
TKK Dissertations in Information and Computer Science

Espoo 2010 TKK-ICS-D22

DISTRIBUTED OPTIMIZATION ALGORITHMS FOR MULTIHOP

WIRELESS NETWORKS

André Schumacher

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80703876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TKK Dissertations in Information and Computer Science

Espoo 2010 TKK-ICS-D22

DISTRIBUTED OPTIMIZATION ALGORITHMS FOR MULTIHOP

WIRELESS NETWORKS

André Schumacher

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of
the Faculty of Information and Natural Sciences for public examination and debate in Auditorium M1
at the Aalto University School of Science and Technology (Espoo, Finland) on the 17th of December,
2010, at 12 noon.

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Aalto-yliopiston teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

PO Box 15400

FI-00076 AALTO

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 470 01

Fax +358 9 470 23369

E-mail: series@ics.tkk.fi

©c André Schumacher

ISBN 978-952-60-3480-5 (Print)

ISBN 978-952-60-3481-2 (Online)

ISSN 1797-5050 (Print)

ISSN 1797-5069 (Online)

URL: http://lib.tkk.fi/Diss/2010/isbn9789526034812/

Multiprint

Espoo 2010

ABSTRACT:
Recent technological advances in low-cost computing and communica-

tion hardware design have led to the feasibility of large-scale deployments of
wireless ad hoc and sensor networks. Due to their wireless and decentralized
nature, multihop wireless networks are attractive for a variety of applications.
However, these properties also pose significant challenges to their develop-
ers and therefore require new types of algorithms. In cases where traditional
wired networks usually rely on some kind of centralized entity, in multihop
wireless networks nodes have to cooperate in a distributed and self-organizing
manner. Additional side constraints, such as energy consumption, have to be
taken into account as well.

This thesis addresses practical problems from the domain of multihop
wireless networks and investigates the application of mathematically justi-
fied distributed algorithms for solving them. Algorithms that are based on a
mathematical model of an underlying optimization problem support a clear
understanding of the assumptions and restrictions that are necessary in order
to apply the algorithm to the problem at hand. Yet, the algorithms proposed
in this thesis are simple enough to be formulated as a set of rules for each
node to cooperate with other nodes in the network in computing optimal or
approximate solutions. Nodes communicate with their neighbors by send-
ing messages via wireless transmissions. Neither the size nor the number of
messages grows rapidly with the size of the network.

The thesis represents a step towards a unified understanding of the appli-
cation of distributed optimization algorithms to problems from the domain
of multihop wireless networks. The problems considered serve as examples
for related problems and demonstrate the design methodology of obtaining
distributed algorithms from mathematical optimization methods.

KEYWORDS: ad hoc network, approximation algorithm, distributed algo-
rithm, lifetime maximization, network optimization, network utility max-
imization, optimization algorithm, primal-dual algorithm, routing, sensor
network, sleep scheduling, wireless communication

CONTENTS

1 Introduction 1

2 Multihop wireless networks 4
2.1 Graph models . 5
2.2 Ad hoc networks . 9

2.2.1 Medium access control 10
2.2.2 Routing algorithms 12

2.3 Wireless sensor networks . 14
2.3.1 Topology control . 15
2.3.2 Lifetime maximization 16
2.3.3 Sleep scheduling . 17

2.4 Network simulators . 18

3 Linear and convex programming 21
3.1 Approximation algorithms 21
3.2 Linear and integer linear programming 22

3.2.1 Linear programming duality 23
3.2.2 Primal-dual algorithms 24
3.2.3 Network optimization based on LP relaxation 31

3.3 Convex programming . 34
3.3.1 Lagrangian duality 36
3.3.2 Algorithms . 39

4 Distributed algorithms 41
4.1 Model and assumptions . 41
4.2 Algorithms . 45

4.2.1 Spanning trees . 45
4.2.2 Shortest paths . 47
4.2.3 Independent sets . 51
4.2.4 Dominating sets . 53
4.2.5 Network synchronizers 55

5 Load balancing via multipath routing 57
5.1 Introduction . 57
5.2 Load balancing by congestion minimization 58

5.2.1 The BMSR algorithm 58
5.2.2 Discussion . 60

5.3 Simulation and performance evaluation 62
5.3.1 Overview of experiments 62
5.3.2 Two-pair cross setup 63
5.3.3 Multiple source-destination pairs 69

6 Network utility maximization with path constraints 73
6.1 Introduction . 73
6.2 Distributed algorithm . 77

6.2.1 Fixed selection of paths 78

CONTENTS v

6.2.2 Adaptive path selection 81
6.2.3 Distributed implementation 84

6.3 Centralized algorithm . 86
6.4 Numerical experiments . 87

7 Transmission power assignment in sensor networks 91
7.1 Introduction . 91
7.2 Maximum lifetime spanner algorithm 95

7.2.1 Minmax spanner computation 95
7.2.2 Improvement for Euclidean space 99

7.3 Binary search for minmax power spanners 100
7.4 Algorithm initialization and termination 104

7.4.1 Setup stage . 105
7.4.2 Notification stage . 107
7.4.3 Distributed algorithm for RNG computation 108

7.5 Experimental evaluation . 108

8 Sleep-scheduling in sensor networks 115
8.1 Introduction . 115
8.2 Sleep scheduling algorithm 116
8.3 Minimum weight dominating set approximation 120

8.3.1 Problem formulation 121
8.3.2 Distributed voting scheme 122
8.3.3 Implementation . 125

8.4 Experimental evaluation . 130

9 Conclusions 133

Bibliography 135

Index 149

vi CONTENTS

LIST OF FIGURES

2.1 Data gathering scenario . 5
2.2 Hidden and exposed terminal problem 10
2.3 Effect of path loss on energy-efficient routing 16
2.4 Difference between fractional and integral domatic partitions 18
3.1 A pair of a primal and dual linear programs. 24
3.2 Space of primal and dual solutions for covering/packing LPs . 24
4.1 Possible execution of a convergecast operation 50
5.1 Setup for NS2 simulations 63
5.2 Average throughput of source-destination pairs for BMSR

and DSR . 64
5.3 Distribution of packet load, collisions and IFQ overflows in

the network for DSR and BMSR 66
5.4 Situation in which non-shortest routes lead to interference . . 67
5.5 Throughput results for DSR, BMSR and random routing . . 67
5.6 Throughput and delay versus packet size for DSR and BMSR 68
5.7 Average throughput for BMSR and DSR for random com-

pared to grid placement . 69
5.8 Simulation setups for multiple source-destination pairs: dense,

sparse, twisted . 70
5.9 Average throughput for dense placement: DSR, BMSR and

shortest path routing . 71
5.10 Average throughput for sparse placement: DSR, BMSR and

shortest path routing . 72
5.11 Average throughput for twisted placement: DSR, BMSR

and shortest path routing . 72
6.1 Transformations between problems: NUM, KNUM, etc. . . 76
6.2 High-level outline of the proposed dual-decomposition method 77
6.3 Problem instance with 22 nodes and 4 source-destination pairs 88
6.4 Evolution of path rates for each source-destination pair 89
6.5 Histogram for the value Kc − Km for a set of 21 random

graphs with 22 nodes. 90
7.1 Sample execution of Algorithm MLS 98
7.2 Single iteration of BSPAN 103
7.3 Minmax spanners of a graph with 100 nodes computed by

the various algorithms . 112
7.4 Number of control messages for DMMT, MLS and BSPAN . 113
7.5 Number of messages required by BSPAN versus network size . 113
7.6 Execution time for DMMT, MLS and BSPAN 114
8.1 Example of continuous-time greedy algorithm for MWDS . . 122
8.2 Example of voting procedure 124
8.3 Performance of combined algorithm GKSCHED-ASYNMWDS

versus node density . 131
8.4 Number of messages and time required per iteration for algo-

rithm GKSCHED-ASYNMWDS versus node density 132

LIST OF FIGURES vii

LIST OF ALGORITHMS

PDSC Primal-dual algorithm for weighted set cover 27
GKMMF Garg-Könemann multicommodity flow algorithm . . 29
YMMC Young’s algorithm for minmax congestion 31
BBKMMF Branch-and-Bound for path-constrained flow 34
SHOUT SHOUT algorithm for spanning trees 46
BF Distributed asynchronous Bellman-Ford algorithm . 48
MIS Distributed maximal independent set algorithm . . . 52
SYNMWDS Distributed synchronous MWDS algorithm 54
BMSR Balanced multipath source routing algorithm 59
CENDD Centralized dual-decomposition for KNUM 82
DISTDD Distributed dual-decomposition for KNUM 85
MLS Maximum lifetime spanner algorithm 97
BSPAN Binary search for minmax spanner algorithm 101
BEACSET Beaconing algorithm for network setup 106
GKSCHED Distributed GK algorithm for sleep scheduling . . . 118
ASYNMWDS Distributed asynchronous MWDS algorithm 126

viii LIST OF ALGORITHMS

LIST OF SYMBOLS

|| · ||2 Euclidean norm

δv degree of v, i.e., the number of neighboring nodes of v

∆ maximum degree, i.e., ∆ = maxv∈V δv

∆+ maximum extended degree ∆+ = ∆ + 1

δ minimum degree, i.e., δ = minv∈V δv

δ+ minimum extended degree δ+ = δ + 1

D dominating set

E set of edges

φ approximation factor

G graph, where G = (V,E)

∇f gradient of function f

Hn n-th harmonic number, i.e., Hn =
∑n

k=1 1/k

K limit on number of non-zero flow paths in a solution to a multi-
commodity flow problem

L Lagrangian function

N(v) set of neighbors of v in G

N+(v) extended neighborhood N(v) ∪ {v} of v

Nk(v) k-hop neighborhood of v, i.e., set of nodes at a hop distance of
exactly k from v

N+
k (v) k-hop extended neighborhood of v, i.e., N+

k (v) = N+
k−1(v) ∪

Nk(v) for k ≥ 1, where N+
0 (v) = {v}.

NT (v) set of tree neighbors of v, where NT (v) ⊆ N(v)

Nin(v) set of incoming neighbors of v

Nout(v) set of outgoing neighbors of v

p path

Pn set of all paths between a source-destination pair (sn, tn)

P set of all paths for a collection of source-destination pairs, i.e.,
P = ∪nPn

V set of vertices (or nodes)

w(S) weight of set S, where w(S) =
∑

e∈S w(s)

LIST OF SYMBOLS ix

LIST OF ACRONYMS

AODV Ad Hoc On Demand Distance Vector Routing Protocol

BF Bellman-Ford Algorithm

BIG Bounded Independence Graph

BMSR Balanced Multipath Source Routing Algorithm

BREP Balanced Route Reply

BREQ Balanced Route Request

BSpan Binary Search for Minmax Power Spanner Algorithm

CBR Constant Bit Rate

CG Communication Graph

CTS Clear to Send

DMMT Distributed Min-Max Tree Algorithm

DSR Dynamic Source Routing Protocol

GKMMF Garg-Könemann Maximum Multicommodity Flow Algorithm

IFQ Interface Queue

ILP Integer Linear Program

IP Internet Protocol

KKT Karush-Kuhn-Tucker Conditions

KMMF K-path Constrained Maximum Multicommodity Flow Problem

KNUM K-path Constrained Network Utility Maximization Problem

LP Linear Program

MAC Medium Access Control

MANET Mobile Ad Hoc Network

MCF Maximum Concurrent Flow

MLS Maximum Lifetime Spanner Algorithm

MMC Minimum Maximum Congestion Problem

MMF Maximum Multicommodity Flow Problem

MSS Maximum Length Sleep Schedule Problem

MST Minimum Spanning Tree

MWDS Minimum Weight Dominating Set

ns2 network simulator

NUM Network Utility Maximization Problem

x LIST OF ACRONYMS

PDSC Primal-Dual Set Cover Algorithm

PTAS Polynomial-Time Approximation Scheme

RNG Relative Neighborhood Graph

RREP Route Reply

RREQ Route Request

RSSI Received Signal Strength Indication

RTS Request to Send

SINR Signal-to-Interference-and-Noise Ratio

SPR Shortest Path Routing

TCP Transmission Control Protocol

UDG Unit Disk Graph

WSN Wireless Sensor Network

YMMC Young Minimum Maximum Congestion Algorithm

LIST OF ACRONYMS xi

PREFACE

While carrying out research that resulted in this thesis, the author has been
supported by the Academy of Finland under grants #209300 and #128823.
The author held a graduate student position funded by the Department of
Computer Science and Engineering of the former Helsinki University of
Technology (TKK) and was later supported by the Helsinki Graduate School
in Computer Science and Engineering (Hecse). The author is grateful for
having received funding that allowed him to pursue his studies full time. The
personal grant awarded by the Nokia Foundation is gratefully acknowledged.
The author is also thankful for having received a thesis completion grant by
the Faculty of Information and Natural Sciences.

I am deeply grateful to my supervisor Professor Pekka Orponen for the
guidance, support and encouragement he provided me during the past five
years. Despite a busy schedule, he somehow managed to find time for feed-
back and discussion, sometimes long after office hours. I am thankful to
Harri Haanpää, who, besides being my co-author, colleague and office neigh-
bor for several years, was always there for discussions and helped me navigate
bureaucracy and the occasional LATEX nightmares. I also thank my other co-
authors, Shreyas Prasad, Satu Elisa Schaeffer and Thorn Thaler. It was a
pleasure to work with you.

This thesis would not have been possible without the enjoyable atmo-
sphere and excellent working conditions at the Department of Information
and Computer Science. I would like to thank all my colleagues, both new
and old, for their support and for keeping the department running in exciting
times of change. In particular, I thank Emilia Oikarinen for letting me use
her picture of the computer science building on the cover page. I am also
grateful to Yoan Miche for helping me with the creation of the same page
and also providing his as a template.

I am indebted to my friends and family, who supported and encouraged
me during the last few years. Particularly, I thank the Finnish language
course lunch group for entertaining discussions over a variety of topics, rang-
ing from circuit design, over automation technology and architecture to bio-
chemistry and life of a graduate student. I am most grateful to my parents
for their support and also to my father for proofreading an early version of
the manuscript. For her unconditional support and patience with this thesis
project I thank Satu Maarit.

Further, I would like to thank the two pre-examiners of this thesis, Elad
Schiller (Chalmers University of Technology and University of Gothenburg)
and Patrik Floréen (University of Helsinki), for providing valuable comments
that helped to improve the manuscript. I am also grateful to Patrik Floréen
for teaching a seminar course on algorithms for ad hoc networking in 2003,
which stirred my interest in the topic. Finally, I would like to thank Professor
Thomas Erlebach (University of Leicester) for the honor of acting as oppo-
nent.

André Schumacher
Helsinki, November 2010

xii PREFACE

1 INTRODUCTION

In recent years, we have witnessed the emergence of large-scale distributed
computing systems. Without a doubt, the best example is the Internet, whose
success would have been hard to predict just about two decades ago. These
systems are inherently decentralized, non-hierarchical, scalable and resilient
to errors. Their properties can only be partly explained by the ingenuity
of the engineers who designed the protocols that are providing the basis of
today’s computing and communication infrastructure. Since also the early
engineers could not possibly have foreseen such a rapid growth, the ques-
tion of what makes some protocols perform and scale so well remains to be
answered.

Recently, it was discovered that some protocols can be seen as algorithms
that implicitly solve an optimization problem that characterizes optimal states
of the distributed system. The best example certainly is the Transmission
Control Protocol (TCP), which is the workhorse of the Internet. This series
of work was initiated by the article of Kelly et al. [74], who modeled conges-
tion control algorithms, such as methods that are part of the different variants
of TCP, as algorithms that distributively solve a pair of primal and dual prob-
lems. Later work by Low [89] studied particularly congestion control in the
Internet and led to insights into the operation of the different TCP variants,
which are still in use today.

The observation that it is possible to derive optimization problems by
reverse-engineering network protocols leads to a new paradigm of network-
protocol design. Rather than considering network optimization based on top
of existing protocols, several researchers propose to first look for the proper
problem formulation and then design network topology and protocols based
on an algorithmic solution. He et al. [59] distinguish these “optimizable
networks” from conventional “network optimization” approaches. Besides
providing an understanding of the operation of the resulting protocol, in
some cases this approach also naturally gives rise to a decomposition of the
problem, which may then be solved on different layers of the protocol stack.
Chiang et al. [29] introduce a whole theory of network decomposition and
layering approaches and extend the methodology to other problem settings.

When formulating a distributed algorithm to solve a certain network op-
timization problem, one naturally has to make assumptions on the environ-
ment the algorithm will eventually be executed in. Typical assumptions in-
clude synchronous execution, i.e., the presence of a global clock, absence of
failures, or a certain type of network topology. These premises then impact
the formulation of the algorithm and the eventual complexity of its imple-
mentation, since an algorithm based on a weaker execution model requires
a more intricate design, e.g., to handle errors correctly. Assuming a very
strong execution model, on the other hand, may render the implementation
of the algorithm difficult or even impossible.

Besides assumptions on the execution environment, sometimes one needs
to restrict the problem formulation itself. Typical restrictions include certain
ranges for problem parameters or the assumption of nodes being located in
Euclidean space. If some of these assumptions are not satisfied, the result of

CHAPTER 1. INTRODUCTION 1

the algorithm, in terms of feasibility and optimality of a solution, should de-
grade gracefully. A different type of assumption only simplifies presentation
and may be removed using relatively minor modifications of the algorithm if
required.

When surveying the distributed algorithms and network optimization lit-
erature, one cannot avoid but notice the significant gap between the the-
oretician and practitioner sides of the research community. Obviously, it
can hardly be the goal of this thesis to bridge this gap. However, it is our
aim to study mathematical properties from network-optimization theory and
apply these to practical problems arising in wireless networks to obtain sim-
ple algorithms that can be implemented based on a realistic network infras-
tructure. For this purpose, we approach various problems, such as routing,
transmission power assignment and node activity scheduling. For most algo-
rithms proposed in this thesis we also provide network simulations that offer
an insight into the operation of an algorithm. Rather than considering the
algorithms in isolation, these should be seen as a step towards a mathemati-
cal toolbox consisting of techniques for approaching problems by distributed
network optimization. In this context, one interesting observation, which we
have made on several occasions, is the observation that dual problems some-
times lead to algorithms that can be implemented efficiently in a distributed
setting. We believe that methods for exploiting this locality by duality princi-
ple are promising candidates for future generation network protocols.

The following chapters can be broadly separated into two parts. Chap-
ters 2 to 4 introduce preliminaries, formalize the models and techniques and
review relevant literature. The second part of the thesis, Chapters 5 to 8, dis-
cusses own work and can be subdivided into two parts of its own. Chapters 5
and 6 address problems that are mostly relevant to ad hoc networks, while the
topics of Chapters 7 and 8 are more relevant to sensor networks.

More precisely, in Chapter 2 we discuss graph models for ad hoc and sen-
sor networks and highlight algorithmic challenges in their context. Chapter 3
gives a brief overview of relevant topics from linear programming and con-
vex optimization literature. We review the model of distributed computation
used in the thesis and introduce further terms and concepts in Chapter 4.
The first chapter of the second part, Chapter 5, proposes a multipath routing
algorithm for ad hoc networks that is based on a linear programming for-
mulation of a network flow problem to minimize congestion. In Chapter 6
we consider a related problem, which we call the fair multicommodity flow
problem, since it takes into account fairness between the different source-
destination pairs. We then proceed to problems that address the energy-
efficient operation of wireless sensor networks. In Chapter 7 we propose two
algorithms for assigning transmission power levels to network nodes, which
guarantee the connectedness of the resulting topology and are low enough
to achieve maximum network lifetime. We approach the problem of lifetime
maximization from a different point of view in Chapter 8, where we propose
a distributed algorithm for approximating optimal sleep schedules.

Chapter 5 is based on publications [112, 125], which were co-authored
with Harri Haanpää, Pekka Orponen, Shreyas Prasad and Satu Elisa Scha-
effer. Chapter 6 describes work published in [123], which is part of joint
work with Harri Haanpää. The following Chapter 7 is based on article [54],

2 CHAPTER 1. INTRODUCTION

which unifies work published in conference proceedings [55, 126] that were
co-authored with Harri Haanpää, Pekka Orponen and Thorn Thaler. Fi-
nally, Chapter 8 discusses joint work with Harri Haanpää that was published
in [124]. The list of main contributions of the co-authors to material in-
cluded in this thesis is the following:

• The second part of the simulations of the BMSR algorithm in Chap-
ter 5, as presented in [112], is due to Shreyas Prasad, who used the
implementation of the algorithm proposed in [125].

• The idea of the pruning condition in the MLS algorithm of Chapter 7
is due to Harri Haanpää; the original idea of using a proximity graph to
lower MLS message complexity is due to Pekka Orponen. The MLS
and BSPAN algorithms were implemented in NS2 by Thorn Thaler;
the simulations presented in [54, 55, 126] were conducted in collabo-
ration between Thorn Thaler and the author.

The contributions of the author lie in the design, analysis and simula-
tion of distributed algorithms for multihop wireless networks presented in
this thesis. The work was done while the author was a member of the Com-
binatorial Algorithms and Complexity group of Professor Pekka Orponen at
the Helsinki University of Technology, TKK, which later merged with two
universities to become Aalto University.

The simulations that were used to evaluate the algorithms proposed in this
thesis were performed with the network simulator NS2 [93]. Additionally, sev-
eral experiments were implemented using Matlab and the implementation
of the branch-and-bound algorithm of Chapter 6 uses the Mosek optimiza-
tion tools [97]. The figures and plots in this thesis were generated using
gnuplot and xfig and the document itself was written in LATEX 2ε.

CHAPTER 1. INTRODUCTION 3

2 MULTIHOP WIRELESS NETWORKS

A multihop wireless network consists of a collection of nodes that are able to
communicate via wireless communication without any centralized or fixed
infrastructure. The term multihop refers to the requirement that in addition
to originating and receiving messages, nodes also act as routers and forward
messages for other nodes. Hence, the operation of the network requires co-
operation among them. Since there is no central authority, this cooperation
needs to be coordinated in a distributed and self-organizing manner. Fur-
thermore, nodes often only have low computing power. Many applications
require them to operate without relying on an inexhaustible energy source,
i.e., nodes are battery-powered. Therefore, energy consumption is a critical
constraint on the lifetime of the network. Due to their wireless and decentral-
ized nature, these types of networks are attractive for a variety of applications
(see [50, 63] and below for an overview). However, their properties also pose
significant challenges to developers.

In this thesis, we broadly distinguish between two classes of multihop wire-
less networks, ad hoc networks and sensor networks. Although both types of
networks have important similarities, some of their design criteria may dif-
fer in relative importance. Ad hoc network nodes, for example, may pos-
sess rechargeable batteries while sensor network nodes are typically deployed
once and operate until their batteries become exhausted. Ad hoc network
nodes also may be mobile, whereas sensor networks are normally considered
stationary.

Ad hoc networks: Applications Typical areas of applications for ad hoc
networks include collaborative computing, disaster-relief scenarios, commu-
nication between vehicles and military applications [21, 81]. Two special
classes should be mentioned. In the case that nodes are mobile and node mo-
bility is an integral aspect of the network, the term MANET, which stands for
mobile ad hoc network, is normally used [30]. Another special type of non-
mobile ad hoc networks, mesh networks, have recently moved into the focus
of attention [22]. Commercial applications that provide wireless Internet ac-
cess based on mesh networks are already available. Other mesh networks are
formed by neighborhood communities for the same purpose. For examples,
see the survey by Bruno et al. [22].

Ad hoc networks: Algorithmic challenges Two main challenges in ad hoc
networks are the setup and maintenance of routing [103]. Energy-efficient
operation is an important design goal [39]. However, given that ad hoc net-
work nodes may consist of devices such as laptops, handheld devices, or smart
phones, energy efficiency may be secondary to other goals. The concept of
fairness among users of the network is crucial, since routes consist of multi-
ple hops and users compete for network resources. In the presence of node
mobility, tasks such as route maintenance become especially challenging.

Sensor networks: Applications Sensor networks are interesting for a large
number of possible applications, such as habitat monitoring, vehicle track-

4 CHAPTER 2. MULTIHOP WIRELESS NETWORKS

Figure 2.1: Sensor network operating in a data gathering scenario; the sink
node is labeled by a square; the direction of messages passed towards the sink
is indicated by arrows.

ing, inventory control, parcel tracking, industrial plant monitoring and mili-
tary applications [2,36,60]. In many applications sensor networks operate in
a data-gathering scenario, where nodes use multihop routing to send data to
the sink via the edges of a spanning tree that is rooted at the sink, as shown
in Figure 2.1. The data generated by the network can be the result of certain
events sensed by the nodes or consist of periodic messages. The sink also may
initiate active queries that propagate in the network and may be replied to by
a subset of the nodes.

Sensor networks: Algorithmic challenges Sensor networks give rise to in-
teresting algorithmic challenges, such as the setup of routing information,
transmission power assignment, sleep scheduling, data aggregation and query
processing, just to name a few [2, 28]. Since nodes are battery-powered and
the replenishment of batteries is usually impossible, energy-efficient opera-
tion takes an important position in the list of objectives to be optimized.

2.1 GRAPH MODELS

Since wireless networks are typically modeled using graph models, we begin
by introducing notation that will be used later on. Most of the following
definitions and notation can be found in any standard textbook on graph
theory, e.g., in the textbook by Diestel [37].

We follow conventional notation and denote an undirected graph as a
pair G = (V,E), where V is a set of vertices (or nodes) and E ⊆ {{u, v} |
u, v ∈ V, u 6= v} is a set of edges. We say that two vertices u, v ∈ V are
adjacent (or neighbors) if {u, v} ∈ E. An edge e ∈ E is incident to a vertex
v if e = {u, v} ∈ E for some u ∈ V . The degree of v is the number of

CHAPTER 2. MULTIHOP WIRELESS NETWORKS 5

neighbors it has in the graph and is also denoted by δv. Since most graphs
considered in this thesis are undirected, we use the convention of referring
to an undirected graph when nothing else is mentioned.

A path p from a start-vertex u to an end-vertex v is a sequence of edges
p = ({u,w1}, {w1, w2}, . . . , {wk, v}), where the wi are mutually distinct.1

The path is a cycle if u = v. We write e ∈ p for an edge e ∈ E and a path p
to denote that e is on the path p. The length of a path is the number of edges
it contains. If the edges of a graph are weighted, i.e., there exists a function
w : E 7→ R, the length of a path is defined as the sum of the weights of its
edges. We callG connected if there exists a path between any pair of vertices
in V . The length of a shortest path between two vertices in a connected
graph is the distance between them. The diameter of a connected graph is
the maximum distance between any pair of vertices. A graph that consists of
a single path from some start to some end-vertex is also called a chain graph.

Denote by N(v) the neighbors of v in G and define N+(v) to be the ex-
tended neighborhood N(v)∪{v} of v. Note that |N(v)| = δv and |N+(v)| =
δv +1. Define δ = minv∈V δv and δ+ = δ+1 to be the minimum degree and
minimum extended degree, respectively. Similarly, define ∆ and ∆+ to be
size of the largest neighborhoods. We define the k-hop neighborhood Nk(v)
of v as the set of nodes which are at a hop-distance of exactly k from v, where
N0(v) = {v}. Note that N1(v) = N(v). Similarly, we inductively define the
k-hop extended neighborhood of v, i.e., all nodes at a hop-distance of at most
k from v, by N+

k (v) = N+
k−1(v) ∪Nk(v) for k ≥ 1, where N+

0 (v) = {v}.
Any graph G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E is called a subgraph

of G = (V,E). A graph is a tree if it is connected and does not contain any
cycles. A spanning tree of a connected graph G is a subgraph T = (V,E ′)
that is a tree. If the graph G is edge-weighted by a function wE : E 7→ R>0,
then a minimum spanning tree (MST) of G is a spanning tree of minimum
weight, where the weight is taken as the sum of the weights of the edges in
the tree. The subgraph induced by a subset V ′ ⊆ V of the vertices of G is
the graph H = (V ′, E ′), where E ′ = {{v, u} ∈ E | v, u ∈ V ′}.

A tree is called rooted if it contains a designated node, called the root.
In a rooted tree all edges can be oriented towards the root. We call the next
node u on a path from node v to the root the parent (or father) of v and call v
a child of u. When we are given a tree T that is a subgraph of a graph G, we
may denote the set of tree neighbors of v by NT (v), where NT (v) ⊆ N(v) is
the set of neighbors of v that are also its neighbors in the tree, which includes
its parent if the tree is rooted. All nodes with degree one in a tree T (except
the root if |V | > 1) are called leaf nodes and the other nodes are called
internal. The length of the longest path from the root to any leaf is the height
of the tree, regarding edges as unweighted.

We call a set D ⊆ V a dominating set of G = (V,E), if every vertex in V
that is not inD has a neighbor inD. The setD is a minimum dominating set ,
if among all dominating sets ofG it has the minimum size |D|. If the graphG
is node-weighted, i.e., if there is a function wV : V 7→ R>0, then a minimum
weight dominating set (MWDS) D is a dominating set of minimum total
weight, summed over all nodes in D. Any dominating set D that induces a

1This type of path is normally referred to as a simple path.

6 CHAPTER 2. MULTIHOP WIRELESS NETWORKS

connected subgraph of G is called a connected dominating set.
A set I ⊆ V is an independent set of G = (V,E), if there is no edge

{u, v} ∈ E between any pair of vertices u, v ∈ I . An independent set is max-
imal if adding any vertex from V \I would break the independence property.
It follows that a maximal independent set is also always a dominating set. A
maximum independent set is an independent set with maximum cardinality.
The notion of a maximum weight independent set is defined analogously to
a minimum weight dominating set.

We define a minmax spanner of an edge-weighted graph G = (V,E) to
be a subgraph G′ = (V,E ′) that is connected and has minimum maximum
edge weight among all such graphs. Note that a minmax spanner does not
need to be a tree. More generally, a subgraph G′ = (V,E ′) of G is an α-
spanner if G′ is connected and wE(e) ≤ α for each edge e ∈ E ′. Hence, a
minmax spanner is an α-spanner with the property that no α′-spanners exist
for α′ < α. One can see easily that an MST is always a minmax spanner.

A graphG is called directed if E ⊆ V ×V , i.e., E consists of ordered pairs
of vertices so that an edge (u, v) has the direction from u to v. For a directed
graph Nin(v) denotes the set of incoming neighbors of v, i.e., Nin(v) = {u ∈
V | (u, v) ∈ E} and correspondingly the set of outgoing neighbors Nout(v).
We say that a directed graph is strongly connected if there exists a (directed)
path from each node to any other node. A directed graph is called symmetric
if (u, v) ∈ E implies (v, u) ∈ E for all u, v ∈ V .

Communication graph

The distributed algorithms discussed in this thesis assume an underlying
communication structure, which we call communication graph. More pre-
cisely, if G = (V,E) is a communication graph for a given network, then V
corresponds to the set of network nodes and E represents the links between
them. A communication graph is usually directed, but we may assume that
its edges are symmetric, which means that network links are bidirectional. In
this case we may regard the communication graph as being undirected, so
that Nin(v) = Nout(v) = N(v) for all nodes v.

In general, a node v is able to send messages to its outgoing neighbors in
Nout(v) and receive messages from its incoming neighbors Nin(v). However,
sometimes a message cannot be transmitted due to the transmitter sensing
the channel busy or because the message collides with another transmission
at the receiver. Hence, the communication graph models potential com-
munication via neighboring nodes under ideal conditions. We will always
assume that the communication graph is (strongly) connected.

Sometimes we make additional assumptions about the network. The com-
munication graph, for example, may not be predetermined by the deploy-
ment, but can be induced by variables, such as transmission-power levels
assigned to the nodes. As a special case one can then consider the com-
munication graph that results from all nodes transmitting at their maximum
available transmission power.

Some papers assume a communication graph that is time-varying (see for
example [38] and the references therein). A time-varying graph may be used
to model node mobility and permanent link or node failures. In this thesis,

CHAPTER 2. MULTIHOP WIRELESS NETWORKS 7

however, we only consider transient link errors, i.e., transmission errors, and
no node failures. We further assume that if node mobility is present, then
it happens at a slow time-scale so that algorithms can be rerun periodically
to handle changes in topology. The communication graphs considered here
are therefore static.

Disk graphs

Disk graphs have been used extensively as models for wireless networks. See,
for example, [83] for a review on algorithmic graph issues in wireless net-
works. Disk graphs are popular candidates for communication graphs due
to their simplicity. A disk graph has several geometric representations, also
called realizations, besides its representation as a graph.

In the geometric containment model of a disk graph, the graph is given
as a set of n circles in the Euclidean plane. Each circle represents a vertex
at its center. A vertex u is a neighbor of vertex v if the disk of v contains the
center of u, where one assumes that the circle area contains its boundary.
Thus, given this realization, one can construct a graph that contains a vertex
for each disk and an edge between vertices that are neighbors.

The proximity model of a disk graph is given by a set of n points in the
Euclidean plane and a radius for each of the points. A vertex u is a neighbor
of vertex v if u is at distance of at most rv from v, where rv is the radius of v.
In this context, rv is called the transmission radius of v.

A disk graph where each circle has the same size (or radius) is called unit
disk graph (UDG), since one can scale the radius appropriately without
changing the graph structure. Although a number of interesting optimiza-
tion problems remain NP-hard for UDG, there exist efficient approximation
algorithms for a variety of problems. See, for example, Clark et al. [32] for
results on the computational complexity for various problems and Marathe
et al. [91] for approximation algorithms for UDG. It is important to note that
the problem of deciding whether a given graph G = (V,E) has a realization
as a unit disk graph is NP-hard [20].

Other graph models for wireless networks

It is generally accepted that unit disk graphs model an idealized situation that
does not represent realistic conditions in wireless networks accurately [79].
In reality, for instance, there is no sharp distance threshold for the existence
of links between nodes and therefore the area limited by the transmission
range does not have the shape of a circle. Also, disk graphs do not allow the
inclusion of obstacles and other effects that frequently occur in indoor envi-
ronments. Due to the limitations of the UDG model, several other models
for wireless networks have been proposed. For an overview see [80, 122].

The bounded independence graph (BIG) [122] model is an interesting
generalization of a UDG. Let Ik(v) denote an independent set in the sub-
graph induced by N+

k (v). Then a graph G = (V,E) satisfies the bounded
independence condition if and only if |Ik(v)| ≤ f(k) for all v, where f(k) is
a polynomial function in k. A UDG is a BIG, since one can show that for a
UDG this condition is satisfied for f(k) := (2k + 1)2 [3].

8 CHAPTER 2. MULTIHOP WIRELESS NETWORKS

Relative neighborhood graphs

Relative neighborhood graphs were originally introduced by Toussaint [133]
for nodes that represent points in the plane. Their definition, however, can
easily be extended to non-geometric contexts. Given an edge-weighted graph
G = (V,E) with weight function wE : E 7→ R>0, we informally define a
relative neighborhood graph (RNG) of G as follows.

Definition 1. Given a graphG = (V,E) and functionwE , the relative neigh-
borhood graph of G is the graph with vertex set V and edge set

E ′ = {e | e ∈ E and there is no path p in G between the endpoints of e, s.t.
p = (e1, e2) and wE(e1) < wE(e), wE(e2) < wE(e)}.

Hence, the RNG is obtained from G by removing all edges whose end-
points can be connected by a path consisting of two edges with smaller
weight. Such a generalization of the concept of RNG has been already suc-
cessfully applied to other problems, such as searching and broadcasting in
peer-to-peer networks [40].

Claim 1. For any α, the RNG of G contains an α-spanner if G does.

Proof. Consider the edges in E \E ′ that were removed during the construc-
tion of the RNG and order these in decreasing order of cost as e1, e2, . . . , ek.
LetE0 = E denote the edge set of the original graph, and letEi = Ei−1\{ei}
for 0 < i ≤ k. Assume that G admits an α-spanner. For 0 < i ≤ k it follows
that sinceEi−1 admits an α-spanner and the endpoints of ei are connected by
a path of two cheaper edges, Ei also admits an α-spanner. Hence, the RNG
(V,Ek) = (V,E ′) admits an α-spanner.

The RNG of a given graph has beneficial properties that are interesting
for certain applications in wireless networks. For related geometric graph
models see, e.g., the work by Alzoubi et al. [3].

2.2 AD HOC NETWORKS

Ad hoc networks have been the topic of intensive research for the past few
years and have their origin in the ALOHAnet and PRNET packet radio net-
works of the 1970s [81]. Despite their extensive range of application and
the progress that has been reported in various publications, ad hoc network
adoption to real-world applications has been unexpectedly slow [22, 135].
This is partly due to the complexity of the ad hoc networking paradigm, re-
quiring the development of new solutions to problems that have been already
solved efficiently for regular wired networks with a fixed infrastructure. For
ad hoc networks, however, many of these are still awaiting efficient solutions
although a variety of protocols have been proposed in the recent past.

Due to the lack of centralized control, an ad hoc network needs to inte-
grate nodes into its operation and handle changes in connectivity, for exam-
ple caused by node mobility, in a self-organizing manner. In addition to the
lack of centralized coordination and reliance on battery power, the wireless

CHAPTER 2. MULTIHOP WIRELESS NETWORKS 9

1 2 3 4

Figure 2.2: Situation in which the hidden terminal and the exposed termi-
nal problem may occur; the dotted circle around each node represents the
transmission radius.

transmission medium poses challenges to communication protocols. The
communication channel has limited bandwidth and is prone to transmission
errors caused by interference, signal attenuation and time-varying channel
conditions. Although the broadcast nature of the medium offers potential
benefits, it also gives rise to unique problems.

We now briefly discuss two classes of algorithms that have been proposed
for ad hoc networks, medium access control (MAC) and routing algorithms.
Algorithms that also have relevance for sensor networks are the topic of the
following section.

2.2.1 Medium access control

A large number of protocols have been proposed that address the unique
challenges of wireless medium access control. See the survey by Kumar et
al. [81] for an extensive overview. Besides addressing typical design goals,
such as low signaling overhead and large data throughput, these protocols
also aim to solve issues related to the broadcast nature of the channel.

Figure 2.2 depicts a situation in which two problems, which are typically
called the hidden terminal problem and the exposed terminal problem, may
occur. Four nodes are located on the line. Each node is able to commu-
nicate directly only with its closest neighbors. Hence, the figure shows the
realization of a four-node chain graph in the proximity model. Consider now
the case where nodes 1 and 3 initiate transmissions to node 2 simultaneously.
Since node 3 is not in the transmission range of node 1 and vice versa, neither
of them notices that the channel is busy, which leads to a collision at node
2. This is referred to as the hidden terminal problem. In a different situa-
tion, when node 2 transmits to 1, node 3 senses the channel busy and delays
its own transmission to node 4, which results in reduced throughput since
the two transmissions could have proceeded concurrently. This problem is
called the exposed terminal problem. Note that the effect of the hidden ter-
minal problem is network collisions, whereas the exposed terminal problem
leads to performance loss due to unrealized transmission capacity.

Protocols for wireless MAC typically take different approaches for avoid-
ing or mitigating the effect of the two problems described above. Based on
the approach, one can broadly classify MAC protocols as either contention

10 CHAPTER 2. MULTIHOP WIRELESS NETWORKS

free or contention based [81]. Contention-free protocols employ techniques
that allow for unimpeded channel access by dividing transmission time, fre-
quencies, or coding schemes among nodes. Since these protocols require
at least some kind of complex coordination, such as clock synchronization,
contention-based protocols are used frequently. Contention-based protocols
usually employ some kind of reservation of the channel and also formulate
rules for recovering after collisions have occurred.

One contention-based protocol that forms the basis for a variety of ad hoc
network MAC protocols is the method specified by the set of standards com-
monly known as IEEE 802.11. The functionality of MAC that is suitable
for implementation in infrastructure-less networks is referred to as the Dis-
tributed Coordination Function [63]. In the following, we briefly outline the
operation of this function. For details omitted here see, e.g., [63, 104].

According to the protocol specification, before transmitting a message,
nodes wait for a fixed amount of time and sense whether the channel is
busy. If the channel is free after the waiting period, a node transmits its
data packet and waits for an acknowledgment, which the receiver will trans-
mit after itself waiting for some time if the packet was received successfully.
If the sender senses the channel busy, it delays its transmission until it be-
comes free. Thereafter, the sender delays its transmission further according
to a scheme referred to as binary exponential back-off : The sender chooses a
number from an interval (0,CW) uniformly at random, where CW is a value
called the contention window. It then determines the amount of time to wait
as proportional to this number and waits until the channel has been free for
this amount of time. If the channel is still busy after the waiting period, the
sender doubles the contention window and repeats the process.2 The back-
off process may also be initiated after the transmission of a single message
in order to introduce some gaps between consecutive message transmissions.
The back-off procedure is intended to desynchronize transmissions locally
and reduce the number of message collisions.

Since successful data transmissions are immediately acknowledged by the
node receiving the data, the sender can determine when an unsuccessful
transmission occurred directly after the end of the transmission and initiate a
retransmission. Retransmissions also follow the backoff procedure described
above, up to a certain retry limit, after which the message is discarded perma-
nently. It is then up to the higher levels of the protocol stack to decide which
actions shall be taken. Assuming the channel is not excessively congested,
due to its use of acknowledgments, the MAC protocol can be considered a
method for reliable transmission of data messages from one node to another
via the wireless channel.

The operation described above refers to unicast transmissions, which are
identified by a (sender, receiver) pair of node identifiers (i.e., MAC addresses).
The protocol also allows for broadcast transmissions, which are processed by
all nodes that actually receive the transmission correctly. Since there is not a
single receiver, broadcast messages are not acknowledged and therefore have
to be considered less reliable. For this reason, they are typically transmitted
at a lower rate compared to unicast messages. However, in some cases broad-

2Time is slotted and a node is only allowed to transmit at the beginning of a slot.

CHAPTER 2. MULTIHOP WIRELESS NETWORKS 11

cast messages can be used to lower protocol overhead, since they effectively
exploit the wireless broadcast advantage [39, 148]. By this term, we refer to
the broadcast nature of wireless networks, which enables a node to reach a
potentially large number of receivers by a single transmission. For an analysis
of the effect of broadcast messages on MAC performance see [104].

As an optional extension to this protocol, nodes may reserve the channel
for a unicast transmission by sending a request-to-send (RTS) control mes-
sage prior to the data transmission to the receiving node. In the case that this
message is received correctly, the receiver replies with a clear-to-send (CTS)
message that tells the sender to start the data transmission. Both messages
contain the size of the data packet and allow other nodes to estimate the
time the channel will be busy due to this transmission. This scheme miti-
gates the hidden terminal problem, since nodes that receive either message
will postpone their own transmission during that time. However, collisions of
control messages can still occur even with RTS-CTS handshakes enabled.

