. o . +
View metadata, citation and similar papers at core.ac.uk

brought to you by .. CORE

provided by Aaltodoc Publication Archive

Web Application
User Interface
Technologies

Mikko Pohja

rrerme’
hocotp
ame=—
ame=—
ame=
ame :
e ""copY’

.

vrAuthO'_/‘
i st 1 but
s cah t

crr 1 «erm i

7« g

A’, Aalto University DOCTORAL

DISSERTATIONS

https://core.ac.uk/display/80703889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University publication series
DOCTORAL DISSERTATIONS 5/2011

Web Application User Interface
Technologies

Mikko Pohja

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Science for public examination and debate in Auditorium T2 at the
Aalto University School of Science (Espoo, Finland) on the 4th of
February 2011 at 12 noon.

Aalto University
School of Science
Department of Media Technology

Supervisor
Professor Petri Vuorimaa

Instructor
Professor Petri Vuorimaa

Preliminary examiners
Professor Tommi Mikkonen, Tampere University of Technology, Finland
D.Sc. Kari Systa, Nokia Research Center, Finland

Opponent
PhD, Research Director Fabio Paterno, Institute of the National Research Council of ltaly

Aalto University publication series
DOCTORAL DISSERTATIONS 5/2011

© Mikko Pohja

ISBN 978-952-60-4011-0 (pdf)
ISBN 978-952-60-4010-3 (printed)
ISSN-L 1799-4934

ISSN 1799-4942 (pdf)

ISSN 1799-4934 (printed)

Aalto Print
Helsinki 2011

The dissertation can be read at http://lib.tkk.fi/Diss/

Publication orders (printed book):
julkaisut@aalto.fi

A' Aalto University Abstract

] Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author

Mikko Pohja

Name of the doctoral dissertation

‘Web Application User Interface Technologies

Publisher School of Science

Unit Department of Media Technology

Series Aalto University publication series DOCTORAL DISSERTATIONS 5/2011
Field of research Web Technologies

Manuscript submitted 24.08.2010 Manuscript revised 17.01.2011
Date of the defence 04.02.2011 Language English

[] Monograph X Article dissertation (summary + original articles)
Abstract

The World Wide Web has expanded from a huge information storage repository into a
worldwide application platform. Web applications have several benefits compared to desktop
applications. An application can be used anywhere from any system and device, which means
that only one version is needed, they do not need to be installed and developers can modify
running applications. Despite all the benefits of the Web, web applications are suffering
because they are developed using the same technologies as the static documents on the Web.
Some of these web technologies are outdated and were not originally designed for the complex
use cases of the modern applications to which they are now applied. For instance, HTML
forms comprise the main interaction of an application, despite not having been designed to
describe complex and interactive Uls. Another example is HT'TP communication on the Web,
which always requires client initiative and is too restrictive for dynamic web applications.
Additionally, new usage contexts have brought with them new requirements for web
applications, which are no longer used only via Graphical User Interfaces.

Recently, several parties have developed specialized technologies for web application
development. These solutions are not only minor additions to the existing technologies, but
also new technologies. The goal of this thesis is to analyze the advanced web technologies and
propose improvements to the technologies and architecture where applicable. The
technologies are evaluated against a large set of requirements. The aim of the evaluation is
two-fold. The first part is to select a technology on which to base the further improvements,
and the second is to identify the deficiencies of the current solutions. The improvements focus
on the developers’ point-of-view.

Based on the evaluation, this thesis proposes certain improvements related to multimodal
interaction, server push, and remote UI updates. It also discusses software that supports the
improvements and XML-based web technologies. Finally, the improvements are evaluated
against the requirements and compared to other solutions.

Keywords User Interfaces, Web Technologies, UIDL, XForms

ISBN (printed) 978-952-60-4010-3 ISBN (pdf) 978-952-60-4011-0

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Pages 180 Location of publisher Espoo Location of printing Helsinki Year 2011
The dissertation can be read at http://lib.tkk.fi/Diss/

Ao Aalto-yliopisto Tiivistelma
u

Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekija

Mikko Pohja

Vaitoskirjan nimi

Web-sovellusten kayttoliittymateknologiat

Julkaisija Perustieteiden korkeakoulu

Yksikkdé Mediatekniikan laitos

Sarja Aalto-yliopiston julkaisusarja VAITOSKIRJAT 5/2011
Tutkimusala Web-teknologiat

Kasikirjoituksen pvm 24.08.2010 Korjatun kasikirjoituksen pvm 17.01.2011
Vaitospaiva 04.02.2011 Kieli Englanti

[] Monografia X Yhdistelméviitéskirja (yhteenveto-osa + erillisartikkelit)
Tiivistelma

Web ei ole enédd pelkka suuri tietovarasto kuten aikaisemmin, vaan myos maailmanlaajuinen
sovellusalusta. Web-sovelluksilla on useita etuja tyopoytasovelluksiin ndhden. Sovelluksen
kayttdminen ei ole sidottu tiettyyn paikkaan, jarjestelméaén tai laitteeseen. Kayttajan ei
tarvitse erikseen asentaa sovelluksia ja kehittdjd voi muokata kaytossa olevaa versiota
sovelluksesta. Eduista huolimatta sovelluskehitysta haittaavat siind kaytettéavat teknologiat.
Sovelluksia kehitetddn padasiassa samoilla tekniikoilla kuin staattisia web-sivuja. Osa
kyseisistéa tekniikoista on vanhentunut, eika niitd ole edes suunniteltu kaytettavan
sovelluksissa. Esimerkiksi sovellusten vuorovaikutus toteutetaan HTML-lomakkeilla, vaikkei
niitd ole suunniteltu kuvaamaan monimutkaisia ja vuorovaikutteisia kayttoliittymia. Toinen
esimerkki on webin HTTP-pohjainen tiedonvilitys, joka perustuu asiakkaan
tiedonvilityspyyntoihin palvelimelta. Téllainen tiedonvalitysmalli rajoittaa liikaa dynaamisia
web-sovelluksia. My6s uudet vuorovaikutustavat asettavat tekniikoille lisdvaatimuksia.
Sovelluksia ei kiytetd endé pelkdstdan graafisen kéyttoliittymén avulla.

Web-sovellusten kehittdmiseen on viime aikoina méaéritelty useampia ratkaisuja. Ne eivat
ole pelkéastadn parannuksia olemassa oleviin tekniikoihin, vaan myo6s kokonaan uusia
tekniikoita. Tdmén tyon tarkoituksena on analysoida néitd edistyneempia tekniikoita ja
ehdottaa niihin tarvittaessa parannuksia. Arviointiin kaytetaan erikseen maéariteltyja
vaatimuksia. Arvioinnilla on kaksi tarkoitusta: yhtaalta, valita teknologia, jota tdssa tyossa
kaytetddn hyviksi, ja toisaalta, 10ytda nykyisten ratkaisujen puutteet. Parannuksia mietitdan
lahinné sovelluskehittijéan kannalta.

Arviointeihin perustuen téssa tyossé esitetddn parannuksia monimuotoiseen
vuorovaikutukseen, palvelinldhtoiseen tiedonvalitykseen ja kdyttoliittyméan
etdpéaivittamiseen. Lisdksi kuvataan ehdotukset toteuttavat ohjelmistot. Parannusehdotukset
my0s analysoidaan vertaamalla niitd vaatimuksiin ja muihin ratkaisuihin.

Avainsanat Kiyttoliittymat, Web-teknologiat, UIDL, XForms

ISBN (painettu) 978-952-60-4010-3 ISBN (pdf) 978-952-60-4011-0
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Sivumaara 180 Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2011

Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Acknowledgements

I would like to express my gratitude to Professor Petri Vuorimaa, who has
supervised this Thesis. He gave me opportunity to work as a researcher
and has supported and guided me during the work. Without him, this
Thesis would never have been materialized. Furthermore, I would like to
acknowledge the research group, where I started this work. As a member
of the group, I learned how to do research and write scientific articles.
Especially, senior researchers Mikko Honkala, who has co-authored two
articles of this Thesis, Pablo Cesar, and Kari Pihkala have familiarized
me with the research work. Moreover, I worked closely with Alessandro
Cogliati, Teppo Jalava, and Juha Vierinen.

The pre-examiners, Professor Tommi Mikkonen and D.Sc. Kari Syst4,
affected significantly to the final Thesis. They gave me good feedback
and constructive comments, for which I am very thankful. I got valuable
comments from the final revisions of the Thesis also from my colleagues

Denis Shestakov and Kalle Saild, who I also would like to thank.

Espoo, January 17, 2011

Mikko Pohja

vii

Contents

Acknowledgements

List of Publications

Summary of the Publications and Author’s Contribution
List of Abbreviations

1 Introduction
1.1 Motivation
1.2 Background
1.3 Research Problemand Aim
1.4 ResearchMethods
1.5 ScopeoftheResearch
1.6 Contribution
1.7 Organization ofthe Thesis

2 State of the Art
2.1 UserlInterface
2.2 Communication,

2.3 Summary e e e e

3 Evaluation of the Advanced Web Technologies
3.1 User Interface Languages
3.2 Multimodal Technologies
3.3 Communication with the Back-End
3.4 Requirements
3.5 Evaluation

3.6 Summary e e

4 Proposed Improvements

4.1 Design Principles

vii

xi

xiii

xvii

10
10
12

13
13
17
19

21
21
24
26
27
30
37

39
39

ix

Contents

4.2 Multimodal Interaction
43 ServerPushSystem.
44 Remote DOMEvents

5 Prototype Implementations
5.1 XML User Agent Components
5.2 ServerPushSystem.

6 Discussion
6.1 User Interface Languages
6.2 Multimodal Interaction
6.3 XML User Agent Components
6.4 Server PushSystem.

7 Conclusions
7.1 Contribution
7.2 FutureWork

Bibliography
Errata

Publications

47
47
52

55
55
56
57
57

59
59
60

62

71

73

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Mikko Pohja, Mikko Honkala, and Petri Vuorimaa. An XHTML 2.0
Implementation. In Proceedings of the Fourth International Confer-

ence on Web Engineering (ICWE), pages 402-415, 2004.

II Mikko Pohja and Petri Vuorimaa. CSS Layout Engine for Com-
pound Documents. In Proceedings of the Third Latin American Web
Congress (LA-WEB), pages 148-157, 2005.

IIT Mikko Honkala and Mikko Pohja. Multimodal Interaction with XForms.
In Proceedings of the Sixth International Conference on Web Engi-
neering (ICWE), pages 201-208, 2006.

IV Mikko Pohja. Declarative Push on Web. In Proceedings of the Fourth
International Conference on Web Information Systems and Technolo-
gies (WEBIST), 201-207 2008.

V Mikko Pohja. Comparison of Common XML-Based Web User Inter-
face Languages. Journal of Web Engineering, Vol. 9, No. 2, 2010,
pages 95-115, 2010.

VI Mikko Pohja. Server Push for Web Applications via Instant Messag-
ing. Journal of Web Engineering, Vol. 9, No. 3, 2010, pages 227-242,
2010.

xi

Summary of the Publications and Au-
thor’s Contribution

Publication I: “An XHTML 2.0 Implementation”

The paper discusses the XHTML 2.0 and XForms specifications and their
user agent implementation. It also evaluates the impacts of transition
to XHTML 2.0 both authors’ and browser manufactures’ points of view.
The author has designed and implemented the XHTML component and
integration of the XHTML and CSS layout. He has written half of the

article.

Publication II: “CSS Layout Engine for Compound Documents”

Specific purpose XML languages can be combined as needed. The re-
sulting documents are called compound documents. The paper defines
requirements for the XML compound document’s layout engine. The re-
quirements relate to the features of the layout engine, devices where it
can operate, and the interfaces of the cooperating components. The paper
also describes an implementation of the layout engine, which conforms to
the requirements. The author has designed and implemented the CSS
layout engine described in the paper. In addition, he has written all of
the text, while getting comments and proofreading help from Prof. Petri

Vuorimaa.

Publication III: “Multimodal Interaction with XForms”

Introduces a model and an implementation of XFormsMM, which includes
XForms 1.0 combined with modality-dependent stylesheets and a multi-
modal interaction manager. The model can be used to create multimodal

applications using a write once approach. The model is evaluated com-

xiii

Summary of the Publications and Author’s Contribution

paring it with SALT and X+V multimodal authoring models based on the
W3C’s Multimodal Interaction Requirements and implementing two use
cases. The author has assisted to design and co-developed the described

multimodal framework with Mikko Honkala.

Publication IV: “Declarative Push on Web”

Defines and discusses four methods of using a declarative description of
push-updates for Web documents. The methods are defined by combining
existing and upcoming web technologies. The scope of the paper is on
targeting the update and on modifying the document on the client side.
To evaluate the methods, a use case is designed and implemented with all

the methods. The author has been a sole author of the article.

Publication V: “Comparison of Common XML-Based Web User Inter-
face Languages”

Evaluates five XML-based Ul description formats, HTML5, XForms, XAML,
LZX, and XUL, in order to determine which language is best suited for
modern web application development. The paper also assesses what kind
of applications are suited to each format. The requirements for a Web UI
description language from the literature are revised and three use cases
are defined, through which the languages are evaluated. The article is an
extension to a prior conference article [71], which was comprised of evalu-
ation of two UI formats. The extended article adds three more formats to

the comparison. The author has been a sole author of the extended article.

Publication VI: “Server Push for Web Applications via Instant Mes-
saging”

The paper evaluates how an instant messaging protocol, XMPP, can com-
plement HTTP-based web applications. Through XMPP, a server-side
component of a web application is able to push information to the client
side. The paper presents a communication paradigm of a push system and

an implementation of it. In addition, another communication paradigm is

Xiv

Summary of the Publications and Author’s Contribution

sketched for inter-widget messaging on the Web. Based on that paradigm
a new research problem is defined and presented. The author has been a

sole author of the article.

XV

List of Abbreviations

2D Two dimensional

API Application Programming Interface
BOSH Bidirectional-streams Over Synchronous HTTP
CSS Cascading Style Sheets

DBMS Database Management Systems

DHTML Dynamic Hyper Text Markup Language
DOM Document Object Model

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTML5 Hyper Text Markup Language revision 5
HTTP Hypertext Transfer Protocol

ID Identification

M Instant Messaging

LZX Laszlo XML

MIME Multipurpose Internet Mail Extensions
MLFC Markup Language Functional Component
PDA Personal Digital Assistant

PHP PHP: Hypertext Preprocessor

Pub/Sub Publish/Subscribe

RDE Remote DOM Events

REST Representational State Transfer

REX Remote Events for XML

SALT Speech Application Language Tags

SGML Standard Generalized Markup Language
SMIL Synchronized Multimedia Integration Language

SQL Structured Query Language

Xvii

List of Abbreviations

SSE

SVG

Ul

UIDL
URI

W3C
WPF
WWW
X+V
XAML
XBL
XHTML
XML
XMPP
XPCOM
XPConnect
XPInstall
XUL

XViil

Server Sent Events

Scalable Vector Graphics

User Interface

User Interface Description Language
Universal Resource Identifier

World Wide Web Consortium

Windows Presentation Foundation

World Wide Web

XHTML+Voice

Extensible Application Markup Language
Extensible Binding Language

Extensible Hyper Text Markup Language
Extensible Markup Language

Extensible Messaging and Presence Protocol
Cross Platform Component Object Model
Cross Platform Connect

Cross Platform Install

XML User Interface Language

1 Introduction

As well as being a storage site for information, the World Wide Web (WWW
or Web) is increasingly becoming used as an application platform. Com-
merce and communication tasks, such as the use of e-mail, have become
common on the Web, as have tasks with higher interaction, such as infor-
mation authoring [32]. The Web has expanded, therefore, from a platform

for information storage into a platform for distributed applications.

