of the XML documents while
SAX parsing the documents. The algorithms encode the XML docu-
ment into an extended form of Prüfer sequence, namely Labeled Prüfer
Sequence (LPS). The Prüfer sequence of a tree is computed by first enu-
merating the tree by using some tree-traversal method; in the case of
XML documents it is convenient to use preorder traversal. Then the leaf
node v with smallest number is selected and the number of v’s father is
added into the code. Node v is deleted and the algorithm continues from
the leaf node with smallest number. The original algorithm by Prüfer
continues until there are two nodes left, thus the size of the Prüfer se-
quence of a tree with n nodes is n−2. However, FiST and iFiST continue
until there is only one node left in the tree, producing Prüfer sequence of
size n− 1. A labeled encoding contains the values of the nodes instead of
their numbers. With LPS encoding, the leaf nodes of the document tree
are extended with dummy child nodes. As a result the LPS encoding also
contains the node labels of the leaf nodes of the original tree. Figure 7.2
shows the example XML document and corresponding Prüfer and LPS
sequences.

The XPath filters are also encoded into LPS form. The encoded filters
are then stored into an index structure. Then during SAX processing of
the XML input stream the profiles are searched from the LPS encoded
stream by using a subsequence matching algorithm. Subsequence match-
ing means that an occurrence of a pattern is located from the text, so
that the letters of the pattern occur in the same order in the text, but
not necessarily consecutively. Those LPS encodings of filters are located
that are subsequences of the sequence encoding of the document. If a
filter encoding is not a subsequence of the document encoding, then the
filter is not a subtree of the original document tree. This way a set of
candidate filters is identified and further checking is performed for this
set of filters.

For the example filter Q = /a[d]//b[e/f]/c, the LPS sequence is
LPS(Q) = dafebcba. The LPS sequence of the document of Figure 7.2 is
LPS(T) = dadafebccba. It can be seen that LPS(Q) is a subsequence
of LPS(T), thus the filter is a possible match for the document. The
matching is performed bottom-up as with XPush (see Section 2.4.2) and
BUFF (see Section 2.3.3).

BoXFilter [49] also translates filters and XML documents into Prüfer
sequences (or into LPS form) and performs filtering by subsequence match-
ing. BoXFilter groups filter sequences into structures called sequence en-

113

CHAPTER 7 GENERAL XPATH FILTERS

(a) (b) (c)

<a>

<d></d>

<d></d>

<e>

<f></f>

</e>

<c>

<c></c>

</c>

a1

d2 d3 b4

e5

f6

c7

c8

a1

d2

v3

d4

v5

b6

e7

f8

v9

c10

c11

v12

Figure 7.2. An example XML document (a) and its tree representation
(b), where the nodes have been numbered in preorder. In tree (c) the leaf
nodes of the original tree have been extended with dummy child nodes.
The Prüfer code of the document tree (b) is {1,1,5,4,7,4,1} and the
corresponding labeled sequence {a, a, e, b, c, b, a}. The LPS sequence is
calculated from tree (c), thus we get {d, a, d, a, f, e, b, c, c, b, a}.

velopes. This grouping makes pruning candidate filters more efficient. In
the experiments [49] BoXFilter was found to be 80% more efficient than
NFA-based BUFF. However, direct comparison with FiST or iFiST was
not made.

7.1.3 Other Methods

XTrie [19] builds a trie-based index structure of the keywords occurring
in XPath filters. The structure is similar to Aho–Corasick trie (see e.g.
Section 3.1), but it does not have any fail arcs. The keyword index is
searched in processing SAX events and matching filters are identified.

Bruno et al. [15] propose an algorithm called Index-Filter that indexes
the XML stream by a classic inverted index data structure used in infor-
mation retrieval [61]. The position of an element occurrence in the XML
document is represented as pair (L ∶ R,D), where L is the position of the
start-tag of the element, R the position of the corresponding end-tag, and
D the nesting depth of the element. The example document in Figure 7.3
illustrates the indexing scheme. Structural relationships between nodes
can easily be determined by using this scheme. Index-Filter requires that

114

7.1 Nested XPath Filters

the whole XML input document is read into memory.

<a(1:16,1)>

<d(2:3,2)></d>

<d(4,5,2></d>

<b(6:15,2)>

<e(7:10,3)>

<f(8:9,4)></f>

</e>

<c(11:14,3)>

<c(12,13,4)</c>

</c>

Figure 7.3. The indexing scheme of XML documents used with the
Index-Filter algorithm [15].

7.1.4 Evaluation with the PMA-based Algorithms

With our PMA-based filtering algorithms described in Chapter 3, the
method of evaluating twig filters as a post-processing task can be applied.
Two modifications must be done into the SAX parser: (1) a counter
for giving a unique identifier for each XML element and (2) a stack for
holding the current path in the XML document need to be added. Then
the algorithm of Section 3.5 can be modified so as to collect all matched
paths for each linear filter. From this information the matched twig filters
can be calculated as with YFilter.

Holistic evaluation could also be applied in the case of PMA-based
filtering. We can modify the dynamic PMA algorithm of Section 3.3 to
handle twig filters in an ordered fashion. The idea is to decompose a
twig filter into linear filters as in Section 7.1.1, but these linear filters
would then be matched holistically. A twig filter without wildcards and
descendant operators is decomposed into keywords so that each root-to-
leaf path of the query tree of the filter forms a keyword for the PMA. For
example, with twig filter Q1 = /a[d]/b we would have

keyword(1,1) = ad, mingap(1,1) =maxgap(1,1) = 0,
keyword(1,2) = ab, mingap(1,2) =maxgap(1,2) = 0.