One limitation of RTS-CTS handshakes is the fact that transmissions be-
tween nodes that are unable to communicate directly may still interfere. In
order to receive a signal correctly, the so-called signal-to-interference-and-
noise ratio (SINR) needs to be above a certain threshold value, which de-
pends on properties of the radio device.3 As a result, it is possible that the
combined effect of several distant nodes transmitting may prevent a node
from successfully sending a packet to its nearest neighbor. Since the resulting
interference relation becomes very involved, one popular abstraction for the
design of distributed algorithms is the assumption of a common interference
range, which is typically larger than the transmission range. An interference
model that is more realistic than the interference-range model yet simpler
than the SINR model is employed by the network simulator NS2. For this
and other interference models, see [21, 64].

2.2.2 Routing algorithms

To coordinate research and work out key problems, the Internet Engineering
Task Force (IETF) Mobile Ad-hoc Network working group [62] was founded
during the 1990’s. Its purpose was declared to standardize Internet Protocol
(IP) routing protocol functionality suitable for wireless routing applications
in static as well as dynamic topologies. From their work resulted several Re-
quests for Comments (RFCs) and Internet-Drafts that are concerned with the
specification of routing protocols and related topics. Maybe the ones that had
the greatest influence on the research community so far are the two experi-
mental RFCs specifying the Ad Hoc On Demand Distance Vector (AODV)
protocol [111] and the Dynamic Source Routing (DSR) protocol [70].

Both AODV and DSR belong to the class of reactive or on-demand pro-
tocols, which aim at a lower routing overhead by eliminating the continuous
update of routing information that is performed by traditional algorithms for
wired networks. Reactive protocols are therefore considered to be more ap-
propriate for ad hoc networks with frequent node mobility. We will now
briefly discuss the DSR protocol, since it forms the basis of routing algo-
rithms developed later in this thesis. A more exhaustive overview of routing

3This is a simplification; for details refer to [64].

12 CHAPTER 2. MULTIHOP WIRELESS NETWORKS

techniques in ad hoc networks can be found in [63].

Operation of DSR
The DSR [70] protocol is a source-routing protocol, which means that the
source includes the whole route in every packet sent and intermediate nodes
forward the packet to the next hop indicated in its header. This property
eliminates the need of actively maintaining routing information at interme-
diate nodes and also enables an easy integration of multipath routing. Nodes
keep routing information in their route cache, which can also contain infor-
mation that was overheard from neighboring nodes. Source routing comes
along with benefits, such as inherent loop freedom or the possibility for route
shortening, as source nodes have knowledge about the entire route.

The basic DSR protocol consists of two operations: route discovery and
route maintenance. If a source node wishes to send a packet to a destination
to which it does not have a route in its route cache, it initiates the route dis-
covery process by broadcasting a route-request (RREQ) message to its neigh-
bors. Upon receiving the RREQ, nodes consult their route cache and can
decide to send a route-reply (RREP) message back to the source. If they do
not know a route to the destination, they append their own address to the
list of nodes in the RREQ and forward the request further, until it eventually
reaches the destination. The destination obtains a route from the source to it-
self by consulting the list of nodes that forwarded the RREQ. In the presence
of bidirectional links, it can simply reverse this route and use it for sending a
RREP message along this route to the source.

A sequence number ensures limited forwarding of RREQ’s by intermedi-
ate nodes. In route discovery, a node only forwards a RREQ once. Since
shorter routes require fewer hops, the first RREQ to reach the destination
is likely to have taken a route that is (close to) minimal in terms of hop
count. Therefore, DSR essentially routes packets along paths with shortest
hop-distance. Although in principle multiple routes to the same destination
may be contained in the route cache, e.g., by overhearing other routes, the
nodes always pick the shortest route from the cache.

Basic route maintenance includes reliable packet transmissions from one
hop to the next based on link-layer acknowledgments. Additionally, there are
other operations initiated on-demand. If a source route breaks, the source is
notified by an intermediate node detecting the break. The source can then
choose to select an alternative route to the destination by consulting its route
cache, or initiate a new route discovery. In the case that the intermediate
node has a different route to the destination in its own cache, it can initiate
packet salvaging and forward the packet using this alternative route.

Factors affecting DSR performance
The source-routing character of DSR may increase routing overhead com-
pared to other algorithms that rely on routing information stored at interme-
diate nodes [21]. However, source routing offers the potential of interesting
extensions to DSR, as discussed later in Chapter 5. One critical parameter
of DSR in this context is the maximum source-route length.

Two factors causing packet loss in DSR are packet collisions and interface
queue (IFQ) overflows. Packet collisions occur due to the wireless nature of

CHAPTER 2. MULTIHOP WIRELESS NETWORKS 13

the transmission medium and can only be mitigated by underlying MAC
layer protocols. Interface queue overflows, however, occur due to network
congestion. The IFQ contains packets that are scheduled to be transmitted
over the network interface and has a fixed maximum length. Hou and Tipper
[61] observed that one of the main reasons for the decline in throughput for
DSR is the overflow of the IFQ of congested nodes. In Chapter 5 we show
that network throughput can be improved by choosing multiple routes for
each source-destination pair that balance load over the network.

2.3 WIRELESS SENSOR NETWORKS

Although a wireless sensor network (WSN) can be regarded as a special type
of ad hoc network, sensor networks typically distinguish themselves from ad
hoc networks by having a predominant many-to-one type of communication
pattern compared to many-to-many communication typically found in ad
hoc networks. Further, sensor networks are usually considered to be more
application-specific and more restricted in terms of available computing and
communication resources. Once deployed in the area of interest, sensor net-
work nodes have to self-organize and operate without outside control until
the breakdown of the network, typically when battery power has run out.

After the initial network deployment, the location of nodes is normally
considered fixed and the setup therefore static. The deployment itself may
be considered random, e.g., when nodes are dropped from an airplane, or
regular, when nodes are placed at predetermined locations. Also, nodes may
or may not be aware of their location.

The flow of information within a sensor network is data-centric, and it can
considered to be of low intensity, depending on the application [28]. The ex-
istence of one or several special sink nodes is assumed, which are responsible
for collecting data and form a gateway to provide access to the network. The
remaining nodes, however, are assumed to be homogeneous. Considering
message routing towards a sink, nodes closer to the sink are expected to carry
the burden of more message transmissions compared to nodes located fur-
ther from the sink. Therefore, data aggregation techniques, which combine
information contained in several messages into a single but possibly larger
message, are highly desirable.

Since potential applications of sensor networks may require operation in
a harsh environment, such as natural-disaster areas, node operation can be
prone to errors and availability of nodes and the transmission medium may
vary [2]. This effect is usually mitigated to a certain degree by the redundancy
achieved by a dense deployment of nodes. For an overview of WSN see the
survey by Akyildiz et al. [2] and for the effect of data aggregation on routing
performance see the study by Krishnamachari et al. [78]. The deployment of
a sensor network from a design problem point of view, including dimension-
ing of battery energy and node clustering for data aggregation, was addressed
by Mhatre and Rosenberg [94]. For data-aggregation methods based on dis-
tributed optimization techniques see the work by Rabbat and Nowak [114].
Further applications and technological developments are discussed in the
introduction by Culler et al. [36].

14 CHAPTER 2. MULTIHOP WIRELESS NETWORKS

Over the years, a variety of algorithms have been proposed for WSN,
among them MAC and routing algorithms similar to those for ad hoc net-
works, which have been optimized for energy-efficient operation. See, for
example, the S-MAC protocol proposed by Ye et al. [152] and the references
in [2]. We now briefly outline areas of interest different from MAC and
routing algorithms that are particularly relevant to sensor networks.

2.3.1 Topology control

The transmission power that is required to communicate over a distance of d
is typically modeled as

βdα,

where β is a constant and α is the path-loss exponent that depends on the
environment [39]. A typical choice for α satisfies 2 ≤ α ≤ 4. This simple
model only applies when the receiver is located in the line-of-sight of the
transmitter. It is a simplification, since it does not take into account certain
properties of the wireless channel, such as reflections and other effects that
occur when the signal interacts with the ground, obstacles or other parts of
the environment.

Many topology control protocols assume that nodes can vary their trans-
mission power and thereby influence which nodes are reachable when trans-
mitting a message. The property that communication links between nodes
can be actively influenced thus distinguishes wireless networks from tethered
networks. In practice, however, there is a limit for the available transmission
power. Besides having an influence on energy consumption, topology con-
trol may also facilitate spatial reuse, since transmissions that do not interfere
can be performed simultaneously. Examples for topology control algorithms
that adjust transmission powers can be found in [99, 117, 147].

Related problems that involve finding transmission-range assignments that
induce communication graphs, which satisfy a desired property, have been
studied by several researchers. The range assignment problem was intro-
duced by Kirousis et al. [76] and asks for a minimum total power assignment
that guarantees the communication graph to be strongly connected, when
the nodes are located in a Euclidean space. This problem was shown to be
NP-hard in both two and three dimensions [33, 76]. Later work has concen-
trated on approximation algorithms and various other graph properties that
may be desirable in practice. For an overview see [87, 103, 120] and the
references therein.

The term topology control is also used to refer to algorithms that do not
modify transmission power or range, but compute a subgraph of the com-
munication graph that satisfies certain properties, such as connectivity, but
also minimizes a cost function. Since the resulting graph is then used for
routing, sending messages along the edges of the graph should incur a low
energy consumption. For sufficiently large path-loss exponents the total en-
ergy consumption of multihop paths can be lower compared to single-hop
routing, as depicted in Figure 2.3. Problems that involve optimizing total en-
ergy consumption by routing have been studied extensively. Most distributed
algorithms, for example, those proposed in [118, 147], make extensive as-
sumptions on the path-loss model in order to establish optimality of a so-

CHAPTER 2. MULTIHOP WIRELESS NETWORKS 15

1

1

√
2

s

v t

Figure 2.3: Although the direct path from s to t is shorter, for path-loss expo-
nents α > 2 transmitting a message via node v consumes less energy than a
direct transmission.

lution based on local information at the nodes. For an overview of other
applications and techniques for topology control see [83, 120, 146].

2.3.2 Lifetime maximization

The topology control methods described above preserve battery capacity at
some nodes in the network. However, it is not immediately clear which trans-
mission range or power assignment is the best in terms of the operation of the
network. Ultimately, the goal of any method for energy-efficient operation of
WSN is to extend its lifetime. Unfortunately, the notion of lifetime that is
most appropriate depends on the application and may vary even during the
time of its operation.

One popular definition of lifetime is the time until the first node dies, also
called n-of-n lifetime in the extensive review by Dietrich and Dressler [38].
This notion of lifetime has been considered extensively, for example, by
Chang and Tassiulas [26] who study a routing problem. The definition im-
plicitly considers all nodes to be equally important and crucial to the oper-
ation of the network. This form of lifetime also avoids the complications to
handle topology changes induced by failing nodes due to depletion of battery
power. Although appealing in its simplicity, it cannot exploit the redundancy
that may be present in real-world sensor networks [38].

Several alternative definitions of lifetime are possible. Most of these take
into account additional constraints on network operation. Maybe the two
most common ones are network connectivity and network coverage. Both of
these constraints may either be guaranteed completely, or only to a certain
extent, which is then a parameter of the lifetime. When considering network
coverage one can distinguish between the spatial coverage of the deployment
area and target coverage, which requires a finite set of special targets to be ob-
served. Among both of these variations are possible, e.g., it may be required
that the area or target is covered by several sensors at any time. Further vari-
ations include the constraint that sensors need to be able to detect intruders,
which is also referred to as barrier coverage [38].

Independent of the notion of lifetime used, any algorithm for lifetime
maximization needs to make some assumptions on an underlying model for
energy consumption. It is generally accepted that for most applications data
communication dominates data processing in terms of energy consumed [2].

16 CHAPTER 2. MULTIHOP WIRELESS NETWORKS

Hence, in applications which require continuous updates transmitted to the
sink, a node may use transmission-power control to conserve battery power
and possibly extend the time after which its battery is depleted. If one ap-
plies this method to all nodes simultaneously, power control can be used for
network lifetime maximization.

In other situations, however, the generated data stream may be of low
intensity and most time is spent in idle states. In these cases it may be benefi-
cial to exploit low-energy states that are most commonly supported by recent
hardware [60]. In a low-energy state the radio is usually powered off and
the node is unable to perform computing operations, except for monitor-
ing a wake-up timer. However, various stages of low-energy states may exist.
See the survey by Hempstead et al. [60] for an overview of different energy-
efficient hardware architectures for sensor nodes. We will discuss next the
general technique of power-saving by partitioning the network into active
and inactive nodes.

2.3.3 Sleep scheduling

Algorithms for sleep scheduling assume that sensor-network nodes have sev-
eral system states, which differ with respect to the amount of energy con-
sumed while residing in the state [23]. In the simplest case, there are two
states, active and inactive, and nodes may decide to switch between states to
preserve battery capacity and thus extend lifetime. Therefore, sleep schedul-
ing can be seen as an alternative to transmission power control and may be
more applicable to sensor networks with a low duty cycle, i.e., when nodes
are idle most of the time. This is particularly the case when the application
requires the detection of rare events. Since the power consumption in an
inactive state, when the CPU and radio are powered down, can be several or-
ders of magnitude lower than in an active state [127], it is crucial that nodes
reside in active states only when necessary.

Sleep scheduling relies on the existence of redundant nodes, where the
definition of redundancy depends on the application. Several algorithms
have been proposed for having a sensor network self-organize by choosing
subsets of nodes to be active, which serve as a backbone for routing or pro-
viding sensor coverage. Many algorithms that were proposed in the liter-
ature can be regarded as heuristics that do not support performance guar-
antees compared to an optimal solution. For an overview see, for exam-
ple, [8, 27, 38, 103].

A formal model of the sleep-scheduling problem needs to capture which
nodes can be inactive under the condition that other nodes are active. A rel-
atively simple yet powerful model assumes a pairwise redundancy relation-
ship between sensor nodes for data collection. In the resulting redundancy
graph [45] adjacent nodes represent sensors that can measure the same data.
This model is applicable when node density is relatively large, so that within
the vicinity of a node there exist several other nodes which are able to collect
the same data.

Other notions of redundancy are also possible. Cărbunar et al. [35] as-
sume a geometric setting where nodes have a fixed sensing radius and con-
sider a node redundant when its sensing area can be completely covered by

CHAPTER 2. MULTIHOP WIRELESS NETWORKS 17

Figure 2.4: All possible dominating sets with two nodes for a five-node cycle;
the domatic number is two, while the optimal fractional domatic partition
achieves a lifetime of 5/2 by assigning an activation time of 1/2 to all of the
five dominating sets, assuming unit capacities.

active neighboring nodes. Cao et al. [23] propose an algorithm that guaran-
tees only partial coverage but ensures that every persistent event is detected
within finite time.

If complete coverage is required and when backbone connectivity is not a
concern, e.g., because the data generation and collection occur on different
time scales, one can consider the network operational as long as each inactive
node has an active neighbor in the redundancy graph at all times. In graph-
theoretic terms, we are left with the problem of finding dominating sets in
the redundancy graph and assigning them durations so that the total duration
is maximized while satisfying node-battery constraints. This notion of sleep
scheduling implicitly assumes the presence of a global clock to activate sets
of nodes in turn for executing the schedule. However, it is usually sufficient
that nodes are loosely synchronized, so that the complete system can still be
considered asynchronous.

An important special case of the problem assumes that nodes have uni-
form battery capacities and a node can only be a member of at most one
dominating set during its lifetime. The problem for pairwise node redundan-
cies then reduces to the problem of finding the maximum number of disjoint
dominating sets in a graph, which is also known as its domatic number [42].
In Chapter 8, we consider a version of this problem in which dominating sets
can be assigned arbitrary activation times, as long as node battery constraints
are satisfied. Considering fractional activity times facilitates the application
of linear-programming approximation techniques and also allows for a longer
n-of-n lifetime in some networks. Figure 2.4 shows an example where the in-
tegral problem has maximum lifetime two, while a lifetime of 5/2 is achiev-
able when nodes are allowed to switch between dominating sets.

2.4 NETWORK SIMULATORS

A number of commercial and open-source simulators have been developed
which allow the simulation of multihop wireless networks. Maybe the most

18 CHAPTER 2. MULTIHOP WIRELESS NETWORKS

important feature of a simulator from a research perspective is the property
of being easily extensible and modifiable. All simulations that are part of this
thesis were performed using the NS2 simulator [93]. The NS2 simulator is
the result of a collaboration between several research institutions that started
in the early 1990s, including University of California in Berkeley. Later ex-
tensions to NS2 that enabled the simulator to model wireless communication
are due to a project at Carnegie Mellon University [21]. Over the years, a
large community of developers has contributed code to the NS2 project and
the simulator has evolved significantly [93].

Since NS2 is developed as an open-source project, it allows for simple
extensions and modifications to all parts of the system. Additionally, the exis-
tence of a large user base and good documentation are beneficial. The NS2
simulator has been used extensively by a large number of research groups for
validation of network protocols, so in this sense it is an established tool for
baseline comparison. Furthermore, the simulator provides implementations
of a large number of protocols, e.g., MAC layer and routing protocols such as
DSR. Besides network protocols, the simulator also contains physical models
for wireless signal propagation at various levels of abstraction. The features
of the simulator further include support for node mobility and a graphical
tool for visualizing simulation runs. All data is readily accessible and logging
information can be collected at all layers and is easily processed by external
tools of one’s own choosing.

The simulator itself is based on discrete events, which also model packet
transmission and reception. In this sense, when a node transmits a packet, it
informs the global scheduling process, which then creates a reception event
for the receiving node after a certain processing and transmission delay (as-
suming the packet was received correctly by the MAC protocol). Based on
this model, the developer of a new protocol can usually rely on implemen-
tations of lower level protocols and only has to implement functions that
are required to process packets introduced by the new protocol. The event
scheduler also provides timers and supports user-defined events.

The code of the simulator is written in two programming languages. The
parts that require an efficient, low-level implementation, are written in C++.
The higher level of the code is written in OTcl, which is an object-oriented
extension to the Tcl scripting language. Typically, the same object has a
representation on both sides, where the interaction between the two code
domains is enabled by an interface provided by a C++ library. This sepa-
ration facilitates the goal to use a simple scripting language to write simula-
tion runs that contain parameters that may change frequently. Also protocols
may be partly specified in form of an OTcl script, which typically would con-
tain parameters that change often. The remaining part of a protocol, which
changes less frequently and requires inspecting single packets and therefore
has higher demands for an efficient implementation, would then be imple-
mented in C++. Since simulation runs are written in the form of OTcl
scripts, the NS2 binary can itself be seen as an interpreter for this scripting
language. As of 2010, the simulator is currently undergoing a major revision
and NS2 will eventually be replaced by the – to a large extent rewritten –
NS3 [102].

The best evaluation for any proposed protocol is indisputably a reference

CHAPTER 2. MULTIHOP WIRELESS NETWORKS 19

implementation in combination with an actual deployment and a careful
and extensive trial period in an appropriate environment. However, it is
also clear that this method may not always be available due to the lack of
resources or expertise in network deployments. We consider network simula-
tions a reasonable compromise between an actual deployment and a purely
analytic evaluation, since a simulator provides a relatively realistic abstraction
of the computing environment. In fact, the simulations of the algorithms pre-
sented in this thesis were started at an early stage of the development of the
algorithms and have usually led to additional insights. Concurrent events,
reordered message transmissions, packet loss, and the occurrence of rare un-
expected events are only some examples for aspects of an algorithm that are
hard to foresee without performing simulations. Additionally, the controlled
environment that enables the algorithm designer to run repeatable trials can
be used to isolate effects caused by parameter variations.

20 CHAPTER 2. MULTIHOP WIRELESS NETWORKS

3 LINEAR AND CONVEX PROGRAMMING

This chapter outlines topics from two related areas of mathematical model-
ing and optimization theory relevant to this thesis: linear and convex pro-
gramming. The intention is not to give a concise overview but rather to fix
notation to be used later. For an overview of linear programming see [137]
and for convex optimization in particular see [13].

Linear programming has been a tool in operations research since the early
years of computer science, e.g., for modeling planning and decision prob-
lems. Its popularity can be partly explained by the advent of computers and
algorithmic breakthroughs. The simplex algorithm, proposed by Dantzig in
the 1940’s, is still popular today. Newer techniques, such as interior point
methods, combine theoretical and empirical properties that have led to their
widespread application. Convex optimization can be seen as a generalization
of linear programming and inherits some of its beneficial properties, such as
the global optimality of local optima. Relatively recent advances, e.g., sub-
gradient methods, have led to new algorithms for network optimization.

For some of the problems discussed here, such as linear and convex pro-
grams with only fractional variables, there exist efficient algorithms that com-
pute optimal solutions in polynomial time if a solver knows the complete
problem instance. The purpose of discussing variations of these methods is
to build a basis for distributed algorithms presented in later chapters. Other
problems, e.g., the set-cover problem, are even hard to solve to optimality in
a centralized setting so that we focus on approximation algorithms.

From both areas we discuss several algorithmic approaches that share a
common similarity: the algorithms solve a pair of primal and dual problems
concurrently. From this property, not only approximation guarantees can be
obtained, but also usually the constraints in the dual are more local, in the
sense that few variables compete for a shared resource. This locality by dual-
ity principle will be used later to develop distributed algorithms for multihop
wireless networks. Techniques based on linear-programming duality have
only been recently applied to obtain distributed approximation algorithms
for combinatorial optimization problems, such as capacitated vertex cover
and weighted matching problems [51, 106, 130].

3.1 APPROXIMATION ALGORITHMS

It is generally accepted that it is not possible to find optimal solutions to
all instances of certain optimization problems efficiently, i.e., in polynomial
time. The class of problems that is considered computationally hard in-
cludes general linear programming problems which contain variables that
are required to take integral values. Therefore, the field of approximation
algorithms [139] offers a promising direction. An approximation algorithm is
not required to produce an optimal solution, but guarantees a certain quality
of the resulting solution for every instance of the problem.

We follow conventional definitions [139]. Assume a given minimization
problem and let I be an instance of this problem of size |I|. Let φ be a

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 21

function in the size of the instances, where φ(|I|) ≥ 1 for all instances I .
We say that an algorithm A is a factor φ approximation algorithm for the
problem if, for every instance I , A returns a solution that has an objective
value of at most φ(|I|) times the objective value of an optimal solution. In this
case we also say that A has an approximation factor φ for the given problem.
An approximation factor is tight, if there is an instance that achieves this
bound. Similarly, for φ(|I|) ≤ 1, we say that an algorithm A′ is a factor
φ approximation algorithm for a given maximization problem, if, for every
instance I , A′ returns a solution that has an objective value of at least φ(|I|)
times the objective value of an optimal solution. Sometimes it is convenient
to let φ be a function in certain parameters of the instance, rather than its
size. Also, we may even allow φ to depend on the instance itself, which then
results in an instance-dependent approximation guarantee.

Depending on φ, there are several other interesting special cases. When
φ is a constant, we call the algorithm a constant factor approximation al-
gorithm. For some problems one is able to find approximation algorithms
whose approximation factor depends on a parameter ε > 0. The runtime of
the algorithm is required to be polynomial when ε is fixed. We say that such
an algorithm A is a polynomial-time approximation scheme (PTAS) for a
given minimization problem if, for any instance I , it returns a solution with
objective value of at most (1+ε) times the objective value of an optimal solu-
tion. If the algorithm takes an instance of a maximization problem as input,
then we require that the objective value of a solution is at least (1− ε) times
the objective value of an optimal solution.

Assume that the given problem is a minimization problem. Establishing
an approximation factor for a given algorithm typically involves finding an
upper bound for the objective value obtained by the algorithm and a lower
bound for the respective objective value of an optimal solution. Both bounds
typically depend on the instance of the problem. The algorithms discussed
in Section 3.2.2 solve the problem of lower bounding optimal solutions by
generating solutions to the dual problem of a linear programming formula-
tion of the problem. For a general overview of approximation algorithms for
combinatorial optimization problems see Vazirani’s textbook [139].

3.2 LINEAR AND INTEGER LINEAR PROGRAMMING

This section introduces basic models and notation and then presents algorith-
mic ideas used later in this thesis. Since most linear optimization problems
in this thesis are naturally formulated as minimization problems, we use this
representation as our primary choice.

A linear program (LP) is an optimization problem of the form

minimize f(x1, . . . , xn) =
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n,

22 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

where the xj are variables and the coefficients aij , bi and cj are constants.
The function f is called the objective function. We refer to the representa-
tion above as an LP in canonical form. We say that for a given solution an
inequality constraint is tight if the constraint holds with equality.

Note that instead of the formulation above, one can also write the LP
using m × n matrix A = (aij), m × 1 vector b = (bi) and n × 1 vector
c = (cj). Further transformations are possible. One can transform the mini-
mization into a maximization problem, replace inequalities by equalities by
introducing a slack variable for each inequality constraint, etc. We shall pre-
fer the formulation above. Sometimes the problem also contains integrality
constraints for the xj , i.e., special constraints that require xj ∈ N0. In this
case we refer to the problem as an integer linear program (ILP). If only some
variables are required to be integral, we use the term mixed integer program.

We call a value assignment for the xj a solution to the problem. A solu-
tion that satisfies all constraints is called feasible and infeasible otherwise. A
problem that has no feasible solutions is called infeasible. Unless stated oth-
erwise, we always assume that there exists some feasible solution. A problem
can be unbounded, if it has feasible solutions that achieve an arbitrarily small
objective value. A solution that attains the minimum value for the objective
function is called an optimal solution or just optimal. We usually denote
such a solution by x∗, where x∗ = (x∗1, . . . , x

∗
n). The set of all optimal solu-

tions is denoted byX∗ and is non-empty for any problem that is not infeasible
or unbounded. We sometimes denote the value of the objective function at
an optimal solution by OPT, i.e., OPT = f(x∗).

Depending on the range of possible values for the aij , bi and cj , specific
classes of LP’s are possible. An important class is the class of covering LP’s
(or covering ILP’s), for which aij, bi, cj ≥ 0 holds.

3.2.1 Linear programming duality

To every linear programming problem there exists a so-called dual problem.
The dual problem can be obtained from the original problem, which is then
called primal problem, by a technical transformation. Figure 3.1 shows a
pair of primal and dual problems, where the primal is in canonical form.
Assuming the primal problem is a covering LP, the dual in Figure 3.1 takes
the form of a packing LP. If one applies the same transformation to the dual
problem, that is, if one forms the dual of the dual problem, then one obtains
again the primal by using appropriate transformations of the LP. We say that a
solution x̂ to the primal problem is primal feasible if it satisfies all constraints
in the primal problem. Similarly, we call a solution ŷ to the dual problem
dual feasible if it satisfies all constraints in the dual problem. We define the
notions of primal (respectively dual) optimality accordingly.

We summarize two important theorems of linear programming that will
be used later to derive approximation algorithms. The following theorems are
known as the weak duality theorem and strong duality theorem, respectively.

Theorem 1 (LP weak duality). Any pair (x̂, ŷ) of primal and dual feasible
solutions satisfies

n∑
j=1

cjx̂j ≥
m∑
i=1

biŷi.

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 23

Primal: minimize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

Dual: maximize
m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≤ cj, j = 1, . . . , n

yi ≥ 0, i = 1, . . . ,m

Figure 3.1: A pair of a primal and dual linear programs.

0

Integral Primal Solutions

Dual (Fractional) OPT = Primal (Fractional) OPT

Primal (Integral) OPT

Dual Feasible Solutions

Primal Feasible Solutionsy x

∞

Figure 3.2: Space of primal and dual solutions for a pair of covering/packing
linear programs.

Theorem 2 (LP strong duality). Any pair (x∗, y∗) of primal and dual optimal
solutions satisfies

n∑
j=1

cjx
∗
j =

m∑
i=1

biy
∗
i .

Suppose one plots the values of the primal and dual objective functions
over the range [0,∞] for a pair of covering/packing LPs. Figure 3.2 depicts
the space of primal and dual feasible solutions over this range of their objec-
tive values.

3.2.2 Primal-dual algorithms

We now describe the main algorithmic idea that has been used to develop
approximation algorithms for various NP-hard optimization problems, dis-
tributed and centralized. Suppose we have an ILP minimization problem
in the form of the primal problem in Figure 3.1 with additional integrality
constraints xj ∈ Xj ⊆ N0 ∀j. We call the primal problem in Figure 3.1
obtained by disregarding the integrality constraints the linear relaxation (or
fractional version) of the original problem.

24 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

Assume that for some instance I one is able to construct some feasible
solution x̂ that also satisfies the integrality constraints. Suppose that for the
same instance I one is also able to construct some feasible solution ŷ to the
dual problem (obtained as the dual of the linear relaxation) such that

n∑
j=1

cjx̂j ≤ φ(I)
m∑
i=1

biŷi, (3.1)

where φ(I) ≥ 1. Note that (3.1) is required to hold by design of the al-
gorithm. Then from Figure 3.2 it is clear that the solution x̂ achieves an
objective value of at most φ(I) times the optimum. This follows from weak
duality and the fact that an optimal fractional solution can be used to obtain
a lower bound for the objective value of an optimal integral solution. If one
is able to show that the φ(I) in (3.1) only depends on the size |I| of the in-
stance I , then it follows that the algorithm is in fact a factor φ approximation
algorithm for this problem. We call this type of algorithms that maintain a
pair of primal and dual solutions primal-dual algorithms. Note that even if φ
depends on I , one obtains an instance-dependent approximation guarantee,
which may be valuable in practice. In the following, we discuss two algo-
rithms that belong to this class and will be used later to obtain distributed
approximation algorithms for problems in wireless sensor networks.

In the context of linear relaxations it is important to consider the inte-
grality gap [139] of a problem. The integrality gap for a minimization ILP
is defined as the largest ratio of the objective value of optimal integral and
fractional solutions over all instances. Note that if an optimal solution to the
linear relaxation of a given problem always satisfies the integrality constraints
of the original problem, the integrality gap is 1. We will now show a simple
but important fact, namely that the integrality gap bounds the approximation
factor that is achievable by any primal-dual algorithm.

Theorem 3. For any primal-dual algorithm with approximation factor φ for
a given minimization problem

φ ≥ sup
I

OPTint(I)

OPTfrac(I)
,

where OPTint(I) is the objective value of an optimal integral solution and
OPTfrac(I) is the corresponding value for its relaxation.

Proof. Let I be any instance of the problem and (x̂, ŷ) the solution obtained
by the φ-approximation algorithm. It holds that

OPTint(I) ≤
n∑
j=1

cjx̂j ≤ φ

m∑
i=1

biŷi ≤ φ OPTfrac(I),

from which the claim follows since I was arbitrary.

Set-cover approximation
The first algorithm we describe that fits into the primal-dual framework is
an approximation algorithm for the set-cover problem. The presentation of

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 25

the problem and the analysis of the algorithm are based on Chapter 13 in
Vazirani’s book on approximation algorithms [139]. In Chapter 8 we use
this algorithm to develop an efficient distributed algorithm for the minimum
weight dominating set problem.

The weighted set-cover problem can be described as follows. One is given
a set U , called the universe of elements, a collection of subsets S ⊆ 2U and a
weight function w : S 7→ R>0. The problem is to find a minimum weight set
C ⊆ S that covers every element e ∈ U , i.e., U =

⋃
S∈C S. The weight of a

cover C is defined as w(C) =
∑

S∈C w(S). One can formulate this problem
as an ILP by introducing a binary variable xS for each S ∈ S that when set
to 1 indicates that S is chosen to be part of the cover and otherwise is set to 0.
We obtain the following problem.

IWSC: minimize
∑
S∈S

w(S)xS

subject to
∑
S3e

xS ≥ 1, ∀e ∈ U (3.2)

xS ≥ 0, ∀S ∈ S
xS ∈ {0, 1}, ∀S ∈ S (3.3)

Note that (3.2) formulates the constraint that each element must be covered
by some set in the cover. Now consider the linear relaxation of problem
IWSC, which we denote by FWSC. Correspondingly, one obtains the dual
of problem FWSC, which we denote as DWSC, as follows.

DWSC: maximize
∑
e∈U

ye

subject to
∑
e∈S

ye ≤ w(S), ∀S ∈ S (3.4)

ye ≥ 0, ∀e ∈ U (3.5)

The dual variables in problem DWSC have an intuitive interpretation as
prices an element has to pay in order to be covered by a set. The objective
value of an optimal dual solution then corresponds to the maximum profit
that can be earned by the sets. We now discuss a simple primal-dual algo-
rithm formulated as Algorithm PDSC. The algorithm maintains the pair of
primal and dual solutions (x̂, ŷ) and guarantees that the x̂ are always integral.

Both primal and dual solutions are initialized to 0. Then the algorithm
starts raising all dual variables at unit rate until one of the dual constraints
(3.4) becomes tight, say for set S. At this point the set S is added to the cover
set C and all dual variables ye for the elements in S become frozen, which
means that their values will not be changed after this point. If there is more
than one set whose constraint becomes tight, one chooses one of these arbi-
trarily. The set F in Algorithm PDSC contains the elements of the frozen
variables. The algorithm continues to raise the value for all variables that are
not frozen and sets enter the cover C until the universe U is entirely covered
by the sets inC. One can show that this algorithm is in fact a continuous-time
version of Chvátal’s greedy algorithm [31, 139].

It is easy to see that upon termination, the set C is a valid cover and that∑
S∈S w(S)xS =

∑
e∈U ye, since all sets that enter the cover are fully paid

26 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

Algorithm PDSC: Primal-dual algorithm for weighted set cover
1 initially:
2 x̂s ← 0 ∀S ∈ S; ŷe ← 0 ∀e ∈ U ;
3 C ← ∅; F ← ∅;
4 while U 6=

⋃
S∈C S do

5 while
∑

e∈U\F ye < w(S) ∀S ∈ S \ C do
6 raise ŷe for all e ∈ U \ F at unit rate;
7 end
8 choose S ∈ S \ C such that

∑
e∈U\F ye = w(S);

9 x̂S ← 1; C ← C ∪ {S}; F ← F ∪ S;
10 end

for and no element pays for being covered by two different sets. We now
establish the approximation guarantee ofO(ln ∆), where ∆ is the maximum
cardinality of any set in S, by the technique of dual fitting [65].

Theorem 4. Algorithm PDSC is a factorO(ln ∆) approximation algorithm,
where ∆ is the maximum cardinality of any set in S.

Proof. We will actually prove that by scaling the dual solution ŷ down by a
factor of H∆, where Hn is the n-th harmonic number, one obtains a dual
feasible solution. From weak duality, Hn = O(lnn) and by noticing that∑

S∈S w(S)xS =
∑

e∈U ye before the scaling the result then follows.
Consider any set S ∈ S and sort its elements by the time they were

covered from latest to earliest, so S = {e1, . . . , e|S|}, e|S| was covered first
and e1 was covered last. Then for all ei ∈ S we have that ŷei

≤ w(S)/i.
This can be seen as follows. If ei was covered by adding S to the cover, we
have that ŷei

= w(S)/|S \ F |, where F is the set of frozen variables (corre-
sponding to covered elements) before S was added to C, and |S \ F | ≥ i.
Assume now ei was covered by some other set S ′. Then it must be that
ŷei

= w(S ′)/|S ′ \ F | ≤ w(S)/|S \ F |, where F is the set of frozen vari-
ables before S ′ was added to C, since otherwise S would have been added to
C before S ′. So we have that∑

ei∈S

ŷei
≤
∑
ei∈S

w(S)

i
≤ H∆w(S).

Maximum multicommodity flow
We now discuss an algorithm by Garg and Könemann [48] that is best ex-
plained in the setting of the maximum multicommodity flow problem. Since
the algorithm can be adopted to a variety of different problems, including
general packing and covering problems, we will describe it in detail. The
same algorithmic idea will be used in Chapter 8 to develop a distributed
algorithm for a lifetime maximizing problem in sensor networks.

The maximum multicommodity flow (MMF) problem can be formulated
as follows. Given a directed (or undirected) graph G = (V,E) with edge

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 27

capacities c : E 7→ R+ and N distinct source-destination pairs (s1, t1), . . . ,
(sN , tN), the problem asks for the maximum total flow that can be sent from
the source to the destination nodes without violating the edge capacities.
This problem can be used to model a variety of routing problems. Note that
instead of the edge capacities, it is also possible to associate capacities with
the nodes. Although this problem can be solved to optimality in polynomial
time, there have been efforts to develop approximation algorithms that for
larger instances may compute good solutions relatively quickly. Note that
the problem that asks for integral flows is computationally more complex
than the fractional case.

The problem can be modeled as follows. Associate a flow commodity with
each of the pairs. Denote the set of all paths from source sn to target tn by
Pn and let P be the set of all paths. By introducing a variable xp for the flow
on path p for all p ∈ P , the problem can be formulated as follows.

MMF: maximize
∑
p∈P

xp

subject to
∑
p3e

xp ≤ c(e), ∀e ∈ E (3.6)

xp ≥ 0, ∀p ∈ P

The sum in (3.6) runs over all paths containing the edge e and represents
the capacity constraint for that particular edge. Note that the MMF prob-
lem as formulated above has a potentially exponential number of variables.
Instead of this formulation using path flows, a more common formulation is
an LP that has one variable for the flow of each commodity over that edge,
leading to a polynomial number of variables. However, when one compares
such a formulation with edge flows to a path-flow representation, the latter
appears more natural when considering distributed algorithms in communi-
cation networks.

Introduce a dual variable ye for each edge e ∈ E. Then the dual problem
can be formulated as follows.

DMMF: minimize
∑
e∈E

c(e) ye

subject to
∑
e∈p

ye ≥ 1, ∀p ∈ P (3.7)

ye ≥ 0, ∀e ∈ E

A solution to the dual problem can be interpreted as an assignment of lengths
(or weights) to the edges. The length l(p) of a path p is then given as l(p) =∑

e∈p ye. A solution is feasible if and only if the shortest path between any
source-destination pair has length at least 1. Define α(y) to be the length
of the shortest path between any pair for a given length assignment y. The
Garg-Könemann (GK) algorithm for the MMF problem is formulated as
Algorithm GKMMF.

Algorithm GKMMF calls a shortest-path oracle in each iteration and aug-
ments the flow along the path by a value that is equal to the minimum edge
capacity along the path. Then the value for the weight of the edges that lie

28 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

Algorithm GKMMF: Garg-Könemann algorithm for maximum multi-
commodity flow

1 initially:
2 x̂p ← 0 ∀p ∈ P ; ŷe ← δ ∀e ∈ E;

3 repeat
4 use oracle to compute a path p∗ with l(p∗) = α(ŷ);
5 let c be the minimum capacity on p∗, i.e., c = mine∈p∗ c(e);
6 route c units of commodity over path p∗;
7 for e ∈ p∗ do
8 ŷe ← (1 + ε)ŷe;
9 end

10 until l(p∗) ≥ 1;

on the path is multiplied by a factor of (1 + ε), where ε is a parameter of
the algorithm. The initial edge weight δ is discussed later. Note that the
path p∗ in Algorithm GKMMF minimizes path length over all paths and all
source-destination pairs.

Clearly, upon termination, the dual solution is feasible. The primal solu-
tion, on the other hand, may be infeasible due to violation of the edge capac-
ity constraints. However, following the technique in [48], one can show that
by scaling down the flow on all paths by a factor of log1+ε

1+ε
δ

a primal fea-
sible solution is obtained. Moreover, the ratio of the dual optimum and the
primal feasible solution thus obtained can be upper bounded. For a choice
of δ = (1 + ε)((1 + ε)L)−1/ε, where L is the maximum number of edges on
any path, one then obtains the following result.

Theorem 5 ([48]). Algorithm GKMMF computes a multicommodity flow
of at least (1 − ε)2 times the optimum, where 0 < ε < 1. The algorithm
terminates after at most d(|E|/ε) log1+ε Le iterations.

Instead of solving the shortest-path subproblem in each iteration exactly,
it is possible to use an approximation oracle with approximation factor φ > 1.
The approximation guarantee then worsens by this multiplicative factor, i.e.,
the flow is guaranteed to achieve at least (1− ε)2/φ times the optimal value.
This technique was first applied by Fleischer [43] to the MMF problem and
later by Tsaggouris and Zaroliagis [134] to a problem from transportation
planning. See also [134] for modifications to the proofs outlined above.

Besides being an efficient method for computing solutions to packing-
covering and more general problems, the GK scheme is often a viable method
for dealing with an exponential number of primal variables. It is sometimes
the case that the dual problem can be solved easier, or at least approximated
to a certain factor. We will apply the same technique in Chapter 8.

Minimum maximum congestion
In communication networks with link capacities, heavy load on some links in
the network usually affects the performance negatively and is therefore unde-
sirable. Hence, besides achieving a maximum end-to-end throughput as in
problem MMF, one is also interested in balancing the load over the network.

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 29

Consider a similar formulation as in problem MMF, where one additionally
is given a demand dn for each source-destination pair (sn, tn). We formulate
the minimum maximum congestion (MMC) problem as follows.

MMC: minimize λ

subject to
∑
p3e

xp ≤ λc(e), ∀e ∈ E (3.8)∑
p∈Pn

xp = dn, ∀n (3.9)

xp ≥ 0, ∀p ∈ P

In this formulation, the variable λ bounds the congestion of an edge e, which
is the total flow that passes e divided by its capacity. Minimizing λ therefore
corresponds to minimizing the maximum congestion in the network subject
to the constraint of satisfying the request for the routable demand for each
source-destination pair. A problem that is closely related to MMC is the
maximum concurrent flow (MCF) problem, which can be formulated as
follows.

MCF: maximize θ

subject to
∑
p3e

xp ≤ c(e), ∀e ∈ E (3.10)∑
p∈Pn

xp ≥ θdn, ∀n (3.11)

xp ≥ 0, ∀p ∈ P

It is easy to see that the two problems MMC and MCF are equivalent. Any
feasible flow x̂p with objective value λ̂ for MMC can be scaled down by a fac-
tor of λ̂ and results in a feasible solution to MCF. This scaled solution then
has objective value θ̂ = 1/λ̂ and minimizing λ corresponds to maximizing θ.

Although, as for the multicommodity flow problem, the preceding prob-
lem can be solved to optimality efficiently using a different LP formula-
tion with edge flows, several fast approximation algorithms have been pro-
posed that exploit the structure of the problem using path flows. An algo-
rithm that is very similar to the Garg-Könemann scheme presented as Al-
gorithm GKMMF, is the algorithm by Young [154], which was originally
proposed for general covering and packing problems. Algorithm YMMC is
a reformulation of the algorithm applied to the MMC/MCF problem, as
summarized by Bienstock in [16], for the case of unit edge capacities, i.e.,
c(e) = 1 ∀e ∈ E. It is easy to see that for the single commodity case with
unit demands, the rules for updating the variables in Algorithm YMMC are
in fact identical to the updates in Algorithm GKMMF.

The analysis in [16] shows that I = d4|E| log |E|
ε2

e iterations are sufficient
to obtain a solution to problem MMC with congestion λ̂ that satisfies λ̂ ≤
(1 + ε)λ∗, where λ∗ is the minimum maximum congestion. One should note
that Algorithm YMMC can also be extended to the case of arbitrary edge
capacities.