Migrating applications to the Web can have many benefits; for exam-
ple, the same application can be used anywhere from any system and de-
vice [48], which substantially reduces development costs compared to the
development of desktop applications. Because web applications are run
from servers, there is no need to install them; a user agent can access the
applications directly with only a web browser. This means that web appli-
cations are easy to try, for instance, before committing to purchase them.
Furthermore, it is easy to add new features and fix bugs because the de-
veloper only has to modify a single instance of an application in order for
the application to run effectively [48]. As well, software updates are au-
tomatic; that is, users and administrators do not have to do anything in

order to upgrade an application.

The key requirement for multiuser applications is that they share the
same data [67]. As they reside on servers, web applications are easy to
realize as multiuser applications. The data is located on a server and is
transferred to the clients for operations. It is usually safer to retain the
data on a server than to keep it on the client side, as is the case with
desktop applications. This is due to the fact that modern servers and
their hard drives are carefully backed up. Moreover, security is usually
better in professionally maintained computers, which makes the applica-
tions less prone to viruses. Finally, the fact that all the users are using
same version of the application usually means that there are less errors

in the software.

Introduction

1.1 Motivation

Even though web applications have many advantages over desktop ap-
plications, the underlying technologies and architecture continue to hin-
der full exploitation of the possibilities of the Web. Some web technolo-
gies are outdated and were not originally designed for the complex use
cases of modern applications. Hyper Text Markup Language (HTML) [75]
forms, for example, which comprise the main interaction of an application,
were not designed to describe complex, higher-interaction Uls. The use of
HTML forms, along with client-side scripting, has led to poor usability,
maintainability, re-use and accessibility [81]. Another example is the Hy-
pertext Transfer Protocol (HTTP) [25] -based communication on the Web.
By design, clients must request data in HTTP. However, there are a lot of
use cases in which a server should be able to send data immediately as a
reaction to events, without having to wait for the client’s request [37].

A growing number of devices, including mobile phones and Personal Dig-
ital Assistants (PDA), have access to the Web. This has made web appli-
cations even more widespread and it also means that web applications
must run on a variety of platforms. When designing a web application,
therefore, one must consider the varying capabilities of certain devices,
such as display size, local storage size, method of input, and network ca-
pacity [26].

New usage contexts also raise new requirements for web applica-
tions [31]. Using multiple modalities (such as aural and visual input
and output) simultaneously can help fulfill these requirements. For in-
stance, a keyboard-less device could use voice input to enhance the in-
put capabilities of a graphical application. Studies have also shown that
new and complex tasks are solved faster by using multiple modalities
[68]. The problem is that current approaches to authoring multimodal
Web applications concentrate on one modality at a time. For example, the
HTML+ECMAScript approach focuses on the visual User Interface (UI)
and has well-known accessibility issues when used with speech tools.

Several parties have developed technologies to overcome the problems
that have been noted above. Rather than minor additions to the exist-
ing technologies, these solutions are completely new technologies and are
referred to in this Thesis as advanced web technologies. Due to the pres-
ence of several candidates for solving the problems, this Thesis does not

attempt to propose yet another technology. Instead, the goal of this Thesis

Introduction

is to analyze the existing advanced web technologies and propose improve-

ments to the technologies and architecture where applicable.

1.2 Background

The Internet, which was formed by interconnected computer networks,
provides a massive worldwide platform for communication between com-
puters and, therefore, a global platform for distributed applications. The
Web is the application that lies on top of the Internet. Initially, the Web
was a collection of static documents that were virtually connected to each
other via hyperlinks, but now, it is used more and more as a worldwide
application platform [32]. This Section reviews the building blocks of the
Web and web applications.

1.2.1 Foundations of the Web

Even though the Web has expanded from an information storage repos-
itory to an application platform, it continues to rely on its fundamental
concepts: Uniform Resource Identifier (URI) [7], HTML, and HTTP. These
three key technologies still provide the means for identifying, transfer-
ring and describing documents, or applications for that matter, on the

Web [46]. Figure 1.1 depicts the technology stack of the Web.

Presentation CSS
. (X)HTML

Logic ECMAScript

Structure XML, DOM

Identification URI

Communication HTTP

Figure 1.1: Technology Stack of the Web.

Web agents deliver resources through HTTP and resources are iden-
tified using URI. The resources can be in any format. There are cer-
tain advantages to using formats based on Extensible Markup Language
(XML) [13] because, almost without exception, the user agents provide
Document Object Model (DOM) [3] processing. However, it is better to

present some media, such as images and video, in binary form. The logic

Introduction

of the applications is typically defined by ECMAScript [22] on the client
side, while there are a number of options to choose from on the server side.
ECMAScript on the client side controls the presentation layer, which is
described by an HTML document and Cascading Style Sheets (CSS) [10]
style declarations [46].

1.2.2 Architecture of Web Applications

Web applications generally adopt a traditional three-tier architecture [68]
that distinguishes between presentation logic, business logic, and data
logic. The presentation layer contains UI and controls user interaction,
the logic tier contains business logic and the data tier provides data ac-
cess. The three separate logic layers use abstract interfaces to communi-
cate with each other, which makes it easy to change the implementation

of one layer without affecting the others.

Figure 1.2 depicts an adoption of the three-tier architecture to the Web
environment. The presentation layer consists of a user agent, while the
logic tier is comprised of a web server and an application server, which
can be separate components. In addition, due to the architecture of the
Web, the logic tier is also partitioned more and more by HTTP to the
client side [100]. This is a consequence of the fact that it is beneficial
to define certain application logic on client side because computing on
server side always requires a request over a network. The amount of
client-side computing varies greatly between applications (see below for
further discussion of this subject). Because the data tier, which stores the
application data on the server side, is not affected by web technologies or

the architecture of the Web, generic databases are usually used.

Server-side Model

In the classical server side model, static HTML and CSS documents de-
scribe the UT and application logic is entirely on the server side [76]. The
interface is clear and a developer can select from various technologies
with which to develop his or her application. The downside is that user
actions are also handled on the server side, which naturally causes con-

siderable latency for user interaction.

Introduction

Architecture of Web Taxonomy of Web
Applications Application Technologies
Presentation Ul Definition
Tier User Agent -
Ul Logic
iI Communication
Logic
Tier Web Server Server Technologies
Application N)
e Application Technologies

Data > |
Tier Storage Technologies

Figure 1.2: Architecture of web applications and taxonomy of web appli-

cation technologies.

Ajax Model

An Ajax model tackles the latency problem of the server-side model. It
adds an intermediate component on the client side, which can asyn-
chronously communicate with the server-side process. Adding a func-
tional component to the client side naturally requires more processing

power from the client.

Client-Side Model

Mikkonen and Taivalsaari have proposed that all the functionality should
reside on the client side except for data validation and storing [59]. The
benefits of this method include the fact that it is easier to develop soft-
ware using a single paradigm rather than dividing it into multiple lan-
guages and sites. Secondly, it reduces the communication with the server
since client-side logic can respond to the user actions. Furthermore, it is
even possible to use the applications offline to some degree. The client-
side model is emerging along with more powerful and sophisticated user
agents, the so-called thick clients. The different approaches are discussed

below.

The Lively Kernel [44] is a platform for web programming written in
Javascript. It not only makes it possible to run web applications written
for it, but also to develop the applications on the platform. Because it is
based on Javascript, there is no need to install or compile the applications

at all. This proves that a web browser can act as an application platform

Introduction

alone.

There are also commercial platforms that are aimed at the thick clients,
including Microsoft Silverlight, XULRunner, Sun JavaFX, and Adobe
AIR. They extend browsers in such a way that they can also contain the
application logic. Typically, proprietary languages define either applica-
tion logic or UI or even both.

There are Javascript libraries like JQuery [89] or Prototype [72], which
assist in web application development. They help with implementation,
such as communication and UI components and actions as well as taking
care of browser incompatibilities instead of a developer.

The XFormsDB [42] framework provides a means with which to de-
scribe web applications declaratively on the client side and it extends the
XForms 1.1 specification [11]. The extensions include access to a data
source, authentication, access control, state handling, and session man-
agement. XFormsDB provides a single paradigm with which to describe
multiuser Web applications like the Lively Kernel, albeit declaratively.
This makes it possible to create an editor with which to graphically edit
the XFormsDB applications.

Synchronized Multimedia Integration Language (SMIL) 3.0 specifica-
tion [14] contains a SMIL State module that can be used along with the
other specifications to create adaptive time-based web applications [47].
The article shows a feasibility of declarative programming when the scope
of language is well defined. It might be possible to use the same function-

ality with any XML language via SMIL Timesheets [94].

1.2.3 Web Application Technologies

Creating a web application requires a large number of technologies. In
Figure 1.2, the web application technologies have been divided into six
categories, each of which contains many technologies and most have sev-
eral options from which to choose. The taxonomy includes two client-
side categories (UI definition and UI Logic), a middle category that con-
tains technologies for communication between client and server, and three
server-side categories, namely web servers, applications and storage tech-
nologies. The categories and the corresponding technologies are reviewed

below. This Thesis uses the following terminology:

Web Application Technology: A technology from any category of the

Introduction
taxonomy shown in Figure 1.2.

Web Technology: A technology used on the presentation tier of the web
applications (cf. Figure 1.2). In the taxonomy, the web technologies

belong either to Ul definition or UT logic class.

Advanced Web Technology: A novel Web Technology which has been
developed especially for web application development and to over-

come the problems of the legacy web technologies.

The technologies in the scope of this Thesis, namely web technologies
and communication technologies, are discussed in more detail in the next

Chapter.

Web Technologies

The UI of a web application consists of different UI elements, their pre-
sentation, and interaction. HTML is currently used with CSS and EC-
MAScript to create web applications. This technology ‘troika’ is usually
referred to Dynamic HTML (DHTML) [96] and it partially fulfills the
World Wide Web Consortium’s (W3C) requirement to separate content,
presentation, and interaction [46]. Even though HTML mainly describes

the content, it also has some presentational aspects.

Communication

Web applications use HTTP protocol to communicate between the presen-
tation and the logic tier. Generic software handles the communication,
which means that an author does not have to implement it. HTTP is an
application-level protocol for distributed, collaborative, hypermedia infor-

mation systems used for data transfer in the Web.

Web Server

A web server is a counterpart that allows a user agent to realize commu-
nication over a network. A web application author does not typically have
to implement anything for the web server, instead they just configure it to
identify the resources of the application. Basically, web servers include a
standard HTTP implementation, which can handle requests from clients
and send responses back to them. Additionally, the web servers usually
provide interfaces to support dynamic content in addition to static con-
tent, authentication, and secured connections. A number of technologies

exist for the dynamic creation of content on the server side; these are

Introduction

discussed in the next section of this thesis. Finally, web servers may sup-
port virtual hosting, content compression and other things that may help

manage client-server communication.

Application Server

The business logic of an application is traditionally defined on an appli-
cation server. There are a number of technologies with which a developer
can implement the logic, including PHP, Java, C#, Perl, Ruby, and Cold-
Fusion. The technologies are often a part of a web application framework,
which is a reusable and modular platform that can be specialized to pro-
duce custom web applications [84]. Frameworks help ease the web appli-
cation development considerably and make it possible to generate code for

other layers of an application [48].

Storage Technologies

Web applications typically use regular Database Management Systems
(DBMS) to store application data. DBMS often provide database server
functionality, which means that they rely on the client-server model for
database access.

Recently, a growing number of web applications have had persistent
storage on the client side for storing user-related data, for instance for
offline use. W3C has started to standardize the technologies. Web Stor-
age [38] specification defines an API for storing key-value pair data in
web clients, while Indexed Database API [56] and Web Structured Query
Language (SQL) Database [39] specifications define more versatile data
querying options. Indexed Database API provides indexed records of data
and a query language can be layered on top of the API. Web SQL Database
uses SQLite [18] for queries.

1.3 Research Problem and Aim

As discussed above, most of the current web technologies were not origi-
nally designed for the complex use cases of today’s web applications. For
example, they do not lend themselves particularly well to the creation of
higher-interaction and multimodal Uls, while the communication meth-
ods are not sufficiently versatile. Although, in theory, the Web provides

powerful platform for applications, in practice the web technologies have

Introduction

certain deficiencies that remain to be solved. Accordingly, the main re-

search question of this Thesis is:

How can web user interface technologies be improved in order to

respond to the demands of today’s web applications?

To answer this question, the following sub-questions are considered:

Q1: What is required from the web user interface technologies to support

today’s web applications?

Q2: What deficiencies exist in the web user interface technologies?

Q3: How can the identified flaws be fixed?

Q4: How can the proposed improvements be implemented?

In short, this Thesis aims to analyze advanced web technologies and

find solutions to the limitations of these technologies.

1.4 Research Methods

This Thesis is the result of evaluation and concept formulation research
approaches [93]. The results of the evaluation approaches are utilized by
concept formulations. The main research methods are conceptual analysis
and concept implementation.

The research work was divided into a number of phases, which resulted
in several publications. Each phase contained a background of a topic
reviewed via the literature and, typically, the validation was based on
requirements obtained from the literature review. Alternatively, the re-
quirements were defined or complemented during the author’s work. De-
pending on the phase, pertinent requirements were used either to evalu-
ate existing technologies or to define new ones. In addition to the require-
ments, the work items were validated through proof-of-concept implemen-
tations, which provide information about the implementation issues of the

proposals.

Introduction

1.5 Scope of the Research

This Thesis focuses on web technologies; that is, how a user interface and
a required client-side logic of a web application can be defined. Further-
more, when applicable, it also addresses user agents’ communication with
a back-end system. All of these technologies belong to the three highest
categories of the taxonomy of web application technologies depicted in
Figure 1.2. The focus of the Thesis is on improvements to advanced web
technologies. In other words, the Thesis presupposes that some legacy
web technologies will give way to new and advanced web technologies,
as defined by several parties. Given the number of advanced web tech-
nologies, however, the Thesis seeks to improve the existing technologies
rather than attempt to define yet another technology.

This Thesis does not contain an extensive survey of web application Ul
technologies; instead it offers a comparison of common XML-based tech-
nologies. The rationale behind this decision is to focus on technologies
that have widely available implementations. The aim is also to compare
technologies that represent different development models. Finally, the
Thesis do not attempt to evaluate what would be required to adopt a new
technology on a large scale, but focuses on technical merits of the tech-
nologies.

The Thesis mainly takes a developer perspective because developers
mostly come into contact with the specific features of technologies. Al-
though functionality can typically be implemented with any technology,
the amount and difficulty of coding and, later, also maintenance may vary
greatly. In other words, the end-user may not even recognize the tech-
nology with which an application has been implemented, although it may

have a huge impact for a developer.

