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1. Introduction 
 
 
Composites are materials whose inhomogeneities on length scale are much 

larger than the atomic scale [1]. If the inhomogeneity length scales are very 

small compared with a defined macroscopic one, the composites can be effec-

tively treated as homogeneous materials. Homogenization of a composite 

may refer to an averaging mechanism to characterize some of its macroscopic 

properties in a less rigorous yet more efficient manner than the fully micro-

scopic description [1–4]. In electromagnetism, homogenization is a process to 

describe the macroscopic electromagnetic (EM) properties of a composite, 

often measured by the effective permittivity εeff and the effective permeability 

μeff, using a presumed homogenization model. 

The physical validity of a homogenization process is defined by the inhomo-

geneity length scales of the composites. More precisely, it depends on wheth-

er the heterogeneity of the composite can macroscopically be sensed by the 

impinging electromagnetic field. In order to reflect the sensitivity of the EM 

field to the inhomogeneities of a given composite, the frequency spectrum is 

qualitatively categorized in Fig. 1 according to the ratio between the inhomo-

geneity length scale (denoted as a) and the effective wavelength (denoted as 

λeff) of the EM field inside the composite. 

When a/λeff is far smaller than unity, which serves as a strict condition for a 

physically sound homogenization, the field solutions come close to the elec-

trostatic ones. Then, the composite can effectively be replaced by a homoge-

neous medium having the same macroscopic EM responses. This area is often 

named after ‘quasi-static’ or ‘long-wavelength’ region. However, when a/λeff 

is rather large, spatial dispersion causes a non-local relation between the dis-

placement field at a point inside the composites and the electric fields around 

the same point [2]. This non-locality prevents a physically reasonable homo-

genization from being performed. A typical composite in this region would be 

the class of photonic crystals [5], periodic nanostructures designed to control 

the motion of photons. There, often the refractive index rather than εeff and 

μeff could be established with physical meaning. [6–8]. 

Between the aforementioned two conditions, there is an intermediate one 

when a is small but not small enough compared with λeff. Particularly, in the 

lower part of this intermediate region, the EM fields have relatively small 

variations inside the composites and the non-locality due to spatial dispersion 

is not very strong, so that the homogenization process could approximately be 

applied. As a matter of convenience, a term ‘quasi-dynamic region’ is defined  



16 
 

 

Figure 1 The frequency-spectrum classification in terms of the sensitivity of the im-
pinging electromagnetic field to the geometric details of a given composite. The low 
frequency part of the quasi-dynamic region near the statics is known as the quasi-static 
one, or long-wavelength regime. 

 

 

in this thesis to describe the frequency range that contains both the lower 

part of the intermediate region and the quasi-static region, as shown in Fig. 1. 

In this quasi-dynamic region, this thesis models the frequency dispersion of 

the macroscopic electrical properties of a class of dielectric composites. The 

composites consist of two dielectric material phases with well-established 

boundaries, and one phase of the composites is circular in two dimensions 

(2D) or spherical in three dimensions (3D). 

One motivation to study the dispersion of composites is the following. In 

dispersion engineering, where desired dispersions are tailored by proper mix-

ing processes, it is crucial to understand how the frequency dependence of the 

macroscopic medium parameters of a composite is affected by dispersions, 

geometries and arrangement of its constituents [9, 10]. Suppose that in the 

quasi-dynamic (or at least the quasi-static) region one can safely replace the 

real composite by an effective homogeneous medium, and the effective per-

mittivity can be defined. For the above-mentioned dielectric composites, the 

classical mixing formulas can then be adopted to model its effective permit-

tivity. In Chapter 2 and [P1], the Maxwell Garnett mixing formula [11] is ap-

plied to analyze the dependence of the dispersion mechanisms of the dielec-

tric composites on those of their dispersive constituents. 

More strictly speaking, in the quasi-dynamic region, the length scales of the 

composite inhomogeneities may become no longer sufficiently small com-

pared with the effective wavelength. This fact breaks the prerequisite of the 

homogenization theory, and will affect its accuracy and validity. One can ex-

pect that in the quasi-dynamic region the modeled effective permittivity still 

has predictive power but will gradually become physically less rigorous as the 

frequency grows. Many artificially structured metamaterials [12–14] are typi-

0 normalized frequency ~ a/λ

intermediate 

photonic, optical...  quasi-
dynamic

quasi-static

eff
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cal composites in this region, whose unit cell sizes are often a fraction of the 

effective wavelength in their operating frequency ranges. Numerous homoge-

nization attempts for various metamaterials have been reported, but many of 

the effective parameters εeff and μeff of a homogeneous-medium-based model 

(homogeneous model) display unphysical behaviors, such as anti-resonances 

and non-passive phenomena [15–19].  

The following questions become parts of the main concerns in the quasi-

dynamic homogenization. Firstly, the most commonly used homogeneous 

model might be insufficient to characterize the electrical properties of the 

composites, and perhaps a more complex model needs to be developed. Se-

condly, in a strict sense, a certain homogenization model should operate 

equally well when the composites are radiated by different EM sources. Final-

ly, what could be the obstacles or problems resulting in the gradual collapse 

of the homogenization theory, and how to visualize them? To address these 

questions, one needs the corresponding homogenization methods to deter-

mine the dispersion of the effective parameters of the applied homogeniza-

tion models, which are not necessarily as straightforward as the homogene-

ous one.  

In Chapter 3 and [P2–P5], a class of geometrically simple yet feature-rich 

dielectric composites is considered. The quasi-dynamic homogenization me-

thods to model their dispersive dielectric properties are then presented, in-

cluding the scattering-parameter (S-parameter) retrievals, the field-averaging 

method, as well as the dispersion diagram method. The retrieved medium 

parameters are given, and the errors due to the homogenization methods are 

discussed. Moreover, modeling only the quasi-dynamic dielectric properties 

gives us freedom to choose more complex homogenization models than a 

homogeneous medium with εeff. 

The following chapter and [P2, P5–P7] apply the homogenization results to 

explore some issues related to the homogenization process. A procedure to 

quantify the upper limiting frequency fL of the quasi-static estimate based on 

the static Lord Rayleigh formula [20] is firstly presented for the composites 

introduced in Chapter 3. Furthermore, a model evaluation process (MEP) is 

introduced. According to the MEP, the performances of the proposed homo-

genization models in Chapter 3 are evaluated. Finally, the transient evolu-

tions of Gaussian pulses propagating through the dielectric (composite) ma-

terials are analyzed by Fast Fourier Transform (FFT). Summaries of the orig-

inal publications are provided in Chapter 5.  
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2. Mixing effects on dispersion  
 mechanism 
 
 
The frequency dispersion of the permittivity of a homogeneous material aris-

es from its molecular and atomic structures. Relaxation dispersion and re-

sonance dispersion are the major dielectric mechanisms [21–24]. The relaxa-

tion mechanism is typically caused by the delay in molecular polarization 

when a dielectric material is exposed to a varying electric field. On the other 

hand, ionic and electronic polarizations exhibit the resonance mechanism. 

Every mechanism is centered at the corresponding characteristic frequency, 

the reciprocal of which is the characteristic time of the process [25]. 

In addition to atomic and molecular polarizations, the dispersion of the ef-

fective permittivity of a dielectric composite also depends on the polarization 

mechanisms in the scale of its constituents. In this chapter, a class of two-

phase dielectric composites is considered. The composites consist of well-

separated dispersive spherical inclusions embedded in a non-dispersive 

background. The inclusions are assumed to follow the classical dielectric dis-

persions: the Debye model [26], the Lorentz model [27], and the Fröhlich 

model [28]. If the inclusion dimension is much smaller than the effective wa-

velength, the mixing formulas can be applied to analyze the effect of mixing 

on the dispersion mechanism, i.e., the relation between the dispersion of the 

composite and that of its dispersive inclusions. 

 

 

2.1 Classical dielectric dispersion models  
 

Several significant dispersion models that natural materials may display are 

introduced. These models, unlike real material samples, may only contain a 

particular dispersion mechanism. But in a limited frequency range, one of 

these models could reasonably describe the dispersion of a dielectric material. 

 

2.1.1 The Debye model 

 

The Debye model is commonly used to describe the dielectric response of 

liquid, especially water and dilute solutions. The Debye-type dispersion is a 

typical representative of the relaxation mechanism and governed by a charac-

teristic parameter: relaxation time τ, which is often a function of temperature. 

The relaxation time can be perceived as the response time for the orientation 
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alignment of permanent dipoles to the applied constant external field. The 

frequency dependence of the relative permittivity predicted by the Debye 

model reads [29]  

 s( ) ,
1

ε ε
ε ω ε

jωτ
∞

∞

−
= +

+
 (1) 

where εs and ε∞ denote the relative static and relative high-frequency permit-

tivities of the medium. The time convention exp(jωt) is used throughout this 

thesis, except that in [P1] and [P6] the harmonic time variation exp(–iωt) is 

applied. 

 

2.1.2 The Lorentz model 

 

The Lorentz model [27] is of fundamental importance in solid-state physics 

since it offers a physically reasonable description of both normal and ano-

malous dispersion phenomena in a rather wide electromagnetic spectrum, 

from microwave to optics [30]. The Lorentz model displays a dispersion me-

chanism due to resonance polarization, and reads in frequency domain [29] 

 
2
p

2 2
0

( ) ,
ω

ε ω ε
ω ω jων∞= +

− +
 (2) 

where the resonance frequency ω0 measures the oscillation of charges bound 

elastically to an equilibrium position, and a natural material often displays 

multiple resonance frequencies; the plasma frequency of the medium ωp de-

pends only on the total number of electrons per unit volume; and the damp-

ing frequency ν characterizes the so-called phenomenological damping force 

[21]. In particular, when ω0 vanishes, the Lorentz model reduces to the Drude 

model, which is often used to describe the optical permittivities of metals.  

 

2.1.3 The Fröhlich model [P1] 

 

Different from the previously introduced ones, the Fröhlich dispersion model 

shows a distinctive mechanism which can be considered as a transition one 

from the relaxation type to the resonance type when its characteristic para-

meters alter. The Fröhlich model is used in practice to describe the dielectric 

behaviors of different gases or vapors, and reads [28, 29, and 31] 

 ∞

+ −⎛ ⎞+= + ⎜ ⎟+ + + −⎝ ⎠
0 0

0 0

1 11
( ) Δ ,

1 ( ) 1 ( )2

jω τ jω τ
ε ω ε ε

j ω ω τ j ω ω τ
 (3) 

where Δε is the difference between the static and high-frequency permittivites. 

It is clear that the Fröhlich model will reduce to the Debye one when ω0τ << 1. 

With increasing ω0τ, the resonance absorption gradually dominates over the 

relaxation one and contributes prevailingly to the overall power loss. 

