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The new millennium has been labeled as the century of the personal communications revolution, or
more specifically, the digital wireless communications revolution. The introduction of new multimedia
services has created higher loads on available radio resources. Namely, the task of the radio
resource manager is to deliver different levels of quality for these multimedia services. Radio
resources are scarce and need to be shared by many users. This sharing has to be carried out in an
efficient way avoiding, as much as possible, any waste in resources.

A Heuristic scheduler for SC-FDMA systems is proposed where the main objective is to organize
scheduling in a way that maximizes a collective utility function. The heuristic is later extended to a
multi-cell system where scheduling is coordinated between neighboring cells to limit interference.
Inter-cell interference coordination is also examined with game theory to find the optimal resource
allocation among cells in terms of frequency bands allocated to cell edge users who suffer the most
from interference.

Activity control of users is examined in scheduling and admission control where in the admission
part, the controller gradually integrates a new user into the system by probing to find the effect of the
new user on existing connections. In the scheduling part, the activity of users is adjusted according
to the proximity to a requested quality of service level.

Finally, a study is made about feedback information in multi-carrier systems due to its importance in
maximizing the performance of opportunistic networks.
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Chapter 1

Introduction

Radio resource management is a key part of wireless cellular networks. With the

introduction of new generations in cellular technologies the demand for efficient re-

source management schemes has increased. The growth of multimedia services has

increased the complexity of balancing the operator-customer equation. The operator

in this equation wants to maximize revenue by utilizing its limited resources to the

fullest to accommodate as many users as possible. The problem of radio resource

management (RRM) is to allocate bandwidth, transmitter power and transmitter

time to the users so that certain QoS targets are met while the system resource uti-

lization is maximized. In a single channel, the perceived QoS is proportional to the

received signal-to-interference+noise ratio (SINR). The higher the SINR the higher

order modulation and lower coding rate that can be utilized for a fixed frame error

level. In order to maximize the channel SINR signal strength should be maximized

while the interference part minimized. In the case of non-real time data this could

be achieved by scheduling data packet transmissions. For real-time data the SINR

could be efficiently controlled by controlling the transmitter power. As the number

of users increases, the risk of quality of service degradation increases. Users expect

to receive the same quality of service if not better without paying more. The op-

erator will have to provide a balance through efficient radio resource management.

The operator needs to guarantee reasonable QoS levels in terms of probabilities of

call blocking (a user being denied a new connection), call dropping (a user losing

an ongoing connection), maximum packet delay, delay jitter and packet dropping.

The operator understands that failure to deliver these guarantees results in client

dissatisfaction and consequently changing to another operator.
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Radio resource management is a vast field that attracts a great deal of research

and this thesis aims to analyze and develop new radio resource management al-

gorithms for opportunistic systems where RRM functionalities exploit the channel

variations of users. Scheduling is one of the key RRM functionalities in opportunis-

tic systems where different favorable outcomes can be obtained with opportunistic

scheduling such as increasing the system’s capacity or providing some degree of fair-

ness in resource allocation to different users in a system or providing certain QoS

levels. In order to provide QoS guarantees, the scheduling entity must be combined

with an opportunistic admission control scheme which provides some flexibility in

granting resources to new users seeking admittance to the system unlike traditional

admission control algorithms that are more strict in their decisions.

In third generation (3G) telecommunications, the introduction of universal mo-

bile telecommunications system wideband code division multiple access (UMTS-

WCDMA) was a major evolutionary step from the second generation (2G) global

system for mobile telecommunications (GSM) networks. The possibility of allow-

ing simultaneous connections and separating users with unique codes as well as the

co-existence of frequency division duplex (FDD) and time division duplex (TDD)

enabled WCDMA to achieve high data rates and accommodate more users [1]. The

WCDMA systems’ adaptability enabled more improvement by introducing the high

speed packet access (HSPA) phase which is the first and one of the significant evo-

lutionary steps in packet data access in 3G telecommunications [2]. The standard

consists of two parts: high speed downlink packet access (HSDPA) and high speed

uplink packet access (HSUPA). HSDPA is a key feature included in the Release 5

specifications. Features of HSDPA include:

• Adaptive modulation and coding.

• A fast scheduling function, which is controlled in the base-station (BS), rather

than by the radio network controller (RNC).

• Fast retransmissions with soft combining and incremental redundancy.

• Peak data rates of up to 10 Mbps.

HSUPA is a Release 6 feature in 3rd generation partnership project (3GPP)

specifications. The main aim of HSUPA is to increase the uplink data transfer

speed in the UMTS environment, and it offers data speeds of up to 5.8 Mbps.
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HSUPA achieves its high performance through more efficient uplink scheduling in

the base-station and faster retransmission control. HSUPA is expected to use an

uplink enhanced dedicated channel (E-DCH) on which it will employ link adaptation

methods similar to those employed by HSDPA, namely:

• Shorter transmission time interval (TTI) enabling faster link adaptation.

• Hybrid automatic repeat request (HARQ) with incremental redundancy mak-

ing retransmissions more effective.

The evolution of HSPA systems continued and HSPA+ was introduced in release

7 to offer higher data rates and better support for internet protocol (IP) structures by

having the option of an all-IP architecture through connecting base-stations directly

to IP based backhauls and then to the internet service provider (ISP) edge routers

[3]. This was a very important feature because it facilitated the voice over internet

protocol (VoIP) technology.

3GPP Release 8 introduced the long term evolution (LTE) phase, considered an

evolutionary step that is paving the way toward 4G mobile communications tech-

nology. It is expected that LTE will stretch the performance of the 3G technology

and meet the growing demands for resources by users. The fundamental targets of

this evolution are to further reduce user and operator costs and to improve service

provisioning. This is achieved through improved coverage and system capacity as

well as increased data rates and reduced latency [4].

1.1 General Models and Assumptions

The end-to-end communication link consists of several layers with different func-

tionalities. Each layer applies a number of tasks to the outgoing and incoming data.

The focus will be on the medium access control (MAC) sub-layer. The main task of

the MAC protocol is to regulate the usage of the medium, and this is done through

a channel access mechanism. A channel access mechanism is a way to divide the

main resource between nodes by regulating its usage. The access mechanism tells

each terminal when it can transmit and when it is expected to receive data. The

channel access mechanism is the core of the MAC protocol.

Wireless transmission is characterized by the generation, in the transmitter of an

electric signal representing the desired information, the propagation of corresponding
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radio waves through space and a receiver that estimates the transmitted information

from the recovered electric signal. There are six basic modes of propagation:

• Free-space or line of sight (LOS): as the name implies, corresponds to a clear

transmission between the transmitter and receiver.

• Reflection: this happens as a result of the bouncing of waves from surrounding

objects such as buildings and passing vehicles.

• Refraction: is the redirection of a wave passing a boundary between two dis-

similar media.

• Diffraction: that results from the bending of waves.

• Scattering: this occurs when waves are forced to deviate from a straight trajec-

tory by one or more localized non-uniformities in the medium through which

they pass.

• Blocking (Shadowing): this happens when waves are encountered by large

obstacles such as walls that create shadow zones.

Other factors that limit communication quality are noise and interference. In-

terference stems from the fact that the frequency spectrum is a scarce resource that

has to be divided in an efficient way among many users. However, different cir-

cumstances may lead to users interfering with the transmission of each other. This

results in the degradation of the signal quality at the receiver and the loss of infor-

mation. The channel quality is measured from the signal-to-interference+noise ratio

SINR that is calculated from the following equation [5].

γi =
GiiPi∑

j ̸=i Pjθi,jGij + υ
(1.1)

where γi denotes the SINR of user i, Gij represents the link gain of transmitter j at

receiver i. Pi is the transmission power of i. υ denotes the (thermal) noise power at

receiver i. θij denotes the normalized squared cross correlations between waveforms.

Channel quality normally defines how many information bits the channel can convey

i.e. channel capacity which is proportionally related to channel condition. In 1948

Claude Shannon, an American electrical engineer and mathematician, found that

there is a limitation on the maximum amount of error-free information bits that
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can be transmitted over a communication link with a specified bandwidth in the

presence of the noise interference, this limit is defined in Shannon’s formula [6]

where a transmission link with a bandwidth B and SINR γ will have the following

limit:

C = B log2 (1 + γ) (bps) (1.2)

1.2 The Radio Channel

Signals that are transmitted are encountered by several factors that decrease their

density. Such density is inversely proportional to the distance between transmitter

and receiver. Mobile communication systems are mostly used in and around centers

of population. As a result, the communication is mostly achieved via scattering of

electromagnetic waves from surfaces, or diffraction over and around buildings. These

multiple propagation paths have both slow and fast aspects [7]:

1. Slow fading arises from the fact that most of the reflectors and diffracting

objects along the transmission path are distant from the terminal. The motion

of the terminal relative to these distant objects is small. Consequently, the

corresponding propagation changes are slow. The slow fading process is also

referred to as shadowing or lognormal fading.

2. Fast fading is the rapid variation of signal levels when the user terminal moves

short distances. Fast fading is due to reflections of local objects and the

motion of the terminal relative to those objects. The received signal will

thus be the sum of a number of signals reflected from local surfaces. These

signals sum up in a constructive or destructive manner, depending on their

relative phase relationships. The resulting phase relationships are dependent

on relative path lengths to the local objects and they can change significantly

over short distances. In particular, the phase relationships depend on the

speed of motion and the frequency of transmission.

In a multi-carrier system, fast fading leads to two types of fading according to

the number of paths as follows

• In flat fading, the coherence bandwidth of the channel is larger than the

bandwidth of the signal. Therefore, all frequency components of the signal

will experience the same magnitude of fading.

5



0 50 100 150 200 250
−20

−15

−10

−5

0

5

Subcarrier index

M
ag

ni
tu

de
 (

dB
)

 

 
1 path
2 paths
3 paths
4 paths

Figure 1.1: Magnitude plot for various number of multipath components

• In frequency-selective fading, the coherence bandwidth of the channel is

smaller than the bandwidth of the signal. Different frequency components of

the signal therefore experience decorrelated fading.

The coherence bandwidth measures the minimum separation in frequency af-

ter which two signals will experience uncorrelated fading. In a frequency-selective

fading channel, since different frequency components of the signal are affected in-

dependently, it is highly unlikely that all parts of the signal will be simultaneously

affected by a deep fade. Fig. 1.1 represents the effect of selective fading in a multi

carrier system. One can see that as the number of components increase the frequency

selectivity also increases. This shows that multipath makes the channel frequency

selective. Figures 1.2 and 1.3 show the response to an example of a multiple path

channel in a multi-carrier system. The example shows a 6 tap channel model for a

propagation in a typical urban area described in 3GPP Release 7 [8]. Frequency-

selective fading channels are also dispersive, in that the signal energy associated

with each symbol is spread out in time. This causes transmitted symbols that are

adjacent in time to interfere with each other. Equalizers are often deployed in such

channels to compensate for the effects of the intersymbol interference.

Certain modulation schemes such as OFDM are well-suited for employing fre-

quency diversity to provide robustness to fading. OFDM divides the wideband signal

into many slowly modulated narrowband subcarriers, each exposed to flat fading
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rather than frequency selective fading. This can be countered by means of error

coding and sometimes simple equalization and adaptive bit loading. Inter-symbol

interference is avoided by introducing a guard interval between the symbols.

1.2.1 Channel Model

The channel model will mainly consist of the two components mentioned earlier; the

large-scale fading (or slow fading) and the short-scale fading (or fast fading). The

gain of a channel with frequency k can be written as follows

Gi,k = d−κ
ij .10

ρ/10|Hl|2 (1.3)

where dij is the distance between terminals i and j, α is path loss component which

ranges between 2 and 4, ρ is a normal random variable representing the slow fading

component. The variable |Hk|2 is the frequency response of the kth subcarrier

channel and denotes the fast fading component and is computed from

h(t) =

Mp∑
m=1

hmδ(t− tm), (1.4)

where h is the wide-sense stationary channel of the mth path, Mp is the number of

paths and tm is the delay of the mth path. The frequency response of the subcarrier

can be expressed by [9]

Hl =

∫ ∞

−∞
h(t)e−i2πftdt|f=fl (1.5)

where fl is the frequency of the lth subcarrier. When there are a large number of

scatterers in the channel that contribute to the signal propagation, application of

the central limit theorem leads to a Gaussian process model for the channel impulse

response. If the process is zero mean then the envelope (i.e. square of the real and

imaginary part) has a Rayleigh distribution and the phase is uniformly distributed

in the interval (0, 2π). The probability density function (PDF) of the received signal

power |h| is given by

p|h|(σ) =
1

σ2
exp

(
− P

σ2

)
(1.6)

where P is the instantaneous power and σ2 is the local mean power at the receiver.

Hence, the envelope power |H|2 will follow an exponential distribution. In this work
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Jakes’ model for Rayleigh fading was considered [10]. Jakes’ model is based on the

summing of several sinusoids. The normalized autocorrelation function of a Rayleigh

faded channel with motion at a constant velocity at delay ∆t, when the maximum

Doppler shift is fm, is a zeroth-order Bessel function of the first kind;

ΘH(∆t) = I0(2πfm∆t) (1.7)

The Doppler shift is a measure of time variation in the channel; the larger the

value, the more rapidly the channel changes in time. Its reciprocal ∆tc = 1
fm

is

called the coherence time. Each channel remains strongly correlated during this

time. Analogously, the coherence bandwidth ∆fc is a statistical measure of the

range of frequencies over which the channel can be considered ”flat”, i.e. having

approximately equal gain and linear phase. In other words, coherence bandwidth

is the range of frequencies over which any two frequency components have a strong

correlation, ∆fc =
1
Tm

, where Tm is the largest delay produced by the channel.

1.2.2 Retransmissions

Perfect channel estimation requires timely knowledge of the channel state. In prac-

tice, the selection of the rate would be based on possibly outdated and imperfect

channel state information (CSI). If the selected rate exceeds the instantaneous chan-

nel capacity µi(t) > Ci(t), then the transmitted data cannot be decoded at the

receiver. In that case a request for retransmission is made. For the algorithms in

this thesis that utilize retransmissions, synchronous non-adaptive hybrid automatic

retransmission requests (HARQ) are considered. In this protocol, retransmissions

will occur at a predefined (normally fixed) time after the previous (re)transmission

using exactly the same modulation and coding rate even though the channel may

have changed. The benefit with synchronous non-adaptive HARQ is that control

signaling can be minimized since the HARQ process ID does not need to be signaled

explicitly and a received HARQ negative acknowledgment (NACK) can be used as

an implicit grant for a HARQ retransmission. In chase combining HARQ, the re-

ceiver coherently combines the original code block and the retransmitted block. All

the transmitted bit energy can be harnessed at the receiver by combining the er-

roneously received code block with the consecutive copies transmitted by the ARQ

process. The method also includes a loss that is added to the cumulated Eb/N0,

this indicates that a perfect gain is not achieved and a certain loss is produced.
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Transmission is successful when

1

ι

R∑
r=1

(
Eb

N0

)
r

≥
(
Eb

N0

)
0

, (1.8)

where r = 1, 2, · · · , R is the transmission number withR being the maximum allowed

number of retransmissions, ι > 1 denotes the combining loss, (Eb

N0
)r is the bit energy-

to-noise ratio at the time of transmission and (Eb

N0
)0 is the bit-to-energy ratio at the

time of scheduling. If the receiver is able to decode the code block after combining the

original packet and the retransmitted replicas of that packet, the actual rate would

become µ(t)
r
. Decoding fails if this rate still exceeds the capacity of the channel.

1.3 Multi-Carrier Model

The bandwidth B consists of Ω subcarriers that are grouped into L = B
∆fc

subbands

or what will henceforth be referred to as resource blocks (RB)s, shown in Fig. 1.4

with ∆fc denoting the coherence bandwidth of the channel. Each RB will contain

Ω/L consecutive subcarriers. The channel is assumed to be slowly fading such that

the channel state stays essentially constant during one TTI. That is, the coherence

time of the channel is assumed to be longer than the duration of the TTI and thus

the channel exhibits block fading characteristics. The RBs fade independently, but

the fading seen by individual subcarriers in a RB is approximately the same since

the subcarrier spacing is small compared to the coherence bandwidth of the channel.

The models considered in this work do not utilize power control so it is assumed

that the amount of power available for every user will be constant and is represented

by the maximum transmission power Pmax. The capacity of RB n for user i at TTI

t is given by Shannon’s formula:

Ci,n = Bn log2(1 + γi,n(t)) (1.9)

where Bn is the bandwidth of RB n, γi,n(t) denotes the SNR of user i on RB n at

time t and is computed as follows

γi,n =
Pi,n.Gi,n.Ga(ϕ0)

υ
, Pi,n =

Pmax

Li

(1.10)

where Pi,n is the amount of power allocated to RB n for user i, Gi,n is the path

gain for that subcarrier, Ga(ϕ0) is a ϕ0 degrees directional antenna gain, υ is the
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Figure 1.4: Sounding for the uplink channel in LTE [11]

noise power and Pmax is the maximum transmission power, assuming all users trans-

mit at maximum power. Li is the number of RBs assigned to user i. It is assumed

that all RBs consist of equal numbers of subcarriers Ωn yielding equal sized RBs.

In a multi-cell scenario, (1.10) becomes

γi,n =
Pi,n.Gi,i.Ga(ϕ0)∑N

j=1,j ̸=i Pj,n.Gi,j.Ga(ϕ0) + υ
, Pi,n =

Pmax

Li

(1.11)

where Gi,i is the path gain between user i and base-station (BS) i, Pj,n is the inter-

fering power from user j utilizing RB n, Gi,j represents the path gain between user

j and BS i, and N is the total number of transmitters assigned to RB n.

The assumption of utilizing equal power allocation for the users in (1.10) and

(1.11) is justified in single-cell systems by the fact that their users are separated

in the frequency domain and thus do not cause interference. In a multi-cell model,

users of neighboring cells located near the base-station (center-users) have a high

link gain compared to the interference they experience from center-users or edge-

users in other cells. The main concern would be the edge-users who will suffer

from neighboring edge-users who transmit on the same frequency and this is where

inter-cell interference coordination should take place.

Sounding

Since the channel-dependent scheduling can only be applied to low-speed UEs, usu-

ally the localized RB is assigned to transmit the traffic. In the case of localized data

transmission the reference signal is also localized. This means that the reference

signal occupies the same spectrum as data transmission in two short blocks. Only
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one sounding pilot is required for each user equipment (UE) in each RB. Therefore

in each localized RB, multiple uplink sounding channels can be supported for UEs

that are not transmitting in the current RB and the current subframe. On the other

hand, a sounding pilot should be transmitted in every RB in order for the base-

station to sound the channel over the whole transmission bandwidth for each UE.

Although this limits the number of sounding UEs in each sub-frame, more uplink

sounding channels can be obtained by TDM because each low-speed UE can perform

uplink channel sounding over multiple sub-frames [11]. Fig. 1.4 gives an example

of the FDM multiplexing scheme of the UE dedicated pilots and the sounding pi-

lots. In this example 12 uplink sounding channels can be supported that provide the

whole-band channel information for 12 channel-dependent scheduling UEs in each

subframe.

1.4 Access Technologies

The access system considered in this thesis is the TDD system with access tech-

nologies ranging between time/frequency/code division multiple access technologies

(TDMA/ FDMA/ CDMA). Most of the considered models in this work combine two

or more of these technologies as well as extensions of particular technologies such

as OFDMA and Single Carrier Frequency Multiple Access (SC-FDMA). In TDMA,

time is the resource that is shared among the users. Time is divided into time-slots

known as TTIs. Time division multiple access is a channel access method for shared

medium (usually radio) networks. It enables several users to share the same fre-

quency channel by dividing the signal into different time-slots. Users transmit in

rapid succession or by selection, each using his own time-slot. This allows multiple

stations to share the same transmission medium (e.g. radio frequency channel) while

using only the part of its bandwidth they require.

Using TDMA allows the exploitation of the channel variations the users ex-

perience making it possible to use adaptive modulation and coding (AMC), thus

improving transmission efficiency. In Frequency Division Multiple Access the given

Radio Frequency (RF) bandwidth is divided into adjacent frequency segments. Each

segment is provided with bandwidth to enable an associated communications signal

to pass through a transmission environment with an acceptable level of interference

from communications signals in adjacent frequency segments. The bandwidth is
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divided between users who transmit simultaneously. In practice, the available band-

width is subdivided into a large number of narrow band channels, these bands in

turn are assigned to different users. Orthogonal Frequency Division Multiple Access

is one extension of FDMA which uses a large number of closely-spaced orthogonal

sub-carriers. Each sub-carrier is modulated with a conventional modulation scheme

(such as quadrature amplitude modulation) at a low symbol rate, maintaining data

rates similar to conventional single carrier modulation schemes in the same band-

width. In practice, OFDM signals are generated using the Fast Fourier transform

algorithm.

The other extension; Single Carrier Frequency Multiple Access (SC-FDMA) uti-

lizes single carrier modulation at the transmitter and frequency domain equalization

at the receiver. This technique has similar performance and essentially the same

overall structure as an OFDMA system. One prominent advantage over OFDMA is

that the SC-FDMA signal has lower peak to average power ratio due to the single

carrier property. SC-FDMA has drawn great attention as an attractive alternative

to OFDMA, especially in the uplink communications where lower Peak to Average

Power Rate (PAPR) greatly benefits the mobile terminal in terms of transmit power

efficiency.

Code division Multiple Access describes a communication channel access princi-

ple that employs spread-spectrum technology and a special coding scheme (where

each transmitter is assigned a code). CDMA is a form of ”spread-spectrum” signal-

ing since the modulated coded signal has a much higher bandwidth than the data

being communicated. In this thesis HSDPA and LTE technologies are both consid-

ered. HSDPA as mentioned in Chapter 1 is an evolutionary step of WCDMA where

a time dimension is added to the access function. Adding the time property exposes

the possibility of utilizing the opportunistic features of channels.

The air interface access technologies considered for LTE are OFDMA for the

downlink and SC-FDMA for the uplink. SC-FDMA is based on transmitting fre-

quency chunks consisting of multiple subcarriers. SC-FDMA has two modes: localized-

FDMA (L-FDMA) where users are assigned RBs of adjacent subcarriers and the

other mode is distributed-FDMA (D-FDMA) where the subcarriers of one RB are

distributed over the entire frequency band but with an equal distance of each other.

13



D-FDMA has the advantage of being robust against frequency selective fading be-

cause its information is spread across the entire signal band. It therefore, offers the

advantage of frequency diversity. Moreover, L-FDMA can potentially achieve multi-

user diversity in the presence of frequency selective fading if it assigns each user to

subcarriers in a portion of the signal band where that user has favorable transmis-

sion characteristic (high channel gain). Multi-user diversity relies on independent

fading among dispersed transmitters.

1.5 Simulator Environment

A computer simulator is used to create a single or multi-cell packet switched net-

work. The simulator is a quasi stationary simulator that generates N users with

locations uniformly distributed over the cell area. A pedestrian profile is assumed

for the the speed of the users, hence channel conditions are slowly changing and

the channel is assumed to be constant during one TTI. Different users experience

different channel conditions that vary depending on their distance from the base-

station and speed. The speeds of the mobile users are independent random variables

uniformly distributed between 3 km/h and 10 km/h. Mobility induced handovers

are not considered but fast fading is simulated and if a user moves out of the border,

it will reappear at a point on the opposite border that is symmetric to the exiting

point.

The traffic models that are considered are the saturated static traffic model and

the dynamic model where packets arrive according to a certain distribution. The

algorithms presented in this work are mainly designated for non-real time traffic but

still can be applied to real-time traffic with certain delay bound constraints.

1.6 Objectives

The objective of this work is to analyze and develop new scheduling

algorithms for advanced opportunistic wireless systems. The performance

of the proposed algorithms are evaluated theoretically and by simulation. The main

goal is to find algorithms that can provide or guarantee quality of service for users

in cellular systems and the mechanisms to maintain that quality of these services.

The study underlying this thesis is an attempt to take a broader view of schedul-

ing in advanced cellular communication systems that can adapt to channel condi-
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tions, especially for the new long term evolution phase. The main challenge in this

task is the constraints of the interface where scheduling of resources is not as flex-

ible as other interfaces. The problem expands in multiple cells where interference

becomes a factor that impacts scheduling heavily. Coordinating the transmission

scheduling of neighboring cells therefore becomes a necessity. However, coordina-

tion needs to be done in a way that allows resources to be utilized to the utmost

without resorting to unfair division between good and bad users.

Another issue is the concept of combining opportunistic scheduling with admis-

sion control in fast fading channels. Having a fast varying channel can consequently

lead to poor admission decisions if not dealt with properly. Opportunistic scheduling

algorithms also tend to provide a certain quality of service that is limited by the

amount of access to the channel. Therefore, finding a mechanism that can provide

a multi-level QoS is something that would be interesting to pursue.

Feedback information plays an important role in opportunistic scheduling, having

the right information at the right time maximizes performance considerably. In

multi-carrier systems, reporting the channel condition of every subcarrier will result

in excessive overhead. Therefore, there is a need to find a suitable way to report the

information back to the scheduler in a reasonable manner without severely degrading

system performance.

1.7 Organization of the Thesis

Chapter 1 introduces the models and assumptions used throughout the thesis. Chap-

ter 2 presents the necessary background information for the work. Chapter 3 pro-

poses the LTE single-cell scheduler and multi-cell scheduler. Chapter 4 discusses the

effect of bargaining on multi-cell systems. Chapter 5 studies the concept of activ-

ity control in opportunistic systems. Chapter 6 investigates the different aspects of

feedback information and their impact on system performance. Finally, in chapter

7 the conclusion of this work is drawn with some discussion. In addition, the thesis

contains an appendix of proof for a number of propositions as well a validation of

the used models by comparing them to models from the literature.
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Chapter 2

Background

2.1 Scheduling

In a wireless system, resources such as power, time and frequency are scarce com-

modities that need to be divided wisely among users. The scheduler could be based

on different purposes such as providing fairness in resource allocation or maximizing

a certain utility function. Schedulers can be divided into two categories; chan-

nel independent and channel dependent (or opportunistic). Channel independent

scheduling is also called blind scheduling due to the fact that it does not need any

information about channel conditions to perform scheduling. An example of a blind

scheduler is the Round-Robin (RR) scheduler. Round-robin is one of the simplest

scheduling algorithms for processes in an operating system. It assigns time slices

to each process in equal portions and in order, handling all processes without pri-

ority. Round-robin scheduling is both simple and easy to implement as well as

being starvation-free. In channel dependent schedulers, the scheduler forms the de-

cision based on feedback information from the terminal (downlink) and from the

Base-Station (BS) (uplink). The advantage of channel dependent scheduling is the

exploitation of channel fluctuations, i.e. by assigning resources to a user who bene-

fits the most from using them.

