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1. Introduction

In this dissertation I study the nonlinear reaction diffusion equation




ut = ∆u+ f(u), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.
(1.1)

To avoid unnecessary difficulties, let us assume for now that the initial

function u0 belongs to C1(Ω) and that Ω is either an open domain in RN

with smooth boundary or the whole space RN with N ≥ 1. In the case of

bounded Ω we will assume Dirichlet boundary condition throughout the

current treatise.

Equation (1.1) is a semilinear example of more general reaction-diffusion

equations, where, instead of the Laplace operator, any second-order ellip-

tic operator can be used and the function f may also depend of x, t and

the derivatives of u. There exists an extensive theory for the existence and

uniqueness of solutions of these general types of equations; therefore, the

behavior of the solutions of (1.1) is also well understood, at least locally

in time. The problem is known to be well posed in many Lebesgue spaces

Lq(Ω), by assuming, say, that the nonlinearity is a Lipschitz continuous

function, and so a unique classical solution of (1.1) is known to exist for

t ∈ (0, T (u0)) with some maximal existence time T (u0) > 0; see [49], [57].

On the other hand, the above equation is a simple nonlinear version of

the fundamental linear parabolic equation ut = ∆u. The behavior of the

solutions of this basic equation is well understood - they exist for every

t > 0 and converge to zero as time tends to infinity, under rather weak

assumptions on the initial data. However, whether the maximal exis-

tence time T (u0) of the nonlinear counterpart (1.1) is finite or infinite and

what happens to the solution at t = T (u0) or after that time moment (in

case T (u0) < ∞) can not always be deduced from the classical theory of

parabolic equations. The possibility of an occurrence of a singularity in

some sense at t = T (u0) is one of the most important characteristics of
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Introduction

nonlinear equations.

The formation of singularities that arise from the nonlinear character of

the equation can be understood in an elementary way by considering the

ordinary differential equation

ut = f(u), (1.2)

where the function f is positive and continuous and satisfies
∫ ∞

1

1

f(u)
du <∞. (1.3)

This ordinary differential equation has a unique solution u(t) that tends

to infinity at a certain rate, determined by the nonlinearity, as t tends to

some finite T , depending on the initial data. Even though this example

does not have any spatial structure and it therefore does not seem to be

very interesting as such, the behavior of its solutions is characteristic to

many solutions of the corresponding partial differential equation (1.1).

As will be seen below, there exists a large class of solutions of (1.1) whose

blow-up rate is the same as that of the solutions of (1.2).

Whether a solution of (1.1) is global, i.e., exists for every t > 0, or blows

up at some finite time t = T <∞, meaning that

lim sup
t→T

‖u(·, t)‖∞ =∞,

depends on which part of the equation eventually dominates; the non-

linear reaction f(u) or the diffusion given by the Laplacian. The strength

of the diffusion is affected by the geometry of Ω - the smaller the domain is,

the stronger is the diffusion - so some qualitative properties of the solution

can be formulated in terms of the size of the initial data, the geometry of

Ω and the form of the nonlinearity f . The property of global existence was

studied in [21] and [43], which are considered to be the pioneering works

on blow-up, published in the 60’s by Fujita and Kaplan.

In the paper [21], Fujita considers equation (1.1) with the nonlinearity

f(u) = up and Ω = RN in a seminal way. The main result is that when

p ∈ (1, pF ), then all positive solutions blow-up in finite time, whereas if

p > pF , then all solutions exist globally, presuming the initial data are

small enough. Here pF is an exponent (to be defined in the next section)

depending on the dimension of the space. See [32, 44] for results on the

critical case p = pF . As a motivation for the study of such an equation,

Fujita mentions the simplification of more involved nonlinear parabolic

equations, such as the Navier-Stokes equation, still preserving some of
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Introduction

the most important characteristics, such as the strong interplay between

the spatial dimension and the degree of the nonlinearity. Actually, in

general, the value of the critical exponent pF is affected not only by the

dimension, but also by the geometry of Ω. This kind of interplay between

the geometry of Ω and the strength of the nonlinearity is very distinctive

for nonlinear parabolic equations as a whole.

The nonlinearity

f(u) = eu (1.4)

arising, e.g., from thermal ignition processes, as proposed by Gelfand [26],

was also studied by Fujita in [22], where sufficient conditions on blow-up

either in finite or infinite time were obtained.

Kaplan studied, in [43], equation (1.1) with rather general nonlineari-

ties in bounded domain Ω, assuming only (1.3) and that f is convex. He

proved that then the solutions of (1.1) blow up in finite time, provided that

the initial data is positive and large enough. This result was achieved by

the famous method of multiplying equation (1.1) by the first eigenfunction

of the Laplacian. See also [48], by Levine, for related results.

In this thesis the focus is on the nonlinearity (1.4), although many re-

sults are also valid for

f(u) = u|u|p−1. (1.5)

This is the most frequently studied nonlinearity in the context of blow-up

and it is of course nothing more but the nonlinearity studied by Fujita,

only generalized to non-positive solutions. Even though equation (1.1)

with (1.4) and (1.1) with (1.5) share many properties, there are also some

significant differences. There exist many results that are well known in

the power case, but remain to be proved for the exponential.

One important difference, from the point of view of this treatise, is the

following. Considering equation (1.1) in a ball, if the nonlinearity is the

exponential f(u) = λeu, with N ∈ [3, 9] and suitable λ > 0, then there

exists a family of steady states, which all are saddle points of the system.

This enables one to study solutions connecting two different steady states,

and, in particular, such connections that blow-up in finite time, see [13]

and references therein. However, equation (1.1) with the power nonlin-

earity has exactly one, or none, positive steady state, depending on the

value of p. Therefore, such connections do not exist. The existence of this

type of connecting orbits can be seen as one motivating factor for proving

results for (1.4) in Publication II.
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Another difference, that makes the analysis in some cases more diffi-

cult in the case of the exponential nonlinearity, is the form of the intrinsic

rescaling associated to the problem. In the exponential case, it does not,

for example, preserve positivity. Therefore, the methods used for the non-

linearity (1.5) do not always work when the reaction term is of type (1.4).

In Publication III and Publication IV one cornerstone of the analysis has

been to develop techniques that are applicable to both nonlinearities (1.4)

and (1.5).

In Publication I we consider the properties of certain selfsimilar solu-

tions both for the nonlinearity (1.4) and (1.5). Contrary to the above men-

tioned differences, the theory concerning the selfsimilar solutions, includ-

ing our analysis in Publication I, is almost entirely analogous for both of

the nonlinearities.

Our interest in blow-up phenomena is primarily mathematical. It should,

however, be noted that already in the 1940’s physicists were intrigued

by this phenomenon which occurs, for example, in studies on combustion

theory, in the solid fuel ignition model, and in thermonuclear combustion

in plasma; see [5], [25] and references therein. In addition, many prob-

lems in mathematical biology have been formulated in terms of nonlinear

parabolic partial differential equations - thus, the analysis of these models

falls within the scope of blow-up studies.