To better understand the transition mechanism of the Fröhlich dispersion, 

Eq. (3) can be rearranged as follows 
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Figure 2 An illustration of the two-phase composite considered in this chapter. Spher-
ical inclusions (εi) are randomly distributed in a host (background) medium (εe), and 
occupy the volume by a fraction p. Clusters of the inclusions are not allowed. 
 

 

 

( ) ( ) ( )0 0

2
0

2 2 2 1
0

1st 2nd
Shifted passive Debye Shifted active Debye

3rd

1 11 1
Δ   Δ

1 13 2 3 2

  
21

        Δ
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ω τ ω j τ ω
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⎛ ⎞ ⎛ ⎞
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⎛ ⎞
+ + ⎜ ⎟

+ − +⎝ ⎠

Lorentz

    ,

 (4) 

where the first and the second terms are two processes shifted from the 

Debye model by ±ω0, and the third term represents a Lorentz-type disper-

sion. As ω0τ = 0, the third term reduces to zero and the first two terms give 

exactly the Debye model, where only the relaxation-type dispersion is ob-

served. When ω0τ increases from zero the total dispersion gradually deviates 

from the Debye model and is finally dominated by the third term, i.e., the 

resonance-type dispersion.  

Eq. (4) is of significance in that it clearly distinguishes the Fröhlich model 

from the Debye and the Lorentz ones. It should also be noted that the second 

shifted Debye term in Eq. (4) is not passive since it leads to a positive imagi-

nary part of the permittivity as the frequency is below ω0. Thus, the Fröhlich 

model can be interpreted as a combination of a shifted passive Debye-type 

dispersion, a shifted active Debye-type dispersion, and a Lorentz-type disper-

sion. 

 

 

2.2 Maxwell Garnett mixing rule 
 
For a two-phase composite with spherical inclusions shown in Fig. 2, several 

classical mixing rules are available to approximate the effective permittivity 

εeff. Maxwell Garnett formula is perhaps the most commonly-applied mixing 

 εi

εe  
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rule, which reads [29] 

 
−

= +
+ − −

i e
eff e e

i e i e

3 .
2 ( )

ε ε
ε ε pε

ε ε p ε ε
 (5) 

where εe is the relative permittivity of the host medium; εi and p denote the 

relative permittivity and the volume fraction of the inclusions. It is derived by 

substituting each sphere by an equivalent dipole moment. By further averag-

ing all the dipole moments into the electric polarization, the εeff can be deter-

mined [29, 32, and 33]. Two major assumptions are made during the deriva-

tion. One is that the spheres should be small enough with respect to the ex-

ternal electric field so that they can be replaced by a dipole moment. The oth-

er is that the spherical inclusions should be well separated from each other so 

that the interactions among each sphere can be neglected. Therefore, the 

Maxwell Garnett mixing formula is considered as a good predictor for the 

non-clustered dilute composites in the quasi-static region. 
 

 

2.3 Dispersion of the mixture 
 

The composite shown in Fig. 2 whose inclusions display an interesting dis-

persion is often categorized as raisin pudding mixture, while the complemen-

tary structure is termed as Swiss cheese mixture (neutral inclusions and a 

dispersive host medium). Let us consider here several dielectric raisin mix-

tures in the quasi-static region. The dispersion of their inclusions is assumed 

to follow the Debye model, the Lorentz model, and the Fröhlich model, re-

spectively; the background medium is assumed non-dispersive. By the Max-

well Garnett rule, the corresponding effective permittivities are derived in 

order to discuss the effect of mixing on the dispersion mechanism. It should 

be noted that the results in subsections 2.3.1 and 2.3.2 were originally pre-

sented in [29], and subsection 2.3.3 summarizes the main results in [P1]. 

 

2.3.1 The Debye model v.s. the Debye raisin mixture 

 

When the spherical inclusions display the Debye-type dispersion (Eq. (1)), the 

effective permittivity of the corresponding raisin mixture reads according to 

the Maxwell Garnett rule [29] 

 ∞
∞

−
= +

+
s,eff ,eff

eff ,eff
eff

( ) ,
1

ε ε
ε ω ε

jωτ
 (6-1) 

where the modified parameters read 

 ∞
∞

∞ ∞

−
= +

+ − −
e

,eff e e
e e

3 ,
2 ( )

ε ε
ε ε pε

ε ε p ε ε
 (6-2) 

 
−
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s e
s,eff e e

s e s e

3 ,
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ε ε
ε ε pε

ε ε p ε ε
 (6-3) 
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 ∞ ∞+ − −
=

+ − −
e e

eff
s e s e

2 ( )
.

2 ( )

ε ε p ε ε
τ τ

ε ε p ε ε
 (6-4) 

It is clear that after mixing the dielectric dispersion remains the Debye type 

as the inclusions, but the characteristic parameters vary. In particular, the 

relaxation frequency increases after the mixing, since εs should be larger than 

ε∞ in order that the Debye model is passive. 

 

2.3.2 The Lorentz model v.s. the Lorentz raisin mixture 

 

Similarly to the Debye case, the Lorentz raisin mixture also retains the same 

dispersion mechanism as its inclusions, and the modified characteristic pa-

rameters are specified as follows [29] 

 ∞
∞

∞ ∞

−
= +

+ − −
e

,eff e e
e e

3 ,
2 ( )

ε ε
ε ε pε

ε ε p ε ε
 (7-1) 
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e
p,eff p

e e

3
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ω p ω

ε ε p ε ε
 (7-2) 

 
∞ ∞

−
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+ − −
2 2 2
0,eff 0 p

e e

1
,

2 ( )

p
ω ω ω

ε ε p ε ε
 (7-3) 

 =eff .ν ν  (7-4) 

The mixture exhibits a decreased plasma frequency, resulting from a smaller 

number density of the electrons in the mixture. The resonance frequency after 

mixing shows an up-shift, which decreases with increasing volume fraction p. 

As a special case, the effective permittivity of the Drude raisin mixture follows 

the Lorentz model, where all the transformed parameters remain as Eq. (7-

1)–Eq. (7-4).  

 

2.3.3 The Fröhlich model v.s. the Fröhlich raisin mixture [P1] 

 

Different from the previous cases, the Fröhlich raisin mixture does not dis-

play the same dispersion as its inclusions. Based on the Maxwell Garnett mix-

ing rule, the effective permittivity reads 
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where ε∞,RF and εs,RF remain as Eq. (6-2) and Eq. (6-3), respectively; other 

transformed parameters are as follows 
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 0,FR 0 ,ω ω K=  (8-4) 

 ∞= −FR s,FR ,FRΔ .ε ε ε  (8-5) 

It is clearly shown that due to an additional remainder in Eq. (8-1) the disper-

sion behavior of the Fröhlich raisin mixture does not straightforwardly follow 

the Fröhlich model.  

In order to better characterize the dispersion mechanism of the Fröhlich 

raisin mixture, Eq. (8-1) is rewritten as 

 eff ,FR
1 2

( ) .
A B

ε ω ε
ω ω ω ω∞= + +
− −

 (9-1) 

The characteristic parameters ω1, ω2, A and B are given, respectively, by 
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From Eq. (9-2) to Eq. (9-4), it is clear that the properties of the parameters 

ω1, ω2, A and B depend greatly on the sign of H, i.e., Eq. (9-4).  

• For dilute mixtures, H < 0 and thus the parameters ω1, ω2, A 

and B are simultaneously purely imaginary. Eq. (9-1) thus dis-

plays a double-Debye-type dispersion (DDTD). In particular, 

two Debye-type dispersions, denoted by the second and the 

third terms of Eq. (9-1), have different signs, and the positive 

one is smaller in amplitude than the negative one, which en-

sures that the total dispersion obeys passivity.  

• With gradually increasing p, H approaches zero from negative. 

When H reaches zero, the limiting volume fraction pb can then 

be analytically derived by letting Eq. (9-4) equal zero, and it 

reads 
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• When p continues to increase from pb, H > 0 so that ω1, ω2, A 

and B are complex, and in particular, Re(A) = –Re(B), Im(A) = 

Im(B), Re(ω1) = –Re(ω2) and Im(ω1) = Im(ω2). The mixture 

then behaves in a more complicated dispersion mechanism — a 

combination of one Lorentz-type and one shifted passive 
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Debye-type and one shifted active Debye-type dispersions 

(LDDD).  

• Figs. 5–8 in [P1] clearly visualize the above results. 

 

Finally, it is worth to mention that the DDTD and the LDDD mechanisms 

are more general, and cannot be reduced to the simple dielectric models ex-

cept when extra conditions are imposed. For instance, the DDTD is equiva-

lent to the Lorentz dispersion by further forcing the imaginary parts of A and 

B to be opposite signs; if A and B are real, the LDDD will reduce to the Lo-

rentz model as well. 
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3. Quasi-dynamic homogenization  
 methods 
 
 
The effective permittivities by various mixing formulas are often referred as 

the quasi-static estimate [1, 34–39]. This fact indicates that it is the long-

wavelength regime where the mixing formulas are widely adopted. In order to 

extend their application in a dynamic homogenization, many assumptions 

have to be made, which in turn limits the practical importance of the mixing 

formulas in the quasi-dynamic region. 

Therefore, several other quasi-dynamic homogenization techniques for the 

dielectric composites are developed in this chapter. For the composites with 

finite thickness, four different homogenization models are adopted to de-

scribe the macroscopic EM properties of the composites. The effective para-

meters of the applied homogenization models are then determined based on 

the transmission and reflection data, i.e., the scattering parameters (S-

parameters). Moreover, the presented S-parameter retrieval methods take 

into account the situation when an obliquely incident plane wave illuminates 

the composite slabs. Then, for the same structures, a field averaging method 

is introduced. Finally, the dispersion diagram method is proposed for the 

infinite simple cubic or square lattice to determine the quasi-dynamic disper-

sion of the effective permittivity.    

 

 

3.1 Benchmark problem 
 

3.1.1 Geometry setup [P2–P5] 

 

First of all, a class of geometrically simple dielectric composites, similar to the 

geometry setup discussed in [P2–P5], is introduced as a benchmark structure 

in order to illustrate the usage and the problems of the presented homogeni-

zation methods. 

To reduce the computational duration, the benchmark geometry is con-

structed in 2D. As shown in Fig. 3, the composite is infinite in one direction 

(y-direction) and consists of only a few layers in the other direction (x-

direction). The unit cell of the composite is composed of a circular disc with 

relative permittivity εi centered in a dielectric square plate (εe). The edge 

length of the unit cell is a, and the circular inclusion occupies the area of the 

unit cell by a fraction p. One can obtain the same structure by truncating the 
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Figure 3 The geometry setup of the considered composite slab. In CST MWS, we only 
construct one row of consecutive unit cells (the highlighted area).  
 