115

CHAPTER 7 GENERAL XPATH FILTERS

Again, the output sets of the PMA contain tuples of the form (q, i, j, b, e).
The input document is processed in way similar to the algorithm of Sec-
tion 3.3, but the method of backtracking is different. Now the backtrack-
ing stack is an array that may grow up to document depth. An entry
for the array holds the previous state and a linked list of output tuples
inserted into and deleted from the current output. The memory for the
array is allocated dynamically. When a modification to the output sets
is done, information of the modification is not necessarily stored into the
list on top of the stack, but in some cases into the list that is somewhere
in the middle of the stack. When an element end-tag is processed, the
operations stored into the list that is on top of the stack are reversed, the
state of the automaton is restored, and the stack is popped.

Figure 7.4 shows how an example document fragment <a><d></d>
<a><d></d> can be processed with the dynamic PMA that
is modified so as to handle twig filters. The PMA has been constructed
from the above-mentioned filter Q1. After the initialization of the PMA,
the output set of state 4 contains the tuple (4,1,1,2,2) representing key-
word ad. The processing starts from the initial state (Figure 7.4(a)).
After processing the start-tags of elements a and d the automaton has
entered state 4 (Figure 7.4(b)). The visited states are stored onto the
stack. Now the tuple (4,1,1,2,2) can be removed from the output set
of state 4 and the tuple (3,1,2,2,2) inserted into the output set of state
3 (Figure 7.4(c)). Modifications to output sets are stored into the stack,
not top of the stack but as part of the element at position 1. When we
read the end-tag of element d we backtrack to the state 2 that was found
on top of the stack, and pop the stack (Figure 7.4(d)). Next we read the
end-tag of element a, and backtrack to state 1 (Figure 7.4(e)). The modi-
fications made to the output sets are undone at this point (Figure 7.4(f)).
As we read the start-tags of elements a and d the automaton enters state
4 again (Figure 7.4(g)). The output sets are again updated dynamically
(Figure 7.4(h)). As we read the end-tag of element d the automaton back-
tracks to state 2 (Figure 7.4(i)). As we read the start-tag of element b,
the automaton enters state 3, and we find that the filter has matched,
concluding this example (Figure 7.4(j)).

The example illustrates how a twig filter can be processed with a
PMA-based algorithm in an ordered fashion as with the FiST algorithms.
Unordered matching is possible only if all order combinations of the twig
filter are handled. For example, to find a match for filter /a[d]/b we need
to process filter /a[b]/d as well.

Handling wildcard and descendant operators in twig filters with the
above-described method complicates the processing somewhat. For ex-

116

7.1 Nested XPath Filters

1

other

2
a

3b

4

d

{(4,1,1,2,2)}

1

other

2
a

3b

4

d

{(4,1,1,2,2)}

(a) Processing of the XML document
starts from the initial state.

(b) Processed start of elements a and d.
S = ⟨{1},{2}⟩.

1

other

2
a

3
b

4
d

{(3,1,2,2,2)}

1

other

2
a

3
b

4
d

{(3,1,2,2,2)}

(c) Updated output sets
of states 3 and 4. S =
⟨{i(3,1,1,2,2), d(4,1,2,2,2),1},{2}⟩.

(d) Processed end of element d. S =
⟨{i(3,1,1,2,2), d(4,1,2,2,2),1}⟩.

1

other

2
a

3
b

4
d

{(3,1,2,2,2)}
1

other

2
a

3b

4

d

{(4,1,1,2,2)}

(e) Processed end of element a. S =
⟨{i(3,1,1,2,2), d(4,1,2,2,2)}⟩.

(f) Updated output set of states 3 and 4.
S = ⟨⟩.

1

other

2
a

3b

4

d

{(4,1,1,2,2)} 1

other

2
a

3
b

4
d

{(3,1,2,2,2)}

(g) Processed start of elements a and d.
S = ⟨{1},{2}⟩.

(h) Updated output sets
of states 3 and 4. S =
⟨{i(3,1,1,2,2), d(4,1,2,2,2),1},{2}⟩.

1

other

2
a

3
b

4
d

{(3,1,2,2,2)}

1

other

2
a

3
b

4
d

{(3,1,2,2,2)}

(i) Processed end of element d. S =
⟨{i(3,1,1,2,2), d(4,1,2,2,2),1}⟩.

(j) Processed start of element
b. The filter has matched. S =
⟨{i(3,1,1,2,2), d(4,1,2,2,2),1},{2}⟩.

Figure 7.4. Ordered matching of XML document fragment
<a><d></d><a><d></d> with the dynamic PMA that
is modified so as to handle twig filters. The filter workload consists of
filter Q1 = /a[d]/b. As before, S denotes the contents of the stack.

117

CHAPTER 7 GENERAL XPATH FILTERS

ample, to find an ordered match for filter the /a[.//b]/c, the filter would
need to be decomposed into keywords a, b and ac. When processing an
input document, after finding a the tuple representing a is deleted and
the tuple for b is inserted into the output set. After locating element
b occurring somewhere under a, the tuple representing b can be deleted
and the tuple for ac inserted into the output set. These modifications
to output sets are backtracked if a has not c as a child and the end of
element a is encountered. Thus the backtracking mechanism would need
to be modified so as to take into account the properties of each keyword:
whether or not the keyword is a part of a branch of a twig filter.

7.1.5 Pruning Nested XPath Filters

The filter pruning method can also be used to eliminate wildcards and
descendant operators from twig filters. For example, pruning the filter
/a[∗/e]/b with the DTD of Figure 5.1 results in the pruned filter /a[d/e]/b.