In recent years, the study of blow-up has been extended to large classes

of nonlinear parabolic equations and systems - by far bypassing the simple

type of equations considered by Fujita and Kaplan. The studied problems

include, e.g., equations with gradient terms such as the viscous Hamilton-

Jacobi equation, quasilinear equations such as the porous medium equa-

tion, the p-parabolic equation, and different models from mathematical

biology such as the Keller-Segel model describing chemotaxis, see, e.g.,

[25, 42, 57]

In addition, hyperbolic equations, such as the nonlinear wave equation,

and equations of higher order, such as the fourth order Cahn-Hilliard

equation or the thin film equation, have been studied from the point of

view of considering the properties of blow-up solutions; see [12, 41]. In

some of these cases, blow-up signifies singularity formation in some of the

derivatives of the solution.

Considering the large class of equations for which blow-up in finite time

may occur, a natural question is to try to understand the mechanism of

blow-up and the behavior of blow-up solutions in more detail. However, it
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took nearly two decades, after the works of Kaplan and Fujita, for mathe-

maticians to turn their interest into how blow-up takes place. In the mid

80’s a surge of papers on this and related topics appeared, in particular on

the blow-up rate and the profile of solutions, see Friedman, McLeod [20],

Giga, Kohn [27, 28] and Weissler [63, 64]. Following these pioneering pa-

pers, numerous problems regarding blow-up of solutions have been posed

and answered. Typical key questions asked have been whether blow-up

occurs, where it occurs, how it occurs, and what happens after the blow-up

time.

Even though the classical theory of parabolic regularity give satisfactory

results when t < T (u0), it is unable to give any information on solutions

that escape from the space where the problem is well posed. Therefore, it

has been a challenge to develop new methods, which would give insight

into what happens to the solutions after the blow-up time. It may happen,

that a solution blows up completely, meaning that it can not exist after the

blow-up time in any reasonable sense. However, as demonstrated in the

papers [17], [24], [45], [56], solutions exist, which blow-up in finite time,

and become regular, that is, bounded and smooth, immediately after the

blow-up time. At the beginning of the 21st century, rather general solu-

tions of (1.1) with nonlinearities (1.4) and (1.5) were considered in [15],

and it was proved that certain minimal solutions become regular immedi-

ately after blow-up. More recently, the uniqueness of the continuation of

blow-up solutions, solutions with multiple blow-up moments and regulari-

zation of nonminimal solutions have been under active research, just to

mention a few topics.

1.1 Critical exponents and dimensions

Let us first consider equation (1.1) with the nonlinearity (1.5). As already

the results of Fujita imply, the properties of the equation depend strongly

on the strength of the nonlinearity together with the geometry of Ω. Let

us define some of the critical values of the parameters p and N that have

an influence on the characteristics of the equation.

Whether a solution blows up or not, depends on the initial data, and

the competition between the diffusion and the nonlinearity. The strength

of the nonlinearity is determined by p, and the strength of the diffusion

depends on the geometry of Ω. In the case of Ω = RN , this becomes visible
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through the critical exponent defined as

pF =
N + 2

N

and named after Fujita. This exponent divides the p-range in two regions;

p > pF with global solutions and p < pF without global solutions, [21].

The Sobolev critical exponent, defined through

pS =





N+2
N−2 for N > 2,

∞ for N ≤ 2,

draws a line between existence and nonexistence of the useful imbedding

H1(RN ) ⊂ Lp+1(RN ). For p < pS , one can often use functional analytic

tools to attack some of the problems related to blow-up, whereas for p >

pS , one has to use more refined tools, such as intersection comparison.

This leads to placing additional assumptions, such as radial symmetry,

on the solutions. In what follows, the term subcritical refers to the case

p < pS , and supercritical to p > pS .

The so-called Joseph-Lundgren exponent is given by

pJL =




∞ for 3 ≤ N ≤ 10,

1 + 4
N−4−2

√
N−1

for N ≥ 11.

It was found in [40], where the existence of stationary solutions of (1.1),

(1.5) was considered. This exponent is also related to the existence of

so-called selfsimilar solutions.

There is one more exponent that is crucial to our analysis in this trea-

tise. This is the Lepin exponent

pL =




∞ for 1 ≤ N ≤ 10,

1 + 6
N−10 for N > 10.

This exponent, discovered by Lepin in [47], is crucial for the existence of

selfsimilar solutions.

When considering the exponential nonlinearity (1.4), the only parame-

ter is the dimension N , so the situation is at least seemingly more simple.

To find the critical dimensions for the exponential, the nonlinearity (1.4)

is to be compared with the nonlinearity fp(u) = (1 + u/p)p for which the

critical exponents are also pS and pJL, see [40]. The exponential nonlin-

earity corresponds then to the limit limp→∞ fp(u). Therefore, it can for-

mally be argued that the exponent pS corresponds to the critical dimen-

sion N = 2 and the Joseph-Lundgren exponent corresponds to N = 10.

See [10, 40, 60] for results that demonstrate some differences between the
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subcritical case N ≤ 2, the supercritical case N > 3, and the case N > 10

for the exponential nonlinearity.

The structure of the dynamical system described by equation (1.1) is

very different in the sub- and supercritical cases. The existence of steady

states of (1.1), for example, depends on which of these cases we consider.

Also, the behavior of the dynamical system obtained by rescaling, which

determines the asymptotic behavior of many blow-up solutions as the

blow-up moment is approached, is very different in the sub- and super-

critical cases.

In the analysis below, the reader will be made more familiar with these

critical exponents and dimensions and on how they affect the properties

of the equation.
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2. Weak solutions

By standard parabolic theory, the problem (1.1) is well posed in many

Lebesgue spaces, provided f is assumed to be locally Lipschitz continuous.

However, the classical solutions that are described by this theory are in

many cases required to be too regular. The initial data may be too singular

to fall in the space for which the problem is known to be well posed. In

this case, the classical theory is unable to provide a solution.

The situation is the same if a solution blows up and escapes from the

space where the problem is well posed. To that end, one can define a

weaker type of solutions. Solutions of this type may have singular initial

data and may exist also after the blow-up time.

For bounded Ω, we may define a weak solution of (1.1) on [0, T ] to be

a function u ∈ C([0, T ]; L1(Ω)) such that f(u) ∈ L1(QT ), where QT =

Ω× (0, T ) and such that the equality
∫

Ω
[uψ]t2t1 dx−

∫ t2

t1

∫

Ω
uψt dx dt =

∫ t2

t1

∫

Ω
(u∆ψ + f(u)ψ) dx dt

holds for any 0 ≤ t1 < t2 ≤ T and ψ ∈ C2(Q̄T ) verifying ψ = 0 in ∂Ω×[0, T ].

A priori it is not clear whether this or some other definition of a weak

solution would make it possible for a solution to blow-up and still con-

tinue to exist after the blow-up time. However, Ni, Sacks and Tavantzis

considered a weak solution of (1.1), (1.5) with bounded and convex Ω that

is obtained as a limit of an increasing sequence of classical solutions be-

longing to the domain of attraction of the solution u ≡ 0, see [56]. By this

approach they in fact constructed global unbounded weak solutions for

p ≥ pS . But it was left open whether this solution becomes unbounded in

finite or in infinite time. This question was answered, in the case of radi-

ally symmetric solutions in a ball, by Galaktionov and Vázquez in [24], by

using intersection comparison method with suitable backward selfsimilar

solutions. Later this work was completed by Mizoguchi in [54]. The re-
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sults yield that these global unbounded weak solutions blow up in finite

time whenever p > pS .