30 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

Algorithm YMMC: Approximation algorithm for the MMC/MCF
problem with unit capacities (see [16])

1 initially:
2 x̂p ← 0 ∀p ∈ P ; ŷe ← 1 ∀e ∈ E;

3 for I iterations do
4 fp ← 0 ∀p ∈ P ;
5 for each source-destination pair (sn, tn) do
6 use oracle to compute a shortest path p from sn to tn using ŷe;
7 fp ← path flow of dn units of commodity over path p;
8 x̂p ← x̂p + fp;
9 end

10 for e ∈ E do ŷe ← (1 + ε
∑

p3e fp)ŷe;
11 end
12 x̂p ← x̂p/I ∀p ∈ P

3.2.3 Network optimization based on LP relaxation

The technique of linear relaxation was used to establish approximation guar-
antees for primal-dual algorithms, as demonstrated for the set cover problem.
LP relaxation can also be employed for solving an integer linear problem via
the branch-and-bound search method. In this section we first describe how
to model a routing problem with path constraints as a network flow problem,
which is formulated as an ILP where all integer variables take binary values.
We then show how this problem can be solved by a branch-and-bound algo-
rithm that uses linear relaxation for pruning the search. Note, however, that
the runtime of the algorithm can be exponential in the size of the instance.

The techniques discussed in this section were proposed by Caramia and
Sgalambro [24] for solving instances of the maximum concurrent k-splittable
flow problem. This problem is a variant of the MCF problem discussed
previously, where the solution is additionally constrained to contain only a
bounded number of non-zero flow paths. The problem was first addressed by
Baier et al. [6]. In Chapter 6 we extend the model and method and obtain
an algorithm for a routing problem within the context of ad hoc networks.

Maximum multicommodity flow with path constraints
Consider the version of the maximum multicommodity flow problem where
each source and destination pair is only allowed to use a constant number K
of paths to send flow from the source to the destination. Since any source-
destination flow can be decomposed into at most |E| paths and cycles [1],
for large enough K, an optimal solution to this problem can be obtained
by solving problem MMF (the same problem without path constraints) to
optimality. The case with path constraints, however, is already strongly NP-
hard for a single commodity and K = 2. Constant-factor approximation
algorithms were proposed by Baier et al. [7].

TheK-paths constrained maximum multicommodity flow (KMMF) prob-
lem is then formulated as follows. Denote by Pn ⊆ Pn the variable that con-
tains the set of selected paths for the source-destination pair (sn, tn). Recall

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 31

that Pn denotes the set of all paths from source sn to target tn and that the set
of all paths is defined by P =

⋃
nPn.

KMMF: maximize
∑
n

∑
p∈Pn

xp

subject to
∑
p3e

xp ≤ c(e), ∀e ∈ E (3.12)

xp ≥ 0, ∀p ∈ P
Pn ⊆ Pn, ∀1 ≤ n ≤ N

|Pn| ≤ K, ∀1 ≤ n ≤ N

Note that only flow over selected paths may contribute to the objective func-
tion. Further, since the number of path-flow variables can be exponential
in the number of nodes, the problem may be intractable to be solved in this
representation. However, for any fixed value of K, we use the technique
from [24] and formulate an equivalent problem with variables for the flow
over each edge.

For the edge-flow formulation of problem KMMF, we introduce addi-
tional variables δnke , which determine whether an edge e is available to route
flow for the k-th path of pair (sn, tn) in a given solution. Let fnke denote the
amount of flow over edge e that originates from the k-th path from source sn
to destination tn. Additionally, introduce variables yn that correspond to the
total flow from source sn to tn (so in the original problem, yn =

∑
p∈Pn

xp).
Problem KMMF is then formulated equivalently as the following mixed in-
teger program.

KMMF-E maximize
N∑

n′=1

yn′

s.t. yn =
∑

1≤k′≤K

∑
e∈O(sn)

fnk
′

e −
∑

e∈I(sn)

fnk
′

e (3.13)

− yn =
∑

1≤k′≤K

∑
e∈O(tn)

fnk
′

e −
∑

e∈I(tn)

fnk
′

e (3.14)

∑
e∈O(v)

fnke −
∑
e∈I(v)

fnke = 0 ∀v ∈ V \ {sn, tn} (3.15)

∑
1≤n′≤N

∑
1≤k′≤K

fn
′k′

e ≤ c(e) ∀e ∈ E (3.16)

fnke ≤ δnke · c(e) ∀e ∈ E (3.17)∑
e∈O(v)

δnke ≤ 1,
∑
e∈I(v)

δnke ≤ 1 ∀v ∈ V (3.18)

∑
e∈O(v)

δnke −
∑
e∈I(v)

δnke = 0 ∀v ∈ V \ {sn, tn} (3.19)

∑
e∈I(sn)

δnke = 0,
∑

e∈O(tn)

δnke = 0 (3.20)

yn ≥ 0, fnke ≥ 0, δnke ∈ {0, 1} ∀e ∈ E,

where 1 ≤ n ≤ N and 1 ≤ k ≤ K. Problem KMMF-E has several edge-
flow variables for a single edge: each commodity corresponding to a single

32 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

source-destination pair consists of K subcommodities. For each commodity
n and path index k, there is a network flow layer fnk. A value of 1 for δnke
indicates that edge e lies on the k-th path from sn to tn, i.e., that flow of the
k-th layer of (sn, tn) may be routed over e. Constraint (3.13) requires that the
total outgoing flow yn of sn equals the sum over all K flow layers, where I(v)
and O(v) denote incoming and outgoing edges incident to v, respectively.
Equation (3.14) states that the total incoming flow of tn has to equal yn, and
(3.15) is the flow-balance constraint, which has to be satisfied for each flow
layer, except at source and destination nodes. Equation (3.16) is the capacity
constraint and (3.17) guarantees that only selected edges carry flow.

As the δnke indicate edges that form the k-th path of pair (sn, tn), they must
satisfy certain constraints. Nodes on a path have at most one incoming or
outgoing edge (constraint (3.18)). Also, any node other than the source and
destination must have an outgoing edge if and only if it has an incoming
edge (constraint (3.19)). Finally, sources must have no incoming edges and
destinations no outgoing edges (constraint (3.20)).

It is easy to check that problems KMMF and KMMF-E are equivalent.
One can obtain from a solution to KMMF-E a solution to KMMF by fol-
lowing the δnke variables with value 1 starting at the sources and setting the
path rates according to the fnke . Although a solution to KMMF-E may con-
tain isolated cycles, these do not affect optimality or constraint satisfiability.
Conversely, a solution to KMMF-E is obtained from a solution to KMMF
by setting the δnke of edges e that are incident to consecutive nodes on the k-
th path from sn to tn to 1 (ordering the paths in Pn arbitrarily) and setting all
others to 0. One should note, however, that KMMF-E has O(KN |E|) vari-
ables, while the number of path-flow variables in KMMF can be exponential
in |V |.

Branch-and-bound algorithm
The formulation above lends itself to a branch-and-bound (BNB) algorithm
that operates on a binary search tree containing values for the δnke . The al-
gorithm employs a bounding heuristic that solves the problem with relaxed
integrality constraints for the δnke at intermediate nodes in the search tree,
i.e., with δnke ∈ {0, 1} replaced by 0 ≤ δnke ≤ 1. To reduce the number
of calls to the linear programming solver, the algorithm checks constraints
(3.18)–(3.20) to prune branches leading to infeasible solutions.

Algorithm BBKMMF, which is essentially a MMF version of the MCF
algorithm proposed in [24], shows in pseudocode form a branch-and-bound
method for finding the optimal paths and flow allocations. At first, the inte-
grality constraints for the δnke are removed and the corresponding labels lnke
are set to variable. The optimal solution for the linear relaxation is computed,
and if all δnke are integral, the solver has found an optimal solution and termi-
nates. Otherwise a δnke variable is chosen to branch on, the corresponding lnke
are set to fixed, and the two subproblems where the δnke chosen for branching
is set to 0 and 1, respectively, are solved. If at any point in the search the
optimal value for a relaxed problem is worse than the best solution with all δ
variables integral seen so far, the search branch is pruned, since introducing
additional integrality constraints to the relaxed problem cannot improve the
objective value of an optimal solution. Algorithm BBKMMF employs the

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 33

Algorithm BBKMMF: Branch-and-Bound for problem KMMF-E
(adapted from [24])

1 initially
2 for 1 ≤ n ≤ N, 1 ≤ k ≤ K, e ∈ E do lnke ← variable;
3 best_value← −∞;
4 current_bound← compute_upper_bound(δ, l);
5 if is_integer_solution(δ) then
6 best_value← current_bound;
7 best_solution← δ;
8 else branch_and_bound(δ, l);
9

10 function branch_and_bound(δ, l)
11 choose e, n, k such that min{δnke , 1− δnke } is maximized;
12 for val ∈ {0, 1} do
13 δnke ← val;
14 lnke ← fixed ;
15 if delta_feasible(δ, l) then
16 current_bound← compute_upper_bound(δ, l);
17 if current_bound > best_value then
18 if is_integer_solution(δ) then
19 best_value← current_bound;
20 best_solution← δ;
21 else branch_and_bound(δ, l);
22 end
23 end
24 lnke ← variable;
25 end
26

standard heuristic of choosing the δnke variable to branch on that is furthest
away from being integral.

In Algorithm BBKMMF, delta_feasible(δ, l) checks for satisfiability of
constraints (3.18)–(3.20), compute_upper_bound(δ, l) solves the relaxation
of problem KMMF-E, and the check for integrality of δnke is performed by
is_integer_solution(δ). In an implementation, several practical aspects need
to be considered. Firstly, one can safely set the fractional value of δnke to 0,
if the solver returns a zero value for fnke . This rule can reduce the number
of fractional δnke values for a given solution and does not break feasibility.
Secondly, the values returned for the δnke are typically only close to optimal,
depending on the convergence criterion of the solver. Consequently, one
needs to tolerate a certain amount of non-integrality in the δnke .

3.3 CONVEX PROGRAMMING

Methods from convex optimization theory have been used recently to ap-
proach a wide range of problems, for example, problems in communica-

34 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

tion networks, including ad hoc [71, 108] and sensor networks [68, 114]. We
first outline basic definitions and notation, which are close to the textbook
by Boyd and Vandenberghe [19]. After the introduction, we briefly discuss
some standard iterative methods for solving constrained convex optimization
problems. Although other more efficient algorithms exist, the algorithms
discussed in this section can be expressed by simple arithmetic operations,
which, depending on the structure of the problem, lend themselves to a dis-
tributed implementation.

Recall the definition of a convex set and convex function.

Definition 2. A set C ⊆ Rn is called convex if for any pair of elements x,
y ∈ C, we have for any convex combination

θx+ (1− θ)y ∈ C,

where 0 ≤ θ ≤ 1.

Denote by domf the domain of a function f , i.e., the set of values for
which it is defined.

Definition 3. A function f : Rn → R is called convex if its domain domf is
convex and if for all pairs x, y ∈ domf , and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

The function f is called strictly convex if x 6= y and 0 < θ < 1 implies that
the strict inequality holds.

Definition 4. A function f : Rn → R is called concave if −f is convex and
strictly concave if −f is strictly convex.

In the following we note two necessary and sufficient conditions for con-
vexity, which are used frequently to show convexity of functions.

Proposition 1. Let f : Rn → R be a partially differentiable function (i.e.,
the gradient∇f of f exists at any point in its domain domf , which is an open
set).

a) f is convex if and only if domf is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) (3.21)

holds for all x, y ∈ domf .

b) f is strictly convex if and only if the strict inequality holds for all x, y ∈
domf with x 6= y.

Using ≤ instead of ≥ yields the corresponding result for concave functions.

Note that from (3.21) follows the important property that for differen-
tiable convex functions a local minimum is always a global minimum. This
property, however, also holds for general convex functions (see, for exam-
ple, [19]). Correspondingly, every local maximum of a concave function is
always a global maximum.

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 35

Proposition 2. Let f : Rn → R be a twice differentiable function (i.e., its
Hessian∇2f exists at each point in domf , which is open).

a) f is convex if and only if domf is convex and its Hessian is positive
semidefinite:

∇2f(x) � 0

holds for all x ∈ domf .

b) f is strictly convex if its Hessian is positive definite:

∇2f(x) � 0

for all x ∈ domf . Note that this condition is only sufficient, not necessary.

Choosing � instead of � yields the corresponding conditions for concave
functions.

Since the problems in this thesis that fall into the category of convex pro-
gramming are naturally formulated as maximization problems with a con-
cave objective function, we now use a different presentation compared to
the section on linear programming. Consequently, the exposition of the
theorems and methods described in this section differs from the standard
literature but can be obtained by the simple transformation from the min-
imization of a convex objective function to the maximization of a concave
objective function.

A convex program in canonical form is formulated as

maximize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

with variable x ∈ Rn, nonempty domain D =
⋂m
i=0 domfi ∩

⋂p
i=1 domhi ⊆

Rn. The objective function f0 is required to be concave, the inequality con-
straint functions fi, i > 0, are assumed to be convex, and the equality con-
straint functions are required to be affine, i.e., of the form aTx = b, where
a and b are vectors in Rn. By x∗ we denote a maximizer of the objective
function and OPT denotes the value of the objective at an optimal solution,
i.e., OPT=f0(x∗). We will always assume that there exists a feasible solution
and that the problem is bounded, i.e., OPT<∞ holds.

We now briefly discuss Lagrangian duality for convex optimization, which
can be seen as a generalization of linear programming duality. Lagrangian
duality theory has been applied to various problems in communication net-
works and resulted in distributed algorithms based on a natural problem de-
composition.

3.3.1 Lagrangian duality

Consider an optimization problem of the above form, where we do not ini-
tially require the fi and hi to satisfy the conditions required for a convex
optimization problem. Lagrangian duality is based on the approach of relax-
ing constraints and penalizing infeasibility of solutions by augmenting the

36 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

objective function with a weighted sum of the constraint functions. We de-
fine the Lagrangian function L : Rn × Rm × Rp → R associated with the
problem as

L(x, λ, ν) = f0(x)−
m∑
i=1

λifi(x)−
p∑
i=1

νihi(x),

with domL = D × Rm × Rp. We refer to the vectors λ and ν as the dual
variables, also called the Lagrange multiplier vectors for the given optimiza-
tion problem. Since we are interested in solving the optimization prob-
lem above, we define the Lagrange dual function (or just dual function)
g : Rm × Rp → R that for any given values of the dual variables gives the
supremum of the Lagrangian over x:

g(λ, ν) = sup
x∈D

{
f0(x)−

m∑
i=1

λifi(x)−
p∑
i=1

νihi(x)

}
,

where λ ∈ Rm and ν ∈ Rp. An important observation is that the dual
function is convex, since it is the point-wise supremum of a family of affine
functions of (λ, ν) (parameterized by x), even when the original problem is
not convex. Another important result is that the dual function is differen-
tiable if the objective function f0(x) is strictly concave. For an outline of the
proof see [14] p. 669 or also [12].

If one considers non-negative Lagrange multipliers, the dual function
yields upper bounds on the optimal value OPT= fo(x

∗) of the original max-
imization problem, i.e., for any λ̂ ≥ 0 and any ν̂:

g(λ̂, ν̂) ≥ OPT. (3.22)

This can be easily seen by noting that for any feasible solution x̂ to the origi-
nal problem, the value of the Lagrangian is an upper bound for f0(x̂). Based
on this observation, one may ask about the best upper bound on OPT. This
idea is captured by the (Lagrange) dual problem, which is formulated as the
optimization problem

minimize g(λ, ν)

subject to λi ≥ 0, i = 1, . . . ,m.

We call a pair (λ̂, ν̂) with λ̂ ≥ 0 dual feasible and refer to (λ∗, ν∗) as
dual optimal or optimal Lagrange multipliers if they are optimal for the dual
problem. Correspondingly, we refer to the original problem as the primal
problem. Note that the dual problem is a convex optimization problem,
since the objective function and all inequality constraints are convex, even if
the primal is possibly not convex. Denote the value of the dual function at
the optimum by DOPT, i.e., DOPT = g(λ∗, ν∗).

It is interesting to note that the dual of certain network optimization prob-
lems is sometimes easier to solve by a distributed algorithm than the primal.
In fact, convex-optimization duality gave rise to an algorithmic technique
referred to as dual decomposition. This technique has been successfully ap-
plied to problems of power assignment and transmission scheduling [129],
joint optimization of network flow and resource allocation [151], multipath
routing with capacity constraints [113] and distributed coordination of coop-
erating agents [115], to name just a few.

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 37

Weak and strong duality
Since (3.22) holds for any dual feasible solutions, one obtains the following
weak duality theorem.

Theorem 6 (Weak duality). DOPT ≥ OPT.

The difference DOPT−OPT is referred to as the duality gap. Contrary to
linear programming, the duality gap does not have to be zero. If the duality
gap is zero, we say that strong duality holds. In the case of a convex problem,
one sufficient condition for strong duality to hold is Slater’s condition, as
formulated in the following theorem.

Theorem 7 (Slater’s theorem). Assume a convex optimization problem in
canonical form

maximize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

If there exists a strictly feasible solution x̂, i.e., a solution that satisfies fi(x̂) < 0,
∀i = 1, . . . ,m and hi(x̂) = 0,∀i = 1, . . . , p, then strong duality holds:

DOPT = OPT.

In the case where some inequality constraints are affine, Slater’s condition
can be modified so that it is sufficient that these affine constraints hold with
equality.

Sufficient optimality conditions
Several sufficient conditions for optimality exist within the context of La-
grangian duality. The following condition is very general and in fact does not
require the problem to be convex or the objective and constraint functions
to be differentiable (see [12, p. 322]).

Proposition 3 (General sufficiency condition). Consider an optimization
problem of the form

maximize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,

where fi : Rn → R andX ⊆ Rn. Let x∗ be a feasible solution to the problem
and let λ∗ = (λ∗1, . . . , λ

∗
m) be a vector that satisfies

λ∗i ≥ 0, i = 1, . . . ,m (3.23)
fi(x

∗) < 0⇒ λ∗i = 0 i = 1, . . . ,m (3.24)

and let x∗ maximize the Lagrangian L(x, λ∗) over all x ∈ X :

x∗ ∈ arg max
x∈X

L(x, λ∗) = arg max
x∈X

[
f0(x)−

m∑
i=1

λ∗i fi(x)

]
,

where arg maxx∈X L(x, λ∗) denotes the set of maximizers. Then x∗ achieves
a global maximum of the problem above.

38 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

Note that there may be more than one primal solution maximizing the
Lagrangian for any fixed value for λ. For a pair of primal and dual feasible
solutions (3.24) can be also rewritten as the following condition, also called
the complementary slackness condition.

λ∗i fi(x
∗) = 0, i = 1, . . . ,m.

In the case that the objective and all constraint functions are differentiable,
the fi are convex and the hi are affine, it is usually more common to consider
the Karush-Kuhn-Tucker (KKT) conditions, which are in this case necessary
and sufficient for optimality.

Proposition 4 (KKT conditions). Consider a convex program in canonical
form and let x̂, λ̂, ν̂ be any points that satisfy

fi(x̂) ≤ 0, i = 1, . . . ,m

hi(x̂) = 0, i = 1, . . . , p

λ̂ ≥ 0, i = 1, . . . ,m

λ̂fi(x̂) = 0, i = 1, . . . ,m

∇f0(x̂) +
m∑
i=1

λ̂i∇fi(x̂) +

p∑
i=1

ν̂i∇hi(x̂) = 0,

then x̂ and (λ̂, ν̂) are primal and dual optimal with zero duality gap.

In the case that the conditions for Proposition 4 are satisfied, the KKT
conditions may be used to find an optimal solution to the problem. In order
to determine a unique primal optimal solution by the condition that the gra-
dient of the Lagrangian vanishes at optimality, it is usually required that the
objective function is strictly concave. If this is not the case, then a gradient
based approach typically leads to oscillations in the primal solutions [144].

3.3.2 Algorithms

The body of literature on algorithms for nonlinear optimization is vast. Here
we list a few methods that share the property that they only require sim-
ple operations that sometimes can be performed in a somewhat decentral-
ized manner, although in general other more efficient algorithms exist. For
convergence results of the algorithms see the standard literature, for exam-
ple, [12, 14, 19].

Projected gradient method
Consider the problem of maximizing a differentiable objective function f :
Rn → R over a set X ⊆ Rn. Choose a constant stepsize α > 0 and an initial
feasible solution x(0) ∈ X . The projected gradient method with constant
stepsize α is defined by the update rule

x(k + 1) = [x(k) + α∇f(x(k))]+ ,

where [·]+ denotes the projection onto the set X . It can be shown that if the
gradient∇f is Lipschitz continuous and the stepsize is sufficiently small, the
limit points of the sequence of iterates are local maxima of f over X , which
are also global maxima if the problem is convex (see Chapter 2.3 in [12]).

CHAPTER 3. LINEAR AND CONVEX PROGRAMMING 39

Gauss-Seidel method
Consider the problem of maximizing an objective function f : Rn → R over
a set X = X1 × X2 ⊆ Rm+(n−m). Suppose that f is continuously differ-
entiable and concave over X . Assume further that the function f(x1, x̃2) is
strictly concave over X1 for any fixed x̃2 ∈ X2 and vice versa for x2. The
Gauss-Seidel method is defined by the update rules

x1(k+1) = arg max
x1∈X1

f(x1, x2(k)), x2(k+1) = arg max
x2∈X2

f(x1(k+1), x2).

Note that the maxima in the update rules are uniquely attained. It can be
shown that every limit point of the sequence {x(k) = (x1(k), x2(k))} max-
imizes f over X . The Gauss-Seidel method can also be generalized for an
arbitrary block-size of X , i.e., when X = X1 × . . .×XB.

Proximal optimization algorithm
Consider the problem of maximizing a concave objective function f : Rn →
R over a convex and nonempty closed setX ⊆ Rn. Since f is not necessarily
strictly concave, the dual function may not be differentiable and a gradient-
based approach for solving the dual problem may not be applicable. How-
ever, by introducing additional variables and a quadratic term it is possible
to apply the Gauss-Seidel method and use a gradient method for solving the
dual of a subproblem in each iteration.

Consider the following modified problem.

maximize f(x)− 1

2D
‖x− x̄‖2

2

x ∈ X, x̄ ∈ Rn,

where D is a positive scalar parameter and || · ||2 is the Euclidean norm.
It is easy to see that this problem is equivalent to the original problem and
x̄∗ = x∗ for any optimal solution. Moreover, the Gauss-Seidel method is
applicable, since the objective function is strictly concave in x for any fixed
value for x̄ and vice versa. The update rules can be combined into a single
rule as follows.

x(k + 1) = arg max
x∈X

[
f(x)− 1

2D
‖x− x(k)‖2

2

]
Note that the problem solved in each iteration of the algorithm has a unique
optimal solution.

40 CHAPTER 3. LINEAR AND CONVEX PROGRAMMING

4 DISTRIBUTED ALGORITHMS

This chapter formalizes the model for the computing environment of dis-
tributed algorithms presented later in this thesis. We first introduce concepts
and basic assumptions and then describe algorithms that are useful for solv-
ing common subproblems. Since there exists a vast body of literature on dis-
tributed algorithms, this chapter can hardly give a comprehensive overview
of the field. The model, definitions and notation of this chapter are mostly
based on Santoro’s textbook [121].

4.1 MODEL AND ASSUMPTIONS

We start by formulating a model for distributed computation and also note
important assumptions to be made in the following chapters.

Computing environment

We define a distributed computing environment as a collection of intercon-
nected nodes (or processors, or entities). Each node is able to perform com-
putations and has a state that comprises local memory, a state register and
an input register. The local memory can be used for storing and retrieving
data, e.g., results from previous computations, and its storage capacity is un-
limited. The state register stores information on the status of the node, and
the input register is used for input that is external to the algorithm (e.g., sen-
sor data). Each node also possesses a local clock, which it can use to set a
timer to expire after a specified delay. The clocks among nodes need not be
synchronized.

Besides performing local operations, nodes are able to communicate with
their neighbors by sending and receiving messages. The interconnection be-
tween nodes is modeled as a communication graph, as described in Sec-
tion 2.1. When there is no risk for ambiguity, we will identify a distributed
computing environment by its communication graph G = (V,E). Usually,
we assume that the communication graph is directed. In other cases, e.g.,
when the problem at hand itself requires bidirectional communication, we
may consider G to be undirected.

Since the algorithms developed in this thesis approach problems within
the context of real-world networks, we assume unique node identifiers for the
graphG. Further, we consider each node to be represented in V by its identi-
fier, which in reality may be a network address. We always assume that nodes
know their own identifier. Sometimes we may assume that nodes are aware
of the identifiers of their neighbors in the graph and that nodes know which
edge leads to which neighbor. Note that the two latter assumptions can be
satisfied by letting nodes initially send their identifier to all their neighbors.

The transmission of messages over links may fail, as described below.
Nodes, however, are assumed not to fail unpredictably. If it is possible that
a node fails, e.g., because it is battery powered and its energy is depleted,
then this failure has to be part of the description of the environment. Our

CHAPTER 4. DISTRIBUTED ALGORITHMS 41

algorithms, however, assume the absence of node failures that can not be
modeled as transient transmission errors.

Distributed algorithm

We use a reactive model [121] to describe distributed algorithms. In this
model, any operation performed by a node is a reaction to an event that is
external to the node. Events include the arrival of a message or the expira-
tion of a timer. Additionally, a special event called spontaneous impulse may
start computation and communication. The action taken by the node as a
response to the event may depend on the node’s state, as stored in its state
register. Possible actions are computations, timer-set and timer-reset opera-
tions, state changes, message transmissions and memory access operations.
Each action is assumed to be atomic and must terminate within finite time.

A distributed algorithm in this model is a set of transition rules

state× event 7→ action,

where state is one of a finite set of node states stored in the node’s state
register. The algorithms are homogeneous in the sense that all nodes obey
the same set of rules. The set of rules is required to be complete and non-
ambiguous, in the sense that for each pair of state and event there is exactly
one resulting action, which may be the special null action that does nothing.

It follows from the reactive model that if there are no events, then a node
remains in its current state and does not perform any action. We will further
use the convention of leaving out rules that have the null action on their right
side. In the description of algorithms we group rules according to the states
they apply to. In the case of complex actions, we may split an action and
write it in the form of several sequential statements, much like statements of
a computer programming language. This convention simplifies presentation
but does not change the atomicity of actions.

By defining a precedence relationship between events one achieves that
the behavior of a node is always well-defined (e.g., spontaneous impulse takes
precedence over a timer event, which takes precedence over a message re-
ception). In the case of the simultaneous reception of multiple messages
these will be processed in an arbitrary order.

The initialization of local node data (memory, input and state registers)
is part of the algorithm, where the initialization of some nodes may occur
later than for others. A standard assumption for distributed algorithms is
the unique initiator assumption, which states that a single node initiates the
algorithm. Note that in the reactive model this is the result of a spontaneous
impulse event.

Communication

The transmission and the reception of messages over the links in the commu-
nication graph are modeled as events. In the absence of failures, messages
are subjected to a finite communication delay, which models queuing and
processing delays. This delay is assumed to be random and non-predictable.
Each link can be seen as a queue where messages can be transmitted out-of-

42 CHAPTER 4. DISTRIBUTED ALGORITHMS

order. The reception of messages at a single node, however, proceeds in the
order of their arrival.

Sometimes messages can be lost during their transmission, for example,
due to collisions with other messages at the receiver. We do not want to as-
sume that the transmitter can detect the failure. However, by requiring an
acknowledgment and using retransmission timers, we may assume that the
message is eventually delivered. This retransmission scheme is not part of
the algorithm, but its presence may be assumed by the algorithm. In prac-
tice, one expects the algorithm to run on top of a MAC protocol that supports
the transmission of unicast messages, whose successful reception is acknowl-
edged, as described in Section 2.2.1. We will always assume that the average
number of retransmissions of any message is bounded by some constant as
the network grows. Note that also retransmissions can cause messages to ar-
rive out-of-order.

A node v may target any neighbor u ∈ Nout(v) and send a single message
to u independent of v’s other neighbors. We refer to this as the unicast model.
Sometimes it is more convenient to use a broadcast model, where v may send
a single message to all neighbors in Nout(v) at once. However, because of
transmission failures it is possible that not all targeted recipients will actually
receive the message. Therefore, there is a fundamental difference between
broadcast and unicast messages.

The use of acknowledgments for unicast messages requires that bidirec-
tional communication between neighbors is possible. Hence, if the commu-
nication graph is directed, we assume it to be symmetric. Since also unicast
communication is implemented on top of a wireless channel MAC protocol,
nodes may implement a scheme which allows them to overhear messages
destined for other neighboring nodes. In this sense, nodes may decide to act
opportunistically by exploiting the wireless broadcast advantage [39, 148].

Termination

We distinguish between local and global termination. If a node v can detect
local termination, then v is able to determine that it will not have to take
further action according to the distributed algorithm. It is possible, however,
that the algorithm has not yet terminated at other nodes in the communica-
tion graph. If we require that a node is able to detect global termination, then
all nodes have to be able to detect local termination and also know about all
other nodes being in the state of local termination. In this sense, termination
has to be become common knowledge [121]. Usually, however, it will be
sufficient for our algorithms to detect local termination.

Complexity measures

We will use two main criteria for evaluating distributed algorithms, message
complexity and time complexity. We define the message complexity of a dis-
tributed algorithm to be the number of messages transmitted until termina-
tion. Since the size of messages can vary, it is sometimes more appropriate to
determine the communication complexity (also called bit complexity) of an
algorithm, which is the number of bits transmitted until termination. When

CHAPTER 4. DISTRIBUTED ALGORITHMS 43

considering communication complexity, we disregard factors that depend
logarithmically on the size of the network, e.g., we assume that the num-
ber of bits required to represent node identifiers is constant. Similarly, we
may assume a fixed precision for representing values, such as node weights.

Note that when determining message complexity, we count transmitted
and not received messages. Both coincide in the unicast model but may differ
in the broadcast model. Therefore, when expressing message complexity, we
will always make clear in the context which of the two models we are referring
to. Since we assume that the average number of message retransmissions
is bounded, when considering message complexity we can always disregard
retransmissions and assume that no messages are permanently lost, e.g., due
to message collisions.

In an actual implementation the bandwidth of the channel is limited,
which translates into bounds on the size of a message. Hence, we usually
limit message size to O(log |V |), which results in a constant number of bits
under the assumptions above. This model is referred to as the CONGEST
model in the textbook by Peleg [110]. Sometimes we may allow larger mes-
sages, for example, when nodes include information about their neighbor-
hood in the message. In this case we account for larger messages by consid-
ering these to be split into separate messages of size at most O(log |V |).

The second important measure for algorithm performance is time com-
plexity. For determining the time complexity of a distributed algorithm, it is
usually assumed that messages experience unit communication delay and
that there exists a global clock. In this setting the algorithm operates in
rounds and a node v can send one message to each neighbor in Nout(v) and
receive one message from each neighbor in Nin(v) in each round. The time
complexity then equals the number of rounds required for termination.

When evaluating algorithms by simulations, we instead measure the exe-
cution time, which is the simulated running time required for a given prob-
lem instance. The execution time may give a more realistic impression of
the time spent by the execution of an algorithm compared to the unit delay
assumption. However, if the algorithm employs timers, then its execution
time strongly depends on the timeout values, and special care needs to be
taken when comparing the performance of different algorithms.

Recently, the study of so-called local algorithms has received considerable
attention [110]. These algorithms operate in a synchronous message passing
model that assumes the absence of errors. After initially all nodes wake up
simultaneously, the time complexity of algorithms in this model is required
to be significantly smaller than the network diameter, usually even constant.
Hence, algorithms in this model are inherently scalable since nodes can only
operate based on local information. Although the model is interesting from
a theoretical perspective and properties of local algorithms are highly desir-
able, it is sometimes too restricted to allow any algorithm to solve relevant
problems in wireless networks. For example, Linial [86] showed that there
is no distributed constant time algorithm for coloring an n-cycle with three
colors. In other cases, the proposed algorithms are only intended to show
the existence of local algorithms for a certain problem, though they do not
provide for a simple implementation as network protocols. Hence, in this
thesis we decided not to restrict the time complexity of algorithms.

44 CHAPTER 4. DISTRIBUTED ALGORITHMS

4.2 ALGORITHMS

We now demonstrate some of the concepts introduced above by formulating
distributed algorithms to be used for solving subproblems in later chapters.

4.2.1 Spanning trees

A standard problem in graph theory is to compute a spanning tree of a given
graph. After the termination of the algorithm, each node is required to know
which of its incident edges are part of the spanning tree. Note that disregard-
ing trivial cases, this requirement is different from demanding that all nodes
will eventually know the complete spanning tree.

In the following we describe Algorithm SHOUT based on the presentation
in [121]. The algorithm assumes the presence of a unique initiator, which
distinguishes itself from the other nodes in that it has the value of its input
register is_initiator set to true and not false. Additionally, the algorithm makes
the following three assumptions: the communication graph G = (V,E) is
undirected, the transmission of unicast messages is reliable, and all nodes
know their neighbors.

Algorithm SHOUT is based on the simple idea of flooding query messages
in the network. A node that receives a query for the first time transmits a copy
of the query to all its neighbors except the neighbor it received the query
from. The edges that were used to transmit these “first time queries” later
form the edges in the spanning tree, which can be rooted at the initiator. In
addition to sending and receiving queries, a node also collects acknowledg-
ments from its neighbors, which indicate that the incident edge is part of the
tree. The first query message is sent by the initiator node that acts upon a
spontaneous impulse.

More specifically, when the initiator processes the spontaneous-impulse
event, it initializes its set of tree neighbors to the empty set and transmits
a query message to all its neighbors. Whenever a node v receives a query
message for the first time from a node u, v replies with a “yes” message, con-
firming the sender u that the edge {u, v} is part of the tree to be constructed.
Node v then initializes its own set of tree neighbors NT (v) to {u}. This oc-
curs when node v is in the IDLE state. After receiving a query for the first
time, a node with more than one neighbor changes to the ACTIVE state.

In the ACTIVE state a node v updatesNT (v) by adding nodes from which
v receives “yes” messages. Each node also keeps track of the number of
queries and acknowledgments it receives. By comparing this number to the
number of its neighbors in the communication graph, the node is able to
determine when the algorithm has terminated locally.

Theorem 8. The message complexity of the Shout algorithm satisfies

M [Shout] = 2|E|.

Proof. Consider any edge {u, v} in the communication graph and the mes-
sages that are sent via this edge. In the case that the edge is not in the span-
ning tree, two query messages, one in either direction, are sent over the edge.
If the edge is part of the tree, then either u or v sends a query and the other
node replies with a “yes” message.

CHAPTER 4. DISTRIBUTED ALGORITHMS 45

Algorithm SHOUT: Spanning tree construction
(see improved version of SHOUT in [121])

1 node v with variables root, NT (v), counter, father, is_initiator;

2 at start
3 if is_initiator then enter state INITIATOR;
4 else enter state IDLE;
5

6 in state INITIATOR // initiator starts algorithm
7 if spontaneous impulse then
8 root← true; NT (v)← ∅;
9 send (Q) to N(v);

10 counter← 0;
11 enter state ACTIVE;
12 end
13

14 in state IDLE
15 if message (Q) is received from u then
16 root← false; NT (v)← {u};
17 father← u; counter← 1;
18 send (Yes) to {u};
19 if counter = |N(v)| then enter state DONE;
20 else
21 send (Q) to N(v) \ {u};
22 enter state ACTIVE;
23 end
24 end
25

26 in state ACTIVE
27 if message (Q) is received from u then
28 counter← counter + 1;
29 if counter = |N(v)| then enter state DONE;
30 end
31 if (Yes) is received from u then
32 NT (v)← NT (v) ∪ {u};
33 counter← counter + 1;
34 if counter = |N(v)| then enter state DONE;
35 end
36

46 CHAPTER 4. DISTRIBUTED ALGORITHMS

Considering time complexity, it is easy to see that the algorithm can re-
quire a number of rounds that is at least equal to the diameter of the com-
munication graph, since the queries have to reach each node starting at the
initiator. The nodes that were at the furthest distance from the initiator then
require an additional round for transmitting their replies. Hence, one obtains
the following result.

Theorem 9. The time complexity of the Shout algorithm satisfies

T [Shout] ≤ d(G) + 1,

where d(G) is the diameter of G.

If one is interested in computing an MST instead of just any spanning
tree, Algorithm SHOUT cannot be applied applied in general. A well-known
distributed algorithm for this problem was proposed by Gallager et al. [46].
Although it solves the more general problem, it seems unsuitable for the
simple case of unit weights due to its implementation complexity.

Interestingly, Algorithm SHOUT may be modified to handle multiple ini-
tiators. Informally, the idea is to let all initiators follow the steps of the single
initiator as described above. During the algorithm, a node stops participating
in the construction of a spanning tree whenever it receives a query that orig-
inated from an initiator with a smaller identifier than the one it participated
in previously. The modification requires the inclusion of initiator-node iden-
tifiers in query messages. This still relatively simple algorithm may be used
also for leader election, which is the general problem of selecting a single
coordinator in a distributed computing environment. For this problem, how-
ever, more efficient algorithms exist. It is interesting to note that for general
graphs the MST algorithm of [46] has asymptotically optimal message com-
plexity for the leader election problem. For details we refer to [121].

4.2.2 Shortest paths

Computing the shortest paths from a given initiator node to all other nodes
is another standard problem in graph theory. In this section, we assume that
the distributed algorithm is required to compute shortest paths on the com-
munication graph G = (V,E), which is edge-weighted with weight function
wE : E 7→ R>0.

Algorithm BF is the asynchronous version of the Bellman-Ford algorithm
(see [90, Sec. 15.4]) that is augmented by sending acknowledgment messages
to let the initiator node detect termination of the algorithm. Algorithm BF
is based on the same assumptions as Algorithm SHOUT, i.e., the existence
of a unique initiator, an undirected communication graph, reliable message
transmissions and knowledge of node neighborhoods.

For each node v, the algorithm maintains father pointers to the node
which is the next hop on a shortest path to the initiator node among all paths
currently known to v. Since messages can arrive out of order, the acknowl-
edgments need to contain information on the length of the path whose mes-
sage is acknowledged. After termination of the algorithm, the father pointers
form a shortest-path spanning tree of the communication graph, rooted at the
initiator, which can be used, e.g., for routing messages. Note that since the

CHAPTER 4. DISTRIBUTED ALGORITHMS 47

Algorithm BF: Distributed shortest-path algorithm
(asynchronous Bellman-Ford algorithm, see [90])

1 node v with local variables dist, dist[·], father, status[·]
2 at start
3 father← undefined;
4 if is_initiator then
5 dist← 0;
6 for u in N(v) do
7 send (wE(v, u)) to u;
8 dist[u]← wE(v, u);
9 status [u]← wait;

10 end
11 enter state SEARCH;
12 else
13 dist←∞;
14 for u ∈ N(v) do
15 dist[u]←∞;
16 status [u]← ready;
17 end
18 enter state IDLE;
19 end
20

21 in state IDLE or SEARCH
22 if (dist′) with dist′ < dist is received from some node u then
23 if father is defined then send NAK(dist) to father;
24 father← u; dist← dist′;
25 for w in N(v) \ {u} do
26 send (dist′ + wE(v, w)) to w;
27 dist[w]← dist′ + wE(v, w);
28 status [w]← wait;
29 end
30 enter state SEARCH
31 end
32 if (dist′) with dist′ ≥ dist is received from some node u then
33 send NAK(dist′) to u;
34 end
35

36 in state SEARCH // wait for incoming acknowledgments
37 if status [w]=ready for all w ∈ N(v) \ {father} then
38 send ACK(dist) to father;
39 enter state IDLE
40 end
41 if ACK(dist′) or NAK(dist′) is received from u and dist[u] = dist′

then
42 status [u]← ready;
43 end
44

48 CHAPTER 4. DISTRIBUTED ALGORITHMS

graph is assumed to be undirected, the tree can be used to forward messages
from the root to the leaf nodes and vice versa.

More precisely, Algorithm BF is initiated when the initiator node sends
to each of its neighbors a message that contains the cost of the edge between
itself and them (we have omitted the initial spontaneous impulse event from
the pseudocode). Whenever a node receives this kind of request for the first
time, it stores the identifier of the neighbor that sent the message in its father
variable and retransmits the message to its other neighbors after updating
the total path length contained in the request. Each node also stores the
length value of the last request sent to each neighbor. If a node that has al-
ready received and retransmitted a request receives a request that indicates a
shorter path from the initiator node, it resends the new request to its neigh-
bors. Hence, for each node v, dist is the current estimate of the distance from
the initiator node to v and father is the node from which v has received the
last request that was accepted by v.

The only node that is able to detect global or even local termination of the
algorithm is the initiator node after it has received acknowledgments from all
its neighbors. Hence, if it is required that all nodes detect termination, one
may extend the algorithm by a network-wide broadcast phase initiated by the
initiator node after itself detecting termination. Thus, all other nodes are
informed of global termination of the shortest path algorithm. Also, if the
task is to compute shortest paths between all pairs of nodes, one can run |V |
copies of the algorithm in parallel.

It is well-known that the worst-case message complexity of the asynchro-
nous Bellmann-Ford algorithm is exponential in the size of the graph [90].
In Chapter 7 we modify Algorithm BF and obtain Algorithm MLS, which
constructs a minmax-spanner of the communication graph. Our modified
algorithm circumvents the problem of an exponential message complexity
by pruning the search locally.

Since Algorithm BF constructs a spanning tree of the communication
graph, it may be applied to establish a routing tree to disseminate informa-
tion originating from the initiator node. However, for applications that allow
paths to be longer than shortest paths, one may prefer Algorithm SHOUT,
which is much simpler and has a better worst-case message complexity. Note
also that some information stored by Algorithm BF is redundant, since it
would be possible to compute the dist[u] values from dist and the edge costs.
We prefer this representation to show similarities to Algorithm MLS. For the
same reason we choose to initialize the status field for the neighbors of all
nodes but the initiator to ready in line 16, although it will be set to wait as
soon as v receives the first request.

Convergecast

Algorithm BF employs a technique that is usually referred to as converge-
cast, which in some sense acts as a reverse network-wide broadcast. After a
node v has received the first message, it waits until all its neighbors have sent
acknowledgments, positive or negative, by updating their status fields. Only
then v sends an ACK to its father. This ensures that when the initiator has
received all acknowledgments, it is guaranteed that the algorithm has termi-

CHAPTER 4. DISTRIBUTED ALGORITHMS 49

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Possible execution of a convergecast operation; each node waits
for all its children in the spanning tree to submit their message before it
sends its own to its father. Nodes at which the convergecast has terminated
are shown in gray. The root is the node on top.

50 CHAPTER 4. DISTRIBUTED ALGORITHMS

nated. However, the same technique can also be applied for other purposes,
such as collecting aggregated information, e.g., the minimum or maximum
of a certain value present at each node. We use convergecasts at several occa-
sions in the following chapters. Since this elementary technique is so useful,
we visualize it in Figure 4.1.