1.6 Contribution

This Thesis contributes on several levels. Firstly, it collects a wide set
of requirements regarding web application user interface technologies.
These requirements are gathered from the literature and revisited by the
author and are used to evaluate existing technologies, define new ones or
both. Advanced web application user interface languages are evaluated

thoroughly, based on which improvements are proposed to the advanced

10

Introduction

web application user interface technologies. The Thesis introduces these
proposals at a generic level and shows their proof-of-concept implementa-
tions. The Thesis ends by validating the proposals. The main contribu-

tions and the relating publications are as follows:

Requirements for web application UI technologies. The require-
ments cover web Ul languages, multimodal technologies, and server
push systems. Publication V collects the web UI language require-
ments from the literature and completes them. The requirements
for the server push systems are defined in Publication VI, whereas

multimodal technology requirements are solely from the literature.

Evaluation of the advanced web application UI technologies.
The requirements above are used to evaluate the web UI lan-
guages, their communication with the back-end, and specific
multimodal web technologies. The first two are originally evaluated

in Publication V and the last one in Publication III.

Proposed improvements to the web Ul technologies. The improve-
ments relate to multimodal interaction, declaratively defined UTI up-
dates, and a server push system. Publication III defines a multi-
modal framework based on XForms language. The framework can be
used to create multimodal applications using a write once approach.
Publication IV discuss how declaratively defined UI updates should
be handled on the client side. The proposed server push system has
been defined in Publication VI.

Implementations of the proposed improvements. The proposed im-
provements have been implemented as proofs of concepts. The mul-
timodal framework is implemented on top of an XML browser. The
browser’s XHTML+XForms compound has been discussed in Publi-
cation I and the compound’s layout engine in Publication II. The
implementation of the framework has been described in Publication
III. The support for declaratively defined UI updates have been dis-
cussed in Publication IV and Publication VI represented a prototype

implementation of the server push system.

Evaluation of the improvements. The improvements and their imple-
mentations have been evaluated at the end of the Thesis. Each pub-
lication above representing an implementation also evaluates the

respective proposal and the implementation.

11

Introduction

1.7 Organization of the Thesis

The rest of the Thesis is organized as follows. Next Chapter reviews the
state of the art of the web technologies. Chapter 3 collects the require-
ments for web technologies to answer the Research Question Q1 and eval-
uates a set of advanced web technologies (Q2). The Research Question Q3
is addressed in Chapter 4, which proposes improvements for the advanced
web technologies. Implementations of the proposed improvements (Q4)
are discussed in Chapter 5 and the results are evaluated in Chapter 6.

Author’s contribution and future work are given in Chapter 7.

12

2 State of the Art

This Chapter reviews the state of the art of the technologies in the scope of
the Thesis. That includes UI and communication technologies of the web
applications. The Chapter also summarizes the problems of the current

solutions.

2.1 User Interface

The Uls of web applications are defined in three technologies, namely
HTML, CSS, and ECMAScript. The purpose of the technologies are con-
tent definition, layout definition, and UI logic, respectively. This Section
discusses also programming paradigms of the web UI development. Cur-
rently, imperative and declarative paradigms are mixed in the web UI

development that makes the development more complicated.

2.1.1 HTML

HTML is a document description language. HTML elements describe doc-
ument objects like headings, paragraphs, images, etc. It also contains
notation for hyper links from which the name of the language has been
originated. The main user interaction method of the HTML is forms.
When the Web was still in its infancy, HTML was used to handle all
the aspects of the web pages or documents [74]. At that time, the Web
was comprised of static documents, so a language that described content
was perfectly sufficient. Even though the Web has also become an applica-
tion platform, it still heavily relies on this document description language.
Naturally, HTML has experienced considerable development during the
evolution of the Web and the definition of separate technologies for pre-
sentation (CSS) and interaction (ECMAScript) has lightened its burden.

Still, its original purpose was to describe documents, not application Uls.

13

State of the Art

It lacks several elements that are popular in today’s Uls and its user in-
teraction capabilities are limited. The main reason why it remains the
first choice for UI description on the Web is the desire to be backward-
compatible with the legacy content on the Web.

HTML 4.01 is the latest HTML version and Extensible Hyper Text
Markup Language (XHTML) is its XML-based counterpart. There are
two versions of XHTML. Version 1.0 [69] defined HTML according to the
XML syntax and XHTML 1.1 [1] modularized the language. At the time
of writing, a new version of HTML, HTMLS5, is a work in progress at W3C.
The aim is to fix errors and problems with the previous version and add
new features especially for web applications. HTML5 is one of the for-
mats evaluated in this Thesis and it is reviewed on more detail in the

next Chapter.

2.1.2 CSS

CSS [10] is a mechanism for styling web documents. CSS enables the
style of a web document to be separated from the content. This separa-
tion aims to improve content accessibility, provide greater flexibility and
control in the specification of presentation characteristics, enable multi-
ple pages to share formatting using intelligent selectors, and reduce com-
plexity and repetition in structural content. Cascading the styling rules
means that the styles can be brought in from several sources and they
are cascaded in a user agent as one. CSS also allows the same markup
page to be presented in different styles for different rendering methods,
such as on-screen, in print, by voice, and on Braille-based tactile devices.

These options make site maintenance easier and web authoring simpler.

At the moment, the most common browsers have reasonably complete
levels of implementation of CSS level 2 revision 1 [10]. The specification
is at Candidate Recommendation stage at W3C and it will reach a Rec-
ommendation stage when there are two complete independent implemen-
tations of it. In addition, CSS level 3 is also a work in progress at W3C.
It broadens the scope of the CSS. One of the goals is to reduce scripting
for styling and use native CSS implementation instead. The CSS level 3
specification has been divided into several modules, each of them devel-
oped as a separate specification. The major browsers have partial imple-

mentations of the different CSS level 3 modules.

14

State of the Art

2.1.3 ECMAScript

ECMAScript is a prototype-based object-oriented scripting language used
to implement web application logic on the client side. ECMAScript is in-
terpreted in runtime, unlike many popular programming languages like
C or Java that must be compiled prior to execution. Runtime interpreta-
tion allows the code to be modified, for example, by adding functions and
variables, even in runtime. The two best-known implementations of EC-
MAScript are Microsoft’s JScript [57] and Netscape’s JavaScript [63], on
which ECMAScript was originally based.

ECMAScript is constantly developed further. The aim is to make it a
generic programming language, not just a DOM processing tool [23]. The
current version of the ECMAScript, 5% Edition [22], is partially supported
by major browsers. The next version, code named ‘Harmony’, is a work in

progress at ECMA International.

2.1.4 Imperative versus Declarative Approaches

In addition to features, technologies differ on a more fundamental level,
namely the kind of model an author uses to describe the UI. Traditionally,
in desktop programming, the UI has been just another program compo-
nent that has been implemented using a UI toolkit with the same lan-
guage as the components. That is an example of imperative program-
ming. The same can also be applied on the Web using ECMAScript. The
entire DOM, which represents the Ul on runtime, can be formed with
ECMAScript instructions.

The other model used to program Uls is a declarative model. The main
difference between imperative and declarative approaches is the control
of the program [4]. In declarative languages, a programmer only provides
the logic of the program and the control is left to the language. Leav-
ing the control to the language means that a predefined set of functions
can be used. With imperative languages, the programmer must also im-
plement the control. Although this means that they are more powerful,
they are also harder to learn [51] and maintain, and are error-prone. It
has been said that people who cannot do programming can still utilize
declarative languages. That is due to the aforementioned fact that, with
declarative languages, a user defines only what happens, not how does it

happen. Furthermore, there is a limited set of options what can be defined

15

State of the Art

to happen with a declarative language.

HTML is a declarative language. The presence of billions of web pages
has proved that basically anyone can author HTML and publish it on the
Web. However, that applies mainly to static documents. More application-
orientated DHTML also contains ECMAScript part, which is not declar-
ative. This can prevent non-programmers from creating applications on
the Web.

Schmitz has listed reasons why the declarative approach is better than

the imperative approach in UI development [82]:

1. UI developers are not programmers,

2. Authoring tool support requires a declarative solution,

3. Declarative solutions will speed up adoption and deployment in the

marketplace,

4. UI performance through a professionally developed user agent is

more robust and predictable, and

5. Declarative approach is more secure, since the syntax is bounded.

2.1.5 Web Application Programming Interfaces

The DOM [3] is a runtime object model of content and structure of the web
documents. User agents parse HTML and XML into a DOM, whereby the
documents can be modified in runtime. A sample HTML document is
shown in Listing 2.1 and a corresponding DOM is depicted in Figure 2.1.
The text of the document has been structured by HTML tags in List-
ing 2.1. As can be seen from the Figure, the HTML tags are represented
as elements in the DOM tree and text snippets of the document form the
text nodes of the DOM.

16

State of the Art

Listing 2.1: Sample HTML markup.

<html>
<body>
<h1>Lorem</h1>
<p>Ipsum <i>dolor</i> sit.</p>
</body>
<html>

S Ot B W N

A user agent renders a document according to its DOM. Afterwards,
the layout and user interaction among the others can be controlled via
specific DOM Application Programming Interfaces (API). The DOM APIs
are typically utilized by ECMAScript functions on the client side. W3C
has defined several language neutral APIs with which to access the object
model. The APIs address general HTML and XML processing, HTML

specific APIs, and event model structured languages.

Figure 2.1: DOM tree of the document in Listing 2.1.

2.2 Communication

Communication on the Web is based on the request-response
paradigm [25]. That is, a client asks for information from a server and the
server submits the information to the client as a response. Although this

method is sufficient for downloading static web documents, web applica-

17

State of the Art

tions require more versatile communication. In addition to downloading a
web application, there might be a need for a client to request incremental
updates or for the server to automatically submit updates to the applica-
tion on the client side. For example, a chat application must push all the

messages in real time to all participants.

2.2.1 HTTP

HTTP protocol is a request-response protocol. A client sends a request
to the server in the form of a request method, URI, and protocol version,
followed by a Multipurpose Internet Mail Extensions (MIME) [29]-like
message. The server responds with a status line, including the message’s
protocol version and a success or error code, followed by a MIME-like mes-

sage. Usually, a user agent initiates the HTTP communication. [25]

Problems arise when HTTP is used for an application that is distributed
between the client and the server. For example, user operation on the
client side may require an action on the server side. To initiate the action,
the client must send another HTTP request to the server and wait for the
response before the operation can be completed. This also means that the
entire document has to be downloaded and rendered again, which is time-
consuming and can reduce the responsiveness of the user interface. The
performance can be improved by updating only a part of the user interface

using the Ajax framework [30].

2.2.2 Asynchronous Communication

A common problem with distributed applications is a latency caused by
communication of separated components. Since communication often
leads to a user action, user experience is decreased if the user has to al-
ways wait for a response to the actions. A web application can communi-
cate with a server asynchronously with XMLHttpRequest [92]. Together
with DOM, XML, and ECMAScript they form a framework, for which Gar-
rett coined the term ‘Ajax’ [30] in 2005. An Ajax engine on the client side
can communicate with the server without interrupting the use of an ap-
plication. This means that all user actions that require server interaction

can be realized with the Ajax.

18

State of the Art

2.3 Summary

This chapter has reviewed the state of the art of the web technologies.
The aim of this Thesis is to improve technologies in the Ul definition, UI
logic, and communication categories and, to this end, Table 2.1 presents
the main problems in the categories within the scope of the thesis are

listed in.

Table 2.1: Summary of problems identified in current technologies within
the scope of this Thesis.

Category Problem Description ‘
UI Definition Separation of Con- | HTML mixes content and
tent and Presenta- | presentation.

tion

HTML Forms Not designed to describe com-

plex, high-interaction Uls.

Multimodal Inter- | Current web UI technologies
action support only graphical modal-
ity.

Purpose of HTML HTML is for documents not

web applications.

UI Logic Syntax of the logic | Imperative languages are
difficult to maintain and
they are error-prone. Non-
programmers cannot utilize

them.

Communication | Server Push Server push must be emu-

lated by pull.

19

3 Evaluation of the Advanced Web
Technologies

Several technologies have been developed in order to overcome the prob-
lems presented in the previous Chapter. The current Chapter discusses
those technologies, referred as advanced web technologies. Furthermore,
the Chapter also defines requirements against with the technologies are

evaluated.

3.1 User Interface Languages

Declarative user interface descriptions predate the advent of the WWW
and HTML. They are used as part of a model-based UI design, in which
the Ul is built on a certain model. Among other things, the model can be a
description of tasks, data or a presentation. The aim is to identify reusable
components of the UI and to capture more knowledge in the model [27].
The author can specify what features the interface should have, rather
than write programs that define how the features should work, which
saves them from writing a lot of procedural code [73]. One study showed
that an average of 48 percent of an application’s code is devoted to the
user interface portion [64]. Enhancing Ul development has the potential
to boost the application development process considerably.

W3C hosted a Model-based User Interfaces incubator group in order to
determine whether there should be a specification of model-based Uls for
web applications. On of the group’s conclusions was that there are several
items in the context of Model-based Uls that should be standardized [28].
In addition, the ACM Transactions on Computer-Human Interaction jour-
nal recently published a special issue on User Interface Description Lan-
guages (UIDL) for Next Generation User Interfaces [83] that introduces
novel UIDL approaches. This Thesis studies common XML-based lan-
guages that have readily available cross-platform implementations, a cri-

terion that rules out some research-oriented UI languages. Popular Web

21

Evaluation of the Advanced Web Technologies

toolkits such as Dojo [20] and Google Web Toolkit [34] are not included
because their outcome is usually HTML + Javascript, which is naturally

close to HTMLS5 [40]. The selected approaches are introduced below.

3.1.1 XForms

XForms 1.0 Recommendation [21] is the next-generation Web forms lan-
guage, designed by the W3C. It solves some of the problems found in the
HTML forms by separating the purpose from the presentation and us-
ing declarative mark-up to describe the most common operations in form-
based applications [15]. It can use any XML grammar to describe the
content of the form (the instance data), which also enables the creation of
generic editors for different XML grammars with XForms. It is possible
to create complex forms with XForms using declarative mark-up without
resorting to scripting.

XForms is an abstract user interface description language, one of the
design goals of which was to avoid mandating a certain modality. This
means that it can be suited to describing user interfaces, which are real-
ized in different modalities, such as the Graphical User Interface (GUI)
and Speech.

Several XML vocabularies have been specified in W3C. Typically, an
XML language is targeted for a certain purpose (e.g., XHTML for con-
tent structuring or Scalable Vector Graphics (SVG) for two dimensional
(2D) graphics). XML languages can also be combined. A compound doc-
ument, which is an XML document that consists of two or more XML
languages, can specify the user interface of an application. In this Thesis,
XForms is combined with XHTML+CSS level 2. XForms 1.0 directly in-
cludes the following W3C specifications: XML Events [54], XPath 1.0 [16],
XML Schema Datatypes [8], and XML 1.0.

3.1.2 XUL

Mozilla has developed a Ul description language called XML User Inter-
face Language (XUL) [33]. The mark-up consists of widget elements such
as buttons and menus. XUL applications are based on W3C standards
including HTML 4.01, CSS 1 and 2, DOM Levels 1 and 2, JavaScript 1.5
(including ECMA-262 Edition 3 (ECMAScript)), and XML 1.0.

The goal of XUL is to build cross-platform applications that can be

22

Evaluation of the Advanced Web Technologies

ported to all of the operating systems on which Mozilla runs (such as
Linux, Windows, Windows CE, and Mac OS X). The layout and appear-
ance of XUL applications are separated from the application definition
and logic and the application can be localized for different languages and
regions independently of its logic or presentation.