For the exponential nonlinearity similar results were obtained by Lacey

and Tzanetis in [45], where global unbounded weak solutions were discov-

ered. Then, Fila and Poláčik proved in [17] that radially symmetric global

unbounded weak solutions blow-up in finite time for N ∈ [3, 9].

In the subcritical case with the nonlinearity (1.5), blow-up is always

complete, which means that if a solution blows up in finite time, then no

continuation of u exist beyond the blow-up time, see [1].

The above definition of a weak solution is relatively general, and as the

construction of weak solutions in [56] demonstrates, there is a need for a

more restrictive definition of a weak solution. To that end, let us define

a limit L1-solution of (1.1) to be a weak solution u on [0, T ) that can be

approximated by a sequence {un}∞n=1 of functions, for which un verifies

(1.1) on [0, T ) in the classical sense with initial data u0,n ∈ C(Ω), and is

such that

u0,n → u0 in C(Ω)

and

un → u in L1(Ω) for every t ∈ [0, T ),

f(un)→ f(u) in L1(Ω× (0, t)) for every t ∈ [0, T ).

Moreover, a limit L1-solution is said to be a minimal L1-solution if the

approximating initial data {u0,n}n verifies

0 ≤ u0,1(x) ≤ u0,2(x) ≤ u0,3(x) ≤ . . .

for every x ∈ Ω.

Any limit L1-solution is classical, and therefore unique, as long as the

solution stays bounded. However, uniqueness after the blow-up time is a

priori not given. Thereby, it is an interesting question whether a classical

solution that blows up in finite time can be continued as a weak solution

beyond the blow-up time in more than one way. For a long time this ques-

tion was left open until, in [16], it was proved that the continuation does

not have to be unique. But, even weak solutions do not have to be unique

after the blow-up time, the minimal limit L1-solution is unique.
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Considering equation (1.1) with nonlinearities (1.4) or (1.5), one notices

that the equation exhibits some rescaling properties. Namely, if u is a

solution, then

ua(x, t)

=





2 log(a) + u(x0 + a(x− x0), t0 + a2(t− t0)) for f(u) = eu,

a2/(p−1)u(x0 + a(x− x0), t0 + a2(t− t0)) for f(u) = u|u|p−1

(3.1)

is also a solution for any a > 0 at least locally around (x0, t0), when

(x0, t0) ∈ Ω × (0, T ). This rescaling property is a quality that depends

on the particular form of the equation, and it implies that there exists

a special class of solutions of (1.1) with (1.4) or (1.5), called selfsimilar

solutions.

A solution is said to be selfsimilar around (x0, t0) if it satisfies (1.1) with

(1.4) or (1.5) for (x, t) ∈ RN × (−∞, t0) or (x, t) ∈ RN × (t0,∞) and is in-

variant under the above rescaling, that is, ua(x, t) = u(x, t) for every a > 0

and (x, t) ∈ RN × (−∞, t0) or (x, t) ∈ RN × (t0,∞). After some computa-

tions, one may conclude that in this case u has to be either a backward

selfsimilar solution, defined for x ∈ RN and t < T = t0, satisfying

u−(x− x0, t) =




− log(T − t) + ϕ−

(
x√
T−t

)
for f(u) = eu,

(T − t)−1/(p−1)ϕ−
(

x√
T−t

)
for f(u) = u|u|p−1,

(3.2)

or a forward selfsimilar solution, defined for x ∈ RN and t > T = t0,

verifying

u+(x− x0, t) =




− log(t− T ) + ϕ+

(
x√
t−T

)
for f(u) = eu,

(t− T )−1/(p−1)ϕ+

(
x√
t−T

)
for f(u) = u|u|p−1.

(3.3)

Here 



∆ϕ∓ ∓ y
2∇ϕ∓ +G∓(ϕ∓) = 0,

ϕ∓(0) = α, ∇ϕ∓(0) = 0
(3.4)
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and

G∓(ϕ) =





eϕ ∓ 1 for f(u) = eu,

∓ 1
p−1ϕ+ ϕ|ϕ|p−1 for f(u) = u|u|p−1.

(3.5)

To restrict our attention to such selfsimilar solutions that belong to some

reasonable function space, we assume that either ϕ∓ has to be a constant,

or that the asymptotic conditions

Cα =





lim|y|→∞ (ϕ∓(y) + 2 log |y|) for f(u) = eu,

lim|y|→∞ |y|2/(p−1)ϕ∓(y) for f(u) = u|u|p−1
(3.6)

hold for some constant Cα ∈ R.

In what follows, we use the term backward selfsimilar solution both for

the solutions of the elliptic equation (3.4)-(3.5) with the minus sign satis-

fying the correct asymptotics (3.6), and for the solutions of the parabolic

equation defined through (3.2). Similarly, we slightly abuse the use of the

term forward selfsimilar solution.

When N > 2 and p > N
N−2 , there is an important class of selfsimilar

solutions. These are the singular solutions

ϕ∗(y) =




−2 log |y|+ log(2(N − 2)) for f(u) = eu,
(

2
p−1(N − 2− 2

N−2)
)1/(p−1)

|y|−2/(p−1) for f(u) = u|u|p−1.

(3.7)

These singular solutions are invariant under the rescalings in (3.2) and

(3.3) and so they also satisfy the parabolic equation (1.1), with correspond-

ing nonlinearities, for |x| = |y| > 0. Actually these singular solutions are

stationary, global weak solutions of the equation, for N > 2 and p > N
N−2 .

The existence of backward selfsimilar solutions is dependent on the sub-

or supercriticality of the equation. In the subcritical case the only back-

ward selfsimilar solutions are constants; for the exponential case ϕ = 0

and in the power case ϕ ∈ {0,±κ}, where κ = ( 1
p−1)1/(p−1), see [10] and

[27].

The supercritical case, however, is different since there exist many other

backward selfsimilar solutions in addition to the constant ones. If f(u) =

eu and N ∈ (2, 10) or if f(u) = u|u|p−1 and p ∈ (pS , pJL), then there exists

at least a countable set I ∈ (0,∞) and a family {ϕ−(·;α)}α∈I of backward

selfsimilar solutions satisfying (3.6) and ϕ−(0;α) = α; see [8], [11], [45],

[46], [47], [59].

For p ∈ (pJL, pL), Lepin proved in [47] that there exists at least a finite

number of backward selfsimilar solutions verifying (3.6). These results

on the existence of selfsimilar solutions is again a good reminder on how
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the structure of the dynamical system related to the problem changes as

p and N are varied.

The behavior of forward selfsimilar solutions is somewhat different. They

exist, and satisfy (3.6), provided that α ∈ R, N ∈ (2, 10) and f(u) = eu, or

α > 0, p ∈ (pS , pL) and f(u) = u|u|p−1, see [31], [45], [60].

The selfsimilar solutions form an important class of solutions of (1.1)

that have singularities. As we will see below, many other solutions of

(1.1) behave almost like these selfsimilar solution, when the behavior is

examined close to where blow-up takes place. In fact, many solutions are

asymptotically selfsimilar as the blow-up moment t = T and the blow-

up point x = x0 is approached. Knowledge about the properties of the

selfsimilar solutions is therefore essential to the study of general blow-up

solutions.