4.2.3 Independent sets

Independent sets are interesting within the context of multihop wireless net-
works for a variety of applications. Assume that adjacent nodes in a given
interference graph GI = (V,EI) are mutually conflicting in the sense that
simultaneous message transmissions lead to collisions. Then finding an in-
dependent set in GI corresponds to finding a mutually non-conflicting set of
transmitters in GI . Since the problem of finding a maximum size indepen-
dent set in general graphs is computationally hard, several approaches for
approximation algorithms have been proposed [57].

A problem that is related to the one mentioned but efficiently solvable
in a centralized setting is the problem of finding a maximal independent
set. Algorithm MIS is a distributed asynchronous algorithm for this problem
proposed by Wan et al. [141]. The algorithm assumes that all nodes know
their level in a spanning tree rooted at the initiator node, where the level
of a node equals its hop-distance in the tree from the root. In addition to
its own level, nodes also know the levels and identifiers of their neighbors
in the communication graph.1 Algorithm MIS uses a ranking of the nodes
according to the lexicographic order of the (level, identifier) pairs.

The algorithm colors nodes according to their state with respect to the
independent set under construction. Initially, all nodes are colored white.
When a white node v determines that it has the smallest rank among all the
white nodes in its extended neighborhood N+(v), it decides to add itself to
the independent set. Node v notifies its neighbors of its entering the set with
a broadcast message, and the neighbors are then colored gray.

In Algorithm MIS, the variable x counts the number of acknowledgments
that remain to be received by the children of v in the tree. This counter is de-
creased whenever a MARK-COMPLETE message is received. A converge-
cast operation of MARK-COMPLETE messages is used to detect termina-
tion at the root node, similar to the operation performed by Algorithm BF.
The variable y counts the number of neighbors of v that have a lower rank
than v and have not yet been marked gray. Based on the value of y, each node
v can determine when it is required to enter the independent set. Since the
root node has the lowest rank in the graph, it marks itself black immediately
and initiates the algorithm. Note that the algorithm uses both unicast and
broadcast messages and assumes that no transmission errors occur.

One should note that due to the ranking of the nodes, the resulting in-
dependent set I has the property that the nodes in I can be connected via
only a few nodes in V \ I . More precisely, for any v ∈ I , the length of the
shortest path to any node in I \ {v} is exactly 2 for |I| > 1 (see [141]). Since
a maximal independent set is also always a dominating set, this property can

1This assumption could be satisfied by initially running a slightly modified version of
Algorithm SHOUT or defining unit edge costs and using Algorithm BF.

CHAPTER 4. DISTRIBUTED ALGORITHMS 51

Algorithm MIS: Distributed maximal independent set algorithm
(based on [141])

1 node v with local variables level[·], rank[·], father, x, y

2 at start
3 for u ∈ N+(v) do rank[u]← (level[u], u);
4 x← number of children in tree;
5 y ← number of lower ranked neighbors in N(v);
6 color← white;
7 blackList← ∅;
8 if is_initiator then
9 enter state CHECK;

10 else
11 enter state IDLE;
12 end
13

14 in state CHECK // check condition for entering independent set
15 if y == 0 then
16 color← black;
17 blackList← blackList ∪ {v};
18 broadcast BLACK message;
19 enter state WAIT;
20 else
21 enter state IDLE;
22 end
23

24 in state IDLE // process incoming messages
25 if GRAY is received from node u then
26 if u has lower rank than v then
27 y ← y − 1;
28 enter state CHECK;
29 end
30 end
31 if BLACK is received from node u then
32 color← gray;
33 blackList← blackList ∪ {u};
34 broadcast GRAY message;
35 enter state WAIT;
36 end
37 if MARK-COMPLETE is received from child u then x← x− 1;
38

39 in state WAIT
40 if MARK-COMPLETE is received from child u then x← x− 1;
41 if x == 0 and not is_initiator then
42 send MARK-COMPLETE to father;
43 enter state TERMINATE;
44 end
45

52 CHAPTER 4. DISTRIBUTED ALGORITHMS

be used for computing a connected dominating set that serves as backbone
for routing messages in the network.

It is well-known that in a unit disk graph the size of a maximum indepen-
dent set in any neighborhood N+(v) is at most five [91]. Hence, Algorithm
MIS is in fact a factor 1/5 approximation algorithm for the maximum inde-
pendent set and a factor 5 approximation algorithm for the minimum dom-
inating set problem in unit disk graphs. This result can easily be extended
to bounded independence graphs, since these, by definition, have a constant
number of independent nodes within any one-hop neighborhood.

An algorithm that is very similar to Algorithm MIS was proposed by Wang
et al. [145] to solve a subproblem for the minimum weight connected dom-
inating set problem. Instead of defining the node ranks based on the tree
level, the algorithm in [145] lets nodes enter the dominating set if they have
the minimum weight in their neighborhood. The node-weight function wV
was assumed to be smooth, i.e., the maximum ratio of its values between
adjacent nodes, which influences the approximation factor of the algorithm,
was assumed to be rather small.

4.2.4 Dominating sets

Dominating sets frequently appear in formulations of problems related to
wireless networks, e.g., routing problems, when messages are relayed only
using nodes in the potentially small dominating set. For routing one typi-
cally requires the dominating sets to be connected. Dominating sets are also
a useful model for providing coverage in sensor networks. Consequently, sev-
eral centralized and distributed algorithms have been proposed. See [17] for
an overview of the relevant literature.

The minimum weight dominating set problem, where each node v has a
positive weight w(v) and the objective is to minimize the total weight of the
dominating set, can be easily formulated as a weighted set-cover problem by
choosing U = V , S = {N+(v) | v ∈ V } and w(N+(v)) = w(v). Therefore,
we can apply the (centralized) greedy set-cover algorithm to this problem.
Based on the presentation in Section 3.2.2, it is then clear that one obtains a
dominating set of size at most φ = H∆+ times the optimum, where Hn is the
n-th harmonic number. This follows since ∆+ is the size of the largest one-
hop neighborhood and hence the size of the largest set in the corresponding
set-cover instance. The approximation factor is thus O(ln ∆+).

As argued previously, Algorithm MIS obtains a constant-factor approx-
imation in unit disk graphs with unit weights and for these graphs even
polynomial-time approximation schemes are possible [101]. If one consid-
ers general communication graphs, then the inapproximability results for the
set-cover problem [41] imply that Chvátal’s algorithm is essentially the best-
possible polynomial time approximation algorithm under standard complex-
ity assumptions. Distributed algorithms based on Chvátal’s set-cover algo-
rithm have been proposed earlier for both unit and arbitrary weights. One
example is the spine routing algorithm by Sivakumar et al. [128]. Most of
the algorithms assume synchronous communication rounds. See Algorithm
SYNMWDS for the distributed synchronous version of the MWDS greedy
algorithm, which is adapted from the algorithm of [128] proposed for the

CHAPTER 4. DISTRIBUTED ALGORITHMS 53

Algorithm SYNMWDS: Distributed synchronous MWDS algorithm
(adapted from [128])

1 node v with local variables w(v), span(v), N(v), N2(v), color

2 at start
3 color← white;
4 span(v)← |N(v)|+ 1;
5

6 repeat
7 send (v, w(v), span(v)) to all u ∈ N(v);
8 wait for incoming (u,w(u), span(u)) from all u ∈ N(v);
9 for u ∈ N(v) do send (u,w(u), span(u)) to all w ∈ N(v);

10 wait for incoming (u,w(u), span(u)) for all u ∈ N2(v);

11 if
(

w(v)
span(v)

, v
)
<
(

w(u)
span(u)

, u
)
∀u ∈ N+

2 (v) and color == white then
12 color← black;
13 send BLACK to all u ∈ N(v);
14 end
15 if BLACK is received from node u then
16 if color == white then
17 color← gray;
18 send GRAY to all u ∈ N(v);
19 end
20 span(v)← span(v)− 1;
21 end
22 if GRAY is received from node u then span(v)← span(v)− 1;
23 until for all u holds: span(u) == 0;

unweighted case.
The steps in Algorithm SYNMWDS are executed by all nodes in a lock-

step fashion. Define the span of a node v as the number of nodes within v’s
extended neighborhood N+(v) that currently have no neighbor in the dom-
inating set and are also themselves not in the dominating set. In this sense,
the span of a node v is the number of uncovered nodes it would cover. Each
node monitors the span of all nodes within its two-hop extended neighbor-
hood N+

2 (v). If a node recognizes that it has the minimum weight-to-span
ratio in N+

2 (v), then it adds itself to the dominating set by marking its color
to black. Node identifiers are used to break ties.

Whenever a node enters the dominating set, it is colored black and in-
forms its neighbors, which then change their color to gray, i.e., they become
covered. After each iteration of the loop all nodes v have the correct span
values for N+

2 (v) and at least one node has entered the dominating set in the
current iteration. It is easy to see that the dominating set computed by Algo-
rithm SYNMWDS is the same as the solution obtained by Chvátal’s greedy
algorithm, which in each iterations adds the node with the minimum weight-
to-span ratio. This follows from the fact that all nodes that may influence the
span of v are within a two-hop distance from v and spans can only decrease.

Although there is the chance that some nodes enter the dominating set

54 CHAPTER 4. DISTRIBUTED ALGORITHMS

in the same iteration, i.e., if they all achieve the minimum weight-to-span
ratio in their neighborhoods, Jia et al. [66] remark that the distributed greedy
algorithm has linear time complexity. This follows since there is a family of
instances in which nodes enter the dominating set one by one. The authors
of [66] propose randomized algorithms with polylogarithmic time complex-
ity and approximation guarantees similar to Chvátal’s algorithm. An actual
implementation of this algorithm, however, would require careful clock syn-
chronization possibly in a wide-spread network. Although one might be able
to work around synchronization issues, using the techniques we describe in
the next section, these would require an increase in message overhead.

4.2.5 Network synchronizers

Algorithm SYNMWDS differs from other distributed algorithms in this thesis
in its assumption of a synchronous communication model. According to our
model of Section 4.1, after their transmission, messages can arrive after a
finite but arbitrary delay. However, sometimes simpler algorithms can be
obtained if one assumes that nodes operate according to a global clock and
send messages only at discrete time points according to ticks of the global
clock. This synchronous distributed computation model further assumes that
message delays are upper bounded by a single clock tick and that every node
sends at most one message to every neighbor each time [4,121]. In this sense,
one can think of the nodes as operating in rounds, where in each round a
node is able to transmit and receive one message over each of the edges in
the communication graph.

Although the synchronous model may simplify the design and analysis of
algorithms, one cannot avoid to deal with the asynchronous nature of real-
world networks. Interestingly, there are general techniques for so-called syn-
chronizers, which are methods that transform a synchronous algorithm to an
algorithm that can be executed in an asynchronous model, by introducing
additional overhead. Awerbuch [4] proposes three types of synchronizers,
named α, β and γ, where the third is a combination of the first two.

The synchronizers in [4] are based on the concept of a safe state for the
nodes. A node is safe with respect to a certain round k, if all messages it has
transmitted during round k have already arrived at their destination node.
By adding acknowledgments for each message transmitted by the original
algorithm, the synchronizer lets nodes detect when they may enter the safe
state. Depending on the particular choice of synchronizer, the following
steps differ.

Synchronizer α lets a node that has become safe inform its neighbors.
Once all neighbors of a node v are in the safe state w.r.t. round k, node v
can locally generate the clock tick k + 1 and enter the next round. The al-
gorithm is guaranteed to work correctly, since it is not possible that v later
receives messages originating from round k. The combined algorithm re-
quires O(R |E|) additional messages for the synchronizer, where R is the
number of communication rounds needed by the synchronous algorithm.

Synchronizer β is based on the same idea of safe states. Instead of in-
forming all neighbors of becoming safe, however, the network performs a
convergecast of safe messages in a spanning tree that is rooted at an initiator

CHAPTER 4. DISTRIBUTED ALGORITHMS 55

node. This synchronizer requires only O(R |V |) additional messages for the
price of increasing the time complexity of an algorithm by a factor propor-
tional to the height of the tree. The third synchronizer γ aims at combining
the good features of both methods, low message and time complexity.

Consider now an implementation of Algorithm SYNMWDS on top of
a synchronizer. There exist problem instances for which nodes enter the
dominating set one at a time, so that the time complexity in terms of loops in
Algorithm SYNMWDS is linear [66]. If one disregards the time complexity
of the resulting algorithm, one would clearly choose synchronizer β. We
obtain the following result:

Theorem 10. A naive implementation of Algorithm SYNMWDS that is
based on synchronizer β and suitable for execution in the asynchronous
model requires Ω(|V |2∆) messages in the worst case.

Proof. In each iteration of the loop in Algorithm SYNMWDS nodes need to
first transmit their own and receive weight/span values from all their neigh-
bors, which requires one round. Then, each node v needs to relay the values
received from all neighbors u to all other neighbors N(v) \ {u}, which may
require ∆ − 1 rounds. Since each round requires the transmission of |V |
safe-stage messages, the result follows.

Depending on the spanning tree of synchronizer β, the increase in run-
ning time may also be significant. In Chapter 8 we discuss a distributed
MWDS approximation algorithm for the asynchronous model which is based
on Chvátal’s algorithm and has message complexity O(|V |∆2). It generally
holds that ∆ = O(|V |) but for almost all wireless networks one would expect
the maximum degree to be much smaller than |V |.

56 CHAPTER 4. DISTRIBUTED ALGORITHMS

5 LOAD BALANCING VIA MULTIPATH ROUTING

In this chapter we consider the problem of balancing traffic load ideally over
a wireless multihop network, which is formulated as an instance of the mini-
mum maximum congestion problem. We propose a multipath routing algo-
rithm that is based on Algorithm YMMC described in Section 3.2.2. The
algorithm is implemented in the network simulator NS2 as a modification
of the Dynamic Source Routing (DSR) [70] protocol (see Section 2.2.2).
Subsequently, the resulting Balanced Multipath Source Routing (BMSR)
algorithm is evaluated by simulations, which show that it typically achieves
higher network throughput than DSR. We also compare the performance of
BMSR to the performance of an idealized shortest-path routing algorithm.

5.1 INTRODUCTION

Load balancing is a general technique that is applied to achieve one or sev-
eral goals in communication networks. Typically, the task is to utilize the
available resources efficiently, thereby maximizing objectives, such as end-
to-end throughput. However, load balancing also offers benefits in terms of
reliability and may provide redundancy to recover from a limited number of
errors, for instance, link breaks [109].

Since wireless network resources, such as battery power or channel band-
width, are scarce, load-balancing techniques should be applied. We consider
a setting where one tries to avoid bottleneck links while satisfying end-to-end
traffic demands. This problem is well-known for tethered networks. From an
algorithmic point of view, however, it is particularly interesting to develop al-
gorithms that are based on local information available at the nodes, perform
only simple operations and can be easily integrated into routing protocols.

A possible application scenario could be an emergency response network
that was set up after a major accident which destroyed all information infras-
tructure. When a sudden demand arises for transmitting a large amount of
data between a dedicated pair of nodes, e.g., between a control center and
rescue teams, one aims to deliver as much of the critical data as possible. For
this purpose one must balance the traffic among the nodes and utilize the
network capacity to maximize throughput over source-destination pairs.

A considerable amount of work exists on multipath routing in wireless
networks. Multipath extensions to DSR have also been proposed previously.
Nasipuri et al. [100] extend the DSR route finding process to consider alter-
nate routes for a given destination. Wu and Harms [150] modify the proce-
dure of forwarding route-reply messages back to the initiator of a route-request
to discover alternative routes. The algorithm by Wang et al. [143] distributes
traffic over several routes available in DSR’s route cache, based on an esti-
mate of round-trip delay. See [98] for a discussion of different approaches to
multipath routing in wireless networks. Ganjali and Keshavarzian [47] state
that multipath routing alone can not improve load balancing: as node den-
sity increases, the choice of shortest paths connecting any pair of nodes leads
to congestion in the center of the network. They conclude that additional

CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING 57

incentive is needed to push traffic away from the center.
Contrary to the majority of proposed multipath routing algorithms for

wireless networks, which evaluate the quality of a path based on some heuris-
tic information, our algorithm chooses paths based on update rules of an ap-
proximation algorithm for a linear programming formulation of the underly-
ing problem. More specifically, we consider the MMC problem formulated
in Section 3.2.2, which is restated here for convenience.

MMC: minimize λ

subject to
∑
p3e

xp ≤ λc(e), ∀e ∈ E∑
p∈Pn

xp = dn, ∀n

xp ≥ 0, ∀p ∈ P
Recall that in this problem, there are N source-destination pairs (sn, tn),
each with a routable demand dn and a set of paths Pn from sn to tn. To each
possible path p ∈ P , where P = ∪nPn, an optimal solution to the problem
assigns a flow xp, so that the maximum congestion is minimized.

Multipath-based network optimization has been studied extensively for
wired networks. Vutukury and Garcia-Luna-Aceves [140] propose to mini-
mize delay by heuristic redirection of flow over multiple paths. Basu, Lin
and Ramanathan [9] present a potential-based routing method that forwards
packets using steepest gradient search and propose a traffic-aware routing al-
gorithm. This approach relies on a link-state routing algorithm for the dis-
semination of link information throughout the entire network.

5.2 LOAD BALANCING BY CONGESTION MINIMIZATION

The algorithm presented here is based on Young’s version of the approxima-
tion algorithm for the MMC problem [16,154] as discussed in Section 3.2.2
and formulated as Algorithm YMMC. We first describe the algorithm and
then discuss some properties and possible extensions.

5.2.1 The BMSR algorithm

LetG = (V,E) be the communication graph of the network and c : E 7→ R+

a function that determines the capacity of each edge. These capacities can
correspond to limits on the transmission rate of a link, but they may also be
derived from other resource constraints. Note that since our BMSR algo-
rithm is based on Algorithm YMMC, we assume unit edge capacities. For
simplicity, we also assume that demands are of unit value, which corresponds
to all sources having the same amount of routable traffic.

Algorithm BMSR considers G to be directed and edges to be symmet-
ric. Since G is directed, the capacity constraints apply to each pair of edges
(v, u) and (u, v) separately. However, the algorithm could be modified for
undirected communication graphs. Further, we assume that each node acts
only as one source or destination node, respectively. This assumption can be
removed by letting each node run several copies of Algorithm BMSR.

58 CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING

Algorithm BMSR: Multipath routing algorithm based on YMMC
1 node v with local variables dist[·], ite[·], path, y[·], I, bestpath, ε

2 at start
3 for u in Nin(v) do y[u]← 1;
4 for 1 ≤ n ≤ N do
5 dist[sn]←∞;
6 ite[sn]← 0;
7 end
8 if v = sn for some 1 ≤ n ≤ N then
9 paths← ∅; dist[sn]← 0;

10 broadcast BREQ(0,0,(sn), sn, tn);
11 end
12 enter state ACTIVE;
13

14 in state ACTIVE
15 if BREQ(ite, dist′, path, sn, tn) is received from some node u then
16 if (ite = ite[sn] and dist′ + y[u] < dist[sn]) or ite > ite[sn] then
17 dist[sn]← dist′ + y[u];
18 append identifier of v to path;
19 if v 6= tn then
20 broadcast BREQ(ite, dist[sn], path, sn, tn);
21 else
22 bestpath← reversed path;
23 if ite > ite[sn] then
24 schedule BREP(ite, bestpath, sn, tn) along bestpath

after BMSR_ITERATION_DELAY;
25 end
26 end
27 ite[sn]← ite;
28 end
29 end
30 if BREP(ite, path, sn, tn) is received then
31 if v 6= sn then
32 let u be the next node on path after v;
33 y[u]← (1 + ε)y[u];
34 unicast BREP(ite, path, sn, tn) to u;
35 else
36 paths← paths ∪ {reversed path};
37 if ite[sn] < I then
38 ite[sn]← ite[sn] + 1;
39 broadcast BREQ(ite[sn], 0, sn, tn);
40 end
41 end
42 end
43

CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING 59

Recall that each of the I iterations of Algorithm YMMC consists of N
shortest path computations that are followed by flow augmentations and
edge-length updates along the computed paths. In Algorithm BMSR each
node v maintains a variable y[u] for all its incoming neighbors u ∈ Nin(v),
which correspond to the ye variables of each outgoing edge in Algorithm
YMMC. After Algorithm BMSR is initiated, each source sn performs a se-
quence of I shortest path operations, where I is the number of iterations of
Algorithm YMMC. We assume that the sources are loosely synchronized,
so that they typically reside in the same iteration of the algorithm, e.g., by
using timers. The shortest path computations are implemented as a modifi-
cation of the DSR route discovery, which essentially leads to the distributed
asynchronous Bellman-Ford algorithm of page 48.

When a request reaches the destination node, the destination initiates the
propagation of a reply message back to the source, which lets all nodes along
the path update the weights of the affected edges. This reverse transmission is
facilitated by the source-routing character of DSR. Using distributed weight
updates we avoid dissemination of global information.

More precisely, we modify the DSR route discovery, which, in the case of
missing routing information, essentially performs a network-wide broadcast
of route request (RREQ) messages. The balanced route request in Algorithm
BMSR, BREQ, is a modified version of the RREQ of DSR that additionally
contains a record of the total weight of the path the BREQ has taken so far.
Contrary to DSR, if a node receives a BREQ message of the same iteration
and source-destination pair, it may resend it if the second request has a lower
weight than the previously seen one.

When a destination node tn receives a BREQ message destined to itself,
it schedules the transmission of a reply, a BREP message. It does not trans-
mit the reply immediately, but waits for a certain amount of time for other
incoming BREQ messages with lower path cost. The destination then sends
a BREP back to the source by reversing the lowest cost path. Whenever a
node v that lies on this path receives a BREP, it updates the value for y[u]
that it keeps in its routing table for the next node u on the path towards sn.
Note that the edge (u, v) will be used to route flow along the path from sn to
tn. When the BREP reaches the source node, sn records the path from sn to
tn in its routing table and initiates a new iteration if the total number of itera-
tions I has not been reached. After termination of the algorithm, each source
node distributes its traffic evenly over the collected paths, which corresponds
to scaling all path flows down by I as required in Algorithm YMMC.

Once the paths are determined, they are used for routing, independently
of route failures due to temporarily congested links. This operation deviates
from DSR, which initiates route maintenance operations in this case. How-
ever, since each source has a balanced collection of routes to the destination,
the effect of transient link failure diminishes, as the source distributes the
traffic equally among the routes in its the cache.

5.2.2 Discussion

In order to achieve good performance and approach the performance guar-
antees of the underlying approximation algorithm for the MMC problem,

60 CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING

one needs to choose a large value for the number of iterations I . Based on
the analysis in [16], one may choose I = d4|E| log |E|

ε2
e. Our experiments pre-

sented later, however, indicate that a reasonably small number of iterations is
sufficient for achieving good performance in terms of total throughput. We
discuss this aspect further in Section 5.3.2.

Algorithm BMSR updates the weight of incoming edges as BREP mes-
sages are passed towards the source node. This update matches the weight up-
date in Algorithm YMMC in all nodes that lie on only one source-destination
path but deviates in nodes that lie on several paths. This is due to the fact
that in Algorithm YMMC one first determines the increase of flow along
the shortest path and then performs the update, which is not possible in Al-
gorithm BMSR due to the nature of the distributed operation. One should
note, however, that in the case of small ε and a small number of source-
destination pairs the difference is small.

A relatively minor modification of Algorithm BMSR, which would let
both endpoints of an edge update their notion of the weight of the undi-
rected [sic] edge between them, would enable the algorithm to be applied
to the MMC problem on the undirected communication graph. Similarly,
instead of edge capacities, the problem may be formulated in terms of node
capacities. A modified version of the algorithm in this context would main-
tain node costs rather than edge costs. Since Algorithm BMSR was modeled
after Algorithm YMMC for the MMC problem on directed graphs, these
modifications are not considered here.

Algorithm YMMC executes the shortest-path computations for all source-
destination pairs simultaneously, whereas there is no synchronization be-
tween pairs in Algorithm BMSR. This task could be accomplished by adding
a termination detection using ACK/NAK messages, as in Algorithm BF, which
would also render the waiting timer at destination nodes obsolete. Sources
could synchronize and maintain the same iteration index. However, the im-
plementation complexity of the algorithm would increase significantly and
simple modifications to DSR would not be sufficient.

Further one should note that since the underlying shortest path algorithm
is the asynchronous Bellman-Ford algorithm, the worst-case message com-
plexity is exponential in the number of nodes [90]. However, in practice one
rarely observes such bad behavior of the algorithm. In fact, it was shown by
Tsitsiklis and Stamoulis [136] that under reasonable assumptions on trans-
mission delays, the expected number of messages for Bellman-Ford type al-
gorithms is polynomial. An alternative implementation of our algorithm may
instead rely on a different shortest-path algorithm, for example the distributed
algorithm proposed by Haldar [56], which has polynomial message complex-
ity. For the sake of integration with DSR we decided to choose a Bellman-
Ford type algorithm and estimate its performance and overhead by network
simulations.

Finally, it is clear that when implementing the algorithm as a modification
to the DSR implementation of NS2, one needs to respect the limitations
of the simulator. One important parameter is the maximum source-route
length, which limits the hop-count of any path. In our simulations we first
selected the default value and then, when network size increased, chose a
larger value, which still matched our computational resources.

CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING 61

5.3 SIMULATION AND PERFORMANCE EVALUATION

We now continue to evaluate the BMSR algorithm by network simulations
using the NS2 simulator. In all scenarios we consider a stationary network
and several source-destination pairs with constant bit rate (CBR) data sources.

5.3.1 Overview of experiments

Recall that the MMC problem is equivalent to the MCF problem, which
asks for a flow that maximizes the fraction of routable demand. Although gen-
erally this objective is different from maximizing average network through-
put, we chose the latter as the main performance criterion for the sake of
comparison with DSR. The following questions were addressed when plan-
ning the simulation setup.

• Does the BMSR algorithm lead to a performance improvement com-
pared to the standard DSR protocol?

• If so, then how does the choice of routes influence packet collisions
and interface queue (IFQ) overflows, which were identified as factors
degrading DSR performance in congested networks [61]?

• What is the effect of the parameters ε and I on BMSR performance?

• Which role does the number and positioning of source-destination
pairs play?

To experimentally validate the BMSR algorithm, we performed simulations
for a number of different network topologies. For all simulation trials, we
ran BMSR for a chosen value of ε and a chosen number of rounds I to
select routes for each source-destination pair. Then we let the sources trans-
mit with a previously determined constant rate and packet size. We chose
a rather long running time to obtain estimates of the throughput of the net-
work. The same source-destination setup was used to transmit data using the
DSR implementation provided in NS2.

For the simulations we chose to separate the execution of Algorithm BMSR
from the actual routing of data packets used for evaluation. For this purpose,
we introduced an initial balancing setup phase, during which the algorithm
was run, before the start of the throughput evaluation.

In a first set of experiments we only considered two source-destination
pairs in a simple grid topology. We found that BMSR significantly outper-
forms DSR and investigated the effect of balancing on packet collisions and
IFQ overflows. Our results indicate that although multipath balancing does
not significantly reduce the effect of packet collisions, bottleneck formation
is avoided and a reduction in IFQ overflows is achieved. As a secondary
performance criterion we evaluated the average delay of packets that success-
fully reach their destinations. Due to the small size of the network that was
simulated, however, the results on packet delay are inconclusive.

In a second set of experiments we varied the number and location of
source-destination pairs and also compared the performance of BMSR to
the performance of an idealized shortest-path routing algorithm. For all

62 CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING

s2

s1
d1

d2

Figure 5.1: Simulation setup: two source-destination pairs (s1, d1) and
(s2, d2) are placed at the boundary of a grid. Sources s1 and s2 send data
packets at constant rate to their respective destination nodes d1 and d2, so
that the direct connections between both pairs approximately form a cross.
Each node may communicate with the nodes beside, above or below it.

CBR packet size (B) 256, 512, 1024, 2048 MAC bandwidth 1 Mbit
Propagation model Two-ray ground Max. IFQ length 50
MAC protocol 802.11 with RTS/

CTS
Max. route length 22

Network size 2160 m × 2160 m Node count 100
CBR data rate 160 Kbit/s Balancing setup 500 s
Antenna type OmniAntenna Simulation time 1500 s
Carrier sense range: 550 m Trans. range: 250 m

Table 5.1: The parameters used in the first set of BMSR simulations.

the network setups we considered, BMSR outperforms DSR significantly.
BMSR also performs better than the shortest-path algorithm when source-
destination pairs are placed densely or the shortest-paths are not disjoint and
there are only few sources simultaneously active in the network.

5.3.2 Two-pair cross setup

Consider a simple 10 by 10 square grid topology that places nodes a distance
of 240m apart. Since the default maximum transmission range in NS2 is
250m, each node may communicate with the nodes beside, above or below
it. Nodes that are diagonal neighbors, however, are not able to communicate
directly. Regarding packet collisions, one needs to take into account that NS2
uses a pairwise interference model (for details see [64, 93]). It is important
to note that if a transmitting node v is outside the carrier sensing range of
a receiving node u, then the transmission from v does not interfere with
the reception of another packet at u. However, a node may still receive a
packet correctly even if another transmitter is close, provided the received
signal strength of an incoming packet is sufficiently large compared to the
interfering transmission. Figure 5.1 shows the network setup with two source-
destination pairs and Table 5.1 gives the parameter values for this first set of
simulations.

CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING 63

 2

 4

 6

 8

 10

 12

 14

8006004002000
T

hr
ou

gh
pu

t

Simulation time

Packet size 1024

BMSR
DSR

10008006004002001000/0

 2

 4

 6

 8

 10

 12

 14

Simulation time

Packet size 2048

Figure 5.2: Average throughput of both source-destination pairs in KB/s ver-
sus simulation time for a single run of BMSR and DSR (setup phase of
BMSR is omitted from the plot) for I = 160 and ε = 0.05. The horizontal
lines are averages over the entire simulation.

Throughput comparison
Figure 5.2 shows the performance of both algorithms over time. Comparing
throughput for BMSR and DSR, one observes larger fluctuations for DSR. A
major reason for the throughput stability of BMSR is that broken links do not
cause route invalidation. Therefore, its performance is determined during
the initial setup phase of the algorithm. To compensate for the fluctuations
of DSR, we considered the throughput over 1000 s from the time when CBR
transmissions have been initiated, i.e., after the termination of BMSR’s setup
phase, to compare both algorithms. For both packet sizes BMSR clearly
outperformed DSR.

Distribution of network load
In addition to throughput, we studied the distribution of routes over the nodes
by calculating the number of forwarded constant-bit-rate (CBR) packets at
each node. For BMSR we expected most packets to be forwarded by nodes
located near the center of the network, as these routes are shortest and the al-
gorithm initially prefers shorter routes over longer ones. However, the central
nodes should not be loaded much more heavily than those on slightly longer
paths. A balanced network load should also reduce collisions and interface
queue overflows in the network. Recall that the IFQ contains packets that
are scheduled to be transmitted over the network interface. It was previously
observed that IFQ drops at congested nodes lead to decreased performance
of DSR [61]. Besides queue overflows, collisions of MAC layer control mes-
sages and CBR packets degrade performance. Although it is unreasonable
to expect BMSR to be unaffected by collisions, BMSR should yield a more
uniform distribution over the nodes, which essentially prevents the formation
of bottlenecks.

Figure 5.3 shows simulation results for two CBR packet sizes; we use the
following measures:

CBR packet load: the number of CBR packets sent by the MAC layer of
the node. Note that there are in total 20000 and 10000 packets per
source for packet sizes of 1024 and 2048 bytes respectively. Due to

64 CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING

drops and collisions this number does not necessarily correspond to the
actual number of successfully forwarded messages. Data from sources
was excluded from Figure 5.3 for clarity.

CBR packet collisions: the number of CBR MAC layer collisions caused
by interference that occurred at each node, excluding the sources.
Since the MAC layer uses a retransmission scheme, these numbers
do not necessarily coincide with the number of dropped packets.

IFQ overflows caused by CBR packets: the number of IFQ overflow events
that occurred at each node.

One might expect DSR to favor shorter routes, yielding an increased net-
work load within the center of the grid, resulting in interference and low
network throughput. BMSR should recognize areas of higher congestion
and after initially selecting shorter routes, select routes that avoid the poten-
tially congested areas. In Figure 5.3, one only observes minor differences for
BMSR and DSR. Depending on the averaging of packet load over the rather
long simulation run, the load for DSR appears to be well balanced. The rea-
son is that within the congested network, rediscovered routes will typically be
different from recently broken routes. There is a slightly higher utilization of
boundary nodes by DSR, but the overall network load for BMSR is higher
than for DSR, which can be explained by the higher throughput.

Due to overall higher load, BMSR encounters more collisions compared
to DSR. A remarkable effect is the concentration in the quadrant of the net-
work formed by the square with the sources on its diagonal. The effect is
apparent for both algorithms and packet sizes, but emphasized for BMSR
and 1024-byte packets. Nodes within this part of the network may be relaying
packets from both sources in roughly opposite directions. Hence they have
to transmit packets in more diverse directions than nodes within the vicinity
of the destinations.

As the MAC layer transmission of a CBR packet includes a request to
send (RTS)/clear to send (CTS) handshake, collisions are more likely to oc-
cur when nodes are transmitting in different directions than when the pack-
ets travel roughly in the same direction. DSR chooses paths that are close
to shortest-hop paths. Therefore, subsequent packets for the same destina-
tion are less likely to interfere with each other. Figure 5.4 shows a situation
when shortest paths avoid collisions but balancing may lead to an increase in
collisions. The distribution of IFQ overflows follows basically the same prin-
ciple. However, we observed a major difference between BMSR and DSR:
the single-path routing of DSR led to the formation of bottleneck nodes due
to congestion in the bottom left quadrant of the network. As DSR prefers
shorter paths, such overloading of nodes is restricted to the band of nodes
between the sources. The effect was stronger for smaller packet sizes, ex-
plained by the increased MAC layer overhead. BMSR showed hardly any
IFQ overflows at all, except within the vicinity of the sources.

Effect of parameters I and ε
We also studied the effect of the I and ε parameters on the performance. The
results are summarized in Figure 5.5 and are mostly as expected; already for

CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING 65

1024 B 2048 B

D
SR 10000

7500

5000

2500

0

B
M

SR

(a) CBR packet load

1024 B 2048 B

D
SR

525

350

175

0

700

B
M

SR

(b) CBR packet collisions

1024 B 2048 B

D
SR 1000

750

500

250

0

B
M

SR

(c) IFQ overflows caused by CBR packets

Figure 5.3: Averages over five runs for the performance measures of DSR
and BMSR for I = 160 iterations and ε = 0.05 for two CBR packet sizes;
variations were negligible. Source and destination nodes are indicated by
dashed circles, where sources are marked by an additional solid inner circle.

66 CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING

s t

Figure 5.4: Network where nodes are located on a 2 × 3 grid; interference
range is approx. twice the transmission range. The crossed arrows indicate
transmissions that may interfere.

 6

 7

 8

 9

 10

 11

 5 10 20 40 80 160

T
h

ro
u

g
h

p
u

t

Iterations

ε = 0.05
ε = 0.20
ε = 0.01
ε = 0.80
Random

DSR

Figure 5.5: Performance in KB/s as a function of I and ε for CBR packet
size 2048: BMSR, DSR, and random route selections of I routes between
source-destination pairs, which are formed by selecting I routes on the ba-
sis of a random walk from sources to destinations. All values are averages
over at least 15 repetitions (standard deviations shown). The legend ordering
corresponds to the throughput value at I = 160.

a modest number of iterations we obtained throughput superior to DSR.
There is a dependency of the throughput on ε and I : for larger values of ε,
fewer iterations are needed to obtain a good throughput, but running a large
number of iterations with a small value of ε yields a slightly better throughput.

An interesting observation can be made when considering the results of
Figure 5.5. For a given value of ε, the throughput first increased rapidly as
I increases but after reaching a maximum, the throughput started to decline
gradually. We conjecture that this phenomenon is essentially caused by the
difference between the two objectives of maximizing total flow versus max-
imizing the minimum routable demand, which is equivalent to minimizing
maximum congestion. As the optimization algorithm progresses, the weights
of the most congested edges will come to completely dominate the search for
the least cost route from the source to the destination. With a large enough
iterations count, the algorithm only seeks to balance the flow on those edges
without any regard for the traffic situation in the rest of the network. We also
ran the tests for other values of ε, but omit these from the figure for clarity;
for ε ≤ 0.05, the peak performance had not yet been reached for I = 160.

In our experiments we performed considerably fewer iterations than rec-

CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING 67

 5

 6

 7

 8

 9

 10

 11

 256 512 1024 2048

T
h
ro

u
g
h
p
u
t
(K

B
/s

)

Packet size

BMSR
DSR

 5

 10

 15

 20

 25

 30

 35

 40

 256 512 1024 2048

D
e
la

y
 (

s
)

Packet size

DSR
BMSR

Figure 5.6: On the left, throughput in KB/s versus packet size, and on the
right, delay in seconds versus packet size, for parameter values I = 160 and
ε = 0.05. All values are averages over at least 15 repetitions. Note the log-
arithmic scale for the packet size and that the CBR rate is 160 Kbit/s for all
runs.

ommended by Algorithm YMMC. For small values of ε, in the first iterations
the weight of each edge remains at approximately 1, and thus the paths found
by BMSR will be essentially fewest hop paths. It seems plausible that instead
of only optimizing the hop count, or only balancing the flow along the most
congested edges, good results could be obtained by taking both factors into
consideration. It is our conjecture that this is what happens when the number
of iterations I is less than recommended by Algorithm YMMC.

Effect of packet size on throughput and delay
Figure 5.3 indicates that both BMSR and DSR perform differently for dif-
ferent packet sizes. Figure 5.6 shows throughput and packet delay for both
BMSR and DSR for various packet sizes. The throughput performance of
DSR seems to increase until a critical packet size, after which increasing
the packet size further decreases DSR’s performance. We assume this to
be caused by the interdependence of the two main reasons of packet loss:
collisions of CBR packets due to interference and IFQ overflows. Increas-
ing packet size for a constant CBR rate reduces the number of packets and
therefore the total MAC layer overhead. However, the time frame required
for the transmission of a single packet increases correspondingly and retrans-
missions become more costly. Still the effect of losing larger packets due to
IFQ overflows seems to outweigh the impact of collisions. We therefore con-
clude that increasing the packet size reduces the negative effect of collisions
on throughput for BMSR, while DSR suffers from IFQ overflows due to
network congestion.

As Figure 5.6 shows, in our experiments DSR packet delay grows nearly
linearly with packet size, whereas BMSR shows a clearly lower, approxi-
mately constant delay. This is most likely due to the fact that after the initial
setup phase BMSR uses a static routing scheme. The considered network
size is evidently too small to expose the larger delay that BMSR experiences
compared to DSR because of using longer routes on average. Since our main
focus is on evaluating the degree of load balancing that can be achieved by
the algorithm, we do not consider packet delay further.

68 CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING

 0

 2

 4

 6

 8

 10

8006004002000

T
hr

ou
gh

pu
t

Simulation time

Grid Placement

 BMSR
DSR

10008006004002001000/0
 0

 2

 4

 6

 8

 10

Simulation time

Random Placement

Figure 5.7: Average CBR throughput of both source-destination pairs in KB/s
versus simulation time for a single run of DSR and BMSR for I = 160,
ε = 0.05 and packet size of 2048 bytes. The plot shows averages over 15 runs
for both the grid and the random placement.

Random node placement
Assuming a random versus a grid deployment is intuitively a more natural as-
sumption, since a grid setup requires the careful placement of nodes prior to
the operation of the network. We now proceed to a setup where intermediate
nodes are positioned randomly, while the position of source and destination
nodes stays the same. In order to maintain connectivity, we roughly doubled
the density of nodes within the network by decreasing the network dimen-
sions by a factor of approximately

√
2, yielding a network size of 1530 m ×

1530 m. All nodes different from source and destination nodes were placed
uniformly at random in the square area. In order to estimate the effect of
a random placement, we compared runs of the algorithms for the random
setup to runs on a grid of the same dimensions. The grid setup used for com-
parison still corresponds to Figure 5.1 but the smaller distances between grid
neighbors allow nodes to also communicate with diagonal neighbors.

Figure 5.7 shows throughput results obtained for the grid network and the
random geometric graph for both routing algorithms. From the figure one
observes that the random node placement did not affect the performance
of either routing algorithm significantly. However, a slight performance de-
crease for BMSR is observable. This may be explained by increased inter-
ference caused by the larger density of nodes in the network, as BMSR does
not take into account interference between radio links. In this sense, the grid
placement is more favorable to BMSR since the node density is constant and
relatively low throughout the network.

Due to the only minor decrease and and in order to reduce random
effects, we focused further simulations on grid topologies. We also fixed
ε = 0.05 and I = 160, since these values showed the best average throughput
over both source-destination pairs.

5.3.3 Multiple source-destination pairs

In order to develop an intuition on how BMSR scales with the number of
source-destination pairs and to determine the effect of differing traffic pat-
terns on its performance, we conducted a second series of experiments. We

CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING 69

Figure 5.8: Different simulation setups; left: “dense”, middle: “sparse”, right:
“twisted”.

Max. route length: 26 Node count: 200
CBR packet size (B) 2048 Network size: 2160 m × 4320 m
Source-destination pairs 1-5 BMSR parame-

ters:
I = 160, ε = 0.05

Table 5.2: The modified parameters for the second set of BMSR simulations.

increased the number of pairs and also varied their relative location com-
pared to the other pairs in the network. The three different simulation setups
are depicted in Figure 5.8. The changes in simulation parameters compared
to Table 5.1 are summarized in Table 5.2. Note that the separation between
grid neighbors is again 240 m, enabling nodes only to communicate with the
nodes that are also their neighbors on the grid. The width of the grid was
doubled to determine the spread of routes over the network.

We increased the maximum number of hops in each route to account
for the larger network size. This value, which is a constant given in the
NS2 implementation of DSR, determines the spreading of routing-control
packets, such as RREQ, in the network as well as the connectivity between
nodes. However, NS2 resource consumption forced us to choose a rather
conservative value of 26 hops. We then explored the performance of DSR,
BMSR and SPR, by which we refer to an idealized shortest path algorithm.

The SPR algorithm was initialized to use a route of minimum length from
the source to the destination node for all packets during the simulation run,
independent of route failures. In the case that there are multiple routes of
minimum length, SPR picks any route from these at random. In this sense it
behaves similar to BMSR, which determines routes in the setup phase of the
algorithm. The algorithm was chosen to evaluate the benefit from choosing
multiple routes over a single shortest route for a given network setup.

Densely placed pairs
We first considered the setup shown on the left of Figure 5.8. In this scenario,
the sources are located directly opposite to their respective destinations and
all sources are located next to each other on the boundary of the grid. We
refer to this situation as the “dense setup”.

Because the source and destination nodes are packed closely together,
there exists a large number of nodes to the left and to the right, respectively,
of the leftmost and rightmost source and destination nodes. In this setup,
one can observe from Figure 5.9 that BMSR outperformed both DSR and

70 CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING

 0

 4

 8

 12

 16

 20

54321

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

Of Source/Dest Pairs

BMSR
SPR
DSR

 0

 20

 40

 60

 80

 100

 120

 140

54321

%
 I

m
p

ro
v
e

m
e

n
t

o
v
e

r
D

S
R

Of Source/Dest Pairs

Figure 5.9: Average throughput of multiple densely-placed source-
destination pairs in KB/s using routing algorithms DSR, BMSR, and SPR.
Errorbars represent the standard deviation over 15 repetitions.