XUL can be complemented by some of the technologies that Mozilla has
introduced. The Extensible Binding Language (XBL) [62] is a mark-up
language that defines new elements for XUL widgets. Overlays are XUL
files used to describe extra content for the UIL. Cross Platform Compo-
nent Object Model (XPCOM) and Cross Platform Connect (XPConnect)
have made it possible to integrate external libraries with XUL applica-
tions and, finally, Cross Platform Install (XPInstall) provides a way to
package XUL application components with an install script [9].

3.1.3 HTML5

HTMLS5 [40], the successor to HTML 4.01, is currently a work in progress
at W3C. HTML5 aims to fix errors and problems with the previous ver-
sion and add new features especially for web applications. In addition
to HTML 4.01, HTML5 includes new versions of XHTML 1 and DOM2
HTML API, which were previously defined in separate specifications.
HTMLS5 defines two syntaxes, HTML5 syntax and XML syntax, both of
which result in a DOM presentation of a document. While earlier versions
of HTML were based on Standard Generalized Markup Language (SGML)
and used SGML parsing rules, HTML5 has its own parsing rules.
HTMLS5 introduces a number of new elements and attributes and it also
removes many presentational elements and attributes. In addition, some
elements will have new semantics [91]. HTMLS5 is intended to be comple-
mented by CSS and ECMAScript, which are also used in this Thesis.

3.14 XAML

Extensible Application Markup Language (XAML) is a user interface
mark-up language for Windows Presentation Foundation (WPF) [58],
which is a graphics subsystem of the Windows Vista operating system.
XAML consists of features from both Microsoft Windows applications and
web applications. In WPF, the application UI can be defined with a pro-
gramming language (such as C#, C++, Visual Basic, etc.) or by XAML [88].

23

Evaluation of the Advanced Web Technologies

In other words, a developer can use XAML instead of C# or the equivalent
to create the UI elements. Using XAML, it is possible to use specialized
tools for application development. The tools generate XAML code to run
on WPE.

3.1.5 LZX

Laszlo XML (LZX) [65] is the UI description language of the OpenLaszlo
platform, used to create web applications. OpenLaszlo is an open source
project that consists of LZX and the OpenLaszlo Server, a Java Servlet
that compiles LZX applications into either Flash! or DHTML depending
on the targeted runtime environment [50]. LZX is an XML format that
also includes ECMAScript snippets to describe the application logic. In
LZX, the Ul is described with concrete UI components, which can be tied

into a data model.

3.2 Multimodal Technologies

Users of a multimodal system communicate with an application using dif-
ferent modalities (such as hearing, seeing, or speaking). The input can
be sequential, simultaneous or composite between modalities, and uses of
multimodality can be either supplementary, which means that every in-
teraction can be carried out in each modality as if it was the only available
modality, or complementary, which means that the interactions available
to the user vary by modality. [52]

Speech systems can produce efficiency increases of 20-40 percent com-
pared with other interface technologies, such as keyboard input [53]. Al-
though speech interaction seems to be promising, the potential technical
problems that they present may irritate users and reduce task perfor-
mance [85]. To offset these weaknesses, speech is often combined with
other modalities [17]. In particular, GUIs are often combined with speech
modality.

As a modality, speech is different from a graphical Ul, mainly in terms
of the navigation within the UL In the visual modality, more information

and navigation options can be represented simultaneously, while speech

1Flashis a proprietary multimedia platform used to add animation, video, and
interactivity to web pages.

24

Evaluation of the Advanced Web Technologies

interface has to be serialized. On the other hand, spoken command in-
put allows intuitive shortcuts. The following subsections introduce two

technologies that combine voice and graphical modalities.

Recently, there have been attempts to bring multimodal interfaces to
any web application running on a regular web browser. The main idea is
that a speech recognizer and a synthesizer can be added to any web ap-
plication via ECMAScript. The actual speech processing happens on the
server side and the client-side component is just sending and receiving
speech and text back and forth. A WAMI toolkit [35] uses a Java applet
to access a microphone and speakers of a device. Other example frame-
works include an open source project SpeechAPI?, which uses Flash on
the client side, and AT&T’s Speech Mashup®. Mlakar and Rojc describe a
specific wrapper, where web applications are integrated into a multimodal

platform and can be accessed on the Web [61].

3.2.1 XHTML+Voice

An XHTML+Voice (X+V) profile [5] is based on W3C standards and is used
to create multimodal dialogues with visual and speech modalities. In ad-
dition to XHTML Basic and a modularized subset of VoiceXML 2.0 [55], it
consists of an XML Events module, the XHTML scripting module, and a
module containing a small number of attribute extensions to both XHTML
and VoiceXML 2.0. XHTML is used to define the layout of the graphical
content of a document, whereas VoiceXML adds voice modality to the doc-
ument. XML Events provide event listeners and associated event han-
dlers for the profile. Finally, the attribute module facilitates the sharing
of multimodal input data between the VoiceXML dialogue and XHTML in-
put and text elements. VoiceXML is integrated into XHTML using DOM
events. When an element is activated, a corresponding event handler is
called and the event handler synthesizes the text obtained from the ele-
ment that activated the handler. Also, a speech input to an XHTML form
field is assigned through VoiceXML elements. XHTML+Voice documents
can be styled both by the visual and aural style sheets.

2SpeechAPI project, http:/www.speechapi.com/
3Speech Mashup, http://www.research.att.com/projects/SpeechMashup/index.html

25

Evaluation of the Advanced Web Technologies

3.2.2 SALT

Speech Application Language Tags (SALT) is an XML-based language
for incorporating speech input and output to other languages [98]. The
speech interaction model is dialogue-based and it can be embedded, for
instance, in XHTML documents. SALT uses a notation of sub-dialogs,
which can be added to a page. Although SALT does not have an explicit
data model, it binds to external data models, such XHTML forms, using
identification (ID) attributes. It has a low-level programming model that

allows authors to fully control the speech dialogue interface.

3.3 Communication with the Back-End

This Thesis addresses two aspects of a client’s communication with the
back-end system. Firstly, it evaluates data serialization models of the ap-
proaches introduced in Section 3.1 and, secondly, it proposes a new model

to realize server push for web applications.

3.3.1 Data Serialization

For communication between a UI and a back-end system, the user inter-
face state must be serialized for transmission. Having received a serial-
ized reply from the server, it must then be transformed into an applica-
tion state. Depending on technology, the serialization must be done by
the developer separately for each application; otherwise it might be fully

automatic.

3.3.2 Server Push

Since HTTP always requires a request from the client side, it is not pos-
sible to react immediately to events that occur on the server side of a
distributed application. The server-side application must wait until the
client contacts the server and then include the change into the response.
Such an operation, which is missing from HTTP, is usually called server
push, in contrast to client pull. At its simplest, server push on the Web
can be emulated on HTTP by polling the server at a certain time interval.

This can be done, for instance, by reloading the document periodically or

26

Evaluation of the Advanced Web Technologies

with Ajax [30] by requesting incremental updates. This causes a lot of
additional network traffic, especially reloading the entire document, and
there is always a trade-off between the latency and the polling frequency.
Russell coined the term ‘Comet’ in reference to low-latency data transfer
to the browser in 2006 [78]. Comet is not an explicit technology set, but
rather a term to describe server-push data streaming functionality. It can
be implemented in many ways, such as keeping the connection to a server
open, possibly via an iframe element, or keeping a connection for XML-
HttpRequest [92] object open. The downside of Comet is that the server
must keep connections open to all clients it has to update. The central
server must also be able to distribute the communication properly [77].
HTMLS5 specification [40] defines an approach called Server Sent Events
(SSE). With SSE, an author can declaratively define a source from which
the browser listens for the incoming connections. The communication it-
self can be realized with Comet. The HTML5 specification is, however,

currently still a work in progress at the W3C.

3.4 Requirements

The technologies discussed above are evaluated against the requirements
defined in this Section. The requirements are collected from the literature

and revised by the Author.

3.4.1 User Interface Languages

Publication V revised requirements for web user interface languages. The
requirements were grouped by their sources in the Publication. In this
Section, the requirements are regrouped into the UI Definition and UI

Logic requirements according to the division in Figure 1.2.

User Interface Definition
The UI definition requirements are from the literature [87, 90] and Pub-

lication V. Table 3.1 summarizes the requirement sets.

User Interface Logic
The Ul logic requirements are from the literature [90] and Publication V.

The requirement sets are summarized in Table 3.2.

27

Evaluation of the Advanced Web Technologies

Table 3.1: User Interface Definition Requirements

Requirement Sets Description

General Require-

ments

Simon et al. discussed the requirements for a
generic user interface description format [87],
which are device and modality independence
and customizability. In other words, the UI
representation must be generic and indepen-
dent of any specific client device technology.
The UI description format shall not restrict the
modality and the format must provide a high
degree of control over layout and graphical ap-

pearance.

Separation of Inter-
face Elements from

their Presentation

Data and presentation information must be

separated [90].

Interface Elements

A UI description must enable automatic UI
generation for any target environment and it

must support data types [90].

Presentation-related

Information

There must be a method for logically group-
ing the elements of a presentation. The pre-
sentation information must include resources
such as labels and help text. To allow pre-
sentation replacement, it should be possible to
share the core Ul description between alterna-

tive Uls [90].

Paging and Dia-

logues

A large Ul is considered more usable if it is
divided into smaller sections. This can be
achieved, for instance, with wizard-type pag-

ing or with tabs [V].

Repeating con-

structs

Helps a developer manage large data sets on
the UI [V].

Nested constructs

The data sets are typically structured data,
such as XML. Nested constructs help when
presenting them on the UI [V].

28

Evaluation of the Advanced Web Technologies
Table 3.2: User Interface Logic Requirements

Requirement Sets Description

Interface Elements Possible to define dependencies between inter-

face elements [90].

Run Time and Re- | Local computation reduces latency of a net-
mote Control work communication. The current state must

be explicitly available at run time [90].

Copy-paste Helps users edit content in an application [V].

Undo-redo Users must be able to withdraw their actions
[V].

Drag-and-drop Direct manipulation interfaces are considered

easy to use [86], [V].

3.4.2 Multimodal Technologies

The multimodal technologies are evaluated based on the W3C Multimodal

Interaction Requirements [52]. Table 3.3 lists the requirement sets.

Nichols et al. derived another set of requirements for automatically gen-
erating multimodal remote control user interfaces for home appliances
and services [45]. Those requirements differ from the W3C requirements.
The most notable difference is whether the possibility to author modality-
dependent information is explicitly required (W3C [52]) or disallowed
(Nichols et al. [45]). On the other hand, one requirement that has been
adapted from Nichols et al. is the requirement for two-way communica-
tion, which is addressed as part of the communication requirements in
Section 3.4.3.

3.4.3 Server Push System

The requirements for communication with the back-end system relate to
a server push system. The requirements were specified in Publication VI

and are listed in Table 3.4.

29

Evaluation of the Advanced Web Technologies

Table 3.3: W3C Multimodal Interaction Requirements [52]

Requirement Sets Description

General Require-

ments

The integration of modalities should be seam-
less. It must be easy to author, use, and imple-
ment a multimodal language. Requirements
also include accessibility, security, and flexible

delivery context related issues.

Input Modality Re-

quirements

It must be possible to author modality-related
information. The input should be able to be
given sequentially, simultaneously, and com-
bined from several modalities. Also, temporal

positioning of input events should be available.

Output Media Re-

Output must be able to be represented both
sequentially and simultaneously in different

modalities.

quirements
Architecture, In-
tegration, and
Synchronization
points

Compound documents with existing languages
should be preferred. Also, the specification
should be modular. Data model, presentation
layer, and application logic should be sepa-
rated. The language should provide the means
with which to detect or prescribe the available

modalities.

3.5 Evaluation

A number of technologies and frameworks exist that are supposed to make
web application development easier. This Section analyses the solutions
discussed above with the goal of defining the deficiencies in the current

solutions.

3.5.1 User Interface Languages

This Subsection evaluates the languages discussed in Subsection 3.1
against the requirements above. The findings in this Subsection are a
summary of the evaluations in Publication V. The evaluation was con-

ducted on a three-level scale, using the following levels and corresponding

30

Evaluation of the Advanced Web Technologies

Table 3.4: Requirements for a Server Push System

Requirement Description

Protocol

The system must support both push and pull pro-
tocols. Based on the literature, HTTP-based web
applications benefit from an integration of a push

protocol.

Delivery Scheme

The system must support a one-to-many delivery
scheme: that is, one that is more precise than

broadcasting but not a one-to-one dialogue.

Coherence

The data updates must be delivered in near real

time.

Flexibility

The system must support asynchronous commu-

nication between loosely coupled components.

Performance

The system must outperform HTTP polling in
terms of latency and the amount of transferred
data, both of which are considered problems with

polling.

Late Binding

The connections between components should be

created as late as possible, preferably on runtime.

Ease of Author-

ing

The application development should not require
any new programming language to ease the adop-
tion of the system. Declarative languages are
commonly considered easier to author than pro-
cedural languages and can even be used by non-
programmers. An application should consist of re-

usable software components.

Web integration

Using existing technologies on the client side

eases the adoption of a technology or a framework

among the users.

31

Evaluation of the Advanced Web Technologies

markers:

++ A built-in property. A language supports the property natively.

+ Possible to add or implement with another technology, such as

scripts.

— Not possible with the language.

User Interface Definition

The results of the evaluation of the Ul definition are shown in Table 3.5.
If the UI description language is sufficiently abstract, it is possible to use
a single definition to several modalities. With more concrete languages, a
separate Ul definition must be created for each modality. The definition
must be done using separate technology, which doubles the amount of

work and complicates the maintenance of the application.

Table 3.5: Evaluation of the user interface definition.

Requirement XForms XUL HTML5 XAML LZX
General Requirements

Device Independence ++ + + + +
Modality Independence ++ + + + +
Customizability + ++ ++ ++ ++

Separation of Interface Elements from Presentation

Separation of Data/Pres. ++ - - - -

Interface Elements
Any Target ++ + + + +

Data Types ++ - ++ - -

Presentation Related Information

Logical Groupings ++ ++ ++ ++ ++
Labels & Help Text ++ + + + +
Presentation Replacement + + + + +
Paging & Dialogs ++ ++ + ++ +
Repeating constructs ++ + ++ ++ ++
Nested constructs ++ ++ + ++ ++

XForms is modality-independent by design and has an abstract UI de-

scription that makes it device-independent. XForms uses data types,

32

Evaluation of the Advanced Web Technologies

which makes it easy to utilize different modalities [III] because a user’s
input can be handled more specifically. In voice modality, for instance, a
grammar-based recognition can be made more accurate. Otherwise, the
expected type of input must be defined separately for each modality.

The Ul descriptions of other formats do not restrict the selection of de-
vices, but a developer must take into account the target devices and imple-
ment the respective Ul versions. Although other languages’ Ul elements
can be transferred to other modalities, a lack of data types requires extra
work from a developer.

Every format provides control over layout and graphical appearance. In
XForms, the Ul elements are abstract, whereas the rest of the formats
have specific UI elements, which are easier to customize.

The interface elements are not separated from their presentation in any
format other than XForms. In XForms, the data model can be accessed
through a separate binding layer. XForms is also easier to use in any tar-
get since its UI description is more abstract. HTML5 and XForms support
data types, whereas others do not.