Our initial motivation for the study of backward selfsimilar solutions

in Publication I was to determine if there exist selfsimilar solutions that

blow-up completely. Since it is known that only those selfsimilar solutions

that intersect the singular solution an odd number of times can blow-up

completely, we determined the behavior of the selfsimilar solutions with

respect to α as α is increased.

For the power nonlinearity there were already some results available.

Lepin proved in [46] that if p ∈ (pS , pJL), then for every even integer, or

large odd integer k, there exists a backward selfsimilar solution verifying

(3.6), which intersects the singular solution k times. However, for the ex-

ponential nonlinearity, there were no results concerning the intersection

number of selfsimilar and singular solutions.

In Publication I we consider backward selfsimilar solutions of equa-

tion (1.1) both for the nonlinearity f(u) = eu and for the nonlinearity

f(u) = u|u|p−1 and obtain some asymptotic properties of these solutions

that complement the results in [11], [45] and [46]. The conclusion is that

for every k ≥ 2, and for p ∈ (pS , pJL), when the power nonlinearity is in

question, or forN ∈ (2, 10), when considering the exponential, there exists

a backward selfsimilar solution that has k intersections with the singular

solution ϕ∗ and satisfies (3.6). Our result also holds for p ∈ (pJL, pL) in

the form that if there exists a backward selfsimilar solution with k0 inter-

sections with the singular solution, then there also exists a solution with

k intersections for every 2 ≤ k ≤ k0 − 3.

The proof is based on comparison arguments and the idea is the fol-

lowing. First, by the results in [45], there exists a backward selfsimilar
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solution with two intersections with the singular solution. Then, as we

increase α, first two intersections appear from infinity, after which the

second one of these tend to infinity again. Considering the solution at the

specific α for which the second intersection has just vanished, it can be

shown that this solution has three intersection and it satisfies the correct

asymptotics. When α is again increased, one intersection appears from

infinity and at some point two additional intersections appear. The so-

lution just before the appearance of the two intersections is our solution

with four intersections and the correct asymptotics. By continuing this

reasoning we obtain the conclusion.

Since our result is positive, in the sense that there exist backward self-

similar solutions with an odd number of intersections with the singular

solutions, it does not give an answer to the interesting and open problem

concerning complete blow-up of backward selfsimilar solutions. At this

point we can merely state that complete blow-up is possible and some

further analysis is needed. An open problem is also whether the set

I ⊂ (0,∞) of initial values α, for which the backward selfsimilar solu-

tions ϕ−(·;α) satisfy (3.6) and ϕ−(0;α) = α, is discrete or if it contains

an interval (α1, α2) for some 0 < α1 < α2 < ∞. This question in turn is

related to the stability properties of the backward selfsimilar solutions.
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4. Blow-up profiles of solutions

In this section we want to give a survey of the results in Publication II

and Publication III.

We consider weak solutions of (1.1) on [0, T ], with the nonlinearity (1.4),

that blow-up in finite time t = T < T . Our aim is to describe the behavior

of such solutions as the blow-up moment is approached, and at the blow-

up moment, as precisely as possible.

These solutions are known to exist in the supercritical range N ∈ [3, 9],

as explained in Section 2. Therefore, our focus is on the supercritical case,

but naturally we also discuss some results valid in the subcritical range.

To obtain any information about how blow-up takes place, we must first

know the blow-up rate. This question is considered in the next section.

4.1 Blow-up rate

Blow-up of solutions is categorized in two classes with respect to its rate.

Considering the ordinary differential equation (1.2), we obtain solutions

u(t) =




− log(T − t) for f(u) = eu,

(T − t)−1/(p−1) for f(u) = up

with some T = T (u0). Blow-up is said to be of type I if a solution of (1.1)

blows up with the same rate as the solution of the corresponding ordinary

differential equation, namely, if there exist constants C1, C2 ∈ R such that

for every (x, t) ∈ Ω× (0, T ) one has

C1 ≤ log(T − t) + ‖u(·, t)‖∞ ≤ C2 for f(u) = eu, (4.1)

or

(T − t)1/(p−1)‖u(·, t)‖∞ ≤ C1 for f(u) = u|u|p−1. (4.2)
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Such blow-up is also referred to as selfsimilar blow-up since the blow-up

rate is the same as the blow-up rate of selfsimilar solutions.

In Publication II, we first want to determine the blow-up rate of solu-

tions of (1.1), (1.4) that blow-up and continue to exist as weak solutions

after blow-up.

The only earlier results that are applicable for the exponential nonlin-

earity in the appropriate parameter rangeN ≥ 3 are from the mid 80’s. At

that time researchers grew more interested in the question of how blow-up

occurs as a result of the widely cited paper [20] by Friedman and McLeod.

In this paper one of the first results regarding the blow-up rate of solu-

tions was established. Friedman and McLeod studied equation (1.1) with

rather general nonlinearities, including f(u) = eu and f(u) = up, and they

obtained results concerning, among others, the location of the blow-up set,

the blow-up rate and a priori bounds for solutions.

Their results imply type I blow-up for solutions of (1.1) with (1.4) or (1.5)

when Ω is a convex domain. Their method utilizes the maximum principle

and a clever auxiliary function, thus forcing an additional requirement of

monotonicity in time on the solution. This additional assumption, how-

ever, implies that blow-up is complete, see [1]. Consequently, this result

is of no use in our setting.

We refer also to [64] for an earlier result.

To explain our approach in determining the blow-up rate, let us review

some earlier advances.

4.1.1 Subcritical case

A few years after the paper [20], Giga and Kohn considered the problem

from a different perspective and noticed that in fact blow-up is of type I,

provided that u is nonnegative, f(u) = u|u|p−1 and p is subcritical. Their

technique is more involved than that of Friedman and McLeod, but it

captures better the essential features of these types of equations since

it utilizes some specific information that is only valid in the subcritical

range.

By using an intrinsic rescaling of the equation and energy methods,

they avoid the use of the rather restrictive assumption of monotonicity

appearing in [20]. However, because of the functional analytic energy

methods, and because of the use of the nonexistence of positive stationary

solutions of (1.1), (1.5), they need to assume either that the solution is
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nonnegative and p ∈ (1, pS) or, allowing sign changing solutions, N ≥ 2

and p ∈ (1, 3N+8
3N−4) or N = 1.

These assumptions are not purely technical since some formal argu-

ments can be used to construct sign changing solutions with type II blow-

up, when p = pS , [18]. However, if u is radially symmetric and positive,

then blow-up is of type I also for p = pS , see [50].

Fifteen years later the technical assumption p < 3N+8
3N−4 was made redun-

dant, and type I blow-up was obtained for every solution of (1.1) if p is

subcritical, see [30]. This was made possible by refining the argument

in [28] and introducing localized energies and applying a bootstrap argu-

ment for improved Lp estimates.

A completely different method for obtaining the blow-up rate was used

by Galaktionov and Posashkov in [23] to prove type I blow-up for non-

negative radially symmetric solutions of (1.1), (1.5) and subcritical ex-

ponents p. The one-dimensional character of the equation allowed them

to use the intersection comparison technique in their proof. The same

method was used in [38] for the exponential nonlinearity with N = 1,

where type I blow-up is proved for any positive solution. Filippas, Her-

rero and Velazquez used similar ideas in [18] to prove, for the exponential

equation with N = 2, that blow-up is of type I, provided that the solution

is positive, radially symmetric and radially decreasing.