 

infinite simple square lattice [40] in the x-direction. 

Furthermore, an obliquely incident TMxy-polarized plane wave is chosen as 

the electromagnetic excitation. The TExy-polarization is not considered since 

it does not obviously induce strong interactions between electric dipole mo-

ments, and the effective permittivity is just the area-averaged result. 

In this thesis, the above scenario is constructed in the full wave simulator 

CST Microwave Studio (MWS) [41]. Only the highlighted area in Fig. 3 needs 

to be modeled. The composites can then be realized by assigning the unit cell 

boundary condition to the four bounds in the y- and z-directions. By applying 

the Floquet ports and further varying the phase shift between the y-

directional unit cell boundary pair, a plane wave with incident angle θ0 is 

achieved. Moreover, free space of 2 unit cells is added on each side of the slab 

in the x-direction to ensure sufficient attenuation of potential higher order 

modes. In MWS, both the S-parameters and the field values inside the slab 

can be simulated and recorded for the retrieval purpose. Parallel studies are 

performed in another commercial software Comsol Multiphysics 3.5 [42–44, 

P3]. 

As a 3D tool, CST MWS cannot model a real 2D structure. However, the z-

directional thickness dz in this case only affects the simulation duration but 

does not introduce extra errors as long as dz is at least one-mesh-cell long so 

that the qualities of the tetrahedral mesh cells do not deteriorate. Thus, by 

reducing the z-directional thickness, we can reduce the simulation duration 

without compromised accuracy. 

 

3.1.2 A reference f20 and Lord Rayleigh quasi-static estimate 

 

For convenience, the frequency f is normalized according to a reference f20, 

which is the frequency when the effective wavelength λeff inside the slab is 20 
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times the unit cell edge length a, and we have 

 =20

eff

,
20 

c
f

a ε
 (10) 

where c is light speed in vacuum, and εeff denotes the unknown effective per-

mittivity of the composite slab. In order to define f20 a reasonable estimate for 

εeff is needed. 

For an infinite lattice with the same unit cell as in Fig. 3, its (quasi-)static 

effective permittivity can be estimated by many mixing rules. The 2D Maxwell 

Garnett mixing formula (εMG) [29] is perhaps the most commonly-used one. 

But the 2D Lord Rayleigh formula, which reads [20] 

 e
Ray e

4 8i e i e

i e i e

2
,

(0.3058 0.0134 )

pε
ε ε

ε ε ε ε
p p p

ε ε ε ε

= +
+ −

− − +
− +

 (11) 

can actually provide a more accurate estimate εRay since it takes into account 

interactions between the inclusions. Moreover, the difference ∆ε (= εRay – εMG) 

is expected to increase when the inclusion volume fraction p or the inclusion 

permittivity εi grows. Fig.4 demonstrates those points. 

For the considered finite-thickness slab, Eq. (11) could still supply a good 

reference to its (quasi-)static εeff. Moreover, the term ‘quasi-dynamic’ implies 

that the homogenization is a dynamic one, but meanwhile is carried out quite 

close to the quasi-static limit. Thus, in this thesis, the 2D Lord Rayleigh (qua-

si-)static estimate εRay is chosen to approximate the effective permittivity of 

the composite slab in the quasi-dynamic region. Then, the normalized fre-

quency f/f20 can not only show the dispersion of εeff, but also approximately 

indicate the ratio between a and λeff. For instance, a is roughly one-tenth of 

λeff when f/f20 equals 2. 

 

 

Figure 4 The difference between the Lord Rayleigh (εRay) and the Maxwell Garnett 
(εMG) estimates, i.e., ∆ε = εRay – εRay, as a function of inclusion volume fraction p for 
various inclusion permittivity εi. The permittivity εe of the background medium is unity. 
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It is noted that according to our numerous studies, a/λeff = 1/20 seems to be 

a reasonable choice to neglect spatial dispersion when the composite slab 

behaves like a homogeneous medium. This is the reason we normalize the 

frequency to f20. Of course, one can choose a looser or stricter normalization, 

e.g., f10 or f40. 

 

 

Figure 5 Characterization of the actual composite slab as a homogeneous model with 
εeff and μeff when a plane wave is normally incident on the slab. 
 
 
3.2 S-parameter retrievals 
 
3.2.1 Homogeneous model and normal incidence (Nicolson− 

Ross−Weir method) 

 

The classical approach of retrieving the effective parameters εeff and μeff from 

the S-parameters was originally studied by Nicolson, Ross, and Weir [45, 46]. 

Suppose that a plane wave is normally incident on a composite slab, as shown 

in Fig. 5. If the inhomogeneity of the slab is much smaller than λeff, one can 

treat the real composite with a homogeneous medium with εeff and μeff. Thus, 

the S-parameters from this slab can be formulated as follows 
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where n (=(εeff ·μeff)1/2) and z (=(μeff /εeff)1/2) denote refractive index and im-

pedance, R is reflection coefficient across the first boundary between free 

space and the medium, k0 is the free-space wave number, and d is the slab 

thickness. 

By inverting Eq. (12) and Eq. (13), one can get the classical NRW method, 

which reads (where the integer m is the branch index of the logarithmic func-

tion) 

 
( )
( )
+ −

= ±
− −

2 2
11 21

2 2
11 21 .

1 S S
,

1 S S
z  (15) 

a<<λeff

ε   , μeff eff

kH

E

0



29 
 

 −
−= =

− − +
0 21

1
11

S
,

1 S ( 1)( 1)
jnk dQ e

z z
 (16) 

 ( ) ( ){ }⎡ ⎤⎡ ⎤ ⎡ ⎤= − + + ⋅⎣ ⎦ ⎣ ⎦⎣ ⎦
0

1
Im ln 2 Re ln .n Q mπ j Q

k d
 (17) 

 

Branch selection 

A closer examination on Eq. (15)–Eq. (17) shows that there are two uncertain-

ties in determining the wave impedance z and the refractive index n. The sign 

ambiguity in Eq. (15) can be cleared by the requirement Re(z) ≥ 0. But how to 

select the correct branch of the logarithmic function in Eq. (17) is a tougher 

problem in most applications. For instance, when the NRW method is applied 

to determine the effective parameters of metamaterials [47–54], the correct 

branch m of each frequency sample cannot readily be fixed. An iterative me-

thod is introduced in [54], which utilizes the mathematical continuity of the 

exponential function (Eq. (16)) to settle the branch sample by sample, given 

that the correct branch at the preceding sample is known.  

However, since in this chapter the composites are assumed nonmagnetic 

and non-dissipative, the branch ambiguity only exists for the real part of the 

refractive index, which can be estimated by the static Lord Rayleigh result, i.e., 

nEST = εRay1/2. For the composite with εe = 1, εi = 10 and p = 0.3, Fig. 6 illu-

strates the retrieved refractive indices n for different branch m of the loga-

rithmic function in Eq. (17) as well as the estimated nEST. It is clearly shown 

that at very low frequency, the branch index ‘m = 0’ leads to the correct n, and 

as the frequency grows the expected smooth curve representing the physically 

reasonable n contains different branch indices m (denoted by various mark-

ers and colors). Fortunately, within the selected frequency range, the esti-

mated nEST (black dashed line) is very close to the correct n, and serves as a 

good baseline to choose the correct branch index m. Thus, the branch uncer-

tainty can be settled by the a priori refractive index nEST = εRay1/2. 

 

Fabry–Pérot resonance and the compensation method [P2] 

When lossless or low loss dielectric composites with finite thickness are con-

sidered, the S-parameter retrieval results will severely be distorted by the 

Fabry–Pérot resonances (FPRs) [34, 55]. The FPR itself is physical and ap-

pears when the slab thickness is an integer multiple of half of the effective 

wavelength inside the slab. In these situations, the reflections from different 

boundaries of the slab will cancel each other, resulting in S11 = 0 and thus the 

impedance z is singular according to Eq. (15). So the FPR actually comes from 

the improperly defined impedance z. When a homogeneous material sample 

is treated by the NRW method, the FPR is also present but its influence on 

the results is limited in a very narrow frequency band [56]. Unfortunately, if 

one replaces the sample by a composite of our interest, the results in Fig. 7  
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Figure 6 The retrieved refractive index n for different branches m versus the esti-
mated one based on the static Lord Rayleigh formula and nonmagnetic assumption. 
The black dashed line represents the estimated refractive index, while different mark-
ers denote n of the corresponding branch. Within the visualized frequency range, the 
Rayleigh estimate offers a good baseline to select the correct branch. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 A numerical example of a 7-layer composite slab when p = 0.2, εi = 10, and εe 
= 1. Black solid line represents the results by the NRW method; blue dashed line de-
notes the results by the compensated NRW method, or both-S-parameter method with 
compensation (BSCM); dotted red line is the Lord Rayleigh estimate. 
 

 

are distorted by the FPRs over a surprisingly broadband around the reson-

ances, which in turn greatly limits the practical usage of the retrieval results. 

It is perhaps because the unit cell size is not sufficiently small compared with 

the effective wavelength, so that many factors, such as the boundary layer 

effect and spatial dispersion, affect the accuracy of the homogeneous model, 

and thus influence the quality of the NRW method base on such a model. 

On the other hand, the retrieved refractive index seems physically reasona-

ble and free of the FPRs. In order to eliminate the influence of the FPR and 
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restore physically sound effective medium parameters, a compensation me-

thod (or BSCM: both-S-parameter method with compensation) is introduced 

in this thesis based on the nonmagnetic assumption. Thus we can retrieve the 

effective permittivity εeff by the calculated refractive index n, i.e., εeff = n2, and 

the results are shown in Fig. 7. Moreover, the non-magnetic assumption is 

quite reasonable for the considered frequency range and the dielectric com-

posites with not very large permittivity contrasts, since the artificial magnet-

ism is the second-order spatial dispersion effect in terms of the ratio between 

the unit cell dimension and the effective wavelength [2]. Of course, this com-

pensation approach will introduced some errors to the system. But since we 

are close to the (quasi-)static limit, the error is expected to be negligible [P4]. 

 

Retrievals based on parts of the S-parameters [P2] 

Based on the nonmagnetic assumption μeff = 1, one can retrieve the single 

unknown εeff using either S11 or S21. At this time, both Eq. (12) and Eq. (13) 

become functions of only one variable εeff. One can thus retrieve εeff by nu-

merically inverting either Eq. (12) or Eq. (13). In order to locate the complex 

roots of a nonlinear equation with complex coefficients, we numerically sepa-

rate the equation into real and imaginary parts, and then solve a system of the 

two nonlinear yet real equations from the separation in a least square sense 

by the Levenberg–Marquardt algorithm (LMA) [57]. Similar to other minimi-

zation algorithms, the LMA finds only a local minimum. Thus, a reasonable 

initial guess should be provided in order to locate the correct solutions which 

are physically reasonable. Fortunately, for the considered dielectric compo-

sites in the quasi-dynamic region, the dispersive permittivities are expected 

to increase smoothly and vary in a small dynamic range. Hence, one can 

choose the static Lord Rayleigh estimate as the initial guess, which will ensure 

that the LMA can locate the correct solutions. Moreover, it is found that for 

the normal incidence the retrieval using only S21 is more robust than the S11 

retrieval. Meanwhile, the S21 retrieval result agrees well with but is not exactly 

the same as the permittivity resolved by the BSCM. 