The presentation can be grouped well with all languages. XForms pro-
vides an explicit way to include labels and help texts, while they can be
realized in other formats with normal text. It is possible to provide an
alternative presentation with all formats.

XForms and XAML natively support repeating structures, paging, and
dialogues. XUL also supports paging. With other formats, the imple-
mentations require some script programming. Nested constructs are sup-
ported by all formats. XUL, XAML, and LZX provide it natively, as does
XForms if a proposed XForms tree module is used [71]. HTML5 requires

scripting to complete the nested constructs.

User Interface Logic

The results of the evaluation of the UI logic are summarized in Table 3.6.
The interface elements can have dependencies in all formats, but only in
XForms and XAML this is a built-in property; in other formats, the de-
pendencies must be realized through scripts. Local computations (such
as data validation) can be realized with scripts in all formats. In addi-
tion, XForms provide native features for local computation. The state of
the UI can be stored in a data instance in XForms, XAML, and LZX. LZX
has some flaws when using multiple pointers for a single data instance.

With these languages, the state of the Ul is always available. In XUL and

33

Evaluation of the Advanced Web Technologies

HTMLS5, the state must be stored and queried separately. These differ-

ences are discussed in more detail in Subsection 3.5.3.

Table 3.6: Evaluation of the user interface logic.

Requirement XForms XUL HTML5 XAML LZX

Interface Elements

Dependencies ++ + + ++ +

Run Time and Remote Control

Local Computation ++ + + + +
Serialization ++ + + ++ ++
Synchronization + + + + +
Copy-paste + + ++ ++ ++
Undo-redo + + ++ ++ +
Drag-and-drop + ++ ++ ++ ++

Copy-paste can be used with all the formats. HTML5, XAML, and LZX
support it natively (only for text in LZX), whereas it can be implemented
in XForms and XUL. Undo-redo and drag-and-drop have native support
in HTML5 and also in XAML with certain elements, while they can be
implemented in XForms, XUL and LZX. With XForms, a developer must
alter the data model accordingly, which makes it harder than with the
other two. In short, XAML is the best at handling typical interaction
patterns, although all of the formats handle these requirements well, even

XForms, which is the most abstract format considered here.

3.5.2 Multimodal Technologies

This subsection evaluates XHTML+Voice and SALT. In order to support
supplementary use of modalities, both speech and graphical modalities
must be implemented separately with both X+V and SALT. The comple-
mentary interaction is more natural for both of these technologies. Both
SALT and X+V allow seamless synchronization of modalities at all levels,
but they require scripting to enable it. Neither technology has multilin-
gual support. Moreover, accessibility is a well-known problem of XHTML.
Neither technology fulfills the Ease-of-authoring requirement well be-
cause modalities must be implemented separately. On the other hand, the

Ease-of-use is good because of the greater expressive power for modality.

34

Evaluation of the Advanced Web Technologies

Neither language meets the Flexible Delivery Context requirement to
any great degree. There may be additional tools on top of the languages
that would transform the document based on the context. In order for
this approach to be successful, the abstraction level should be high. X+V
has a higher abstraction level than SALT. For non-automatic (that is, au-
thored) approaches, a solution would be a set of DOM events to notify
context changes. For Navigation Specification, both specifications support
navindex, or similar, for the visual part. SALT and X+V support detailed
navigation specification for aural modality.

In input processing, X+V and SALT both rely on modality-dependent
strategies, such as voice grammars. This means that the author can eas-
ily control input processing in each modality in X+V and SALT, although
they are hard to author and maintain. Both languages support sequential,
simultaneous, and composite multimodal input well. Neither approach
caters for Semantics of Input because they do not have data types or in-
put types. In addition, both technologies lack support for Coordinated
Constraints between modalities. Both languages meet output media re-
quirements similarly, although SALT provides better synchronization of
output events by using a special Prompt Queue. Finally, neither language
properly supports the Separation of Data model, the presentation layer
and application logic, whereas they do support Synchronization of Gran-

ularities.

3.5.3 Communication with the Back-End

Currently, as mentioned in Subsection 3.3.2, server push can only be re-
alized by emulating it using HTTP. Thus, the push system requirements
from Subsection 3.4.3 are not used to evaluate any specific HTTP-based
solution in this section. The requirements are used to formulate a new
server push system in the next section. Instead, this section presents a
comparison of a data serialization model of different UI description lan-
guages.

The data serialization models are compared from the technologies whose
Ul definition and logic characteristics were evaluated in the Subsec-
tion 3.5.1. The data serialization is automatic in XForms (cf. Figure 3.1a),
since the data model is a live XML document object model, which is au-
tomatically serialized and de-serialized. In addition, the submission is

automated.

35

Evaluation of the Advanced Web Technologies

Ul Model When Using XForms

XForms
Ul Widgets &
Layout

XForms
Events & Actions

Database

XForms
Data Model XML WHTTP
& Submission HT[TP Server
(a) XForms
Ul Model When Using LZX Ul Model When Using XAML
LZX XAML
Ul Widgets & Layout Ul Widgets & Layout

!

ECMAScript XML Database C# XML ;gtab;

Methods HTTP W/HTTP Methods HTTP W/HTTP
Server Server
LZX XAML
Data Model Data Model
(b) LZX (c) XAML

Ul Model When Using HTML 5 or XUL

ECMAScript
Ul Logic

Database
W/HTTP
Server

uonez|(elas
3dudSYWI3

Ul Widgets&
Layout

(d) HTML5 and XUL

Figure 3.1: Communication between the UI and the back-end system.

LZX and XAML also have data models, which means that, while seri-
alization is automatic, the submission must be realized through a pro-
gramming language. In addition, in LZX an author must implement logic
in order to keep the data model up-to-date (see Figure 3.1b). The data
model provides data for UI but the UI cannot automatically update the
data model; that must be implemented separately for each case. The data
model updates in XAML (cf. Figure 3.1c) are automatic; otherwise, it is
similar to the LZX model.

XUL and HTML5 have no explicit data models, and communication be-

36

Evaluation of the Advanced Web Technologies

tween a back-end process and the user interface must be re-implemented
using ECMAScript for each user interface, as shown in Figure 3.1d. For
example, when the server sends back updated structured content, there
must be a script that updates the corresponding DOM. This means that
authoring and maintaining XUL- or HTML5-based applications is more
complicated than it is for others.

In summary, the more a developer has to implement logic to serialize
and utilize the data, the more difficult the whole development becomes.
The automatic serialization and dynamic bindings of XForms makes it
the easiest format with which to build a UI, while the use of XAML and
LZX data models is partially automated. HTML5 and XUL require the
most work in terms of using and serializing the UI data of an application.
All of the logic for handling the data must be implemented separately for

each application.

3.6 Summary

The evaluation of the Ul languages was based on two sets of require-
ments: Ul Definition and UI Logic. A comparison was also performed
of the languages’ communication with the back-end. The comparison re-
vealed that XForms was the best format because it is superior in terms of
Ul Definition requirements, whereas other languages are missing several
required features. XAML best meets the UI Logic requirements, although
the difference between XAML and HTML5, LZX or XForms is not signif-
icant. XUL was found to be the worst in this category. Finally, XForms’
data serialization model is the best among the languages, whereas serial-
ization is most difficult with XUL and HTMLS5.

Both multimodal technologies are based on a model in which all the
modalities are implemented separately. This allows specific implementa-
tions of each modality, but, naturally, requires more work and, in particu-
lar, makes it more difficult to maintain applications. In short, even though
it is possible to implement multimodal applications with both technolo-

gies, they do not conform very well to the requirements.

37

4 Proposed Improvements

Based on the comparison of common XML-based languages, this The-
sis uses XForms combined with XHTML as a UI description technology.
XForms was selected because its compliance with the requirements means
that it can provide both Ul definition and Ul logic, and, in theory, it should
make it easy to create multimodal applications. This Chapter starts by
introducing the design principles of this model. The following Sections
discuss a model for creating multimodal applications with XForms and
a model for implementing push updates for web applications. Finally, a

model for delivering push updates to XForms Ul definition is presented.

4.1 Design Principles

The improvements are defined with certain design principles in mind.
These principles have been formed by taking into account the require-
ments and the evaluation in the previous Chapter and also the problems

defined in Section 2.3.

Use declarative descriptions wherever possible. Declarative tech-
nologies automatically define most used operations, which means
that authors do not have to repeatedly define them. A declarative
description can be analyzed automatically, which allows the use of

graphical editors, for example.

Use minimum number of technologies. Limiting the number of re-
quired technologies helps simplify application development. The

goal is to extend existing technologies rather than invent new ones.

39

Proposed Improvements

4.2 Multimodal Interaction

In terms of multimodality, the main advantages of XForms are data typ-
ing, accessibility, and less reliance on scripting. The accessibility is due to
the high semantic level of the elements. For instance, a mandatory label
on groups and form controls is better than a heuristic search of a possible
label. Similarly, datatypes can be utilized well to generate speech gram-
mars. In addition, XForms supports dynamic changes in the UI based on
user input. Publication III introduces a model of how XForms can be used
as a multimodal authoring format. The author of this Thesis has assisted
Mikko Honkala in designing the system.

The approach, called XFormsMM, combines XForms as a Multimodal
Application Authoring Format with Modality-Dependent Stylesheets and
a description of a Multimodal Interaction Manager. Figure 4.1 depicts
the execution environment. The interaction manager interacts with the
DOM of the XFormsMM document and synchronizes the Visual and Au-
ral Renderings so that simultaneous multimodal input and output and

flexible modality switching are possible.

XForms MM
Document

Stylesheets

Visual Rendering : Aural Rendering

Interaction Synthesizer
ouseKeys)— _ Mansger)« (Rocognzer 3

Figure 4.1: XFormsMM Execution Environment.

XFormsMM user interfaces are authored in the XForms 1.0 language.
This means that non-speech-enabled user agents will be able to present
the user interface in the visual modality. The modality-independent por-
tion includes the XForms Data Model and the abstract UI. The data model
is further separated into instance data and constraints, while the UI con-
tains grouping and abstract form controls. XHTML 1.0 is used as the
host language. The main modules used from XHTML are: Structure,
Stylesheet, Hypertext, and Image Modules, while the Forms module is re-
placed by XForms. The modality-dependent portion contains stylesheets.

Supplementary use of modalities [52] means that every interaction can

be carried out in each modality as if it was the only available modality.

40

Proposed Improvements

This is provided in XFormsMM by default. Every user interaction is de-
fined using the XForms User Interface Module [21], and can interact with
either speech or GUIL. On the other hand, complementary use of modal-
ities [52] means that the interactions available to the user differ from
one modality to the next. In XFormsMM, this is provided by the use of
modality-dependent CSS.

The main roles of the XFormsMM interaction manager are synchroniza-
tion of the modalities, flexible switching between the modalities, and nav-
igation. The main idea behind the interaction manager is that aural and
visual states are synchronized automatically. Setting the focus in one
modality automatically transfers the focus to the other modality. Since
the modalities share a single XForms data model, all data items and their
constraints are also shared automatically.

Each modality has its own rendering subsystem, the main roles of
which are to output the current state to the user and to receive modality-
dependent events from the user. The rendering takes care of detailed
events (such as mouse movements in visual modality or partial speech
recognition events in aural modality), and provides higher-level events

(such as value changed and focus changed) to the interaction manager.

4.3 Server Push System

This section discusses a server push system that can be used for web ap-
plications. It is designed for web applications that have to submit chang-
ing data to users as soon as the data has changed. Such applications
include auctions, score services, and stock quote services. The design
of the server push system is based on the requirements defined in Sub-
section 3.4.3. The system uses a publish/subscribe (pub/sub) messaging

model.

4.3.1 Publish/Subscribe

Publish/Subscribe is an asynchronous messaging model. Publishers send
their messages to channels rather than directly to subscribers, who re-
ceive messages from channels to which they have subscribed. This makes
the paradigm loosely coupled. In fact, pub/sub can be decoupled on

three dimensions: space, time, and synchronization [24]. In other words,

41

Proposed Improvements

senders and receivers do not have to know each other; the messages can
wait on a channel for subscription, and the production and consumption
of events do not prevent other activity at either end of the system. The re-
moval of dependencies between parties means that the paradigm adapts
well in distributed environments, which are asynchronous by nature [43].
The pub/sub paradigm is an example of the push system as the publishers
push data to the subscribers through the channels.

Subscription of the pub/sub system can be channel-, content- or event-
based [24]. In channel-based systems, a receiver subscribes to a cer-
tain channel, from which it receives all the published messages. In the
content-based pub/sub model, a subscriber defines filters for the subscrip-
tion and it will receive messages that pass the filters. Event-based sys-
tems are founded on event types, to which receivers subscribe. In addi-

tion, the pub/sub system can be a combination of the above-mentioned

types.

4.3.2 Communication Paradigm

The communication paradigm combines both push and pull protocols.
That kind of combination has been proposed by Deolasee et al. [19] and
Hauswirth and Jazayeri [36]. This Thesis proposes concrete components
and their communication for the combined push and pull communication.

A user agent fetches a document from the web server using HTTP pro-
tocol. When the web application is running on the user agent, dynamic
data is pushed to the client whenever necessary. In addition, the model
allows for a graceful degradation if the push component fails. The system
can rely on pull-based polling as a backup mechanism.

The idea is to use the pub/sub-messaging paradigm with a combined
channel and content-based model, in which user agents subscribe to the
channels according to their current state. In the case of web applications,
for example, the user agents subscribe to the channels according to the
location of their current resource. In other words, there is a one-to-one
match between URLs on the web server and the channels on the push
server.

The Web Server communicates the correct channel to the user agent
within the data sent over HTTP. Accordingly, it can be said that the model
supports the Representational State Transfer (REST) paradigm on which

the Web relies. There is an Event Source for every channel on the Push

42

Proposed Improvements

Server. The Event Sources track the changes on the server side, create
update events according to the changes, and publish them on their chan-
nels. The Push Server distributes the updates to every user agent that
has subscribed to the corresponding channel. This is known as a mul-
ticast delivery scheme. A more specific distribution can be achieved by
adding content-based subscription. In this manner, only relevant updates

are filtered to each subscriber.

By way of summary, Figure 4.2 shows the communication between com-
ponents of the system. The user agent fetches a document from the Web
Server via HTTP, as usual (1), but, in addition, it also receives the address
and subscription details of the Push Server. The user agent uses this data
to connect to the Push Server and subscribe to the relevant channel (2).
In response, the Push Server submits the latest message of the channel to
keep the user agent up-to-date (3). This ensures that any possible change
that occurs between the Web Server’s response and the subscription is

delivered to the client.

Browser Web Server Database Event Source Push Server

|
1: Page Request

| 2: Subscribe
|

\/

3: Push

A

I
|
|
|
|
|
|
|
|
4: Notify !

I

|

! 5: Publish
|

| 6: Push

1

|

|

|

A

Figure 4.2: The communication between components of the system.

When a data is modified, for instance in the database, a trigger notifies
the Event Source (4). The Event Source creates an update event and
publishes it on the Push Server in the appropriate channel (5). The Push

Server pushes the event to all subscribers of the channel (6).

43

Proposed Improvements

4.4 Remote DOM Events

The push update consists of three operations, which are mostly indepen-
dent from each other and even their order may vary depending on the

used technologies [IV]. The operations are:

Server Push. An update must be pushed to the client whenever it occurs

on a system.