In Publication IV we consider the subcritical case N = 2 and Ω = B(R)

or Ω = R2 and prove that radially symmetric solutions of (1.1), (1.4) blow-

up with type I rate, provided that the maximum of the solution is attained

at the origin. The proof is based on combining techniques from [17] and

[50], where the supercritical case was considered. Let us discuss the re-

sults from these papers and summarize some results on the supercritical

case in the next section.

4.1.2 Supercritical case

The case of p > pS remained open until the early 21st century. The prob-

lem with the supercritical case is the lack of the Sobolev embeddings,

which, in the subcritical case, allow one to use interior regularity argu-

ments to obtain boundedness of solutions once certain Lp estimates are

verified. Instead of these powerful techniques, one has to use a refined

version of the maximum principle, namely, intersection comparison. This

is, however, a tool for one-dimensional problems, which forces one to con-
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sider only radially symmetric solutions.

In the paper [50], Matano and Merle were able to prove type I blow-up

by assuming radial symmetry and restricting the values of p to be su-

percritical but smaller than the Joseph-Lundgren exponent. Since they

assume radial symmetry, they are able to use one-dimensional regularity

arguments and energy estimates to obtain a priori upper bounds for solu-

tions. These estimates allow them to prove that if u blows up with type

II rate, then the sequence {uan}n of rescaled solutions, as defined in (3.1),

converges to a steady state of equation (1.1), (1.5) along some sequence

{an}n tending to infinity. By using intersection comparison and the fact

that every steady state of (1.1), (1.5) intersects with the singular solution

ϕ∗ in (3.7) infinitely many times if p ∈ (pS , pJL), they obtain a contradic-

tion. By this method, they were able to prove type I blow-up for solutions

both in a ball and in RN .

Our method in Publication II is based on these same ideas. We prove

that the blow-up rate is of type I also in the exponential case, when radial

solutions in a ball are in question, the maximum of the solution is at-

tained at the origin, and the dimension of the space is between three and

nine. We use the same rescaling as in [50] to obtain a sequence {uan}n,

but because the rescaling in the exponential case does not automatically

provide a lower bound, we need to use a result from [20] to achieve the

convergence of that sequence. Another advantage of the power case over

the exponential is the possibility to use energy methods. Since the usual

rescaling in the exponential case does not preserve positivity, it is far more

difficult to use the energy of the solution and thus obtain a priori bounds

for the solutions. This forces us to assume that the solution attains the

maximum at the origin.

To prove that the sequence {uan}n converges to a steady state, we use a

technique from [9], which utilizes the intersection comparison method and

gives us a more concise proof. This approach allows us to obtain the rate

even for more general nonlinearities that behave like the exponential far

away from the origin, but do not allow such rescaling as in (3.1). Moreover,

for such nonlinearities and N ∈ [3, 9], we obtain also the boundedness

of radially symmetric global classical solutions, which improves on the

results in [17]. The same was proved for the power nonlinearity in [9].

In the two-dimensional case, discussed in Publication IV, we use these

same ideas to prove type I blow-up. As in Publication II, we know that

type II blow-up would imply the convergence of the sequence {uan}n to
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some steady state of the equation. Following the treatise in [50], where

the power case is considered for p = pS , and using the intersection dimin-

ishing property, one concludes that this convergence implies the existence

of two steady states that do not intersect. However, every two steady

states are known to intersect, see [58], where explicit formulas for radial

steady states of (1.1), (1.4) are found. Therefore, type II blow-up does not

occur.

This method is reliant on the assumption that u is radially symmetric

because intersection comparison is being used. Furthermore, we have to

assume that u attains its maximum at the origin for the same reasons

as in Publication II. Proving the blow-up rate for radially non-symmetric

solutions of (1.1), (1.4) with N = 2 remains an open problem.

Moreover, it is not known if type II blow-up can take place for radially

nonsymmetric solutions in the parameter N ∈ [3, 9], for the nonlinearity

(1.4), or p ∈ (pS , pJL), for the nonlinearity (1.5). The restriction p < pJL

is, however, strict since there are known to exist type II blow-up solutions

for p > pJL, see [39], [53], [54]. Type II blow-up generally speaking corre-

sponds to solutions that behave asymptotically as the singular selfsimilar

solution. The existence of type II blow-up is then obtained by proving that

the singular selfsimilar solution attracts some solutions. This method will

only work for p > pJL, thus suggesting that type II blow-up would only be

present for p > pJL.

Different rates for type II blow-up are obtained in [55].

4.2 Blow-up set

In this treatise we will not overly emphasize where blow-up occurs. Never-

theless, let us give some basic properties of the blow-up set.

A point x0 ∈ Ω is defined to be a blow-up point if there exists a sequence

{(xi, ti)}i ⊂ Ω × (0, T ) such that xi → x0 and ti → T and u(xi, ti) tends to

infinity as i approaches infinity. It is known that the blow-up set, consist-

ing of the blow-up points, of any solution of (1.1) with (1.4) or (1.5) is a

compact set of Ω, provided Ω is a convex and bounded domain in RN , see

[20]. Moreover, if Ω = BR(0) and u is radially symmetric, with u0 radially

decreasing, then x = 0 is the only blow-up point. The same holds for ra-

dially symmetric solutions of (1.1) with (1.4) or (1.5) if the blow-up is not

complete, see Publication IV and [50].
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In general, however, the blow-up set can be a finite number of points, a

region in Ω or the whole set Ω. If Ω = RN , the solution u can also remain

bounded in compact subsets of RN and blow-up only at space infinity, i.e.,

u(xi, ti)→∞ for |xi| → ∞ and ti → T , see [57]

In the following sections, we will most of the time assume that the so-

lution blows up at (x, t) = (0, T ). Some of the results also work under the

assumption that blow-up takes place at an arbitrary a ∈ Ω.

4.3 Selfsimilar profile

In what follows, we will discuss two kinds of blow-up profiles. On one

hand, we will discuss final time blow-up profiles, by which we mean the

pointwise limit profile u(x, T ) = limt→T u(x, t). On the other hand, we

will consider selfsimilar profiles, in which case the profile of a solution is

determined by the convergence to a selfsimilar solution.

Assuming that a solution u of (1.1) blows up with type I rate at (x, t) =

(0, T ), it is convenient to use this information together with the intrinsic

rescaling arising from the selfsimilarity of the equation to define

w(y, s) =





log(T − t) + u(
√
T − ty, t) for f(u) = eu,

(T − t)−1/(p−1)u(
√
T − ty, t) for f(u) = u|u|p−1,

(4.3)

where the new similarity variables are defined as s = − log(T − t) and

y = x√
T−t . This rescaling implies that w verifies the equation

ws = ∆w − y

2
∇w +G−(w) (4.4)

in some domain Ωs ⊂ RN depending on s and with some initial data.

Here G− is as in (3.5). The properties of u at the blow-up moment near

the blow-up point are then reflected in the asymptotic behavior of w as

s→∞.