In addition, by the definition of the FPR frequency points, i.e., S11 = 0, an ef-

fective wavelength method (EWM) is presented as 

 
⎛ ⎞= =⎜ ⎟
⎝ ⎠

2

eff ,             1,2,3...
2

ttλ
ε t

d
 (18) 

where λt is the free space wavelength at the FPR of order t. Although this me-

thod is only valid for the retrieval at frequency points corresponding to the FP 

resonances, it provides a good comparison and validation for the results by 

other retrieval approaches. The EWM results coincide with those by the S11 

method and globally display the similar dispersion behaviors as the retrieval 

results by the S21 method and the BSCM.  
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3.2.2 Homogeneous model and oblique incidence [P5] 

 

Let us go back to Fig. 3 and consider the cases when an obliquely incident 

plane wave illuminates the composite slab, i.e., θ0 ∫ 0. The effective permit-

tivity of the homogeneous model (H-model) can be derived by the generalized 

S-parameter retrieval and compensation method, which is given by [P5] 
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where θ0 is the angle of the incident plane wave, and n’ and z’ are defined as 
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μz θ θ
z n n θ ε μ θ

θ ε θ
 (23) 

where z and n are the ordinary wave impedance and refractive index, and θ1 

represents the effective refractive angle in the slab for the lossless case. For 

lossy materials, θ1, still determined by Snell’s law [21], is a complex-valued 

angle without a well-defined physical meaning. Together with the nonmag-

netic assumption μeff = 1, the dispersion of the effective permittivity at arbi-

trary incident angle can be calculated. As aforementioned, this approach is 

also called both-S-parameter method with compensation (BSCM). 

Moreover, one can determine εeff(ω, θ0) by the S11 method, the S21 method, 

and the EWM generalized into oblique incidence. The retrieval results by dif-

ferent methods are compared in Fig. 8 (same as Figs. 2–3 in [P5]). Finally, 

several remarks on the retrieval methods are given based on our extensive 

numerical studies. 

• The BSCM can reasonably restore the dielectric dispersion of the 

considered composites under oblique incidence. All the retrieved 

permittivities converge to a value slightly larger than the static Ray-

leigh estimate εRay at very low frequency. With the increasing fre-

quency, all the results gradually grow and deviate from one another. 

This phenomenon due to spatial dispersion is termed as ‘angular 

dispersion’ of the effective medium parameters in this thesis. 

• The performances of the S11 and S21 methods clearly depend on the 

incident angle. The larger the incident angle is, the more (less) ro-

bust the S11 (S21) method will become. 

• The EWM predicts a similar dispersion trend as the BSCM, and its 

solution quality follows that of the S11 method. 
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Figure 8 A numerical example of a 7-layer composite slab when p = 0.2, εi = 10, and εe 
= 1. (a) Low frequency comparison between the BSCM and the S21-method at θ0 = 0°, 
30°, 45°, and 60°. The blue dashed line indicates the static Lord Rayleigh estimate; (b) 
and (c) presents the global comparisons among the presented methods [P5]. 
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• Despite similar results, the BSCM and the S21 method are intrinsical-

ly different, in that the BSCM uses both S-parameters to arrive at Eq. 

(22) while the S21 method only uses S21. 

• Angular dispersion reflects the limitations of the homogeneous 

model and retrieval techniques. When the frequency grows, the di-

mension of the unit cell becomes no longer sufficiently small com-

pared with the effective wavelength. Spatial dispersion thus becomes 

non-negligible. In principle, an ideal homogenization cannot be per-

formed in this situation. However, if the homogenization is anyway 

carried out, unphysical behaviors of the retrieved effective medium 

parameters are expected, and these unphysical behaviors are also 

expected to be magnified with increasing frequency. In Fig. 8, 

the increasingly obvious angular dependence of εeff clearly illustrates 

this point. This phenomenon also motivates us to apply more com-

plex models to homogenize the composite slab in the following sec-

tions to investigate the possibility of suppressing angular dispersion. 

 

3.2.3 Anisotropic model [P3] 

 

Although the unit cell of the composite slab is highly symmetric, the whole 

structure loses such symmetry due to the finite-thickness in one direction and 

infinity in the other. When oblique incidence is considered, the isotropic ho-

mogeneous model may no longer characterize the finite-thickness slab suffi-

ciently. Instead, an anisotropic model (A-model), with the y-directional per-

mittivity εy and the x-directional permittivity εx, is considered. A similar deri-

vation to that in subsection 3.2.2 can be conducted. By redefining n’ and z’ as 

(it is noted that despite different definitions, z’ and n’ are quantitatively equal 

to those given by Eq. (19) and Eq. (21)) 
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where k1 is wave number in the anisotropic medium, and follows the corres-

ponding dispersion equation, which reads 
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A little algebra based on Eq. (24) and Eq. (25) shows that  

x y x y 1
12 2 2 2

x 1 y 1 x 1 y 1 y 0

cos
cos  ,        .

cos sin cos sin cos

ε ε ε ε θ
n' θ z'

ε θ ε θ ε θ ε θ ε θ
= =

+ +
 (26) 

In addition, the phase matching condition gives 

 ( )=
−−

2
2 x 0

1 2
y xx y 0

sin
sin  .

sin

ε θ
θ

ε εε ε θ
 (27) 
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Figure 9 A numerical example of a 5-layer composite slab when p = 0.3, εi = 10, and εe 
= 1. The subscripts x and y indicates the x- and y-directional components, and the 
numerals denote the incident angles. Two purple lines represent the permittivities 
without compensation at 30°.  
 

 

 

Finally, we have [P3] 

( ) ( ) ( )2 2  2
y x 0 y 00 0 y,           sin sin .cos 1 cos ε n' ε θ ε θz' θ n' z' θ ε n'= = =− −  (28) 

In this case, z’ still suffers from the FPR, and it is impossible to cancel z’ 

from the retrieval formulas. But εy in Eq. (28) is identical to the non-

compensated permittivity εeff of a homogeneous model in Eq. (23). Therefore, 

in order to eliminate the distortion from the FPR, εy are assumed to equal the 

compensated εeff by Eq. (22), and εx will consequently get rid of the distortion 

from the FPR. 

The retrieval results are visualized in Fig. 9. It is shown that this compensa-

tion method not only eliminates the influence of the FPR, but also yields 

physically reasonable results. It is also noted that at low frequencies non-εy,30° 

(without compensation) and εy,30° (after compensation) converge to the same 

value slightly larger than the Rayleigh prediction, and so do non-εx,30° and 

εx,30° but to a smaller one. This small but noticeable difference between εx and 

εy results from the finite thickness of the slab in the x-direction, which breaks 

the symmetry of the whole structure. Finally, the similar compensations are 

performed at different θ0. All the compensated εy coincide with each other at 

low frequency and so do the compensated εx. As the frequency grows, angular 

dispersion is inevitable, and finally prevails over the anisotropy. For instance, 

at f/f20 = 4, the anisotropy measured by |εy,30°–εx,30°| is smaller than the angu-

lar dispersion measured by |εy,30°–εy,45°|. 
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3.2.4 Stratified model with isotropic or anisotropic boundary  

 layers 

 

According to our recent computational study [43, 58] and previous theoreti-

cal literature [59, 60], the permittivity of the outermost boundary layer (with 

only one neighbor in the x-direction) may show different properties from 

those of the inner layers (with neighbors on both sides). This motivates us to 

consider two stratified models with isotropic boundary layers (IBL-model) or 

anisotropic boundary layers (ABL-model), as shown in Fig. 10.  

 

 

              (a)          (b) 

Figure 10 Two complex models applied to characterize the dielectric slab of our inter-
est. (a) Stratified model with isotropic boundary layers (IBL-model), where εb and εm 
are the permittivities of the outermost boundary and inner layers; (b) stratified model 
with anisotropic boundary layers (ABL-model), where εbx and εby are the x- and y-
components of the permittivities of the outermost boundary layers, while εm is the in-
ner layer permittivity.  
 

 

Figure 11 The front and the rear outermost boundary layer permittivities εb1 and εb2 of 
a 5-layer slab versus εeff of the H-model for the 2-layer and the 5-layer slabs. The field 
averaging method [43, P3] is applied to compute these curves. 
 

 

Several observations have been made in our recent study based on the field 

averaging method [43, P3] to homogenize the dielectric slab of interest with 

the IBL-model. Firstly, the permittivities of the outermost boundary layers εb1 

and εb2 are roughly identical. Secondly, all the inner layers have the same 
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permittivity εm. Thirdly, εb1 and εb2 are larger than εm. Finally, for two slabs 

with different number of layers, the permittivities of their outermost boun-

dary layers are approximately the same. Fig. 11 confirms that εb1 and εb2 of a 

5-layer slab have good agreement with the effective bulk permittivity εeff for a 

2-layer slab, where both layers behave like a boundary layer with only one 

neighbor in the x-direction. Quantitatively small differences exist among εb1, 

εb2 and 2-layer εeff, but compared with their deviations from the 5-layer εeff, 

these differences can be neglected. We can thus resolve εb of the IBL-model in 

Fig. 10(a) by calculating εeff of the H-model for a 2-layer slab with Eq. (22), 

namely the 2-layer method; similarly, εbx and εby of the ABL-model in Fig. 

10(b) can be determined by εx and εy of the A-model for a 2-layer slab with Eq. 

(28). 

Once εb is known, the inner layer permittivity εm can be numerically solved 

by inverting the formulation of the forward propagation matrix method 

(FPMM) [61]. For a stratified slab with t layers, there are t+1 boundaries 

which separate the space into t+2 regions. Assuming that each region is ani-

sotropic with εi,x and εi,y (i = 0, 1, …, t+1), the FPMM then gives the following 

equation, which reads 

 + − +

⎡ ⎤⎡ ⎤
= ⋅⋅⋅ ⋅⋅⋅ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
21 0 0

( 1) ( 1) ( 1) 10
11

1S exp( cos )
,

S0 t t t t i i

jk d θ
D D D D  (29) 

where k0 and θ0 are the wave number and the incident angle of the incoming 

plane wave in region 0 (free space), and d is the total thickness of the strati-

fied slab in the x-direction. Also, the forward propagation matrix D(i+1)i reads 

 

+ +

+

+ + +

+ + +

+ +

−⎡
⎢= ⋅
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1 1
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exp[ ( cos cos )]

i i i i i

i i

i i i i i i i

i i i i i i i
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ε θ
θ

ε ε ε ε θ
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where ki and θi defined in Eq. (32) and Eq. (33) are the wave number and the 

propagation angle (in lossless cases) of the wave in region i, R(i+1)i, caused by 

the boundary separating the regions i and i+1, represents the reflection coef-

ficient for the wave in region i, and di denotes the location of the ith boundary 

in the x-direction. In particular, we assume that d0 = 0. 