Targeting the update. When an update arrives on client-side, there
must be a way to target the update for the correct elements in the

existing document.

Adding the Ul semantics. By default, a system provides its updates in
the form of raw data, which must be transformed into Ul declara-

tions. This can be done on both the server and client sides.

The previous Section presented a system that supports server push; this
section discusses the remaining two operations. The purpose of the server
push is to modify the DOM tree on the client side, which can be done via
ECMAScript or defined declaratively. The declarative methods make it
possible to define the target and modification on the server side. With
ECMAScript, it is done on the client side. The modification methods are
discussed in Publication IV. W3C has produced a working draft of Remote
Events for XML (REX) [6], but, at present, has stopped the specification
work because of patent issues [97]. In spite of this, REX represents the
declarative concept to describe the update events. This Thesis refers to
that concept as Remote DOM Events (RDE).

This thesis represents a declarative model to remotely modify the UL
The model is based on the RDE concept and XForms. The benefit of
XForms is that the data of a form is separated from its presentation. In
other words, the data can exist in same form in both the client and the
server side. The outfit of the data is defined in an XForms form. In order
to update the XForms instance data with RDE events, the RDE inter-
preter must update the instance document instead of the UI document.
Figure 4.3 presents the relationship between XForms instance data and
the actual UI DOM. As the figure shows, the instance is separate from the
UL There is a two-way connection between an instance node and its Ul

node.

44

Proposed Improvements

XForms
DOM

Bindings
and Constraints

Figure 4.3: The XForms instance in relation to the UI document and the

form constraints.

XForms can also be used to automatically evaluate the content of the
update. The XForms bind element can retrieve the content and make
calculations on it or compare its value to other values in the instance.
The result can also be made visible on the UI. Figure 4.3 also depicts a
dependency graph through which the XForms engine controls the values
of the data instance. The bind elements affect the graph among others.

45

5 Prototype Implementations

As a proof-of-concept, software that supports the selected Ul description
model and the server push system has been implemented. The goals of the
implementations are to show the feasibility of the proposed improvements
and to find their possible implementation issues. Firstly, the components
of an XML user agent are discussed and, secondly, an implementation of

the proposed server push system.

5.1 XML User Agent Components

The Author of this Thesis has participated in the development of the X-
Smiles XML browser [95], which supports several XML vocabularies and
allows combinations of them [70]. The main components of the X-Smiles
browser can be divided into four groups: XML processing, Browser Core
Functionality, Markup Language Functional Components (MLFCs) & EC-
MAScript Interpreter, and User Interfaces. These are shown in Figure
5.1. XML Processing converts the XML documents into a DOM tree. The
core of the browser controls the overall operation of the browser, which in-
cludes browser configuration, event handling, content management, etc.
MLFCs create XML language-specific DOM elements and render the doc-
uments using specific GUI bindings, which further use a component fac-

tory.

The author has co-implemented the visual and aural rendering and
XHTML and XForms interaction with Mikko Honkala for the browser.
This section describes the implementation of the CSS Layout Engine,
its integration into X-Smiles’ XForms component, multimodal interaction,
and RDE.

47

Prototype Implementations

. [Component + Content Factory]
User interface

and interaction [

General + MLFC S pecific GUls]

wees { (e [Fom) (576 [
) DOM Interface

Browser core Configuration
functionality

Content Manager

XML { [XML Parser XSL/XPath Processor]
9

Processin

t XML S treams

Figure 5.1: Architecture of the X-Smiles XML browser (adapted
from [95]).

5.1.1 CSS Layout Engine

The CSS Layout Engine provides visual rendering of the web applications.
Publication II presents requirements and implementation of the CSS Lay-
out Engine. The Layout Engine consists of a renderer and a set of views.
It also cooperates with a CSS style context, which provides the styling at-
tributes to the elements, and a DOM document. The CSS Layout Engine
is one of the MLFCs of X-Smiles (cf. Figure 5.1) and it processes the CSS
styled documents in X-Smiles.

The general idea of the layout engine’s operation is as follows. The CSS
Layout module creates the layout engine and sets a document to be ren-
dered. The document is accessed through the DOM interface by the layout
engine (cf. Figure 5.2). The views are created according to the DOM el-
ements and every view creates associated child views. When the views
have been created, they are laid out and painted. The process is repeated
partially due to certain operations (e.g., scrolling the document, resizing
the window, or modifying the content).

There are three kinds of views. The content-specific views, such as the
image and the text, keep up the spatial information and take care of the
rendering of the content. The image view also fetches the image data
from the source. The CSS-specific views, such as the block and the inline,
embed the content views and instruct the laying out according to the CSS

specification. Finally, there are additional views to structure the content.

48

Prototype Implementations

Create DOM
1

(]

Layout Engine\
Create Views
Change
Y

A

Layout

Paint |—>| Resize]

- J

Figure 5.2: Flowchart of the layout engine.

For instance, when a paragraph is laid out, the text must be divided into
rows; this is done through the paragraph and the row views, as Figure 5.3
shows. On the left-hand side of the figure is a snippet of HTML code
including a p element, which embeds text and an a element. A DOM tree
of the markup is represented in the middle of the figure. The # characters
correspond to the text nodes in the code. The view tree created by the
CSS layout engine is depicted on the right-hand side of the figures and
there are pointers that show which DOM elements correspond to which
views. Additional views are used to lay out the document properly. As can
be seen from the final layout in the bottom left corner, there are two rows

and the inline element (a) has been divided between them.

User Interface Modifications

The DOM document can be modified after its creation by, for example,
Remote DOM Events or scripts. Obviously, these modifications must be
delivered to the layout engine. The modifications are caught by the ex-
tended DOM elements. If something happens to an element, it updates
its style and also those of its children because some of the CSS properties
are inherited by the descendants. The view tree is modified according to
the changes.

If the modifications have an effect only on the layout of the element in
question, then the corresponding view tree is created, laid out, and, if
on the screen, painted again (cf. Figure 5.2, the Change operation). The
process is equivalent to Mozilla’s incremental layout [99]. However, if the
changes also affect on the other elements (such as the size changes), then

the entire affected view tree must be laid out and painted again, although

49

Prototype Implementations

Document source
<p>
Paragraph with some text and three word link
refering to target.

</p>
DOM elements
-
-
-
p

correspondence — — —

Document layout]

Paragraph with some text and three
word link refering to target.

Figure 5.3: Illustration of the text layout.

not created (cf. Figure 5.2, the Resize operation).

XHTML+XForms

The CSS layout engine supports the rendering of compound documents.
The formats of a compound document do not all have to follow the CSS lay-
out model. In those cases, the layout engine provides a region in which a
component supporting a non-CSS format can render its content. The con-
tent can be a single element (such as XForms) or an entire document (such
as SVG). Publication I introduces XHTML 2.0 implementation, which uti-
lizes the layout engine to render the XHTML and XForms modules of the

50

Prototype Implementations

XHTML 2.0 specification. The implementation shows the feasibility of the
model of the layout engine. However, because of the design of the XForms
language, integrating it with the CSS layout engine is not a completely
simple matter. For instance, there is a notion of a cursor inside a repeated
construct, which has no correspondence in the DOM. Furthermore, the el-
ement describing the form control contains a label element inside it, mak-
ing it difficult to style just the form control itself [I]. XForms uses pseudo
classes and elements to solve those issues that had to be implemented in

order to support the compound.

5.1.2 Multimodal Interaction

The layout engine is also part of the multimodal interaction framework
of the X-Smiles browser. Along with the XForms component, it provides
the GUI rendering and the Ul functionality. Publication IIT discusses the
framework and its implementation and Figure 5.4 illustrates the archi-

tecture of the implementation.

)

XML Parser

css Schema Processor

Engine

e N
——
)

(XForms Engine

Interaction Manager

)

‘
J

p

J S S

GUI Speech Rendering
(Dialog Handler]
JSGF
(Focus Providea(WidgetsJ‘_ Grammars
Layout

[Speech API
(Focus)]
m 4 input y output
(Recognizer] [Synthesizer]

Figure 5.4: The components of the XFormsMM implementation in X-

Smiles.

The XForms engine [41] provides the state of the document. Interaction
manager is a thin layer that communicates between the XForms engine
and the GUI and speech rendering subsystems. Speech rendering consists
of a dialogue handler, speech widgets, a focus provider, and a Speech API.
The dialogue handler uses speech widgets and a focus provider to provide
speech Ul navigation and form field filling. Speech widgets are created for
each element according to the datatypes, and they store the input data to

a form in the correct format. They are the aural counterparts of the visual

51

Prototype Implementations

form controls, while the visual focus management is already provided by
the graphical XForms implementation. As a result, the interaction man-
ager registers itself as a listener for graphical focus events. In addition, a
speech focus provider was created. The Speech API is a low-level interface

for speech recognition and synthesis.

5.1.3 Remote DOM Events

The CSS layout engine supports the RDE concept described in Section 4.4.
An RDE Interpreter (cf. Figure 5.1) receives update events for instance
from an Extensible Messaging and Presence Protocol (XMPP) client as
a binary stream. The next section discusses a server push system that
uses XMPP. The binary streams are forwarded to a Content Manager,
which returns the XML markup back to the interpreter, which parses the
markup and creates a mutation event based on the content of the markup.
The mutation event is forwarded to the DOM implementation of X-Smiles,
which further modifies the live DOM of a document to be edited. Publi-
cation IV describes four methods for utilizing RDE in web applications.
This Thesis uses the XForms+RDE method as described in Section 4.4.

5.2 Server Push System

This section discusses an implementation of the Push System that is
based on the XMPP protocol and conforms to the web application commu-
nication paradigm. The main reasons for selecting XMPP were its wide
usage in other XML streaming applications, its pure push nature, exist-
ing implementations, and the possibility of using it with legacy browsers

and firewalls.

5.2.1 XMPP

XMPP is a protocol for streaming Extensible Markup Language (XML) el-
ements in near real time between any network endpoints [79]. It was ini-
tially developed as a protocol for Instant Messaging (IM) applications [80].
The XMPP technology set comprises of core functionality and numerous
extensions. The core defines how XML snippets are handled for instance

in IM applications and the extensions utilize that base. Among the exten-

52

Prototype Implementations

sions are those for XMPP publish/subscribe [60] and HTTP binding for
XMPP communications called Bidirectional-streams Over Synchronous
HTTP (BOSH) [66], which can be used if regular XMPP communication is
blocked (by a firewall, for example).

BOSH uses Comet to mimic two-way communication between the Server
and the browser. However, even if it emulates push and is therefore no
longer pure XMPP, it has many benefits compared to plain Comet given
that it has other characteristics of XMPP. These include persistent con-
nections even if the underlying network connection is unreliable, a pre-
scribed messaging model and format, and authentication. XMPP BOSH

can be said to provide a standardized communication model for Comet.

5.2.2 Components

Figure 5.5 depicts the components of the system. All of the software is
open source and extended as needed. The Web Server is an Apache Tom-
cat Servlet container! and the database is an eXist-db XML database?.
There is also an XMPP Server and Event Sources in the server-side. The
XMPP Server is an Openfire XMPP Server? that has native support for
XMPP pub/sub. Event Sources are system-specific components that use
the Smack XMPP client library* with su-smack® pub/sub extension for

XMPP communication.

/ Server \

Web
Browser Server

XMPP |l Event
i Server
i Source

Figure 5.5: The components of the Push System.

Publish

~

User Agents of the system include a browser, the XMPP client, and an

1Apache Tomeat, http:/tomcat.apache.org/

2eXist-db, http://exist.sourceforge.net/

3 Openfire XMPP Server, http:/www.igniterealtime.org/ projects/openfire/in-
dex.jsp

4Smack API, http://www.igniterealtime.org/projects/ smack/index.jsp
5su-smack, http:/static.devel.it.su.se/su-smack/

53

Prototype Implementations

update handler. The XMPP Client can have native integration into the
browser or it can be an ECMAScript library, which comes with a web ap-
plication. This means that the system can be used with legacy browsers.
As a proof of concept, both native and ECMAScript implementations were
performed. In the native implementation, the XMPP components were
integrated into X-Smiles [95], which uses the same libraries as the Event
Sources for XMPP communication. The update handler depends on the
format of the updates, which will be discussed below.

The ECMAScript implementation uses the Strophe XMPP library®,
which was extended to support XMPP pub/sub. There is also an EC-
MAScript implementation of the update handler. The Strophe pub/sub
implementation provides a generic interface that creates and parses the
XML stanzas used for XMPP pub/sub communication. Although the client
must still handle the connection, but the library creates the content of the

messages.

5.2.3 Operation

Figure 5.6 describes the operation of the system. The database has a
mechanism that triggers an event when a collection in a database is mod-
ified. The Event Sources have registered themselves to the relevant trig-
gers. The triggers notify registered Event Sources when the database has
been modified (1). The Event Sources publish the modified information
on their channels in the XMPP Server (2), which further pushes the event
to the subscribers (3). The browser handles the event and updates the

relevant node in a document (4).

- EVENT SOURCE BROWSER

Pointers
PUSH

SERVER

)
Trigger

Figure 5.6: Conceptual model of the operation.

6Strophe, http://code.stanziq.com/strophe/

54

6 Discussion

The results of this Thesis can partly be utilized in a general sense, while
they have also partly been tied to certain technologies. In particular, the
proposed communication paradigm of the server push and comparison of
UI description languages can be of general interest. The improvements of
the UI description and logic are intentionally tied to XForms technology,
since this was found to be the best format in the aforementioned compar-

ison. The following Sections evaluate the results of this Thesis.

6.1 User Interface Languages

The requirement conformance reveals what types of applications the lan-
guages suit best. XForms copes best with the universal interaction re-
quirements, but is weakest with typical interaction patterns, which, in
turn, are best fulfilled by languages targeted to application Uls. XForms’
main targets are complicated forms, which means that it simplifies the
management of large data set on the client side. XForms also excels when
accessibility requirements are involved. XForms’ abstract UI description
makes it easier to develop applications for different modalities and de-
vices. Customizability is important when using an application in differ-
ent contexts [49], and is easiest in languages with specific UI elements,
including XUL, HTML5, XAML, and LZX. Finally, a desktop-like UI with
direct manipulation is best achieved with XAML.

The various requirements are somewhat at variance with each other.
For instance, conforming well to technical requirements may make it dif-
ficult to implement all the typical interaction patterns. For example, real-
izing drag-and-drop with XForms’ Ul independence is rather complicated.

XForms was selected as the UI language of this Thesis because of its
technical merits. As predefined in the Introduction, this Thesis did not

attempt to evaluate what would be required to adopt a new technology

55

Discussion

on a large scale. Either way, the adoption would be problematic since
browser vendors cannot stop to support legacy content on the Web; this
is evidenced by the vendors’ strong support for HTML5 at W3C. As the
comparison shows, although an incremental development of HTML might
be sufficient at the present time, it remains to be seen whether there is
a need to abandon backward compatibility and make a technology leap
in the future. There is nothing that would have prevented to implement
the proposed improvements with another technology than XForms, but it
would have required more work. Depending on technology, other formats
lack data types, abstract Ul description, or a data model. Those all make

it easier to apply the proposed improvements to XForms.