In a multi-user environment it is highly probable that at least one link has high

quality at any given point in time. Taking advantage of this opportunity leads to

what is often called multiuser diversity. The notion of multiuser diversity is taken

from Knopp and Humblet who proposed that the best strategy is to always trans-

mit to the user with the best channel for the uplink [12] . Tse provided a similar
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result for the downlink where he analyzed the problem of communication over a

set of parallel Gaussian broadcast channels, each with a different set of noise pow-

ers for the users [13]. He showed that capacity can be achieved by optimal power

allocation over the channels, and obtained an explicit characterization of the opti-

mal power allocations and the resulting capacity region. Bender et al. examined

practical aspects of downlink multi-user diversity in the context of the IS-95 CDMA

standard [14]. Viswanath, Tse and Laroia examined this problem for the downlink

and presented a method of opportunistic beamforming via phase randomization [15].

Opportunistic schedulers are divided into a number of categories as shown in

Fig. 2.1. The schedulers are mainly divided into two categories:

1. Memoryless schedulers: in these schedulers, the current scheduling decision

is independent of past scheduling decisions. One example of a memoryless

scheduler is the Max-CIR scheduler. In general channel-aware memoryless

schedulers can be written in the form

i∗(t) = argmax {ξi(t), i ∈ A(t)} (2.1)

where ξi(t) denotes the channel condition of user i at time and A(t) is the set

of active users who have data in their buffers at time t t.

2. Schedulers with memory: the main limitation with memoryless schedulers

is that fairness can only be ensured over long-time windows compared to the

coherence time of the fading. In order to control delay and ensure fairness

over smaller time frames, memory has to be introduced in the scheduler. By

introducing memory, the priority of users that have not been served for a

long time can be raised. An example of a scheduler with memory is the PF
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scheduler.

i∗(t) = argmax

{
µi(t)

x̄i(t)
, i ∈ A(t)

}
(2.2)

where µi(t) is the instantaneous service rate of user i at time t if it would’ve

been selected to transmit. x̄i(t) denotes the average throughput.

A challenging task in scheduling is to meet the QoS demands of multiple users

while maintaining high system throughput. In wireless communication systems

where a common medium is shared, a good scheduling policy should provide a sat-

isfactory tradeoff between (i) maximizing capacity, (ii) achieving fairness, and (iii)

satisfying rate or delay constraints of users.

To implement the idea of opportunistic scheduling, two issues need to be ad-

dressed: fairness and the service requirements of users. In reality, channel statistics

of different users are not identical and, therefore, a scheme designed only to maxi-

mize the overall throughput could be very biased, especially where there are users

with greatly unequal distances from the base-station. For example, allowing only

users close to the base-station to transmit may result in very high throughput, but

sacrifice the transmission of other users. Also, a scheduling strategy should not be

concerned only with maximizing long-term average throughputs because, in prac-

tice, applications may have different utilities and service constraints. For instance,

for real-time applications, the major concern is latency. If the channel variations are

too slow, a user may have to wait for a long time before it gets the chance to transmit.

When designing a scheduling algorithm, the challenge is to address these issues

while at the same time exploit the multi-user diversity gain inherent in a system.

Improving the efficiency of spectrum utilization is important, especially to provide

high-rate-data services. However, the potential to exploit higher data throughputs

in an opportunistic way introduces the tradeoff problem between wireless resource

efficiency and levels of satisfaction among users. The cellular system itself also has to

satisfy certain requirements in order to extract the multi-user diversity benefits. The

base-station has to have access to channel quality measurements. In the downlink,

each receiver needs to track its own channel SINR and feed back this information to

the base-station. The base-station has to be able to schedule transmissions among

the users in a short timescale as well as adapt users’ data rates to the instantaneous

channel quality. These features are already present in the designs of many 3.5G

high data-rate (HDR) systems. This is the reason why opportunistic scheduling has
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received much attention [16].

Several scheduling rules have been introduced in the literature. The maximum

Carrier to Interference Ratio (max-CIR) rule always selects the user having the

highest CIR [17]. This rule maximizes system throughput, but leads to very unfair

allocation of resources as only users close to the base-station have the chance to

transmit. A very good trade-off between fairness and throughput can be obtained

with the proportional fair (PF) scheduler [13, 18], which utilizes the instantaneously

achievable service rate divided by the average throughput as a decision metric. Such

a scheduling rule leads to resource fairness: all users asymptotically get equal ac-

cess to the channel. Their throughput, however, depends on their positions. The

gain of such multi-user diversity scheduling was found to be equal to the gain of

selection diversity of a multipath channel [19]. Such a gain can also be exploited in

the multi-channel case although the problem becomes more complex since the SINR

of the channels will also depend on the power allocation. If there are strict QoS

constraints, they need to be enforced in some manner.

Many modifications of the original PF rule have been suggested to control the

quality of service level perceived by users [20, 21, 22]. The gradient algorithm

is a natural generalization of the PF algorithm in that it applies to any concave

utility function and to systems where multiple users can be served at a time [23].

The gradient algorithm chooses a (possibly nonunique) decision that maximizes the

scalar product of the gradient of a concave utility function with a certain service

rate vector. Other fairness principles include, for example, the min-max fairness

scheduler [24]. The notion of min-max fairness can be defined in the following way:

no flow can increase its allocation without reducing the allocation of another flow

with less or equal demand. Under min-max fairness, given no additional resources,

an unsatisfied flow cannot increase its allocation by merely demanding more. The

Max-CIR, PF and min-max rules are related to each other by the fact that they can

be derived from the gradient rule.

i∗(t) = argi max∇U(x̄i(t))µi(t) (2.3)

where ∇ is the gradient operator (∇U(x̄i(t)) = ∂U/∂x̄i(t)). The variable U denotes

a required utility that is a function of x̄i(t) which in turn is the mean throughput

of user i at time t. The variable µi(t) denotes the instantaneous service rate user
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i would obtain if selected at time t. The mean throughput can be computed as

follows:

x̄i(t) = E {µi(t)χ{i = i∗}(t)} (2.4)

where E{.} is the expectation operator. The operator χ{A} is an indicator function

of an event A: χ{A} = 1 if the event A occurs and zero otherwise.

The gradient rule can be applied to any concave utility function U(X̄) and to

systems where multiple users can be served at a time. Stolyar has proved the

asymptotical optimality of this algorithm for multiuser throughput allocation [23].

Users i = 1, · · · , N are served by a switch in discrete time t = 0, 1, 2, · · · Switch state

g = (g(t), t = 0, 1, 2, · · · ) is a random ergodic process. In each state g, the switch can

choose a scheduling decision k from a set Q(g). Each decision q has the associated

service rate vector µ(g)(q) = (µ
(g)
1 (q), · · · , µ(g)

N (q)). This vector represents the service

rate at a specified “time-slot” if decision q is chosen. The gradient algorithm is

defined as follows; if at time t the switch is in state g, the algorithm chooses a

possibly non-unique decision

q(t) ∈ arg max
q∈Q(g)

∇U(X̄(t))Tµg(q) (2.5)

where X̄(t) is a vector representing exponentially smoothed average service rates x̄i.

Typically the utility function has the aggregate form U(X̄) =
∑

i Ui(x̄i). It has been

shown that (2.5) converges to the optimal solution of maxX̄ U(X̄) as t→ ∞ [23].

Different degrees of fairness can be achieved with the gradient rule through the

utilization of the α-PF fairness criterion [25], which dictates that the utility function

should be defined as follows:

Uα(x̄) =

log(x̄) if α = 1

(1− α)−1x̄(1−α) otherwise

Having α = 0 will result in the Max-CIR rule, α = 1 result in the PF rule and

α = ∞ gives the min-max rule.

Many opportunistic scheduling algorithms can be viewed as “gradient-based”

algorithms, which select the transmission rate vector that maximizes the projection

onto the gradient of the system’s total utility [26]. The utility is a function of each

user’s throughput and is used to quantify fairness and other QoS considerations.

Several such gradient-based policies have been studied for TDM systems, such as the
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the “proportional fair rule” [15, 18, 27], first proposed for CDMA 1xEVDO, which

is based on a logarithmic utility function. In [26], a larger class of utility functions

is considered that allows efficiency and fairness to be traded-off. Generalized cµ-

policies [28, 29, 30], such as a Max Weight policy [31, 32] can also be viewed as a

type of gradient-based policy, where the utility is a function of a user’s queue-size

or delay. Andrews et al. considered a concave utility maximization problem with

minimum and maximum rate (x̄min
i and x̄max

i ) constraints [33]. They propose a

solution to this problem based on a scheduling algorithm by modifying the token

counter. In the study, two specific forms of the scheduling algorithm are shown to

guarantee x̄min
i and x̄max

i .

2.2 Previous work

2.2.1 Opportunistic Schedulers

Long and Feng presented a rate-guaranteed opportunistic scheduling scheme [34],

where they considered the transmission rate (throughput) as the fairness criteria,

i.e. on the average the expected throughput of user i should be a fraction βi∑
j βj

of

the whole system throughput, where βi is a positive constant (acting as a queueing

weight) for flow i. Their design goal is to achieve system throughput maximization

with the aid of time-varying channel condition knowledge, subject to the through-

put fairness constraint. At the beginning of each time-slot, the scheduler chooses a

user to transmit according to its maximum possible transmission rate µk
i , which is

determined by the user’s channel state. After the selected user receives data in this

time-slot, the system throughput is increased by the amount of data transmitted in

this time-slot. Their design goal is a scheduler which can maximize system through-

put while acting as a guaranteed rate node by exploiting known channel states, and

provide some performance bound with a low computation complexity for wireless

networks.

Assaad and Zeghlache proposed an opportunistic scheduler that allows transmis-

sion of streaming traffic over HSDPA without losing much cell capacity [35]. The

scheduler modifies the priority according to(2.6):

µ∗
i (t) = argmaxµi(t)

−log(ϵ)
µi(t)

Z̄i

1−
µi(t)

µreq
i (t)∑N

j=1
µj(t)

µreq
j (t)

 (2.6)
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where µ∗
i (t) is the transmission rate for user i in the current time-slot t, µi is the

achieved bit rate, µreq
i is the required bit rate and N is the number of simultane-

ous streaming users in the cell. ϵ denotes the system data unit error ratio at the

RNC level. The algorithm allocates the channel to the user having a compromise

between the actual channel conditions (represented by the bit rate), the mean sta-

tistical channel conditions (Z̄) and the achieved bit rate according to the required

bit rate. When all the users have the same achieved rate and the same required bit

rate, the channel is allocated to the user having the max(µi/Z̄i) which allows taking

advantage of the instantaneous peaks in the received signal, i.e. to keep track of the

fast fading peaks in the radio channel. When all the users have the same channel

conditions, the TTI is then allocated to the user having the most need in bit rate

(i.e. highest required bit rate or lowest achieved bit rate) according to the need in

bit rate of the other users.

Uplink scheduling is an important task although it is not examined as well as

the downlink. In a study by Lim et al., the authors examine performance in the

presence of imperfect channel estimation in an uplink single carrier FDMA (SC-

FDMA) system with uncoded adaptive modulation [36]. The special problem in the

uplink is the lack of a broadcast channel that could be used to attain high quality

channel reference in the receiver. Contrary to the downlink, in the uplink, the user

equipment needs to send a specific short pilot pattern, called a ’sounding signal’, re-

lated to each channel that is potentially available for scheduling. In the base-station

receiver these sounding signals are used in order to estimate different channels for

the scheduling decision. Since the required overhead in UL scheduling grows linearly

with the number of scheduled users it is essential that sounding signals take as few

radio resources as possible. Yet, such savings reflect directly on the reliability of the

channel estimation results and thus, on the reliability of the scheduling decision.

Holma and Toskala layout in [37] the concept of implementing a frequency domain

packet scheduler (FDPS) with fast adaptive transmission bandwidth. They present

an example scheduler that starts allocating the user with the highest scheduling met-

ric on the corresponding RB and allocates the adjacent RBs to the same user until

a user with a higher metric is found. The FDPS proposed in this thesis resembles

the aforementioned scheduler but is modified to allow the allocation of non-adjacent

channels to the same user as long as those channels had the highest metric values
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and the channels in between were free. In another study by Lim et al., the authors

suggest assigning resource blocks to users who obtain the highest marginal utility

[38]. The FDPS in this thesis, follows a similar approach but differs in the way

RBs are allocated to the users and includes the effect of imperfect channel state

information and hybrid automatic repeat requests (HARQ) in the scheduling rule.

Another work considered in this review is that of Jersenius which provides a

number of basic1 allocation rules [39]. Her work suggests a channel dependent time

domain scheduler assigns all RBs to the user who has the largest average gain to

interference ratio (GIR) in every transmission time interval (TTI). The work also

suggests a time-frequency scheduler that assigns groups of multiple consecutive RBs

to users with the highest average GIR over the RBs of a group in every TTI. The

number of groups can be equal to the number of active users as long as the number

of active users does not exceed the total number of resource blocks. Our work on

the other hand deals with resource blocks independently

The performance of opportunistic schedulers for static user populations has been

examined in a number of papers with either saturated conditions such as [40, 41, 42]

or allow packet-scale dynamics but at heavy traffic limits [21, 43]. Other examples

of related results can be found in [32, 44, 45, 46]. The assumption of a static

population is reasonable since the scheduler works at the packet level on which

the user population evolves only relatively slowly [47]. However, in the case of

elastic traffic, this assumption is no longer satisfactory. Borst explored the flow-

level performance in a dynamic population and later provided the necessary stability

conditions [48]. Aalto and Lassila also studied dynamic traffic flows and provided

the prerequisites for stability under certain conditions [49]. The instability of a

system usually leads to poor performance as a consequence of growing queue sizes

and packet delays. Both static and dynamic traffic conditions have therefore been

considered in this thesis.

2.2.2 Inter-Cell Interference Coordination

The impact of interference in a cell differs from one user to another. Usually users

situated at the edge of the cell suffer the most since the strength of a signal is in-

versely proportional to the distance. This in turn will result in a low SINR (Signal

1Due to the contiguity constraint that makes fair resource allocation difficult.
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to Interference+Noise Ratio) and consequently higher coding and lower data rates.

ICIC (Inter-cell Interference Coordination) is one way to organize the shared re-

sources among users in neighboring cells. The most common form of ICIC for the

uplink is reuse partitioning [50]. The frequency band in this case is divided into

several partitions and the cell is sectorized according to each partition allocation.

Neighboring sectors of two cells will have different partitions. This reduces interfer-

ence but at the cost of utilizing less resources. Some studies have for that reason

proposed ways to reduce the effect of partitioning [51, 52]. In [51], edge users within

a cell are grouped into distinct frequency groups. Users who have the same inter-

cell interference quantized value are grouped into one group and assigned a chunk

of the spectrum. In [52], the authors propose an adaptive reuse scheme where the

bandwidth allocated to cell edge users is coordinated according to the traffic load.

They later apply a reuse avoidance algorithm to verify any relocation of the as-

signed bandwidth. Reider suggested combining power control with ICIC where cells

are divided into three sectors and low interference zones are defined [53]. The low

interference zone in one sector must be different from the zone in the adjacent sector

leading to the possibility of applying power control to the corresponding bands in

those adjacent sectors.

The ICIC scheme proposed in this thesis introduces dynamic reuse by coordinat-

ing the transmission time of users in neighboring cells such that users who interfere

with each other do not utilize the same resource block at the same time.

2.2.3 Game Theory in Scheduling

The application of game theory to radio resource management is subject to a number

of considerations which include the existence of a steady state and the stability of

that state. With a game theoretic analysis the network steady states can be identi-

fied from the Nash equilibriums of its associated game. Convergence of the solution

is also an important factor in game theory. Neel et al. formulated a set of conditions

necessary for modeling a wireless network as a game and these include two sets of

conditions; the first is to ensure rationality and the second is a set of conditions for

a non-trivial game [54]. The conditions described by Neel et al. are as follows:

Conditions for rationality

1- The decision-making process must be well-defined, i.e. each of the radios must

follow a well-defined and deterministic set of rules for selecting an action with re-
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spect to environmental factors.

2- A decision maker’s choice to change an action should have a reasonable expecta-

tion to result in a positive improvement deviation.

Conditions for a nontrivial game

1- There must be more than one decision making entity in the network.

2- More than one decision maker has a nonsingleton action set.

The Nash Bargaining Solution is a well know strategy in game theory where a player

enters the game with an initial point of disagreement and attempts to benefit more

by negotiating with other players. The solution is mainly derived by maximizing the

product of benefits and is subject to a number of axioms [55]. Han et al. introduced

bargaining theory to OFDMA scheduling but on a local level only, i.e. intra-cell

scheduling [56]. Our work extends this scheduling to the global level where the cells

become the players.

2.2.4 Opportunistic Admission Control

The objective of call admission control (CAC) is to provide QoS guarantees for indi-

vidual connections while efficiently utilizing network resources. Specifically, a CAC

algorithm makes the following decision: given a call arrives to a network, can it

be admitted by the network with its requested QoS satisfied and without violating

the QoS guarantees made to the existing connections? The decision is based on

the availability of network resources as well as the traffic specifications and QoS

requirements of the users. If the decision is positive, necessary network resources

need to be reserved to support the QoS. Hence CAC is closely related to channel

allocation, base-station assignment, scheduling, power control, and bandwidth reser-

vation. Therefore, before a user can be admitted, the admission controller estimates

the impact of admitting that user on the QoS of the existing connections since there

will be an additional link competing for resources [57]. The new user is rejected

if it was found that it will jeopardize the QoS of the current users, otherwise it is

accepted. From a psychological point of view, it is easier for a user to be denied

admittance than be admitted and later dropped during a call.

CAC algorithms may differ in their admission criteria; they may be centralized

or distributed, they may use global (all-cell) or local (single-cell) information about
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resource availability and interference levels to make admission decisions. The design

of distributed CAC for cellular networks is not an easy task since intra-cell and

inter-cell interference should be taken into account. The associated intra-cell and

inter-cell resource allocation will therefore be complicated due to the interference.

A typical admission criterion is SIR. For example, Liu and Zarki employed SIR to

define a measure called residual capacity, and use it as the admission criterion: if

the residual capacity is positive, accept the new call, otherwise reject it [58] . Evans

and Everitt used the concept of effective bandwidth to measure whether the signal

to interference density ratio (SIDR) can be satisfied for each class with certain prob-

ability [59]. If the total effective bandwidth, including that for the new call, is less

than the available bandwidth, the new call will be accepted; otherwise, it will be

rejected.

Traditional admission control algorithms make acceptance decisions for new and

handoff calls based on their ability to satisfy certain QoS constraints such as the

dropping probability of handoff calls and the blocking probability of new calls being

lower than a pre-specified threshold. A base-station may support only a limited

number of connections (channel assigned) simultaneously due to bandwidth limita-

tions. Handoff occurs when a mobile user with an ongoing connection leaves the

current cell and enters into another cell. Thus an ongoing incoming connection

may be dropped during a handoff if there is insufficient bandwidth in the new cell

to support it. The handoff call drop probability can be reduced by rejecting new

connection requests. Reducing the handoff call drop probability could result in an

increase in the new call blocking probability. As a result, there is a tradeoff between

the handoff and new call blocking probabilities. These control algorithms usually en-

force hard admission decisions. Opportunistic admission control algorithms, on the

other hand, provide softer decisions due to the property of adapting to the variation

of the channel condition of the users, permitting more flexibility in the admission

decision. There has, however, been little study on admission control in opportunistic

multi-user communications.

The admission controller in an opportunistic system bases its decision on the

channel behavior of the ongoing calls. The opportunistic scheduler would provide

different levels of QoS to the users depending on their channel conditions. However,

the controller will impose the minimum acceptable QoS level for all users in the
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system. For this, the controller needs to estimate the impact the new user will have

on the system. This estimation is possible in opportunistic systems given that the

channel states ξi(t) are stationary ergodic processes that can be determined at a spe-

cific time t by their cumulative distribution function Fξi(ξi), which is independent of

t. With this information at the admission controller’s disposal, it can estimate the

impact of the new user and form the decision on whether to accept the new user or

reject it.

The importance of combining opportunistic scheduling with admission control

has been recognized in several studies, see e.g. [60, 61, 62]. In [63] the system was

probed using a simple iterative admission control scheme in which some weight in

the decision rule was changed to find the feasible region. If the minimum requested

rates for the active users were inside the feasible region then the new user was ad-

mitted, otherwise rejected. However, during the probing process, the QoS of the

active users could not be guaranteed.

In [64], the authors propose a measurement-based admission control algorithm

combined with a utility based opportunistic scheduling algorithm. When a new call

arrives, it is admitted and served by using a predefined utility function for admission

trial. If the average throughput of the new arrival after a certain trial period satisfies

its minimum requirement, then the new arrival is admitted, otherwise it is blocked.

In [65] the authors propose a smooth admission control scheme. The basic idea

of the controller is to gradually increase the amount of time allocated to the new

users of a trial period. Specifically, they first propose an adaptive resource allocation

algorithm-QoS driven weight adaptation for weighted proportional fair opportunistic

scheduling. Building on this algorithm, they allocate more time resources to the new

users by adaptively increasing their weights while ensuring the QoS of other active

users. Based on the observed average throughput, an admission decision is made

within a time-out window: the system admits an incoming user if its throughput is

above the threshold; otherwise, the user drops out and requests access again after a

back-off time.

The call admission control problem can be formulated as an optimization prob-

lem, i.e. maximize the network efficiency/utility/revenue subject to the QoS con-

straints of connections. The QoS constraints could be signal-to-interference ratio
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(SIR), the ratio of bit energy to interference density Eb/I0, bit error rate (BER),

call dropping probability, or connection-level QoS (such as a data rate, delay bound,

and delay-bound violation probability triplet). For example, a CAC problem can

be; maximize the number of users admitted or minimize the blocking probability.

The admission control scheme presented in this thesis resembles the sliding win-

dow based call admission control scheme suggested by Zhao and Zhang [66] and can

be interpreted as a modification of the active link protection scheme suggested by

Bambos et al. to the multiuser diversity channel [67].

2.2.5 Opportunistic Rate Control

The resource allocation problem can be solved as an optimization problem having

the QoS demands as constraints or solve it using some control engineering methods.

In [63] a simple I-control (stochastic approximation) method was introduced to con-

trol the QoS. If a data rate constraint of a user was not met in a time window, a

weight could be added to make its selection more probable. If the rate allocated to

the user was higher than the target, the weight could be decreased. This approach

converts the scheduling problem into a control problem. In general, the problem

of scheduling packets over a fading channel could be viewed as a stochastic opti-

mal control problem. In [68], a method for controlling the resource allocation for

the different users was suggested. The scheme added one control parameter to the

scheduling metric that was changed based on the observed channel access time in

some time window.

Patil and Veciana proposed a scheduling scheme that combines a policy to decide

which users will be active with a mechanism to select the user to serve during a time-

slot [69]. Users are divided into two categories: Real-time users and Best Effort users.

Each real-time user is assigned tokens (slots) within a frame. If a user has used up

all its tokens, it will be removed from the real-time users active set. Zhang et al.

utilized stochastic approximation algorithm to guarantee certain quality of service

level in terms of minimum data rate [70]. We note that the stochastic approximation

algorithm can result in either very slow convergence or very high variance of the

control parameters.

The proposed scheduler that controls rate in this thesis resembles the scheduler

suggested by Liu et al. [63], but instead of modifying the scheduling metric, the

active set of users is controlled, i.e. the number of active users at a given moment
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of time.

2.2.6 Multi-carrier Systems

In a multi-carrier system, channel variations of different frequency bands could also

be exploited. In a single-user OFDM system, the transmit power for each subcarrier

can be adapted to maximize data rate using the water-filling algorithm [71]. In mul-

tiuser environments, the situation becomes more complicated as each user will have

a different multipath fading profile due to the users not being in the same location.

Thus, it is likely that while one subcarrier may be in deep fade for a particular

user, it may be in a good condition for another user due to temporal and spatial

diversity in user locations. Therefore, this effect can be exploited to further enhance

system performance. By dynamically allocating different subcarriers and transmit

power to users, this scheme can enhance system performance beyond a fixed-power,

fixed-subcarrier scheme. There are a number of studies that discuss waterfilling in

a multiuser environment such as [72] which presents an algorithm that determines

the subcarrier allocation for a multiple access OFDM system. In their algorithm,

once the subcarrier allocation is established, the bit and power allocation for each

user is determined with a single-user bit loading algorithm. Kobayashi and Caire

proposed an iterative waterfilling algorithm based on dual composition [73]. Two

decompositions are considered, one in the subcarrier domain and another in both

subcarrier and user domains.

In OFDMA networks, the bandwidth is divided into many narrowband subchan-

nels [74]. The task of the resource scheduler is to divide the transmitter power

among the different channels and the channels among the different users. OFDMA

schedulers can be divided into two categories; schedulers with fixed power allocation

and schedulers with variable power allocation as shown in Fig. 2.2. Variable power

schedulers come from the fact that different frequency bands experience different

fading, so the power allocation can be opportunistic by allocating more power to

good subchannels. This technique is known as water filling. In OFDMA and MC-

CDMA (multi-carrier code division multiple access) the transmitter utilizes inverse

fast Fourier transform (IFFT) followed by digital to analogue conversion. Since

the different subchannels are formed using digital signal processing it is possible

to dynamically control the utilized spectrum. If the channel is static (e.g. in dig-

ital subscribers lines (DSL)) or slowly time varying, the receiver can provide the
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Figure 2.2: OFDMA scheduler classes

transmitter with detailed CSI using a robust feedback channel. Thanks to the char-

acteristic of multi-carrier modulation, it is also possible to dynamically change the

transmitting power and bit rate of each subchannel according to channel selectivity

variations (adaptive bit loading). Studies regarding the application of adaptive bit

loading algorithms to wireless channels can be seen in [75, 76, 77, 78].