SFilter [41, 42] uses the DTD to optimize twig filters also in other ways.
If an XML element has a child constraint, i.e., element a must have a child
b, then a twig filter /a[b]/c can be simplified to /a/c. In a similar way
information of a descendant constraint can be used to optimize certain
filters. For example, a filter /a[.//f]/c can be simplified to /a/c, if there
is a constraint stating that element a must have f as a descendant. If it
is known that elements i and j are always siblings, this knowledge can be
used to simplify filter //f[i]/j into //f/j.

7.2 Predicate Evaluation

This section presents different methods for the evaluation of value-based
predicates. Predicates are used to test values of attributes or text data
of XML elements. The predicate part of a filter /a[text() =’C1’] is
text() =’C1’ and the filter matches, say, the XML document <a>C1.
The predicate part of a filter /a[@attr =’C2’] is @attr =’C2’ and the
filter matches, say, the XML document . More com-
plex predicates can contain relational operators, conjunction, disjunc-
tion or negation. Examples of filters with such predicates include Q1 =
//a[b/text() = 1 and .//a[@c > 2]] and Q2 = //a[@c > 2 and b/text() = 1].

118

7.2 Predicate Evaluation

7.2.1 Inline and Selection Postponed: YFilter

With YFilter [24] two alternative ways to evaluate predicates are pre-
sented: inline and selection postponed.

The inline method evaluates predicates at the time when correspond-
ing states in the NFA are reached. For example, with filter
Q1 = /a/b[a =’S1’]/c, the predicate would be evaluated when state 2 is
reached in the NFA of Figure 7.5. For each filter, bookkeeping informa-
tion must be maintained of predicates evaluated to true. When a final
state of the NFA is reached (e.g., state 3 in Figure 7.5), the predicate
bookkeeping information for filters whose structure part matches at that
state is checked and matching filters are identified. With this method
the backtracking mechanism must undo changes made to predicate book-
keeping for each filter.

0

1 2 3

4 5 6 7

a

b c

ǫ a ǫ b

∗ ∗

Q1

Q2

Figure 7.5. YFilter’s NFA for filters Q1 = /a/b[a =’S1’]/c and Q2 =
//a[@a =’S2’]//b.

The other method, selection postponed, evaluates all the predicates of
a filter after the structure part of the whole filter has been matched. In
this case the predicate of filterQ1 would be evaluated when the automaton
enters state 3. In order to evaluate the correct predicates for each filter,
the visited states of the NFA are stored for each XML path as well as the
attribute and element values at those states. From each final state we can
traverse backwards to find the states visited that lead to the final state.
For example, with filter Q2 = //a[@a =’S2’]//b leading to state 7 in Fig-
ure 7.5 and XML document ,
the sequences of visited states for the path aab are ⟨0,4,5,7⟩ and ⟨0,5,6,7⟩.
At final state 7 both state sequences must be taken into account when
evaluating the predicate. The attribute a had value S1 in state 4 and
value S2 in state 5. With the latter sequence the predicate evaluates to
true and the filter matches the document.

119

CHAPTER 7 GENERAL XPATH FILTERS

7.2.2 Automata-based Evaluation: lazy DFA and

PFilter

As explained in Section 2.4, the lazy DFA algorithm builds a combined
NFA from the linear XPath filters, and from the NFA it constructs a
DFA lazily during processing of the XML input document. The lazy
DFA can process linear XPath filters having value-based predicates of the
form text() =’S’, where S is a string constant without any wildcards. The
evaluation of an XPath filter ending with such a predicate is accomplished
in the lazy DFA as state transitions in the automaton. A sink state
reachable on the symbol text(S) is added to the NFA from which the DFA
is constructed, where text(S) calculates a unique symbol for the string
constant S. If an XPath filter contains nested predicates (predicates
appearing in the middle of the filter), the filter is decomposed into linear
XPath filters. For example, filter Q1 = /a[text() =’S’]/b is decomposed
into filters Q2 = /a[text() =’S’] and Q3 = /a/b. Filters Q2 and Q3 are then
matched by using the lazy DFA’s matching engine, and the result (if Q1

matches or not) is calculated from these results. This method is similar
to the way YFilter evaluates twig filters (see Section 7.1.1). The method
has the drawback that it considerably reduces path sharing of filters.

Byun et al. [17] propose an automata-based algorithm called PFilter
that is based on YFilter. The structure matching is done by a combined
NFA as in YFilter, but the method for predicate evaluation is differ-
ent. An Aho–Corasick [5] PMA is constructed from the string constants
appearing in the value-based predicates. Evaluation of predicates is per-
formed by the PMA; when the SAX parser encounters characters in the
XML data, the characters are fed one by one to the PMA, which cal-
culates the satisfied predicates. A filter matches if the structure part
produces a match and all the predicates of the filter evaluate to true.
Since XPath filters can have same string constants in the predicates, this
method shares processing of predicates. The idea of shared processing
of value-based predicates is the same as with the XPush algorithm, but
PFilter applies path-sharing also in processing the structure parts of the
filters.

PFilter supports only the equality operator (=) in predicates and no
logical operators. However, PFilter introduces an extension to the XPath
language, namely an % operator in the operand string of the XPath text()
function. The operator % has a meaning similar to the LIKE operator in
SQL [7]. For example, the filter /a[text() =’%bc%’] matches, say, XML
document <a>abcd. Thus the operator % can be used to implement
XPath’s starts-with, ends-with and contains functions.