SPR. The latter two routing methods tend to use routes that are close to
each other, so that up to three shortest paths can interfere with each other.
Route interference, in turn, causes collisions and packet drops due to IFQ
overflows.

In the dense setup, as the number of source-destination pairs increases,
shortest-path routes can be expected to be the most favorable in terms of
causing less interference than any other choice of routes. Thus the com-
parative advantage of BMSR with respect to SPR decreases. This trend is
observable in Figure 5.9. However, as densely packed routes are subject to a
higher rate of collisions and retransmissions, SPR also showed a decreasing
performance for an increasing number of CBR pairs.

Sparsely placed pairs
The previously considered dense setup does not provide the nodes with non-
interfering routes to their respective destination when there is more than
one pair. In order to evaluate the benefit of balancing the load over mul-
tiple routes, a setting where shortest paths do not interfere was deemed to
be more informative. Therefore, we generated a setting where source and
destination nodes are separated by three intermediate nodes, thereby elimi-
nating interference among shortest-path routes. The middle picture shown
in Figure 5.8 depicts this setup. Not surprisingly, the throughput for SPR
remained roughly constant for an increasing number of source-destination
pairs, as shown in Figure 5.10.

In this setup, BMSR was able to take advantage of the additional nodes
between adjacent shortest-paths and shows an increased throughput com-
pared to the dense placement of source-destination pairs, while DSR did not
perform significantly better than for the dense setup. As DSR heavily relies
on cached routing information, which is updated by routes overheard from
neighbors or taken from forwarded packets, nearby sources tend to share parts
of their routes over the long run.

Effect of a large number of route intersections
In order to evaluate the performance of BMSR for a scenario with a large
number of route-intersections, we created a worst-case scenario for route in-

CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING 71

 0

 4

 8

 12

 16

 20

54321

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

Of Source/Dest Pairs

SPR
 BMSR

DSR
 0

 40

 80

 120

 160

 200

 240

54321

%
 I

m
p

ro
v
e

m
e

n
t

o
v
e

r
D

S
R

Of Source/Dest Pairs

Figure 5.10: Average throughput of multiple sparsely-placed source-
destination pairs in KB/s using routing algorithms DSR, BMSR, and SPR.
Errorbars represent the standard deviation over 15 repetitions.

 0

 4

 8

 12

 16

 20

54321

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

Of Source/Dest Pairs

BMSR
SPR
DSR

 0

 20

 40

 60

 80

 100

 120

 140

 160

54321

%
 I

m
p

ro
v
e

m
e

n
t

o
v
e

r
D

S
R

Of Source/Dest Pairs

Figure 5.11: Average throughput of multiple sparsely-placed source-
destination pairs with twisted destination arrangement in KB/s using routing
algorithms DSR, BMSR, and SPR. Errorbars represent the standard devia-
tion over 15 repetitions.

tersections by ‘twisting’ the aforementioned setup. The right side of Fig-
ure 5.8 depicts the resulting network. It is easy to see that the number of
pairwise route intersections is n(n− 1)/2, where n is the number of source-
destination pairs.

Figure 5.11 shows performance results obtained for this network setup. It
is interesting to see that BMSR performed very similarly to SPR. This can
be explained by the fact that each route necessarily crosses any other route,
which causes collisions and congestion at intermediate nodes. However, due
to the spreading achieved especially for the inner source-destination pairs,
BMSR still outperformed SPR for a smaller number of sources. As the
maximum source-route length restricts the choice of routes for the balanc-
ing algorithm, the degree of freedom for outer pairs was much smaller than
for inner pairs. In fact, for five source-destination pairs, the outermost pair
always routes over shortest paths, determined by the maximum source-route
length of 26.

DSR again showed the least performance for this setup. Congested nodes
and collisions due to the heavy load in the center of the network caused
routes to fail repeatedly. These had to be rediscovered regularly, causing
additional overhead of routing control messages.

72 CHAPTER 5. LOAD BALANCING VIA MULTIPATH ROUTING

6 NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

In the previous chapter, we discussed a multipath routing algorithm that is
based on a linear optimization problem, which assumes a given demand of
routable traffic at each source node in the network. We now consider a sit-
uation, when sources have no predetermined traffic demand but optimize a
utility function that corresponds to their contentment with the current state
of the network, independently of other sources. Since network resources
are limited, sources still compete for them. We approach the problem in
the context of network utility maximization [73,74], which has been applied
previously to a large number of related problems.

Besides introducing utility functions to the routing problem, we restrict
sources to a maximum number of paths that may carry positive flow. The
BMSR algorithm we proposed earlier explores longer paths as it proceeds
and may obtain a new path in every iteration of the algorithm. When the
number of iterations is small, this approach is feasible. In this chapter, how-
ever, we implement the constraint on the number of usable paths by inte-
grating it into the problem formulation. We develop a distributed algorithm
that is based on dual decomposition, show the optimality of a stationary so-
lution, and compare the performance of the algorithm with a centralized
branch-and-bound method. The branch-and-bound algorithm is based on
the techniques described in Section 3.2.3.

A bound on the number of paths is a natural restriction in practice. For
instance, in a wireless network connectivity typically changes often, and the
amount of state information used for routing should therefore be kept rea-
sonably low.

6.1 INTRODUCTION

The work by Kelly, Maulloo and Tan [73, 74] initiated an active line of re-
search that is based on the idea of treating network protocols, such as TCP, as
methods for solving an implicit global optimization problem based on con-
tinuous updates of local information. This methodology allows interesting
insights into current network protocols but also provides means to develop
new distributed algorithms for various network optimization problems.

The work initiated by [74] resulted in new algorithms for power assign-
ment and transmission scheduling in wireless networks [129], joint optimiza-
tion of network flow and resource allocation [151], multipath routing with
capacity constraints [58, 84, 88, 105, 113] and distributed coordination of co-
operating agents [115]. The majority of algorithms are derived by the dual-
decomposition technique, which can be applied to certain types of problems
to derive a decomposition into several subproblems that communicate via
dual variables. For an overview of dual decomposition and its applications
see, e.g., [29,69] and the references therein. Further applications and exten-
sions of network utility maximization are discussed in the thesis of Johans-
son [67]. For recent developments on stochastic network utility maximiza-
tion see the survey by Yi and Chiang [153].

CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS 73

K Maximum number of paths with non-zero flow in a feasible solution.
Un Utility function for pair (sn, tn).
Pn Set of all paths connecting source sn to sink tn.
P Set of all paths between sources and their respective sinks, that is

P =
⋃
nPn; note that the Pn are pairwise disjoint.

S Selection of paths, where S = (P1, . . . , PN) and each Pn ⊆ Pn.
PS Set of selected paths, i.e., PS =

⋃
n Pn, where S = (P1, . . . , PN).

yn Total flow originating from source sn.
xp Flow over path p.
rvp Binary constant whose value 1 indicates that node v is on path p.
T Set of terminals that includes all source and destination nodes, i.e.,

T =
⋃
n{sn, tn}.

Table 6.1: Notation used in this chapter.

While problems similar to the one addressed here have been considered
in the literature, network utility maximization problems with path constraints
seem not to have received much attention. Lin and Shroff [84] consider a
fixed set of paths and briefly outline how to incorporate finding alternate
paths into their algorithm. The algorithm by Lestas and Vinnicombe [82] is
based on the penalty function approach of [74]. Their algorithm is similar
to the one discussed in this chapter, in the sense that it iteratively optimizes
path-flow and path prices based on a set of selected paths, which is updated
depending on price information. However, as the same authors note, the
penalty function approach tends to distribute the flow over a large number of
paths, which is undesirable in practice.

A large variety of network utility maximization (NUM) problems exist in
the literature. Since there is no established definition of a NUM problem,
let us fix the formulation we use here. Similarly to the multicommodity flow
problem, we assume a directed graphG = (V,E), which represents the com-
munication graph of a wireless network, and N distinct source-destination
pairs (s1, t1), . . . , (sN , tN), where sn is the source and tn is the destination.
For simplicity we assume that edges are symmetric. For each pair (sn, tn)
there exists a utility function Un : R+ 7→ R which is strictly concave, differ-
entiable and increasing.

We are interested in finding a distributed algorithm for a routing problem
in wireless ad hoc networks. Hence, instead of the more common edge-
capacity constraints, in our model there exist node capacities c : V 7→ R+,
which may model transmission time, battery power, etc. The objective is
to maximize the global network utility, which is the sum of the utilities of
the total flow originating from source nodes, such that the total amount of
flow received and sent by each node v does not exceed its capacity c(v). We
further assume that for each pair (sn, tn) there exists at least one path of non-
zero capacity from sn to tn. Table 6.1 summarizes notation.

Associate a flow commodity with each of the pairs. Denote the set of all
paths from source sn to target tn by Pn and let P be the set of all paths. Let T
be the set of all terminals, i.e., source and destination nodes. By introducing
a variable xp for the flow on path p for all p ∈ P , the problem without path

74 CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

constraints can be formulated as follows:

NUM maximize
N∑
n=1

Un (yn)

s.t.
∑
p∈Pn

xp = yn ∀1 ≤ n ≤ N (6.1)∑
p∈P

2 rvpxp ≤ c(v) ∀v ∈ V \ T (6.2)∑
p∈P\Pn

2 rvpxp +
∑
p∈Pn

xp ≤ c(v) ∀1 ≤ n ≤ N, v ∈ {sn, tn} (6.3)

yn ≥ 0 ∀1 ≤ n ≤ N, xp ≥ 0 ∀p ∈ P .

Constraint (6.1) requires that for the n-th commodity, the total flow equals
the sum of the path flows. Equations (6.2) and (6.3) ensure that the total
flow received and transmitted by any node does not exceed its capacity. The
binary constants rvp equal 1 if node v lies on path p and rvp = 0 otherwise.
The constraints take into account that a node v receives and transmits traffic
if it lies on a path p, unless p ∈ Pn and v ∈ {sn, tn}, in which case v either
receives or transmits.

The NUM problem as formulated above is a convex optimization prob-
lem with linear constraints and a potentially exponential number of variables.
This formulation using path flows lends itself to a solution by a distributed al-
gorithm, as we show in Section 6.2. However, a more common formulation
employs variables for the flow of each commodity over a particular edge, lead-
ing to a polynomial number of variables. This edge-flow formulation of the
problem can be solved efficiently by standard centralized convex optimiza-
tion algorithms. We use an edge-flow representation later on to compare
against our distributed algorithm.

Note that our model does not explicitly take interference into account.
However, instead of node-capacity constraints as formulated by (6.2) and
(6.3), which apply to each node separately, one could instead consider ca-
pacities for node neighborhoods N+

k (v) for k ≥ 1. This approach is based
on the assumption of a simple interference model, according to which nodes
that are located within a distance of k hops from each other may interfere. A
single-path routing algorithm based on this interference model using k = 2
was proposed by Vannier and Lassous [138].

In the context of NUM, one particular choice of utility functions leads
to a flow allocation y that is proportionally fair. A feasible solution (x, y)
is said to be proportionally fair if for any other feasible solution (x′, y′) the
aggregated proportional change is either zero or negative, i.e.,

N∑
n=1

y′n − yn
yn

≤ 0.

For the choice of Un = log(yn) it is known that optimal solutions to the
network utility maximization problem are exactly those that satisfy the pro-
portional fairness condition [74].

As argued earlier, in practice one would like to restrict the number of non-
zero flow paths used in a solution. We call the problem with additional path

CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS 75

NUM KNUM
KNUM−E

KNUM−P KNUM−PQ KNUM−PQ(x̄)

Figure 6.1: Transformations between problems applied in this chapter.

constraints KNUM and formulate it as follows.

KNUM maximize
N∑
n=1

Un (yn)

s.t.
∑
p∈Pn

xp = yn ∀1 ≤ n ≤ N (6.4)∑
p∈PS

2 rvpxp ≤ c(v) ∀v ∈ V \ T (6.5)∑
p∈PS\Pn

2 rvpxp +
∑
p∈Pn

xp ≤ c(v) ∀1 ≤ n ≤ N, v ∈ {sn, tn} (6.6)

|Pn| ≤ K, Pn ⊆ Pn ∀1 ≤ n ≤ N (6.7)
yn ≥ 0 ∀1 ≤ n ≤ N, xp ≥ 0 ∀p ∈ PS,

In problem KNUM each source sn maintains a selection of paths Pn ⊆ Pn
and path rates xp for all paths p ∈ Pn. We denote the complete path selection
by S, where S = (P1, . . . , PN). Equation (6.7) limits the number of selected
paths to at most K for any source-destination pair. The relation between
NUM and KNUM is analogous to the relation between MMF and KMMF
in Section 3.2.3. Figure 6.1 depicts the high-level transformations of problem
NUM that we apply to obtain a distributed algorithm. The algorithm actu-
ally solves an instance of problem KNUM by iteratively solving KNUM-P,
which uses a fixed selection of paths but is otherwise identical to KNUM.
To prevent oscillations in the path rates, as also observed earlier in [144], we
apply proximal minimization techniques to KNUM-P and obtain problem
KNUM-PQ, which has the same optimum. Recall that proximal optimiza-
tion was discussed in Section 3.3.2. Finally, we keep some of the variables in
KNUM-PQ fixed while others remain variable. The resulting problem with
x̄ fixed is then denoted as KNUM-PQ(x̄).

When K is small, solving problem KNUM becomes computationally
complex. Wang et al. [142] prove that NUM problems that consider a vari-
able path selection and optimize the selection of a single path for each com-
munication pair are NP-hard. However, because any source-destination flow
can be decomposed into at most |E| paths and cycles [1], if one allows a large
number of paths, an optimal solution to KNUM is also an optimal solution
to NUM. Hence, since an edge-flow based formulation of problem NUM
can be solved efficiently, an optimal solution to KNUM for large K can be
obtained by solving NUM and decomposing the resulting flow.

In practice the minimum number of paths required to decompose a given
source-destination flow may be much smaller than |E|, but finding the min-
imum K is NP-hard [5]. In the rest of this chapter, we solve problem NUM
by solving a corresponding KNUM instance while assuming that K is suffi-
ciently large. Later we compare solutions obtained by our algorithm to solu-
tions obtained by a centralized branch-and-bound algorithm. This algorithm

76 CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

Solve

Update path selection

while not converged do

KNUM

(use Gauss−Seidel Method)

Solve Dual of

KNUM−PQ

KNUM−PQ

(x(t+ 1), y(t+ 1))← arg maxx,y KNUM-PQ(x, x̄(t+ 1))

KNUM-PQ(x̄(t))

(xp(k + 1), yn(k + 1))← arg maxL(λ(k,)µ(k), x̄(t+ 1), x, y)

(λ(k + 1), µ(k + 1))← arg min g(λ, µ, x̄(t+ 1))

x̄(t+ 1)← arg maxx̄ KNUM-PQ(x(t), x̄) = x(t)

Figure 6.2: High-level outline of the proposed method.

solves an edge-flow representation of problem KNUM for a fixed value ofK,
which is an instance of problem KNUM-E to be defined later. By varying
K we can thus determine the minimum number of paths required to obtain
an optimal solution to problem KNUM with the same objective value as an
optimal solution to NUM. Our results indicate that for smaller networks our
algorithm does not require many more paths to reach convergence and solve
NUM compared to the centralized branch-and-bound algorithm.

6.2 DISTRIBUTED ALGORITHM

We now decompose problem KNUM into a series of subproblems that are
obtained by keeping some variables fixed while optimizing over the remain-
ing free variables. Using the technique of dual decomposition we thus obtain
a distributed algorithm for the original problem. Figure 6.2 depicts the high-
level structure of the decomposition.

CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS 77

6.2.1 Fixed selection of paths

Using the notation in Table 6.1 we first consider a fixed selection of paths
S = (P1, . . . , PN). When only optimizing the path-rates for the fixed selec-
tion, the problem becomes

KNUM-P maximize
N∑
n=1

Un (yn)

s.t.
∑
p∈Pn

xp = yn ∀1 ≤ n ≤ N (6.8)∑
p∈PS

2 rvpxp ≤ c(v) ∀v ∈ V \ T (6.9)∑
p∈PS\Pn

2 rvpxp +
∑
p∈Pn

xp ≤ c(v) ∀1 ≤ n ≤ N, v ∈ {sn, tn} (6.10)

yn ≥ 0 ∀1 ≤ n ≤ N, xp ≥ 0 ∀p ∈ PS.

Here the difference between KNUM and KNUM-P is that in the latter
the selection of paths is fixed. One observes that the objective function of
KNUM-P is strictly concave in yn but not in xp. Hence, the dual function
may not be differentiable and applying a subgradient method may result in
oscillations [144]. Instead of a subgradient method, we apply proximal opti-
mization described in Section 3.3.2 and introduce additional variables x̄ and
a quadratic term to the objective function. The same technique has been ap-
plied previously to NUM problems for fixed multipath routing, e.g., by Lin
and Shroff [85] and Wang et al. [144].

Introducing the x̄ results in an objective function that is strictly concave
in x and y for fixed x̄ and leads to a differentiable dual function [14, p. 669].
As a minor technicality, we also substitute each equality constraint by two
inequality constraints. The modified problem then becomes

KNUM-PQ maximize
N∑
n=1

Un (yn)− 1

2D

∑
p∈PS

(xp − x̄p)2 (6.11)

s.t.
∑
p∈Pn

xp − yn ≤ 0, yn −
∑
p∈Pn

xp ≤ 0 ∀1 ≤ n ≤ N (6.12)∑
p∈PS

2 rvpxp ≤ c(v) ∀v ∈ V \ T (6.13)∑
p∈PS\Pn

2 rvpxp +
∑
p∈Pn

xp ≤ c(v) ∀1 ≤ n ≤ N, v ∈ {sn, tn} (6.14)

yn ≥ 0 ∀1 ≤ n ≤ N, xp ≥ 0, x̄p ≥ 0 ∀p ∈ PS, (6.15)

where D is a positive scaling constant. Problem KNUM-PQ then matches
KNUM-P except for the quadratic term, which equals zero for any opti-
mal solution. That is, if (x∗, y∗) is an optimal solution for KNUM-P, then
(x∗, x̄∗, y∗) with x̄∗ = x∗ is an optimal solution for KNUM-PQ.

We now apply the Gauss-Seidel method described in Section 3.3.2 to
KNUM-PQ. Consider two parameterized versions of KNUM-PQ, one
with the value of x̄ fixed and (x, y) variable and one with x̄ variable and

78 CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

(x, y) fixed. In every iteration of the Gauss-Seidel method, we first optimize
KNUM-PQ with x, y variable and x̄ fixed. Then, we solve KNUM-PQ with
x̄ variable and x and y fixed to their values determined before. The second
step is simple, as the objective function (6.11) is maximized at x̄ = x for fixed
x and y, so we only need to consider the first step.

Denote the problem with x̄ fixed by KNUM-PQ(x̄). Since the objective
function in KNUM-PQ(x̄) is strictly concave and because all constraints
are linear, the problem has a unique solution. It follows that the correspond-
ing dual function is differentiable, and we can apply a gradient method to
the dual problem. Based on the Lagrange multipliers and their utility func-
tions Un, sources can then determine their path rates, which is the essen-
tial idea of dual decomposition. We formulate the (partial) Lagrangian for
KNUM-PQ(x̄) by introducing multipliers λv for the node capacity and µ+

n

and µ−n for the total-flow constraint of source sn.

L(x, x̄, y, λ, µ+, µ−) =
N∑
n=1

Un(yn)− 1

2D

∑
p∈PS

(xp − x̄p)2

−
∑
v∈V \T

λv

(∑
p∈PS

2 rvpxp−c(v)
)
−

N∑
n=1

(µ+
n−µ−n)

(
yn−

∑
p∈Pn

xp

)
−
∑

1≤n≤N

∑
v∈{sn,tn}

λv

(∑
p∈PS\Pn

2 rvpxp +
∑
p∈Pn

xp−c(v)

)
(6.16)

Let us denote by ρv(x) the load of a node v:

ρv(x) =

{∑
p∈PS\Pn

2 rvpxp +
∑

p∈Pn
xp ∀1 ≤ n ≤ N, v ∈ {sn, tn}∑

p∈PS
2 rvpxp ∀v ∈ V \ T

Based on this definition we can rewrite (6.16) as

L(x, x̄, y, λ, µ+, µ−) =
N∑
n=1

Un(yn)− 1

2D

∑
p∈PS

(xp − x̄p)2

−
∑
v∈V

λv

(
ρv(x)−c(v)

)
−

N∑
n=1

(µ+
n−µ−n)

(
yn−

∑
p∈Pn

xp

)
.

(6.17)

The value of the dual function g(λ, µ+, µ−, x̄) to problem KNUM-PQ(x̄),
i.e., KNUM-PQ with fixed x̄, can then be obtained by maximizing the La-
grangian over x and y for the given dual values and x̄. One obtains

g(λ, µ+, µ−, x̄) = sup
x≥0,y≥0

{
L(x, x̄, y, λ, µ+, µ−)

}
(6.18)

and the dual problem becomes

minimize g(λ, µ+, µ−, x̄) (6.19)
subject to λ ≥ 0, µ+ ≥ 0, µ− ≥ 0. (6.20)

Recall that x̄ is constant. Since the dual function is differentiable, we can
form the following partial derivatives for the dual function g(λ, µ+, µ−, x̄).

∂g

∂λv
= c(v)− ρv(x̃),

∂g

∂µ+
n

=
∑
p∈Pn

x̃p − ỹn,
∂g

∂µ−n
= ỹn −

∑
p∈Pn

x̃p, (6.21)

CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS 79

where x̃p = arg max
x≥0

L(x, x̄, y, λ, µ+, µ−)

ỹn = arg max
y≥0

L(x, x̄, y, λ, µ+, µ−).
(6.22)

We would like to use the projected gradient method of Section 3.3.2 for find-
ing a maximizer of the dual function. However, in each iteration we need
to solve the primal subproblem given by (6.22). Fortunately, in this case the
maximizers x̃ and ỹ can be determined in a single step, by making some mild
assumptions on the utility functions Un. Denote by γp(λ) the cost of a path
p ∈ Pn as seen by the source-destination pair (sn, tn). More precisely, let

γp(λ) = λsn + λtn +
∑

v∈V \{sn,tn}

2 λvr
v
p.

Then we can once more rewrite (6.16), this time by grouping together the
terms related to each source-destination pair and each path. We obtain

L(x, x̄, y, λ, µ+, µ−) =
N∑
n=1

[
Un(yn)− (µ+

n − µ−n)yn

−
∑
p∈Pn

(
1

2D
(xp−x̄p)2−

(
µ+
n − µ−n − γp(λ)

)
xp

)]
+
∑
v∈V

λvc(v).

(6.23)

From (6.23) it becomes clear that the primal subproblem decomposes into
decisions for each path and each source-destination pair. For simplicity let
us assume that the derivative U ′n of Un is invertible. Then by elementary
differentiation we can rewrite (6.22) as

x̃p = x̄p +D
(
µ+
n − µ−n − γp(λ)

)
ỹn = U ′n

−1
(µ+

n − µ−n)
(6.24)

and thus obtain the following update rules for all 1 ≤ n ≤ N and v ∈ V for
the projected gradient method applied to the dual problem (6.19):

xp(k) =

[
x̄p +D

(
µ+
n (k)− µ−n (k)− γp

(
λ(k)

))]+

∀p ∈ Pn (6.25)

yn(k) = [U ′n
−1

(µ+
n (k)− µ−n (k))]+ (6.26)

λv(k + 1) = [λv(k) + α(ρv(x(k))− c(v))]+ (6.27)

µ+
n (k + 1) =

[
µ+
n (k) + α

(
yn(k)−

∑
p∈Pn

xp(k)

)]+

(6.28)

µ−n (k + 1) =

[
µ−n (k)− α

(
yn(k)−

∑
p∈Pn

xp(k)

)]+

, (6.29)

where k is the iteration index, α is a sufficiently small step size, [·]+ is the pro-
jection on the non-negative orthant, and U ′n

−1 is the inverse function of the
derivative of Un. Note that the update rules contain an explicit solution for
the primal variables given the corresponding dual variables and x̄p. Assuming
that each source sn is aware of the cost γp(λ(k)) for each path p ∈ Pn, these

80 CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

update equations are suitable for a distributed implementation. The remain-
ing dual variables, µ+

n (k) and µ−n (k) can be maintained at the sources.
Since we assume that for any source-destination pair there exists a path

with positive capacity, it can easily be seen that Slater’s condition holds, and
thus also strong duality holds. The results for the projected gradient method
then imply that for a sufficiently small step size α the solutions updated ac-
cording to (6.25)–(6.29) converge to an optimal solution of KNUM-PQ(x̄)
for any given x̄ and choice of paths. It follows from the results of the Gauss-
Seidel method that a stationary point of the update equations for variable x̄
is optimal for problem KNUM-PQ for the given selection of paths. We now
turn to the case when path selections are updated iteratively.

6.2.2 Adaptive path selection

Previously we assumed that the problem is solved for a fixed path selection.
Now we want to let the sources choose paths based on the Lagrangian multi-
pliers for the capacity constraints. Suppose one had chosen the path selection
Sc = (P1, . . . ,PN), which consists of the set of all paths from each source to
its designated destination node, prior to solving KNUM-PQ. It is easy to see
that KNUM-PQ with selection Sc is equivalent to NUM. Although in gen-
eral |Pn| can be exponential in |V |, in an optimal solution only minimum
cost paths may carry positive flow. This follows directly from the Lagrangian
(6.23) and the dual function (6.18).

Based on this observation, we add an additional layer on top of the Gauss-
Seidel algorithm that iteratively updates a fixed selection of paths. Each
source regularly initiates a shortest-path computation and adds the resulting
path to its collection. If the addition causes the current number of paths to
exceed the limit K, then the source removes a maximum cost path from its
selection. After the update has been performed, new values for the primal
and dual variables are determined by solving KNUM-PQ for the modified
path selection. We first describe the algorithm in the centralized setting. The
implementation details of the distributed algorithm are discussed below.

More precisely, denote the path selection in iteration i of the algorithm
by Si = (P i

1, . . . , P
i
N) and let (x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−) be an optimal solution to

KNUM-PQ with selection Si. Let γip be the cost of path p and let ρiv be the
load of node v for the optimal solution. We update the selection according
to the following rule.

Let pmin be a path of minimum cost from a source sn to its destination tn
resulting from the current values for the dual variables. For the same source-
destination pair, let pmax be a path of maximum cost among all paths in P i

n

maintained by sn. If the maximum cost path in P i
n is not unique, ties among

these are broken by choosing any path that has the lowest amount of flow.
Then P i+1

n is obtained from P i
n by adding pmin, and if that would increase the

number of paths in P i+1
n beyond K, then one removes pmax:

P i+1
n =

{
(P i

n \ {pmax}) ∪ {pmin} if |P i
n ∪ {pmin}| > K

P i
n ∪ {pmin} otherwise.

(6.30)

Algorithm CENDD describes the complete method outlined above. In
order to prove that a stationary point (x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−), which satisfies (6.12)–

CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS 81

Algorithm CENDD: Centralized dual-decomposition for KNUM
1 initially:
2 for 1 ≤ n ≤ N do Pn ← {pn}, where pn is a shortest hop-count path;
3 pick some initial solution (x(0), x̄(0), y(0), λ(0), µ(0));

4 while true do
5 repeat
6 repeat
7 for 1 ≤ n ≤ N do
8 for p ∈ P i

n do
9 xp(k)← [x̄p(t) +D(µ+

n (k)− µ−n (k)− γip(λ(k)))]+;
10 end
11 yn(k)← [U ′n

−1(µ+
n (k)− µ−n (k))]+;

12 µ+
n (k + 1)← [µ+

n (k) + α(yn(k)−
∑

p∈Pn
xp(k))]+;

13 µ−n (k + 1)← [µ−n (k)− α(yn(k)−
∑

p∈Pn
xp(k))]+;

14 end
15 for v ∈ V do
16 λv(k + 1)← [λv(k) + α(ρiv(x(k))− c(v))]+;
17 end
18 until convergence of (λ(k), µ(k));
19 let (x(t), y(t), λ(t), µ(t)) be a stationary point;
20 x̄(t+ 1)← x(t);
21 until convergence of (x(t), x̄(t), λ(t), µ(t));
22 let (x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−) be a stationary point;
23 for 1 ≤ n ≤ N do
24 let pmin be a minimum cost path from sn to tn;
25 let pmax be a maximum cost path of minimum flow in P i

n;
26 if |P i

n ∪ {pmin}| > K then P i+1
n ← (P i

n \ {pmax}) ∪ {pmin};
27 else P i+1

n ← P i
n ∪ {pmin};

28 end
29 end

(6.15), is an optimal solution for KNUM-PQ with variable paths, we use the
general sufficiency conditions of Proposition 3 in Section 3.3.1. Note that
these conditions need to be satisfied by all paths, including paths that were
not part of the selection. Applied to the problem the conditions then read as
follows.

λ̃ ≥ 0, µ̃+ ≥ 0, µ̃− ≥ 0 (6.31)

µ̃+
n (
∑
p∈Pn

x̃p − ỹn) = 0, µ̃−n (ỹn −
∑
p∈Pn

x̃p) = 0, ∀1 ≤ n ≤ N (6.32)

λ̃v(ρv(x̃)− c(v)) = 0 ∀v ∈ V (6.33)

ỹ = arg max
y≥0

L(x, x̄, y, λ̃, µ̃+, µ̃−) (6.34)

(x̃, ˜̄x) = arg max
(x,x̄)∈RN

≥0×RN
≥0

L(x, x̄, y, λ̃, µ̃+, µ̃−), (6.35)

Lemma 1. For any given fixed selection of paths, any point (x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−)

82 CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

that is a stationary point of the method given in Section 6.2.1 is an optimal
solution for problem KNUM-PQ.

Proof. We first need to establish primal feasibility. It is easy to see that any
stationary point necessarily satisfies constraints (6.12)–(6.15), since otherwise
(λ̃, µ̃+, µ̃−) would not be stationary due to the update rules (6.27)–(6.28).
The solution is also dual feasible, since we use the projection rule and dual
solutions only need to be non-negative. From (6.27) follows

ρv(x̃(k))− c(v) ≤ 0, ρv(x̃(k)) < c(v)⇒ λ̃v = 0 ∀v ∈ V,

so that the complementary slackness condition (6.33) holds true and analo-
gously for µ̃+ and µ̃− because of (6.28) and (6.29), respectively. We still need
to show that x̃, ˜̄x, and ỹ maximize the Lagrangian with respect to λ̃, µ̃+, and
µ̃−. However, since the Lagrangian (6.23) is strictly concave in y, we obtain

∂L(x, x̄, ỹ, λ̃, µ̃+, µ̃−)

∂yn
= 0

only for the unique optimal solution; this is equivalent to equality holding in
(6.26). Further, at convergence one necessarily needs to have x̃ = ˜̄x. For
x̃p > 0 we obtain from (6.25)

µ̃+
n − µ̃−n − γp(λ̃) = 0 (6.36)

and hence we have

∂L(x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−)

∂xp
= 0,

∂L(x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−)

∂x̄p
= 0.

If x̃p = 0, then from (6.25) one obtains µ̃+
n − µ̃−n − γp(λ̃) ≤ 0 and hence we

have

∂L(x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−)

∂xp
≤ 0,

∂L(x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−)

∂x̄p
= 0.

Therefore, the conditions (6.34) and (6.35) also hold.

Let us now consider the general case where paths are updated according
to (6.30) and the algorithm performs as described in Algorithm CENDD.

Lemma 2. When the algorithm reaches convergence, for each pair (sn, tn),
all paths p ∈ Pn with positive flow have cost γp(λ̃) = µ̃+

n − µ̃−n , which is
smallest among all paths from sn to tn.

Proof. The claim follows directly from (6.30) and (6.36).

Proposition 5. If Algorithm CENDD reaches convergence, the path selec-
tion and rate allocation forms an optimal solution to KNUM. Moreover,
the path rates correspond to an optimal multicommodity flow for problem
NUM.

CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS 83

Proof. Consider two path selections SA and SB, where SA = (P1, . . . , PN)
is the selection obtained by Algorithm CENDD and SB = (P1, . . . ,PN)
is the selection that consists of all paths between sources and destinations.
Recall that KNUM-PQ using selection SB is equivalent to NUM. Denote
the solution for the primal and dual variables obtained by the algorithm by
(x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−). We can extend this solution to a solution for KNUM-PQ
for paths in SB by introducing new variables. For each path in SB \ SA, we
choose x̃p = ˜̄xp = 0. We now prove that this new solution is stationary for
the selection SB, so that from Lemma 1 follows that it is optimal for problem
NUM. Since we have not introduced additional paths with positive flow rate,
it follows that the solution is also feasible and hence optimal for KNUM.

Fix any pair (sn, tn) and consider a path p from sn to tn, which was not
previously in SA. Hence, we have that x̃p = ˜̄xp = 0. Since p was not added
to the selection, it follows from Lemma 2 that its cost is lower bounded by the
cost of the paths in Pn, i.e., γp(λ̃) ≥ µ̃+

n − µ̃−n for all p ∈ SB \ SA. From the
path-update rule (6.25) then results that x̃p = ˜̄xp = 0 is stationary. Further-
more, adding new path variables xp and x̄p with value zero does not affect the
update equations for the other variables. Hence, any solution obtained by the
algorithm is optimal for KNUM-PQ with selection SB and, equivalently, for
problem NUM.

Corollary 1. If the limit on the number of positive-flow paths K is too small
to admit a solution to problem KNUM, which has the same objective value
as an optimal solution for NUM, then Algorithm CENDD does not achieve
convergence.

6.2.3 Distributed implementation

We now outline how the operations in Algorithm CENDD can be performed
locally. We assume that sources can monitor their total outgoing path flow
and all nodes v, including non-terminals, can estimate their load ρv. If the
traffic injected into the network by the sources can be approximated by a
continuous network flow, then explicit message passing can be replaced by
passive measurements for the estimation of ρv. The latter is clearly prefer-
able, since it avoids the dissemination of additional control messages. For the
implementation of the path update rule (6.30) one could basically use any
distributed shortest-path algorithm, for example the algorithm proposed by
Haldar [56], which has polynomial message complexity.

Although the data dependency of the variable updates is local, due to the
decomposition of the dual, there are issues related to the timing of variable
updates. More precisely, in Algorithm CENDD the primal variables x and y
and the dual variables λ, µ+, and µ− have to converge before one can update
x̄. Therefore, a distributed implementation would either require synchro-
nization between all source-destination pairs or a separation of time scales,
which is usually assumed for distributed algorithms based on dual decompo-
sition techniques. Here, to prevent this problem, we modify our algorithm
as follows. We let the sources update the x̄ at the same time scale as λ, µ+,
and µ− but using a different step size β. In the limit of β/α → 0, the two
versions of the algorithm are then equivalent. For a very similar algorithm
in [84] it was shown that for a fixed set of paths convergence is guaranteed for

84 CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

Algorithm DISTDD: Distributed dual-decomposition for KNUM
1 while true do
2 if is_source_node(sn) then
3 for p ∈ Pn do
4 xp(t) = [x̄p(t) +D(µ+

n (t)− µ−n (t)− γp(λ(t)))]+;
5 x̄p(t+ 1) = [(1− β

D
)x̄p(t) + β

D
xp(t)]

+;
6 end

7 yn(t) = [U ′n
−1(µ+

n (t)− µ−n (t))]+;
8 µ+

n (t+ 1) = [µ+
n (t) + α(yn(t)−

∑
p∈Pn

xp(t))]
+;

9 µ−n (t+ 1) = [µ−n (t)− α(yn(t)−
∑

p∈Pn
xp(t))]

+;

10 if prim_local_conv(xn(t), x̄n(t), yn(t)) and
11 dual_local_conv(µ+

n (t), µ−n (t)) and lambda_conv(λ(t)) and
12 it_since_path_update ≥ min_it_before_path_update) then
13 let pmin be a minimum cost path from sn to tn;
14 let pmax be a maximum cost path of minimum flow in P i

n;
15 if |P i

n ∪ {pmin}| > K then
16 P i+1

n ← (P i
n \ {pmax}) ∪ {pmin};

17 else
18 P i+1

n ← P i
n ∪ {pmin};

19 end
20 end
21 end
22 λv(t+ 1) = λv(t+ 1) = [λv(t) + α(ρv(x(t))− c(v))]+;
23 end

sufficiently small β. Note that our proof of optimality of a stationary solution,
as presented in this section, still holds for the modified algorithm.

Similarly, there is a timing dependency between the updates of the path
selection and the node prices λ. Since the cost of a path depends on λ,
the path selection would only be modified after the prices have converged.
In principle, we may add a convergence test to the distributed shortest-path
algorithm. In practice, however, it may be more desirable to rely on the
separation of time scales, choose a low update frequency and give the λ time
to converge. In order to handle the potentially large number of nodes with
zero prices, we add a small constant to each λv so that generally shorter paths
are preferred over longer paths with equal cost.

Algorithm DISTDD shows the steps that are executed by each node con-
tinuously, where lines 3 to 20 are only executed by each source sn. The
pseudocode contains the functions prim_local_conv and dual_local_conv,
which evaluate the convergence criterion for the primal and dual variables
of source sn, respectively. The function lambda_conv checks whether con-
vergence of the node prices has been obtained, but this check may also be
integrated in the shortest-path algorithm, as described above. Letting some
sources perform path updates too frequently, however, could lead to unfair-
ness among sources. Hence, we require a minimum number of iterations to
pass between consecutive path updates.

CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS 85

Although our model is restricted to a fixed set of source-destination pairs,
Algorithm DISTDD could be made adaptive to arrival and departure of pairs.
Based on the update equations of the link prices, one may conjecture that the
algorithm would be able to recover from these changes, provided they occur
after a stationary point has been reached.

6.3 CENTRALIZED ALGORITHM

In order to evaluate our algorithm we now reformulate problem KNUM so
that an optimal solution can be obtained by a centralized algorithm for any
fixed value of K. A reformulation is necessary, since an explicit solution does
not scale well due to the possibly large number of primal variables.

We consider an edge-flow representation of problem KNUM that results
from a transformation similar to the one that was used in Section 3.2.3 to
obtain problem KMMF-E from problem KMMF. Hence, we introduce bi-
nary variables δnke , for each edge e, that when set to 1 indicate that an edge
e is available to route flow for the k-th path of pair (sn, tn). By fnk(u,v) we de-
note the amount of flow over edge (u, v) that is part of the k-th path from sn
to tn. Problem KNUM-E can then be formulated as the following convex
mixed-integer nonlinear program.

KNUM-E maximize
N∑
n=1

Un (yn)

s.t. yn =
∑

1≤k≤K

∑
e∈O(sn)

fnke −
∑

e∈I(sn)

fnke ∀1 ≤ n ≤ N

− yn =
∑

1≤k≤K

∑
e∈O(tn)

fnke −
∑

e∈I(tn)

fnke ∀1 ≤ n ≤ N

∑
e∈O(v)

fnke −
∑
e∈I(v)

fnke = 0 ∀1 ≤ n ≤ N, 1 ≤ k ≤ K, v ∈ V \ {sn, tn}∑
1≤n≤N

∑
1≤k≤K

∑
e∈I(v)∪O(v)

fnke ≤ c(v) ∀v ∈ V

fnke ≤ δnke · c(v) ∀1 ≤ n ≤ N, 1 ≤ k ≤ K, v ∈ V, ∀e ∈ O(v)∑
e∈O(v)

δnke ≤ 1,
∑
e∈I(v)

δnke ≤ 1 ∀1 ≤ n ≤ N, 1 ≤ k ≤ K, v ∈ V

∑
e∈O(v)

δnke −
∑
e∈I(v)

δnke = 0 ∀1 ≤ n ≤ N, 1 ≤ k ≤ K, v ∈ V \ {sn, tn}∑
e∈I(sn)

δnke = 0,
∑

e∈O(tn)

δnke = 0 ∀1 ≤ n ≤ N, 1 ≤ k ≤ K

yn ≥ 0, fnke ≥ 0, δnke ∈ {0, 1} ∀1 ≤ n ≤ N, 1 ≤ k ≤ K, e ∈ E,
The reformulation that results in problem KNUM-E is essentially the same
that was applied in Section 3.2.3, where we replaced path flows by flow lev-
els that can be expressed using flow-balance constraints. Since problems
KNUM and KNUM-E are equivalent, we can thus obtain a solution to the
original problem for any fixed K. Note that KNUM-E has O(KN |E|) vari-
ables, some of which are continuous while others are integer variables taking

86 CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

binary values. By a simple modification to Algorithm BBKMMF, we can
apply the same branch-and-bound method to KNUM-E. Here, the only dif-
ference is the subproblem to be solved at each point in the search, which is
now a non-linear convex optimization problem.

6.4 NUMERICAL EXPERIMENTS

In Section 6.2.2 we showed that a stationary point of Algorithm CENDD
is an optimal solution to the network utility maximization problem. When
developing a distributed implementation, as given by Algorithm DISTDD,
we needed to make some assumptions on the separation of timescales for
variable updates. In order to decompose the original problem, we also had
to assume that the parameter K in KNUM is sufficiently large to allow for
a solution to be optimal for the corresponding NUM instance, while only
using at most K paths with positive flow. Hence, the value of K and the
number of iterations required for convergence, if convergence is achieved,
were in the focus of attention when planning simulations for evaluating our
proposed algorithm.

As a first step towards validating convergence and assessing the effect of pa-
rameter K on Algorithm DISTDD, we implemented a centralized version
using Matlab. A future implementation using a network simulator, such as
NS2, would be interesting to estimate the impact of concurrent path changes
by sources and related effects. We would expect the resulting implementa-
tion to be somewhat similar to the BMSR algorithm described in the previ-
ous chapter.

The problem instances of our simulations were generated as follows. We
constructed a random disk graph G(V,E) by scattering |V | nodes, including
source and destination nodes, in the square of unit dimensions using a uni-
form node distribution and setting V = {1, . . . , |V |}. For any pair of nodes
u and v there is an edge (u, v) ∈ E, if and only if their distance is not larger
than the transmission range, which is chosen to be close to 0.31. Values for
the node capacities c(v) were drawn independently and uniformly at random
from the interval [5, 10]. This process was repeated to generate a set of prob-
lem instances. We chose N = 4 and Un = log(yn), so that the problem
involves finding a proportionally fair allocation of flow to the four sources.

For each instance and various choices for K, we first ran the branch-and-
bound algorithm to obtain an optimal solution for the given value of K.
In the case of an unconnected graph or if the branch-and-bound algorithm
failed to terminate within a runtime limit of four hours on a 2GHz com-
puter, we discarded the graph and generated a new one. We then ran our
algorithm and observed how the path rates xp evolve for each path p ∈ Pn
and pair (sn, tn). Based on experimentation, we chose the parameter values
α = 10−3, β = 10−2, and D = 2−1.