For the 3-layer slab shown in Fig. 10 whose boundary layer permittivity has 
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already been determined, Eq. (29) then reduces to a system of two equations 

with only one unknown, i.e., the inner layer permittivity εm, which reads 

 ( ) ( )= =1 11 2 21m mS ,      S .f fε ε  (34) 

One can then numerically determine the frequency dependence of εm by let-

ting the following function reach its minimum at different frequencies, 

( ) ( ) ( ) ( )+ + +− − − −1 m 11 1 m 11 2 m 21 2 m 21 .Re Im Re Im( ) S ( ) S ( ) S ( ) Sf ε f ε f ε f ε  (35) 

In order to locate the correct minimum of Eq. (35), one needs to identify a 

reasonable search interval. Based on the second formula of Eq. (34), one can 

use the LMA to numerically solve the unknown inner layer permittivity, de-

noted as εm’. As shown in Fig. 8(b), the result by the S21 method is globally 

consistent with the physically reasonable one determined by the BSCM. Ana-

logically, the numerically determined εm’ from S21 in this case provides a pri-

ori knowledge for the physically reasonable result. One can then construct the 

search interval as [εm’–δ, εm’+δ], where δ is a positive real constant. Within 

the constructed interval with a properly-chosen δ, one can locally minimize 

Eq. (35) to determine the frequency dependence of εm. 

In the presence of noise, the retrieval method presented for the stratified 

models is expected to be less stable than those for the homogeneous and the 

anisotropic models, since it may suffer from numerical instabilities. For in-

stance, the search interval of the minimization algorithm may contain mul-

tiple minima due to noise in the measured S-parameters. Moreover, one may 

speculate that for the IBL-model εb and εm can be solved by the direct numer-

ical inversion of Eq. (29), which in this case is a system of two equations with 

two unknowns. However, the non-unique solutions of Eq. (29) make the di-

rect numerical inversion unreliable. 

As a numerical example, the determined model parameters for the IBL- and 

ABL-models, when a 5-layer composite slab with p = 0.3, εi = 10, and εe = 1 is 

considered, are visualized in Fig. 12 and Fig. 13, respectively. 

For the IBL-model, it can be seen that different from εb, the retrieved εm for 

different θ0 do not converge to the same value at the low frequencies, which is 

not due to the imprecision of the 2-layer method since any potential homoge-

nization inaccuracies including the retrieval method and spatial dispersion 

can be neglected in the static or quasi-static region. Hence, this low-

frequency divergence in Fig. 12 indicates that the stratified model with iso-

tropic boundary layers has inherent deficiencies in describing the dielectric-

composite slabs under oblique incidence. 

The comparison between retrieved εm for different θ0 in Fig. 12 and Fig. 13 

indicates that if a stratified model is applied to the dielectric-composite slab 

under oblique incidence, the separated boundary layers should be anisotropic 

in order to ensure the retrieved model parameters to be physically reasona-

ble. In addition, the ABL-model is found to be able to slightly suppress the  
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Figure 12 The retrieved permittivities of the inner and the boundary layers at various 
incident angles. The Lord Rayleigh estimate is shown as the dot markers; and the sub-
scripts b, m, and numeral stand for the boundary layer, the inner layer, and the inci-
dent angle, respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 13 Retrieved angle-dependent εbx, εby and εm for different incident angles θ0. 
The subscript b, m, x, y, and numerals denote the boundary layer, the inner layer, x-
direction, y-direction and the incident angle, respectively. 
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angular dispersion. For instance, as shown in Fig. 9 and Fig. 13, |εy, 30°– εy, 60°| 

= 0.0104 for the A-model when f/f20 = 4, whereas |εby, 30°– εby, 60°|= 0.0088 

for the ABL-model. 

Let us conclude this section by some remarks. All the derived S-parameter 

retrievals are either the analytical or numerical inversion of the formulism of 

a forward propagation problem. The additionally introduced methods (the 

compensation method and the 2-layer method) aiming at restoring reasona-

ble dispersions of the effective permittivities will inevitably bring into the 

system some errors, which somehow reflect or measure the imperfection of 

the quasi-dynamic homogenization theory, including the applied retrieval 

methods and homogenization models. Obviously, all the proposed methods 

will lose their physical sense in the full dynamic region. But in the quasi-

dynamic region which is close to the quasi-static limit, the homogenization 

results still have the predictive power despite the gradually deteriorating ac-

curacy. Moreover, a criterion is introduced in Chapter 4 to measure this re-

duced accuracy of the applied homogenization as the frequency increases.  

Finally, to define a boundary for a heterogeneous medium is not as obvious 

as for a homogeneous material. For our composite slab, this fact would give 

additional freedom in defining its thickness d. It would be an interesting fu-

ture work to investigate the possibility to reduce or even eliminate the FPR 

effects by varying the slab thickness. It should be noted that the compensa-

tion method is proposed not only to eliminate the FPR effects, but also to 

recover the retrieved unphysical effective permeability, which decreases from 

unity as the frequency grows. 

 

 

3.3 Field averaging method [P3] 
 

While the S-parameter retrieval method tries to homogenize the composite 

from outside, another strategy would be to perform the characterization from 

inside. The field averaging [62–68] is such a method. In this thesis, a 

straightforward procedure is applied based on the constitutive relation be-

tween the local electric displacement and the local electric fields at a point r: 

D(r) = ε(r)E(r). Then, the effective permittivity can be defined as the ratio 

between the (area-/volume-)averaged electric displacement and electric 

fields: 

 eff 0 eff

0

            ,
i

S

i
S

D dS

ε ε ε
ε E dS

< > = < > ⇔ =
∫∫

∫∫
D E  (36) 

where the subscript i denotes different components of the electric and the 

displacement fields, and the surface integrations are carried out in an area S. 

The electric and the corresponding displacement fields, when the composite 
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slab is illuminated by a plane wave with an arbitrary incident angle, can be 

simulated and recorded by e.g., the full wave simulator Comsol Multiphysics 

3.5 [42]. 

The advantage of this method is that one can freely choose the area (or vo-

lume in 3D) of interest and polarization direction to carry out the integration. 

Let us take the composite shown in Fig. 3 as an example, and concentrate on 

the case when the slab is illuminated by a normally incident plane wave. If a 

homogeneous medium is applied to model the real composite slab, one can 

select the total area of the slab as the integration area S. We can then study 

the effect of layer number on the homogenization results. It is shown in [P3] 

that at lower frequencies the effective permittivity is larger than the static 

Lord Rayleigh estimate, and will gradually converge to this estimate when the 

slab consists of more and more layers. This point, illustrated by Fig. 8 in [P3], 

implies that a sufficient amount of layers is required for the slab to behave as 

a bulk material.  

Alternatively, one can carry out the integration over each layer of the slab in 

order to investigate the electrical properties of individual layer. It turns out 

that the outermost boundary layers exhibit larger electrical responses than all 

the other inner layers, whose effective permittivities are roughly identical and 

converge to the static Lord Rayleigh estimate at lower frequencies. This point 

suggests that the IBM-model in Fig. 10(a) could be another reasonable homo-

genization model for the composite slab illuminated by a normally incident 

plane wave. It also explains the difference between the effective permittivity 

and the static Lord Rayleigh estimate at lower frequencies when the homoge-

neous model is applied. Fig. 9 in [P3] clearly illustrates these points.   

Moreover, the anisotropy of the slab or individual layer can be studied when 

an obliquely incident plane wave is considered. In this case, we can integrate 

different components of the electric and the corresponding displacement 

fields over the area S of interest. For instance, one can analyze the anisotropy 

of the outermost boundary layer, i.e., εbx and εby in Fig. 10(b), by letting the 

subscript i in Eq. (36) be x and y, respectively. 

In general, the field averaging method is of significance since it not only 

gives us motivation and evidence to apply more complicated homogenization 

models, i.e., the A-, the IBL-, and the ABL-models, but also provides a good 

comparison for the retrieval results based on the S-parameters. Fig. 11 in [P3] 

illustrates such a comparison between two homogenization methods for a 

class of 3D dielectric composites illuminated by a normally incident plane 

wave. The results are consistent with those discussed in the following subsec-

tion 4.2 of this thesis. 
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3.4 Dispersion diagram method [P2] 
 

When an infinite simple square (or cubic in 3D) lattice with the same unit cell 

as shown in Fig. 3 is considered, it is impossible to determine the effective 

permittivity based on the S-parameters. Meanwhile, it is not easy to numeri-

cally implement the field averaging method since a proper electromagnetic 

excitation is not readily available.   

Suppose that the effective refractive index n of such a structure can be de-

fined, the frequency dependence of n can be addressed as long as the ka–βa 

dispersion diagram is obtained, given that the effective wave number β is re-

lated to the free space wave number k by β = kn. Here, a is the edge length of 

the unit cell. By the nonmagnetic assumption μeff = 1, one can then determine 

the effective permittivity, i.e., εeff = (β/k)2.  

For an infinite lattice composed of nonmagnetic materials, the following ei-

genfunction equation can be derived from Maxwell equations [5], and it reads 

 
2

2

1
( ) ( ),

( )

ω

ε c
⎡ ⎤∇× ∇× =⎢ ⎥
⎣ ⎦

H Hr r
r

 (37) 

where H(r) denotes the spatial field pattern of the harmonic mode, c is the 

free space light speed, ω represents the eigenfrequency and r denotes a point 

inside the unit cell. Only the TEM mode H(r) = H0 e–jβa needs to be consi-

dered here. Then according to Eq. (37), under a certain propagation direction, 

the eigenfrequencies ω (or k·c) can be solved by giving different phase shifts 

βa. The desired ka–βa dispersion diagram can thus be generated.  