120

7.2 Predicate Evaluation

7.2.3 Pushdown-automata-based Evaluation

The XPush algorithm [30] uses a pushdown automaton (PDA) in evalu-
ating predicates. With XPush, predicates in XPath filters can be com-
bined with and, or and not, and can be interleaved arbitrarily with the
navigation. Supported operators are: =, <, ≤, >, ≥, and ≠. Examples
of such XPath filters are: Q1 = //a[b/text() = 1 and .//a[@c > 2]] and
Q2 = //a[@c > 2 and b/text() = 1]. When processing these filters, XPush
will evaluate predicates @c > 2 and b/text() = 1 only once.

The XPush machine is constructed by first compiling the XPath ex-
pressions into Alternating Finite Automata (AFAs). The AFAs are then
compiled into a single XPush machine. An AFA is a nondeterministic fi-
nite automaton, where each state is labeled with AND, OR or NOT. Fig-
ure 7.6 shows the AFAs constructed from the example queries Q1 and Q2.

The XPush machine is constructed lazily by traversing the AFA states
starting from the bottom of the query tree. For example, when the
bottom-up SAX parser encounters value 1 during parsing of the docu-
ment, the PDA state q0 = {4,13} is constructed. Next, if XML element
b is encountered, the state transition t(q0, b) is set by traversing AFA’s
edges backwards from q0. Those states are selected that lead to AFA’s
states 4 and 13 with transition b, thus t(q0, b) = {3,12} = q1.

7.2.4 Evaluation with the PMA-based Algorithms

In this section we discuss how value-based predicates can be evaluated
with the filtering PMAs described in Sections 3.3 and 3.4.

The PMA-based filtering algorithms can be modified to use YFilter’s
selection-postponed method as follows. The SAX parser will need to be
modified so as to store the XML element values for the current path. The
values can be stored into a stack. An entry in the stack contains the XML
attribute and element values at that height in the current path. Attribute
values can be stored into a hash table accessed by attribute names. The
predicates of a filter are evaluated when the structure part of the filter
has matched and the possibly following characters event is encountered.
For example, for the XML document

<b e=’1’ f=’2’><c>test</c>

the parser produces the following events:

startDocument()

startElement(a(e=’1’))

121

CHAPTER 7 GENERAL XPATH FILTERS

1

2

3 5

4 6

7

AND AND

a

ǫ ǫ

b a

@c

8

9

10 12

11 13

a

ǫ ǫ

@c b

= 1

> 2

> 2 = 1

A1 A2

∗ ∗

∗

Figure 7.6. AFAs constructed from filters Q1 = //a[b/text() =
1 and .//a[@c > 2]] and Q2 = //a[@c > 2 and b/text() = 1] [30]. States 2
and 9 are AND states, and all other states are OR states.

startElement(b(e=’1’, f=’2’))

startElement(c)

characters(’test’)

endElement(c)

endElement(b)

endElement(a)

endDocument()

When processing an XPath filter Q1 = /a[@e =’1’]/b/c[text() =’test’], af-
ter the structure part /a/b/c of the filter has matched and the following
characters event has been processed, the contents of the stack at height
3 would be S = ⟨(e =’1’), (e =’1’, f =’2’), (’test’)⟩. Now the predicates ap-
pearing in the filter would be evaluated against the contents of the stack.
The value for the predicate @e =’1’ will be checked from first entry of
the stack and the value for the predicate text() =’test’ from third entry of
the stack. Both predicates evaluate to true, thus the filter matches the
document.

122

7.2 Predicate Evaluation

The case when a filter has an ancestor-descendant relationship can be
handled as follows. For each keyword in the filters, we store the depth at
which the keyword has matched. The depth of the first element in the
XML document is 1. For example, with the above XML document and
an XPath filter Q2 = //b[@e =’1’]//c, the keyword b is found at depth 2
and keyword c at depth 3. We set depth[2,1] = 2 and depth[2,2] = 3.
When the structure part //b//c has matched and we are evaluating the
predicate, the value of the attribute e can be looked from the stack at
entry depth[2,1] corresponding to the keyword b, thus from the second
entry of the stack. The predicate evaluates to true and the filter matches
the document.

The evaluation of predicates can also be implemented with a method
similar to YFilter’s inline method. In this case the predicates pertaining
to a keyword would be evaluated as soon as the corresponding keyword
has been found. With the above filter Q2, the predicate @e =’1’ pertaining
to keyword b would be evaluated when the start-tag of element b of the
above XML document is processed. The output tuple of keyword c would
be inserted into the current output only if the predicate pertaining to
keyword b is evaluated to true. In general, when processing an output
tuple of the jth keyword of a filter in the traverse-output-path procedure,
the output tuple of the (j+1)th keyword is inserted into the current output
only if all the predicates pertaining to the jth keyword are evaluated to
true.

7.2.5 Filter Pruning with Filters Having Predicates

We tested the effect of filter pruning with workloads of linear XPath filters
having value-based predicates of the forms text()=s and @attr=s, where
s is a string constant (not containing any wildcards). We used a modified
version of the YFilter’s XPath filter generator [24] to generate the filter
workloads. We modified the generator to produce string constants s ap-
pearing in the XML data set instead of randomly generated strings. This
is a more realistic scenario and increases the probability of a filter having
a value-based predicate to match the XML data set.