In other words, to study the asymptotics of u as the blow-up moment is

approached, one needs to consider whether w converges as s → ∞. For

F (w) =
∫ w

0 G−(v)dv, the energy

E(w) =

∫

Ωs

( |∇w|2
2

+ F (w)

)
ρ dy,

where Ωs is the domain of w and ρ(y) = e−|y|
2/4, is a Lyapunov functional

for the problem. Since type I blow-up, and some additional assumption

for the exponential nonlinearity, imply that the energy is bounded from

below, it is a relatively easy matter to show that w approaches the set of

equilibria of (4.4) as s tends to infinity, see [27].
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4.3.1 Constant selfsimilar profile

In the subcritical case, the only backward selfsimilar solutions are the

constants 0 and ±κ, and it can be argued that w converges to one of

these steady states as s tends to infinity. In [29], this result is refined

by demonstrating that if f(u) = u|u|p−1, then w cannot converge to zero.

Consequently, we have the conclusion that if u is a solution of (1.1), with

(1.5), and p < pS , or with (1.4), and N ≤ 2, that blows up at (x, t) = (0, T )

with type I rate, then

lim
s→∞

w(y, s) =





0 for f(u) = eu,

±κ for f(u) = u|u|p−1
(4.5)

uniformly for y in compact sets. If (4.5) holds, we say that u has a con-

stant selfsimilar blow-up profile. We refer to [2], [4], [27], [28] for related

results.

Now two questions arise. Although the selfsimilar profile gives a cer-

tain description of the behavior of u near the blow-up point, it does not

give any direct information about the solution at the blow-up moment.

Therefore, we can ask whether we can say something about the final time

blow-up profile u(x, T ) by assuming a constant selfsimilar blow-up profile.

Secondly, since in the supercritical case there exist many selfsimilar solu-

tions different from the constants, do there exist some solutions that have

nonconstant selfsimilar blow-up profiles?

Our aim in Publication II is to answer both of these questions, when

f(u) = eu.

As concerns the first question, note that there are many results already

available, but mainly for the nonlinearity f(u) = u|u|p−1. These results

are obtained by following the same basic steps, which we also obey in our

approach in Publication II.

The first step is to find the leading term of the convergence (4.5). The

outcome is that the rate of the convergence is either algebraic or exponen-

tial. In the literature this has been achieved essentially in two different

ways. The method used by Herrero and Velázquez, in a series of papers,

see [34] and [62], is based on some perturbation techniques and the max-

imum principle.

Our method, however, is based on the approach of Filippas, Kohn and

Bebernes, Bricher, see [3], [19]. Their idea is to utilize some ideas from

center manifold theory for infinite-dimensional dynamical systems, even

though the problem does not strictly speaking fit in that framework. Since
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the linear part of the operator on the right hand side of (4.4) has zero as

an eigenvalue, the convergence of w corresponds either to convergence

along the center stable manifold or the stable manifold (see [33]). In the

former case the convergence rate of w is algebraic and in the latter case w

converges with exponential rate.

The second step is to extend the domain, in which the convergence (4.5)

takes place, from bounded to some larger sets depending on s. This is

done by using the variation of constants formula and certain semigroup

estimates with respect to shifted Lp-norms. The calculations are rather

straightforward, but technically complicated. The principal idea is to

carefully analyze the interplay between the rate of the convergence and

the convection caused by the term −y
2∇w in (4.4). The result is that the

convergence holds in expanding domains with radius of the order
√
s, in-

stead of only in bounded sets. This part of the proof goes through along

the lines of [61].

In the last step we use these refined convergence results to obtain the

behavior of u(x, T ) close to the blow-up point x = 0. This is essentially a

consequence of the stability of certain solutions. The problem in the expo-

nential case, when compared to the case of power nonlinearity, is that the

scaling (4.3) does not produce a bounded function even though the blow-

up rate is assumed to be of type I. Another problem arises from the fact

that the linear part of the operator in (4.4) has only negative eigenvalues

in the power case, whereas zero is an eigenvalue in the exponential case.

This makes it more complicated to prove stability and we are forced to use

an upper bound for the solution. This upper bound (obtained in [15]) is,

however, valid only if the solution is radially nonincreasing.

Nonetheless, we are able to prove that if u is a radially nonincreasing

solution of (1.1) with the nonlinearity (1.4) in a ball, and u blows up with

type I rate and has a constant selfsimilar blow-up profile, that is, w tends

to zero as s tends to infinity, then

lim
|x|→0

(u(x, T ) + 2 log |x| − log | log |x|| − log(8)) = 0. (4.6)

The final time blow-up profile for the power nonlinearity was first con-

sidered in [34], [35] and [36], when N = 1. It was proved that if u is

a solution of (1.1) in R, with the nonlinearity (1.5), and u blows up with

type I rate and has a constant selfsimilar blow-up profile, then either

lim
x→0

( |x|2
log |x|

)1/(p−1)

u(x, T ) = [8p/(p− 1)2]1/(p−1), (4.7)
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or there exists a constant C > 0 and an even integer m ≥ 4, such that

lim
x→0
|x|m/(p−1)u(x, T ) = C. (4.8)

Velázquez then generalized these results to higher space dimensions in

[62, 61] while the Dirichlet problem in a ball was covered by Matos in

[52].

In the papers [34] and [38], Herrero and Velázquez treated also the case

of exponential nonlinearity in one dimension with similar techniques and

obtained comparable results. Their technique in the one-dimensional case

is, however, different from the higher dimensional since they use suit-

able subsolutions and comparison methods not applicable in higher di-

mensions.

See also [6] for a result on the existence of solutions with the profile

(4.6).

It is interesting to note that we do not obtain profiles of the type (4.8)

in Publication II. This is because the profiles (4.8) correspond to solutions

that have m maxima which all converge to zero at the blow-up moment,

[36]. Our assumption that u is radially nonincreasing thus rules out such

solutions. It is in fact known that all the profiles (4.8) with even m ≥ 4

do occur, see [7] and [36], and that the profile (4.7) is the generic one and

stable under certain perturbations, [37].

In Publication III we are able to improve our result and show that it is

unnecessary to assume that the solution is radially nonincreasing, pro-

vided we assume that blow-up is of type I and that the solution blows up

at the origin. With these assumptions we obtain that if w converges to

zero as s tends to infinity, then either (4.6) holds or

lim
|x|→0

(u(x, T ) +m log |x| − C) = 0 (4.9)

for some m ≥ 4 and constant C. This improvement is obtained by using a

recursive argument together with a derivative estimate originating from

[20], thereby overcoming some technical difficulties faced in Publication

II.

In addition, as mentioned in the previous section, it is proved in Publi-

cation II that a solution blows up with type I rate at the origin, if N ∈ [3, 9]

and the maximum of the solution is attained at the origin.
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4.3.2 Nonconstant selfsimilar profile

In the supercritical case, there are many other possible selfsimilar profiles

besides the constant ones. To prove that some solutions actually have a

nonconstant profile, one needs to consider solutions that continue to exist

as weak solutions beyond the blow-up time.

By the results presented in the previous section, if a solution has a con-

stant selfsimilar blow-up profile, then the precise form of u(x, T ) near the

blow-up point is known and given by (4.6) or (4.9) in the case of the expo-

nential nonlinearity and (4.7) or (4.8) when the power-type nonlinearity is

in question. These types of profiles are, however, too large near the blow-

up point in order for a weak continuation of the solution after the blow-up

time to exist, see [52] and [60]. Therefore, by proving that w converges to

the equilibria of (4.4), one can deduce that if a solution blows up with type

I rate and continues to exist as a weak solution after the blow-up time,

then the selfsimilar blow-up profile has to be a nonconstant one. This

method was used by Matos in [52], where the above mentioned result was

proved for f(u) = up.