In practice, one can conveniently generate the desired dispersion diagram 

for the aforementioned infinite simple square lattice using the commercial 

full wave simulators. In CST MWS, for example, the lattice can be realized by 

assigning the periodic boundary condition to its unit cell’s boundaries in the 

±x- and ±y-directions. A certain propagation direction can thus be speci-

fied by systematically varying two phase shifts βxa and βya between the peri-

odic boundary pairs in the x- and y-directions. Then one can use the CST Ei-

genmode solver to calculate the corresponding eigenfrequencies for different 

modes. Moreover, the computed field pattern is utilized to identify the direc-

tion of the retrieved εeff. Although this method targets the infinite simple 

square (or cubic) lattice, it still offers a good reference for the dispersion of 

the effective permittivity of the composite slab of our interest. The compari-

son between the dispersion diagram method and the S-parameter retrieval is 

illustrated by Figs. 7–10 in [P2]. 
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4. Explorations based on homogeni-
zation results   

 
 
In this chapter, we apply the homogenization techniques developed in the 

previous chapters to explore several important issues related to the quasi-

dynamic homogenization. Firstly, the so-called quasi-static limit for the 

benchmark geometry is quantitatively investigated by defining a certain satis-

factory accuracy [P2, P5]. Secondly, the performance of different homogeni-

zation models under oblique incidence is evaluated based on a model evalua-

tion process (MEP) [58].  

On the other hand, the dynamic evolution of electromagnetic waves in a 

dispersive dielectric composite is of practical importance since it could model 

many realistic propagation problems. Suppose that the space is filled with a 

certain dielectric composite that can effectively be described as a homogene-

ous isotropic medium. Then the temporal evolution of an electromagnetic 

pulse in this composite can be calculated with the aid of Fast Fourier Trans-

form (FFT), once the dispersion of the effective permittivity of the composite 

is determined [P6, P7]. 

 

 

4.1 Upper frequency limit of the Quasi-static estimate [P2, P5] 
 

As shown in Fig. 8, when the frequency grows, the dispersive εeff grows mono-

tonically and deviates from the (quasi-)static Lord Rayleigh estimate, which 

implies that the accuracy of the quasi-static estimate describing the electric 

response of the composite slab in Fig. 3 becomes worse. It is, therefore, im-

portant to find the dynamic trust region of the quasi-static estimate for the 

considered slabs. In other words, we need to locate the upper frequency limit 

of this dynamic trust region. Hence, a proper criterion or satisfactory accura-

cy has to be defined in order to quantitatively determine such a limiting fre-

quency. Moreover, it is important to identify the dependence of the limiting 

frequency on the properties of the composite slab, i.e., the permittivity εi and 

the filling fraction p of the inclusions. 

To quantify this problem, we specify the procedure as follows: 

• Define the limiting frequency fL, at which (εeff–εRay)/εRay is 

equal to a predefined satisfactory tolerance; 

• Collect sufficient simulated S-parameters form the composite 

slabs with varying εi and p; 
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• Retrieve the dispersive effective permittivities by the BSCM for 

each combination of εi and p; 

• Design an interpolation function F1 of frequency for the re-

trieved effective permittivity, and fit the coefficients of F1 for 

each combination of εi and p. Note: the coefficients of F1 are 

functions of εi and p; 

• Design interpolation functions F2 and F3 for the coefficients of 

F1, and fit the corresponding coefficients of F2 and F3, respec-

tively. Thus, the fitted F1, whose coefficients are expressed as 

the fitted F2 and F3, can reveal the dependence of fL on εi and p. 

 

Following the above procedure, we first define the relative difference be-

tween εRay and the retrieved εeff as (εeff–εRay)/εRay, and choose a 1% relative 

difference as the satisfactory tolerance. We further define the limiting fre-

quency meeting this criterion as fL, and thus the normalized upper frequency 

limit is denoted as fL/f20. Below this limit, the largest relative deviation 

Δε/εRay among the retrieved εeff at various θ0 is also less than the 1% toler-

ance, as shown in Fig. 8. Spatial dispersion can thus be neglected. We will 

hereafter express fL/f20 as a function of the inclusion area fraction p and rela-

tive permittivity εi. 

To build the desired function, we need to repeat the full wave simulation 

and the retrieval by the BSCM for different p and εi to collect sufficient data 

for the fitting purpose. In particular, we choose εi = 10, 20, 30, and 60, and 

for each εi, 9 samples from 0.1 to 0.5 are assigned to p. Only the normal inci-

dence needs to be considered since it leads to the largest deviation from εRay. 

Thus, we have 36 sets of data points for the dispersive εeff(f/f20). 

Then, we construct the interpolation function for εeff by adding a higher-

order correction term to the static one, and it reads 

 ( ) ( )= + ⋅
2

eff 20 0 2 20 ,ε f f α α f f  (38) 

where α0 represents the static term (and can be assumed to follow the Lord 

Rayleigh formula), while the quadratic term denotes the electric quadrupole 

and the magnetic dipole corrections [69]. Since we are close to the quasi-

static limit, higher-order multipole interactions can be neglected. The coeffi-

cients α0 and α2 are then determined using the MATLAB curve fitting tool 

[70]. We thus have 36 data points for each coefficient in Eq. (38).  

Next, we proceed to build interpolation functions of p and εi for the coeffi-

cients α0 and α2, respectively. For α0, we use a function α0’ based on the Lord 

Rayleigh formula, which reads 

 0 1 1 1 4 8
2 i i 3 i i 4 5

.
( 1)( 1) ( 1)( 1) ( )

p
α b

b ε ε b p ε ε b p b p− −
′ = +

+ − − − − + +
 (39) 

For α2, we choose a polynomial function (α2’) of p and εi, because better fit-
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ting functions, whose constituent terms have obvious physical interpreta-

tions, are not readily available, and it reads 

2 2 3 2 2
2 00 10 01 i 20 11 i 02 i 30 21 i 12 i .α q q p q ε q p q pε q ε q p q p ε q pε′ = + + + + + + + +  (40) 

The MATLAB surface fitting tool is then applied to optimize the coefficients 

of these fitting functions (Eq. (39) and Eq. (40)) in a least square sense. 

We then accomplish the interpolation function to approximate the disper-

sive εeff of the composite slab with 0.1 < p < 0.5 and 10 < εi < 60, which reads 

 ( ) ( )2

eff 20 i 0 2 20,  ,  ,ε f f p ε α α f f′ ′= + ⋅  (41) 

where α0’ and α2’ are functions of p and εi. Let us now consider the limit 

fL/f20. Together with the defined 1% tolerance and Eq. (41), we have 

 
′−

=
′

Ray 0L

20 2

1.01
.

ε αf

f α
 (42) 

Finally, Eq. (42) is the established interpolation function to analyze the fL/f20 

for the considered composite slabs with the applicable range of 0.1 < p < 0.5 

and 10 < εi < 60. The relevant results can be found in [P5]. 

 

 

4.2 Homogenization model evaluation 
 

If a homogenization model is applied to describe the electromagnetic (EM) 

properties of the composite, the quality of the model should not vary with the 

observation angles of the EM fields. Thus, it is crucial to examine its validity 

by evaluating the performance of the model at different incident angles of an 

incoming plane wave.  

To this purpose, there are two schemes. One is to first analytically calculate 

the S-parameters at different incident angles θ0 for the model with the para-

meters resolved at normal incidence. By comparing at various θ0 the differ-

ences between the above calculated S-parameters and those from the full 

wave simulation, the angle dependence of the model performance can be stu-

died. The other one is to check whether the retrieved model parameters de-

pend on the incident angle θ0. It requires the retrieval methods taking into 

account the off-normal incident cases. 

In Chapter 3, four homogenization models were applied to describe the ef-

fective permittivity of the composite slab of our interest. The dependence of 

the parameters of these models on the incident angle will be investigated in 

this subsection. 

For two isotropic models, i.e., H- and IBL-models, the unknown model pa-

rameters are first retrieved at the normal incidence. The S-parameters at dif-

ferent θ0 are then calculated by the FPMM for these two derived models, and 

compared with corresponding simulated results from CST MWS. If the dif- 
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Figure 14 Flow chart as the skeleton of this subsection where AD and AID are short 
for angle dependent and angle independent. The process in dashed box is the model 
evaluation process (MEP), which includes the S-parameters computation for a derived 
model and the comparison with the S-parameters by the full wave simulator (CST 
MWS). Since the retrieved angle-dependent parameters of the IBL-model display an 
unphysical low-frequency divergence, it is absent from the final comparison hig-
hlighted by the red box. The model abbreviations are explained in Chapter 3. 

 

 

ference between the calculated S-parameters by FPMM and those from simu-

lation is roughly independent of the incident angle, the model turns out to be 

sufficient to describe the composite slab. Otherwise, angle-dependent model 

parameters will be computed based on the S-parameters (see section 3.2). 

On the other hand, several attempts are made to find angle-independent 

parameters for two anisotropic models, i.e., the A- and ABL-models. If such 

efforts fail, the angle-dependent parameters of these models will be calculated 

based on the S-parameters (see section 3.2). Fig. 14 visualizes the whole mod-

el evaluation procedure as a flow chart. In addition, we define a model eval-

uation process (MEP), which includes three steps: first, the S-parameters for 

the model with derived parameters are calculated using the FPMM; second, 

the difference between the above calculated S-parameters with those by the 

full wave simulator is computed; third, the dependence of the computed dif-

ference on the incident angle is evaluated. In this subsection, a 5-layer com-

posite slab with p = 0.3, εi = 10, and εe = 1 is considered. 

 

4.2.1 H-model and IBL-model 

 

The permittivity of the H-model under normal incidence εeff(θ0 = 0°) is first 

retrieved by Eq. (22). Suppose that the model parameters are independent of 
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θ0, the S-parameters from this H-model with εeff(θ0 = 0°) can respectively be 

calculated using the FPMM when the incident TMxy-polarized plane wave 

illuminates the slab with θ0 = 0°, 30°, and 60°, and thus compared with the 

simulated S-parameters. For convenience, we define the S-parameter differ-

ence as the sum of the amplitudes of the S11 difference and the S21 difference, 

i.e., |ΔS11|+|ΔS21|. Such differences, when θ0 respectively equals 0°, 30°, and 

60°, are visualized with the red dashed lines in Fig. 15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 The S-parameter differences for the H- and the IBL-models with parameters 
retrieved at normal incidence for (a) θ0 = 0°; (b) θ0 = 30°; and (c) θ0 = 60°. 
 

 

For the IBL-model, we first use the 2-layer method (see subsection 3.2.4) 

and Eq. (29)–Eq. (35) to determine εb(θ0=0°) and εm(θ0=0°) under normal 

incidence (see Fig. 12 for retrieval results). Similarly to the H-model, the dif-

ferences ‘|ΔS11| + |ΔS21|’ are calculated for θ0 = 0°, 30°, and 60°, and imple-

mented into Fig. 15. 

It is clear that the performances of both the H-model with εeff(θ0=0°) and 

the IBL-model with εb(θ0=0°) and εm(θ0=0°) deteriorate with increasing θ0, 

which implies the angle-dependence of the parameters of both models. More-

over for an arbitrary θ0, the IBL-model with parameters retrieved at normal 

incidence fails to display any superiority over the H-model with εeff(θ0=0°). 