We experimented with YFilter [24] using the selection-postponed
method for predicate evaluation. We generated workloads of 10 000 filters
having one predicate per filter (generated with prob(∗) = prob(//) = 0.2).
Our experiments show that the performance gain from filter pruning is
still evident: the speed-up of YFilter was 1.3 for the protein-sequence data
set and 2.0 for the NASA data set. The speed-up is not so impressive as
with filters without predicates, because much of the total filtering time is

123

CHAPTER 7 GENERAL XPATH FILTERS

spent on evaluating the predicates.
In our experiments with the lazy DFA [28], we observed that filter

pruning impairs the performance when predicates are present: the filter-
ing time for the protein data set almost doubled. This phenomenon might
be explained by the fact that as the string constants s in predicates of
different filters are usually different, we may no longer merge two filters
even if they have an identical structure. When 10 000 distinct original
filters with predicates were pruned, the number of distinct pruned filters
almost tripled for the protein data set and doubled for the NASA data set.

The results obtained with the lazy DFA algorithm for filters with
predicates are in contrast to the results we obtained with YFilter: pruning
increased the performance of YFilter also in the case of filters having
value-based predicates. YFilter accepts more general predicates than the
lazy DFA algorithm and predicate evaluation is not part of the structure
matching of the XPath filters: the evaluation of predicates is postponed
until an accepting state of the NFA is reached during structure matching.
As explained by Diao et al. [24], in this way the principle of path sharing
of XPath filters is not destroyed.

124

CHAPTER 8

Conclusions

We have investigated the filtering problem of XML documents when the
filters are expressed as XPath expressions. Several approaches to XML
filtering use a finite automaton as a basis of the filtering algorithm, such
as the widely-accepted YFilter [24] and lazy DFA [28] algorithms. Our
novel solution for XML filtering is also based on a finite automaton: we
build an Aho–Corasick [5] pattern-matching automaton (PMA) from the
set of XPath filters. Our PMA-based algorithms have a small memory
footprint and their performance is in many cases better than that of the
YFilter and lazy DFA algorithms.

The bare AC algorithm presented in Section 3.1 is a simple and ef-
ficient PMA-based algorithm for processing linear XPath filters without
wildcards and non-leading descendant operators. The set of keywords for
the PMA is derived from the XPath filters by removing all child opera-
tors “/” from the filters and defining the keywords of the filters to be the
strings consisting of XML elements only. The bare AC differs from the
classic Aho–Corasick PMA in that it has a backtracking facility needed
for processing tree-structured text. Also the construction of the fail func-
tion is different; the output sets are not completed while constructing the
fail function. This means that the collection of the output sets is of linear
size instead of quadratic size as with the classic Aho–Corasick.

Our experiments with the bare AC algorithm presented in Chapter 4
show nearly constant throughput of filtering regardless of the number of
filters. This is consistent with our analytical results presented in Theo-
rem 3.1. The bare AC also shows better performance than YFilter and
the lazy DFA: with 100 000 distinct filters, the bare AC is 2.5 times more
efficient than YFilter and 1.7 times more efficient than the lazy DFA.

In Section 3.2 we presented the static PMA algorithm, which is an
extension of the bare AC. The static PMA can process linear XPath
filters that have descendant and wildcard operators.

125

CHAPTER 8 CONCLUSIONS

However, in our research we found out that a more efficient version of
a PMA-based filtering algorithm exists. With this dynamic PMA algo-
rithm we make the output function change dynamically during the pro-
cessing of the input document. The basic idea of the algorithm is that we
do not recognize those keyword occurrences about which we know that
there cannot be a matching prefix with this keyword occurrence. The
modifications of the output sets performed when processing an element
start-tag are recorded into a backtracking stack and reversed when the
corresponding end-tag is encountered. We presented the dynamic PMA
in Section 3.3. The analytical time bound of the dynamic PMA is better
than that of the static PMA, and in our experiments the dynamic PMA
was also found to be significantly more efficient.

In Section 3.4 we presented an optimized version of the dynamic PMA
algorithm that has a different organization for the data structure for
storing the output sets. The idea of this fast backtracking optimization
(PMA FB) is that backtracking modifications to the output sets can be
done in a single step. The time bound of PMA FB (Theorem 3.4) is worse
than the time bound of the dynamic PMA (Theorem 3.3), when the XML
data is very deep. However, in practice the paths in the XML documents
are short and the document depth shallow; in our experiments PMA FB
clearly outperformed dynamic PMA.

Our filtering experiments with linear XPath filters that have wildcards
and descendant operators showed that the PMA FB algorithm performs
well with both simple and complex XML data. With a non-recursive
data set we measured the filtering speed of PMA FB to be 40 times faster
than that of YFilter and 5 times faster than that of the lazy DFA. With
a slightly recursive data set the PMA FB had the same performance than
the lazy DFA and it was 3 times more efficient than YFilter. However,
with a highly complex data set YFilter was found to be more scalable
than PMA FB. The lazy DFA ran out of memory with this data set.

We also developed an optimization method called filter pruning. This
method improves the performance of filtering by utilizing knowledge about
a DTD to simplify the filters. The optimization algorithm takes as input
a DTD and a set of linear XPath filters and produces a set of pruned lin-
ear XPath filters that contain as few wildcards and descendant operators
as possible. The filter pruning method was inspired by the query pruning
technique for optimizing regular path expressions with graph schemas [25]
and by the article by Green et al. [28], in which the idea of using query
pruning in XPath processing was suggested.

With a non-recursive data set and with a slightly recursive data set the
filter-pruning method reduced the numbers of distinct filters to 1 %–5 %

126

CHAPTER 8 CONCLUSIONS

of the original workload. When matching is performed only for the dis-
tinct filters in the workload, it is clear that the performance of any filtering
algorithm increases. The increase in the filtering speed of the PMA-based
algorithms was by a factor of 10–70. With the same data sets the filter-
ing performance of YFilter and the lazy DFA increased even more than
hundredfold.