Figure 6.3 depicts an example instance for a network with 22 nodes. Each
pair is colored in a different shade of gray. Figure 6.4 shows a plot of the path
rates for K = 2 and K = 3 for all pairs in the same instance. For K = 2
one can see that the path rates did not achieve convergence within 5 · 104

iterations and in fact oscillate. For parameter valuesK ≥ 3, however, both xp

CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS 87

1

21

2

22

3

12

4

11

5

6

7

8

9

10

13

14

15

16

17

18

19

20

(a) Input Graph; source and destination nodes are drawn in the same color; edges are shown
without direction.

1

21

2

22

3

12

4

11

5

6

7

8

9

10

13

14

15

16

17

18

19

20

(b) Final solution obtained for K = 3; saturated nodes are labeled using inner circles; the
width of a path is proportional to its flow rate and the path is colored according to its pair.

Figure 6.3: Problem instance with 22 nodes and 4 source-destination pairs

88 CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

(a) K = 2

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

(b) K = 3

Figure 6.4: Evolution of path rates for each source-destination pair for the
network in Figure 6.3.

and yn converged to an optimal solution. The lower part of Figure 6.3 shows
the solution for K = 3. Interestingly, not all of the K = 3 potential paths for
each pair actually carry positive flow. One source uses one, two sources use
two, and one source uses three paths to route flow to its destination.

If the network instance is small enough, we can solve a family of corre-
sponding KNUM-E instances for increasing values for K, starting from 1,
using the branch-and-bound algorithm. In this way, one can determine the
smallest value K = Km, such that an optimal solution to KNUM-E has
the same objective value as an optimal solution to NUM and uses only Km

positive-flow paths for each pair. Similarly, we can solve a family of instances

CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS 89

 0

 2

 4

 6

 8

 10

 0 1 2 3

N
u

m
b

e
r

o
f

In
s
ta

n
c
e

s
Figure 6.5: Histogram for the value Kc −Km for a set of 21 random graphs
with 22 nodes.

of KNUM to find the smallest value K = Kc, which is sufficient so that
our algorithm achieves convergence for the given network instance. The dif-
ference Kc − Km then equals the number by which K would need to be
increased to achieve convergence to an optimal solution for NUM and thus,
in some sense, corresponds to the overhead incurred by the distributed solu-
tion of that particular instance. Note that Kc ≥ Km for any fixed instance
because of Corollary 1.

Figure 6.5 shows a histogram for the results obtained for a set of 21 net-
works instances generated by the process described earlier. For all instances
we observed Kc ≤ 5. Figure 6.5 shows that for this set of instances the num-
ber of additional paths required is rather small and strictly less than 3 for all
instances. Although one would need to perform more extensive experiments
before concluding the feasibility of an implementation, it seems that the al-
gorithm generally stabilizes using only a few more paths than the minimum
number required for an optimal solution.

90 CHAPTER 6. NETWORK UTILITY MAXIMIZATION WITH PATH CONSTRAINTS

7 TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

Previously, we addressed routing problems in ad hoc networks. We now turn
to lifetime maximization in sensor networks. The methods proposed in this
chapter compute energy-efficient communication graphs that induce trans-
mission power assignments which achieve maximum lifetime. Our notion
of lifetime assumes the constraint of maintaining network connectivity. We
consider lifetime maximization by sleep scheduling in Chapter 8.

More precisely, we discuss two distributed algorithms that perform topol-
ogy control by computing a connected communication graph with small
maximum edge cost. At termination all nodes know which of their incident
edges are in the graph and can then set their power levels to a value sufficient
to transmit via these edges. We also propose a setup procedure for network
initialization that lets nodes discover their neighbors and estimate transmis-
sion costs. We evaluate all algorithms by network simulations and compare
their performance to a related algorithm proposed by Guo at al [52].

7.1 INTRODUCTION

Assume that a group of sensors has been deployed in an area to collect
environmental data. Since networks are expected to self-organize, upon
powering-up for the first time, nodes need to determine their neighborhood
and decide where to forward collected data, at which intervals, transmission
power levels, etc. An important objective during this self-configuration pro-
cess is to initialize data-gathering and transmission protocols so that network
lifetime is maximized [2, 25]. We make the following assumptions.

Battery: the initial battery capacities have the same value.

Data: data is aggregated on the way to the sink so that every node roughly
transmits the same amount of data.

Deployment: the network is operating in a data-gathering scenario as de-
picted in Figure 2.1, so that there is a single sink node which needs to
receive the data via multihop communication.

Energy: energy consumption due to transmitting dominates energy spent by
receiving, data processing, etc.

Lifetime: all nodes are equally important and the notion of lifetime is the
time until the first node dies (n-of-n lifetime).

Scheduling: the nodes operate a sleep-scheduling scheme so that idle time
energy consumption is negligible.

Static: once the transmission power levels are set, they remain unchanged
over the operating time of the network.

Transmission: transmission power is adjustable and transmission costs are
time-invariant and symmetric.

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 91

The assumptions above describe a network consisting of sensor nodes that
provide an approximately uniform, low-intensity stream of data to the sink.
Consider for example a setting in which the task is to monitor some envi-
ronmental parameters (e.g., humidity, temperature, concentration of chem-
ical substances) in the deployment area. An application that falls into this
category is a forest-fire detection system, where the traffic consists almost en-
tirely of periodic “status OK” messages. For a different example consider a
fence-monitoring system for intrusion detection. In the system proposed by
Wittenburg et al. [149], nodes are able to save energy by choosing a lower
sampling rate during normal operation and collaboratively detect intrusion
events based on a relatively simple threshold model.

Besides assuming that transmission costs are symmetric and do not vary
over time, we initially do not make any assumptions on them. This is con-
trary to the majority of related papers that usually assume that edge costs
result from some specific path-loss model. We only assume that nodes know
the cost of transmitting to a node within their transmission range, e.g., by
monitoring the power level of their radio. In Section 7.4 we discuss an initial
setup phase for determining edge costs that is based on reasonable assump-
tions on the propagation model. It is desirable to avoid extensive assumptions
on the path loss that signals experience, since in practice it it hard to iden-
tify conditions that are satisfied by all possible network deployments. Our
assumptions are satisfied, for example, in the case that costs represent signal
attenuation that is derived from a deterministic path-loss model, which only
depends on the pairwise distance of nodes.

Note that the assumption of time independent transmission costs may not
always be justified. In wireless network deployments channel conditions are
influenced by environmental factors, such as humidity or obstacles that may
pass through the network [155]. However, in cases where channel condi-
tions change on a slow timescale a static transmission-power setting may still
suffice. In this case one may want to recompute the power assignment at
regular intervals, while realizing that there may be a tradeoff between the
power spent by running the algorithm versus the gain in lifetime obtained by
the recomputation. For a brief overview of lifetime maximization see Sec-
tion 2.3.2.

Problem formulation

Denote the set of nodes by V and assume we are given a transmission cost
function c : V × V 7→ [0,∞] that captures the minimum power required to
transmit from one node to another. Here, a node v can reach node u if the
power level τ(v) satisfies τ(v) ≥ c(v, u). Since we assume transmission costs
to be symmetric, we have c(u, v) = c(v, u). We include∞ to model the fact
that some nodes may not be within transmission range of each other. The
communication graph G = (V,E(τ)) is induced by the transmission power
assignment τ , whereE(τ) contains the edges that are supported by the power
assignment, i.e., E(τ) = {(u, v) | (u, v) ∈ V × V, u 6= v, τ(u) ≥ c(u, v)}.

The lifetime maximization problem is formulated as follows: compute a
transmission power assignment τ : V 7→ [0, pmax], where pmax is the max-
imum available power, such that under uniform load and uniform battery

92 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

capacities, the network stays (strongly) connected for a maximum amount
of time until the first node runs out of energy. We assume that the graph
G(τmax) with τmax(v) = pmax for all v is connected. Note that our notion of
network lifetime is the n-of-n lifetime discussed in Section 2.3.2.

Although for the data-gathering scenario it would be sufficient if all nodes
could reach the sink node via edges in E(τ), for the sake of a reliable MAC
layer it is usually required to have bidirectional links. Hence, we restrict
our search to power assignments that induce symmetric graphs. In order to
simplify the exposition, we treat all graphs as being undirected.

Based on the assumptions above, the problem is essentially equivalent to
the problem of finding a spanning subgraph of the graph G(τmax) that has
minimum maximum edge cost, i.e., a minmax spanner. After a minmax
spanner G∗ = (V,E∗) has been computed, the nodes can locally choose
their transmission powers by selecting the minimum level required to reach
all nodes that are their neighbors in G∗. Note that although for any network
there may exist several minmax spanners, the resulting power assignments all
achieve the same lifetime.

The problem of finding a minmax spanner that is a tree is also referred
to as the bottleneck spanning tree problem [49, 72]. It is easy to see that
the maximum edge cost in a bottleneck spanning tree and in a minimum
spanning tree of the same graph coincide [72]. Thus, the problem could es-
sentially be solved by a distributed minimum spanning tree algorithm. How-
ever, the distributed computation of an MST, as proposed in [46], is much
more involved than the distributed search for a minmax spanning tree. In this
chapter, we present two simple and efficient distributed algorithms that are
based on exploiting different properties of the lifetime maximization prob-
lem. We formulate the first algorithm in the unicast communication model,
while the second algorithm uses only broadcast messages. Hence, the algo-
rithms are expected to differ in the number of control messages and running
time required. For differences between the two models see Section 4.1.

Related work

Existing work in the literature on lifetime maximization problems can be
broadly distinguished by the objective to be maximized. We first look at work
that aims at maximizing the shortest lifetime of any node and then briefly
review relevant papers that minimize total energy consumption.

Minmax power optimization
Under our assumptions for the data-gathering scenario, the lifetime maxi-
mization problem is very similar to the problem of maximizing the lifetime
of a single session broadcast. It was shown by Papadimitriou and Geor-
giadis [107] that the problem of finding the lexicographically smallest power
assignment is computationally more complex than finding any minmax span-
ner. Another related problem is the multicast lifetime maximization prob-
lem, which was addressed by Floréen et al. [44]. It turns out that if the prob-
lem involves dynamic, i.e., time-varying, power assignments then one may
not be able to solve it in polynomial time even in a centralized setting, i.e.,
the problem becomes NP-hard. Therefore, we only consider the static case.

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 93

Probably the earliest paper that addresses our version of the lifetime max-
imization problem is the work of Ramanathan and Rosales-Hain [117], who
model it as a broadcasting problem. Ramanathan and Rosales-Hain propose
a centralized algorithm for computing an optimal power assignment, as well
as two simple distributed heuristics that may result in suboptimal solutions.
Their first algorithm does not necessarily guarantee connectedness, while the
second algorithm relies on an expensive link-state routing algorithm which
is likely unsuitable for sensor networks.

Narayanaswamy et al. [99] consider discrete power levels, as we also do in
Section 7.3. Their distributed algorithm is similar to ours in that it establishes
a minmax spanner of G(τmax). However, similar to [117], their algorithm
relies on a proactive routing protocol and runs one instance for each power
level. This algorithm may be applicable to ad hoc networks but the resulting
control overhead renders it unsuitable for sensor networks.

Kang and Poovendran [72] study several aspects of dynamic lifetime maxi-
mization, i.e., the case where the power assignment may vary over time. They
allow non-uniform initial battery power and further emphasize that the min-
max energy metric is preferable over the more often addressed minimum to-
tal energy metric for the purpose of maximizing network lifetime. Kang and
Poovendran refer to distributed methods for constructing minimum spanning
trees for an implementation, such as the one proposed by Gallager, Humblet
and Spira [46]. These techniques are, however, rather involved, and we com-
plement this work by proposing two efficient and much simpler algorithms
for minmax spanners in this chapter.

The problem of finding the critical transmission range in ad hoc networks
has been addressed by Sanchez et al. [119]. This problem is equivalent to
finding a minmax spanner of G(τmax). The authors of [119] refer to the
classical MST algorithms of Prim and Kruskal for computing the spanner.

The algorithm that is most similar to our proposed methods is the algo-
rithm by Guo et al. [52], which is formulated in terms of multicast trees.
Their algorithm roughly follows Prim’s algorithm for constructing MST and
can easily be adapted to the lifetime maximization problem. We therefore
decided to use it as a baseline for comparisons with our algorithms.

Total power minimization
The lifetime maximization problem considered here is also related to the
problem of minimizing the total network transmission power required for
connectivity, which has been studied extensively over the past few years (e.g.,
see [87] and the references therein). This problem is related to the range
assignment problem described in Section 2.3.1. Since it is not expected that
there exist even efficient centralized algorithms that provide optimal solu-
tions to all instances, algorithms proposed in the literature typically make
special additional assumptions in order to guarantee optimality.

Rodoplu and Meng [118] propose a distributed algorithm to compute a
topology that contains all minimum total energy paths from each node to a
designated master node. Their approach relies on the geometric concept of
relay regions: each node knows its own geographic location and the location
of neighboring nodes. Based on a specific path-loss model each node can
locally decide which neighbor it should forward a message to so that total

94 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

energy consumption is minimized.
Wattenhofer et al. [147] study a geometric cone-based forwarding scheme

for the same problem. Their distributed algorithm requires that each node
can measure the precise angle of arrival of radio transmissions it receives,
which raises the demands on the available radio hardware.

Wieselthier et al. [148] propose a simple centralized heuristic that also
exploits properties of the underlying path-loss model. They provide exper-
imental evidence that savings in total energy can be achieved using their
broadcast incremental power heuristic compared to other topologies, such as
MST, although there is no optimality guarantee for the resulting solutions.

7.2 MAXIMUM LIFETIME SPANNER ALGORITHM

We now discuss our first distributed algorithm for computing a minmax span-
ner. Here, we assume that nodes know their neighbors in the graph G(τmax),
i.e., the communication graph that results from letting all nodes transmit at
maximum power. We further assume that nodes know the cost for transmit-
ting to their neighbors. Both requirements may be satisfied by performing an
initial setup stage, which is discussed further in Section 7.4. In the following,
we compute a minmax spanner for an arbitrary undirected and connected
graph G, although for the implementation we choose G = G(τmax).

7.2.1 Minmax spanner computation

Recall that a minmax spanner G∗ of a connected graph G = (V,E) is a
subgraph of G with the same set of nodes V that is connected and has some
maximum edge cost α∗. In addition, there are no α′-spanners with α′ < α∗.
Our maximum lifetime spanner (MLS) algorithm is based on the following
simple construction of G∗. Consider all paths from a fixed node s to all
remaining nodes. For each such node v ∈ V \ {s}, choose a path in G
from s to v, which achieves minimum maximum edge cost, i.e., minimum
bottleneck cost. Form the union of all these paths and denote the resulting
edge set by E∗.

Lemma 3. The resulting graph G∗ = (V,E∗) is a minmax spanner of G.

Proof. The graphG∗ is clearly a spanning subgraph ofG and it is connected.
We need to show that that there are no α′-spanners with α′ < α∗. Suppose
that there would be one, sayG′ with maximum edge cost α′. Choose an edge
e in E∗ that achieves the cost α∗ and let p be the path that resulted in adding
e to the set E∗ in the construction above. The path p was chosen because
it achieved minimum bottleneck cost among all the paths in G between its
endpoints. Since G′ is an α′-spanner and α′ < α∗, there must exist a path
in G′ between the same endpoints with maximum edge cost strictly smaller
than α∗. But G′ is also a subgraph of G, so that is impossible.

The same type of construction is used by Georgiadis [49] to compute
bottleneck multicast trees by a centralized algorithm in linear time. Inter-
estingly, the algorithm in [49] is derived by modifying Dijkstra’s algorithm

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 95

for the search of minimum bottleneck paths, while our first algorithm re-
sults from a modification of the Bellmann-Ford algorithm. In this sense our
approach is also similar to the algorithm by Gupta and Srimani [53], who
propose a distributed self-stabilizing algorithm that computes shortest-paths
multicast trees in ad hoc networks. However, since we do not require the
construction of an MST, we are able to significantly simplify the algorithm.

Besides resulting in a distributed algorithm, the approach of computing
minmax-cost paths allows for a simple and efficient reduction of the set of
candidate edges prior to the execution of the algorithm. By computing a rel-
ative neighborhood graph and using this RNG instead of the original graph
as input, we are able to drastically reduce our bound on the message com-
plexity. In Section 7.4.3 we present a distributed method for obtaining the
RNG of a given communication graph.

Our distributed MLS algorithm computes minimum bottleneck paths
from the sink s to all other nodes. For this purpose, we modify algorithm
BF to compute paths that achieve minimum bottleneck cost, rather than
shortest paths. The pseudocode is shown on page 97. Since Algorithm BF
was covered in Section 4.2.2, we restrict ourselves to the discussion of the
differences between the two algorithms and refer to Section 4.2.2 and the
pseudocode for details.

We assign the role of the initiator in Algorithm MLS to the sink node. If
one compares Algorithm MLS to the Bellman-Ford algorithm on page 48,
one notices that the only difference lies in lines 26 to 30 of Algorithm MLS.
This difference, however, is crucial, since it may be used to show a lower
message complexity for MLS. The condition in line 26 can be seen as a
test to prune the search at a given node, if a new potential candidate for a
minimum bottleneck cost cannot improve over a previously tested one at the
subtree rooted at node v. This pruning is possible due to the properties of
the minmax cost objective function. A sample run of Algorithm MLS on a
small instance is given in Figure 7.1.

Theorem 11. Algorithm MLS computes a minmax spanner of G.

Proof. We only need to show that the algorithm terminates and that the α
values correspond to the minimum maximum distance to the sink at termi-
nation. Since the father pointers are set to the next node on a path to the sink
with bottleneck cost α, the result then follows.

Let us first show that the algorithm terminates. Denote the set of distinct
edge costs by C = { c(u, v) | (u, v) ∈ V × V, u 6= v}. Obviously, no node
can learn of a route with better bottleneck cost more than |C| times. Also, it is
not possible that a node remains in the state SEARCH indefinitely. This fol-
lows since a node replies with an acknowledgment, positive or negative, latest
when it has received acknowledgments from all its children in the spanning
tree constructed. Hence, the algorithm terminates.

Assume that at termination, node v would have an α value larger than the
minimum bottleneck path length from the sink to v. Then there would exist
a path with bottleneck cost α′ < α from the sink to v via a node u, whose
incident edges include an edge of cost α′. The node on the other side of the
edge would have a larger estimate. This is not possible, since node u would
send a request along that edge.

96 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

Algorithm MLS: Algorithm MLS for finding a minmax spanner
1 node v with local variables α, α[·], father, status[·]
2 at start
3 father← undefined;
4 if is_sink then
5 α← 0;
6 for u in N(v) do
7 send (c(v, u)) to u;
8 α[u]← c(v, u);
9 status [u]← wait;

10 end
11 enter state SEARCH;
12 else
13 α←∞;
14 for u ∈ N(v) do
15 α[u]←∞;
16 status [u]← ready;
17 end
18 enter state IDLE;
19 end
20

21 in state IDLE or SEARCH
22 if (α′) with α′ < α is received from some node u then
23 if father is defined then send NAK(α) to father;
24 father← u; α← α′;
25 for w in N(v) \ {u} do
26 if max(α′, c(v, w)) < α[w] then
27 send (max(α′, c(v, w))) to w;
28 α[w]← max(α′, c(v, w));
29 status [w]← wait;
30 end
31 end
32 enter state SEARCH
33 end
34 if (α′) with α′ ≥ α is received from some node u then
35 send NAK(α′) to u;
36 end
37

38 in state SEARCH // wait for incoming acknowledgments
39 if status [w]=ready for all w ∈ N(v) \ {father} then
40 send ACK(α) to father;
41 enter state IDLE
42 end
43 if ACK(α′) or NAK(α′) is received from u and α[u] = α′ then
44 status [u]← ready;
45 end
46

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 97

1

3

4

5

6

0.5

1.1

0.6 1.2

2

1.4

1.3

3.0

1→ 2:(3.0),
1→ 5:(1.1),
2→ 3:(3.0),
2→ 4:(3.0),
5→ 6:(1.3),
3→ 4:(3.0),
4→ 3:NAK,
4→ 3:(3.0),
3→ 4:NAK,
3→ 6:(3.0),
6→ 3:NAK,
3→ 2:ACK,
4→ 2:ACK,
2→ 1:ACK,
6→ 3:(1.4),

1

3

4

5

6

0.5

1.1

0.6 1.2

2

1.4

1.3

3.0

3→ 2:NAK,
3→ 2:(1.4),
2→ 1:NAK,
3→ 4:(1.4),
4→ 2:NAK,
2→ 4:(1.4),
4→ 2:NAK,
4→ 2:(1.4),
2→ 4:NAK,
2→ 1:(1.4),
1→ 2:NAK,
2→ 3:ACK,
4→ 3:ACK,
3→ 6:ACK,
6→ 5:ACK,
5→ 1:ACK

1

3

4

5

6

0.5

1.1

0.6 1.2

2

1.4

1.3

3.0

Figure 7.1: Sample execution of Algorithm MLS from reference node 1;
messages listed as source→destination:message. The three graphs show the
initial, intermediate and final state of the algorithm with messages listed on
the right side of states in the order of their transmission.

98 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

Let us consider the message complexity of MLS. Here, as before, we
disregard message retransmission due to transient link errors.

Theorem 12. Algorithm MLS requires at most O(|C| |E|) messages.

Proof. We first observe that the number of distinct edge costs is bounded by
|C| ≤ |E|.1 When a node v receives a request with a lower α value, it sends a
message to each neighbor u. This can occur at most |C| times. Each neighbor
u will eventually reply with an ACK, a NAK or first an ACK and later a NAK
when u learns about a better path later. Note that only the reception of lower
α value can cause v to send any messages. Hence, the claim follows.

In this sense, the problem of finding a minmax spanner is fundamentally
different from the problem of finding shortest paths, where the number of
paths with different total cost between a pair of nodes can be exponential in
the number of nodes [90, Sec. 15.4].

Notification stage

The only node that is able to detect termination is the sink. In order to update
their transmission power, however, all nodes need to be informed of termi-
nation. Hence, we require that after detecting termination, the sink initiates
a network-wide broadcast using the edges of the computed spanning tree.
When a node v receives this broadcast message, v decreases its power level
τ(v) to the minimum that is required to reach its father and the neighbors
that have chosen v to be their father.

7.2.2 Improvement for Euclidean space

In Algorithm MLS nodes exchange unicast messages with all neighboring
nodes when a request with a better α was received. For dense sensor net-
works, where the number of neighbors of a node is relatively large, it may be
beneficial to reduce the number of neighbors that have to be contacted. One
needs to ensure, however, that the resulting graph is still a minmax spanner
of the original graph.

Instead of modifying the algorithm, we change the communication graph
that Algorithm MLS runs on by replacing G by its relative neighborhood
graph. Recall that a relative neighborhood graph is obtained from the orig-
inal graph by removing the longest edge of each triangle of edges. We are
not the first to employ an RNG for topology control, see [15, 18] also for
other applications. Usually, however, RNGs have been used in a geometric
context.

Our model only requires symmetric path loss, which means that c(u, v) =
c(v, u) for all nodes u and v, although our algorithm provides better worst-
case guarantees when nodes are located in the Euclidean plane. More pre-
cisely, when the nodes are placed in the plane and path loss is an increasing
function of distance, the RNG is a subgraph of the Delaunay triangulation
ofG and containsO(|V |) edges [133]. It follows that when run on the RNG,

1We can disregard edge costs c(u, v) =∞ since it is not possible to transmit messages via
non-existing edges.

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 99

algorithm MLS has a message complexity of O(|C||V |). In Section 7.4.3 we
describe a distributed algorithm to obtain the RNG by a beaconing method
run initially to setup the network. The method for constructing the RNG
is efficient, since it has a message complexity of O(|V |) broadcast messages
and a communication complexity of O(|E|) bits in total. To conclude, we
obtain the following theorem.

Theorem 13. When run on the RNG of the communication graph, which
is a geometric graph whose nodes are placed in the plane, and if edge costs
are non-decreasing in distance, then Algorithm MLS requires O(|C| |V |)
messages in the worst case.

Note that depending on node density, the difference in the bounds of
Theorems 12 and 13 can be significant.

7.3 BINARY SEARCH FOR MINMAX POWER SPANNERS

In the previous section we described an algorithm that is based on the search
for minimum bottleneck paths from the sink to all other nodes in the graph.
For computing the power assignment it would be sufficient only to know the
actual bottleneck cost of such a minmax spanner. Since in practice the num-
ber of available different power levels can be rather small, for large networks
probably much smaller than |E|, one could instead search over these and
find the smallest one that is sufficient to obtain network connectivity. This is
the basic idea of the algorithm presented in this section, which implements a
binary search over the available power levels. Note that the same idea of per-
forming a binary search over power levels was proposed by Lloyd et al. [87].
They, however, perform the search under the assumption that complete in-
formation on network connectivity and edge costs is available at a central
location.

Besides modifying the search, we also want to reduce the number of trans-
missions by using broadcast instead of unicast messages. Particularly in dense
networks we expect the savings to be significant. Changing to the broad-
cast communication model, however, comes at a cost, since transmissions
become unreliable, as discussed in Section 2.2.1. We propose measures to
mitigate this problem below. It turns out that the problem in this case has a
simple solution based on retransmission timers, once the nodes have deter-
mined their neighborhood.

We make two assumptions in addition to the ones formulated above. Let
the available transmission power levels be given by a set P = {p1, p2, . . . , p|P |},
where p1 < p2 < . . . < p|P | = pmax, which is the same for all nodes. A solu-
tion to the lifetime maximization problem is then a power-level assignment
of the type τ : V 7→ P . We further assume that the sink node is aware of the
total number of nodes in the network. Knowledge of the network size as well
as the local node neighborhoods will be gathered by performing the setup
procedure we propose in the next section. As the MLS algorithm before, the
Binary Search for Min-Max Power Spanner (BSPAN) algorithm relies on the
presence of a single initiator, which in our case is the sink node.

Algorithm BSPAN performs a distributed binary search that is coordinated

100 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

Algorithm BSPAN: Algorithm BSPAN for finding a minmax spanner
1 node v with variables α, lower, curr, upper, child_candidates, father,

is_sink, N(v), node_count, status;

2 at start
3 if is_sink then
4 lower← 0; upper← |P |;
5 curr← b(lower + upper)/2c; α← pcurr;
6 for u ∈ N(v) do status[u]← processed;
7 enter state RESET;
8

9 in state RESET
10 father← none; node_count← 0;
11 if is_sink then
12 if lower + 1 < upper then enter state SEND_REQUEST;
13 else enter state SEARCH_FINISHED;
14 else enter state IDLE;
15

16 in state IDLE // wait for incoming requests
17 if request(u, α′, f ′) with α′ ≥ c(u, v) is received then
18 α← α′; father← u;
19 enter state SEND_REQUEST;
20 end
21

22 in state SEND_REQUEST // broadcast request to neighbors
23 child_candidates← {w ∈ N(v) \ {father} | c(v, w) ≤ α};
24 for w ∈ child_candidates do status[w]← wait;
25 if child_candidates 6= ∅ then // (see text on p. 102)
26 broadcast request(v, α, father);
27 enter state PROCESSING;
28

29 in state PROCESSING // process requests, wait for replies
30 if request(u, α′, f ′) is received then
31 if f ′ = v then status[u]← child; // u acknowledged v as father

else status[u]← processed; // u has father f ′ different from v

32 end
33 if reply(u, nodes) is received then
34 status[u]← processed; node_count← node_count + nodes;
35 end
36 if status[w] = processed for all w ∈ N(v) \ {father} then
37 if is_sink then
38 if total_nodes = node_count then upper← curr;
39 else lower← curr;
40 curr← b(lower + upper)/2c; α← pcurr;
41 else unicast reply(v, node_count + 1) to father; // report count

enter state RESET;
42 end
43

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 101

by the sink node. Each iteration of the algorithm corresponds to a trial that
counts the number of nodes reachable from the sink via edges of cost at
most a threshold cost. Since the sink knows the total number of nodes in
the network, it can establish whether a particular candidate cost α suffices to
connect the network. We give details on the operation below.

The algorithm operates in iterations, which consist of two phases. The
first phase of an iteration is similar to Algorithm SHOUT for constructing
spanning trees. Here, however, we need to ensure that the cost of an edge
which was used to receive a request does not exceed the current candidate
cost α (see line 17). This is required since we run the algorithm on the
graph G = G(τmax). Hence, the spanning tree formed by the algorithm will
contain only edges of cost at most α.

In the second phase of each iteration, a convergecast operation counts
the number of nodes that are contained in the tree previously constructed.
Once the sink has received reply messages from all its children in the tree, it
can compare the number of nodes reached to the total number of nodes and
update its bounds on the minmax edge cost.

Request phase

A request message is of form (u, α, f), where u is the node identifier of the
sender, α is the bottleneck edge cost and f is the father node of u in the
current iteration. Suppose that node v receives a request from u via the edge
(u, v). If this is the first request that v received in the current iteration and
if c(u, v) ≤ α, then u becomes the father of v. Node v then determines
whether it needs to send a request to its neighbors. It does so only if it just
received the first request in the current iteration, if c(u, v) ≤ α, and if ad-
ditionally there exist adjacent nodes w different from u such that the edge
(v, w) has cost c(v, w) ≤ α. Note that the last condition corresponds to the
check in line 25 of Algorithm BSPAN shown on page 101.

Reply phase

After a node v has sent a request (v, α, u), v waits until it has received requests
from every neighbor in G that meets the conditions given above, i.e., from
every node that is a potential child of v in the tree constructed in the current
iteration. If v receives a request (w, α, v′) from node w, node v labels w as
child if v′ = v, and as processed otherwise. A neighboring node w that was
labeled as child corresponds to w being v’s child in the tree constructed. A
label processed implies that v does not expect a reply from w, which at this
stage corresponds to w being a member of the tree with a different father.

It is possible that a node v has no child nodes. This can be the case either
because v does not have adjacent nodes with a sufficiently low edge cost or
if all of these have different father nodes. In both cases v can determine that
it is a leaf in the current tree. Subsequently, node v sends a reply message
(v, 1) to its father, which includes a node count of 1. If v has at least one
child w, v waits for reply messages from all children before it sends a reply to
its own father. Each node keeps track of which children have sent a reply by
marking them as processed.

102 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

0.6

0.4

0.7

0.8

0.4

5

4

2

3

1

0.5

(a) Spanning Tree

1: transmit request(1, 0.75,−),
2: mark 1 as father,
2: transmit request(2, 0.75, 1),
4: drop request from 2,
1: mark 2 as child,
3: mark 2 as father,
3: transmit request(3, 0.75, 2),
2: mark 3 as child,
4, 5: mark 3 as father,
5: transmit request(5, 0.75, 3),
4: transmit request(4, 0.75, 3),
4: drop request from 5,
5: drop request from 4,

(b) Request phase

4→ 3: reply(4, 1),
5→ 3: reply(5, 1),
3→ 2: reply(3, 3),
2→ 1: reply(2, 4)

(c) Reply phase

Figure 7.2: Single iteration of Algorithm BSPAN with α = 0.75, initiated
by sink with identifier 1 (a) spanning tree defined by father records at the
end of the iteration; edges outside the tree are shown dashed (b) messages
and actions of nodes during request phase (c) replies sent along spanning
tree edges during reply phase; note that requests are sent via broadcast, while
replies are sent from a child to its father by unicast; set of power levels P =
{0.05, 0.1, . . . , 0.95, 1.0}.

After v received the last outstanding reply, i.e., when all neighbors except
the father are labeled processed, v sums up the node counts of all replies
received from its children, increments the sum by one and sends a reply
message containing the count to its father. Thus, at the end of this converge-
cast operation the sink can determine the number of nodes in the network
reachable by edges with cost at most the current candidate α. Since the sink
also knows the total number of nodes in the network, it is able to determine
whether α is an upper or lower bound of the minimum bottleneck cost and
update α correspondingly. Figure 7.2 shows a single iteration of the algo-
rithm for a small instance.

Notification stage

Here, as for Algorithm MLS, only the sink can detect termination. Hence,
after the reply phase of the last iteration has terminated, the sink informs the
remaining nodes about the termination and the final value for α, which then
equals the minmax edge cost required for connectivity. The notification stage
consists of broadcasting messages over edges of cost at most α and thus con-
structs a minmax spanner. After local termination of the notification stage,
all nodes set their transmission-power levels to the minimum level required
to reach the father and all child nodes in the tree.

Message complexity

The number of messages sent by the BSPAN algorithm can be easily bounded.

Theorem 14. Algorithm BSPAN requires O(log(|P |) |V |) messages in the

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 103

worst case.

Proof. First, one observes that the binary search over the set of power levels P
requires exactly dlog(|P |)e iterations, where the logarithm is taken in base 2.
In each iteration of the algorithm every node that has received a request sends
at most two messages, one request and one reply message. Additionally, the
sink sends a request but no reply message. Hence, the number of messages
transmitted in one iteration is upper bounded by 2|V | − 1. Due to the ex-
plicit expression on the number of iterations we obtain that the algorithm has
message complexity O(log(|P |) |V |).

As a further note, consider a modification of algorithm BSPAN where in-
stead of searching over the value range of power levels one searches over an
ordered set C of real numbers. This simple change may be desirable for some
situations where power levels are not necessarily equidistant and the number
of available levels is small. Instead of including the value α, messages would
then encode the rank of the power level in each iteration. Note that this
modification relies on the assumption that all nodes share the same set of
power levels.

Implementation remarks

Recall that the reception of broadcast messages is not acknowledged by the
MAC layer, which complicates the detection of collisions. The following two
situations with a collision of a request message cause problems for BSPAN.
Assume that v broadcasts a request where node u is one of the intended re-
cipients, i.e., u ∈ child_candidates in line 23 of Algorithm BSPAN. Now if
either the request sent by v collides with another message at u, or the later
request sent by u collides with another message at v, then v will stay forever
in state PROCESSING. This follows since v waits for u to send a request,
potentially indicating v to be the father of u, or unicast a reply message if u is
in fact a leaf in the tree and its father is v.

However, both situations can be easily handled by retransmission timers
with a small timeout value. This follows, since nodes know whom to wait
for. The timer ensures that v retransmits a copy of the last request until v
receives any message from u. Retransmitted requests are sent using unicast
communication, which is sufficient since not necessarily all neighbors of v
are required to react. Whenever a node u receives a retransmitted request, it
will either unicast its last transmitted request back to v, which is a signal for v
that v is not u’s father in the tree, or process it as usual if it has not processed
any request in the current iteration.

7.4 ALGORITHM INITIALIZATION AND TERMINATION

Both our proposed algorithms for computing minmax spanners, MLS and
BSPAN, rely on some restricted knowledge of the network topology, such
as network size and neighbor lists. Further, they require the notification
of nodes after termination was detected by the sink, so that nodes can set
their power level accordingly. We now discuss a simple setup method for

104 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

collecting the required neighborhood information and network-wide termi-
nation notification. These methods employ standard distributed-algorithm
techniques upon which we expand by integrating the computation of the
edge-cost function c.

7.4.1 Setup stage

Algorithm BEACSET is a simple modification of Algorithm SHOUT (see
p. 46) that uses broadcast instead of unicast messages. It computes a span-
ning tree of the communication graph by letting nodes repeatedly transmit
beacon messages at their maximum available power level pmax, where ran-
dom delays are injected into the beacon sequence to desynchronize neigh-
boring transmissions. A node starts to transmit beacons once it has entered
the tree, where initially the tree only contains the sink. The reception of a
beacon message lets nodes estimate the cost of their incident edges in the
communication graph, discover their neighbors and determine whether they
are leaf nodes in the spanning tree. By transmitting beacons not once but
several times the probability of undiscovered edges due to packet collisions is
reduced significantly.

Algorithm BEACSET is also very similar to a single iteration of Algorithm
BSPAN, since it counts the number of nodes reached via a convergecast of
reply messages towards the sink node. This convergecast also allows the sink
to determine termination of the setup stage and then to either initiate MLS
or BSPAN to compute a minmax spanner of the communication graph that
was constructed.

A node v that receives a beacon message processes the beacon by estimat-
ing the transmission power required to reach the node that originated the
beacon. More formally, we consider a message that v receives from u with
signal strength srecv arrived successfully if srecv ≥ sthresh, where sthresh is the
threshold signal strength necessary for a successful transmission. Here we
disregard any effects caused by mutual interference. For the simulations we
performed to evaluate our algorithms, the signal strength srecv for each recep-
tion is determined by the propagation model of the simulator. The value for
sthresh is a constant, which in practice may depend on the sensitivity of the
receiver. Here we use the default value of the NS2 simulator.

We assume that the received signal strength depends linearly on the send-
ing power, i.e., srecv = Xu,v p

send, where Xu,v is the attenuation coefficient
[39, 64]. Note that Xv,u = Xu,v since we assume path loss is symmetric.
It follows that if the receiver v knows the power that u used for sending,
then v can compute the minimum transmission power pmin it has to use to
transmit to u. Note that a transmission power pmin by definition corresponds
to a received signal strength of sthresh. Hence, all v needs to do is to solve
sthresh = Xv,u p

min, which translates into

pmin =
sthresh psend

srecv =
sthresh

srecv p
max,

where psend is the power that was used by u for transmitting and the right-
hand equality holds since in Algorithm BEACSET we use psend = pmax for
the beacons. If our assumptions on the path loss do not hold, for example

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 105

Algorithm BEACSET: Beaconing algorithm for network setup
1 node v with variables beacon_count, beacon_delay, expecting_reply,

father, neighbor_list, node_count, timer;

2 at start
3 node_count← 0; expecting_reply← ∅;
4 enter state IDLE;
5

6 in state IDLE // wait for incoming beacons
7 if beacon(u, f ′) is received with strength srecv then
8 father← u; c(v, u)← (sthresh/srecv)pmax; // estimate cost

neighbor_list← neighbor_list ∪ (u, c(v, u));
9 broadcast beacon(v, father) at power pmax;

10 timer← beacon event after rand(0,beacon_delay);
11 enter state ACTIVE;
12 end
13

14 in state ACTIVE // send beacons with random delay
15 if beacon(u, f ′) is received with strength srecv then
16 c(v, u)← (sthresh/srecv)pmax; // estimate cost

neighbor_list← neighbor_list ∪ (u, c(v, u));
17 if f ′ = v then
18 expecting_reply← expecting_reply ∪ {u};
19

20 end
21 if reply(u, count) is received with strength srecv then
22 expecting_reply← expecting_reply \ {u};
23 if expecting_reply = ∅ and beacon_count = beacon_repetitions

then
24 unicast reply(v, node_count + count + 1) at power pmax to
25 father;
26 enter state SETUP_FINISHED; // end of stage
27 else
28 node_count← node_count + count;
29 end
30 end
31 if timer triggers beacon event then
32 broadcast beacon(v, father) at power pmax;
33 if beacon_count < beacon_repetitions then
34 beacon_count← beacon_count + 1;
35 timer← beacon event after rand(0,beacon_delay);
36 else if expecting_reply = ∅ then
37 unicast reply(v, node_count + 1) at power pmax to father;
38 enter state SETUP_FINISHED; // end of stage
39 end
40 end
41

106 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

because the measured received signal strength shows random variations, then
beacon messages sent with varying transmission power could be used for the
same purpose. Similar techniques were proposed by Kohvakka et al. [77].

For the lifetime maximization problem of this chapter we choose the costs
c(v, u) of edges (v, u) in the communication graph to be equal to the mini-
mum power required for node v to send to u. Hence, by computing pmin node
v can estimate the cost for the edge to u as c(v, u) = pmin = (sthresh/srecv)pmax.
For details on the path-loss model and how it relates to other models we refer
to the work by Iyer et al. [64].

The most frequently used method for measuring the strength of arriving
radio signals is probably Received Signal Strength Indication (RSSI) [131].
However, one could also employ alternative methods such as the ones pro-
posed in [77]. In order to obtain correct local neighborhood information
at all nodes, for a reasonable node density we expect the number of beacon
retransmissions to be fairly small. Due to our assumptions on the communi-
cation model in Section 4.1, it follows that the message complexity of Algo-
rithm BEACSET is O(|V |).

Implementation remarks

In line 37 of Algorithm BEACSET a node v sends a reply to its father as soon
as it has finished its beacon sequence if all neighbors that have v as their
father have sent a reply to v. However, in the presence of message collisions,
it is possible that a node u has chosen v as father but u has either not started
its beacon sequence yet, or all beacons sent by u so far have collided at v.
For this reason we implemented an additional delay: when a node finishes
its beacon sequence, even if it is not aware of any nodes it has to wait for in its
neighborhood, it waits for some time before it sends a reply. This delay gives
u the chance to receive and either retransmit or reply to any of the beacons
from v before v sends its reply to its father. The delay can be rather small in
practice, since it only depends on the length of the beacon sequence and the
propagation delay, which is the maximum time difference between sending
and receiving a message transmitted between neighboring nodes.

7.4.2 Notification stage

For the nodes to be able to set their transmission powers to values that induce
the minmax spanner computed by MLS or BSPAN, they need to be informed
about termination. The notification stage performs a simple network-wide
broadcast initiated by the sink and its message complexity is thereforeO(|V |).
The implementation depends on whether MLS or BSPAN was used.

Since all nodes can infer which of their incident edges are part of the
minmax spanner computed, after the local termination of the notification
stage each node sets its transmission power τ(v) to a value that suffices to
maintain the most expensive edge to its neighbors in the minmax spanner,
i.e., τ(v) = max(v,u)∈E∗ c(v, u), where E∗ are the edges contained in the
minmax spanner. Note that in general this value may be lower than the
bottleneck cost.

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 107

7.4.3 Distributed algorithm for RNG computation

Recall that we are able to obtain an improved bound on the message com-
plexity for MLS when run on a relative neighborhood graph of the commu-
nication graph instead of the graph itself, assuming the nodes are located in
the plane. Now we discuss a simple modification of Algorithm BEACSET
to obtain a distributed method for constructing RNGs that does not require
initial knowledge of the node neighborhoods or the cost function c.

In the modified beaconing method nodes not only beacon their own iden-
tifier, but also information about their one-hop neighborhood, so that each
node can build up a view of its two-hop neighborhood in the communi-
cation graph. More precisely, a node v includes the list of identifiers and
the corresponding edge costs c for those nodes in its one-hop neighborhood
N+(v), which it has discovered so far. After having learned about their two-
hop neighborhood N2(v), the nodes then prune unnecessary edges from the
communication graph, based on the defining property of an RNG.

The edge pruning operates as follows. After the setup has locally termi-
nated, each node v considers all triangles that can be formed by choosing v
and two of its neighbors. It does so by iterating over all pairs of neighbors
that also share an edge between them. Let u,w ∈ N1(v) be two such neigh-
bors. Whenever v sees that c(v, w) < c(v, u) and c(w, u) < c(v, u), then v
determines that the edge (v, u) is not part of the RNG, which follows from
Definition 1. However, v initially only marks the edge (v, u) as redundant,
which corresponds to marking u to be removed from its neighborhood. Only
when v has considered all possible triangles and found all redundant neigh-
bors it may permanently remove them from its neighborhood.