We demonstrate in Publication II that this same approach works also for

the exponential nonlinearity. As explained in the previous section, the so-

lutions that have a constant selfsimilar blow-up profile and blow-up with

type I rate, verify either (4.6) or (4.9) at the blow-up moment. These fi-

nal time profiles imply complete blow-up by a result of Vázquez from [60].

Therefore, a nonconstant selfsimilar blow-up profile is the only possibility

for weak solutions that blow-up in finite time. To be more precise, if u is a

radially symmetric weak solution of (1.1), (1.4) on (0, T ) that blows up at

t = T < T with type I rate, then

w(y, s)→ ϕ−(y) as s→∞ (4.10)

uniformly on compact sets, where ϕ− is a solution of (3.4)-(3.6).

It is a different matter to explain to which of the infinitely many back-

ward selfsimilar solutions ϕ− the solution does converge. In Publication II

we were able to give an example of a solution for which this profile can be

determined. A singular connection u is a global weak solution of equation

(1.1) that blows up in finite time and connects two stationary solutions

v− and v+, i.e., limt→−∞ u(x, t) = v−(x) and limt→∞ u(x, t) = v+(x). These

singular connections of (1.1) with nonlinearity (1.4), were considered in

[14]. Taking one particular such a connection we proved that it has a non-

constant selfsimilar blow-up profile, which intersects with the singular
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solution ϕ∗ exactly two times. This is the first example of a solution for

which such information can be retrieved.

We can do this only for one type of connections, i.e., for such that connect

two steady states with a prescribed number of intersections with the sin-

gular steady state. There are, however, many other connections between

different steady states. We cannot show which one of the selfsimilar blow-

up profiles these connections have in general. To find the selfsimilar pro-

file of a general connection, one should be able to consider the number

of those intersections of the connecting solution and the singular solution

that vanish at the blow-up moment.

4.4 Final time blow-up profile

Since every weak solution that exists on [0, T ) and blows up at t = T < T
has a nonconstant selfsimilar blow-up profile, one may ask if the final

time blow-up profile of such a solution can be found.

If one chooses to approach the problem as in the case of a constant self-

similar profile, the first thing to consider is the convergence rate of (4.10).

To attack this problem, one linearizes the operator on the right hand side

of (4.4) around ϕ− and hopes to find some properties of the eigenvalues of

the obtained operator

Λ = ∆− y

2
∇+ eϕ− . (4.11)

Especially, the interest here lies in whether zero is an eigenvalue or not.

This question turns out to be quite delicate, and, as far as the author is

aware, no answer has been found, neither for the exponential nor for the

power nonlinearity.

Consequently, the above approach does not seem to produce any results.

Fortunately, there are other methods, whose outcome has been satisfac-

tory. The analysis in Publication III was done in part simultaneously

with [51] where the question was answered for f(u) = u|u|p−1 and a clas-

sification of blow-up of radial solutions was given in the following sense.

Blow-up is of type I with constant selfsimilar profile if and only if the limit

lim
|x|→0

|x|2/(p−1)u(x, T )

is infinite. Blow-up is of type I with nonconstant selfsimilar profile if and

only if the above limit is finite and not equal to plus or minus one or zero.

Blow-up is of type II if and only if the above limit equals plus or minus
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one. There is no blow-up if the limit equals zero.

Our result in Publication III is only partial when compared to that in

[51], but it has some advantages. It states that if a solution of (1.1) with

(1.4) blows up with type I rate and the selfsimilar blow-up profile is non-

constant, then

lim
|x|→0

(u(x, T ) + 2 log |x|) = Cα. (4.12)

This can be reformulated together with the results from the previous sec-

tion to give that if a solution of (1.1), with (1.4), blows up at (x, t) = (0, T )

with type I rate, then it has a nonconstant selfsimilar profile if and only

if (4.12) holds. It has a constant selfsimilar profile if and only if (4.6) or

(4.9) holds.

One advantage of our approach to that in [51] is that our proof is rather

general using only semigroup estimates and variation of constants for-

mula, and it works also with the nonlinearity (1.5), whereas the proof in

[51] cannot be directly applied to the exponential nonlinearity. The rea-

son for this is that the analysis in [51] is vitally based on the a priori

estimates in [50]. Those estimates, as already mentioned in the previous

sections, are based on energy methods, which do not seem to apply to the

exponential case.

Our method, on the other hand, is based on a simple observation. Since

the convergence (4.10) is assumed to hold for y in compact sets, and be-

cause ϕ− verifies (3.6), we only need to show that the convergence (4.10)

holds approximately for y = es/2ξ, when |ξ| is small. This gives the behav-

ior (4.12) as s tends to infinity by the definition of w and the asymptotics

(3.6).

To carry through this analysis, we consider the semigroup generated by

the operator Λ in (4.11) with respect to weighted Lp-norms, whose weight

has been shifted away from the origin by a factor of es/2. Since eϕ−(y)

tends to zero as y tends to infinity, we are able to prove that the semigroup

generated by Λ behaves more or less like the semigroup generated by the

Hermite operator ∆ − y
2∇ with respect to those shifted norms. Then a

careful stability type analysis with respect to the shifted norms give us

the desired result.

Another advantage of our approach is that, assuming that blow-up is of

type I and that the solution has a nonconstant selfsimilar blow-up pro-

file, we do not need to assume the radial symmetry of the solution. We

only work with semigroup estimates and variation of constants formula,

thus being independent of any arguments related to the dimension or
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symmetry. In [51], on the other hand, parabolic regularity results in one

dimension are being used, which make the assumption on radial symme-

try crucial.
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5. Regularity of weak solutions

As demonstrated in the previous sections, there exist weak solutions that

are global but blow-up in finite time. Moreover, by assuming this prop-

erty, we can recover the selfsimilar and final time blow-up profiles of the

solutions.

However, the regularity of the weak solutions after the blow-up time is

far from being transparent since it cannot be deduced from the standard

parabolic theory. This is because the appearing singularity may be such

that the solution escapes from the space where the problem is well posed.

For example, the problem (1.1), (1.5) with p > 1 is well-posed in Lq(Ω) if

q > n(p−1)
2 , see [57]. This means that the singularity of u must be weaker

than that of |x|−2/(p−1) in order for u to belong to Lq, ruling out the back-

ward selfsimilar solutions for example.

The problem of regularity of weak solutions can be approached by con-

structing examples of some weak solutions that behave, in a certain sense,

decently. Galaktionov and Vázquez constructed, in [24], special weak so-

lutions that are obtained by gluing together backward, see (3.2), and for-

ward, see (3.3), selfsimilar solutions having the same profile at the blow-

up moment. They proved that starting from the initial data

u0(x) = C|x|−2/(p−1)

corresponding to the case (1.5), the so-called proper solution of (1.1) in

Ω = RN is the forward selfsimilar solution given by (3.3), when the asymp-

totics (3.6) is satisfied with Cα = C. Therefore, by taking a back-

ward selfsimilar solution such that there exists a forward selfsimilar solu-

tion that shares the same asymptotic behavior (3.6), we can match them

at the blow-up moment and obtain a weak solution that blows up at

(x, t) = (0, T ). The blow-up rate of such a solution is of course selfsimilar

and the solution becomes regular immediately after blow-up, also with

43



Regularity of weak solutions

the selfsimilar rate. Naturally, the construction only works in RN since

the selfsimilar solutions do not satisfy reasonable boundary conditions.