In addition to these data sets, we ran experiments with complex and
highly recursive data sets. By imposing some simple conditions stating
when an operator may be eliminated a polynomial bound can be guaran-
teed on the total size of the pruned filters. Our experiments showed that
filter pruning increased the filtering speed of PMA-based algorithms and
YFilter also with these data sets. With PMA-based filtering the perfor-
mance increase was by a factor of 1.6–2.4 and with YFilter by a factor
of 1.5–3.1. With the most complex data set the filtering performance
increased even though the number of distinct filters increased. This in-
dicates that the filter-pruning method contributes to path sharing, an
important optimization aspect used in automata-based filtering.

In Chapter 7 we discussed the evaluation of twig filters and filters with
value-based predicates. As regards twig filters, we argue that the method
presented by Diao et al. [24] can also be used with PMA-based filtering.
Holistic evaluation [38, 40] of twig filters with PMA-based filtering al-
gorithms could also be implemented. One benefit of holistic evaluation
when compared to the method by Diao et al. is its smaller memory con-
sumption. We studied different methods for the evaluation of value-based
predicates and conclude that predicate evaluation could also be imple-
mented with PMA-based filtering. We found out that the filter-pruning
method can be used to improve the performance of YFilter also in the
case of filters that have value-based predicates.

In this research we learned that the Aho-Corasick PMA can be mod-
ified into a fast and memory-efficient XML filtering machine. Processing
linear XPath filters without wildcards and non-leading descendant oper-
ators with a PMA-based algorithm is fairly straightforward. Handling
these operators can also be done, but requires some non-trivial modifica-
tions into the PMA. We also learned that the filter pruning method can be
used to improve the performance of automata-based filtering significantly.

127

CHAPTER 8 CONCLUSIONS

128

Bibliography

[1] Google Alerts. http://www.google.com/alerts/.

[2] Qizx/open: An open source implementation of XML query in Java.
http://www.xfra.net/qizxopen/.

[3] Yahoo! Alerts. http://alerts.yahoo.com/.

[4] YFilter: Filtering and transformation for high-volume XML message
brokering. http://yfilter.cs.umass.edu/.

[5] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to
bibliographic search. Communications of the ACM, 18(6):333–340,
1975.

[6] M. Altinel and M. J. Franklin. Efficient filtering of XML documents
for selective dissemination of information. In VLDB ’00: Proc. of
26th Internat. Conf. on Very Large Databases, pages 53–64, 2000.

[7] American National Standard for Information Systems. Database
Language—SQL, 1992. ANSI X3. 135-1992.

[8] P. Antonellis and C. Makris. XFIS: an XML filtering system based on
string representation and matching. Internat. J. Web Eng. Technol.,
4(1):70–94, 2008.

[9] I. Avila-Campillo, D. Raven, T. Green, A. Gupta,
Y. Kadiyska, M. Onizuka, and D. Suciu. An
XML toolkit for light-weight XML stream processing.
http://www.cs.washington.edu/homes/suciu/XMLTK/.

[10] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference - W3C recommendation, 2004.
http://www.w3.org/TR/owl-ref/.

129

BIBLIOGRAPHY

[11] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay,
J. Robie, and J. Simon. XML path language (XPath) 2.0 W3C
recommendation. Technical report, World Wide Web Consortium,
2010. http://www.w3.org/TR/2010/REC-xpath20-20101214/.

[12] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[13] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Ro-
bie, and J. Siméon. XQuery 1.0: An XML query language, 2007.
http://www.w3.org/TR/xquery/.

[14] R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762–772, 1977.

[15] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Navigation-
vs. index-based XML multi-query processing. In ICDE ’03: Proc. of
the Internat. Conf. on Data Engineering, pages 139–150, 2003.

[16] P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding
structure to unstructured data. In ICDT ’97: Proc. of the 6th Inter-
nat. Conf. on Database Theory, pages 336–350, 1997.

[17] C. Byun, K. Lee, and S. Park. A keyword-based filtering technique of
document-centric XML using NFA representation. Internat. J. Appl.
Math. Comput. Sci., 4(3):136–143, 2008.

[18] K. S. Candan, W.-P. Hsiung, S. Chen, J. Tatemura, and D. Agrawal.
Afilter: adaptable XML filtering with prefix-caching suffix-clustering.
In VLDB ’06: Proc. of the 32nd Internat. Conf. on Very Large Data
Bases, pages 559–570, 2006.

[19] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient
filtering of XML documents with XPath expressions. The VLDB
Journal, 11(4):354–379, 2002.

[20] D. Chen and R. K. Wong. Optimizing the lazy DFA approach for
XML stream processing. In CRPIT ’04: Proc. of the 15th Conf. on
Australasian Database, pages 131–140, 2004.

[21] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and
K. S. Candan. Scalable filtering of multiple generalized-tree-pattern
queries over XML streams. IEEE Trans. on Knowl. and Data Eng.,
20(12):1627–1640, 2008.

130

BIBLIOGRAPHY

[22] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and S. Paparizos.
From tree patterns to generalized tree patterns: on efficient evalua-
tion of XQuery. In VLDB ’03: Proc. of the 29th Internat. Conf. on
Very Large Data Bases, pages 237–248, 2003.

[23] B. Commentz-Walter. A string matching algorithm fast on the av-
erage. In Proc. of the 6th Colloquium, on Automata, Languages and
Programming, pages 118–132, 1979.

[24] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path
sharing and predicate evaluation for high-performance XML filtering.
ACM Trans. Database Syst., 28(4):467–516, 2003.