Adaptive OFDMA has been considered for the 3G LTE [79]. Several studies have

looked at scheduling in adaptive OFDMA systems and proposed optimal schemes

such as [80, 81, 82]. Based on the CSI, more sophisticated adaptive transmission

techniques have the possibility to dynamically modify the parameters of the modula-

tor in order to improve performance [83]. However, reporting accurate CSI requires

a considerable amount of overhead, this in turn introduces a trade-off between the

quality and the overall throughput of a system. For this reason, a technique called

’clustering’ is introduced where subchannels are grouped into clusters of wide-band

channels. This limits the amount of necessary feedback by selecting the same feed-

back for all narrowband channels within a cluster [84]. Cherriman et al. suggested

to group the subcarriers into RBs and report one CSI for each RB [85].

Zhang et al. proposed reducing the amount of feedback bits for a cluster bene-

fiting from the high correlation of a cluster’s subchannels [86]. Gesbert and Alouini

proposed in [87, 88] to utilize a one bit per user feedback approach. In their work

users notify the base-station only if they exceed a certain SNR threshold. Their

work was further extended to include a multi-stage version [89]. An analysis of

the different number of feedback bits per user techniques has been made in [90].

The accuracy of channel estimation based on the feedback reports also plays a vital

role in opportunistic scheduling. Channel estimation errors or outdated CSI reports

can significantly decrease system performance as users are allocated resources that

do not match their actual conditions. The effect of channel estimation errors in
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OFDMA systems has been studied in [91]. Agrawal et al. developed an optimal and

a sub-optimal scheduler for OFDMA systems by modeling the channel estimation

error as a self-noise term in the decoding process [92]. In this thesis, the author

extends the work to study the effect of the number of information bits as well as

what the type of that information.
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Chapter 3

Utility Based Scheduling

In this chapter we will see scheduling algorithms that maximize specific utility func-

tions while take into account the limitations of the access system. First, a single-cell

scheduler is created and is later extended to include multiple cells and act as a

centralized coordinator. In addition, the optimal solutions will be presented with

the help of integer programming. While the optimal solutions cannot be realized in

practice due to the computational complexity, it provides good insights of how well

other algorithms perform.

3.1 Single-cell Multi-carrier Scheduling

This part develops a scheduler for SC-FDMA systems. The scheduler should be

consistent with the resource allocation constraints of the uplink channel for 3G LTE

systems. Additionally, the scheduler must also take into account failed transmissions

when forming a scheduling decision. A heuristic scheduler is one proposition and is

considered a suitable choice since it is computationally feasible and is able to find a

practical solution to the resource allocation problem. A study is also made on the

impact of traffic reports on the overall system performance.

3.1.1 Localized Gradient Algorithm LGA

The gradient algorithm is considered as the metric for the scheduler in this chapter.

Referring to Stolyar’s framework presented in Chapter 2,

q(t) = arg max
q∈Q(g)

∇U(X̄(t))Tµg(q) (3.1)
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where Q(g) in this case will denote all feasible RB assignments that can be made

with state g at time instant t. The set is confined by the channel capacity as well as

the constraints on the allocation of the RBs. In what follows, an integer program-

ming assignment problem is formulated for solving q(t) under the constraint that

all RBs assigned to a single UE must be consecutive in the frequency domain. The

integer programming solution is then used as a reference to validate the performance

of the suggested heuristics to be introduced in the next section.

Let yi,n denote a selection variable: yi,n = 1 if RB n is assigned to user i;

otherwise yi,n = 0. It is assumed that a UE divides its available power evenly among

the assigned RBs. Based on channel sounding, the scheduler forms an estimate of the

rate µi,n that user i expects to obtain if RB n is assigned to it. Given the estimated

throughput x̄i, the scheduler needs to solve the following assignment problem.

y(t) = argmax
y

N∑
i=1

L∑
n=1

Ui(x̄i)µi,nyin (3.2)

subject to

yi,n ∈ {0, 1}
N∑
i=1

yi,n ≤ 1, i = 1, 2, · · · , N

yi,n − yi,(n+1) + yi,m ≤ 1, m = n+ 2, n+ 3, · · · , L

where N is the total number of users and L is the total number of RBs. It can be

seen that the first inequality limits the RB to one user only. The second inequality

enforces the requirement of consecutive blocks. If yi,n = 1 and yi,(n+1) = 0, then

yi,m ≤ 0 for m > n + 1. If on the other hand both yin = 1 and yi,(n+1) = 1,

the inequality requires that yi,m ≤ 1. If yi,n = 0 then the inequality states that

yi,m ≤ −
(
1− (1− yi,(n+1))

)
, i.e. the inequality becomes redundant.

The gradient scheduler discussed above is optimal for perfect channel state in-

formation. In measurement delay cases and estimation errors, the selection rule

occasionally picks rates that do not match the channel state. It is assumed that the

synchronous non-adaptive HARQ mentioned in Section 1.2.2 is utilized to deal with

the errors. Now the scheduler has to reserve those RBs to the UE that has scheduled

retransmissions. To take this into account in the integer programming problem, we
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need to add a constraint

yi,n = 1, if user i has an ARQ process on RB n (3.3)

It is worth noting, that the integer programming approach presented here does

not provide the optimal solution in case of imperfect channel estimates. However,

it is expected still to provide a close to optimal solution that can be used as a

reference. To validate this claim, it can be noted that the performance loss due to

retransmissions is low as shown in Section 3.1.3.

3.1.2 Heuristic Localized Gradient Algorithm HLGA

The localized gradient algorithm described in the previous section requires that the

scheduler solves an integer programming problem for every TTI. As the number of

users and available resource blocks grow, the computational complexity and time

required to solve the problem soon becomes non-feasible. Hence, there is a need for

simpler algorithms that can provide adequate solutions promptly. In this section a

scheduling algorithm is suggested that would follow a simple heuristics in allocating

the resource blocks to the users while maintaining the required allocation constraint

and taking retransmission requests into consideration.

Let Zi denote the set of RBs assigned to user i and Li denote the set of RBs that

could be allocated to user i, (i.e. the RBs that do not violate the localization con-

straint if assigned to user i). Initialize by defining Zi and Li for all i and t.

Algorithm 3.1

Z(0)
i = ∅

L(0)
i = {RB1, RB2, · · · , RBL}

Step 1: Iterate by finding the user-RB pair that has the maximum value

(i∗, z∗) = arg max
(i,z),z∈L(k)

i ,i

∇Ui(x̄i(t))µi,z(t)

Step 2: Assign RB z∗ to user i∗ and update Li.

Z(k+1)
i∗ = Z(k)

i∗ ∪ z∗

L(k+1)
i = L(k)

i \ N (k)
i , i ̸= i∗
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I(k)
i = {n : n ≥ Z(k+1)

i∗ } for users who have been assigned RBs located before Z(k+1)
i∗

and I(k)
i = {n : n ≤ Z(k+1)

i∗ } for users with RBs located after Z(k+1)
i∗ .

Step 3: If user i∗ is assigned an RB that is not consecutive to the previously assigned

RB(s) then all RBs in between will be allocated to that user since assigning any of

these RBs to any other user will breach the localization of user i∗.

Z(k+1)
i∗ = Z(k)

i∗ ∪ Z̃(k)
i∗

Z̃(k)
i∗ =

{
{z : Z(k)

i∗ < z ≤ z∗}, z∗ > Z(k)
i∗

{z : Z(k)
i∗ > z ≥ z∗}, z∗ < Z(k)

i∗

Update Li in the same way as in Step 3.

Step 4 Repeat the previous steps until all RBs are assigned.

Step 5 If a user has failed transmissions on certain RBs, then these RBs plus any

blocks located in between two non-consecutive ARQs will be reserved for retrans-

mission.

Zr
i (t+ τ) = {RB(1)

ARQ, · · · , RB
(a)
ARQ}, r ∈ R

where RB
(1)
ARQ represents the block with the lowest order that has an ARQ process

and RB
(a)
ARQ is the ARQ block with the highest order. R is the set of users that have

ARQ processes. τ is a fixed predefined time. Iterating for Li with Li(t + τ)(0) =

{RB1, RB2, · · · , L}, we have

L(k+1)
i (t+ τ) = L(k)

i (t+ τ) \ Zr
h(t+ τ), i ̸= h

Numerical Example

For a better understanding of the heuristics, a simple example is presented. Assume

a system with 3 users and 6 RBs. Assume perfect channel estimation. The selection

metric forms an i× j matrix that has the following values for time-slot t.

∇Ui(x̄i(t))µi,j(t) = 0.26 1.65 0.10 1.60 0.85 0.88

0.82 0.50 0.30 0.90 0.63 0.87

0.41 0.39 0.47 0.62 0.89 0.59


The scheduler will start by allocating RB2 to UE1 since it has the highest value

in the matrix 1.65 and naturally any RB that is allocated to a user will be excluded
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for all other users. The next highest value is 1.60 with UE1 on RB4. UE1 is allocated

RBs 4 and 3 due to the fact that RB3 will fall between two RBs that belong to the

same user (UE1) and to maintain localization it cannot be allocated to any other

user. Next is the value 0.89 with UE3 on RB5 leading to the exclusion of RB1 from

the set of possible RBs for UE3. Following that is 0.87 with UE2 on RB6 excluding

RB1 for UE2. Finally RB1 is allocated to UE1 since there is no possibility to grant

it to any other user due to localization. The RB allocation will have the final form:

RB index 1 2 3 4 5 6
UE 1 1 1 1 3 2

3.1.3 Computational Evaluation

System parameters for the evaluation are described in Table 3.1. The proportional

fair rule is used as the metric for selecting the RBs in every TTI for LGA and

HLGA. Retransmissions are included in the scheduling process and are prioritized.

The scheme is compared against the solution provided by the LGA as well as the

solution from a blind scheduler that assigns all RBs to one user at a time in a round-

robin fashion. Fig. 3.1 shows the cell throughput for cases of perfect and imperfect

channel estimation. The figure is normalized to the performance of a restriction-

free, retransmission-free case where there is no constraint in the block allocation and

channel estimation is assumed to be perfect. The scheduling used in this reference

case is simply the original non-localized version of the gradient algorithm, non local-

ized gradient algorithm (NLGA). It can be seen that there is only a 4% gap between

the LGA optimal solution and the NLGA optimal solution. This gap represents the

impact of the localization requirement which implies that the localization constraint

has a low impairment on the performance of the LGA. It can also be seen in the

figure that the HLGA provides a close to optimal performance when compared to

the NLGA and LGA optimal solutions. For the imperfect channel information case

it can be seen that the LGA and HLGA still perform well with retransmissions now

associated in the block scheduling decision. The gap between the LGA solution

which is now a sub-optimal solution, and the NLGA optimal solution grows to 10%.

Thus, the impact of the retransmissions on the performance of the LGA was only

5%. The HLGA also maintains a good position with a drop in performance of only

7%. Table 3.2 shows the exact throughput values for both cases. In Table 3.3 the

methods are compared with another opportunistic scheduler obtained from the lit-
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Table 3.1: System parameters

Parameter Value

RB bandwidth 375 kHz
Total number of blocks 10 (25 subcarrier/RB)
TTI duration 1 ms
Packet arrival distribution Log-normal
Mean inter-arrival time 60 ms
Standard deviation 5 ms
Fading model Two path Raleigh
No. of terminals 5 (Single cell)
Site to site distance 100 m
Number of Tx antennas 1
Max. Tx power 21 dBm
Noise power -108.5 dBm

Table 3.2: Cell throughput values in Mbps for perfect and imperfect channel esti-
mation -Dynamic traffic

RR HLGA LGA NLGA
Perfect 12.69 23.05 25.64 26.78
Imperfect 9.83 21.29 24.08 -

erature [37] which we shall call the fast adaptive transmission bandwidth (FATB)

scheduler. The scheduler in this case starts allocating the user with the highest

scheduling metric on the corresponding RB and allocates the adjacent RBs to the

same user until a user with a higher metric is found. The assumptions for this evalu-

ation were perfect channel estimation and full buffer traffic. Results show that their

is improvement in the HLGA scheme over the FATB in small and large cells. This

gain is further increased with the LGA algorithm.

Dynamic Traffic Conditions

This section demonstrates the performance of the algorithm in a dynamic traffic

model with different scenarios.

Pruning: In a dynamic traffic model, the amount of resources given to a user should

correspond to the amount of data in the transmission buffer. A proposition to solve

that problem is to use a pruning procedure. Resource blocks are first allocated to

active users regardless of the amount of data they have using the HLGA. Once the

RBs have been allocated, pruning is performed to find the extra blocks allocated to a
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Figure 3.1: Normalized cell throughput with perfect and imperfect channel estima-
tion

Table 3.3: Cell throughput comparison with the FATB scheduler -Static traffic (Full
buffer) for different cell radii

RR FATB HLGA LGA NLGA
100 m 24.97 26.75 26.96 27.54 28.15
1000 m 8.3861 10.6292 12.8480 13.4045 13.8310

user and re-allocate them to neighboring users in the spectrum or to users who have

not been assigned any block in the scheduled TTI. Pruning is usually performed to

edge blocks due to the localization constraint. The procedure can be summarized in

the following algorithm

Algorithm 3.2

Step 1: Apply the HLGA algorithm to obtain the resource block allocation that

maximizes (3.1).

Initiate pruning with i = 1, denoting the user with assignments in the beginning of

the frequency spectrum.

Step 2:

if for user i

L∑
n=1

µi,nyi,n > Wi
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Figure 3.2: Pruning Example

where µi,n is the rate of user i obtained with RB n and yi,n is a selection variable:

yi,n = 1 if RB n is assigned to user i and 0 otherwise. Wi is the total amount of

data in the buffer of user i.

then prune the edge block and assign it to the next user in spectrum or to a

unassigned user who maximizes the allocation problem with the extra block.

Step 3: Repeat step 2 until:

L∑
n=1

µi,nyi,n ≤ Wi

Step 4: Repeat steps 2-3 to the following user in spectrum: i = i+ 1.

It follows that pruning will spare any extra blocks assigned by the HLGA, mak-

ing it possible for users in need to benefit from them. However, due to the contiguity

constraint of SC-FDMA, the beneficiary users have to be either users with spectrum

allocations adjacent to the extra blocks or users with no allocations in the scheduled

TTI.

Example:

Figure 3.2 shows two UEs with allocated bands. Each UE has been allocated three

bands. According to the transmission buffer of UE1, it was found that the amount of

data can be fitted in two bands only. Therefore, UE1 can spare one band that can be

pruned and allocated either to UE2 or to a non-allocated UE in the scheduled TTI.

The impact of pruning on the average packet delay can be seen in Fig. 3.3. The users

are sorted according to their link gains starting with the user with the best channel

and ending with the worst user. It can be clearly seen that pruning has a significant

impact on performance. Average packet delay is reduced dramatically with pruning.

The optimal solution is included for the sake of performance evaluation.
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Figure 3.3: Average packet delays

Buffer Occupancy Report Delay:

Buffer occupancy (BO) status reports are generally used in data communication

systems to support uplink packet scheduling decisions. Buffer reports are needed to

achieve high radio resource utilization and consequently higher performance.

Detailed BO report : It is assumed so far that the buffer information of the users

is always available at the scheduler. In reality when a UE has data it wants to

transmit, it makes a request for resources and reports its BO information to the BS.

The UE will be scheduled the necessary time and frequency resources based on that

report. However, due to the delay of the next buffer report, the BS will keep on

scheduling the subject UE based on old buffer information, when in fact the buffer

status has changed due to new packet arrivals. Large intervals between reports lead

to packet delays increasing dramatically due to the accumulation of packets arriving

before the next report and consequently staying in the buffer because of the absence

of the necessary resources. On the other hand, when the report interval is small, the

number of arrivals is much smaller. This will lead to the fact that at the time of the

second buffer report an empty user will be considered non-active for the next report

interval giving all the resources to other users for the complete interval. Figures 3.4,

3.6 and 3.8 represent the cumulative distribution functions (CDF) for the average

packet delay of the best, worst and median users respectively. It can be seen that
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in the case of the best user, performance is at its best when there are no delays in

the reports. As the report delay increases, system performance decreases. In the

worst user case it is interesting to see that the best performance is with small buffer

delays since good users who are able to empty their buffers will become idle. This

in turn will make the set of active users who need to be scheduled smaller. Perfor-

mance however decreases with higher report delays since the probability that good

users will have a packet arrival becomes higher and in turn makes them active. It

is also interesting to see that the user with the weakest link experienced the worst

performance when there were no report delays. In the median user case, there is

almost similar performance with small and no report delays.

Limited BO report : Detailed BO information will help the BS to assign resources

more efficiently at the cost of increased uplink signaling overhead. Therefore, there

will be a trade-off between the BO accuracy and the scheduling gain. This part will

look into the case where signalling is at its minimum with the report consisting of

only 1 bit of information declaring either a full or an empty buffer, i.e. active or

non-active without reporting how much data there is in the buffer. In this case the

base-station will not limit the resources granted to an active user that maximizes

the allocation optimization problem. In this case bad channel users will suffer more

delay since they will only be selected when their rate quality factor is higher than

others. The rate quality here is the instantaneous achievable rate divided by the

average throughput on a band, i.e. the allocation of bands will be a function of

channel condition only rather than channel condition + buffer size. Again, the

performances of the best, worst and median users are presented in Figures 3.5, 3.7

and 3.9 respectively. Naturally, packet delays grow larger due to the limited amount

of information available at the scheduler. This is clearly noted when comparing

the cases of the worst and median users of Figures 3.6 and 3.8 with 3.7 and 3.9

respectively. This result also shows the impact of pruning due to the fact that in

limited BO reports, pruning cannot be utilized. The overall outcome is similar to

the detailed BO report results except with larger delays.
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Figure 3.4: Average packet delay CDF for best user - Detailed BO report delay
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Figure 3.5: Average packet delay CDF for best user - Limited BO report delay
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Figure 3.6: Average packet delay CDF for worst - Detailed BO report delay
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Figure 3.7: Average packet delay CDF for worst user - Limited BO report delay
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Figure 3.8: Average packet delay CDF for median user - Detailed BO report delay
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Figure 3.9: Average packet delay CDF for median user - Limited BO report delay
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3.2 Multi-cell Multi-carrier Scheduling

The single-cell algorithm will now be generalized to include interference from other

cells. The objective of the scheme in this case is to coordinate the uplink transmission

in neighboring cells such that inter-cell interference is mitigated and the aggregate

utility of the users is maximized.

3.2.1 Heuristic Scheduling

In this section, a heuristic approach is proposed to coordinate the scheduling of users

in neighboring cells. The basic idea of the scheme is to switch users on and off to

maximize a certain utility function taking into account the constraints of the uplink

interface.

We first start by assigning the RBs in each of the neighboring cells separately

using the single-cell heuristic scheduler proposed in Section 3.1.2. It is also possible

to use other methods for the assignment at this stage. We then proceed with a

2-cell approach where coordination is carried between 2 cells at a time. The result

coordination of each cell is later coordinated with another neighboring cell and so

on, i.e. iterative improvement is implemented for the coordination. This pairing

approach has also been implemented in for instance [56]. For the users of two cells

sharing RB n, the marginal utility when both users transmit is compared with the

case where only one user transmits.

Algorithm 3.3

Step 1: Start with cell pair B = {1, 2}.

If

∇Ui(x̄i)µi,j,n(t) +∇Uj(x̄j)µj,i,n(t) ≥ ∇Ui(x̄i)µi,0,n(t),

i ∈ N1(n), j ∈ N2(n), n = 1, 2, · · · , L

and

∇Ui(x̄i)µi,j,n(t) +∇Uj(x̄j)µj,i,n(t) ≥ ∇Uj(x̄j)µj,0,n(t),

then;

Both users can utilize RB n

otherwise;

q∗ = arg max
q∈Nb(n)

∇Uk(x̄q)µq,n(t), b ∈ B
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where Nb(n) is the set of users in cell b who have been assigned RB n. The notation

of µi,j,n here denotes the data rate of user i of cell 1 with RB n when user j of cell 2

is utilizing the same RB. If j doesn’t transmit on RB n then the notation is written

as µi,0,n

Step 2: We check for gaps in the spectrum that happened due to disabling users

from disputed RBs. Since SC-FDMA demands an intact spectrum, gaps cannot

be present in the spectrum allocated to a user except at the edges to preserve the

locality constraint. Therefore, if a hole was found, for example, in the middle, a

suggestion would be to disable all the RBs that come before or after the gap which

belong to the allocated user. The decision whether to disable the RBs that come

before or after the gap is made based on the following criteria:

For a gap in a resource block with the index τ ;

If∑
n<τ,n∈Li

∇Ui(x̄i)µi,n(t) >
∑

n>τ,n∈Li

∇Ui(x̄i)µi,n(t)

then;

Ly := Li \ n, ∀n > λ

otherwise;

Li := Li \ n, ∀n < λ

Step 3: With the new assignment, Repeat steps 1-2 for other cell pairs until all the

pair combinations are exhausted.

3.2.2 Optimal Scheduling

This section formulates the required optimization problem for coordinating the up-

link transmission of multiple users in multiple cells. For that purpose, the algorithm

finds the allocations that would maximize the aggregate of the marginal utilities.
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y(t) =

argmax
y

L∑
n=1

∑
b∈B

∑
i∈Nb

∑
−→
j ∈J−b

∇Ui(x̄i)µi,n(
−→
j , b, t)yi,n(

−→
j , b),

B = {Set of base-station indices}

J−b = {[jΦ(1), jΦ(2), · · · jΦ(B−1)] | jΦ(k) ∈ NΦ(k)}], Φ = B \ b

(3.4)

subject to

yi,n(
−→
j ) ∈ {0, 1}, ∀(−→j ) ∈ J−b∑

i∈Nb

yi,n(
−→
j ) ≤ 1, ∀(−→j ) ∈ J−b (3.5)

∑
i∈Nb

yi,n+1(
−→
j )−

∑
i∈Nb

yi,n(
−→
j ) +

∑
i∈Nb

yi,m(
−→
j ) ≤ 1, (3.6)

n = 1, 2, · · · , L m = n+ 2, n+ 3, · · · , L, ∀(−→j ) ∈ J−b

L∑
n=1

∑
i∈Nb

min
(
Wi(t) , µi,n(

−→
j , t)yi,n(

−→
j )Tslot

)
≤Wi(t), (3.7)

∀(−→j ) ∈ J−b

where y(t) is the RB allocation at time t. The total number of RBs is L and Nb

is the set of users in cell b. The variable yi,n(
−→
j , t) is the selection probability that

RB n is allocated to user i in cell b and users in the vector
−→
j for the other cells at

time t. Wi denotes the transmission buffer occupancy for user i. The duration of

the time slot is represented by Tslot.

Equation (3.5) will limit a RB to one user only in each cell. Equation (3.6)

enforces the requirement of consecutive blocks. If yi,n(
−→
j , t) = 1 and yi,n(

−→
j , t) = 0,

then yi,m(
−→
j , t) ≤ 0 for m > n + 1. If on the other hand both yi,n(

−→
j , t) = 1 and

yi,n+1(
−→
j , t) = 1, the inequality requires that yi,m(

−→
j , t) ≤ 1. If yi,n(

−→
j , t) = 0 then

the inequality states that yi,m(
−→
j , t) ≤ −

(
1− (1− yi,n+1(

−→
j , t))

)
. This means that

the inequality becomes redundant. Equation (3.7) is to insure the matching between

the amount of granted resources to the actual need. The constrained optimization

problem above is solved by integer programming.
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Table 3.4: System parameters

Parameter Value

RB bandwidth 375 kHz
Total number of blocks 6 (25 subcarrier/RB)
TTI duration 1 ms
Fading model TU-6 Raleigh fading
Radio propagation Site to site distance 100 m
Max. Tx power 21 dBm
BS antenna gain 18 dBi
UE antenna gain 0 dBi
Noise power -108.5 dBm

Figure 3.10: Cellular model

3.2.3 Computational Evaluation

The performance of the scheme has been evaluated in terms of uplink average

throughput, utility and delay, via Monte Carlo simulations. The simulations con-

sider only a two-cell case where the focus is on two adjacent sectors 1 and 2 of two

neighboring cells as shown in Fig. 3.10. Two scenarios for the traffic are consid-

ered; one with packets arriving according to a log-normal distribution with fixed

packet sizes arriving with different inter-arrival times and the other being a full

buffer case where there are packet arrivals in every TTI causing a congestion in the

buffers. System parameters are shown in Table 3.4. log(x̄) is used as the utility

function U(x̄) for the considered model with x̄ being the average throughput [93].

This in turn will produce the proportional fair rule when used in the gradient al-

gorithm. Perfect channel estimation is considered so retransmissions are not needed.

In the simulations the proposed scheme is compared with cases when there is no
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coordination using both the PF and round robin schedulers with a reuse 1 factor.

Reuse 1 means that the whole spectrum is available to all the users in all cells.

Other references that are used in the comparison are proportional fair and round-

robin schedulers in a reuse static reuse partitioning model. Here, a reuse factor of 3

is used which allows only one third of the spectrum to users who are situated near

the edge of the cell. A user is defined as a cell-edge user if the difference in the link

gain to the home and neighboring base-stations is less than 5 dB. Simulations reveal

that using the proposed coordination scheme yields near-optimal results. This can

be seen in Fig. 3.11 which plots the total average throughput of the system. The

simulations had a standard deviation of less than 1 Mbps. It can clearly be seen

that with coordination the output of the system is matched to the input up to very

high traffic loads. On the other hand non-optimal methods tend to produce varying

amounts of outage as loads grow higher. Throughputs are also plotted for increasing

numbers of users shown in Fig. 3.12 where it can be seen that using the coordination

scheme will always provide higher data rates as long as the number of users in each

cell is larger than 1.