6.2 Multimodal Interaction

Publication III evaluated the XFormsMM approach against W3C multi-
modal requirements and compared X+V and SALT. XFormsMM supports
supplementary interaction well, since all interaction is always automati-
cally available in both modalities, and the user can, at any point, switch
between the modalities. Synchronization of modalities is seamless at the
field level with XFormsMM. It also has clear benefits over the others in
terms of both multilingual support and accessibility. Ease-of-authoring is
best in XFormsMM, where only single UI definition is required, compared
to authoring both aural and visual parts in SALT or X+V. On the other
hand, Ease-of-use, when using only aural modality, is better in SALT and
X+V, since they have greater aural expressive power.

In Input processing, X+V and SALT both rely on modality-dependent
strategies, such as voice grammars, while XFormsMM uses cross-modality
definitions, such as data and input types. This means that an author has
more control on input processing in X+V and SALT, although XFormsMM
is much easier to author and maintain. XFormsMM, with data- and input
types, is best able to provide semantics of input. In addition, coordinated
constraints are best provided by XFormsMM, by sharing a single struc-
tured data model (along with declarative constraints and calculations)
between modalities.

Only XFormsMM properly supports separation of the data model, the
presentation layer and the application logic. SALT and X+V best support

synchronization granularities, since XFormsMM only supports field- and

56

Discussion

event-level synchronization.

The XFormsMM and X+V were also compared by implementing simi-
lar application with both of the technologies [III]. The XFormsMM im-
plementation was notably smaller in code size, even though it has more
features. This is mainly because X+V implementation also contains gram-
mars, which are generated automatically in XFormsMM; in X+V, the Ul
must be partially defined twice, that is, for both modalities separately,
and the X+V implementation requires a lot of scripts.

In short, the main difference between XFormsMM and the other two is
the semantic level, which is higher in XFormsMM. This results in bet-
ter ease-of-authoring, since only one UI description needs to be written.
Also, synchronization between the modalities is automatic in XFormsMM,

while scripting is not required for most user interfaces.

6.3 XML User Agent Components

The implementations of the XML User Agent components demonstrate
the feasibility of the XHTML + XForms compound, remote DOM events,
and multimodal interaction with XForms. The implementation of the CSS
layout engine demonstrates how to support compound documents. It can
also include non-CSS based markup either as single elements or whole
documents [I, II].

This Thesis uses the remote DOM events paradigm with XForms; that
is, the remote events modifies XForms’ DOM in the client side. It is easier
to maintain the UI description with the methods in which UI description
resides only on the client side. Additionally, the RDE+XForms method
provides a means with which to automatically react to the content of the
update. The RDE+XForms can be used with any UI description language
as long as it is in the XML format, presuming that the format can be

combined with XForms.

6.4 Server Push System

The implementation of the server push system shows that it is possible
to implement a system that pushes database modifications all the way to

the web browser in near real time. Overall, the system fulfills the require-

57

Discussion

ments well. XMPP, with its pub/sub extension, suits this kind of commu-
nication. Decoupling between the core communicators, that is, the user
agents and Event Sources, has been successful. Both sides communicate
using a standard XMPP Server and do not have any inter-dependencies.
In addition, the bindings between the components are formed on the run-
time.

The model provides a means with which to fulfill the coherence require-
ment, although the current experimental implementation requires an op-
timization on database triggering in order to conform to the requirement.
The performance of push communication is similar to Comet, which has
been shown to outperform legacy HTTP polling applications [2, 12]. In
addition, the XMPP-based system has some benefits over plain Comet, as
discussed in Subsection 5.2.1.

A new protocol typically requires new software on both the client and
server sides, while developers must learn the new protocol. Although it
is not necessarily difficult for developers to implement the requirement
regarding new client-side software, it has to be installed by most of the
end-users before application developers will actually start to use it. The
update cycle on users’ browsers is slow. If the same functionality can be
offered via ECMAScript, it can be adopted immediately. This Thesis has
shown that the XMPP communication model can be applied immediately
on the Web, even though it has to be bound to HTTP. XMPP with HTTP
binding could be used as a kind of standardized syntax for Comet com-
munication, which could even help developers to create Comet-based ap-
plications. Furthermore, the application would automatically work with

user agent with XMPP support.

58

7 Conclusions

This Thesis has proposed improvements to web application user interface
technologies. The work was conducted by answering the research ques-
tions formulated in Section 1.3 (Q1-Q4). This Section summarizes the

contribution of the Thesis and defines the future work items.

7.1 Contribution

The work was outlined to cover novel and advanced web technologies that
are expected to improve the state of the art. Furthermore, the scope
included web application UI technologies and UI communication with a
back-end. The Thesis represents a large set of requirements within this
scope, which were collected from the literature and complemented by the
author.

The evaluation of the Ul languages was based on two set of require-
ments: Ul Definition and UI Logic. In addition, a comparison was made
of the languages’ communication with the back-end. The result of the
comparison was that XForms was the best format overall. It exceeded UI
Definition requirements, whereas other languages were missing several
required features. Additionally, XForms’ data serialization model was the
best among the languages. The Ul Logic requirements were best fulfilled
by XAML.

Multimodal technologies, X+V and SALT, were evaluated against W3C
multimodal requirements. They are both based on a model in which the
modalities are, mainly, implemented separately. This allows specific im-
plementations of each modality, but, naturally, requires more work and,
in particular, makes it difficult to maintain the applications. In short,
even though it is possible to implement multimodal applications with both
technologies, they do not conform well to the requirements.

Improvements were proposed on the basis of both the requirements and

59

Conclusions

the evaluation. Firstly, design principles were defined to ensure consis-
tency of the improvements. The aim was to mainly use declarative de-
scriptions and, based on the evaluation, specifically XForms. Moreover,
the goal was to use only a small number of technologies and extend the
existing ones rather than defining new ones.

The proposed improvements relate to multimodal interaction, server
push, and declaratively defined UI updates. Firstly, XFormsMM speci-
fies how to use XForms in order to create multimodal applications. The
framework fulfilled the requirements better than the reference technolo-
gies and made it easier to implement a use case. Secondly, a model and
an implementation of improved web application communication were in-
troduced. The system uses XMPP to push information to clients. Finally,
a method for dynamically updating the Ul using XForms was discussed.
The method, which can be integrated with the server push system, defines
UI modifications caused by the updates declaratively.

In addition, the proposals have been implemented as a proof of concept
and they were implemented into the X-Smiles XML browser. In order to
fully adhere to the design principles, the browser also required the im-
plementation of other components, including a CSS layout engine with
compound document support.

Section 2.3 highlighted the problems with the current web technologies
and this Thesis has proposed solutions for two of them: multimodal in-
teraction and server push. It is notable that selecting XForms as the Ul

description language solved the other problems.

7.2 Future Work

According to the evaluation of the user interface description languages,
XForms’ major flaw is its lack of support for direct manipulation, which
includes Ul operations such as drag-and-drop. This flaw is mainly due
to the abstract UI description and use of separate data model [V]. Never-
theless, it should be investigated how direct manipulation methods could
be added to the XForms natively. Although it is possible using an EC-
MAScript library, such as JQuery, that would be an imperative solution.
Web widgets are small programs embedded in a web page via HTMLs
iframe or object elements and they are typically implemented with HTML,
CSS, and ECMAScript. There are also specific web widget environments

60

Conclusions

that contain a number of ready-made widgets from which users can
choose. They also provide APIs so that developers can implement their
own widgets. Examples of such web widget environments are iGoogle,
Netvibes, and Pageflakes. The server push system discussed in this the-
sis could also be adapted for inter-widget communication on the Web.
Publication VI sketches a research problem related to the communica-
tion model of inter-widget communication. Although the article presents
a rough model, several open issues remain to be solved before the model

can be applied.

61

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

Murray Altheim and Shane McCarron (editors). 2001. XHTML™
1.1 - Module-based XHTML. W3C Recommendation. URL
http://www.w3.org/TR/xhtml11/.

Michele Angelaccio and Berta Buttarazzi. 2006. A Performance Eval-
uation of Asynchronous Web Interfaces for Collaborative Web Services.
In: Frontiers of High Performance Computing and Networking — ISPA
2006 Workshops, volume 4331/2006 of Lecture Notes in Computer Science,
pages 864-872. Springer. ISBN 978-3-540-49860-5.

Vidur Apparao et al. (editors). 1998. Document Object Model (DOM)
Level 1 Specifications - Version 1.0. = W3C Recommendation. URL
http://www.w3.org/TR/REC-DOM-Level-1/.

Doris Appleby and Julius J. Vandekopple. 1997. Programming Languages
- Paradigm and Practice. WCB/McGraw-Hill.

Jonny Axelsson, Chris Cross, Jim Ferrans, Gerald McCobb, T. V. Raman,
and Les Wilson (editors). 2004. XHTML+Voice Profile 1.2. VoiceXML
Forum.

Robin Berjon (editor). 2006. Remote Events for XML (REX) 1.0. W3C
Working Draft.

Tim Berners-Lee, Roy Thomas Fielding, and Larry Masinter (editors).
2005. Uniform Resource Identifier (URI): Generic Syntax. IETF. URL
http://tools.ietf.org/rfc/rfc3986.txt.

Paul V. Biron and Ashok Malhotra (editors). 2004. XML Schema
Part 2: Datatypes Second Edition. @ W3C Recommendation. = URL
http://www.w3.org/TR/xmlschema-2/.

Peter Bojanic. 2003. The Joy of XUL. Mozilla Developer Center. URL
http://www.mozilla.org/projects/xul/joy-of-xul.html.

Bert Bos et al. (editors). 2009. Cascading Style Sheets Level 2 Revi-
sion 1 (CSS 2.1) Specification. W3C Candidate Recommendation. URL
http://www.w3.0org/TR/CSS21/.

John M. Boyer (editor). 2007. XForms 1.1. W3C Candidate Recommen-
dation. URL http://www.w3.org/TR/xforms11/.

Engin Bozdag, Ali Mesbah, and Arie van Deursen. 2008. Per-
formance Testing of Data Delivery Techniques for AJAX Applications.
Technical report, Delft University of Technology, Delft, Netherlands. URL

63

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

64

http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-
2008-009.pdf.

Tim Bray et al. (editors). 2008. Extensible Markup Lan-
guage (XML) 1.0 (Fifth Edition). W3C Recommendation. URL
http://www.w3.0org/TR/REC-xml/.

Dick C.A. Bulterman et al. (editors). 2008. Synchronized Multime-
dia Integration Language (SMIL 3.0). W3C Recommendation. URL
http://www.w3.org/TR/SMIL3/.

Richard Cardone, Danny Soroker, and Alpana Tiwari. 2005. Using
XForms to simplify Web programming. In: WWW ’05: Proceedings of the
14th international conference on World Wide Web, pages 215-224. ACM
Press, New York, NY, USA. ISBN 1-59593-046-9.

James Clark and Steve DeRose (editors). 1999. XML Path Language
(XPath). W3C Recommendation. URL http://www.w3.0rg/TR/xpath/.

Philip R. Cohen. 1992. The role of natural language in a multimodal
interface. In: UIST ’92: Proceedings of the 5th annual ACM symposium
on User interface software and technology, pages 143-149. ACM Press,
New York, NY, USA. ISBN 0-89791-549-6.

SQLite Consortium. SQLite. Web Page http://www.sqlite.org/.

Pavan Deolasee, Amol Katkar, Ankur Panchbudhe, Krithi Ramamritham,
and Prashant Shenoy. 2001. Adaptive push-pull: disseminating dynamic
web data. In: WWW ’01: Proceedings of the 10th international conference
on World Wide Web, pages 265-274. ACM, New York, NY, USA. ISBN
1-58113-348-0.

Dojo Foundation. Dojo Toolkit. Web Page, http://dojotoolkit.org/.

Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V. Raman
(editors). 2003. XForms 1.0. W3C Recommendation. URL
http://www.w3.0rg/TR/2003/REC-xforms-20031014/.

ECMA. 2009. ECMAScript Language Specification, 5% Edition. Stan-
dard, ECMA International.

ECMA. 2010. ES Wiki. URL http://wiki.ecmascript.org/doku.php.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. 2003. The Many Faces of Publish/Subscribe. ACM Computing
Surveys 35, no. 2, pages 114-131.

Roy Thomas Fielding et al. (editors). 1999. Hypertext Transfer Protocol
— HTTP/1.1. IETF. URL http://wuww.ietf.org/rfc/rfc2616.txt.

Anthony C.W. Finkelstein, Andrea Savigni, Werner Retschitzegger, Gerti
Kappel, Wieland Schwinger, and Christian Feichtner. 2002. Ubiquitous
Web Application Development - A Framework for Understanding. In:
Proc. of SCI2002, pages 431-438.

James Foley, Won Chul, Srdjan Kovacevic, and Kevin Murray. 1988. The
User Interface Design Environment. SIGCHI Bull. 20, no. 1, pages 77-78.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Bibliography

José Manuel Cantera Fonseca (editor). 2010. Model-Based
Ul XG Final Report. W3C Incubator Group Report. URL
http://www.w3.0rg/2005/Incubator/model-based-ui/XGR-mbui/.

N. Freed and N Borenstein. 1996. Multipurpose Internet Mail Extensions.
RFC 2045, IETF. URL http://www.ietf.org/rfc/rfc2045. txt.

Jesse James Garrett. 2005. Ajax: A New Ap-
proach to Web Applications. Web Article. URL
http://adaptivepath.com/publications/essays/archives/000385.php.

Franca Garzotto. 2001. Ubiquitous Web Applications. Advances in
Databases and Information Systems 2151, page 1.

A. Ginige and S. Murugesan. 2001. Web Engineering: An Introduction.
Multimedia, IEEE 8, no. 1, pages 14 —18.

Ben Goodger, Ian Hickson, David Hyatt, and Chris Waterson. 2001.
XML User Interface Language (XUL) 1.0. Mozilla. URL
http://www.mozilla.org/projects/xul/xul.html.

Google. Google Web Toolkit. Web Page
http://code.google.com/webtoolkit/.

Alexander Gruenstein, Ian McGraw, and Ibrahim Badr. 2008. The
WAMI toolkit for developing, deploying, and evaluating web-accessible
multimodal interfaces. In: Proceedings of the 10th interna-
tional conference on Multimodal interfaces, ICMI ’08, pages 141-
148. ACM, New York, NY, USA. ISBN 978-1-60558-198-9. @ URL
http://doi.acm.org/10.1145/1452392.1452420.

Manfred Hauswirth and Mehdi Jazayeri. 1999. A Component and Com-
munication Model for Push Systems. SIGSOFT Softw. Eng. Notes 24,
no. 6, pages 20-38.

G.d. Heijenk, Xinli Hou, and I.G. Niemegeers. 1994. Communication
systems supporting multimedia multi-user applications. Network, IEEE
8, no. 1, pages 34 —44.

Ian Hickson (editor). 2009. Web Storage. W3C Working Draft. URL
http://www.w3.0rg/TR/2009/WD-webstorage-20091222/.

Ian Hickson (editor). 2010. Web SQL Database. W3C Working Draft.
URL http://www.w3.org/TR/2009/WD-webdatabase-20091222/.

Ian Hickson and David Hyatt (editors). 2010. HTML5. W3C Working
Draft. URL http://www.w3.0org/TR/2010/WD-html5-20100304/.

M. Honkala and P. Vuorimaa. 2004. A Configurable XForms Implemen-
tation. In: Proceedings of the IEEE Sixth International Symposium on
Multimedia Software Engineering (ISMSE’04). IEEE.