In order to let neighboring nodes make the same decision on whether or
not to prune an edge between them, the nodes need to break ties between
edge costs deterministically, e.g., based on node identifiers. We include the
pruning of non-RNG edges into Algorithm BEACSET when node v sends
the reply message to its father node.

Since the number of beacon repetitions is constant, the nodes can prune
their neighborhoods so that only the RNG remains using O(|V |) broadcast
messages. The size of each beacon message is proportional to the number
of neighbors of the particular node. Thus, in our model of Section 4.1, we
obtain a message complexity ofO(|E|), assuming each value of the cost func-
tion c can be represented by a constant number of bits.

7.5 EXPERIMENTAL EVALUATION

We implemented the two algorithms for computing minmax spanners, MLS
and BSPAN, together with the setup and RNG algorithm of Section 7.4 in
NS2. From the algorithms proposed in the literature, we found the Dis-
tributed Min-Max Tree (DMMT) algorithm by Guo et al. [52] to be the
approach closest to ours. Hence, we implemented DMMT as close to the
description in [52] as we found feasible and used it as a benchmark algo-
rithm. We set out to answer the following questions by the simulations.

• How do MLS and BSPAN perform compared to DMMT when con-

108 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

NS2 version 2.31 Node density 1 node per
130 m×130 m

Transmission range 250 m Number of nodes 50-500
Max jitter (MLS, BSPAN) 0.5 s Propagation model Two-ray

ground
Message timeout 2.1 s |P | 128
Beacon delay (max) 1.5 s Beacon repetitions 10

Table 7.1: Parameter values used in the simulations.

sidering observed message and time complexity?

• Does running MLS on the RNG improve performance? If yes, then
to what extent?

• Is it possible to observe structural differences between the graphs com-
puted by the different algorithms?

For our experiments we generated disk graphs by distributing nodes over a
square area uniformly at random. Connectivity was determined by the NS2
default maximum transmission range. The propagation model was set to the
two-ray ground model [21, 93], which meets the conditions given in Sec-
tion 7.4.1. Since the problem formulation assumes the input graph to be
connected, we discarded disconnected graphs.

Table 7.1 shows the values of simulation parameters. For initial trials we
used 4 beacon transmissions per node in the setup stage and observed a fail-
ure rate of 1 to 2% of the instances in which some edges present in the com-
munication graph were not detected by some nodes or for which the total
node count obtained was incorrect. Note that the latter may be the case if
a node incorrectly determines to be a leaf during the setup stage because of
message collisions, which thus leads to a failure of the convergecast. Because
RNG pruning requires correct information about neighbors to be broadcast,
the modifications to Algorithm BEACSET for RNG computation make it
more susceptible to message collisions.

Since the main focus of the experiments was on analyzing MLS and
BSPAN performance, we chose to increase the number of beacons until the
setup stage terminated successfully for all instances. Hence, we settled on
a rather large value of 10 beacons per node. Alternatively, it would also be
possible to vary the time interval between beaconing messages. See Table 7.1
for other parameter values.

Distributed minmax tree algorithm

The Distributed Min-Max Tree (DMMT) algorithm was proposed in [52] for
computing multicast spanning trees, which connect a given subset M ⊆ V
of nodes with minmax edge cost. The same algorithm can be readily applied
to solve the lifetime maximization problem by simply choosing M = V .
Two versions of DMMT were proposed in [52], for directional and for om-
nidirectional antennas. Since NS2 nodes have omnidirectional antennas, we
used the latter version of the algorithm. The algorithm borrows ideas from
the well-known Prim’s MST algorithm (see for example [34, pp. 570-573]).

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 109

Prim’s algorithm obtains a minimum spanning tree by growing a subtree of
the original graph starting from an initial node, such that in each step an edge
is added that connects one node belonging to the tree and another node not
yet in the tree. Among all potential edges, one that achieves minimum cost
is chosen. After the tree spans all nodes, Prim’s algorithm terminates and the
resulting tree forms an MST.

A centralized version of DMMT is very similar to Prim’s algorithm but
adds an additional step to each iteration. The algorithm starts from a fixed
initiator node, which is the source of the multicast session. After the mini-
mum cost of any edge that connects a non-tree node to the tree is found, say
α, DMMT grows the current tree by adding nodes that can be reached via
edges of cost at most the current threshold α. This process is called growth
phase and the process of finding the minimum cost of any outgoing edge is
called search phase.

The search phase in the distributed version of DMMT is implemented
via a convergecast of edge costs to the initiator node. This phase requires
that all nodes keep state information of their neighbors, i.e., they need to
know which neighbors are in the tree. After the convergecast terminates at
the initiator, the cost value α is propagated to all tree nodes via a join request
message. In the following growth phase each tree node v then forwards the
request to each neighbor u that v believes is not yet in the tree if c(v, u) ≤ α.
Whenever a node receives a join request for the first time, the sender of
the request becomes the father of the recipient in the spanning tree to be
constructed. All following join request that are received are used to update
the tree status of neighboring nodes.

However, the distributed version of DMMT does not necessarily always
find an outgoing edge during the search phase. This is due to the fact that
a node v only learns about a neighbor u having joined the tree via a father
w 6= v, if u later forwards a join request to v. This situation can result in
costly non-progress iterations of the algorithm.

The DMMT algorithm as formulated in [52] employs timers at each node
for estimating the local termination of the growth phase. In our comparison
we implemented a more synchronized method of a single timer used at the
sink node. After this timer expires, the sink notifies all nodes to switch from
the growth to the search phase. This modification was deemed necessary for
DMMT to become more resilient against packet drops at the MAC level.
We did not take into account the additional control messages resulting from
this modification in the comparisons described below.

Network simulations

In the simulations of MLS and BSPAN, the sink initiates Algorithm BEAC-
SET to obtain neighbor lists, edge costs and a count of the nodes at the sink.
The DMMT algorithm also requires neighborhood and edge cost informa-
tion, which was loaded into the neighbor table of each node prior to execu-
tion. However, the same setup stage could have been used for this purpose.
For BSPAN we chose P as a set of 128 equidistant power levels, whose maxi-
mum value was selected according to the propagation model of NS2.

Figure 7.3 shows one communication graph with 100 nodes, its MST,

110 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

RNG, and the minmax spanners constructed by DMMT, MLS, and BSPAN.
One can observe that the shortest-hop distances between nodes in the tree
constructed by MLS run on the RNG are generally slightly longer than in
the tree resulting from MLS and the original graph. Although pruning a
graph to its RNG generally reduces the number of edges, and hence the
number of messages required by MLS, it also removes paths with a small
hop count.

Figure 7.4 shows the total message count for the different algorithms av-
eraged over a set of problem instances. Since the message complexities of
DMMT and BSPAN appear insensitive to the choice of the input graph,
we only show data for the two algorithms run on the communication graph.
Note that DMMT considers only the single least-cost outgoing edge in each
iteration, while BSPAN uses broadcast messages which are sent to all neigh-
bors simultaneously. Recall that for MLS and BSPAN message counts in-
clude the messages transmitted by Algorithm BEACSET. Despite this advan-
tage of DMMT, both algorithms outperformed DMMT significantly when
comparing the number of control messages required.

More precisely, from Figure 7.4(a) one can see that in our simulations
DMMT requires between 2 and 6 times more control messages compared
to MLS run on the communication graph and between 6 and more than
30 times more messages than BSPAN. Hence, it appears that DMMT does
not scale well with the number of nodes in the network. When comparing
the performance of MLS and BSPAN, one observes from Figure 7.4(b) that
BSPAN outperformed MLS by a factor of 2.5 to 4 when MLS was run on
the communication graph. However, when we used the modified setup al-
gorithm that constructs the RNG, MLS outperformed BSPAN by a factor
of 1.5 to 1.2, depending on the size of the network. It is worth mentioning
that BSPAN seems to significantly benefit from using broadcast messages as
implicit acknowledgments.

When considering the message complexity of BSPAN as a function of the
network size and number of power levels, one observes the following. For
a fixed set of power levels P the number of messages required by BSPAN
is linear in the network size |V |, whereas for a fixed number of nodes the
message count is linear in log |P |. This effect is illustrated by Figure 7.5.
To conclude, the simulations indicate that in contrast to DMMT and MLS
when run on the communication graph, MLS run on the RNG and BSPAN
scale well with the size of the network.

We now turn to execution time. When evaluating execution time by net-
work simulations, one needs to take into account the effect of timers on al-
gorithm performance. If one assumes a collision free network that does not
require retransmissions, both MLS and BSPAN would only require one timer
in the setup stage as described in algorithm BEACSET. This is due to the fact
that a node v determines to be a leaf in the spanning tree constructed, if no
other node u has transmitted a beacon indicating v to be the father of u.
Therefore, a timer is required to let nodes discover their children in the tree.

The DMMT algorithm uses timers extensively, which leads to a strong
dependency of its execution time on timeout values. In our simulations, the
execution times shown in Figure 7.6 indicate that BSPAN is slightly slower
than MLS, and that both significantly outperform DMMT. One should

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 111

(a) Communication graph

(b) MST (c) RNG

0

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
22
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6 4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

(d) DMMT

0

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
22
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6 4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

(e) BSPAN

(f) MLS & RNG (g) MLS & communication graph

Figure 7.3: Sink is marked by a black square; bottleneck edge located in the
bottom right part of picture.

112 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

 0.0 K

50.0 K

100.0 K

150.0 K

200.0 K

250.0 K

 50 100 150 200

DMMT & CG
MLS & CG

BSPAN & CG

(a) DMMT, MLS, and BSPAN run on
communication graph

 0.0 K

 5.0 K

10.0 K

15.0 K

20.0 K

25.0 K

 50 100 150 200

MLS & CG
BSPAN & CG

MLS & RNG

(b) MLS and BSPAN run on communica-
tion graph and MLS run on RNG

Figure 7.4: Message counts versus |V |, including setup but excluding noti-
fication stage. Error bars show standard deviations over 200 repetitions. For
BSPAN |P | = 128. Data is shown for MLS run on the communication graph
CG and its RNG. Note the different y-axis scale of (a) and (b).

 0.0 K

 2.0 K

 4.0 K

 6.0 K

 8.0 K

10.0 K

12.0 K

14.0 K

 100 200 300 400 500

128
64
32
16

8
4
2

Figure 7.5: Message count for BSPAN versus number of nodes for various
|P |, including setup stage but excluding notification stage; error bars show
standard deviations for 200 repetitions.

note, however, that by choosing timeout values more carefully, one could
probably achieve some improvements in the execution time of DMMT.

As we already argued above, when MLS is run on the RNG instead of
the communication graph, the number of messages sent is usually reduced
drastically, but it also removes some paths with small hop count. This ef-
fect is also observable by the data shown in Figure 7.6, since propagating
acknowledgments along the edges of the tree takes more time.

To conclude, the experiments that we conducted for our proposed algo-
rithms for finding minmax spanners show promising results. Although both
algorithms solve the lifetime maximization problem to optimality, one some-
times may prefer one algorithm over the other. Depending on environmen-
tal conditions, transmission of broadcast messages may not be feasible. If
also the RNG of the communication graph is readily available, for example
if nodes know their own and the locations of their neighbors and the edge
costs are increasing in distance, then one may prefer MLS over BSPAN. In
other cases, for example, if the number of available power levels is quite small

CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS 113

 1

 10

 100

 1000

 10000

 40 60 80 100 120 140 160 180 200

DMMT & CG

BSPAN & CG

MLS & RNG

MLS & CG

Figure 7.6: Execution time in seconds; error bars show standard deviations
over 200 repetitions, including setup stage but excluding notification stage;
note the logarithmic scale. For BSPAN the value of |P | is 128. The plot shows
data for MLS run on the communication graph CG and its RNG.

and the transmission of broadcast messages is viable, then BSPAN would be
preferable. Our simulation results further indicate that BSPAN also provides
a tighter bound on its message complexity, so in this sense its runtime behav-
ior is more predictable.

114 CHAPTER 7. TRANSMISSION POWER ASSIGNMENT IN SENSOR NETWORKS

8 SLEEP-SCHEDULING IN SENSOR NETWORKS

In this chapter we present a distributed approximation algorithm for the sleep
scheduling problem, which was outlined in Section 2.3.3. We formulate the
problem as a linear program that fractionally packs dominating sets of the
redundancy graph. Then we apply the Garg-Könemann scheme of Section
3.2.2 to obtain a distributed approximation algorithm. This algorithm re-
quires an oracle for solving an instance of the minimum weight dominating
set problem, which is the second topic of this chapter. We consider our novel
distributed approximation algorithm for MWDS, which is based on Chvá-
tal’s set-cover algorithm, to be the main contribution presented here. The
chapter discusses first general algorithmic ideas and then simulation results.

Note that we are not the first to apply the GK scheme to sleep scheduling.
The same technique was proposed by Suomela [132] for sleep scheduling in
so-called local graphs, which allow for an efficient solution to the minimum
weight dominating set problem. Berman et al. [11] propose an application of
the GK algorithm to obtain a centralized sleep-scheduling algorithm. They
also use the centralized version of Chvátal’s greedy algorithm for computing
the MWDS subproblem in each iteration. Hence, although their approach
is similar to ours, it is inherently centralized.

8.1 INTRODUCTION

Recall that in sleep-scheduling nodes can switch between active and inactive
states, where the amount of energy consumed while being inactive can be
several orders of magnitude smaller than while being active [127]. Hence,
sleep scheduling is a viable method for extending the lifetime of sensor net-
works. For a brief overview of sleep scheduling see Section 2.3.3. Here,
we assume that the pairwise redundancy relationship between sensor nodes
is captured by a given redundancy graph [45]. Since we want to guarantee
complete network coverage at all times, the problem reduces to finding dom-
inating sets of the redundancy graph and assigning active times to them, so
that the total active time is maximized.

We assume that the communication graph of the network G(V,E) is con-
nected and undirected. In order to simplify the exposition, we further assume
that the redundancy and the communication graphs are identical, i.e., nodes
that are neighbors in the communication graph are also mutually redundant
and vice versa. However, this assumption is not a real restriction, as long as
nodes are aware of their neighbors in the redundancy graph and can commu-
nicate with them via short routes inG, which one would expect to be the case
in most settings. It is important to note that our approach does not require
any specific geometric properties of either graph.

For each dominating set D ⊆ V , let us introduce a variable xD, whose
value corresponds to the total activation time of dominating set D. Note that
there is possibly an exponential number of variables, although in an optimal
solution many dominating sets may have zero activation time. We formu-
late the maximum length sleep-scheduling problem as a linear programming

CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS 115

problem as follows.

MSS: maximize
∑
D

xD

subject to
∑
D3v

xD ≤ 1, ∀v ∈ V (8.1)

xD ≥ 0, ∀D

Here, the objective function
∑

D xD computes the length of the sleep sched-
ule and (8.1) is the battery-capacity constraint for node v. Note that the sum
in (8.1) runs over all dominating sets that contain node v. For simplicity, we
assume that all nodes have unit capacity. This assumption may be removed
as we discuss below.

It is clear that an optimal sleep schedule may have non-integral activation
times (see, for example, Figure 2.4 on page 18). If one requires the variables
xD to be integral, then the inapproximability results for the domatic number
problem due to Feige et al. [42] imply that the problem can be approxi-
mated in polynomial time within a factor of O(log |V |), but that it is hard
to approximate it within a factor of (1 − ε) ln |V | for any ε > 0. The results
for the domatic number problem were extended by Moscibroda and Watten-
hofer [96], who obtained a distributed, randomized algorithm for the same
problem. Their algorithm is very simple and only requires the exchange of in-
formation among neighboring nodes, after which nodes randomly decide to
join a particular subset. There is a small probability, however, that a solution
contains sets that are not dominating sets, so that in applications where cer-
tainty about the coverage of the network at all times is required the scheme
may not be applicable. Here we do not impose integrality constraints on the
xD, which may also lead to an improved lifetime in some cases, e.g., for the
instance of Figure 2.4.

The MSS problem as described above has only been rarely addressed in
the literature. Suomela [132] showed that the same hardness of approxima-
tion result of the domatic number problem also holds in the case of MSS.
Floréen et al. [45] propose an algorithm that only requires constant-size
neighborhood information and achieves a constant approximation factor in
so-called marked graphs. Since here we consider general graphs, we can
therefore only aim at a logarithmic approximation factor.

Although we may not be able to compute the length of an optimal sched-
ule efficiently, it is easy to obtain an upper bound on the length of any feasi-
ble schedule. From the capacity constraints (8.1) and from the fact that there
exists a node in G that can be dominated by at most δ+ different dominating
sets follows that no schedule can achieve a lifetime larger than δ+. We use
this upper bound to compare against in our simulations.

8.2 SLEEP SCHEDULING ALGORITHM

The MSS problem as formulated above is an LP packing problem with a
possibly large number of variables. In this sense, it is very similar to the max-
imum multicommodity flow problem of Section 3.2.2. In this section we

116 CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS

describe how to modify Algorithm GKMMF (see p. 29) to obtain an algo-
rithm for problem MSS that can be implemented in a distributed manner.
Let us begin by formulating the dual of problem MSS, which we denote by
DMSS. We introduce dual variables yv for the capacity constraint of node v
and obtain the following:

DMSS: minimize
∑
v

yv

subject to
∑
v∈D

yv ≥ 1, ∀D (8.2)

yv ≥ 0, ∀v ∈ V.

Note that validating constraint (8.2) for given values of yv corresponds to
solving an instance of the minimum weight dominating set problem, where
the weight of a node v equals yv.

Let us assume the existence of an approximation oracle for the MWDS
problem, i.e., a distributed algorithm that computes a dominating set of
weight at most φ times the optimum for any given values of the yv. By
identifying the same structure as in problem MMF, we conclude that the
Garg-Könemann algorithm, which we applied to problem MMF in Sec-
tion 3.2.2, can be applied to obtain an approximation algorithm also for
MSS. The centralized version of the resulting algorithm is almost identical
to Algorithm GKMMF. Here, as previously, we assume the presence of an
initiator node which can be used to initiate and coordinate the computation,
as well as to detect its termination. In Section 8.3 we propose a distributed
approximation oracle for MWDS.

Prior to the execution of Algorithm GKSCHED, the initiator node starts
a run of the setup algorithm BEACSET of page 106 to let nodes discover
their neighbors and construct a spanning tree. In addition to node identi-
fiers, we let nodes also include the number of their neighbors, which they
have discovered so far, in the beacon messages. Hence, every node obtains
an estimate of its neighbors and their degrees in the communication graph.
Further, each node v keeps track of its tree neighbors NT (v), i.e., its neigh-
bors in the computed spanning tree. Note that in addition to the father of
node v, the set NT (v) at termination of the beaconing algorithm contains
the nodes that have entered the set expecting_reply during the execution of
Algorithm BEACSET.

After the termination of the setup stage, the initiator node broadcasts an
initiate message in the network, which contains the index of the current it-
eration. The broadcast of the initialization message is a signal for the nodes
to solve the subproblem within the inner loop of the GK algorithm. All
later communication is then done as a sequence of network-wide broadcasts
and convergecasts in the spanning tree that was computed in the setup stage,
where the same signal of initiating the solution of the subproblem is also used
at the beginning of all other iterations.

We denote by yv(k − 1) the value of the dual variable yv at the beginning
of iteration k and by yv(k) its value at its end, and define xD(k) analogously.
In every iteration k, the oracle computes a dominating set D(k), depending
on the current node weights y(k − 1). Then, according to the centralized

CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS 117

Algorithm GKSCHED: Distributed GK algorithm for sleep scheduling
1 node v with variables father, ε, k, active_slots, is_initiator, N+(v),
NT (v), weight_sum, status;

2 at start
3 β ← (1 + ε) ((1 + ε) |V |)−1/ε; k ← 1;
4 for u ∈ N+(v) do yu(0)← β;
5 for u ∈ NT (v) do status[u]← processed;
6 if is_initiator then enter state SEND_INITIALIZE;
7 else enter state MWDS_TERMINATED;
8

9 in state SEND_INITIALIZE // forward initialize to tree children
10 weight_sum← 0;
11 if k > 1 then
12 for u ∈ N+(v) do
13 if u ∈ D(v) then yv(k − 1)← (1 + ε)yv(k − 2);
14 else yv(k − 1)← yv(k − 2);
15 end
16 if v ∈ D(v) then active_slots(k − 1)← 1;
17 else active_slots(k − 1)← 0;
18 end
19 for w ∈ NT (v) \ {father} do
20 status[w]← wait;
21 unicast initialize(k) to w;
22 end
23 enter state PROCESSING;
24

25 in state PROCESSING
26 for u ∈ N+(v) do w(u)← yu(k − 1);
27 . . .; // execute MWDS algorithm
28

29 in state MWDS_TERMINATED // ASYNMWDS locally terminated
30 if is_initiator then
31 if weight_sum < 1 then // results from Algorithm ASYNMWDS
32 k ← k + 1;
33 enter state SEND_INITIALIZE;
34 end
35 else for w ∈ NT (v) do unicast gk_terminate() to w;
36 end
37 if gk_terminate() is received from father then
38 for w ∈ NT (v) \ {father} do unicast gk_terminate() to w;
39 end
40 if initialize(k′) is received from father then
41 k ← k′; // here: k′ = k + 1 for all but first iteration;
42 enter state SEND_INITIALIZE;
43 end
44

118 CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS

GK scheme along the lines of Algorithm GKMMF, we would increase the
primal variable xD(k). At termination, the value of each primal variable xD
has the form nD/ log1+ε

1+ε
β

, where nD is the number of times the dominating
set D was returned by the oracle. In Algorithm GKSCHED we store the
value of each xD implicitly, by letting nodes record in which iterations they
were member of the computed dominating set. More precisely, each node
maintains an array called active_slots, whose entries are binary values that
when set to true indicate that the node needs to be active in a particular time
slot. Using this information, the sleep schedule can later be executed by the
network. Note that the length of a time slot corresponds to the value of a
single increase in the Garg-Könemann algorithm, which is 1/ log1+ε

1+ε
β

.
Algorithm GKSCHED delays the update of the variables until the begin of

the following iteration. A node detects that a new iteration has begun when it
receives an initialization message with an increased iteration counter. At the
beginning of iteration k and before forwarding the notification message, each
node v multiplies the dual variables for the nodes in the setN+(v)∩D(k−1)
by (1 + ε) to obtain their value for the current iteration. This update requires
that all nodes keep track of which nodes in their neighborhoods enter the
dominating set in each iteration. Our MWDS algorithm maintains a set
D(v) ⊆ N+(v) at each node v for this purpose. Note that the delay of the
update for the dual variables is necessary since the initiator is the only node
that can detect termination of an iteration, i.e., detect when the oracle has
terminated.

At the end of iteration k, the initiator has obtained the total weight of all
nodes in the network as determined by y(k − 1). If the total weight is at
least one, the initiator detects termination and then initiates a network-wide
broadcast to notify nodes to start executing the schedule. If the total weight
is smaller than one, the initiator starts a new iteration by transmitting to its
children in the spanning tree.1

For the parameter L in the scaling factor of Algorithm GKMMF, which
is discussed on page 29, it is sufficient to choose L = |V |, which is the
maximum number of nodes in any dominating set. We therefore assume that
nodes know the network size |V |, which could be otherwise included in the
initialization message, in order to set the value of β as required by Algorithm
GKMMF.

Theorem 15. Algorithm GKSCHED computes a sleep schedule of length
at least (1 − ε)2/φ times the optimum, where 0 < ε < 1 and φ > 1 is the
approximation factor of the MWDS algorithm. The algorithm terminates
after at most d(|V |/ε) log1+ε |V |e iterations.

Proof. The result follows from the extension of the Garg-Könemann algo-
rithm [48] to be used with an approximation oracle. For details see [134].

Corollary 2. The message complexity of Algorithm GKSCHED is

O

(
(K(V,E) + |V |) |V |

ε
log1+ε |V |

)
,

1This is the termination condition for the version of the algorithm in [48] for general
packing LPs, which is different from the version for MMF.

CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS 119

where K(V,E) is the message complexity of the MWDS approximation al-
gorithm.

Our distributed MWDS algorithm discussed in Section 8.3 achieves an
approximation factor of φ = O(ln ∆+), so that the combined algorithm is
asymptotically optimal. However, by choosing a different MWDS algorithm
it is likely that better approximation guarantees can be established for cer-
tain graph families. In Section 8.4 we also discuss experimental results that
indicate that one is able to obtain schedules whose lengths approach the up-
per bound δ+ already for reasonably large ε. Since the number of iterations
required has a major effect on the number of messages transmitted, we also
consider this aspect in the experiments.

The MWDS algorithm presented below requires O(|V |∆2) messages in
the worst case. Depending on the problem instance, the combined algo-
rithm may also be more efficient than a simple centralized algorithm that
first gathers complete information of the graph, solves the instance at the ini-
tiator and then distributes the sleep schedule in the network. We expect this
to be the case if the maximum degree ∆ is rather small, while the network
itself is large.2

Extension to arbitrary capacities Similarly to the implementation of the
GK scheme for the multicommodity flow problem, we can also consider the
case of arbitrary node capacities. Recall that the GK scheme for MMF aug-
ments the flow in each iteration by an amount that is equal to the minimum
edge capacity along the shortest path. Hence, if the initiator is informed
of the minimum node capacity among all members in the dominating set,
it can inform all nodes in the following iteration of the minimum capac-
ity, which then update their activity times accordingly. Obtaining the value
of the minimum capacity for each iteration can be easily achieved by ap-
pending a field to the convergecast of gk_terminate messages at termination.
Note, however, that after the modification the length of the k-th time slot
equals cmin/ log1+ε

1+ε
β

, where cmin is the minimum capacity of any node in
dominating set D(k). This means that after the modification time slots can
be of different lengths, which may be undesirable in practice.

8.3 MINIMUM WEIGHT DOMINATING SET APPROXIMATION

We now develop our distributed approximation algorithm for the MWDS
subproblem that is solved in every iteration of Algorithm GKSCHED. Our
algorithm is based on the primal-dual framework for LP covering problems.
It is also inspired by parallel algorithms for weighted set-cover proposed by
Rajagopalan and Vazirani [116]. Khuller et al. [75] present similar parallel
algorithms for set cover and vertex cover. Both approaches employ the duality
framework which can be also used to analyze Chvátal’s greedy algorithm, as
demonstrated in Section 3.2.2. In this sense, our algorithm is also similar
to parallel algorithms for weighted set cover proposed even earlier by Berger

2This comparison assumes the CONGEST model (see p. 44) and that no compression
of the sleep schedule is allowed.

120 CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS

et al. [10]. However, the model of computation for parallel algorithms is
inherently unsuitable for the distributed and asynchronous nature of wireless
networks. This is due to the fact that parallel algorithms are usually based
on a shared-memory architecture which allows synchronous and error free
communication with no delay between the processors.

Recently, also local algorithms have been proposed for computing small
dominating sets in graphs. Since the model of distributed computation of
local algorithms (see Section 4.1) is very different from ours, we do not con-
sider these for comparison. For an overview and relevant local algorithms for
vertex cover and facility location, which is a generalization of set-cover, we
refer to the thesis of Moscibroda [95].

Recall that we can formulate the MWDS problem as an instance of the
minimum weight set-cover problem by choosing U = V to be the set of
elements to be covered and S = {N+(v) | v ∈ V } to be the collec-
tion of candidate cover sets. The weight of a single set is then defined as
w(N+(v)) = w(v). In this section we discuss a distributed algorithm that
is based on the set-cover algorithm PDSC (see p. 27), does not require syn-
chronous operations and is also somewhat resilient to message loss, assuming
an underlying retransmission scheme. Further, the algorithm makes use of
the wireless broadcast advantage by letting nodes opportunistically process
overheard messages transmitted between neighboring nodes.

As mentioned in Section 4.2.4, besides sleep scheduling, dominating sets
can be useful for a wide range of applications in wireless multihop networks,
for example for clustering and routing. Consequently, many distributed and
centralized algorithms can be found in the literature. See the survey by Blum
et al. [17] for an overview. In comparison to other algorithms, we note that
our algorithm for approximating MWDS does not require network-wide syn-
chronization or any geometric restrictions on the graph. Moreover, we in-
herit the approximation guarantee from Chvátal’s algorithm [31]. We first
present the general ideas and then elaborate on the algorithm.

8.3.1 Problem formulation

In Section 3.2.2 we introduced Algorithm PDSC as a method which oper-
ates on a pair of primal and dual linear programs, where here the primal is
the linear relaxation of problem MWDS. Let us introduce binary variables
zv for each v that when set to 1 indicate that a node is chosen to be in the
dominating set. Denote the weight of node v by w(v). We can then formu-
late the minimum weight dominating set problem as follows.

MWDS: minimize
∑
v∈V

w(v) zv

subject to
∑

u∈N+(v)

zu ≥ 1, ∀v ∈ V (8.3)

zv ∈ {0, 1}, ∀v ∈ V

The problem asks for a minimum-weight subset of nodes such that every node
is covered by at least one node in its extended neighborhood N+(v). By
removing the integrality constraints for the zv, we can form the dual problem

CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS 121

4

3

5 6

1 2

w(2)=2

w(3)=4

w(4)=3

w(6)=1w(5)=1

w(1)=1

t

1

1/2

1/3

{1}

{1,5}{1,5}

{1,5,6}

y1, y2, y3

y4, y5

y6

Figure 8.1: Example of continuous-time greedy algorithm for MWDS; the
labels on the x-axis mark nodes entering the dominating set, while the plot
shows the evolution of the dual variables until they become frozen.

of the linear relaxation of MWDS.

DMWDS: maximize
∑
v∈V

yv

subject to
∑

u∈N+(v)

yu ≤ w(v), ∀v ∈ V (8.4)

yv ≥ 0, ∀v ∈ V

Here, we introduced dual variables yv for each coverage constraint (8.3).
Each dual variable yv can be interpreted as a bid that node v is willing to pay
to become covered, as we describe below.

8.3.2 Distributed voting scheme

We now assume that each node knows the weight and degree of each of its
neighbors and can also identify its neighbors in a spanning tree rooted at the
initiator, e.g., by executing the setup stage described in Section 8.2. During
an execution of the algorithm, a node is in one of three cover states: un-
covered, covered, or dominator. We let all nodes v maintain a set of uncov-
ered nodes U(v) and dominators D(v) within their one-hop neighborhoods
N+(v). Initially, U(v) = N+(v) and D(v) = ∅.

Recall that Algorithm PDSC starts from an all-zero solution for primal
and dual variables and then raises the duals until they become frozen, i.e.,
they appear in a dual constraint (8.4) for some v which has become tight. At
this point the first node, say v, is added to the dominating set, which corre-
sponds to N+(v) being added to the set cover. At the same time, the state of
all nodes in N(v) = N+(v) \ {v} changes to covered and the yv variables for
all nodes in N+(v) become frozen. The algorithm then continues to raise
the other dual variables which are not frozen yet and only considers their val-
ues when determining which constraint gets tight next.3 Figure 8.1 shows a

3The term “tight” is a misnomer here, since some dual constraints may actually become
violated in the process.

122 CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS

small example instance that illustrates how in the continuous-time algorithm
the dominating set and the values for the dual variables evolve over time.

For a given set of uncovered nodes U(v) ⊆ N+(v), let us define the price
of a node v as

p(v) :=

w(v)
|U(v)| =

w(v)
span(v)

if U(v) 6= ∅,

∞ otherwise,

where we also denote the number of uncovered nodes |U(v)| in v’s neigh-
borhood as span(v). In the continuous-time primal-dual algorithm a node
v would become a dominator at time p(v) if the set U(v) stayed unchanged
until then. If the set U(v) changes before time p(v), the price p(v) can only
increase, since the number of uncovered neighbors a node has can only de-
crease. Note that a change in price before time p(v) can only be caused by
another node u ∈ N+

2 (v) entering the dominating set, which causes a pre-
viously uncovered node w ∈ N+(v) to become covered. In Figure 8.1, for
example, the price of node 1 is initially 1/3, which is the minimum within its
two-hop neighborhood. The price of node 3 raises from 1 to 4 when node 1
enters the dominating set at time 1/3.

A simple implementation based on the observations above would let nodes
enter the dominating sets when they have the minimum price within their
two-hop neighborhoods. This algorithm, however, is the same as algorithm
SYNMWDS, which requires clock synchronization. Instead, consider the
following voting scheme, which basically inverts the flow of information in
Algorithm SYNMWDS. Rather than letting a node actively monitor the
prices in its two-hop neighborhood N+

2 (v), we let each of its neighbors u
vote for v, if v has the minimum price in u’s neighborhood N+(u). When-
ever a node v has received votes from all nodes in U(v), it can determine that
it should become a dominator, assuming |U(v)| > 0. Obviously, this scheme
also requires some dissemination of node prices within the neighborhood of
each node. As we argue below, by including additional information in votes
the resulting overhead can be reduced.

In the implementation of our algorithm we add a limit value to each vote.
In this sense, a vote sent by u to v is conditional on p(v) not exceeding the
limit. When v receives a vote with a limit larger than its current price p(v),
it infers that u is indifferent to any change in v’s price unless it exceeds the
limit. This is due to the fact that the prices of nodes can only increase during
the algorithm and therefore u will not change its voting decision at least until
the limit is reached. Hence, node v will not send any price update to u until
p(v) exceeds the limit. In our implementation we set the limit to the second-
lowest price in N+(u) that u knows about. In this sense a vote corresponds
to a contract between the sender and the recipient of the vote.

Consider again the example in Figure 8.1. Initially, when all nodes are
uncovered, node 3 votes for node 1 and includes a limit value of 2/3 in its
vote. This value equals the price of node 2, which has the second lowest price
in the neighborhood of node 3.

More formally, we call the set of nodes in N+(v) that have sent votes to
v with limit values larger than p(v) the supporters of v and denote its set of
supporters by S(v). A node u enters S(v) when u sends a vote with limit

CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS 123

21 3 4

w(2)=4

w(3)=6w(1)=2

w(4)=3

i 1 2 3 4
p(i) 1 4/3 2 3/2

i 1 2 3 4
p(i) ∞ 4 3 3/2

Figure 8.2: Example for voting procedure; the two tables on the right show
the initial (top) and the node prices after node 1 becomes dominator.

l ≥ p(v) to v. Node u leaves S(v) when v’s price increases above l. How-
ever, node u may later re-enter S(v) when it casts a new vote with a higher
limit value. Once we have S(v) = U(v) and |Sv| > 0, node v becomes a
dominator. Note that also nodes that were previously covered may enter the
dominating set if this condition is satisfied.

Consider the example in Figure 8.2. Node 3 initially votes for node 2 with
a limit value of 3/2, which is the price of node 4, and thus enters S(2). When
2 itself becomes covered due to 1 entering the dominating set, the price of 2
increases and it not longer achieves the minimum price in the neighborhood
of node 3. Hence, node 3 sends a new vote to 4 with a limit value equal
to its own (new) price. Let us emphasize two important properties of the
algorithm.

1. Node prices can only increase.

2. If a node receives votes from all its uncovered neighbors, it has the
minimum prize in its two-hop neighborhood.

To reduce the number of price update messages even further, we let nodes
only inform those neighbors of a price update that are forced to leave the set
of supporters due to the increase in price. Hence, instead of maintaining the
actual prices of its neighbors, each node keeps only lower bounds for these
prices. Unfortunately, some information is lost since outdated price infor-
mation may lead to invalid votes with too small limit values. If this situation
occurs, i.e., if a node v later receives a vote from u with a too small limit,
v replies with a message informing of an update in v’s price. Our experi-
ments indicate that this method is able to reduce the number of messages
required, although it may require two additional votes for each price update
in the worst case. As an invariant of the algorithm, we require that each node
knows the correct value of its own price, which we achieve by letting nodes
inform neighbors when they become covered or dominator.

Allowing lower bounds for node prices has additional benefits. In our
implementation we use unicast transmissions for all message types, including
price updates. However, we let nodes also overhear price updates that are
sent between neighboring nodes in order to update the information in their
own neighbor lists. By overhearing price updates nodes may improve the
lower bounds on the prices of their neighbors and therefore also change their
voting decision. This opportunistic behavior aims at exploiting the wireless
broadcast advantage.

124 CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS

8.3.3 Implementation

We now describe the distributed implementation of Algorithm ASYNMWDS
given on pages 126 and 127. The second part on page 127 consists of func-
tions that are called from the main part on the previous page. Note that the
expression v ∈ U(v) ? U : C in lines 7 and 78 of the pseudocode evaluates
to U if v is uncovered and to C otherwise.

We let each node v maintain a neighbor list containing entries for v
and all its neighbors. More precisely, the list NL of v contains a tuple
NLu = (id,weight, degree, span, limit,notify) for each node u ∈ N+(v),
where id = u, degree is the degree of u, span is the number of uncovered
nodes in N+(u), limit is the highest price limit received in any vote from u
for v, and notify is a Boolean variable which indicates whether u has to be
notified of a change in p(v). All nodes keep their neighbor lists sorted in in-
creasing order of price, breaking ties based on node identifiers. Additionally,
each node v maintains the sets U(v), S(v) and D(v) as described above.

Based on information in the neighbor list, a node v can compute its own
price, estimate the price of nodes in N(v), and determine which of its neigh-
bors are currently voting for v, i.e., its set of supporters. To simplify the expo-
sition, we refer to the information stored in the list as the actual price values,
although these are in fact lower bounds, as described earlier. In addition to
referring to an entry in NL on a per-node basis, we use the notation NL(k)
to denote the kth entry from the beginning of the neighbor list of a particular
node v, where 1 ≤ k ≤ |N+(v)|. We also refer to the value of a single field
in NL(k) by noting the name of the field. For example, NL(1)[id] refers to
the identifier of the node that achieves minimum price in the neighbor list.

Initialization (lines 46-54)
Initially, we have NLu = (u,wu, δu, δu + 1, 0, false) for all u ∈ N+(v), where
δu is the degree of u. Node v calculates its price as pv = wv

δv+1
and initializes

D(v), S(v) and U(v) accordingly. After receiving an initialization message,
v consults its neighbor list NL and votes for the node at the head of the list.
However, it only sends an actual message if v 6= NL(1)[id].

Voting (lines 1-8 and 55-73)
So after receiving the initializer, v sends the message vote(limit) to the node
with id NL(1)[id], say u 6= v, where limit = pNL(2)[id]. Recall that we as-
sumed G to be connected and hence |N+(v)| > 1. When u receives this
vote, it first checks if the vote is valid, i.e., it checks whether it holds that
limit ≥ pu = wu

δu+1
. If the vote is valid, u records v entering the set of support-

ers S(u) and sets the limit value NLv[limit]. If v has the lowest price in its
own list, i.e., if v = u, then node v performs exactly the same modifications
to its own neighbor list without sending the vote.

Whenever a node v receives a valid vote or when its price changes due to a
neighbor becoming covered or a dominator, it checks whether all uncovered
nodes in N+(v) are currently voting for v and if there is at least one such
node. If this is the case, i.e., if S(v) = U(v) and |S(v)| > 0, then v decides
to become dominator and informs all its neighbors by sending each of them a
dominator(N(v)) message. Node v includes a list of its one-hop neighbors in

CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS 125

Algorithm ASYNMWDS: Distributed MWDS algorithm at v (part 1)
1 if v receives vote(limit) from u then
2 if NLv[weight]/NLv[span] < limit then // vote is valid
3 S(v)← S(v) ∪ {u};
4 if NLu[limit] < limit then NLu[limit]← limit;
5 if chk_covered&voted() then become_dominator();
6 end
7 else unicast price(NLv[span], v ∈ U(v) ? U : C) to u;
8 end
9 if v receives price(nspan, nstate) from u then // unicast or overheard

10 old_first← NL(1);
11 if u ∈ U(v) and nstate = C then
12 U(v)← U(v) \ {u};NLv[span]← NLv[span]− 1; // u covered

for w ∈ S(v) do
13 if NLw[limit] < NLv[weight]/NLv[span] then
14 NLw[notify]← true; S(v)← S(v) \ {w};
15 end
16 end
17 end
18 NLu[span]← nspan;
19 if v /∈ D(v) and chk_covered&voted() then become_dominator();
20 else chk&terminate();
21 if v ∈ U(v) then
22 if old_first != NL(1)[id] or (old_first = u and msg unicasted)

then cast_vote();
23 if old_first = NL(1)[id] and old_first = v then
24 NLv[limit]← NL(2)[weight]/NL(2)[span];
25 if chk_covered&voted() then become_dominator();
26 end
27 end
28 end
29 if v receives dominator(N(u)) from u then
30 D(v)← D(v) ∪ {u}; NLu[span]← 0;
31 if |U(v) \N+(u)| < NLv[span] then
32 NLv[span]← |U(v) \N+(u)|;
33 for w ∈ S(v) with NLw[limit] < NLv[weight]/NLv[span] do
34 NLw[notify]← true; S(v)← S(v) \ {w};
35 end
36 end
37 if v ∈ U(v) then // v just became covered
38 for w ∈ N(v) \ (N+(u) ∪D(v)) do
39 send price(NLv[span], C) to w; // send immediate update

NLw[notify]← false;
40 end
41 end
42 U(v)← U(v) \N+(u);
43 if v /∈ D(v) and chk_covered&voted() then become_dominator();
44 else chk&terminate();
45 end

126 CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS

Algorithm ASYNMWDS: Distributed MWDS algorithm at v (part 2)
46 function void initialize at v // run once after wake-up message received
47 D(v)← ∅;U(v)← N+(v);S(v)← ∅; NL← ∅;
48 for u ∈ N+(v) do
49 NL← NL ∪ (id: u,weight: wu, degree: δu,
50 span: δu + 1, limit: 0,notify: false);
51 end
52 schedule price_update_timer() after T1 seconds;
53 schedule cast_vote() after T2 seconds;
54 end

55 function void cast_vote() at v // sends vote to lowest-price neighbor
56 limit← NL(2)[weight]/NL(2)[span];
57 if NL(1)[id] 6= v then send vote(limit) to NL(1)[id];
58 else
59 NLv[limit]← limit; S(v)← S(v) ∪ {v};
60 if chk_covered&voted() and v /∈ D(v) then
61 become_dominator();
62 end
63 end
64 end

65 function void become_dominator() at v
66 D(v)← D(v) ∪ {v}; U(v)← ∅; NLv[span]← 0;
67 for u ∈ N(v) do send dominator(N(v)) to u;
68 stop price_update_timer(); chk&terminate();
69 end

70 function bool chk_covered&voted() at v
71 if S(v) = U(v) and |S(v)| > 0 then return true;
72 else return false;
73 end

74 function void price_update_timer() at v
75 for u ∈ U(v) with NLu[notify] = true do
76 NLu[notify]← false;
77 if NLu[limit] < NLv[weight]/NLv[span] then
78 send price(NLv[span], v ∈ U(v) ? U : C) to u;
79 end
80 if v /∈ D(v) then
81 schedule price_update_timer() after T1 seconds;
82 end
83 end
84 end

85 function void chk&terminate() at v // termination test and convergecast
86 if U(v) = ∅ and all child nodes in spanning tree have reported
87 weight of their subtree for current GK iteration then
88 send mwds_terminate(weight_sum) to father;
89 enter state MWDS_TERMINATED;
90 end
91 end

CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS 127

the dominator message to let each recipient u ∈ N(v) update its own price,
depending on the number of mutual neighbors N+(v) ∩ N+(u) that were
just covered by v.