Figures 3.13 and 3.14 represent the aggregate utility value for both cases. It shows

that using the coordination scheme maximizes the utilities of the users providing a

reasonable degree of satisfaction for all users in the system. Finally, Figures 3.15

and 3.16 show the mean amount of delay the users suffer with the different methods.

The optimal solution was not considered in Figures 3.12, 3.14 and 3.16 due to the

computational complexity in solving the optimization problem as the number of

users increases. Therefore, based on the results obtained from the 2 user/sector case

in Figures 3.11, 3.13 and 3.15 the assumption was made that the optimal solution

can be generalized. It is also worth noting that the reason PF and RR methods

provide similar performances is due to the fact that we are operating in a high SINR

region where the logarithmic rate-SINR mapping is almost constant.
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Figure 3.11: Aggregate throughput as a function of the traffic load for a fixed number
of users; 2 users/cell
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Figure 3.12: Aggregate average throughput as a function of the number of users for
a fixed traffic load; Full buffer
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Figure 3.13: Aggregate utility as a function of the traffic load for a fixed number of
users; 2 users/sector
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Figure 3.14: Aggregate utility as a function of the number of users for a fixed traffic
load number of users; Full buffer
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Figure 3.15: Average packet delay as a function of the traffic load for a fixed number
of users; 2 users/sector

1 2 4 6 8 10
50

100

150

200

250

300

350

400

Number of Users/Sector

A
ve

ra
ge

 T
im

e 
D

el
ay

 (
m

s)

 

 

Coordination
PF−Reuse 1
PF−Reuse
RR−Reuse 1
PF−Reuse 3

Figure 3.16: Average packet delay as a function of the number of users for a fixed
traffic load number of users; Full buffer
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3.3 Concluding Remarks

The resource allocation constraint in the uplink channel of LTE systems makes chan-

nel dependent scheduling a challenging task due to the fact that some resources have

to be allocated to satisfy the constraint rather than the channel condition. Finding

the exact optimal solution is effort requiring and therefore, a heuristic approach to

the scheduling problem would be a suitable choice to find a practical solution to

the allocation optimization problem. For this purpose, the HLGA was suggested

and provided a good performance when compared to the optimal solution of the

LGA. The LGA, on the other hand, was considered realizable only in theory due

to its complexity making it a good benchmark to measure the performance of other

channel dependent scheduling rules for localized SC-FDMA.

The work in this chapter also proposed a procedure that can match resources to

the buffer occupancy of users in the case of dynamic traffic models. With pruning,

resources are allocated more efficiently, taking into consideration the amount of data

in users’ buffers as well as the maximization of the resource allocation problem. The

results show a significant impact on performance. It is worth noting that pruning

can also be used to discard weak bands from a set of bands scheduled for a user and

re-distribute their power on the remaining bands. The effect of buffer occupancy

report delays were also examined and was found that small report delays were in

fact beneficial from the fairness perspective as users having good link quality occa-

sionally backed off from the scheduling after emptying their buffers. This in turn left

resources free for the others to utilize whereas, in the case of good users, they are

non-active more frequently. The result of this is that when a user is declared non-

active at the time of the report, it will not be allocated any resources until the next

report, giving more chances to the bad users. Limited buffer information reports

were also considered. It was found that limited information about the buffer sta-

tus would not lead to utilizing resources efficiently causing a waste of these resources.

The single-cell scheme was later extended to a multi-cell system. Results show

that cell coordination can provide a significant amount of improvement to system

performance. The necessary multi-user multi-cell optimization problem was also

formulated to find the optimal scheduling of resources to maximize the utility of the

users and reduce inter-cell interference. The solution obtained from this optimization

provides a good reference to other opportunistic and non-opportunistic coordination
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methods. The main restriction of the schemes is the assumption of perfect channel

estimation, fixed transmission power, fixed noise power and non-real time data.
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Chapter 4

Bargaining Based scheduling

This chapter discusses bargaining as a means of scheduling by coordinating the

sharing of resources. Cells negotiate with each other to determine the number of

channels that should be allocated to their edge users. Thus, the distribution of the

channels will be a result of a bargaining process that works on maximizing a global

optimization problem. The bargaining can be viewed as a dynamic reuse scheme

where the number of edge bands are changed according to the optimization process.

4.1 System Model

The Resource blocks in this chapter are divided into fractional reused RBs and are

denoted as low interference RBs (LI-RBs) and the reuse 1 RBs as high interference

RBs (HI-RBs). The channel is assumed to be subject to slow fading only.

The focus in this work is on average throughputs that can be obtained in a given

scheduling interval. The interval is assumed to be short enough so that the under-

lying channel and traffic processes can be assumed wide sense stationary, but at

the same time it is assumed that the scheduling interval is large enough so that the

frequency selective fast fading is essentially averaged out from the resulting mean

data rates and arbitrary fractions of the RBs can be allocated to the users via time

domain scheduling. The mean data rate of user j per RB is x̄j and α-fair scheduling

is considered where the utility per user is defined as:

Uα(x̄) =

log(x̄) if α = 1

(1− α)−1x̄(1−α) otherwise

The α-fair scheduling defines a continuum of scheduling laws ranging from max
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throughput (α = 0) to Proportional Fair (α = 1) and min-max fair (α → ∞). The

parameter α could be also interpreted as a resource split between users having fa-

vorable channel conditions and users having poor channel conditions. The larger α

is, the more time-frequency resources are given to users with low data rates. The

case α = 0 leads to a greedy solution where few users close to the base-station grab

all the resources leaving the users close to the edge of the cell without any service.

4.2 Intra-cell Scheduling

Consider the following scheduling problem

Fb(l) = max
ϕ,φ

∑
i

Uα[x̄i(l)] (4.1)

s.t.

x̄i =

µilϕi if i ∈ Ne,b

µi (lϕi + (L− l)φi) if i ∈ Nc,b

∑
i∈Nc,b∪Ne,b

ϕi ≤ 1

∑
i∈Nc,b

φi ≤ 1

x̄i ≥ 0, ϕi ≥ 0, φ ≥ 0

where Nc,b is the set of center users in cell b and Ne,b is the set of edge users.

Both sets have cardinalities of Nc and Ne respectively. The variables ϕi and φi

denote the asymptotic fraction of the resources that are utilized by user i and x̄i

is the resulting throughput. Eq. 4.2 will yield the optimal scheduling of resources

(ϕ∗, φ∗) with respect to the implemented scheduling metric. In fractional frequency

reuse cases, the number of LI-RBs is db = ⌊ L
K
⌋ , where K = 3 is a typical value and

db = ⌊.⌋ denotes the floor operation. Hence, the corresponding cell utility is given

by Fb(db).

Proposition 4.1 The α-Proportional Fair optimal throughput of the users sat-

isfies one of the following:
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1. x̄i = L
µ

1
α
i∑

i∈Nc,b∪Ne,b
µ

1
α−1

i

, i ∈ Nc,b ∪Ne,b

for l ≥
∑

i∈Ne,b
µ

1
α
i −1∑

i∈Nc,b∪Ne,b
µ

1
α−1

i

L

2. x̄i =


l

µ
1
α
i∑

i∈Ne,b
µ

1
α−1

i

, i ∈ Ne,b

(L− l)
µ

1
α
i∑

i∈Nc,b
µ

1
α−1

i

, i ∈ Nc,b

for l <

∑
i∈Ne,b

µ
1
α
i∑

i∈Nc,b∪Ne,b
µ

1
α−1

i

L

Corollary 4.1 The aggregate utility has the property that

Ub(l) = Ub(lmax,b), l ≥ lmax,b (4.2)

where

lmax,b =


∑

i∈Ne,b
µ

1
α
−1

i∑
i∈Nc,b∪Ne,b

µ
1
α
−1

i

L

 (4.3)

and ⌈.⌉ denotes the ceiling (round up) operation. The proof follows directly from

Proposition 5.1.

The scheduling problem can be easily extended to the case in which the data

rates of the users are confined to some fixed interval: x̄min,i ≤ x̄i ≤ x̄max,i. The asso-

ciated optimization problem is called constrained rate cell wise scheduling problem.

It is noted that the objective function (aggregate utility) is concave and the set of

constraints are linear. Hence the constrained rate cell wise scheduling problem can

be solved easily with standard numerical tools.

Proposition 4.2 The solution to the constrained rate cell wise scheduling exists

if

l ≥ 1∑
i∈Ne,b

x̄min,i

µi

≥ lmin,b and (4.4)

1∑
i∈Nc,b

x̄min,i

µi

+
1∑

i∈Ne,b

x̄min,i

µi

≤ L (4.5)
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4.3 Inter-cell Coordination

4.3.1 Nash Bargaining

Due to minimum rate constraints, each cell requires at least LI-RBs. If
∑

b∈B lmin,b ≤
L, where B is the base-station index, there then exists a surplus of resource blocks

that the cells can divide between themselves. In economics, a common approach

to resource allocation problems is to formulate them as collaborative bargaining

games. Several different bargaining game formulations have been proposed that dif-

fer based on the utilized axioms. The most famous is the Nash bargaining game [55].

Definition 4.1

A bargaining solution F (U, d) is called Nash bargaining solution if it satisfies the

following axioms

• Symmetry. A bargaining solution F satisfies symmetry if for all symmetric

bargaining problems (U,d)

(z1, z2) ∈ F (U, d) ⇔ (z1, z2) ∈ F (U, d)

• Pareto optimality. A solution X(U, d) satisfies Pareto optimality if for all

bargaining problems (U, d), F (U, d) is a subset of the weakly efficient points in

U . It satisfies Pareto optimality if for all bargaining problems (U, d), F (U, d)

is a subset of the efficient points in U

• Invariance. A bargaining solution satisfies invariance if whenever (U ′, d′) is

obtained from the bargaining problem (U, d) by means of the transformations

zb → ϱbzb+βb, for b = 1, 2,where βb > 0 and κb ∈ R, we have that Fb(U
′, d′) =

ϱbFb(U, d) + κb, for b = 1, 2.

• IIA. A bargaining solution F satisfies independence of irrelevant alternatives

if F (U ′, d) = F (U, d) ∩ U ′ whenever U ′ ⊆ U and F (U, d) ∩ U ′ ̸= ∅.

The Independent from Irrelevant Alternatives Axiom (IIA) is slightly controver-

sial, since it has been argued that the more alternatives an agent has, the better

bargaining power he or she has. Some authors suggest alternative solutions that do

not use this axiom like [94]. Dargan et al. however, proposed replacing this axiom

by three independent properties after adding the following property to the axioms

[95].
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• Single-valuedness in symmetric problems. A bargaining solution F satisfies

single-valuedness in symmetric problems if for every symmetric problem V ∈
V , F (V ) is a singleton.

The three alternative properties for the IIA axiom are

• Independence of non-individually rational alternatives. A solution satisfies in-

dependence with respect to non-individually rational alternatives if for ev-

ery two problems (U, d) and (U ′, d) such that F V(U, d) =FV(U ′, d) we have

F (U, d) = F (U ′, d).

• Twisting. A bargaining solution F satisfies twisting if the following holds: Let

(U, d) be a bargaining problem and let (ẑ1, ẑ2) ∈ J(U, d). Let (U ′, d) be another

bargaining problem such that for some agent b = 1, 2

U \ U ′ ⊆ {(z1, z2) : zb > ẑb}
U ′ \ U ⊆ {(z1, z2) : zb < ẑb}
Then, there is (U ′

1, U
′
2) ∈M(U ′, d) such that s′b ≤ ẑb.

• Disagreement point convexity. A bargaining solution F satisfies disagreement

point convexity if for every bargaining problem V = (U, d) for all z ∈ F (U, d)

and for every ψ ∈ (0, 1) we have U ∈ F (U, (1− ψ)d+ ψz).

Theorem 4.1

The only function F (U,U(d) satisfying the axioms given by Definition 4.1 is the

Nash barging solution given by [96]

F (U,U(d)) = argmax
l∈L

∏
b

(Ub(lb)− Ub(db)) (4.6)

Parento optimality implies that any bargaining solution should be better than the

initial agreement point d. In the cell coordination case, the initial agreement point

can refer to the allocation that merely guarantees minimum rates for the edge user

or db = lmin,b it can refer to fractional reuse case, in which the reuse k = 3 is utilized

to serve the edge users. In such case db = ⌊L
k
⌋.

The proposition below provides the feasibility condition for the cell coordination

problem.

Proposition 4.3 The cell-coordination problem is feasible if
∑

b∈B lmin,b ≤ L,
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db ≥ lmin,b and
1∑

i∈Nc,b

x̄min,i
µi

+ 1∑
i∈Ne,b

x̄min,i
µi

≤ L holds for all cells b.

The cell coordination problem can be stated in terms of Multiple-Choice Knapsack

packing Problem (MCKP) as follows

max
a

∑
b

∑
f∈Kb

vb,fab,f (4.7)

s.t. ∑
f∈Kb

ab,f ≤ 1∑
f∈Kb

sb,fab,f ≤ L

where

vb,f = log[Ub(f)− Ub(db)], f ∈ Lb

sb,f = f

Lb = {lmin,b, lmin,b + 1, . . . , L}

Definition 4.2

If two allocations θ, ϑ ∈ Lb satisfy that sb,q ≤ sb,θ and ab,ϑ ≥ ab,θ, then we say that

ϑ dominates θ.

It is known that for MCKP, if ϑ dominates θ, then the optimal solution satis-

fies ab,θ = 0 [97]. Therefore the search space can be pruned by throwing out all

items for which ab,f ≤ ab,f ′ , f > f ′. By Corollary 4.1 there exists lmax,b such

that U(lmax,b) = U(f), ∀f > lmax,b, hence the search space can be limited to

Lb = {lmin,b, lmin,b + 1, . . . , lmax,b}.

Proposition 4.4 The Cell-coordination problem can be solved using a greedy algo-

rithm in polynomial time.

Algorithm 4.1 Greedy approach

1. Set ab,f =

1 f = lmin,b

0 otherwise
for all cells b
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Set S =
∑

b∈B lmin,b and V =
∑

b∈B vb,lmin,b
.

2. Define ψb,l = log[Ub(l)− U(l − 1)],

f = {lmin,b, lmin,b+1, . . . , lmax,b and order the slopes {ψb,f} in a non-decreasing

order.

3. Let h, f be the indices corresponding to the next slope in {ψh,f}. If S+sh,f > L

Stop; otherwise set ah,f = 1 and ah,(f−1) = 0 and update the sums S := S+sh,f

and V := V + vh,f . Repeat step 3.

The order of complexity for bargaining for one cell will therefore be O(Nb.C− lmin,b)

and is carried out in B cells. In practice, the method will work reasonably well for

moderate number of users.

4.3.2 Load Balancing Handovers

Instead of moving frequency resources between the cells by means of cell co-ordination,

the load among the cells can be balanced by performing load balancing handovers

[98].

It is assumed that an edge user i is able to make several handovers during the

scheduling interval such that it can be connected to base station b arbitrary frac-

tion of the scheduling interval. Mobility induced handovers are omitted due to the

assumption that the channels remain stationary during the scheduling process.

Consider the following load balanced scheduling problem

F (d) = max
ϕ,φ

∑
b∈B

∑
i∈Nc,b∪Ne,b

(Uα[x̄i]) (4.8)

s.t.

x̄i =


∑

b∈+mathcalB µjidbϕji if i ∈ Ne,b

µi (dbϕi + (L− db)φi) if i ∈ Nc,b

x̄min,i ≤ x̄i ≤ x̄max,i ∀i
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∑
i∈Ne,b

ϕi,b +
∑
i∈Nc,b

ϕi ≤ 1, ∀b ∈ B

∑
i∈Nc,b

φi ≤ 1, ∀b ∈ B

∑
b∈B

ϕi,b ≤ 1, i ∈ NE

x̄i ≥ 0, ϕi ≥ 0, ϕji ≥ 0, φ ≥ 0 ∀b, i

where NE = ∪b∈BNe,b. The above problem is concave optimization and can be

easily solved with standard numerical techniques.

4.3.3 Joint Nash bargaining and load balancing

This section combines the Nash bargaining solution with the load balancing solution.

The problem for a two cell case can be written in a MCKP form as follows.

max
a

∑
f∈L2

∑
w∈L1

vw,faw,f

s.t.

aw,f ≤ 1∑
f∈L2

∑
s∈L1

ws,fas,f ≤ L

where

vw,f = log[U(s, f)− U(d)], w ∈ L1, f ∈ L2

sw,f = w + f

Lb = {lmin,b, lmin,b + 1, . . . , L}

Similar to Algorithm 4.1, we can write;

Algorithm 4.2 Joint greedy approach
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1. Set aw,f =

1 w = lmin,1, f = lmin,2

0 otherwise

Set S =
∑

b∈B lmin,b and V = vb,lmin,1,lmin,2
.

2. Define ψw,f = log[U(w, f)− U(w − 1, f − 1)],

w = lmin,1, lmin,1 + 1, . . . , lmax,1,

f = lmin,2, lmin,2 + 1, . . . , lmax,2 with U defined in (4.8) and order the slopes

{ρw,f} in a non-decreasing order.

3. Let w, f be the indices corresponding to the next slope in {ρw,f}. If S+sw,f > L

Stop; otherwise set aw,f = 1 and aw−1,f−1 = 0 and update the sums S :=

S + sw,f and V := V + vw,f . Repeat step 3.

4.3.4 Bargaining objective function

The resource division among the cells can be viewed as a group bargaining problem in

which users belonging to a particular cell, form a group or coalition and negotiating

with the other groups (or coalitions). The group bargaining problem has been

discussed in economical theories and mathematical social science [99]. At least three

different targets for the bargaining process in (4.6) can be identified:

1. Every player represents himself and we have a
∑NG

b=1(Ne,b + Nc,b) = n player

bargaining game with NG representing the number of groups bargaining. Pro-

jecting this criteria on the system, the objective function can be, for example,

the product of the users’ utilities.

Ub(l) =
∏

i∈Ne,b∪Nc,b

(Uα[x̄i(l, ϕ
∗
i , φ

∗
i )])

2. Each group has a single representative who represents the whole group in

the NG player bargaining game. The user should be selected to maximize the

bargaining power of the group. One example would be the user with the lowest

utility value.

Ub(l) = min
i∈Ne,b∪Nc,b

{Uα[x̄i(l, ϕ
∗
i , φ

∗
i )]}

3. A new player is constructed for each group who then represents the whole

group. Zhang has suggested that the new player who can represent the group
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can be obtained by simply taking the average of the utilities [100].

Ub(l) =
1

|Ne,b|+ |Nc,b|
∑

i∈Ne,b∪Nc,b

(Uα[x̄i(l, ϕ
∗
i , φ

∗
i )])

From a signaling point of view, target 2 requires the least amount of signaling

since only one utility is reported per cell. In targets 1 and 3, the base-stations need

to share the information of every user in their cells leading to a considerable amount

of signalling.

4.4 Computational Evaluation

The performances of the schemes have been evaluated in terms of the uplink system

throughput, the aggregate throughput of all the edge users and the average delay.

The result is averaged over multiple simulations. A three-cell case is considered

where the base-stations are situated in the middle of the cell and have 120 degrees

antennas dividing their cells into 3 sectors as shown in Fig. 4.1. Each cell has a

distinct set of edge bands that are orthogonal to the edge bands of the neighboring

cells. This is depicted in the different edge patterns in Fig. 4.1. The neighboring

sectors have different loads of users and it is assumed that there is one lightly loaded

cell, one medium loaded and one heavily loaded and users are divided into center and

edge users. System parameters are shown in Table 4.1. Perfect channel estimation

is assumed so retransmissions are not needed. A scheduling frame of 10 ms is

used where, at the beginning of every frame, the bargaining procedure is carried

out based on the current information. Simulations are carried out for 4 schemes

which are: Static frequency reuse (SR) with a reuse factor K=3, load balancing

handovers (LBH), Nash bargaining (NB) and, finally, Nash bargaining with load

balancing handovers (NB+LBH). Figures 4.2 and 4.3 show the system throughputs

and edge users throughput respectively with different objective functions described

in Section 4.3.4. The average and 5th percentile user throughput are displayed in

Figures 4.4 and 4.5 respectively as well as the the average packet delay and 80th

percentile delay in Figures 4.6 and 4.7 respectively. It can be seen that bargaining

clearly enhances system performance and can be further improved by adding the

load balancing handovers technique. The impact of the different objective functions

can also be seen.
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Table 4.1: System parameters

Parameter Value

RB bandwidth 375 kHz
Total number of blocks 9 (25 subcarrier/RB)
TTI duration 1 ms
Radio propagation Site to site distance 100 m
Max. Tx power 21 dBm
BS antenna gain 18 dBi
UE antenna gain 0 dBi
Noise power -108.5 dBm
Number of users 3/BS1, 5/BS2, 7/BS3
Traffic model Full buffer

Figure 4.1: Cellular model

The results demonstrate the impact of individual and group bargaining. Similar

performance is noticed in the case where a certain utility function is elected to rep-

resent the group (Objective: average utility) and the case where every user bargains

for himself (Objective: product of utilities). In the case of the minimum utility, it

can be seen that bargaining alone, although provides better performance when com-

pared to the static reuse case, is less than load balancing handovers. Nevertheless,

when both techniques are merged it was found that the minimum utility gains a

good performance.
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Figure 4.2: System aggregate throughput

SR LBH NB NB+LBH
0  

5

10

15

20

25

30

A
gg

re
ga

te
 th

ro
ug

hp
ut

 o
f e

dg
e 

us
er

s 
(M

bp
s)

 

 

Objective: Average utility
Objective: Product of utilities
Objective: Min. utility

Figure 4.3: Aggregate throughput of the edge users for all cells
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Figure 4.4: The average throughput a user obtains in the system
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Figure 4.5: 5th Percentile for the throughput of the users in the system
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Figure 4.6: The average delay a user experiences in the system
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Figure 4.7: 80th Percentile for the delay of the users in the system
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4.5 Concluding Remarks

In this chapter a proposal was made that can mitigate the effect of interference suf-

fered by users situated on the cell edge through bargaining. Neighboring cells would

negotiate with each other to obtain the necessary resources that would maximize

certain objective functions. The negotiation was presented in the form of Nash bar-

gaining with the bargaining taking place in every scheduling frame. This resembled

a case of having dynamic reuse where the reuse factor K is changed in accordance

with the bargain. The closed form solution was also provided and proved for the

bargaining problem of non rate-constrained situations. For rate-constrained cases,

providing a closed form solution is very difficult because of the growing complexity.

Performance of the bargaining scheme was further improved by merging it with load

balancing handovers which introduced a gain of approx. 10% in system performance.

The impact of different objectives for the bargaining was also demonstrated. It was

shown through simulations that it is feasible to have one representative for a group

of users in a cell to carry out the bargaining with other cells, thus reducing the

amount of signalling between base-stations. In conclusion, bargaining proves to be

a powerful way to maximize the utilization of shared resources.

73



.



.

Part II

Activity Control



.



Chapter 5

Activity control

In this chapter the concept of activity control is proposed where the activity of a

user is subject to the proximity of a certain QoS level. In cellular systems, users

are considered active if they have data in their transmission buffers, otherwise the

scheduler considers them to be non-active and are excluded from the scheduling

process. In this chapter an attempt is made to utilize the activity control concept in

some of the main RRM mechanisms. First, an admission control scheme is proposed,

that mainly controls the activity of a new user entering the system by assigning a

back-off factor to limit the maximum impact the new user can cause to ongoing

connections in terms of throughput loss. Also in this chapter, an activity controlled

scheduler is proposed for flows that have target QoS levels, such as mean data rates or

mean HOL delays. This corresponds, for instance, to the case where a leaky bucket

traffic shaping filter is applied at the edge router of the radio access network. For

the sake of simplicity, we assume a single-channel system such as HSDPA. However

without loss of generality, the results obtained in this chapter are also valid for

multi-channel systems.

5.1 Admission Control

Consider the downlink of a time-slotted system where time is the resource to be

shared among all users. The channel is assumed to be stationary, more specifically,

the fast fading process is assumed to be stationary and ergodic so that the time

average approaches the mean value as the number of samples increases. The fading

distributions of the users can be different but their channel should be stationary.

This assumption is later relaxed in Section 5.8 where parameter estimation is dis-
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cussed and the case of where the channel statistics are slowly changing is considered.

The UE is assumed to estimate the channel based on a pilot signal transmitted by

the base-station. Based on the channel measurement, the UE then determines the

maximum data rate µi(t) that it can achieve under the current channel condition at

time-slot t, and reports this back to the base-station which then utilizes the infor-

mation in the scheduling decision.

Let A(t) denote the set of active users having pending data in the transmission

buffer at the base-station. Consider an opportunistic scheduler that allocates the

channel to the users based on the maximum instantaneous service rate µi(t), i ∈ A(t)

and the estimate of the long term average throughput x̄i(t) using a simple selection

rule of the form:

i∗(t) ∈ argmaxi∈A(t)F (µi(t), x̄i(t)) (5.1)

where F (µi(t), x̄i(t)) is some non-decreasing function of µi(t) and x̄i(t) is updated

as follows:

x̄i(t+ 1) = (1− β)x̄i(t) + βµi(t)χ(i = i∗(t)) (5.2)

where β > 0 is a fixed (small) parameter. The operator χ{L} is an indicator

function of an event L: χ{L} = 1 if the event L occurs and zero otherwise. It can

be seen from this definition that, x̄i(t) represents an exponentially smoothed average

throughput. The initial value of the estimator is x̄i(0) = µi(0)χ(i = i∗(0)). Taking

the expectation of (5.2) yields:

E{x̄i(t+ 1)} = (1− β)E{x̄i(t)}+ βE{µi(t)χ(i = i∗(t))} (5.3)

The scheduler is very general and contains all the memoryless scheduling rules sug-

gested in [101], as well as gradient scheduling rules suggested in [20] as special cases.