[25] M. F. Fernández and D. Suciu. Optimizing regular path expressions
using graph schemas. In ICDE ’98: Proc. of the 14th Internat. Conf.
on Data Engineering, pages 14–23, 1998.

[26] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. West-
mann, J. Carey, and A. Sundararajan. The BEA streaming XQuery
processor. The VLDB Journal, 13:294–315, 2004.

[27] X. Gong, W. Qian, Y. Yan, and A. Zhou. Bloom filter-based XML
packets filtering for millions of path queries. In ICDE ’05: Proc. of
the 21st Internat. Conf. on Data Engineering, pages 890–901, 2005.

[28] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Pro-
cessing XML streams with deterministic automata and stream in-
dexes. ACM Trans. Database Syst., 29(4):752–788, 2004.

[29] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML
streams with deterministic automata. In ICDT ’03: Proc. of the 9th
Internat. Conf. on Database Theory, pages 173–189, 2002.

[30] A. K. Gupta and D. Suciu. Stream processing of XPath queries
with predicates. In SIGMOD ’03: Proc. of the 2003 ACM SIGMOD
Internat. Conf. on Management of Data, pages 419–430, 2003.

[31] B. He, Q. Luo, and B. Choi. Cache-conscious automata for XML
filtering. IEEE Trans. on Knowl. and Data Eng., 18(12):1629–1644,
2006.

[32] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman. Introduction
to Automata Theory, Languages and Computability (2nd edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

131

BIBLIOGRAPHY

[33] S. Hou and H.-A. Jacobsen. Predicate-based filtering of XPath ex-
pressions. In ICDE ’06: Proc. of the 22nd Internat. Conf. on Data
Engineering, page 53, 2006.

[34] E. C. Htoon and T. T. S. Nyunt. M-Filter: Semantic XML data
filtering system for multiple queries. In ICIS ’09: Proc. of the 8th
IEEE/ACIS Internat. Conf. on Computer and Information Science,
pages 1167–1171, 2009.

[35] Internat. Press Telecommunications Council. NewsML: News Ex-
change Format. http://www.newsml.org/.

[36] V. Josifovski, M. Fontoura, and A. Barta. Querying XML streams.
The VLDB Journal, 14(2):197–210, 2005.

[37] C. Koch, S. Scherzinger, and M. Schmidt. XML prefiltering as a
string matching problem. In ICDE ’08: Proc. of the 24th Internat.
Conf. on Data Engineering, pages 626–635, 2008.

[38] J. Kwon, P. Rao, B. Moon, and S. Lee. FiST: scalable XML docu-
ment filtering by sequencing twig patterns. In VLDB ’05: Proc. of
the 31st Internat. Conf. on Very Large Data Bases, pages 217–228,
2005.

[39] J. Kwon, P. Rao, B. Moon, and S. Lee. Value-based predicate filtering
of XML documents. Data Knowl. Eng., 67(1):51–73, 2008.

[40] J. Kwon, P. Rao, B. Moon, and S. Lee. Fast XML document filtering
by sequencing twig patterns. ACM Trans. Internet Technol., 9(4):1–
51, 2009.

[41] D. Lee, J. Kwon, W. Yang, H. Shin, J.-m. Kwak, and S. Lee. Schema-
aware XPath filtering on XML document streams. Journal of Intel-
ligent Manufacturing, 20(3):273–282, 2009.

[42] D. Lee, H. Shin, J. Kwon, W. Yang, and S. Lee. SFilter: Schema
based filtering system for XML streams. InMUE ’07: Internat. Conf.
on Multimedia and Ubiquitous Engineering, pages 266–271, 2007.

[43] T. Lindholm and F. Yellin. The Java Virtual Machine Specification
(2nd edition). Sun Microsystems, Palo Alto, California, USA, 1999.

[44] B. Ludäscher, P. Mukhopadhayn, and Y. Papakonstantinou. A
transducer-based XML query processor. In VLDB ’02: Proc. of 28th
Internat. Conf. on Very Large Data Bases, 2002.

132

BIBLIOGRAPHY

[45] I. Miliaraki, Z. Kaoudi, and M. Koubarakis. XML data dissemination
using automata on top of structured overlay networks. InWWW ’08:
Proc. of the 17th Internat. Conf on World Wide Web, pages 865–874,
2008.

[46] I. Miliaraki and M. Koubarakis. Distributed structural and value
XML filtering. In DEBS ’10: Proc. of the 4th ACM Internat. Conf.
on Distributed Event-Based Systems, pages 2–13, 2010.

[47] A. Mitra, W. Najjar, and L. Bhuyan. Compiling PCRE to FPGA for
accelerating SNORT ids. In ANCS ’07: Proc. of the 3rd ACM/IEEE
Symposium on Architecture for networking and communications sys-
tems, pages 127–136, 2007.

[48] A. Mitra, M. R. Vieira, P. Bakalov, V. J. Tsotras, and W. A. Najjar.
Boosting XML filtering through a scalable FPGA-based architecture.
In CIDR ’09: Proc. of the 4th Biennial Conf. on Innovative Data
Systems Research, 2009.

[49] M. M. Moro, P. Bakalov, and V. J. Tsotras. Early profile pruning
on XML-aware publish-subscribe systems. In VLDB ’07: Proc. of
the 33rd Internat. Conf. on Very Large Data Bases, pages 866–877,
2007.

[50] D. Olteanu. SPEX: Streamed and progressive evaluation of XPath.
IEEE Trans. on Knowl. and Data Eng., 19(7):934–949, 2007.

[51] M. Onizuka. Light-weight XPath processing of XML stream with
deterministic automata. In CIKM ’03: Proc. of the 12th Internat.
Conf. on Information and Knowledge Management, pages 342–349,
2003.