Even for normal incidence these two models exhibit the same-level perfor-

mance although the IBL-model seems physically more reasonable. These un-
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expected phenomena, consistent with the results by the field averaging me-

thod in [P3], could result from the imprecision of the 2-layer method, and the 

compensation method aiming at restoring physically sound medium parame-

ters at the cost of inaccurate reproduction of the S-parameters. 

Therefore, the angle-dependent parameters are developed for both models. 

For the H-model, we applied Eq. (22) for different θ0 to get εeff(θ0); for the 

IBL-model, the 2-layer method and Eq. (29)–Eq. (35) are adopted to deter-

mine the angle-dependent εb(θ0) and εm(θ0). The results are visualized in Fig. 

8 and Fig. 12, respectively. For both models, angular dispersion becomes 

gradually visible as the frequency increases. Moreover, the IBL-model is 

shown to be insufficient to describe the composite slab under oblique inci-

dence, due to the unphysical low-frequency divergence, shown in Fig. 12. 

 

4.2.2 A-model [P4] 

 

A straightforward way to determine the parameters of the A-model is to com-

pute the x- and y-components of the permittivity εx and εy by Eq. (28). The 

retrieval results, however, suffer severely from the FPRs and display unphysi-

cal behavior, as shown in Fig. 9. Then, we need another way to settle εx and εy. 

At normal incidence, the A-model will reduce to the H-model, leading to that 

εy equals εeff(θ0=0°). Assuming that the model parameters are angle indepen-

dent, εy will then be fixed as εeff(θ0=0°), and εx can be calculated using Eq. 

(28) for different θ0. Fig. 16 shows that the retrieved εx not only decreases as 

the frequency grows, but displays dependence on θ0. Therefore, the angle 

dependence has to be introduced to both εx and εy.  

As described in subsection 3.2.3, a closer examination on Eq. (22) and Eq. 

(28) reveals that εeff and εy are actually identical before the compensation, 

which makes it a good approximation to let εy(θ0) equal to the compensated 

angle-dependent εeff(θ0) of the H-model. We can then solve εx by Eq. (28). 

Fig. 9 visualizes the frequency-dependent εx and εy retrieved at different θ0. 

At low frequencies, εx and εy curves converge to two different values, one of 

which (εy) is larger than the Lord Rayleigh estimate while the other (εx) is 

smaller. As the frequency grows, the angle dependence of εx and εy becomes 

more and more visible, indicating that the anisotropy cannot effectively de-

scribe spatial dispersion. 

 

4.2.3 ABL-model 

 

The first attempt is to determine the parameters of the ABL-model on the 

basis of the IBL-model, since under normal incidence these two models are 

equivalent. Similarly to Fig. 16, the retrieved εbx decreases with growing fre-

quency and is dependent on the incident angle. Alternatively, we can fix εm of 
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Figure 16 Retrieved εx of the A-model for various incident angles when εy is fixed as 
εeff(θ0=0). The subscript x, y, numerals denote the x-direction, y-direction and the inci-
dent angles. 
 

 

the ABL-model as εm(θ0=0°) of the IBL-model, and then retrieve εbx and εby 

numerically for different θ0. The retrieved results are, however, severely in-

fluenced by the FPRs. 

As discussed in subsection 3.2.4, we can instead resolve εbx and εby at a cer-

tain θ0 by computing εx and εy of the A-model for a 2-layer slab at the same θ0. 

Given the εbx and εby determined by the 2-layer method, we can then numeri-

cally solve εm(θ0) using Eq. (29)–Eq. (35). The acquired permittivities are 

visualized in Fig. 13. 

It is important to notice from Fig. 13 that due to the anisotropic boundary 

layers instead of the isotropic ones, all the retrieved εm curves converge and 

gradually approach the static Rayleigh estimate at low frequencies. The com-

parison between the retrieved εm for different θ0 in Figs. 12 and 13 shows that 

the separated boundary layers should be anisotropic, when the stratified ho-

mogenization model is applied to describe the composite slab of our interest 

under oblique incidence. Also, angular dispersion appears as the frequency 

grows. It is finally noted that angular dispersion in the ABL-model is slightly 

smaller than those of the H-model and the A-model. 

 

4.2.4 Necessity of the additional boundary layers and the  

 anisotropy 

 

In order to assess the necessity of the anisotropy and the boundary layers, the 

MEP can be conducted at different θ0 for the three models (the H-, A-, and 

ABL-ones) with the derived angle-dependent parameters, as shown in Figs. 8,  
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Figure 17 The S-parameter differences for the three proposed models with angle-
dependent parameters. Dashed-black curve: H-model; red-circular markers: A-model; 
solid-blue curve: ABL-model. (a) θ0 = 30°; (b) θ0 = 60°. 
 

 

9, and 13, respectively. The IBL-model is not taken into account since the 

retrieved angle-dependent model parameters exhibit an unreasonable beha-

vior, i.e., the low frequency divergence of the retrieved εm shown in Fig. 12. 

Several interesting phenomena can be observed in Fig. 17. Firstly, the com-

parison between the H- and the A-models with angle-dependent parameters 

shows that the anisotropy alone does not bring in any improvement. There-

fore, it is clear that neither the isotropic boundary layer nor the anisotropy 

alone is sufficient to improve the model performance. However, the ABL-

model clearly overwhelms the H- and A-models, which demonstrates that the 

boundary layers need to be anisotropic if the stratified homogenization model 

is applied. 

Secondly, all these three models, despite angle-dependent parameters, pro-

duce larger errors with increasing θ0. This phenomenon could arise from the 

finite number of the layers composing the slab in the x-direction. As θ0 in-

creases, the electrical response in the x-direction will gradually dominate. 

However, only five layers of unit cells exist in this direction. This fact prevents 

the slab from being homogenized properly. The deterioration of the model 

performance could therefore be expected for a large θ0.  

Thirdly, the compensation method (Eq. (22)) aims at restoring physically 

sound dispersive permittivities for the dielectric slabs. Inevitably, it brings 

into the system some error measured by |ΔS11|+|ΔS21|. For instance, if the S-

parameters are in turn calculated from the H- and the A-models with derived 

angle-dependent parameters, the errors will be included in z’. On the other 

hand, n’ are not influenced, and they are identical for two models. From Eq. 

(23) and Eq. (24), it is found that z’= n’(εeffcosθ0)–1 for the H-model and z’= 

n’(εycosθ0)–1 for the A-model. The z’ are then identical since we assume εy(θ0) 

= εeff(θ0). It can hence be expected that when equipped with angle-dependent 

parameters, the A-model and the H-model are of the same quality.  

Finally, in spite of the extra complexities introduced into the H-model, an-
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gular dispersion as the main obstacle to a proper homogenization is not ob-

viously diminished. This pessimistic result indicates that it may be unneces-

sary to introduce more complicated models than the homogeneous one. This 

point could also be seen from Fig. 17 that for higher frequencies (f/f20 > 3.5) it 

is difficult to judge which model is superior to others. In addition, it may sug-

gest that other complexities, such as magneto-electric effect, could be worth 

to investigate. 

 

 
4.3 Transient waveform analysis in dispersive dielectric media 

[P6, P7] 
 

Another important dispersion-modeling-based application is the analysis of 

temporal dynamics of electromagnetic pulses propagating in dispersive di-

electric (composite) media. Most of time- or frequency-domain analyses aim-

ing at this topic require a priori knowledge of the dispersion of the electrical 

properties of the media. In this subsection and [P6, P7], a straightforward 

frequency domain method is introduced. Based on this method, the transient 

waveform of a propagating pulse in a dielectric (composite) medium can be 

studied as long as the dispersion of the medium is known. In [P6], we studied 

temporal dynamics of different Gaussian pulses in dielectric (composite) me-

dia whose dispersions follow the Lorentz model (see Chapter 2). In [P7], dy-

namic evolution of Gaussian pulses inside aqueous mixtures (assumed to 

display the Debye-type dispersion) is discussed. Moreover, in this subsection, 

the presence of Sommerfeld precursor [71] and Brillouin precursor [72, 73] in 

dynamic evolution of a launched pulse is discussed when the dispersion of the 

medium is characterized by the Lorentz, the Debye, and the Fröhlich models, 

respectively.  

The propagation of electromagnetic pulses in dispersive dielectric (compo-

site) media can analytically be studied by the asymptotic method of steepest 

descent [74–80]. Numerically, this problem can be dealt with Fast Fourier 

Transform (FFT). For the initial temporal signal f(t), its frequency spectrum 

F(ω) can be calculated by Fourier Transform. When the signal propagates in a 

medium, whose relative (effective) permittivity reads ε(ω), for a distance z, 

the propagated spectrum can be formulated as F(ω)exp(–jk1z), where the 

effective wave number k1 inside the medium is defined by k12 = ω2c–2ε. By 

Inverse Fourier Transform, the transient waveform of the signal f(t,z) can be 

determined. With the aid of FFT, the above algorithm can be readily imple-

mented. Therefore, once the dispersion of the (effective) permittivity of the 

dielectric (composite) medium is modeled, the temporal pulse evolution in-

side it can be solved numerically. One may notice that in [P6, P7] a parameter 

θ (= ct/z) is widely applied instead of the time t to illustrate the transient 
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waveform of a launched pulse. This dimensionless parameter θ is more con-

venient to indicate the velocities of different components of a propagating 

pulse train [80]. For instance, Sommerfeld precursor should appear exactly at 

θ = 1 since it propagates at c, i.e., speed of light in vacuum. 

When the pulse penetrates deep into a dispersive dielectric medium, its dy-

namic evolution may be dominated by the precursor fields [81–84]. Besides 

the modulated waveform of the pulse, it is the high-frequency and the low-

frequency absorptions of the medium that decide the presence of Sommerfeld 

precursor and Brillouin precursor in the dynamic evolution. Several characte-

ristic parameters, defined to measure the absorption properties of the Lo-

rentz, the Debye, and the Fröhlich models, are listed in Table 1. 

 

Table 1 Values of characteristic parameters when ω→+∞ and ω→0.  