Thus, the two types of schedulers mentioned in Chapter 2 are further defined as

follows:

1- Memoryless Schedulers

A memoryless policy is a stationary policy whose decision does not depend on time-

slot t but rather depends on a performance vector in that time-slot. Consider the

saturated case in which all the active users have their transmission buffers full of data

all the time. Assume the channel and data rate processes are wide-sense stationary

and ergodic. It follows that the rate E{µi(t)χ(i = i∗(t))} is also stationary as long as
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the selection process (5.1) which is a function of µi(t) and x̄i(t) is stationary. Since

µi(t) is assumed to be stationary, consequently the selection process is stationary as

long as the estimate x̄i(t) is stationary. Let us define x̄i(t) = E{µi(t)χ(i = i∗(t))}
and x̃i(t) = E{x̄i(t)}. If we assume that x̄i(t) = x̄i,∀t then x̃i(t) = x̄i,∀t. This will
allow the implementation of the admission control scheme in a slot-by-slot fashion.

2- Schedulers with Memory

Schedulers with memory are dynamic schedulers whose policy depend on time-slot

t. In this case the memory of the scheduler contains information of past throughput

x̄i(t). For a memory scheduler, the rate in (5.3) can be written as:

x̃i(1) = (1− β)x̄i(0) + βx̄i(0) = x̄i(0)

x̃i(2) = (1− β)x̃i(1) + αx̄i(1) = (1− β)x̄i(0) + αx̄i(1)

x̃i(3) = (1− β)x̃i(2) + βx̄i(2) = (1− β)2x̄i(0) + (1− β)x̄i(1) + βx̄i(2)
...

x̃i(t) =
t−1∑
m=0

(1− β)mβx̄i(t− 1−m) (5.4)

If the initial value of the estimator is a steady state value, then x̃i(t) = x̄i, ∀t and
the admission scheme can be applied in a slot-by-slot basis. However, if the initial

rate was not a steady state value then for an ergodic channel x̃(t) asymptotically

will converge to x̄i as t grows within a frame. Therefore, in this case the admission

control scheme needs to be carried out in a frame-by-frame basis.

5.2 Single-user Iterative Admission Control

This section describes the admission control scheme with its application to the two

types of schedulers.

5.2.1 Implementation in Memoryless Schedulers

Assume that a new user tries to join the system at time-slot t0. At time-slot t > t0,

the new user is excluded from the active set A with a back-off probability pb and

included with probability 1 − pb. Usually a user is included in the active set A if

there is data to transmit to that user. However, for a new user with this back-off
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probability, it will be excluded from the active set A even if there is data (which

in the beginning will consist of probing packets only) for it in the transmission

buffer. Once the new user is fully admitted, it will start receiving the original data

designated for it. Let x̄i(ZN) denote the mean (expected) rate of user i with N

users in the system and their channel statistics are defined by the matrix ZN , where

ZN is defined as a matrix consisting of vectors describing the sufficient statistics of

the channel. Thus, x̄i(ZN+1) represents the mean rate of user i with N + 1 users

in the system, i.e. with the new user fully admitted. At timeslot t0 the new user

N + 1 is trying to get admitted. Prior to the arrival of user N + 1, the mean

rates for the initial users were determined from channel statistics ZN and given by

x̃i(t) = x̄i = x̄i(ZN), ∀t ≤ t0. Based on the analysis of the mean rates, it is possible

to observe the impact of the new user on the active users in the following manner:

x̃i(t) = pbx̄i(ZN) + (1− pb)x̄i(ZN+1) i = 1, 2, · · ·N, t ≥ t0 (5.5)

x̃N+1(t) = (1− pb)x̄N+1(ZN+1) t ≥ t0 (5.6)

and

x̃i(t) = x̄i(ZN) i = 1, 2, · · ·N, t < t0 (5.7)

x̃N+1(t) = 0 t < t0 (5.8)

giving,

x̃i(t0)− x̃i(t0 − 1) = −(1− pb)(x̄i(ZN)− x̄i(ZN+1)) i = 1, 2, · · ·N(5.9)

x̃N+1(t0)− x̃N+1(t0 − 1) = (1− pb)x̄N+1(ZN+1) (5.10)

Thus, in a slot the impact of the new user is limited to the fraction 1 − pb. This

behavior resembles the active link protection (ALP) scheme suggested by Bambos

for power controlled systems [67]. Therefore, the scheme will be referred to as the

ALP-CAC.

5.2.2 Implementation in Schedulers with Memory

The mean rates obtained with these schedulers experience transient states unlike

in the memoryless schedulers. This property makes the admission control more

difficult. Let us observe the system after l slots. Assuming l is large, so that the
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estimator will converge.

x̃i(t0 + l) → pbx̄i(ZN) + (1− pb)x̄i(ZN+1) (5.11)

similarly,

x̃i(t0 + l)− x̃i(t0) = −(1− pb)(x̄i(ZN)− x̄i(ZN+1)) ≥ −(1− pb)x̄i(ZN) (5.12)

The rate has dropped by no less than a factor 1− pb.

5.2.3 Iterative Admission Control

Decreasing the back-off probability pb exponentially result in having a back-off prob-

ability of pnb at timeslot tn (or frame n for schedulers with memory) as shown below:

x̃i(t1) = pbx̄i(ZN) + (1− pb)x̄i(ZN+1) (5.13)

x̃i(t2) = p2b x̄i(ZN) + (1− p2b)x̄i(ZN+1) (5.14)
...

x̃i(tn) = pnb x̄i(ZN) + (1− pnb )x̄i(ZN+1) (5.15)

From the above equations, it is possible to write the rate obtained in a timeslot or

frame in terms of the rate obtained in the previous one. This way, the equations can

be solved with the help of the Kalman filter estimate since the value of x̄i(ZN+1) is

not known.

x̃i(t2) = pbx̃i(t1) + (1− pb)x̄i(ZN+1) > pbµ̃i(t1)
...

x̃i(tn) = pbx̃i(tn−1) + (1− pb)x̄i(ZN+1) > pbx̃i(tn−1) (5.16)

Hence, in a timeslot (or frame) the rate does not drop more than by a factor (1−pb).
The size of pb limits the impact of the new user and therefore the new user can be

rejected if x̃i(tn) <
x̄min

pb
. This impact can be clearly seen in Fig. 5.1 where the

theoretical rates were computed with two different values of pb. It can be seen that

with pb = 0.99, the new user does cause the worst active user to drop below the
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threshold x̄min

pb
unlike the case of pb = 0.9.

x̃i(tn) < x̃i(tn−1) (5.17)

Similarly for the new user we can write

x̃N+1(t1) = (1− pb)x̄N+1(ZN+1) (5.18)

and

x̃N+1(tn) = x̃N+1(tn−1) + pn−1
b (1− pb)x̄N+1(ZN+1) > x̃N+1(tn−1) (5.19)

The rate of the new user is in turn monotonically increasing.

x̃N+1(tn) > x̃N+1(tn−1) (5.20)

According to the analysis above an iterative control scheme that is applicable to

both memoryless schedulers and schedulers with memory can be implemented. An

outline for the scheme is as follows:

The Iterative CAC: Iteratively decrease the back-off probability until some of the

rates of the active users deteriorate below some minimum tolerable value. That is,

a new packet call is rejected if x̃i(tn) <
x̄min

pb
for any i = 1, 2, ..., N at some iteration

m. Otherwise pmb → 0 in (5.15) and the user is admitted to the network.

In practice, x̄i(ZN+1) is unknown and the fact that a new user starts from a rate

of 0 leads to a transient state that in turn will affect x̃i(tm). Therefore, it can be

difficult to base the decision of admission solely on the criteria x̃i(tm) <
x̄min

pb
. Thus,

there is a need for a fixed decision time for admission. If x̃i(tm) at the decision time

is found to be greater than x̄min, then the new user should be admitted, otherwise

rejected. The order of complexity of the scheme can thereby derived: O(N.n), with

n depending on the decision time making the scheme possible to realize in practice.

5.2.4 Non-stationarity

This subsection discusses a slot-by-slot approach for schedulers with memory. In

the earlier analysis it was conditioned that the implementation of the admission
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controller should be made on a frame-by-frame basis for this type of schedulers.

Consider a selection rule of the form

i∗(t) = argmaxi∈A(t){∇F (x̄i(t))µi(t)} (5.21)

where µi(t) is the actual data rate process (equivalently the instantaneous channel

state), x̄i(t) denotes the estimated throughput and A(t) denotes the set of active

users at time-slot t. Assume that the actual data rate process is wide sense stationary

and ergodic. The rate estimator is assumed to be unbiased. It is assumed that F

is a non-increasing function of x̄i(t) and a non-decreasing function of µi(t). Let us

define

ki(µi(t), x̄i(t),A(t)) = 1 i = argmaxi∈A(t){∇F (x̄i(t))µi(t)}

= 0 otherwise (5.22)

At time-slot t, the mean rate is given by

x̄i(t) = E{µi(t)ki(µi(t), x̄i(t),A(t))} (5.23)

Let us consider the saturated condition in which A(t) = A = {1, 2, ..., N} ∀t. It has
been shown by Stolyar that the scheduling rule (5.21) converges x̄i(t) → x̄i which

maximizes the utility function F (x̄i(t)) [23]. In the steady state, the scheduling rule

becomes

i∗(t) = argmaxi∈A(t){∇F (x̄i(t))µi(t)} (5.24)

Lemma 5.1

For AN ⊆ AN+1, we have

Pr{i∗(t) = argmaxi∈AN
{∇F (x̄i(t))µi(t)}} ≥ Pr{i∗(t) = argmaxi∈AN+1

{∇F (x̄i(t))µi(t)}}

and

E{µi(t)ki(µi(t), x̄i(t),AN)} ≥ E{µi(t)ki(µi(t), x̄i(t),AN+1)}

Hence, it was possible to write the expected rate in a slot-by-slot basis with

the help of the steady lower bound mean rate x̄lower,i that asymptotically converges

with the expected rate x̃i. Fig. 5.2 is presented for illustration purposes of the above

analysis. It shows how that the rate is always bounded and eventually the bounds

converge to the mean rate.
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Figure 5.1: Theoretical rates obtained for old and new users with back-off probabil-
ities 0.99 and 0.9
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5.3 Multi-user Iterative Admission Control

Let us limit the number of new users to M . The back-off probability is now set as

p
1
M
b . This choice will guarantee that the rate of the old users cannot drop more than

the fraction (1− p) in a frame. Let ZN+m denote the set of fading vectors of length

N +m that can be formed from the vector of length N +m by removing some of

the elements N + 1, N + 2, · · · , N +M . With the help of this notation the mean

rate obtained in frame n can be written as follows

x̃
(n)
i =

M∑
t=0

p
nk
M
b

(
1− p

n
M
b

)M−t ∑
Z∈ZN+M−t

x̄i(Z) (5.25)

Notice that when M = 1 (5.25) is reduced to (5.5). An example for implementing

(5.25) can be seen in Fig. 5.3. For 0 < pb < 1, we have (1 − p
n+1
M

b )m ≥ (1 − p
n
M )m

for all m = 0, 1, 2, · · · . Hence, we have

x̃
(n+1)
i = pbx̃

(n)
i +

M∑
t=0

p
(n+1)t

M
b (p

t
M (1− p

(n+1)
M

b )M−t

−pb(1− p
n
M
b )M−t)

∑
Z∈ZN+M−t

x̄i(Z) ≥ 0 (5.26)

This means that the rate of an active user cannot drop more than a factor of

(1 − pb) from frame to frame even if M new users are trying to get access to

the system. Thus, the iterative CAC described in Section 5.2 can be directly

used . Let us define two column vectors Xi(n) =
(
x̄
(m)
i , x̄

(m+1)
i , · · · , x̄(m+M)

i

)′
and

Ji =
(
x̄i(ZN+M),

∑
Z∈ZN+M−1

x̄i(Z), · · · , x̄i(ZN))
)′

and a square matrix G(n) con-

sisting of elements ynm = p
nm
M
b

(
1− p

n
M
b

)M−m

. Note that by X ′ we denote the trans-

pose of the vector X . Now we can write (5.25) in matrix form as

Ri(n) = Y (n)Ji (5.27)

Matrix Y is a square matrix with full rank making it invertible. Thus, the rate

prediction CAC can be used by checking whether the following holds

Ji = Y (n)−1Xi(n) ≥ 1N+M x̄min (5.28)
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where 1m denotes a vector of m ones. It is notable however that for large m and M ,

Y would contain very small elements and thus its inverse Y −1 might not behave well

numerically. The main issue in performing multi admission will be the convergence

rate as it will become much slower due to the fact that each user makes the back-off

decision independent of others.
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Figure 5.3: Theoretical Rates using multiple admission control with back-off prob-
ability 0.996

5.4 Kalman Filter Estimation

A Kalman filter is essentially a set of mathematical equations that implement a

predictor-corrector type estimator. This estimator is optimal in the sense that it

minimizes the estimated error covariance - when certain presumed conditions are

met. The strength of the formulation is that it allows the tracked parameter (in this

case the average rate or delay) to change slowly in time regardless of the channel’s

statistics.

So far it has been assumed that the mean value µ̃i is available for admission con-

trol. In practice, we have to use time average values x̄i that in ergodic channel cases

would converge to x̃i when the frame length of n approaches infinity. In practice,

we have to cope with finite frame sizes and thus noisy estimates for the mean value.

The main power of the formulation lies in that it allows the tracked parameter (in

this case the time average rate) to change slowly. Let us define two state variables

x
(n)
1,i = x̃i(tn) and x

(n)
2,i = x̄i(ZN+1) and state vector X

(n)
i = (x

(n)
1,i , x

(n)
2,i )

′. Assume

that the state noise and measurement error are Gaussian white noise processes de-

scribed by V
(n)
i =

(
v
(n)
1,i , v

(n)
2,i

)′
and e

(n)
i respectively. Since x̃i(tn) is the estimator

of the mean value, then the error x̄(tn) − x̃(tn) becomes Gaussian due to the law

of large numbers. The two processes are assumed to have zero mean and follow
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ΨV V (t) = E{V (n)
i (V

(n)
i )′}, Ψee(t) = E{e(n)i (e

(n)
i )′}, and ΨV e(t) = E{V (n)

i (e
(n)
i )′}.

Now the state equations can be written as follows

X
(n+1)
i = Φ(n)X

(n)
i + V

(n)
i (5.29)

x̄i(tn) = CX̂
(n)
i + e

(n)
i (5.30)

For i = 1, 2, 3, . . . , N where Φ(n) =

[
pnb 1− pnb

0 1

]
, C = [ 1 0 ]. It is well-known

that the optimal state estimator for the process is the Kalman filter which can be

written as follows

X̂
(n+1)
i = Φ(n)X̂

(n)
i +K(n)

(
x̄i(tn)− CX̂

(n)
i

)
(5.31)

K(n) = (Φ(n)P (n)C ′ +ΨV e(t))(C
′P (n)C +Ψee(t))

−1 (5.32)

P (n+1) = Φ(n)P (n)(Φ(n))′ +ΨV V (t)−K(n)(CP (n)C ′ +Ψee(t))(K
(n))′ (5.33)

where K denotes the Kalman gain and P represents the error covariance matrix (a

measure of the estimated accuracy of the state estimate). Unfortunately, it is difficult

to determine the covariance matrices ΨV V (t), Ψee(t), and ΨV e(t) accurately. Instead

they can be used as tuning parameters. The larger the parameters in Ψee(t) the less

we trust in the measurements. The covariance matrix ΨV V (t) describes the rate at

which the mean values change in the channel and is thus related to the mobility

of the users. Hence, the faster the mobiles move the larger ΨV V (t) and the more

weight is given to the instantaneous channel estimate. Equation 5.3 could be seen

as a fixed Kalman filter due to the fact that it does not consider the impact of the

new user. The Kalman filter presented in this section could be seen as an extension

of (5.3) that takes into account the dynamics of the system making it better suited

for the admission process.

5.5 Non-iterative Admission Control

This section presents a Recursive Least Square (RLS) scheme to later compare with

the proposed scheme. The RLS scheme is a simple one-shot admission control scheme

that estimates the impact of adding a new user to the data rates of active users.

This kind of admission control scheme has been suggested by Gribanova [102].
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Recursive Least Squares Algorithm

The basic RLS scheme was used where a filter of weight w is used to predict future

values of the rates depending on past observed data.

The filter weight is updated using the RLS equations

K(n) =
λ−1P (n− 1)u(n)

1 + λ−1uH(n)P (n− 1)u(n)
(5.34)

ϵ(n) = x̄i(n)− w(n− 1)u(n) (5.35)

w(n) = w(n− 1) +K(n)ϵ(n) (5.36)

P (n) = λ−1P (n− 1)− λ−1K(n)uH(n)P (n− 1) (5.37)

where K represents the filter gain, Y is the correlation matrix, λ is the forgetting

factor, u represents the input and is given by

u(n) = [ x̄i(n− 4) x̄i(n− 3) x̄i(n− 2) x̄i(n− 1)] (5.38)

where ϵ(n) is the estimation error, x̄i denotes the mean rate values for user i at

admission n and w contains the coefficients of the filter.

A one-tap filter w was considered due to the limited number of users, so

x̄i(n) = wx̄i(n− 1) (5.39)

The RLS admission control scheme can be summarized as follows:

RLS CAC: Record the rate losses caused by previous admissions. Utilize RLS to

estimate the impact of adding a new user. If the predicted rate of the worst active

user is above x̄min, admit the new user; otherwise reject it.

5.6 Computational Evaluation

5.6.1 Static Traffic (Full buffer)

In the beginning it was assumed that all users have full buffer traffic. The scheduling

rule that was used here was the proportionally fair scheduler (2.2). Table 5.1 shows

the parameters that were used in the simulation program. The simulation was

considered for WCDMA HSDPA where adaptive modulation and coding (AMC)
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Table 5.1: System parameters

Parameter Value

TTI duration 2 ms
Fading model One path Rayleigh
Minimum rate allowed 256 kbps

384 kbps
Max. number of associated 15 for QoS 256 kbps
DPCH (N) 10 for QoS 384 kbps
Radio propagation Site to site distance 500 m
Hybrid ARQ Chase Combining
Back-off probability 0.999
Ψee values 2× 105, 4× 104, 1× 103

ΨV e,ΨV V 0, 10I2×2 respectively

is used to guarantee high throughputs depending on the channel condition. The

scheme itself can be used with any opportunistic single or multi-channel scheduler.

An HSDPA type of system was chosen due to simplicity of the simulation model.

In addition, using a single channel model makes it easier to illustrate the impact of

channel impairments.

One new user was added every time using the iterative CAC procedure described

in Section 5.2. The Kalman filter described in Section 5.4 was implemented to obtain

the mean values since we are averaging over small window sizes. The initial values

for X
(t)
i were the time average rates of the active users before a new user entered

the system. A Raleigh fading vector was generated for each user in accordance with

Jakes’ fading simulator [10, 103]. Discrete SINR-rate mapping was carried out for

the AMC. Different users experience different channel conditions that vary depend-

ing on their distance from the base-station and velocity.

In the simulation a new user was added every 6000 slots (12 sec). The user’s time

average rate in the beginning would experience a transient state due to averaging

over a small number of time-slots. The rate gradually stabilized as the number of

time-slots increased.

Fig. 5.4 shows the Kalman estimate along with the mean (expected) rate for

the worst user when a new user is admitted. The figure shows how the Kalman

estimate converges to the mean value. In this figure it can be seen that the mean

rate of the worst user has declined beyond the minimum acceptable rate. With the

help of the Kalman filter, the scheme is implemented and the controller will make
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Figure 5.4: Rate of worst user (Back-off factor=0.999)

the decision to either accept or reject the new user where in this case the new user

was rejected. It was found after running rigorous simulations that time-slot 2100

(t = 4.2s) appeared to be the most suitable decision time (with respect to having the

minimum amount of admission errors) to either accepting the new user or rejecting

it. A new user is fully accepted if none of the active users experienced a fall in

rate below µmin before time-slot 2100. The performance of the admission scheme is

measured by the admission errors. There are two types of CAC errors:

• Type I error: where a new user is erroneously accepted resulting in outage.

• Type II error: where a new user is erroneously rejected resulting in blocking.

Pedestrian channels experience a longer coherence time than that of vehicle users

and consequently this will affect the mean rate of these users. For example an

admission error may occur because an active user had a good channel and came

under a bad fading pattern causing a temporary drop in its mean rate below µmin

but later recovered after moving away from the cause of that fading dip. This in

turn causes an admission error type II if it happened before time-slot 2100 and error

type I if after.
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Figure 5.5: Dynamic traffic users with different packet inter-arrival times

5.6.2 Dynamic Traffic

The case in which the buffer occupancy of the users is allowed to vary so that not

all users necessarily have data to receive in each time-slot is considered. This differs

from the previous static case discussed earlier, in which all the users were assumed

to have full transmission buffers all the time. The mean inter-arrival time of the

packets will play an important role as rates will be a function of packet arrival as

well as channel conditions. With few packet arrivals the rates of users will be divided

into groups as shown in the two lines in Fig. 5.5 mainly due to the fact that the

rates are more of a function of packet arrivals than channel conditions, the impact of

the channel condition in this case can be regarded as similar to a quantizing impact.

We are interested in observing the new user’s impact on the active users’ chan-

nels. Therefore, the mean inter-arrival time was decreased to create more packets

and consequently make the rates more of a function of channel conditions than packet

arrivals. The difference between dynamic users with two different mean inter-arrival

times is illustrated in Fig. 5.5. In Fig. 5.5-a it can be seen that the impact of the

new user is small due to the fact that the rates here are more functions of packet

arrivals than channel conditions. However in Fig. 5.5-b the impact of the new user

is more noticeable where the decrease in the mean rate of the other users is seen as
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the rate of the new user increases. In the simulation, the inter-arrival times follow

the log-normal distribution. The decision to use a log-normal process for packet ar-

rivals is due to its longer tail probability property which makes modeling the bursty

nature of the data traffic more appropriate than the Poission process.

Tables 5.2 and 5.3 illustrate the possibilities of a user being erroneously accepted

(Type I CAC error) or erroneously rejected (Type II CAC error) at decision times

4.2s and 2.1s respectively. Both static and dynamic cases are considered and two

minimum QoS levels. The results shown in the table were obtained by running

multiple simulations and computing the percentage of error for the total number of

simulations. Tuning the noise covariance matrix Ψee in some cases can affect the

admission decision as it determines how fast the Kalman filter estimate converges

to the actual value leading to an increase or decrease in CAC errors as shown in

Table 5.4. In this table different values to Ψee are assigned and the impact on the

percentage of errors is observed. It is clear that the higher the estimation error the

more errors obtained.

Table 5.2: Type I and II CAC errors (Decision time=4.2s)

Traffic type QoS level Error type I Error type II

Static 256 kbps 4% 6%

384 kbps 8% 4%

Dynamic 256 kbps 9.09% 3.03%

384 kbps 6.25% 3.12%

Table 5.3: Type I and II CAC errors (Decision time=2.1s)

Traffic type QoS level Error type I Error type II

Static 256 kbps 7.02% 6.1%

384 kbps 10.3% 4.51%

Dynamic 256 kbps 12.8% 3.6%

384 kbps 9.13% 3.4%
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Table 5.4: Impact of Ψee on static traffic users

Ψee 2× 105 4× 104 1× 103

256 kbps QoS type I error 6% 4% 4%

384 kbps QoS type I error 12% 8% 4%

5.6.3 Decision Error

Different patterns of multipath fading have a significant impact on the mean rate

which in turn will cause confusions in the admission decision as noticed earlier. This

section discusses this problem and suggests a solution with the help of an illustrative

example.

Example

A new user is admitted and later has a temporary fall in rate but then recovers.

This temporary fall results in declaring a type I error. In a second case, the user is

denied admission and will then have a temporary improvement in the fading pattern

causing an increase in its rate, but later reverts to its original state. In this case,

we will have a type II admission error, but clearly this will not be a genuine error

because the decision to block the new user is in fact accurate, the temporary rise in

rate is the main reason to trigger the error flag.

A proposition to solve this problem is to use a simple heuristic scheme in which

we observe the number of times the rate crosses a reference (in this case the rate

threshold) and the time between each crossing and by computing the ratio, a con-

clusion can be made about the decision validity. This will enable us to form a good

picture about the variations in throughputs and consequently back up the admission

decision.

5.6.4 Multi-user Admission Control

In this part we can see the impact of admitting multiple users with independent

back-off probabilities on the rate of the worst shown in Fig. 5.6. An alternative

would be that all users use the same back-off probability and jointly back off. In
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Table 5.5: Type I and II CAC errors (Multiuser case - same probability factor for
all)

Traffic type QoS level Error type I Error type II

Static 256 kbps 5% 0%

384 kbps 12.5% 2.5%

Dynamic 256 kbps 7.14% 3.57%

384 kbps 3.57% 0%

this case, the mean rate obtained in frame n becomes

x̃
(n+1)
i = pbx̃

(n)
i + (1− pb)x̄i(ZN+M) (5.40)

Naturally, the convergence will be faster, but on the other hand, the drawback will

be that all M users will be denied admission if x̃
(n+1)
i dropped below the minimum

rate indicating the unfairness of this alternative. Table 5.5 represents the results

obtained for joint back-off admission. The admission is made for 3 users at a time.

The joint back-off option is likely to be the best alternative despite its drawback

since time is the most critical element for users requesting admission.