Mikko Honkala, Oskari Koskimies, and Markku Laine. 2007. Connecting
XForms to Databases - An Extension to the XForms Markup Language.
Position paper, W3C Workshop on Ubiquitous Web Applications. URL
http://www.w3.0rg/2007/02/dndwa-ws/Papers/oskari-koskimies.pdf.

65

Bibliography

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

66

Yongqgiang Huang and Hector Garcia-Molina. 2004. Publish/Subscribe in
a Mobile Environment. Wirel. Netw. 10, no. 6, pages 643—-652.

Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and
Tommi Mikkonen. 2008. The Lively Kernel A Self-supporting System
on a Web Page , volume 5146/2008 of Lecture Notes in Computer Science,
chapter 2, pages 31-50. Springer, Berlin / Heidelberg.

d., Myers B., Harris T.K., Rosenfeld R., Shriver S., Higgins M., and
Hughes J. Nichols. 2002. Requirements for Automatically Generating
Multi-Modal Interfaces for Complex Appliances. In: ICMI '02: Proceed-
ings of the 4th IEEE International Conference on Multimodal Interfaces,
page 377. IEEE Computer Society, Washington, DC, USA. ISBN 0-7695-
1834-6.

Ian Jacobs and Norman Walsh (editors). 2004. Architecture of
the World Wide Web, Volume One. @ W3C Recommendation. URL
http://www.w3.org/TR/webarch/.

Jack Jansen and Dick C.A. Bulterman. 2008. Enabling adaptive time-
based web applications with SMIL state. In: DocEng ’08: Proceeding
of the eighth ACM symposium on Document engineering, pages 18-27.
ACM, New York, NY, USA. ISBN 978-1-60558-081-4.

Mehdi Jazayeri. 2007. Some Trends in Web Application Development. In:
FOSE °07: 2007 Future of Software Engineering, pages 199-213. IEEE
Computer Society, Washington, DC, USA. ISBN 0-7695-2829-5.

Gerti Kappel, Birgit Proll, Werner Retschitzegger, and Wieland
Schwinger. 2003. Customisation for ubiquitous web applications: a com-
parison of approaches. Int. J. Web Eng. Technol. 1, no. 1, pages 79-111.

Laszlo Systems, Inc. 2008. OpenLaszlo Application Developer’s
Guide. Technical report, Laszlo Systems, Inc. Available online:
http://www.openlaszlo.org/lps4/docs/developers/.

J. W. Lloyd. 1995. Declarative Programming in Es-
cher. Technical report, University of Bristol, UK. URL
http://www.cs.bris.ac.uk/Publications/Papers/1000073.pdf.

Stephane H. Maes and Vijay Saraswat (editors). 2003. Mul-
timodal Interaction Requirements. W3C NOTE. URL

http://www.w3.0org/TR/2003/NOTE-mmi-reqs-20030108/.

G. L. Martin. 1989. The utility of speech input in user-computer inter-
faces. Int. J. Man-Mach. Stud. 30, no. 4, pages 355-375.

Shane McCarron, Steven Pemberton, and T.V. Raman (editors).
2003. XML Events. W3C Recommendation. URL
http://www.w3.org/TR/xml-events/.

Scott McGlashan et al. (editors). 2004. Voice Extensible Markup
Language (VoiceXML) Version 2.0. W3C Recommendation. URL
http://www.w3.0org/TR/voicexml20/.

Nikunj Mehta (editor). 2010. Indexed Database API. W3C Working Draft.
URL http://www.w3.0rg/TR/2010/WD-IndexedDB-20100105/.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Bibliography
Microsoft. JScript (Windows Script Technologies). Web Page,
http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx.

Microsoft. Windows Presentation Foundation. Web Page
http://msdn.microsoft.com/en-us/library/ms754130.aspx.

Tommi Mikkonen and Antero Taivalsaari. 2007. Web Ap-
plications - Spaghetti Code for the 21st Century. Tech-
nical Report TR-2007-166, Sun Microsystems. URL

http://research.sun.com/techrep/2007/abstract-166.html.

Peter Millard, Peter Saint-Andre, and Ralph Meijer. 2008. XEP-
0060: Publish-Subscribe. XMPP Standards Foundation. URL
http://xmpp.org/extensions/xep-0060.html.

Izidor Mlakar and Matej Roje. 2009. Platform for flexible integra-
tion of multimodal technologies into web application domain. In: Pro-
ceedings of the 8th WSEAS International Conference on E-Activities and
information security and privacy, E-ACTIVITIES’ 09/ISP’09, pages 116—
121. World Scientific and Engineering Academy and Society (WSEAS),
Stevens Point, Wisconsin, USA. ISBN 978-960-474-143-4. URL
http://portal.acm.org/citation.cfm?id=1736186.1736207.

Mozilla. XBL 1.0 Reference. Web Page
https://developer.mozilla.org/en/XBL/XBL_1.0_Reference.

Mozilla Developer Center. JavaScript. Web Page,
https://developer.mozilla.org/en/JavaScript.

Myers, Brad A. and Rosson, Mary Beth. 1992. Survey on user interface
programming. In: CHI '92: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 195-202. ACM, New York,
NY, USA. ISBN 0-89791-513-5.

OpenLaszlo. OpenlLaszlo Reference Guide. Web Page
http://www.openlaszlo.org/lps4.2/docs/reference/.

Ian Paterson, Dave Smith, and Peter Saint-Andre. 2007. Bidirectional-
streams Over Synchronous HTTP (BOSH). Standards Track 0124, XMPP
Standards Foundation.

John F. Patterson, Ralph D. Hill, Steven L. Rohall, and Scott W. Meeks.
1990. Rendezvous: an architecture for synchronous multi-user appli-
cations. In: CSCW ’90: Proceedings of the 1990 ACM conference on
Computer-supported cooperative work, pages 317-328. ACM, New York,
NY, USA. ISBN 0-89791-402-3.

Robert Peacock. 2000. Distributed Architecture Technologies. IT Profes-
sional 2, pages 58-60.

Steven Pemberton et al. (editors). 2000. XHTML 1.0: The Exten-
sible HyperText Markup Language. @ W3C Recommendation. @ URL
http://www.w3.0org/TR/2000/REC-xhtml1-20000126/.

K. Pihkala, M. Honkala, and P. Vuorimaa. 2002. A Browser Framework
for Hybrid XML Documents. In: Internet and Multimedia Systems and
Applications, IMSA 2002. IMSA.

67

Bibliography

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

68

Mikko Pohja, Mikko Honkala, Miemo Penttinen, Petri Vuorimaa, and
Panu Ervamaa. 2007. Web User Interaction — Comparison of Declara-
tive Approaches. In: Web Information Systems and Technologies, vol-
ume 1 of Lecture Notes in Business Information Processing, pages 190—
203. Springer Berlin Heidelberg. ISBN 978-3-540-74062-9. URL
http://1ib.tkk.fi/Diss/2007/isbn9789512285662/article8.pdf.

Prototype Core Team. Prototype Javascript Framework. @Web Page
http://www.prototypejs.org/.

Angel R. Puerta and Pedro Szkeley. 1994. Model-Based Interface Develop-
ment. In: CHI ’94: Conference companion on Human factors in computing
systems, pages 389-390. ACM, New York, NY, USA. ISBN 0-89791-651-4.

Dave Raggett, Jenny Lam, Ian Alexander, and Michael Kmiec. 1998.
Raggett on HTML 4, chapter 2. Addison Wesley.

Dave Raggett, Arnaud Le Hors, and Ian Jacobs (editors). 1999. HTML
4.01. W3C Recommendation. URL http://www.w3.org/TR/html401/.

Ariel Ortiz Ramirez. 2000. Three-Tier Architecture. Linux Journal URL
http://www.linuxjournal.com/article/3508.

John Resig. 2006. Pro JavaScript™Techniques, chapter 14, pages 287—
304. Springer-Verlag, New York, NY, USA.

Alex Russell. 2006. Comet: Low Latency Data for the Browser. Weblog.
URL http://alex.dojotoolkit.org/?p=545.

Peter Saint-Andre (editor). 2004. Extensible Messag-
ing and Presence Protocol (XMPP): Core. IETF. URL
http://www.ietf.org/rfc/rfc3920.txt.

Peter Saint-Andre. 2005. Streaming XML with Jabber/XMPP. IEEE
Internet Computing 9, no. 5, pages 82—89.

Michail Salampasis, Christos Kouroupetroglou, and Athanasios Manit-
saris. 2005. Semantically Enhanced Browsing for Blind People in the
WWW. In: HYPERTEXT ’05: Proceedings of the sixteenth ACM confer-
ence on Hypertext and hypermedia, pages 32-34. ACM, New York, NY,
USA. ISBN 1-59593-168-6.

Patrick Schmitz. 2001. The SMIL 2.0 Timing and Syn-
chronization model. Technical Report MSR-TR-2001-01,
Microsoft Research, Redmond, WA 98052, USA. URL

http://research.microsoft.com/apps/pubs/default.aspx?id=69839.

Orit Shaer et al. (editors). 2009. ACM Transactions on Computer-Human
Interaction (TOCHI), volume 16, chapter 4. ACM, New York, NY, USA.

Tony C. Shan and Winnie W. Hua. 2006. Taxonomy of Java Web Applica-
tion Frameworks. In: ICEBE ’06: Proceedings of the IEEE International
Conference on e-Business Engineering, pages 378-385. IEEE Computer
Society, Washington, DC, USA. ISBN 0-7695-2645-4.

B Shneiderman. 1992. Designing the user interface: strategies for effec-
tive human-computer interaction. Addison-Wesley, 2nd edition.

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Bibliography

Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Program-
ming Languages. Computer 16, no. 8, pages 57—69.

Rainer Simon, Michael Jank Kapsch, and Florian Wegscheider. 2004. A
generic uiml vocabulary for device- and modality independent user inter-
faces. In: WWW Alt. ’04: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pages 434—435.
ACM Press, New York, NY, USA. ISBN 1-58113-912-8.

David F. Sklar and Andy van Dam. 2005. An Intro-
duction to Windows Presentation Foundation. Windows Vista
Technical Articles, Microsoft Developer Network (MSDN). URL
http://msdn2.microsoft.com/en-us/library/aa480192.aspx.

The jQuery Project. jQuery. Web Page http://jquery.org/.

S. Trewin, G. Zimmermann, and G. Vanderheiden. 2004. Abstract Repre-
sentations as a Basis for Usable User Interfaces. Interacting with Com-
puters 16, no. 3, pages 477-506.

Anne van Kesteren (editor). 2008. HTML 5 differences from HTML 4.
W3C Working Draft. URL http://www.w3.0org/TR/html5-diff/.

Anne van Kesteren (editor). 2008. The XML-
HttpRequest Object. W3C Working Draft. URL
http://www.w3.0rg/TR/2008/WD-XMLHttpRequest-20080415/.

Iris Vessey, V. Ramesh, and Robert L. Glass. 2005. A unified
classification system for research in the computing disciplines. In-
formation and Software Technology 47, no. 4, pages 245 — 255. URL
http://www.sciencedirect.com/science/article/B6VOB-4DFT6VK-5/2/5
c473276eb94e2d2e4e819c3610a8943.

Petri Vuorimaa, Dick C.A. Bulterman, and Pablo Cesar (editors).
2008. SMIL Timesheets 1.0. W3C Working Draft. URL
http://www.w3.0org/TR/timesheets/.

Petri Vuorimaa, Teemu Ropponen, Niklas von Knorring, and Mikko
Honkala. 2002. A Java based XML browser for consumer devices. In:
17th ACM Symposium on Applied Computing, pages 1094-1099. Madrid,
Spain.

W3C. Document Object Model FAQ. Web Page
http://www.w3.0rg/DOM/faq.html.

W3C. Report of the REX PAG 2007 on REX 1.0. Web Page
http://www.w3.0rg/2006/rex-pag/rex-pag-report.html.

Kuansan Wang. 2002. SALT: A Spoken Language Interface For Web-
Based Multimodal Dialog Systems. In: Proceedings of the 7th Inter-
national Conference on Spoken Language Processing (ICSLP’02). URL
http://research.microsoft.com/srg/papers/2002-kuansan-icslp.pdf.

Chris Waterson. 2004. Notes on HTML Reflow. Technical report, Mozilla.
URL http://www.mozilla.org/newlayout/doc/reflow.html.

69

Bibliography

[100] Weiquan Zhao and David Kearney. 2003. Deriving Architectures of
Web-Based Applications. In: Web Technologies and Applications, vol-
ume 2642/2003 of Lecture Notes in Computer Science. Springer. ISBN
978-3-540-02354-8.

70

Errata

Publication VI

In Section 4.2, it is said that the communication paradigm is based on
Push-and-Pull algorithm defined by Deolasee et al. [19]. To be exact, the
presented paradigm uses both a push and a pull protocols, but does not

implement the algorithm in question.

71

The World Wide Web has expanded from a
huge information storage repository into a
worldwide application platform. Despite all
the benefits of the Web, web applications are
suffering because they are developed using
the same technologies as the static
documents on the Web. Additionally, new
usage contexts have brought with them new
requirements for web applications, which
are no longer used only via Graphical User
Interfaces. Recently, several parties have
developed specialized technologies for web
application development. The goal of this
thesis is to analyze those novel web
technologies and propose improvements to
the technologies and architecture where
applicable. The proposed improvements
relate to multimodal interaction, server
push, and remote UI updates especially on
the developers’ point-of-view. This thesis
also discusses software that supports the
improvements and XML-based web
technologies.

ISBN: 978-952-60-4011-0 (pdf)
ISBN: 978-952-60-4010-3
ISSN-L: 1799-4934

ISSN: 1799-4942 (pdf)

ISSN: 1799-4934

Aalto University

School of Science

Department of Media Technology
aalto.fi

O
©
e}
o
N
o
o
~
o
e
o
w

DOCTORAL
DISSERTATIONS

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Sheet orientation: tall
 Scale by 70.70 %
 Align: centre

 0.0000
 10.0001
 20.0001
 0
 Corners
 0.2999
 ToFit
 1
 1
 0.7070
 0
 0
 1
 0.0000
 0

 D:20110119132939
 708.6614
 B5
 Blank
 498.8976

 Tall
 876
 276
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend top edge by 17.01 points
 Shift: none
 Normalise (advanced option): 'original'

 80

 D:20101201133414
 1190.5512
 a3
 Blank
 841.8898

 Tall
 1
 0
 No
 1114
 246
 None
 Up
 8.5039
 0.0000

 Both
 89
 AllDoc
 91

 CurrentAVDoc

 Bigger
 17.0079
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 33
 84
 83
 84

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Sheet orientation: tall
 Scale by 70.70 %
 Align: centre

 0.0000
 10.0001
 20.0001
 0
 Corners
 0.2999
 ToFit
 1
 1
 0.7070
 0
 0
 1
 0.0000
 0

 D:20110119133048
 708.6614
 B5
 Blank
 498.8976

 Tall
 876
 276
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Sheet orientation: tall
 Scale by 70.70 %
 Align: centre

 0.0000
 10.0001
 20.0001
 0
 Corners
 0.2999
 ToFit
 1
 1
 0.7070
 0
 0
 1
 0.0000
 0

 D:20110119133143
 708.6614
 B5
 Blank
 498.8976

 Tall
 876
 276
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 4
 1105
 313

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 4
 1105
 313

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