This kind of solutions were treated in [45] in the case of the exponential

nonlinearity, while solutions with singular initial data were considered

also in [60]. These are only some examples of blow-up solutions, but as we

have already seen, the selfsimilar behavior is very characteristic of many

other solutions as well.

In Publication IV we use our results from Publication III to prove that

if u is a radially symmetric minimal limit L1-solution of (1.1), (1.4) on

(0, T ) that blows up at t = T < T and has a nonconstant selfsimilar blow-

up profile, then it becomes regular immediately after the blow-up time

t = T . The same technique can be used in the case of the power-type

nonlinearity as well. Apart from one special case, we also obtain that the

regularization is asymptotically selfsimilar. Hence, the behavior of such

solutions around the blow-up moment t = T is the same as the behavior of

the peaking selfsimilar solutions treated in [45]. We prove the results by

using a comparison principle from [60], based on the existence of forward

selfsimilar solutions, and refining the techniques in [15].

In [60] Vázquez gives necessary conditions for complete blow-up. He

proves that there exists a constant µe such that if

u0(x) > −2 log |x|+ µe + ε

for |x| ≤ γ, for some γ, ε > 0, then there is no weak solution of (1.1), (1.4).

On the other hand, if the above inequality holds with reversed inequality

sign <, and ε = 0, then the minimal limit L1-solution can be compared

with the maximal forward selfsimilar solution. Thus, it is regular at least

locally for t > 0, and the rate of regularization is selfsimilar. For analo-

gous results in the case of (1.5), see [52].

Since our results in Publication III imply that every solution with a

nonconstant selfsimilar blow-up profile satisfies (4.12) for some constant

Cα, we may apply the above result of Vázquez. If such a solution can be

continued beyond the blow-up time, then one has that either Cα < µe or

Cα = µe. In the former case, u(x, T ) < −2 log |x| + µe near the origin and

so the solution is regular for t > T , at least locally. In this case, we can

also prove that the regularization is asymptotically selfsimilar, i.e.,

log(t− T ) + u(
√
t− Ty, t)→ ϕ+(y)

uniformly on compact sets as t tends to T from above. In the latter case we

cannot always use the comparison of Vázquez, but we have to use ideas
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from [15] suitably modified. In this case, the selfsimilarity of the regu-

larization is out of reach. However, we obtain that the solution becomes

regular immediately without assuming that u is radially nonincreasing,

which is assumed in [15].

The regularity of weak solutions that blow-up and continue to exist af-

ter the blow-up time was considered by Fila, Matano and Poláčik in [15].

They proved that the minimal limit L1-solution becomes regular imme-

diately after the blow-up time if the solution is radially symmetric and

either f(u) = eu, u is radially nonincreasing and N ∈ [3, 9], or f(u) = up

and p ∈ (pS , pJL). Their method was to first prove a priori bounds for the

solution and then apply these to obtain regularity. This allowed them to

use comparison with forward selfsimilar solutions and energy methods to-

gether with intersection comparison to prove the result. In the case of the

power-type nonlinearity, the a priori bounds were already proved in [51].

For the exponential, however, they needed to assume that the solution is

radially nonincreasing. This was assumed in order to apply a refined ver-

sion of Kaplans eigenfunction method first to get a weaker type of a priori

bounds. Assuming the minimality of the continuation is crucial in the

proof since they use the comparison method between the approximating

sequence and the forward selfsimilar solutions.

Since we do not assume that the solution is radially nonincreasing, we

cannot proceed as in [15]. Instead, we consider the solution for t strictly

larger than the blow-up moment t = T . Then we use an intersection com-

parison method with a solution having the blow-up profile (4.6). This gives

us the desired upper bound. We can also prove that if the solution does

not become regular immediately after blow-up, then it has to be locally

nonincreasing close to the blow-up point. By these results, we are able to

proceed along the lines of [15].

In the recent paper [51], immediate regularization is proved for (1.1),

(1.5) without the minimality assumption. The proof is based on the same

a priori estimates of [50] that were used in [15], and on a clever rescaling

method. This approach is not applicable for the exponential case because

of the energy methods used in [50].

The technique that we utilized in Publication IV cannot be used to at-

tack the case of nonminimal continuations that were treated in [51]. This

is because of the use of a comparison method with forward selfsimilar

solutions which requires that the approximating sequence related to the

continuation stays below the solution it converges to. The regularization
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of nonminimal continuations in the exponential case therefore remains

an open problem. Recall that nonuniqueness of continuations of blow-up

solutions was proved in [16].

Here we can also observe a connection to the question of complete blow-

up of backward selfsimilar solutions, discussed in Section 3. If one could

prove that for every backward selfsimilar solution ϕ−, the constant Cα in

(3.6) is smaller than µe, then there is no complete blow-up for backward

selfsimilar solutions. In that case, regularization of the minimal limit L1-

solutions, with nonconstant selfsimilar blow-up profile, would be a direct

consequence of our results in Publication III and the results of Vázquez.

Moreover, the method would be completely independent of radial symme-

try, if type I blow-up is assumed to take place at x = 0.

There is one more important observation. We prove in Publication IV

that if u is radially symmetric and continues to exist as a weak solution

beyond the blow-up time, then x = 0 is the only blow-up point. Therefore,

if a solution is a radially symmetric, minimal limit L1-solution that blows

up at t = T < T with type I rate, then it blows up at x = 0, and, by the

results in Publication II, it has a nonconstant selfsimilar blow-up profile.

Thereby, the results of Publication IV can be applied and it becomes reg-

ular immediately after blow-up. Type I blow-up, on the other hand, is

given if N ∈ [3, 9] and the solution attains the maximum at the origin.

Therefore, our results improve on those of [15].
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Errata

Publication II

In this article on page 307 the inequality (2.5) is incorrect. From the

inequality preceding (2.5), we obtain that
∫ u(0,t)

u(r,t)
(u(0, ti)− z)−1/2dz ≤ 2eu(0,ti)/2r,

for every large i, and so

−2
√
u(0, ti)− u(0, t) + 2

√
u(0, ti)− u(r, t) ≤ 2eu(0,ti)/2r.

This implies

u(0, ti)−u(r, t) ≤ 4(eu(0,ti)r2 +u(0, ti)−u(0, t)) ≤ 4(eu(0,ti)r2 +eu(0,ti)(ti− t)),

where we used the estimate

u(0, ti)− u(0, t) ≤
∫ ti

t
ut(0, τ)dτ ≤ eu(0,ti)(ti − t).

Therefore, wi(ρ, τ) is bounded for (ρ, τ) ∈ [0, C1]×[−C2, 0] for every C1, C2 >

0. The rest of the proof of Theorem 1.1 proceeds as in Publication II.

Also, on page 322 the definition of the energy should be

E[w](s) =

∫

|y|≤R1es/2

(
1

2
|∇w|2 − ew + w

)
e−|y|

2/4dy.

Publication IV

In Theorem 3 it should be noted that the constant c# is the constant from

Proposition 2.1. Therefore, it can be considered as given, and the case

Cα = c# can not be excluded just by increasing c#.
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