5.6.5 Non-iterative Admission Control

Fig. 5.7 shows the RLS algorithm application to the worst user. It can be seen

that when an 11th user is added, the rate of the worst active user drops below

the minimum acceptable rate. Table 5.6 shows a comparison between the RLS and

ALP-CAC schemes in terms of admission error where the results for the ALP-CAC

are from Table 5.2 and the results for the RLS were obtained by running repetitive

simulations and computing the percentage of admission errors I and II for those

simulations. In the RLS case an admission error occurs due to the estimation error

resulting in denying a new user admission at the time the actual rate of the worst

user was still above the minimum rate or vice versa. The results indicate that the

ALP-CAC scheme is superior in all cases.
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Table 5.6: Comparison of ALP-CAC and RLS schemes

Traffic type Scheme Error type I Error type II

Static ALP-CAC 4% 6%

RLS 13.7% 18.5%

Dynamic ALP-CAC 9.09% 3.03%

RLS 16% 22%

5.7 Quality Control

Assume that user i requests a mean QoS sreqi . The objective of the Quality control

apparatus is to find the activity probabilities qi = Pr{i ∈ A(t)} so that s̄i = sreqi . In

case the requests are unachievable, we want to allocate the resources in a fair manner

providing this way a best-effort framework. For this reason, the algorithm can be

combined with, for example, the PF scheduler (2.2). That is; in the congested case,

the quality control scheme will fall-back to the proportional fair scheduler.

Assume that time is divided into scheduling time intervals or frames that consist

of several time slots. During a frame n the probabilities q
(n)
i are kept fixed and in

each slot the set of active users is randomly determined. The achieved quality level

in the frame s
(n)
i is then observed based on which control actions are taken. The

quality control problem can be solved using a simple integral controller:

q
(n+1)
i = min

{
1,max

{
0, q

(n)
i + βi

(
s̄reqi − s̄

(n)
i

)}}
(5.41)

where βi is a positive integration gain, for now one. The algorithm will be called

the Quality Control Algorithm (QCA).

It can be noted that in the original PF scheme qi = 1 for all i. That is, if a user

has data in its buffer it will belong to the active set.

5.7.1 Convergence Analysis

Let Q = (q1, q2, · · · , qN)′ denote the activity probability vector that contains the

activity probabilities of users 1, 2, · · · , N and B = (β1, β2, · · · βN)′ denote the gain
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vector. Define a mapping:

Ti(Q,B) = qi + βi(s̄
req
i − s̄i(qi)) (5.42)

let us define a set of feasible probabilities:

Q = {Q : 0 ≤ Q ≤ 1}.

Proposition 5.1 Suppose that Q is convex. If s̄ : ℜn 7→ ℜn is continuously differ-

entiable and there exists a scalar ψ ∈ [0, 1) such that

∥I − βi(∇is̄i(Q))′∥∞ +Σj ̸=i∥βi(∇j s̄i(Q))′∥∞ ≤ ψ, ∀i (5.43)

then the mapping T : Q 7→ ℜn defined by Ti(Q,B) = qi + βi (s̄
req
i − s̄i(qi)) is a

contraction with respect to the maximum norm ∥.∥∞

Lemma 1. Assume the following:

(a) The set Q is convex, and the function s̄ : ℜn 7→ ℜn is continuously differentiable.

(b) There exists a positive constant κ such that

∇is̄i(Q) ≤ κ, ∀Q ∈ Q, ∀i

(c) There exists some ρ > 0 such that

Σj ̸=i|∇j s̄i(Q)| ≤ ∇is̄i(Q)− ρ, ∀Q ∈ Q, ∀i

Then the mapping T : Q 7→ ℜn defined by Ti(Q,B) = qi + βi (s̄
req
i − s̄i(qi)) is a

contraction with respect to the maximum norm, provided that 0 < βi ≤ 1
ρ
.

Proof. Under the assumption 0 < βi ≤ 1
ρ
, we have

|1− βi∇is̄qi|+ βiΣj ̸=i|∇j s̄i(qi)|

= 1− βi(∇is̄qi − Σj ̸=i|∇j s̄i(qi)|)

≤ 1− βiρ < 1 (5.44)

which shows that inequality (5.43) holds. The result follows from Prop. (1). �
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5.7.2 Example

Rate Control

In this case, the requested QoS is depicted in mean service rate. It is useful to re-

quest specific rates when the receiver’s processing rate is less than the transmitter’s

service rate. This kind of rate control will help match the transmitter’s service rate

to that of the receiver’s in an attempt to avoid congestion and consequent overflow

of the receiver’s buffer. In this case the QoS metric s̄i is equal to the mean data

rate x̄i. The algorithm in this case will be referred to as the Rate Control Algorithm

(RCA). Let N denote the set of admitted users and let N denote the cardinality of

that set. Due to the different activity of the users, at a given instant of time t, the

set of active users can be an arbitrary subset of the users A(t) ⊂ N . Let us order

all the S =
∑

k

(
N
k

)
possible subsets of N : {Ak, k = 1, 2, · · ·S}. Let Ak denote the

cardinality of subset k. Let AS = N denote the active set during which all users are

active and Al = ∅ denote the nonactive set.

Now assume that all users individually make the decision whether to be active or

idle at a given instant of time. Let qi denote the probability that the user i decides

to be active. Let πk denote the probability that the set k was used at a particular

time. It follows that

πk(Q) =
∏
j∈Ak

qj
∏

z∈N\Ak

(1− qz) (5.45)

Let x̄i(Ak) denote the expected data rate of a user i when the active set of users

was Ak. Furthermore, let Ki denote the selection of active sets that contain user i,

that is, i ∈ Ak if and only if k ∈ Ki.

With the help of the above notation we can now express the expected data rate

of user i as follows

x̄i =
∑
k∈Ki

x̄i(Ak)πk(Q) (5.46)

For the sake of comparison, we note that in the original PF scheme qi = 1 for all i.

That is, if a user has data in its buffer it will belong to the active set. Consequently

the expected rate of the user corresponds to x̄i(AS).

In addition, we note that in most scheduling rules, especially in the proportional

fair case x̄i(Al) ≥ x̄i(Ak) if Ak ≥ Al, i.e. the less there are users, the higher the

chance that user i gets selected and the higher its data rate will be.

99



Let πk,i =
πk

qi
for all k ∈ Ki. It follows that

πk,i =
∏
j∈Ak
j ̸=i

qj
∏

z∈N\Ak

(1− qz) k ∈ Ki (5.47)

which is independent of qi.

The mapping in eq. (5.42) will now become:

Ti(Q;B) = qi + βi

(
x̄reqi − qi

∑
k∈Ki

x̄i(Ak)πk,i

)
(5.48)

T (Q) = (T1(Q), T2(Q), · · · , TN(Q))
′ denote the rate control mapping. We note that

q
(m+1)
i = min

{
1,max

{
0, Ti(Q

(m), B(m))
}}

(5.49)

Furthermore, let us define a set of feasible probabilities Q = {Q : 0 ≤ Q ≤ 1}. Now
we are ready to consider the convergence properties of the algorithm:

Lemma 5.2 If 0 < βi ≤ 1
maxk∈Ki

x̄i(Ak)
, then the mapping T (Q,B) is a contraction

mapping for all Q ∈ Q.

Proposition 5.2 If 0 < βi ≤ 1
maxk∈Ki

x̄i(Ak)
, then RCA converges to a unique fixed

point 0 ≤ Q∗ < 1 where all the users are supported with the rates that they requested,

if such a point exists.

Proposition 5.3 If the system is congested such that not all requested rates can be

supported and 0 ≤ βi ≤ 1
maxk∈Ki

x̄i(Ak)
, then RCA converges to a unique fixed point

0 < Q∗ ≤ 1, where at least for one user qi = 1. The rate of the non-supported users

is at least as high as the rate achievable by using PF scheduling.

It is worth noting that there is a difference between controlling the activity set A
and controlling channel access ϕ. An example of a scheduler that controls channel

access is the CDF based scheduler (CS) which selects the user for transmission based

on the cdf of user rates, in such a way that the user whose rate is high enough but

least probable to become higher is selected first [104]. This makes the capacity

region for this type of schedulers larger than the RCA which limits the rate space

for users between three rate vectors. This can be seen in Fig. 5.8 which depicts

the normalized achievable mean rates for the RCA and CS algorithms in a simple

two-user example [105].
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Figure 5.8: Achievable throughput for RCA and CS scheduling schemes

5.8 Imperfect Estimates

Since the mean value s̃i(t) is not available we have to use instead the average s̄i(t)

over some time window. s̄i(t) can be treated as a noisy estimate for s̃i(t). As dis-

cussed earlier in Section 5.4, in order to cope with imperfect estimates the Kalman

state estimation is utilized. A natural candidate for the state vector X(n) would be

a vector describing all the |Ki| = 2N−1 possible mean quality parameters s̄i(Ak),

k ∈ Ki. This approach, however, suffers from the curse of dimensionality - even

with a relatively small value of N , the number of states grows to be far too large for

real-time operation.

Let s̄n,i = s̄i(Ak) for all Ak = m, k ∈ Ki. Furthermore, define

π̄n,i =
∑

k∈{k∈Ki:Ak=m}

πk,i (5.50)

The mean quality parameter equation can be defined as

s̄i =
N∑

m=1

π̄m,is̄m,i (5.51)

which consists of N unknown variables s̄m,i.
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Table 5.7: System parameters for downlink scheduling in HSDPA

Parameter Value

Spreading factor 16
Number of multicodes 10
TTI duration 2 ms
Fading model One path Rayleigh (Jakes’ model)
No. of associated DPCH 3
Radio propagation Site to site distance 500 m
BS Tx power 17 W
Hybrid ARQ Chase combining
Target mean rates 16, 32 and 64 kbps
Target mean packet delays 40, 60 and 80 ms
Ψee,ΨV e,ΨV V 10× 103, 0, 10 respectively

Let S
(n)
i = (s̄

(n)
1,i , s̄

(n)
2,i · · · s̄

(n)
N,i)

′ be a column vector of the state variables and C
(n)
i =

(π̄
(n)
1,i , π̄

(n)
2,i · · · π̄

(n)
N,i) be a row vector that maps the state to the measurement value.

Let V
(n)
i denote white noise process that describes the slowly changing nature of the

state parameters. The covariance of the state noise is E{V (n)
i (V

(n)
i )′} = ΨV V > 0.

Note that the state noise is likely to be very highly correlated, so ΨV V is typically

neither sparse nor diagonal. In addition, we have the measurement noise e
(n)
i that

has a covariance of Ψee = E{(e(n)i )2} = υ > 0. If the channel is varying rapidly, this

may have a negative impact on the estimation accuracy as well. To model this, it

is assumed that the cross covariance ΨV e = E{V (n)
i e

(n)
i } ≥ 0. The process dynamics

can be expressed as

S
(n+1)
i = S

(n)
i + V

(n)
i (5.52)

s̄
(n)
i = CŜ

(n)
i + e

(n)
i (5.53)

The Kalman state estimator can be written as

Ŝ
(n+1)
i = Ŝ

(n)
i + (K)

(n)
i

(
s̄
(n)
i − C

(n)
i X̄

(n)
i

)
(5.54)

(K)
(n)
i =

(
P

(n)
i (C

(n)
i )′ +ΨV e

)
((C

(n)
i )′P

(n)
i C

(n)
i

+Ψee)
−1 (5.55)

P
(n+1)
i = P

(n)
i +ΨV V − (K)

(n)
i (C

(n)
i P (n)(C

(n)
i )′

+Ψee)((K)
(n)
i )′ (5.56)
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5.9 Computational Evaluation

The parameters considered in this part are listed in Table 5.7. Full buffer traffic

was assumed. The initial values of the activity probabilities were randomly selected.

In the simulations two QoS measures are considered: mean rates and mean packet

delays. For the former the targets were set to 16, 32 and 64 kbps and for the latter

the targets were 40, 60 and 80 ms. Fig. 5.9 illustrates the average and Kalman

estimate mean values for data rates and packet delays respectively. It is assumed

that all users were admitted to the system at the same time and their initial rates

and delays were zero. This explains the transient state each user’s average suffers at

the beginning of the simulation. As the system stabilizes, the averages tend to keep

oscillating at a constant rate, this is due to the finite frame size effect explained in

Section 5.8. The average values were obtained using the stochastic approximation

method. Traffic was considered dynamic and packets were generated according to a

log normal distribution. The Kalman filter was later applied to these average values

yielding the mean values. Adaptive modulation and coding was used to guarantee

high throughputs depending on the channel condition.

Fig. 5.10 illustrates the activity probabilities that achieve the target values. It

can be seen from the figures how the probabilities converge to fixed points confirming

the convergence analysis outlined in Section 5.7.1 The activity probabilities for the

rates appear to be decreasing while for the packet delay they’re increasing. This

is mainly due to the fact that at the beginning packet delays are relatively small

due to the small queue sizes that steadily increase requiring more activity. In data

rates, all users will have high activity probabilities at the beginning to enable them

to reach the target QoS and once they are reached the activities decrease.
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5.10 Concluding Remarks

The suggested iterative CAC method proves to be very promising and satisfies min-

imum QoS rate levels for all users in an ongoing system as it tends to protect the

active users and guarantee that the new user being admitted will not violate the

QoS level provided for them. The scheme does not require ideal conditions to be

implemented and is applicable with stationary and non-stationary scheduling rules.

The scheme is further extended allowing multiple users to request admission simulta-

neously. However, it was noticed that the scheme suffered from the problem of slow

convergence. In order to speed up the convergence, a method where the new users

jointly back-off was proposed. This scheme can be too cautious because of the issue

of fairness by denying admission to users who do not cause the active users’ rates to

drop below threshold. Finally, the iterative method was compared with a one-shot

admission control scheme. The results suggest that the scheme can achieve smaller

admission error probabilities than the RLS based one-shot scheme. The main draw-

back of the scheme lies in the decision time for admission as the scheme requires some

time to converge. In the simulations, 4.2 s was used for the time to make the decision

which in radio communications can be considered too long, therefore, the scheme

is suitable with non real-time traffic only and cases where the channel variation is

slow. Admission errors were found to increase when a shorter decision time was used.

An opportunistic scheduler was also proposed that would provide users with

requested target QoS levels while maintaining at the same time fairness between

them. The idea of the algorithm relies on the tuning of a user’s activity in a way

that it reaches and maintains the designated target. The scheduler has the special

property that it can fall back on some fair scheduler when the system becomes

congested and target QoS levels cannot be delivered. The proposed scheduler can

be utilized to support different QoS classes.
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Chapter 6

Feedback in Multi-Carrier Systems

Channel state information is an important part of the adaptation process in OFDMA

where the modulation and coding schemes are adapted according to the channel state

of each subcarrier. However, reporting the CSI for each subcarrier can result in con-

siderable overhead. Besides coding and modulation, another scheme that affects

the overall throughput of the system is the utilized ARQ process. If HARQ, such

as chase combining, is utilized, all the transmitted bit energy can be harnessed by

the receiver by combining the erroneously received code block with the consecutive

copies transmitted by the ARQ process. The feedback information can be reduced

by grouping the subcarriers into RBs with one feedback per RB. The RBs can fur-

ther be grouped into one or several blocks with a joint CSI feedback per block. The

RBs still have their own ARQ process to cope with the possible mismatch between

the joint CSI and the actual RBs state. However, this raised the question of what

is the best basis on which the joint CSI should be determined since there are RBs

with different channel states in a block. In this chapter the impact of different deci-

sion variables for the feedback information is studied and proposes the use of rank

ordering to find the RB state that maximizes the total throughput.

The chapter also provides an analysis that shows the overall system performance

for perfect and imperfect channel estimation from multiple resources in a multi-

carrier system. The analysis derives the probability of the correct scheduling decision

by the base-station when it receives perfect channel information for one resource and

imperfect information for the other.
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6.1 System Model

In the general multi-carrier model described in Section 1.3 subcarriers are grouped

into L = BW

∆fc
RBs having Ω

L
subcarriers each. The base-station allocates power

equally among the different subcarriers and RBs. The RBs fade independently, but

the fading seen by individual subcarriers in a RB is approximately the same, since

the subcarrier spacing is small compared to the coherence bandwidth of the channel.

Assume that the channel is subject to Rayleigh fading and that the number of trans-

port formats (modulation and coding schemes) is large so that the corresponding

data rates can be approximated with a real number µ. In a perfect CSI case, the

rate assigned to RB i is matched to the channel state µi(k) = Ci(k). This would

require timely knowledge of the channel state of all the RBs at the transmitter. In

practice, we would need to select the rate based on possibly outdated and partial

CSI. If the selected rate exceeds the instantaneous RB capacity µi(k) > Ci(k), then

the transmitted data cannot be decoded at the receiver. In that case, the code block

needs to be retransmitted. In case Chase combining HARQ is utilized, the receiver

coherently combines the original code block and the retransmitted block [106]. As-

sume that the transport format was selected to match rate µ = BW

L
log2(1 + ηZ)

at TTI k0. The variable Z denotes the channel state information available to the

scheduler. If µ(k0) > C(k0), retransmission occurs. If the receiver is able to decode

the code block by combining the original and the retransmitted packet, the actual

rate would become µ(k0)
2

. Decoding fails if this rate still exceeds the capacity of the

channel. The probability that the packet has to be retransmitted at least d times is

given by

Pr{Di ≥ d} = Pr

{
log2

(
1 + η

t0+d∑
t=t0

|hi(t)|2
)

≤ log2(1 + ηZ)} (6.1)

where k0 refers to the TTI when the code block was first transmitted.

We note that ξi(t) = |hi(t)|2 is an exponentially distributed random variable with

a probability distribution function

fξ(x) = e−x (6.2)
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and cumulative probability density function

Fξ(x) = Pr{ξi(t) < x} = 1− e−x (6.3)

Now (6.1) can be rewritten as

Pr{Di ≤ d} = Pr

{
t0+d∑
t=t0

ξi(t) ≥ Z

}
, (6.4)

If the coherence time of the channel is small, then {ξi(t), t = t0, t0 + 1, t0 + 2, · · · }
become independent and identically distributed (i.i.d) random variables and the sum∑t0+d

t=t0
ξi(t) becomes Erlang-(d + 1) distributed. It follows that the delay (in terms

of number of retransmissions) becomes Poisson distributed and conditioned on the

CSI value Z.

Pr{Di ≤ d} =
d∑

t=0

(Z)t

t!
e−Z (6.5)

Therefore, we get

Pr{Di = d} =
(Z)d

d!
e−Z , d = 1, 2, 3, · · · (6.6)

The throughput xi is thus proportional to µ(Z)
Di+1

. Still, conditioning on Z, we can

find the expected throughput as follows

E{xi|Z} =
∞∑
d=0

µ(Z)

d+ 1

Zd

d!
e−Z (6.7)

=
µ(Z)

Z
(1− e−Z) (6.8)

Consider a blind system, in which no CSI is utilized. In that case, Z can be

considered as a constant. In the low SINR region (η → 0), we have µ(Z) =
BW

L
(log2(1 + ηZ) ≈ BW

L
ηZ. Therefore, we have E{xi|Z} ∝ (1 − e−Z) which sug-

gests that Z should be large to maximize the throughput. That is, the system

should rely on the ARQ process to achieve high throughput.

If the coherence time of the channel is very long, the channel gain could be
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assumed to be constant, Therefore,

Pr{Di ≤ d} = Pr

{
Z

ξi
< d

}
(6.9)

= Pr

{
ξi >

Z

d

}
= 1− Fξ

(
Z

d

)
(6.10)

This distribution Fξ

(
Z
d

)
is known as the inverted exponential distribution and it

belongs to the class of heavy tailed distributions. The probability density function

of d can be written as

fD(y) =
1

y2
e−

Z
y (6.11)

The throughput conditioned on Z becomes

E{xi|Z} =

∫ ∞

0

µ(Z)

y + 1

1

y2
e−

Z
y dy (6.12)

=
µ(Z)

Z

(
1− ZeZE1(Z)

)
(6.13)

where E1(x) =
∫∞
1
t−1e−xtdt denotes the exponential integral. For large values of

Z, E1(x) ∼ e−Z

Z
and we get E{xi|Z} → 0. Thus in the case of very slow fading, if

a fading dip occurs, it lasts for a long time and the number of retransmissions can

become very large. On the other hand, if Z is very small, then retransmissions can

be avoided. The drawback is that µ(Z) is going to be very small as well. Compared

to the very fast fading case discussed earlier, the conclusion here is the contrary. In

very slow fading, one should try to avoid retransmission as the retransmission delays

are expected to be large.

Now assume that the number of available feedback bits bf for a number of RBs L

is small. If L ≤ bf , we still can use individual feedback for each RB with
bf
L
bits per

RB. However, if L > bf , this is not possible, since there is less than 1 feedback bit per

RB. If bf is large, say 8 to 16, then joint feedback information can be approximated

with a real number.

One way to compose the joint feedback information for a block of RBs is to use

the average value Z = 1
L

∑
j=1 ξj. This variable is correlated with ξi, but for large L

the throughput can be approximated simply by noting that the law of large numbers

dictates that Z approaches the mean value (in this case 1 since ξj = |hj|2 and |hj|
is a circular symmetric normally distributed random variable with zero mean and

unit variance), so Z → 1. Hence, we have xi ∼ µ(1)(1 − e−1) ≈ 0.6321µ(1) in the
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fast fading case and xi ∼ µ(1) (1− e1E1(1)) ≈ 0.4037µ(1) in slow fading. Another

way to compose the joint feedback would be rank ordering described in Section 6.2.

6.2 Feedback Based on Rank Ordering

Let ZL,n denote the n
th smallest RB state value in a block containing L RB {ξi(t0), i =

1, 2, · · · , L}; where ξi(t0) denotes the state value of RB i at time t0. If ZL,n is utilized

to select the utilized data rate, then n− 1 RBs have to use retransmission while the

rest can transmit the packet directly. The probability density function of ZL,n in

the case of exponentially distributed random variables is given by

fZL,n
(x) =

L!

(L− n)!

n−1∑
k=0

1

(n− 1− t)!t!
e−(k+n)x (6.14)

For the selected Z = ZN,n channel feedback information, the expected throughput

becomes

E{xi} =

∫ ∞

0

µ(Z)

Z
Fξ(Z)fZN,n

(x)dx (6.15)

=

∫ ∞

0

µ(Z)

Z
(1− (1− Fξ(Z)))fZL,n

(x)dx

=

∫ ∞

0

µ(Z)

Z
(fZL,n

(x)− L− n+ 1

L+ 1
fZL+1,n

(x))dx

=

∫ ∞

0

µ(Z)

Z
(fLL,n

(x)− (1− n

L+ 1
)fZL+1,n

(x))dx

(6.16)

Consider a low SINR region (η → 0). In that case, we have µ(ηZ) ∝ Z. Now

the term µ(Z)
Z

becomes a constant, and we can derive a closed form solution for the

throughput

E{xi} ∝ n

L+ 1
(6.17)

Hence, throughput is maximized with n = L which corresponds to the SINR of the

best RB and so, Z = maxi{ξi} maximizes the throughput. In a high SINR domain,

the term µ(γ)
Z

cannot be ignored and (6.15) must be solved numerically with the help

of a computer simulator as illustrated in Section 6.3.
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Table 6.1: System parameters for a multi-carrier system

Parameter Value

Total Bandwidth 100 MHz
Coherence Bandwidth 333 kHz
Spreading factor 16
Number of multicodes 10
TTI duration 2 ms
Fading model One path Rayleigh (Jakes’ model)
Radio propagation Path loss component 3.52

Std. of shadow fading 8 dB
BS Tx power 16 W

80% of total cell transmit power
Hybrid ARQ Chase combining
Total no. of subcarriers 512
OFDM symbol period 4µs
Subcarrier spacing 10 kHz
RB spacing 320 kHz
Subcarriers/Subband 32

6.3 Numerical Analysis

In this section further analysis will be carried out via simulations.

6.3.1 Decision Variable Based on Rank Ordering

Considering a single user case, the bandwidth allocated to the user is BW which is

divided using the inverse fast Fourier transform into multiple orthogonal subcarriers

with equal spacing. The subcarriers are grouped into RBs with a bandwidth less

than the coherence bandwidth. Table 6.1 shows the parameters used in the simu-

lations. The system employs orthogonal frequency and code division multiplexing

(OFCDM) which resembles WCDMA-HSDPA but with OFDM in the radio inter-

face [107]. Adaptive Modulation and Coding is used in a transmission time interval

based on the CSI report. The TTI is short enough that the channel can be assumed

to be constant during that time to perform the necessary rate-SINR mapping.

The simulations will characterize parameters that affect the selection decision

for the feedback information such as mobile speed and mean SINR. Fig. 6.1 repre-

sents the delay (i.e. average number of transmissions) per chunk and the relative

throughput (relative to the throughput when full channel knowledge is known i.e.

the transmitter has knowledge of the state of all the RBs) for different decision
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Figure 6.1: a) Delay and b) relative throughput as functions of the decision variable
for different speeds (mean SINR=3 dB), (subband=RB)

variables. The variable n represents the rank order of a RB, i.e. n = 1 is the RB

with the lowest channel state and n = 16 represents the highest. It is noted that

the retransmission delay associated with high speeds is relatively small due to the

fact that the channel coherence time for high speed mobiles is much shorter than

low speed mobiles. This leads to the possibility of using the state of higher order

RBs for the joint CSI. This is illustrated in Fig. 6.1-b where it can be seen that the

relative throughput increases at orders higher than in the case of low mobility.

6.3.2 Comparison of Different Decision Variables

In this section different decision variables for the joint feedback information of one

chunk of blocks are compared with each other. In section 6.1, we saw that one way

to compose the common feedback is to use the average value Z = 1
N

∑
j=1 ξj. In

this section we will see the impact of different decision variables on the expected

throughput and determine the best decisions in different SINR regions for low and

high mobility cases. Figures 6.2 and 6.3 show the total throughput with different

decision variables for speeds of 3 km/hr and 106 km/hr respectively. The decision

variables considered were the minimum, median and maximum RBs as well as the

chunk average. The throughput obtained with the optimal RB (the RB order that

maximizes the throughput) was also included for the sake of comparison. In a low
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mobility case, Fig. 6.2, the median is a good choice in most regions except for

high SINR regions where the minimum outperforms all other decisions. In a high

mobility case, Fig. 6.3 shows that it is more convenient to depend on the maximum

RB as the feedback decision in low SINR regions. In practical regions, the median

and average become better choices giving almost similar results. At extremely high

SINRs the minimum as in low mobility becomes the best decision. However, overall

the median value based feedback provides adequate throughput.