[52] M. Onizuka. Processing XPath queries with forward and downward
axes over XML streams. In EDBT ’10: Proc. of the 13th Internat.
Conf. on Extending Database Technology, pages 27–38, 2010.

[53] T. Parr. The ANTLR Parser Generator, 2009.
http://www.antlr.org/.

[54] F. Peng and S. S. Chawathe. XSQ: a streaming XPath engine. ACM
Trans. Database Syst., 30(2):577–623, 2005.

[55] R. Y. Pinter. Efficient string matching. Combinatorial Algorithms on
Words. NATO Advanced Science Institute Series F: Computer and
System Sciences, 12:11–29, 1985.

133

BIBLIOGRAPHY

[56] H. Prüfer. Neuer Beweis eines Satzes über Permutationen. Arch.
Math. Phys, 27:742–744, 1918.

[57] E. Qeli and B. Freisleben. Filtering XML documents using XPath
expressions and aspect-oriented programming. In DocEng ’06: Proc.
of the 2006 ACM Symposium on Document engineering, pages 85–87,
2006.

[58] I. C. Rahman, M.S. Pattern matching algorithms with don’t cares. In
SOFSEM ’07: Theory and Practice of Computer Science, 33rd Conf.
on Current Trends in Theory and Practice of Comp. Sci, pages 116–
126, 2007.

[59] M. Rahman, C. Iliopoulos, I. Lee, M. Mohamed, and W. Smyth.
Finding patterns with variable length gaps or don’t cares. In D. Chen
and D. Lee, editors, Computing and Combinatorics, volume 4112 of
Lecture Notes in Computer Science, pages 146–155. 2006.

[60] S. Saigaonkar and M. Rao. XML filtering system based on ontology.
In A2CWiC ’10: Proc. of the 1st Amrita ACM-W Celebration on
Women in Computing in India, pages 1–6, 2010.

[61] G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[62] Sax Project Organization. Simple API for XML, 2001.
http://www.saxproject.org.

[63] P. Silvasti, S. Sippu, and E. Soisalon-Soininen. XML-document-
filtering automaton. Proc. VLDB Endowment, 1(2):1666–1671, 2008.

[64] P. Silvasti, S. Sippu, and E. Soisalon-Soininen. Processing schema-
optimized XPath filters by deterministic automata. In SEDE ’09:
Proc. of the 18th Internat. Conf. on Software Engineering and Data
Engineering, pages 55–60, 2009.

[65] P. Silvasti, S. Sippu, and E. Soisalon-Soininen. Schema-conscious fil-
tering of XML documents. In EDBT ’09: Proc. of the 12th Internat.
Conf. on Extending Database Technology, pages 970–981, 2009.

[66] P. Silvasti, S. Sippu, and E. Soisalon-Soininen. Evaluating linear
XPath expressions by pattern-matching automata. Journal of Uni-
versal Computer Science, 16(5):833–851, 2010.

134

BIBLIOGRAPHY

[67] P. Silvasti, S. Sippu, and E. Soisalon-Soininen. Online dictionary
matching for streams of XML documents. In IFIP TCS ’10: Proc.
of the 7th IFIP Internat. Conf. on Theoretical Computer Science,
pages 153–164, 2010.

[68] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-based content
routing using XML. In SOSP ’01: Proc. of the 18th ACM symposium
on Operating systems principles, pages 160–173, 2001.

[69] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In SIGCOMM ’01: Proc. of the Conf. on Applications,
technologies, architectures, and protocols for computer communica-
tions, pages 149–160, 2001.

[70] B. Stroustrup. The C++ Programming Language (Special Edition).
Addison-Wesley, 2000.

[71] D. Suciu. XML Data Repository – The Data-
base Research Group of University of Washington.
http://www.cs.washington.edu/research/xmldatasets/.

[72] W. Sun, Y. Qin, P. Yu, Z. Zhang, and Z. He. HFilter: Hybrid finite
automaton based stream filtering for deep and recursive XML data.
In DEXA ’08: Proc. of the 19th Internat. Conf. on Database and
Expert Systems Applications, pages 566–580, 2008.

[73] F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, and J. Myllymäki.
Implementing a scalable XML publish/subscribe system using rela-
tional database systems. In SIGMOD ’04: Proc. of the 2004 ACM
SIGMOD Internat. Conf. on Management of data, pages 479–490,
2004.

[74] H. Uchiyama, M. Onizuka, and T. Honishi. Distributed XML stream
filtering system with high scalability. In ICDE ’05: Proc. of the 21st
Internat. Conf. on Data Engineering, pages 968–977, 2005.

[75] Z. Xiao-Lin and C. Min. DTD based LazyDFA query optimized
algorithm over XML data stream. In CSSE ’08: Proc. of the Internat.
Conf. on Computer Science and Software Engineering, pages 516–
518, 2008.

135

BIBLIOGRAPHY

[76] G. Yin, J. Shen, and X. Wang. The improvement of XML filtering
based on DFA. In ICICSE ’09: 4th Internat. Conf. Internet Com-
puting for Science and Engineering, pages 255 –259, 2009.

136

9HSTFMG*aeciff+

ISBN 978-952-60-4286-2 (pdf)
ISBN 978-952-60-4285-5
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 8

5
/2

011

Panu Silvasti
A

lgorithm
s for X

M
L Filtering

A
alto

 U
n
ive

rsity

Department of Computer Science and Engineering

Algorithms for XML
Filtering

Panu Silvasti

DOCTORAL
DISSERTATIONS