 ω ε’’(ω) κ(ω) kI(ω) Sommerfeld Brillouin 

Debye 

Model 

+∞ ω–1 ω–1 −
∞

–1 1/2(2 ) ( ) Δτc ε ε  No  

0 0 0 0  Yes 

Lorentz 

Model 

+∞ ω–3 ω–3 ω–2 Yes  

0 0 0 0  Yes 

Fröhlich 

Model 

+∞ ω–1 ω–1 −
∞

–1 1/2(2 ) ( ) Δτc ε ε  No  

0 0 0 0  Yes 

 

 

In Table 1, ε’’(ω) is the imaginary part of the relative permittivity, κ(ω) de-

notes the imaginary part of the refractive index, and kI(ω) represents the im-

aginary part of the wavenumber. It is shown that the high frequency compo-

nents of the input field suffer non-negligible attenuations in Debye-type and 

Fröhlich-type media, while Lorentz-type media is almost transparent for 

them. Therefore, the high frequency Sommerfeld precursor only appears 

when the pulse propagates in a medium with Lorentz-type dispersion. On the 

other hand, the low frequency Brillouin precursor can be observed in media 

with all the three types of dispersion. It should be mentioned that there is a 

physical inconsistency in the Debye model when it is applied to approximate 

the dispersive dielectric property of water. The Debye model predicts that 

water remains opaque at frequencies much higher than the relaxation fre-

quency. This contradicts the simple fact that water is transparent in the visi-

ble range. Therefore, the Debye model overestimates the attenuation of water 

for frequencies much higher than the relaxation one. Caution should then be 

paid when one studies the presence of Sommerfeld precursor for a pulse 

penetrating into water using the Debye model. 

Finally, Brillouin precursor is of practical importance since it decays alge-
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braically instead of exponentially in a dissipative (composite) medium. One 

can take the aqueous mixture as an example. In [P7], they are modeled as the 

Debye raisin mixtures, and thus their dispersive effective permittivities could 

be approximated by the Maxwell Garnett mixing formula and the Debye 

model, as discussed in Chapter 2. The algebraic attenuation of the Brillouin 

precursor in the aqueous mixtures with modeled effective permittivities is 

then confirmed by the FFT. All the relevant results can be found in [P6, P7].  
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5. Summary of the publications 
 
 
P1: Dispersion of the dielectric Fröhlich model and mixtures 

The motivation behind this paper is the following. In order to accurately 

represent the permittivity of pure water over 0–25 THz and within 0–100°C, 

Ellison constructed an interpolation function by adding two resonance terms 

to the classical Debye model. These two terms represent two far-infrared mo-

lecular resonances of the water, and take the form of the Fröhlich model [85]. 

Unlike the Debye model and the Lorentz model, the Fröhlich one is not wide-

ly applied and its dispersion mechanism has not been clearly elucidated. 

Hence, this paper studies the distinctive dispersion mechanism, and that of 

the so-called Fröhlich raisin mixture based on the Maxwell Garnett mixing 

formula. 

The dispersion of the Fröhlich model is shown to be a transition mechanism 

from the Debye-type relaxation process to the Lorentz-type resonance 

process when the characteristic parameters ω0τ increases from zero. In order 

to distinguish this process from the pure Debye and the pure Lorentz ones, 

the Fröhlich model is interpreted as a combination of a shifted passive Debye-

type, a shifted active Debye-type and a Lorentz-type dispersions, i.e., Eq. (3) 

in [P1]. 

It is also shown based on the Maxwell Garnett mixing rule that the Fröhlich 

raisin mixture does not retain the same dispersion as its inclusions. Depend-

ing on the inclusion volume fraction, the dispersion mechanism may display 

the DDTD or the LDDD. The limiting volume fraction separating these two 

dispersion types is defined as fb, which increases as the permittivity contrast 

εi/εe grows. Admittedly, two issues limit the practical application of the re-

sults regarding the mixtures. Firstly, the volume fraction cannot to extremely 

large since the Mixing Garnett rule neglects the inclusion interactions. Se-

condly, to ensure the validity of the defined effective permittivity, we should 

stay close to the quasi-static limit, which may in turn considerably constrain 

the inclusion dimension if a strong dispersion is encountered. 

 

P2: Quasi-dynamic homogenization of geometrically simple di- 

 electric composites 

This paper discusses the quasi-dynamic homogenization of dielectric compo-

sites when the electrical properties in particular directions are interested. 

Two types of composites with simple geometries are effectively treated as 

homogeneous media. Both composites contain the same unit cell made of a 

dielectric spherical inclusion centered in a dielectric cubic box. For the com-
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posite with finite thickness, four retrieval methods based on the S-parameters 

are applied to resolve the dispersion of its transversal effective permittivity 

when the composite is illuminated by a normally incident plane wave. For the 

infinite simple cubic lattice, the dispersive effective permittivity is computed 

based on the dispersion diagram. Both the S-parameters and the dispersion 

diagram are generated in the full wave simulator CST MWS. It is shown that 

since the unit cell size does not strictly satisfy the long-wavelength restriction, 

the retrieval results from both S-parameters display unphysical behaviors. In 

order to effectively eliminate the broadband influence of the FPR as well as to 

restore physically reasonable medium parameters, a compensation method is 

introduced based on the nonmagnetic assumption. Also, the results by only 

S21 and by the EWM reveal similar dispersions as the compensated results, 

while the S11 method turns out to be unstable. On the other hand, by the dis-

persion diagram, the εeff of the lattice along the edge, the surface diagonal, 

and the volume diagonal of the unit cell are studied. The εeff along the unit 

cell edge is shown to agree well with the transversal εeff of the composite slab. 

Based on the retrieved transversal εeff, the upper frequency limit fL/f20 of the 

quasi-static estimate (the static Lord Rayleigh result εRay) for the considered 

composites is defined by imposing a satisfactory tolerance, which reads | εRay 

– εRay | / εRay < 1%. However, the computational complexity of the 3D simula-

tion prevents us from any exhaustive parametric analyses on fL/f20 for differ-

ent p and εi. Instead, a one-dimensional lattice is considered to cast a light to 

the dependence of fL/f20 on p and εi.  

 

P3: Homogenization of thin dielectric composite slabs: tech- 

 niques and limitations 

As the parallel work of [P2], the same composite slab with finite thickness as 

in [P2] is considered. Only the transversal effective permittivity is of interest. 

Two homogenization techniques, one from outside (S-parameter retrieval and 

homogeneous model) and the other one from inside (field averaging method 

and the boundary transition layer model), are compared when a plane wave is 

normally incident on the slab. It is demonstrated that the field averaging re-

sults agree well with those by the S-parameter retrieval and the compensation 

method. But both methods produce roughly the same level errors measured 

by the S-parameters.  

In addition, the field averaging method leads to the following observations. 

Firstly, at low frequency, the effective permittivity εeff of the whole slab is 

slightly larger than the static Lord Rayleigh estimate εRay, and grows with the 

increase of the frequency. Secondly, the more layers the slab contains, the 

closer εeff approaches εRay. Thirdly, the outermost boundary layers display 

larger electrical response than all the other inner layers, whose permittivities 

are identical. Finally, the permittivities of the boundary layers and the inner 
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layers do not dramatically vary with the number of layers composing the slab. 

These results motivate us to apply the stratified model to describe the compo-

sites slab, and inspire the 2-layer method discussed in subsection 3.2.4. They 

also imply that enough number of layers is a necessary condition so that the 

slab could be treated as a homogeneous medium.  

 

P4: Compensation of Fabry–Pérot resonances in homogeniza-

tion of dielectric composites 

This letter focuses on how to eliminate the broadband influence of the FPRs 

on the effective permittivities or its different components when lossless or 

low-loss composite slabs are homogenized as a homogeneous isotropic model 

or an anisotropic one. In addition, the retrieval methods based on S-

parameters for both models, when a plane wave is obliquely incident on the 

slab, are derived. Two compensation methods are presented for different 

models, and are capable of restoring physically reasonable dispersion of the 

permittivities. The errors due to the compensation are then shown to increase 

with growing frequency, which restricts the applicable frequency range of the 

proposed compensation methods. 

 

P5: Different homogenization methods based on scattering pa- 

 rameters of dielectric-composite slabs 

This paper generalizes the results in [P2]. The dispersion of the effective 

permittivity of a 2D dielectric-composite slab is analyzed in a quasi-dynamic 

range using the simulated transmission and reflection data from the slab il-

luminated by an obliquely incident plane wave. The BSCM, the S11 method, 

the S21 method, and the EWM are generalized into oblique incidence. The 

BSCM turns out to be the most stable method, while the robustness of other 

methods depends on the incident angle of the illuminating plane wave. 

Based on the retrieval results, the procedure for finding the dynamic trust 

region of the quasi-static Lord Rayleigh estimate for the effective permittivi-

ties of such composites is then developed. According to this process, the up-

per frequency limit fL/f20 of this trust region is more rigorously defined, com-

pared with [P2], by taking angular dispersion into account. The fL/f20 is nu-

merically determined by an interpolation function. The proposed function of 

the inclusion area fraction p and relative permittivity εi
 
is demonstrated as a 

good predictor within the ranges 0.1 ≤ p ≤ 0.5 and 10 ≤ εi ≤ 60. It is further 

shown that within the above ranges the effective wavelength inside the ma-

terial should be at least 33 times the edge length of the unit cell, in order to 

ensure that the defined relative difference between the retrieved effective 

permittivity and the quasi-static estimate is not larger than 1%.  
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P6: Truncation effect on precursor field structure of pulse prop- 

 agation in dispersive media 

In this paper, the dynamic evolutions of different Gaussian pulses in the dis-

persive Lorentz medium are analyzed by Fast Fourier Transform (FFT). The 

transient waveform of a full-Gaussian-modulated pulse for different penetra-

tion depth is first visualized. The decaying rates of different components of 

the pulse sequence are used to identify the precursors. It is shown that Som-

merfeld precursor is absent in the temporal pulse dynamics, and that the Bril-

louin effect appears as a tail rather than a precursor. 

Then, the truncated Gaussian pulses at different zero-crossing points are 

launched into the same Lorentz medium. It is shown that depending on the 

turn-on point, the Brillouin effect can be separated into a tail and a forerun-

ner. In addition, an artificial Sommerfeld precursor due to the computation 

precision is pointed out. 

 

P7: Evolution of the time-domain structure of electromagnetic  

 pulse propagating in aqueous mixtures 

The temporal dynamics of a Gaussian-modulated sinusoidal pulse in pure 

water and a class of conceivable aqueous mixtures is analyzed in this paper by 

FFT. The absence of Sommerfeld precursor in the dynamic pulse evolution is 

numerically demonstrated, and theoretically interpreted by the non-

negligible high-frequency attenuation properties of the modeled materials. In 

addition, the algebraic decaying property of Brillouin precursor is numerical-

ly confirmed. 

In this paper, Ellison’s interpolation function [85] is applied to characterize 

the electric properties of pure water; and those of the aqueous mixtures are 

approximated by further employing Maxwell Garnett mixing formula. Based 

on the volume-fraction-dependent decaying property of the pulse propagating 

in aqueous mixtures, a method to detect water content of moisture sub-

stances is theoretically suggested. 
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Errata 
 
 
In [P1], Eq. (8) should read 
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