6.3.3 Multiple Chunks

This section will study the effect of having multiple CSI feedback channels. the RBs

are grouped into multiple chunks instead of only one chunk of blocks considered

earlier. We are interested in seeing the impact of using multiple blocks each having

it’s own ARQ process on the total throughput. Each chunk is assumed to have the

same number of feedback bits for its feedback channel. The number of quantization

levels for the AMC obtained with this number is assumed to be large (e.g. 16 bits

→ 65536 levels).

Figure 6.4 shows that aggregating the throughput of multiple chunks of smaller

sizes results in a higher relative throughput. This is mainly due to the fact that

increasing the number of chunks increases the diversity gain, (subband=RB).

6.3.4 Effect of Number of Feedback Bits

This section studies the effect of the number of feedback bits allocated to the RBs

and compares the throughput obtained with joint feedback and that with indiviual

feedback. Let’s assume that the total number of feedback bits allocated to a number

of RBs L is bf . There are two scenarios for utilizing these bits, 1) each RB can,

individually, have its own feedback channel with a capacity of bf/L bits giving 2bf/L

quantization levels, 2) group the RBs into K chunks of L/K RBs with one feedback

channel per chunk. The number of feedback bits for this channel will be the sum of

the feedback bits of the individual RBs within the chunk yielding bf/L∗L/K = bf/K

feedback bits and consequently 2bf/K levels (2bf/K > 2bf/L). Rank ordering is then

performed for the chunk to find the RB state that maximizes the total throughput

and report that state back to the transmitter using the bf/K bits. For small bit

feedback channels a coarse quantization method is used [108] which finds the optimal

quantization levels based on the mean SNR assuming that there is no delay in the
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Figure 6.2: Total throughput for different decision variables (speed=3 km/hr)
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Figure 6.3: Total throughput for different decision variables (speed=106 km/hr)
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Figure 6.4: Relative throughput for different chunk sizes

feedback. That is, the quantization levels {γk, k = 0, 1, 2, · · · ρ − 1}, where k is the

level number and ρ is the total number of quantization levels are determined by

solving the following optimization problem

max
γk

ρ−1∑
k=0

(
Fξ

(
γk+1

γ

)
− Fξ

(
γk
γ

))
log2(1 + γk) (6.18)

s.t. γk ≥ 0, γ−1 = 0 and γρ = ∞.

Two cases are considered. The first is for a large number of bits per RB (
bf
L
) and

the second is with a smaller one. bf = 32 and 8 respectively, L = 8 RBs, K = 1, 2, 4

and 8 chunks. Tables 6.2 and 6.3 illustrate the total throughput with different

feedback channel capacities. Results in Table 6.2 indicate that the throughput loss

from individual feedbacks using coarse quantization (last row in the table) is less

severe than the loss due to joint feedback. However, joint feedback is still needed in

case the number of bits is equal or less than the number of RBs as shown in Table

6.3.
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Table 6.2: Different bit allocation (bf = 32, L = 8)

Number of Feedback bits Quantization Total
chunks per chunk levels throughput (Mbps)

1 32 4.2950e+009 1.3007
2 16 65536 1.7373
4 8 256 1.8500
8 4 16 2.2049

Table 6.3: Different bit allocation (bf = 8, L = 8)

Number of Feedback bits Quantization Total
chunks per chunk levels throughput (Mbps)

1 8 256 1.4748
2 4 16 1.5769
4 2 4 1.7569
8 1 2 1.4113

6.4 Impact of Feedback Information Accuracy

The estimation accuracy of the feedback information is essential for opportunistic

schedulers. Erroneous information leads to significant degradation in system per-

formance because of the fact that users are allocated resources that do not match

their actual channel conditions. Consequently this increases bit error rates leading

to requests for retransmission in the case of non-real time traffic causing increased

latency. In the case of real-time traffic which has very limited latency tolerance, the

information will simply be lost if forward error correction (FEC) methods cannot

retrieve the data. In this section an analysis is made to show the impact of errors

in channel estimation on the scheduling decision in a real-time traffic scenario. The

baseline assumptions in this section are

• UE is transmitting without disruption using a dedicated RB which occurs after

each fixed time period. This RB is called the ‘first RB’.

• In addition to the applied RB there is another RB that can be made available

to the UE. The UE transmits periodically a sounding signal over this RB. This

RB is called the ‘second RB’.

• First and second RBs are uncorrelated.

• The channel estimation related to the first RB is perfect while the result of

the channel estimation related to the second RB contains an error.

119



• The BS carries out channel estimation corresponding to both first and second

RBs. Based on the result of the estimation a single-bit feedback is sent to the

UE over a dedicated control channel. The UE then selects the RB for data

transmission based on the received control bit.

Let us briefly go through the validity of the assumptions. In VoIP a lot of small

speech packets are transmitted making the fully dynamic scheduling an exhaustive

task due to large control overhead. Therefore, it is reasonable to use fixed alloca-

tions as much as possible keeping in mind that the proposed scheduling represents

a trade-off between fixed and dynamic scheduling. While the location of the second

RB in frequency span can be changed after each time period we are able to seek a

better RB for VoIP data transmission. In practice RBs may admit some correlation

but since VoIP packets are small, a certain minimum distance can be used between

first and second RBs with respect to frequency.

The channel estimation related to the first RB is assumed to be perfect because

longer pilot sequences are used corresponding to the data packets and, furthermore,

it is possible to filter the channel estimation over a few consecutive RBs if changes

do not occur too often. In the case of the second RB, only a sounding signal can

be used for channel estimation and thus the result contains an error that is in the

following analysis assumed to be complex Gaussian.

Finally, since only two RBs are used, the feedback from the BS consists of a

single bit that needs to be convoyed to the UE. In fact, it is not difficult to model

the impact of feedback errors in the control channel provided that there is a constant

feedback bit error probability, say P . This is the case when accurate power control is

applied in the feedback channel. The aim is to model the uplink signal distribution

when the scheduling mentioned above is applied. The bit-error-probability is also

computed.

In the signal model the complex channels H1 and H2 resulting from channel

estimation are given byH1 = h1, E{|H1|2} = 2σ1,

H2 = h2 + ε, E{|H2|2} = 2σ2 + 2ϵ2.
(6.19)
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Here h1 and h2 are the true channels and ε is the error from channel estimation. All

these variables are assumed to be complex zero-mean Gaussian. Parameters σ1 and

σ2 are the standard deviations of the underlying Gaussian distribution. Since true

channels are mutually uncorrelated we have

E{h∗1h2} = 0, E{H∗
1H2} = 0. (6.20)

It is assumed that normalization E{|H1|2} = E{|H2|2} has been used.

6.4.1 General Form for SNR Distribution

In general the PDF of the SNR distribution in the uplink BS receiver after the

scheduling is of the form

f(η) = (1− P ) · fmax(η) + P · fmin(η), (6.21)

where P is the probability that a wrong scheduling decision is made in the BS. It is

not difficult to see that (6.21) can be written in the form

f(η) = (1− 2P ) · fmin(η) + 2P · fS(η), (6.22)

with

fmax(η) = 2 · fS(η)− fmin(η) (6.23)

where fS is the SNR distribution when scheduling is not applied or scheduling deci-

sions are fully random. It is noted that in this case

fS(η) =
1

η̄
e−η/η̄, fmax(η) =

2

η̄
e−η/η̄

(
1− e−η/η̄)

According to (6.22) we can write for BEP

BEP(η̄) = (1− 2P ) · BEPmin(η̄) + 2P · BEPS(η̄) (6.24)

where η̄ is the mean SNR. It is known that in the asymptotic region we have

BEPmin(η̄) ∼ Cmax/η̄
2, η̄ >> 1

BEPS(η̄) ∼ CS/η̄, η̄ >> 1
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Hence, we have in the asymptotic region

BEP(η̄) ∼ 2P · CS/η̄ (6.25)

which means that the slope of the BEP is the same as for single antenna transmission.

Factor 2P defines the gain from selection in the asymptotic SNR region.

6.4.2 Probability of a Correct Scheduling Decision

Let us consider the computation of P . This probability is the key to system perfor-

mance. The following events are first considered:

A = ‘SNR of the first estimated channel H1 is larger than the SNR of the second

estimated channel H2’.

B = ‘SNR of the first true channel h1 is larger than the SNR of the second true

channel h2’.

Then the probability of the correct decision PC can be written in the form

PC = Q(A,B) + Q(Ac, Bc) (6.26)

We note that joint decisions (A,B), (Ac, Bc), (Ac, B) and (A,Bc) are mutually ex-

clusive. Hence, we need to compute the joint probabilities of (6.26). In computations

it is denoted that rm = |hm| and Rm = |Hm|. Consequently, we have

R1 = r1, R2 = |r2 + ϵ · ejϕ| (6.27)

where ϕ is the argument between the true channel h2 and error ε. Using these

notations we find that

Q(A,B) = Q(R1 > R2, r1/σ1 > r2/σ2) (6.28)

where r1 and r2 are scaled to have the same mean power. Without this scaling, the

scheduling decision would favor either one of the RBs depending on the power allo-

cation. The mean power of R1 and R2 are the same by definition. The corresponding

integral formulation for joint probability of (6.28) is of the form

Q(A,B) =

∫ ∞

0

∫ r1

0

∫ σ1r1/σ2

0

g(r1, R2, r2)dr2dR2dr1 (6.29)
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where g is the joint distribution of r1, R2 and r2. Similarly we obtain

Q(Ac, Bc) = Q(R1 < R2, r1/σ1 < r2/σ2)

=

∫ ∞

0

∫ ∞

r1

∫ ∞

σ1r1/σ2

g(r1, R2, r2)dr2dR2dr1
(6.30)

Let us compute (6.30) first. The result of (6.30) can be then deduced easily based on

analogous computational procedures. In (6.30) variables r1 and R2 are uncorrelated

but R2 depends on r2. Furthermore, there holds that

g(r1, R2, r2) = g(r1, R2|r2)g(r2) = g(R2|r2)g(r1)g(r2) (6.31)

where distributions of r1 and r2 are Rayleigh,

g(rm) =
rm
σ2
m

e−r2m/2σ2
m (6.32)

but R2, conditioned by r2, follows the Rice distribution,

g(R2|r2) =
R2

ϵ2
e−(R2

2+r22)/2ϵ
2

I0

(R2r2
ϵ2

)
(6.33)

Here I0 is the modified Bessel function of order zero. After combining (6.31)- (6.33)

we obtain

Q(Ac, Bc) =

∫ ∞

0

r1
σ21
e−r21/2σ

2
1

∫ ∞

r1

R2

ϵ2
e−R2

2/2ϵ
2I(r1, R2)dR2dr1 (6.34)

where we have used the notation

I(r1, R2) =

∫ ∞

σ1r1/σ2

r2
σ2
2

e
−r22

(
1

2σ2
2
+ 1

2ϵ2

)
I0

(R2r2
ϵ2

)
dr2 (6.35)

The next task is to compute the integral (6.35). For that purpose the following

expression are used

I0(z) =
∞∑
k=0

( 1

k!

)2(z
2

)2k
(6.36)

After some elementary manipulations we find that

Q(Ac, Bc) =
∞∑
k=0

( 1

k!

)2
(1− ν2)kν2

∫ ∞

0

e−tΓ(k + 1, t/ν2)2dt (6.37)
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where Γ(·, ·) refers to the complementary incomplete gamma function and ν2 =

ϵ2/σ2
1 = ϵ2/(σ2

2 + ϵ2) is the power of the estimation error divided by the total mean

received power of an RB. Similarly we obtain

Q(A,B) =
∞∑
k=0

( 1

k!

)2
(1− ν2)kν2

∫ ∞

0

e−tγ(k + 1, t/ν2)2dt (6.38)

where γ(·, ·) refers to the incomplete gamma function.

After summing up results of (6.37) and (6.38) and applying some elementary

manipulations we find that

PC = 2−
∞∑
k=0

k∑
m=0

(m+ k)!

m!k!

4ν2(1− ν2)

(2 + ν2)m+k+1
(6.39)

Fig. 6.5 demonstrates the theory and simulation BEP curves for a user in a one

user case. In a high SNR region, the presence of a slight estimation error introduces

a significant loss in gain which grows proportional to the power of the estimation

error.

6.4.3 Two-User Case

In this case, two users each utilizing the available two bands are considered. There-

fore, in order for a user to switch to the other channel, the second user must also

want to switch at the same time. Thus, the following scenarios materialize

⋄ [A1, B1;A2, B2]: Both users make a correct decision and keep their channels

fixed resulting in BEPmin for both users.

⋄ [A1, B1;A
c
2, B

c
2]: User 1 correctly keeps its channel fixed and experiences BEPmin

and user 2 correctly wishes to switch but cannot, resulting in BEPmax.

⋄ [Ac
1, B

c
1;A2, B2]: User 1 correctly wishes to switch and user 2 correctly keeps

its channel: user 1 experiences BEPmax and user 2; BEPmin.

⋄ [Ac
1, B1;A2, B2]: User 1 erroneously wishes to switch while user 2 correctly

keeps its channel: both users experience BEPmin.

⋄ [A1, B1;A
c
2, B2]: User 2 erroneously wishes to switch while user 1 correctly

keeps its channel: both users experience BEPmin.
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⋄ [Ac
1, B1;A

c
2, B2]: Both users erroneously wish to switch leading to BEPmax for

both.

⋄ [A1, B
c
1;A2, B2]: User 1 erroneously keeps its channel and user 2 correctly keeps

its channel: user 1 experiences BEPmax and user 2; BEPmin.

⋄ [A1, B1;A2, B
c
2]: User 2 erroneously keeps its channel and user 1 correctly keeps

its channel: user 1 experiences BEPmin and user 2; BEPmax.

⋄ [A1, B
c
1;A2, B

c
2]: Both users erroneously keep their channels leading to BEPmax

for both.

⋄ [Ac
1, B

c
1;A

c
2, B

c
2]: Both users correctly want to switch leading to BEPmin for

both.

Based on the above scenarios, the probability that a user will have BEPmin is

(Pi)
(min) = Qi(A,B) +Qi(A

c, Bc)Qj(A
c, Bc)

+Qi(A
c, B)[Qj(A,B) +Qj(A,B

c)] i ̸= j (6.40)

with

Q(A,B) = 1−
∞∑
k=0

k∑
m=0

(m+ k)!

n!k!

2ν2(1− ν2)

(2 + ν2)m+k+1

= Q(Ac, Bc) (6.41)

Since (A,B), (Ac, Bc), (Ac, B) and (A,Bc) are mutually exclusive, then it is fair to

say that (Ac, B) = (A,Bc) which was also verified through simulations. We end up

with

Q(A,B) + Q(Ac, B) + Q(A,Bc) + Q(Ac, Bc) = 1

So;

Q(Ac, B) = Q(A,Bc) =
1

2
· [1− 2Q(A,B)] (6.42)

Now the BEP for any of the users can be found from

BEPi = P
(min)
i BEPmin + (1− P

(max)
i )BEPmax (6.43)
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Fig. 6.6 demonstrates the theory and simulation BEP curves for a user in a

two-user case. The BEP grows significantly due to the fact that both users have

to be in accord in order to change their channel. We also notice that the gain in

different estimation error powers becomes smaller when compared to Fig. 6.5. In

Fig. 6.8 we can see the spectral efficiency with one and two users in the system.
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6.5 Concluding Remarks

Rank ordering is a useful method in partial CSI systems when chase combining ARQ

is utilized. The nth order statistic directly implies that n−1
N

fraction of the time,

retransmissions are needed. In the case of linear SINR-rate mapping, using the

highest received SINR as a feedback would be optimal. However, in cases where the

SINR-rate mapping has a logarithmic shape, some n < N order statistic is needed

to maximize the channel throughput. The results indicate that average value and

median based channel feedback works relatively well for all values of SINR.

It was also found that dividing the RBs into multiple small sized chunks would

further increase the aggregate throughput. Rank ordering is a good choice when

the number of feedback bits allocated to a single RB is small. It was found that

grouping the RBs and using the sum of their feedback bits for the joint feedback

outperforms the case when each RB used an individual feedback channel when the

number of total bits was less or equal to the number of RBs.

An analysis was made in this chapter to examine the impact of the presence

of error in the estimation of the feedback data on the scheduling decision. System

performance was evaluated and theoretical results were verified with practical sim-

ulations. The probability of decision error was numerically evaluated for different

degrees of estimation error. Therefore, this analysis has also provided a good insight

into the impact of having perfect and imperfect channel information available at the

scheduler for separate resources. The results can, for example, be utilized in admis-

sion control where the controller can compute the BEP of connections based on the

estimation error and deny them admission if the BEP exceeded a certain threshold.
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Chapter 7

Conclusion

The challenge of resource scheduling is not to solve high dimensional optimization

problems, but to develop algorithms that could be implemented in practice. For

this reason, control engineering and heuristic computing methods were utilized in

this research. Nevertheless, optimization problems with different degrees of compu-

tational complexity were introduced to evaluate the performance of the suggested

heuristics. The work mainly focuses on the exploitation of the varying nature of

communication channels. The result of this kind of exploitation is an efficient use of

resources since resources are granted to users who utilize them the best at a certain

time.

A number of utility-based scheduling algorithms for multi-carrier systems were

proposed in this thesis. Utility-based scheduling is able to provide high system per-

formance while maintaining certain degrees of fairness. A simple single-cell sched-

uler was first introduced that uses a heuristic in its allocation decision and takes

into account the constraints of the access technique. The result of this allocation

was compared with the optimal solution and the difference was found to be fairly

good. Due to the allocation constraints in certain multi-carrier systems there was

the problem of allocating excessive resources to users. For this reason, a procedure

was proposed that would solve, or at least minimize the waste in resources. It is

worth noting that the work carried out in this part was one of the early studies

in channel adaptive scheduling for the uplink of LTE systems. In general, static

traffic is assumed in the models. However, it was necessary to show the impact of

dynamic buffer traffic assumptions. In dynamic buffer traffic, a report about the

buffer occupancy has to be reported to the scheduler which uses this information
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in its decision. The impact of the delays in that report was studied as well as the

amount of information that should be reported.

Inter-cell interference coordination via coordination of transmission times was

proposed in a way that would mitigate interference. The scheduler therefore pro-

vides utilization of the whole frequency spectrum for all cells but separates them in

time. The separation guarantees that users who interfere with each other do not

transmit at the same time. The heuristic solution provided a relatively good result

when compared with the optimal solution which was also formulated. Coordination

was also conducted in the frequency domain where cell-edge users of neighboring cells

would be allocated a different number of resources. For this task Nash bargaining

was proposed that allowed cells to enter the bargaining process with a minimum QoS

and leave the process if bargaining cannot provide a better service. In an attempt

to increase performance, the bargaining process was combined with another coordi-

nation scheme where users are handed over to neighboring cells that have lesser loads.

The topic of activity control was discussed in this thesis in terms of an oppor-

tunistic admission controller that assigns a back-off probability in its scheduling to

new users that would limit their activity and consequently the impact on ongoing

calls. This approach is very useful in the sense that a user is gradually admitted into

the system instead of making an instantaneous and negative decision that may harm

the new user or a positive decision that may harm other users. Different aspects

of this task are studied such as: i) different values for the back-off probability, ii)

different admission times, iii) dynamic buffer traffic, iv) possibilities of erroneous

admission decisions, v) the impact of adding multiple users at the same time. In the

same context, the quality constrained scheduling was proposed where the scheduler

controls the activity of the users to reach requested QoS levels. The scheduler pro-

vides a safety net whereby in case the requested QoS level cannot be realized then

the user is guaranteed a fair share of resources.

Since the algorithms deal with multi-carrier systems, it was important to pro-

vide a study about the feedback aspect of these systems. For this part, there was a

need to show the impact of feedback in a multi-carrier systems with real-time traffic

because of the sensitivity of this traffic. Different criteria were examined such as

the type of information that should be reported and the amount of that informa-
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tion. Reporting the state of every subcarrier naturally causes considerable overhead

therefore rank ordering was suggested to find the least and most suitable informa-

tion to send. It was found that the way to send the information also has an impact

on performance. For this purpose the effect of different chunk sizes with different

numbers of feedback bits was studied and it was found that having multiple chunks

of RBs yielded higher throughput. The quality of the feedback information is also

an important issue. Having estimation errors in the feedback reports leads to faulty

scheduling decisions which in turn leads to system degradation. An analysis was

made in this task and showed the impact of estimation error on system performance.

Discussion

The work generally assumes fixed power allocation. Therefore it would be interesting

to see the effect of power control especially in inter-cell interference coordination

schemes. The main issue is that the complexity of the algorithms will grow when

the power vector is included in the optimization problems.

In transmission inter-cell interference coordination, ideal assumptions were made

and therefore, potential future work can be to develop a more practical scheduler

by, for example, taking into account the signaling constraints and imperfect channel

estimation as well as considering power control and real-time data. Another sugges-

tion for this part would be to include a threshold that classifies the users who need

to be coordinated since users are distributed uniformly and suffer different degrees

of interference. In bargaining inter-cell interference coordination, users were divided

into center and edge-cell users. Edge users were defined according to a threshold dif-

ference in the beacon power a user receives from its base-station and the neighboring

ones. This threshold consequently defines the cell split between users which in turn

has a significant impact on system throughput i.e. the more users defined as edge

users the lower the cell throughput, this was observed in a study by Laakso et al.

[109]. Another observation in their study is the impact of intra-cell scheduling tech-

niques and whether different scheduling algorithms can add additional gain to the

interference coordination gain. It was found that for low split cases (enough center

users) the scheduler didn’t add that much gain. This observation can help lower the

complexity of our algorithm by using simpler intra-cell scheduling methods without

fear of affecting overall performance. In general, ICIC requires signaling between
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base-stations that need to exchange information. Since this exchange takes place

periodically in Nash bargaining and is done over the X2 interface then it is possi-

ble to assume that such an ICIC method can be implemented in practice especially

that ICIC is not standardized but part of an implementation-specific strategy [110].

However, based on the complexity of the algorithm, the core network size plays an

important role as bargaining becomes more complicated in larger networks.

In utility based scheduling, the author’s approach in scheduling the RBs was

among the initial suggestions for LTE uplink opportunistic schedulers. Papers that

came afterwards proposed similar approaches as well introducing derivatives that

provided increased gains, one example can be found in [111].

In the admission control part, the main issue was to detect an original fall in

QoS for ongoing calls to make an admission decision. Users moving with different

speeds and in different directions are constantly subjected to different fading pat-

terns. This affects the suggested algorithm dramatically. Hence, the algorithm is

more sensitive to channel condition variations than others. The suggestion of a level

crossing counter to verify a drop or rise in channel state may not be a very good

choice. Further studies can look at a more efficient way to verify these channel states

for the controller.

In the quality controlled scheduler, it was seen that in the case of the rate control

algorithm the capacity region was smaller compared to a more generic quality control

algorithm such as the CDF-based scheduler (CS). The structure of the RCA is

designed such that the algorithm falls back to the proportional fair scheduler in the

event the requested QoS is not possible. Therefore, it is possible to combine the

RCA with CS instead of PF scheduling to achieve the convex hull of the CS rates.
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Master thesis, Linköping university, 2007.

[40] R. Agrawal, A. Bedekar, R.J. La and V. Subramanian. Class and channel

condition based weighted proportional fair scheduler. Teletraffic Engineering

in the internet, in Proc. ITC-17, pp. 553-565, 2001.

[41] S. Borst, P. Whiting. Dynamic rate control algorithmsfor HDR throughput

optimization. In Proc. Infocom, pp. 976-985, 2001.

[42] X. Liu, E.K. Chong, N.B. Shroff. A framework for opportunistic scheduling in

wireless networks. In Proc. Computer Networks 41, 457-474, 2003.

[43] M. Andrews, K. Kumaran , K. Ramanan, A.L. Stolyar, R. Vijayakumar and P.

Whiting. Scheduling in a queueing system with asychronously varying service

rates. Prob. Eng Inf. Sc. 18, 197-217, 2004.

[44] M. Neely, E. Mondiano and C. Li. Fairness and optimal stochastic control for

heterogenous networks. In Proc. Infocom, 2005.

138



[45] M. Neely, E. Mondiano and C. Rohrs. Power and server allocation in a multi-

beam satellite with time-varying channels. In Proc. Infocom, 1451-1460 2006.

[46] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing

systems and scheduling policies for maximum throughputin multihop radio

networks. In IEEE Transactions on Aut. Control, vol. 37, pp. 1936-1948, 1992.

[47] S. Borst, M. Jonckheere. Flow-level stability of channel-aware scheduling al-

gorithms. In Proc. IEEE WiOpt, pp. 272-277, 2006.

[48] S. Borst. User-level performance of channel-aware scheduling algorithms in

wireless data networks. In Proc. Infocom, 2003.

[49] S. Aalto, P. Lassila. Flow-level stability and performance of channel-aware

priority-based schedulers. In Proc. 6th Euro-NF conference on Next Generation

Internet (NGI 2010), 2010.

[50] 3GPP TSG RAN WG1 R1-060667. Interference coordination for E-UTRA

uplink. Alcatel, 2006.

[51] 3GPP TSG RAN WG1 R1-070099. Frequency domain channel-dependent

scheduling considering interference to neighbouring cell for E-UTRA uplink.

NTT DoCoMo, 2007.

[52] X. Mao, A. Maaref, K.H. Teo. Adaptive soft frequency reuse for inter-cell inter-

ference coordination in SC-FDMA based 3GPP LTE uplinks. IEEE GLOBE-

COM 2008. page(s):1 - 6 , 2008.

[53] N. Reider. Inter-cell interference coordination techniques in mobile networks.

M.Sc. Thesis, Budapest University of Technology and Economics, 2007.

[54] J. Neel. How does game theory apply to radio resource management? Ph.D.

Thesis, Virginia Tech.

[55] J.F. Nash. The bargaining problem. Econometrica, 18, 155-162, 1950.

[56] Z. Han, Z. Ji, and K. J. R. Liu. Fair multiuser channel allocation for OFDMA

networks using Nash bargaining and coalitions. IEEE Transactions on Com-

munications, vol.53, no.8, pp.1366-1376, Aug. 2005.

[57] D. Wu. QoS provisioning in wireless networks. Wireless Communications and

Mobile Computing, vol. 5, pp. 957–969, Wiley, 2005.

139



[58] Z. Liu and M.E. Zarki. SIR-based call admission control for DS-CDMA cellular

systems. IEEE Journal on Selected Areas in Communications, vol. 12, no. 4,

pp. 638-644, May 1994.

[59] J.S. Evans and D. Everitt. Effective bandwidth-based admission control for

multiservice CDMA cellular networks. IEEE Trans. on Vehicular Technology,

vol. 48, no. 1, pp. 36-46, Jan. 1999.

[60] M. Dianati, R. Tafazolli, X. Shen, and S. Naik. Call admission control with

opportunistic scheduling scheme. Wireless Communications and Mobile Com-

puting, Wiley, vol. 10, issue 3, pages 372 - 382, 2009.

[61] J. Gomes, H.-A. Choi, J.-H. Kim, J. K. Sohn, and H. I. Choi. Integrating ad-

mission control and packet scheduling for quality controlled streaming services

in HSDPA networks. Proc. of IEEE Broadnets 2007, Raleigh, NC, Sep 10-14.

[62] H.-W. Lee and S. Chong. Combined packet scheduling and call admission con-

trol with minimum throughput guarantee in wireless networks. IEEE Trans-

actions on Wireless Communications, vol. 6, No. 8, pp. 3080-3089, August

2007.

[63] X. Liu, E.K. Chong and N.B. Shroff. Opportunistic transmission scheduling

with resource-sharing constraints in wireless networks. In Proc. IEEE Journal

on Selected Areas in Communications, 2001a.

[64] H. Lee and S. Chong. Combined QoS scheduling and call admission control

algorithm in cellular networks. In Proc. of IEEE WiOpt 2006, pp. 114-123,

2006.

[65] M. Hu, J. Zhang. Two novel schemes for opportunistic multiuser commu-

nications. Special session on wireless networks in IEEE Multimedia Signal

Processing Workshop, Dec 2002.

[66] P. Zhao and H.M. Zhang. Sliding window based CAC for adaptive service in

mobile network. Proc. IEEE PIMRC 2002 5, 2165 - 2169.

[67] B. Bambos, S.C. Chen and G. Pottie. Channel access algorithms with ac-

tive link protection for wireless communication networks with power control.

IEEE/ACM Transactions on Networking 8, 583 - 597, 2000.

140



[68] X., Chong E.K. and Shroff N.B. Transmission scheduling for efficient wireless

resource utilization with minimum-performance guarantees. In Proc. IEEE

VTC2001 Fall, vol. 2, pp. 824 - 838. 2001b.

[69] S. Patil and G. de Veciana. Managing resources and quality of service in wire-

less systems exploiting opportunism. IEEE Transactions on Networking, 2007.

[70] Z. Zhang, Y. He and E.K.P Chong. Opportunistic downlink scheduling for

multiuser OFDM systems. In Proc. IEEE Networking Conference 2004, vol. 2

pp. 1206 - 1212, 2004.

[71] T.J. willink and P.H. Wittke. Optimization and performance evaluation of

multicarrier transmission. IEEE Trans. Inform. Theory, vol. 43, pp. 426-440,

Mar. 1997.

[72] G. Münz, S. Pfletschinger and J. Speidel. An efficient waterfilling algorithm

for multiple access OFDM. Proc. IEEE International Conference on Global

Communications (Globecom’02), November 2002.

[73] M. Kobayashi and G. Caire. A practical approach for the weighted sum rate

maximization in MIMO-OFDM BC. Asilomar 2007.

[74] K. Fazel and G. Fettewis. Multi-carrier spread-spectrum. Norwell, MA:

Kluwer, p. 260, 1997.

[75] A. Czylwik. Adaptive OFDM for wideband radio channels. In Proc. IEEE

Global Telecommunications Conference (GLOBECOM ’96), vol. 1, pp. 713-

718, 1996.

[76] L. van der Perre, S. Theon, P. Vandenameele, B. Gyselinckx and M. Engels.

Adaptive loading strategy for a high speed OFDM-based WLAN. In Proc.

IEEE Global Telecommunications Conference (GLOBECOM ’98), vol. 4, pp.

1936-1940, 1998.

[77] A.N. Barreto and S. Furrer. Adaptive bit loading for wireless OFDM systems.

In Proc. 12th IEEE International Symposium on Personal, Indoor and Mobile

Radio Communications (PIMRC ’01), vol. 2, pp. 88-92, 2001.

[78] D. Dardari. Ordered subcarrier selection algorithm for OFDM-based high-

speed WLANs. In Proc. 15th IEEE International Symposium on Personal,

141



Indoor and Mobile Radio Communications (PIMRC ’04), vol. 2, pp. 1220-

1224, Sept. 2004.

[79] 3GPP-RP-040461. Proposed study item on evolved utra and utran. Technical

Report.

[80] C. Y. Wong, R. S. Cheng, K. B. Letaief and R. D. Murch. Multiuser OFDM

with adaptive subcarrier, bit and power allocation. IEEE Journal on Selected

Areas in Communications, vol. 17, no. 10, Oct. 1999.

[81] J. Jang and K. B. Lee. Transmit power adaptation for multiuser OFDM sys-

tem. IEEE Journal on Selected Areas in Communications, vol. 21, no. 2, pp.

171-178, Feb. 2003.

[82] Y. J. Zhang and K. B. Letaief. Adaptive resource allocation and scheduling

for multiuser packet-based OFDM networks. In Proc. of IEEE ICC, pp. 2949-

2953, June 2004.

[83] T. Keller and L. Hanzo. Adaptive multicarrier modulation: a convenient frame-

work for time-frequency processing in wireless communications. In Proc. of the

IEEE, vol. 88, No. 5, pp. 611-640, 2000.

[84] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M.

Andrews. An overview of limited feedback in wireless communication systems.

IEEE Journal on Selected Areas in Communications, vol. 26, No.8, pages:

1341-1365, Oct. 2008.

[85] P.J. Cherriman, T. Keller and L. Hanzo. Subband-adaptive turbo-coded

OFDM-based interactive video telephony. IEEE Transactions on Circuits and

Systems for Video Technology, vol. 12, pp. 829-839, 2002.

[86] H. Zhang, Y. Li, V. Stolpman, and N. Van Waes. A reduced CSI feedback

approach for precoded MIMO-OFDM systems. IEEE Trans. Wireless Comm.,

vol. 6, no. 1, pp. 55-58, Jan. 2007.

[87] D. Gesbert and M. Alouini. Selective multi-user diversity. In Proc.IEEE Int.

Symp. Signal Proc. Info. Theory, Dec. 2003, pp. 162- 165.

[88] D. Gesbert and M. Alouini. How much feedback is multi-user diversity really

worth? In Proc. IEEE Int. Conf. on Commun., vol. 1, June 2004, pp. 234-238.

142



[89] V. Hassel, D. Gesbert, M. Alouini, and G. E. Oien. A threshold-based channel

state feedback algorithm for modern cellular systems. IEEE Trans. Wireless

Comm., vol. 6, no. 7, pp. 2422-2426, July 2007.

[90] S. Sanayei, D. J. Love, and A. Nosratinia. Opportunistic downlink transmission

with limited feedback. IEEE Trans. Info. Th., vol. 53, no. 11, pp. 4363-4372,

Nov. 2007.

[91] I. C. Wong and B. L. Evans. OFDMA downlink resource allocation for ergodic

capacity maximization with imperfect chanel knowledge. IEEE GLOBECOM,

pp. 3729-3733, Nov. 2007.

[92] R. Agrawal, R. Berry, J. Huang, and V. Subramanian. Optimal scheduling

for OFDMA systems. Proc. of 40th Annual Asilomar Conference on Signals,

Systems, and Computers, (invited paper) Pacific Grove, CA, October 29 -

November 1, 2006.

[93] F. Kelly. Charging and rate control for elastic traffic. European Transactions

on Telecommunications, vol 8, pp 33-37. 1997.

[94] E. Kalai, M. Smorodinsky. Other solutions to Nash’s bargaining problem.

Econometrica, 43, 513-518, 1975.

[95] N. Dagan, O. volij, E. Winter. A characterization of the Nash bargaining

solution. Social Choice and Welfare, 19, 811-823, Springer 2002.

[96] W. Thompson. Cooperative models of bargaining. Handbook of Game Theory,

vol.2, chapter 35, Elsevier Science 1994.

[97] D. Pisinger. Algorithms for Knapsack problems. Ph.D. thesis, University of

Copenhagen, 1995.

[98] T. Casey, N. Veselinovic, R. Jäntti. Base station controlled load balancing with

handovers in mobile WiMAX. In Proc. IEEE Personal Indoor Mobile Radio

Communications PIMRC 2008.

[99] S. Chae, P. Haidhues. A group bargaining solution. Mathematical Social Sci-

ences, Elsevier, 48, 37-53, 2004.

[100] X. Zhang. A note on the group bargaing solution. Mathematical Social Sci-

ences, Elsevier, 57, 155-160, 2009.

143



[101] D. Park, H. Seo, H. Kwon and B. Lee. A new wireless packet scheduling al-

gorithm based on the CDF of user transmission rates”. Proc. IEEE GLOBE-

COM, 528-532, 2003.

[102] K. Gribanova. Packet scheduling for video streaming data in the HDR sys-

tem. Master’s thesis, telecommunication software and multimedia laboratory,

Helsinki University of Technology, 2004.

[103] Pop and Beaulieu. Limitations of sum of sinsoids fading simulator simulators.

IEEE Transactions on Communications,49, 669-708, 2001.

[104] D. Park, H. Seo, H. Kwon, B. Gi Lee. Wireless packet scheduling based on the

cumulative distribution function of user transmission rates. IEEE Trans. On

Communications, vol. 53, Nov. 2005, pp 1919-1929.

[105] R. Jäntti. Radio resource management methods. Lecture notes, communica-

tions and networking department, Aalto university.

[106] S. Sanayei, A. Nosratinia and N. Aldhahir. Code Combining: A maximum-

likelihood decoding approach for combining an arbitrary number of noisy pack-

ets. IEEE Transactions on Communications 1985, vol. 33, pp. 593-607, 1985.

[107] 3GPP-RP-25.892. Feasibility study for OFDM for UTRAN enhancement. Ver-

sion 1.2.0, May 2004.

[108] T. Kim. Quantized feedback for slow fading channels. Licentiate thesis, KTH,

paper A, 2006.

[109] F. Laakso, K. Aho, T. Chapman and T. Ristaniemi. Applicability of interfer-

ence coordination in highly loaded HSUPA Network. In Proc. IEEE VTC2001

Spring, pp. 1-5, 2010.
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Appendix A Validity of models

The models considered in this work are simplifications of real systems. The main

goal of the models was to capture the basic characteristics of these real systems.

In this appendix an attempt is made to verify the models in order to prove that

the results they produce are valid results. The verification is made by comparing

the performance obtained with the models of this work and the performance of

other models from the literature under the same assumptions and with the same

parameters. The comparison is merely to give an insight of the credibility of the

results. The two main system models considered in this thesis are addressed. The

first representing the HSDPA system and the second is the LTE system.

HSDPA

The reference in this section is the HSDPA model used in a 3GPP TSG RAN

document [112]. The document mainly discusses HSDPA throughputs with fixed and

variable sized TTIs. In the thesis model only fixed TTIs are considered. Therefore,

the comparison will be made only with the fixed TTI result. The same simulation

parameters used in the paper are considered and applied to our simulator and the

cumulative distribution function was computed for packet call throughputs of 37

UEs.

LTE

In this part the comparison will be with a related work model. The reference is the

study of Jersenius [39]. Her work mainly suggests a number of scheduling approaches

for LTE systems. We will apply some of the scheduling methods proposed in the

reference to this work’s model using the same scenarios, simulation assumptions and

parameters.The following scheduling algorithms will be considered:

1. Channel Dependent Time Domain Scheduling (CDT): In every TTI, the active

user with the largest average gain to interference ratio (GIR) (average over all

RBs) is assigned all resource blocks.
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Figure 7.1: CDF of packet call throughput from reference HSDPA model [112]

Figure 7.2: CDF of packet call throughput from our model
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2. Channel Dependent Frequency and Time Domain Scheduling (CDFT): Re-

source blocks are grouped into resource groups, the number of these groups

depends on the number of active users. Selection is made by choosing the users

that maximize the ’user-resource group’ pair.

Validation

Comparing the reference Figures 7.1 and 7.3 with the Figures produced with our

models using the same scenarios and parameters 7.2 and 7.4 reveals that our sim-

ulator provides a roughly close result or at least the same order of magnitude to

the ones obtained with the simulators considered in the references. It is possible

to say that the result obtained from this work’s HSDPA and LTE models can be

considered reliable since similar performance was produced when similar simulation

environments were assumed.

Accuracy of results is an essential part of any study. For this reason, the au-

thor resorted to parallel programming where simulations are carried out on multiple

processors and the data gathered and analyzed. This method provides accuracy

and consistency of results but at a high cost in computing resources. The stan-

dard deviation of the data was one benchmark used to measure the reliability of the

results.
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Figure 7.3: Cell throughput for 2, 10, 20, 40 and 60 users from reference model [39]
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Figure 7.4: Cell throughput for 2, 10, 20, 40 and 60 users from our model
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Appendix B Proofs

Proof of Proposition 4.1

The Lagrangian of the problem can be written as:

Lb[x̄, ϕ, φ, η, ϱ, c] =
∑

i∈Nc,b∪Ne,b
uα[x̄i]−∑

i∈Nc,b
ηi (x̄i − µi(lϕi + (L− l)φi)−

∑
i∈Ne,b

ηi(x̄i − µjlϕi)

+ ϱ1

(
1−

∑
i∈Nc,b∪Ne,b

ϕi − c1

)
+ ϱ2

(
1−

∑
i∈Nc,b

φi − c2

)
where η and ϱ are the lagrangian parameters. c is the slack variable.

d

dxi
Lb[x̄, ϕ, φ, η, ϱ, c] = 0 ⇔ 1

x̄αi
− ηi = 0 ⇒ x̄i =

1

η
1
α
i

,∀i (A-1)

d

dϕi
Lb[x̄, ϕ, φ, η, ϱ, c] = 0 ⇔ 0 = ηjrjl − ϱ1 = 0 ⇒ ηi =

ϱ1
µjl

, i ∈ Ne,b (A-2)

d

dφi
Lb[x̄, ϕ, φ, η, ϱ, c] = 0 ⇔ 0 = ηjµi(L− l)− ϱ2 = 0

⇒ ηi =
ϱ2

µi(L− l)
, i ∈ Nc,b (A-3)

Either the slack variable cκ is zero or the lagrangian ϱk is zero, κ = 1, 2. By studying

the above conditions, we can conclude that the slack variables must be zero and thus

the constraints are binding. From (A-1), (A-2) and (A-3) we can conclude that

x̄i =


(

µj l

ϱ1

) 1
α
, i ∈ Ne,b(

µi(L−l)
ϱ2

) 1
α
, i ∈ Nc,b

(A-4)

Furthermore, either ϕi = 0 or ϱ2 = L−l
l
. Let us first consider the case, in which

ηi > 0. It follows from (A-1) that the optimal throughputs of the users can be

expressed as:

x̄i =


µjlϕi ⇒ ϕi =

(µj l)
1
α−1

ϱ
1
α
1

, i ∈ Ne,b

µi(lϕi + (L− l)φi) ⇒ ϕi =
(µj l)

1
α−1

ϱ
1
α
1

− (L−l)
l φi i ∈ Nc,b

B-1



Using the fact that the constraints are binding, b.e.∑
i∈Nc,b∪Ne,b

ϕi = 1 and
∑

i∈Nc,b
φi = 1, we can solve the lagrangian ϱ

1
α
1 .

∑
i∈Nc,b∪Ne,b

ϕi =
1

ϱ
1
α
1

∑
i∈Nc,b∪Ne,b

(µjl)
1
α
−1 − (

L− l

l
)
∑

i∈Nc,b

φi = 1 (A-5)

⇒ ϱ
1
α
1 =

l

L

∑
i∈Nc,b∪Ne,b

(µjl)
1
α
−1 (A-6)

Substituting (A-6) into (A-6) and simplifying the equation gives the solution b). If

ηi = 0 for all i ∈ Nc,b, we can solve ϱ
1
α
1 with

∑
i∈Ne,b

= 1 and ϱ
1
α
2 with

∑
i∈Nc,b

= 1

which gives the solution ii). Assume now that l < L, ηi > 0 for i′ ∈ Nc,b and ηi = 0

for all i ̸= i′, i ∈ Nc,b ̸= ∅. Now we must have ϱ2 = L−l
l

and x̄i′ =
(

µj l

ϱ1

) 1
α
. Let us

define M =
∑

i∈{i′}∪Ne,b
(µjl)

1
α
−1 and K =

∑
i∈Nc,b,i ̸=′(µjl)

1
α
−1. Now (A-5) becomes

∑
i∈Nc,b∪Ne,b

ϕi =
1

ϱ
1
α
1

M −
(
L− l

l

)
ϕi′ = 1

⇒ 1

ϱ
1
α
1

=
1−

(
L−l
l

)
ϕi

M
(A-7)

For i ̸= i′, i ∈ Nc,b, we have

φi =
((L− l)µi)

1− 1
α

ϱ
1
α
2

=
l

L− l

((L− l)µi)
1− 1

α

ϱ
1
α
1

(A-8)

The allocations must sum up to 1. Hence,

∑
i∈Nc,b

φi =
l

L− l

1

ϱ
1
α
1

K − φi′ = 1 ⇒ 1

ϱ
1
α
1

=
L− l

l

1− φi′

K
(A-9)

Combining (A-7) and (A-9),we get φi′ = 1. This implies that for all i ̸= i′, i ∈

Nc,b ̸= ∅, we get φi which implies x̄i =
(

µi(L−l)
ϱ2

) 1
α
which is true only if l = L which

contradicts our requirement l < L. Hence, we can conclude that there are no mixed

solutions in which only some of the center users would be allocated to LI-RBs. It

can be noted that for edge users the solution ii) would give higher throughput than
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b) if

l >

∑
i∈Ne,b

µ
1
α
i − 1∑

i∈Nc,b∪Ne,b
µ

1
α
−1

i

L (A-10)

But since solution b) corresponds also to the optimal solution when l = L, b.e. all

users have access to all resource blocks, we can conclude that solution ii) is only

used when (A-10) does not hold. This concludes the proof. �

Proof of Proposition 4.2

Assume the case that all users are using minimum rates. For i ∈ Ne,b, we get

∑
i∈Ne,b

ϕi =
∑
i∈Ne,b

x̄min,i

µjl
≤ 1 ⇒ l ≥ 1∑

i∈Ne,b

x̄min,i

µj l

(A-11)

and for i ∈ Nc,b∑
i∈Nc,b

φi =
∑
i∈Ne,b

x̄min,i

µi(L− l)
≤ 1 ⇒ l ≤ L− 1∑

i∈Nc,b

x̄min,i

µj l

(A-12)

Combining (A-11) and (A-12), we get

1∑
i∈Nc,b

x̄min,i

µi

+
1∑

i∈Ne,b

x̄min,i

µi

≤ L

This concludes the proof. �

Proof of Proposition 4.3

In case the problem does not have a feasible solution, the system is overloaded and

some means of congestion control needs to be applied. That is, either some users need

to be removed or their minimum rate constraints need to be relaxed. Subsequently,

it will be assumed that both methods are utilized and the cell coordination problem

has a feasible solution. �

Proof of Proposition 4.4

Algorithm 4.1 is a special case of Algorithm 7.1 in the study by Pisinger that solves

the linear programming (LP) relaxed MCKP in polynomial time [97]. The LP

relaxation happens to give integer solutions when mb,k −mb,(k−1) = 1. �
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Proof of Lemma 5.1

Assume at time-slot k = 0, the system with N users was in steady state. Assume

further that an admission control rule is used, in which a new user trying to get

access to the system is excluded from the active set at time-slot k with probability

pkb . Define

x̄i[AN ;AN+1] = E{µi(k)χi(µi(k), x̄i(AN+1),AN)} (A-13)

and

x̄lower,i(k) = pkb x̄i[AN ;AN+1] + (1− pkb )x̄i[AN+1;AN+1] (A-14)

x̄upper,i(k) = pkb x̄i[AN+1;AN ] + (1− pkb )x̄i[AN ;AN ] (A-15)

where x̄lower,i(k) and x̄U,i(k) are lower and upper bounds of x̃i(k) and

lim
k→∞

x̃i(k) = lim
k→∞

x̄lower,i(k) = x̄i(ZN+1) (A-16)

which shows that the expected rate with the new user added is equivalent to the

lower bound rate as k → ∞. Similar to the earlier analysis, the rate obtained in slot

k can be written with the help of the rate obtained in slot k − 1 as follows

x̄lower,i(k) = pBx̄lower,i(k − 1) + (1− pB)x̄i[AN+1;AN+1] (A-17)

x̄upper,i(k) = pBx̄upper,i(k − 1) + (1− pB)x̄i[AN ;AN ] (A-18)

Based on (A-16) we can write

x̃i(k) ≥ pBx̄lower,i(k − 1) + (1− pB)x̄i[AN+1,AN+1] (A-19)

x̃i(k)− x̄lower,i(k − 1) ≥ −(1− pB)[x̄lower,i(k − 1)− x̄i[AN+1,AN+1]](A-20)

�

Proof of Lemma 5.2

The proof for this lemma will follow from proposition (1) and lemma (2) with F =

maxk∈Ki
x̄i(Ak) > 0 which satisfies condition (c) in lemma (1). �
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Proof of Proposition 5.1

We fix some i and Q1, Q2 ∈ Q, and we define a function gi : [0, 1] 7→ ℜni by:

gi(t) = tqi1 + (1− t)qi2 − βis̄i(tQ1 + (1− t)Q2) + βis̄
req
i (A-21)

Notice that gi is continuously differentiable. Let dgi/dt be the ni-dimensional vector

consisting of the derivatives of the components of gi. We then have

∥Ti(Q1)− Ti(Q2)∥ = ∥gi(1)− gi(0)∥

= ∥
∫ 1

0

dgi(t)

dt
dt∥∞ ≤

∫ 1

0
∥dgi
dt

(t)∥∞dt ≤ max
t∈[0,1]

∥dgi
dt

(t)∥∞

It is therefore, sufficient to bound the norm of dgi/dt. The chain rule then yields

∥dgi
dt

(t)∥∞
= ∥qi1 − qi2 − βi(∇s̄i(tQ1 + (1− t)Q2))

′(qi1 − qi2)∥∞
= ∥[I − βi(∇is̄i(tQ1 + (1− t)Q2))

′](qi1 − qi2)

−Σj ̸=iβi(∇j s̄i(tQ1 + (1− t)Q2))
′(qj1 − qj2)∥∞

≤ ∥I − βi(∇is̄i(tQ1 + (1− t)Q2))
′∥∞.∥(qi1 − qi2)∥∞

+Σj ̸=iβi(∇j s̄i(tQ1 + (1− t)Q2))
′∥∞.∥(qj1 − qj2)∥∞

≤ ψmax
j

∥qj1 − qj2∥∞ = ψ∥Q1 −Q2∥

which establishes the contraction property. �

Proof of Proposition 5.2

The fixed point satisfies the following for all 0 < B <∞

q∗i = Ti(Q
∗, B) (A-22)

q∗i = q∗i + βi

(
x̄reqi − q∗i

∑
k∈Ki

x̄i(Ak)π
∗
k,i

)
(A-23)

By subtracting q∗i from both sides and dividing by βi, the above can be written as

x̄reqi = q∗i
∑
k∈Ki

x̄i(Ak)π
∗
k,i (A-24)
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The right hand side of the above equation is equal to the asymptotic value of x̄i(n)

as n→ ∞. Thus we can conclude that if 0 ≤ Q∗ < 1, then x̄reqi is achieved for all i.

The uniqueness of the fixed point follows from the fact that T (Q,B) is a con-

traction mapping. �

Proof of Proposition 5.3

The assumption is that at least one user has x̄reqi larger than what can be supported

by the system meaning that there does not exist 0 ≤ Q∗ < 1 such that x̄
(n)
i → x̄reqi .

In such a case, the error term in RCA is all the time positive x̄reqi − x̄
(n)
i ≥ 0 and

thus the resulting sequence of probabilities {q(n)i } is monotonously increasing. The

min-operator in RCA will cause the probability to saturate to the value q∗i = 1 which

corresponds to normal PF operation.

The fixed point data rate of RCA is

x̄∗i = q∗i
∑
k∈Ki

x̄i(Ak)π
∗
k,i (A-25)

If q∗i = 1, then Ki = {1, 2, · · ·S}, i.e. i belongs to all active sets. Remember that

π∗
k,i =

∏
j∈Ak
j ̸=i

q∗j
∏

z∈N\Ak

(1− qz)
∗ k ∈ Ki (A-26)

If qi = 1 for all i, then π∗
S,i = 1 and π∗

k,i = 0 for k ̸= S. In which case x̄∗i = x̄i(AS)

which is equal to the expected rate of the PF scheme.

Our assumption on the magnitude of the rates was that x̄i(Al) ≥ x̄i(Ak) if

Ak ≤ Al. Hence, x̄i(AS) ≤ x̄i(Ak) for all k ∈ Ki. Now in case there exists at least

one user j for which 0 ≤ q∗j < 1, then there exists at least one active set Am such

that Am < AS and x̄i(AS) ≤ x̄i(Am) and π∗
i,m > 0. Hence the resulting expected

rate will be a convex combination of at least two rates x̄i(AS) and x̄i(Am). It thus

follows that

x̄∗i = q∗i
∑
k∈Ki

x̄i(Ak)π
∗
k,i > x̄i(AS) | ∃j s.t. x̄∗j < x̄j(AS) (A-27)

That is, the expected rate of RCA is larger than the rate of PF. �
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