If the vote received by v from u is invalid, i.e., if limit < pv holds, then
v immediately replies with a price update price(span, state), where span is
the current span of v and state is v’s current cover state. This price update
informs node u which originated the vote of stale information in its neighbor
list and lets it update the span and cover state for v. The update may also
cause a price update for u if v indicated it is covered but v ∈ U(u) prior
to receiving the price update from v. In the case of an invalid vote no limit
value for u is recorded by v and S(v) remains unchanged.

Price update (lines 9-28 and 74-84)
Whenever the price of a node v changes due to a decrease in |U(v)|, unless
v itself was covered, v iterates through its set of supporters and sets the notify
bit for those neighbors u ∈ N(v) that are forced to leave S(v) because v’s
price just exceeded the vote limit NLu[limit] < p(v). Each node periodically
sends price(span, state) messages to neighbors which have the notify bit set to
true, after which it is set to false. The length of the update reporting period is
determined by a parameter which we call price update interval (PUI), whose
effect we evaluate in network simulations. It was deemed necessary to intro-
duce a buffering of price updates to avoid message drops due to congestion,
which leads to IFQ overflows.

Upon receiving a price update, each node v which is uncovered checks
whether the update caused a change in the lowest-price entry NL(1). Let
u be the neighbor which previously had the lowest entry and let u 6= v. If
there was a change, i.e., if u 6= NL(1)[id], then v casts a vote for the new
best entry as described above. If it remained unchanged then v sends a new
vote anyway, if the price update message originated from u itself. This is
necessary since the limit value for v in the neighbor list of u is outdated
and u has removed v from its supporters S(u) prior to sending the price
update. Hence, v has to confirm its voting for u by sending a new vote with
an updated limit value and thus re-enter S(u). In the trivial case that u = v,
then v only records the new limit value for NLv.

Tracking dominators (lines 29-45)
When an uncovered node v receives a dominator(N(u)) message from a
neighbor u, it informs those neighbors which it does not share with u of be-
coming covered if these are not dominators already. More precisely, v sends
a message price(new_span, state), where state= covered and new_span is its
updated span, to each neighbor in N(v) \ (N(u) ∪D(v)), independently of
their limit value. Note that these price updates are not buffered, since we
want every node to have valid information on its own price, which requires a
correct value for its span.

Also a previously covered node can not ignore a dominator message but
must track the members of the dominating set in its neighborhood and ob-
serve changes in its own price. Further, it is possible that a neighboring
dominator of v covers the missing nodes from S(v), in which case v itself
becomes dominator.

128 CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS

Termination (lines 85-91)
Algorithm ASYNMWDS performs a convergecast for termination detection
at the initiator, where each node waits until it itself and all its neighbors are
covered before it forwards the termination message. Only after the termina-
tion of the convergecast one can be sure that all nodes know the dominators
in their neighborhood, which is required for algorithm GKSCHED to operate
correctly. The convergecast also computes the total weight in the network,
i.e., the objective value of the current dual solution, which is required for the
termination condition of the Garg-Könemann scheme.

Analysis
Let us now consider the approximation guarantee and the message complex-
ity of the algorithm. From the discussion above we obtain the following two
lemmas.

Lemma 4. At any time during an execution of Algorithm ASYNMWDS ev-
ery node v knows its span and hence its current price. Every node also main-
tains a valid lower bound on the price of its neighbors.

Lemma 5. In Algorithm ASYNMWDS a node v enters the set of dominators
if and only if it has the minimum price among all nodes in N+

2 (v), breaking
ties by node identifiers, and there exists an uncovered node in N+(v).

Theorem 16. Algorithm ASYNMWDS obtains a dominating set of weight
at most H∆+ times the weight of a MWDS, where Hn is the n-th harmonic
number.

Proof. We only need to show that algorithms ASYNMWDS and PDSC
when applied to the MWDS problem are equivalent . Let Dd be the set
obtained by the distributed algorithm and Dc be the set obtained by Algo-
rithm PDSC applied to the corresponding set-cover instance. Suppose that
Dd 6⊆ Dc and order the nodes in Dd in the order in which they entered the
set. Let v be the first node such that v ∈ Dd and v 6∈ Dc and let D′d ⊆ Dc be
the nodes that enter Dd prior to v.

At the time when v entered Dd, it had the smallest price among all nodes
in N+

2 (v). This implies that in the run of algorithm PDSC, no other node
in N+

2 (v) can enter Dc \D′d before v, since prices can only increase as nodes
become covered. However, there must be one, since one node in N+(v)
would remain uncovered – the one that first became covered when v was
added to Dd – and hence we must have v ∈ Dc, which shows Dd ⊆ Dc.
The other direction Dc ⊆ Dd follows directly by the update rules for the
primal-dual algorithm and Lemma 5.

Theorem 17. The message complexity of ASYNMWDS is O(|V |∆2).

Proof. Each node can change its price at most ∆+ times. When the price of a
node changes, it can cause the transmission of at most ∆ price updates, each
of which can result in the transmission of at most one vote. Hence, the total
number of vote and price update messages is O(|V |∆2). At most |V | nodes
may enter the dominating set. Each such node sends at most ∆ dominator
messages, which each contain information on at most ∆ neighbors.

CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS 129

8.4 EXPERIMENTAL EVALUATION

When evaluating our approach for approximating the sleep-scheduling prob-
lem, we first considered the quality of solutions obtained by the combination
of the GK scheme and the MWDS approximation algorithm in a centralized
setting. In our experiments we found that the length of schedules obtained
by the algorithm is better than one would expect from the guarantees in The-
orems 15 and 16. We also measured the number of iterations required, since
this value determines the runtime of the complete algorithm.

After establishing the effectiveness of the approach, we turned to NS2 net-
work simulations of the combined distributed algorithms GKSCHED and
ASYNMWDS. The goal of the simulations was chosen to estimate the ac-
tual message complexity and execution time required by the algorithm. The
findings indicate that Algorithm ASYNMWDS may perform much better in
practice than what one would expect from Theorem 17, which could suggest
that this bound is not tight.

The set of problem instances we used in the experiments were formed by
20 random disk graphs with 150 nodes, whose locations were drawn from a
uniform distribution in square areas of various sizes. The dimension of an
area was chosen so that one obtained a given expected node degree, which is
representative of the node density, disregarding boundary effects. As before in
previous experiments, edges in the communication graph were determined
by the NS2 default transmission range. Instances whose node locations did
not yield a connected communication graph were discarded.

Centralized GK scheme

Our first goal was to compare the length of schedules obtained by the central-
ized implementation of the algorithm to its approximation guarantee. The
complete algorithm, GK scheme and greedy MWDS algorithm, was im-
plemented using Matlab. Since the task of finding optimal solutions to all
instances is very computation intensive, we computed for comparison the
instance-dependent upper bound δ+ on the length of an optimal schedule
instead. Note that this value is somewhat related to the density of nodes in
the network, assuming a uniform distribution of nodes.

The outcome of our first set of experiments is shown by Figure 8.3(a). The
plot shows data for different values of ε and compares the achieved length of
the schedules to their upper bound δ+. Even for relatively large values of ε
one observes that the total lifetime is much closer to its upper bound than
what one would expect from the approximation guarantee. Based on the
data, one may conjecture that using the approximation oracle instead of an
optimal solution in the GK algorithm does not prevent the algorithm from
finding good solutions.

The number of iterations required is shown in Figure 8.3(b). Note the
logarithmic scale. Not surprisingly, the choice of ε has a major effect on
the number of iterations. However, the number of iterations also increases
with node density. This can be explained by the fact that for increasing node
degrees the total achievable schedule length also increases. The errorbars
shown in all plots show the standard deviation over the 20 instances for the

130 CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

L/δ+, ε = 0.05
L/δ+, ε = 0.10
L/δ+, ε = 0.20
L/δ+, ε = 0.30

(1-ε)2/H∆+, ε = 0.05
(1-ε)2/H∆+, ε = 0.10
(1-ε)2/H∆+, ε = 0.20
(1-ε)2/H∆+, ε = 0.30

(a) Lifetime/δ+ for different ε

 100

 1000

 10000

 5 10 15 20 25

ε = 0.05
ε = 0.10
ε = 0.20
ε = 0.30

(b) Number of iterations for different ε

Figure 8.3: Algorithm performance depending on node density; the x-axis
shows the expected node degree on a logarithmic scale disregarding area
boundary effects; plot a) also shows the approximation guarantee.

same node density.

Network simulations

We implemented the combined Algorithm GKSCHED-ASYNMWDS as a
protocol agent in NS2 and performed simulations for the same set of problem
instances as above. Based on the experiments with the centralized algorithm
we fixed ε = 0.2. Choosing the same instances had the benefit of being able
to test the correct operation of the algorithm by checking whether the results
matched those obtained by the centralized implementation.

We evaluated algorithm performance in terms of the number of control
messages required and simulated running time per iteration. One may expect
that the execution time of the distributed algorithm largely depends on the
price-update interval length PUI. Figure 8.4(a) shows the average duration
of a single iteration in Algorithm GKSCHED when one varied the value of
PUI. From the data it appears the actual value of PUI only has a minor effect
on the runtime of algorithm ASYNMWDS. This seems to be particularly the

CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS 131

 8

 9

 10

 11

 12

 13

 5 10 15 20 25

PUI = 1.0
PUI = 0.5
PUI = 0.2

(a) Seconds per iteration for different PUI length

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25

∆
total
price
vote

δ
dominator

(b) Messages per node per iteration according to
type for PUI=1.0

Figure 8.4: Number of control messages and time required per iteration for
networks of varying node density; the x-axis shows the expected node de-
gree on a logarithmic scale disregarding area boundary effects; plot b) also
includes retransmissions caused by collisions.

case when the network is dense. Based on this observation, we settled on a
value of one second for the remaining experiments.

Figure 8.4(b) shows the average total number of messages per node per
iteration required by ASYNMWDS. One can see that the total number of
messages per node generally lies between the maximum and the average de-
gree in the graph. The figure also breaks down the total number of messages
according to their type. It is also apparent from Figure 8.4(b) that price up-
dates have the largest contribution to the number of messages, followed by
votes and dominator messages. We note that one modification that may be
worthwhile to consider would be to replace unicast transmissions of price up-
dates by broadcast transmissions with selective acknowledgments, which are
sent in reply by supporter nodes. One would expect that this modification
would lead to a minor reduction in the number of price updates, possibly
offset by a more complicated MAC layer protocol.

132 CHAPTER 8. SLEEP-SCHEDULING IN SENSOR NETWORKS

9 CONCLUSIONS

This thesis discussed distributed algorithms for multihop networks that are
based on a formal model of an underlying optimization problem. We started
with a brief introduction in Chapter 1 and proceeded in Chapter 2 to outline
models, major problems and challenges in multihop wireless networks. In
Chapter 3 we continued with a short overview of mathematical programming
techniques from linear and convex optimization theory that are relevant in
this context. These methods form tools that were later applied to practical
network optimization problems. We then formalized the model of distributed
computation that forms the base for the algorithms proposed in this thesis.
The model and several example algorithms found from the literature were
discussed in Chapter 4, which concluded the introductory part of the thesis.

The remaining chapters presented own work on distributed optimization
algorithms. In Chapter 5 we first addressed the problem of minimizing net-
work congestion subject to routing demands and formulated a linear pro-
gramming model of the problem. Then we designed a distributed algorithm
based on an LP approximation technique due to Young [154]. Further, we
provided results of extensive network simulations, which we performed to
evaluate our algorithm using the well-known simulator NS2. We then turned
to the problem of fairness of routing when there are several source-destination
pairs that use a multipath routing algorithm. In Chapter 6 we proposed an
algorithm that is based on the dual-decomposition technique and lets sources
continuously update their routes based on node-congestion information.

The following two chapters discussed the part of our work relevant to sen-
sor networks. Energy-efficient operation of these networks is an important
design goal when considering almost all applications. Therefore, in Chap-
ter 7, we considered a graph-theoretic model for the problem of maximizing
the sensor-network lifetime. We proposed two algorithms, which we evalu-
ated and compared by network simulations. The computed communication
graph is guaranteed to be connected and to achieve maximum lifetime un-
der the assumption of uniform load on the nodes. For applications that lead
to short duty cycles, i.e., when the time that is spent by nodes in idle states
dominates, in order to achieve long lifetime it is important to let sensor net-
work nodes remain in a low-power sleeping state whenever possible. We
approached the resulting sleep scheduling problem in Chapter 8, where we
proposed a distributed algorithm for computing solutions that are guaranteed
to achieve lifetime within a factor of an optimal solution.

The model of distributed computation applied in the context of multi-
hop wireless networks is a challenging one, especially if both the integrity of
nodes and messages passed between them cannot be guaranteed. However,
algorithms that operate in this model and prove themselves useful have the
potential to be applied in other settings as well. As part of future work the
author plans to consider extensions of the primal-dual framework to prob-
lems in other domains of distributed computing. It would also be interesting
to consider generalizations of the sleep-scheduling problem, for example, in
combination with data-aggregation techniques.

The methods and algorithms discussed here could be seen from a higher-

CHAPTER 9. CONCLUSIONS 133

level perspective. It would be interesting to identify alternative, possibly more
diverse, problem settings in which the same or related techniques can be ap-
plied.1 In the future we may envision a method of compiling a high-level
description of a network optimization problem into a low level distributed
optimization algorithm. Although user interaction may be required in most
cases, it would relieve the protocol designer from dealing with every algorith-
mic detail by giving the opportunity to focus on high-level design decisions.

1Possibly the author suffers from Maslow’s hammer effect [92], although reviewing the
literature and finding related techniques for diverse problems have convinced him otherwise.

134 CHAPTER 9. CONCLUSIONS

BIBLIOGRAPHY

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ,
1993.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wire-
less sensor networks: a survey. Computer Networks, 38(4):393 – 422,
2002.

[3] K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Frieder. Geometric
spanners for wireless ad hoc networks. IEEE Transactions on Parallel
and Distributed Systems, 14(4):408–421, 2003.

[4] B. Awerbuch. Complexity of network synchronization. Journal of the
ACM, 32(4):804–823, 1985.

[5] P. C. B. Vatinlen, F. Chauvet and P. Mahey. Simple bounds and
greedy algorithms for decomposing a flow into a minimal set of paths.
European Journal of Operational Research, 185:1390–1401, 2008.

[6] G. Baier, E. Köhler, and M. Skutella. On the k-splittable flow prob-
lem. In Proceedings of the 10th Annual European Symposium on
Algorithms (ESA ’02), pages 101–113, London, UK, 2002. Springer-
Verlag.

[7] G. Baier, E. Köhler, and M. Skutella. The k-splittable flow problem.
Algorithmica, 42:231–248, 2005.

[8] S. Basagni, M. Mastrogiovanni, and C. Petrioli. A performance com-
parison of protocols for clustering and backbone formation in large
scale ad hoc networks. In Proceedings of the IEEE International Con-
ference on Mobile Ad-hoc and Sensor Systems, pages 70–79, 2004.

[9] A. Basu, A. Lin, and S. Ramanathan. Routing using potentials: A dy-
namic traffic-aware routing algorithm. In Proceedings of the ACM
SIGCOMM 2003 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, pages 37–48,
New York, NY, USA, 2003. ACM Press.

[10] B. Berger, J. Rompel, and P. W. Shor. Efficient NC algorithms for set
cover with applications to learning and geometry. In Proceedings of
the Annual IEEE Symposium on Foundations of Computer Science,
pages 54–59. IEEE Computer Society, 1989.

[11] P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky. Power efficient
monitoring management in sensor networks. In Wireless Commu-
nications and Networking Conference, 2004. WCNC. 2004 IEEE,
pages 2329–2334, March 2004.

[12] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edi-
tion, 1999.

BIBLIOGRAPHY 135

[13] D. P. Bertsekas, A. Nedi’c, and A. E. Ozdaglar. Convex Analysis and
Optimization. Athena Scientific, 2003.

[14] D. P. Bertsekas and J. Tsitsiklis. Parallel and distributed computation:
Numerical methods. Prentice Hall, 1989. Available for download at
http://dspace.mit.edu/handle/1721.1/3719.

[15] M. Bhardwaj, S. Misra, and G. Xue. Distributed topology control in
wireless ad hoc networks using β-skeletons. In Workshop on High
Performance Switching and Routing, pages 371– 375, 2005.

[16] D. Bienstock. Potential Function Methods for Approximately Solving
Linear Programming Problems: Theory and Practice, volume 53 of
International Series in Operations Research & Management Science.
Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[17] J. Blum, M. Ding, A. Thaeler, and X. Cheng. Connected dominating
set in sensor networks and manets. In D.-Z. Du and P. M. Pardalos,
editors, Handbook of Combinatorial Optimization, pages 329–369.
Kluwer Academic Publishers, 2005.

[18] S. Borbash and E. Jennings. Distributed topology control algorithm for
multihop wireless networks. In Proceedings of the 2002 International
Joint Conference on Neural Networks, pages 355–360, 2002.

[19] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
Univ. Press, 2004.

[20] H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-
hard. Computational Geometry, 9(1-2):3–24, 1998. Special Issue on
Geometric Representations of Graphs.

[21] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A
performance comparison of multi-hop wireless ad hoc network routing
protocols. In Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom’98),
pages 85–97, New York, NY, USA, 1998. ACM.

[22] R. Bruno, M. Conti, and E. Gregori. Mesh networks: commodity mul-
tihop ad hoc networks. IEEE Communications Magazine, 43(3):123–
131, 2005.

[23] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic. Towards optimal sleep
scheduling in sensor networks for rare-event detection. In Proceed-
ings of the 4th International Symposium on Information Processing
in Sensor Networks, pages 20–27, Piscataway, NJ, USA, 2005. IEEE
Press.

[24] M. Caramia and A. Sgalambro. An exact approach for the maximum
concurrent k-splittable flow problem. Optimization Letters, 2(2):251–
265, 2007.

136 BIBLIOGRAPHY

[25] A. Cerpa and D. Estrin. ASCENT: adaptive self-configuring sen-
sor networks topologies. IEEE Transactions on Mobile Computing,
3(3):272–285, July–Aug 2004.

[26] J.-H. Chang and L. Tassiulas. Energy conserving routing in wireless
ad-hoc networks. In Proceedings of the Nineteenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies (IN-
FOCOM), pages 22–31, 2000.

[27] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: an
energy-efficient coordination algorithm for topology maintenance in
ad hoc wireless networks. Wirel. Netw., 8(5):481–494, 2002.

[28] D. Chen and P. K. Varshney. QoS support in wireless sensor networks:
A survey. In Proceedings of the 2004 International Conference on
Wireless Networks (ICWN 2004), 2004.

[29] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layer-
ing as optimization decomposition: A mathematical theory of network
architectures. Proceedings of the IEEE, 95:255–312, 2007.

[30] I. Chlamtac, M. Conti, and J. J. N. Liu. Mobile ad hoc networking:
imperatives and challenges. Ad Hoc Networks, 1(1):13–64, 2003.

[31] V. Chvátal. A Greedy Heuristic for the Set-Covering Problem. Math-
ematics of Operations Research, 4(3):233–235, 1979.

[32] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs.
Discrete Math., 86(1-3):165–177, 1990.

[33] A. E. F. Clementi, P. Penna, and R. Silvestri. Hardness results for
the power range assignment problem in packet radio networks. In
Proceedings of the Third International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (RANDOM-
APPROX), pages 197–208, London, UK, 1999. Springer-Verlag.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms. The MIT Press, Cambridge, MA, USA, 2nd
edition, 2001.

[35] B. Cărbunar, A. Grama, J. Vitek, and O. Cărbunar. Redundancy
and coverage detection in sensor networks. ACM Trans. Sen. Netw.,
2(1):94–128, 2006.

[36] D. Culler, D. Estrin, and M. Srivastava. Guest editors’ introduction:
Overview of sensor networks. Computer, 37:41–49, 2004.

[37] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer-
Verlag, Heidelberg, 4th edition, 2010.

[38] I. Dietrich and F. Dressler. On the lifetime of wireless sensor networks.
ACM Trans. Sen. Netw., 5(1):1–39, 2009.

BIBLIOGRAPHY 137

[39] A. Ephremides. Energy concerns in wireless networks. IEEE Wireless
Communications, 9(4):48–59, 2002.

[40] O. Escalante, T. Pérez, J. Solano, and I. Stojmenovic. RNG-based
searching and broadcasting algorithms over Internet graphs and peer-
to-peer computing systems. In The 3rd ACS/IEEE International Con-
ference on Computer Systems and Applications, pages 47–54, 2005.

[41] U. Feige. A threshold of lnn for approximating set cover. J. ACM,
45(4):634–652, 1998.

[42] U. Feige, M. M. Halldórsson, and G. Kortsarz. Approximating the
domatic number. In Proceedings of the thirty-second annual ACM
symposium on Theory of computing (STOC’00), pages 134–143, New
York, NY, USA, 2000. ACM.

[43] L. K. Fleischer. Approximating fractional multicommodity flow in-
dependent of the number of commodities. SIAM J. Discret. Math.,
13(4):505–520, 2000.

[44] P. Floréen, P. Kaski, J. Kohonen, and P. Orponen. Lifetime maximiza-
tion for multicasting in energy-constrained wireless networks. IEEE
Journal on Selected Areas in Communications, 23(1):117–126, 2005.

[45] P. Floréen, P. Kaski, T. Musto, and J. Suomela. Local approxima-
tion algorithms for scheduling problems in sensor networks. In Pro-
ceedings of the Third International Workshop on Algorithmic Aspects
of Wireless Sensor Networks (ALGOSENSORS’07), volume 4837 of
Lecture Notes in Computer Science, pages 99–113, 2008.

[46] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed al-
gorithm for minimum-weight spanning trees. ACM Transactions on
Programming Languages and Systems, 5(1):66–77, 1983.

[47] Y. Ganjali and A. Keshavarzian. Load balancing in ad hoc networks:
Single-path routing vs. multi-path routing. In Proceedings of the
Twenty-third Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), March 2004.

[48] N. Garg and J. Könemann. Faster and simpler algorithms for mul-
ticommodity flow and other fractional packing problems. SIAM J.
Comput., 37(2):630–652, 2007.

[49] L. Georgiadis. Bottleneck multicast trees in linear time. IEEE Com-
munications Letters, 7(11):564–566, 2003.

[50] A. J. Goldsmith and S. B. Wicker. Design challenges for energy-
constrained ad hoc wireless networks. IEEE Wireless Communica-
tions, pages 8–27, 2002.

[51] F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. A primal-
dual bicriteria distributed algorithm for capacitated vertex cover.
SIAM Journal on Computing, 38(3):825–840, 2008.

138 BIBLIOGRAPHY

[52] S. Guo, O. W. W. Yang, and V. C. M. Leung. Tree-based distributed
multicast algorithms for directional communications and lifetime op-
timization in wireless ad hoc networks. EURASIP Journal on Wireless
Communications and Networking, 2007:Article ID 98938, 10 pages,
2007.

[53] S. K. S. Gupta and P. K. Srimani. Self-stabilizing multicast protocols
for ad hoc networks. Journal of Parallel and Distributed Computing,
63(1):87–96, 2003.

[54] H. Haanpää, A. Schumacher, and P. Orponen. Distributed algorithms
for lifetime maximization in sensor networks via min-max spanning
subgraphs. Wireless Networks, 16:875–887, 2010.

[55] H. Haanpää, A. Schumacher, T. Thaler, and P. Orponen. Distributed
computation of maximum lifetime spanning subgraphs in sensor net-
works. In H. Zhang, S. Olariu, J. Cao, and D. Johnson, editors, Pro-
ceedings of the 3rd International Conference on Mobile Ad-hoc and
Sensor Networks (MSN ’07), volume 4864 of Lecture Notes in Com-
puter Science, pages 445–456, Berlin / Heidelberg, 2007. Springer-
Verlag.

[56] S. Haldar. An ’all pairs shortest paths’ distributed algorithm using 2n2

messages. Journal of Algorithms, 24(1):20–36, 1997.

[57] M. M. Halldórsson. Approximations of independent sets in graphs.
In Proceedings of the International Workshop on Approximation Al-
gorithms for Combinatorial Optimization (APPROX ’98), pages 1–13,
London, UK, 1998. Springer-Verlag.

[58] J. He, M. Bresler, M. Chiang, and J. Rexford. Towards robust multi-
layer traffic engineering: Optimization of congestion control and rout-
ing. IEEE Journal on Selected Areas in Communications, 25:868–
880, 2007.

[59] J. He, J. Rexford, and M. Chiang. Don’t optimize existing protocols,
design optimizable protocols. SIGCOMM Comput. Commun. Rev.,
37(3):53–58, 2007.

[60] M. Hempstead, M. J. Lyons, D. Brooks, and G.-Y. Wei. Survey of
hardware systems for wireless sensor networks. Journal of Low Power
Electronics, 4(1):11–20, 2008.

[61] X. Hou and D. Tipper. Impact of failures on routing in mobile ad hoc
networks using DSR. In Proceedings of Communication Networks
and Distributed Systems Modeling and Simulation Conference, Jan
2003.

[62] IETF. IETF mobile ad hoc network (MANET) working group char-
ter, 2006.

[63] M. Ilyas, editor. The Handbook of Ad Hoc Wireless Networks. CRC
Press, 2002.

BIBLIOGRAPHY 139

[64] A. Iyer, C. Rosenberg, and A. Karnik. What is the right model for
wireless channel interference? IEEE Transactions on Wireless Com-
munications, 8(5):2662–2671, May 2009.

[65] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani.
Greedy facility location algorithms analyzed using dual fitting with
factor-revealing LP. J. ACM, 50(6):795–824, 2003.

[66] L. Jia, R. Rajaraman, and T. Suel. An efficient distributed algorithm
for constructing small dominating sets. Distrib. Comput., 15(4):193–
205, 2002.

[67] B. Johansson. On Distributed Optimization in Networked Systems.
PhD thesis, Royal Institute of Technology (KTH), 2008.

[68] B. Johansson, M. Rabi, and M. Johansson. A simple peer-to-peer algo-
rithm for distributed optimization in sensor networks. In Proceedings
of the IEEE Conference on Decision and Control, 2007.

[69] B. Johansson, P. Soldati, and M. Johansson. Mathematical decom-
position techniques for distributed cross-layer optimization of data
networks. IEEE Journal on Selected Areas in Communications,
24(8):1535–1547, Aug. 2006.

[70] D. B. Johnson, Y.-C. Hu, and D. A. Maltz. The dynamic source rout-
ing protocol (DSR) for mobile ad hoc networks for IPv4. Technical
report, IETF, 2007. RFC 4728.

[71] D. Julian, M. Chiang, D. O’Neill, and S. Boyd. QoS and fairness con-
strained convex optimization of resource allocation for wireless cellu-
lar and ad hoc networks. In Proceedings of IEEE INFOCOM, pages
477–486, 2002.

[72] I. Kang and R. Poovendran. Maximizing network lifetime of broad-
casting over wireless stationary ad hoc networks. Mobile Networks
and Applications, 10(6):879–896, 2005.

[73] F. P. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8:33–37, 1997.

[74] F. P. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: shadow prices, proportional fairness and stability. Journal of
the Operational Research Society, 49(3):237–252, 1998.

[75] S. Khuller, U. Vishkin, and N. Young. A primal-dual parallel approx-
imation technique applied to weighted set and vertex covers. Journal
of Algorithms, 17(2):280 – 289, 1994.

[76] L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power con-
sumption in packet radio networks. Theoretical Computer Science,
243(1-2):289–305, 2000.

140 BIBLIOGRAPHY

[77] M. Kohvakka, J. Suhonen, M. Hannikainen, and T. D. Hamalainen.
Transmission power based path loss metering for wireless sensor net-
works. In 17th Annual IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, pages 1–5, 2006.

[78] L. Krishnamachari, D. Estrin, and S. Wicker. The impact of data ag-
gregation in wireless sensor networks. In Distributed Computing Sys-
tems Workshops, 2002. Proceedings. 22nd International Conference
on, pages 575–578, 2002.

[79] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing newly
deployed ad hoc and sensor networks. In Proceedings of the 10th
Annual International Conference on Mobile Computing and Net-
working (MobiCom ’04), pages 260–274, New York, NY, USA, 2004.
ACM.

[80] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad hoc networks beyond
unit disk graphs. Wirel. Netw., 14(5):715–729, 2008.

[81] S. Kumar, V. S. Raghavan, and J. Deng. Medium access control proto-
cols for ad hoc wireless networks: A survey. Ad Hoc Networks, 4(3):326
– 358, 2006.

[82] I. Lestas and G. Vinnicombe. Combined control of routing and flow:
a multipath routing approach. In Proceedings of the 43rd IEEE Con-
ference on Decision and Control, pages 2390–2395, 2004.

[83] X.-Y. Li. Algorithmic, geometric and graphs issues in wireless net-
works. Wireless Communications and Mobile Computing, 3(2):119–
140, 2003.

[84] X. Lin and N. B. Shroff. An optimization-based approach for QoS
routing in high-bandwidth networks. IEEE/ACM Trans. Netw.,
14(6):1348–1361, 2006.

[85] X. Lin and N. B. Shroff. Utility maximization for communication
networks with multipath routing. IEEE Transactions on Automatic
Control, 51:766–781, 2006.

[86] N. Linial. Locality in distributed graph algorithms. SIAM J. Comput.,
21(1):193–201, 1992.

[87] E. L. Lloyd, R. Liu, M. V. Marathe, R. Ramanathan, and S. Ravi.
Algorithmic aspects of topology control problems for ad hoc networks.
Mobile Networks and Applications, 10(1-2):19–34, feb 2005.

[88] S. Low. Multipath optimization flow control. In ICON ’00: Proceed-
ings of the 8th IEEE International Conference on Networks, page 39,
Washington, DC, USA, 2000. IEEE Computer Society.

[89] S. H. Low. A duality model of TCP and queue management algo-
rithms. IEEE/ACM Trans. Netw., 11(4):525–536, 2003.

BIBLIOGRAPHY 141

[90] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Fran-
cisco, CA, USA, 1996.

[91] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J.
Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25:59–
68, 1995.

[92] A. H. Maslow. The Psychology of Science : A Reconnaissance. Harper
and Row, 1966.

[93] S. McCanne, S. Floyd, K. Fall, and K. Varadhan. The network
simulator NS2, 1995. The VINT project, available for download at
http://www.isi.edu/nsnam/ns/.

[94] V. Mhatre and C. Rosenberg. Design guidelines for wireless sensor
networks: communication, clustering and aggregation. Ad Hoc Net-
works, 2(1):45 – 63, 2004.

[95] T. Moscibroda. Locality, Scheduling, and Selfishness: Algorithmic
Foundations of Highly Decentralized Networks. PhD thesis, ETH
Zurich, 2006.

[96] T. Moscibroda and R. Wattenhofer. Maximizing the lifetime of dom-
inating sets. In Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium, page 242.2, 2005.

[97] MOSEK ApS. The MOSEK optimization tools manual. Version 5.0.,
2008. Available for download at http://www.mosek.com.

[98] S. Mueller, R. P. Tsang, and D. Ghosal. Multipath routing in mobile
ad hoc networks: Issues and challenges. Lecture Notes in Computer
Science, 2965:209–234, Jan 2004.

[99] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R. Kumar.
Power control in ad-hoc networks: Theory, architecture, algorithm
and implementation of the COMPOW protocol. In Proceedings of
the European Wireless Conference, pages 156–162, 2002.

[100] A. Nasipuri, R. Castañeda, and S. R. Das. Performance of multipath
routing for on-demand protocols in mobile ad hoc networks. Mobile
Networks and Applications, 6(4):339–349, 2001.

[101] T. Nieberg, J. Hurink, and W. Kern. Approximation schemes for wire-
less networks. ACM Trans. Algorithms, 4(4):1–17, 2008.

[102] ns 3 project. ns-3 tutorial, 2010. Available online at http://www.
nsnam.org/docs/tutorial.pdf.

[103] C. A. Oliveira and P. M. Pardalos. Ad hoc networks: Optimization
problems and solution methods. In M. X. Cheng, Y. Li, and D.-
Z. Du, editors, Combinatorial Optimization in Communication Net-
works, pages 147–169. Springer US, 2006.

142 BIBLIOGRAPHY

[104] R. Oliveira, L. Bernardo, and P. Pinto. The influence of broadcast
traffic on IEEE 802.11 DCF networks. Computer Communications,
32(2):439 – 452, 2009.

[105] F. Paganini. Congestion control with adaptive multipath routing based
on optimization. In 40th Annual Conference on Information Sciences
and Systems, pages 333–338, 2006.

[106] A. Panconesi and M. Sozio. Fast primal-dual distributed algorithms
for scheduling and matching problems. Distributed Computing,
22(4):269–283, 2010.

[107] I. Papadimitriou and L. Georgiadis. Energy-aware broadcast trees in
wireless networks. Mobile Networks and Applications, 9:567–581,
2004.

[108] J. Papandriopoulos, S. Dey, and J. Evans. Optimal and distributed pro-
tocols for cross-layer design of physical and transport layers in manets.
IEEE/ACM Trans. Netw., 16(6):1392–1405, 2008.

[109] M. R. Pearlman, Z. J. Haas, P. Sholander, and S. S. Tabrizi. On the
impact of alternate path routing for load balancing in mobile ad hoc
networks. In Proceedings of the 1st ACM International Symposium
on Mobile Ad Hoc Networking & Computing (MobiHoc ’00), pages
3–10, Piscataway, NJ, USA, 2000. IEEE Press.

[110] D. Peleg. Distributed Computing: A Locality-Sensitive Approach.
SIAM Philadelphia, PA, 2000.

[111] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc on-demand
distance vector (AODV) routing. Technical report, IETF, July 2003.
RFC 3561.

[112] S. Prasad, A. Schumacher, H. Haanpää, and P. Orponen. Balanced
multipath source routing. In T. Vazão, M. Freire, and I. Chong, ed-
itors, Information Networking. Towards Ubiquitous Networking and
Services. Proceedings of the 21st International Conference on Infor-
mation Networking (ICOIN ’07). Revised Selected Papers, volume
5200 of Lecture Notes in Computer Science, pages 315–324. Springer
Berlin/Heidelberg, 2008.

[113] F. L. Presti. Joint congestion control: routing and media access control
optimization via dual decomposition for ad hoc wireless networks. In
MSWiM ’05: Proceedings of the 8th ACM international symposium
on Modeling, analysis and simulation of wireless and mobile systems,
pages 298–306, New York, NY, USA, 2005. ACM Press.

[114] M. Rabbat and R. Nowak. Distributed optimization in sensor net-
works. In Proceedings of the 3rd International Symposium on Infor-
mation Processing in Sensor Networks (IPSN ’04), pages 20–27, New
York, NY, USA, 2004. ACM.

BIBLIOGRAPHY 143

[115] R. Raffard, C. Tomlin, and S. Boyd. Distributed optimization for co-
operative agents: application to formation flight. In Proceedings of the
43rd IEEE Conference on Decision and Control (CDC’2004), pages
2453–2459, 2004.

[116] S. Rajagopalan and V. V. Vazirani. Primal-dual RNC approximation
algorithms for set cover and covering integer programs. SIAM J. Com-
put., 28(2):525–540, 1999.

[117] R. Ramanathan and R. Rosales-Hain. Topology control of multihop
wireless networks using transmit power adjustment. In Proceedings of
the Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), pages 404–413, 2000.

[118] V. Rodoplu and T. H. Meng. Minimum energy mobile wireless
networks. IEEE Journal on Selected Areas in Communications,
17(8):1333–1344, sep 1999.

[119] M. Sanchez, P. Manzoni, and Z. J. Haas. Determination of critical
transmission range in ad-hoc networks. In Proceedings of Multiaccess,
Mobility and Teletraffic for Wireless Communications Conference,
1999.

[120] P. Santi. Topology control in wireless ad hoc and sensor networks.
ACM Computing Surveys, 37:164–194, 2005.

[121] N. Santoro. Design and Analysis of Distributed Algorithms. Wiley Se-
ries on Parallel and Distributed Computing. Wiley-Interscience, 2006.

[122] S. Schmid and R. Wattenhofer. Algorithmic models for sensor net-
works. In Proceedings of the 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS’06), 2006. 11 pages.

[123] A. Schumacher and H. Haanpää. Distributed network utility maxi-
mization in wireless networks with a bounded number of paths. In
Proceedings of the 3rd ACM Workshop on Performance Monitoring
and Measurement of Heterogeneous Wireless and Wired Networks
(PM2HW2N 2008), pages 96–103, New York, NY, USA, 2008. ACM.

[124] A. Schumacher and H. Haanpää. Distributed sleep scheduling
in wireless sensor networks via fractional domatic partitioning. In
R. Guerraoui and F. Petit, editors, Stabilization, Safety, and Security
of Distributed Systems, volume 5873/2009 of Lecture Notes in Com-
puter Science, pages 640–654. Springer-Verlag Berlin / Heidelberg,
2009.

[125] A. Schumacher, H. Haanpää, S. E. Schaeffer, and P. Orponen. Load
balancing by distributed optimisation in ad hoc networks. In J. Cao,
I. Stojmenovic, X. Jia, and S. K. Das, editors, Mobile Ad-hoc and Sen-
sor Networks, volume 4325/2006 of Lecture Notes in Computer Sci-
ence, pages 873–884, Berlin / Heidelberg, 2006. Springer-Verlag.

144 BIBLIOGRAPHY

[126] A. Schumacher, P. Orponen, T. Thaler, and H. Haanpää. Lifetime
maximization in wireless sensor networks by distributed binary search.
In R. Verdone, editor, Proceedings of the 5th European Conference
on Wireless Sensor Networks (EWSN 2008), volume 4913/2008 of
Lecture Notes in Computer Science, pages 237–252, Berlin / Heidel-
berg, 2008. Springer-Verlag.

[127] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh.
Simulating the power consumption of large-scale sensor network ap-
plications. In Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems (SenSys ’04), pages 188–200,
New York, NY, USA, 2004. ACM.

[128] R. Sivakumar, B. Das, and V. Bharghavan. Spine routing in ad hoc
networks. Cluster Computing, 1(2):237–248, 1998.

[129] P. Soldati, B. Johansson, and M. Johansson. Proportionally fair alloca-
tion of end-to-end bandwidth in STDMA wireless networks. In Pro-
ceedings of the Seventh ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc ’06), pages 286–297,
New York, NY, USA, 2006. ACM Press.

[130] M. Sozio. Efficient Distributed Algorithms via the Primal-Dual
Schema. PhD thesis, Sapienza University, Rome, Italy, 2006.

[131] K. Srinivasan and P. Levis. RSSI is under-appreciated. In Proceedings
of the Third Workshop on Embedded Networked Sensors (EmNets),
2006. Available for download at http://sing.stanford.edu/pubs/
rssi-emnets06.pdf.

[132] J. Suomela. Locality helps sleep scheduling. In Working
Notes of the Workshop on World-Sensor-Web: Mobile Device-
Centric Sensory Networks and Applications, 2006. Avail-
able for download at http://www.sensorplanet.org/wsw2006/8_
Suomela_WSW2006_final.pdf.

[133] G. T. Toussaint. The relative neighbourhood graph of a finite planar
set. Pattern Recognition, 12:261–268, 1980.

[134] G. Tsaggouris and C. Zaroliagis. QoS-aware multicommodity flows
and transportation planning. In R. Jacob and M. Müller-Hannemann,
editors, ATMOS 2006 - 6th Workshop on Algorithmic Methods and
Models for Optimization of Railways. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006.

[135] C. Tschudin, P. Gunningberg, H. Lundgren, and E. Nordström.
Lessons from experimental MANET research. Ad Hoc Networks,
3(2):221–233, 2005.

[136] J. N. Tsitsiklis and G. D. Stamoulis. On the average communica-
tion complexity of asynchronous distributed algorithms. J. ACM,
42(2):382–400, 1995.

BIBLIOGRAPHY 145

[137] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Department of Operations and Research and Financial Engineering,
Princeton University, 2001.

[138] R. Vannier and I. G. Lassous. Towards a practical and fair rate alloca-
tion for multihop wireless networks based on a simple node model. In
Proceedings of the 11th International Symposium on Modeling, Anal-
ysis and Simulation of Wireless and Mobile Systems (MSWiM ’08),
pages 23–27, New York, NY, USA, 2008. ACM.

[139] V. V. Vazirani. Approximation Algorithms. Springer, 2004.

[140] S. Vutukury and J. J. Garcia-Luna-Aceves. A simple approximation
to minimum-delay routing. In Proceedings of the Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communication, pages 227–238, New York, NY, USA, 1999. ACM
Press.

[141] P.-J. Wan, K. M. Alzoubi, and O. Frieder. Distributed construction of
connected dominating set in wireless ad hoc networks. Mobile Net-
works and Applications, 9(2):141–149, 2004.

[142] J. Wang, L. Li, S. Low, and J. Doyle. Can shortest-path routing and
TCP maximize utility. In Proceedings of the Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties (INFOCOM ’03), pages 2049–2056, 2003.

[143] L. Wang, L. Zhang, Y. Shu, and M. Dong. Multipath source routing
in wireless ad hoc networks. In Electrical and Computer Engineering,
2000 Canadian Conference on, volume 1, pages 479–483 vol.1, 2000.

[144] W.-H. Wang, M. Palaniswami, and S. H. Low. Optimal flow control
and routing in multi-path networks. Perform. Eval., 52(2-3):119–132,
2003.

[145] Y. Wang, W. Wang, and X.-Y. Li. Distributed low-cost backbone for-
mation for wireless ad hoc networks. In Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking and comput-
ing (MobiHoc ’05), pages 2–13, New York, NY, USA, 2005. ACM.

[146] A. Warrier, S. Park, J. Min, and I. Rhee. How much energy saving does
topology control offer for wireless sensor networks? - a practical study.
Computer Communications, 30(14-15):2867 – 2879, 2007. Network
Coverage and Routing Schemes for Wireless Sensor Networks.

[147] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distributed topology
control for power efficient operation in multihop wireless ad hoc net-
works. In Proceedings of the Twentieth Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM),
pages 1388–1397, April 2001.

146 BIBLIOGRAPHY

[148] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. On the con-
struction of energy-efficient broadcast and multicast trees in wireless
networks. In Proceedings of the Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM),
pages 585–594, 2000.

[149] G. Wittenburg, K. Terfloth, F. L. Villafuerte, T. Naumowicz, H. Ritter,
and J. Schiller. Fence monitoring: experimental evaluation of a use
case for wireless sensor networks. In Proceedings of the 4th European
Conference on Wireless Sensor Networks (EWSN ’07), pages 163–
178, Berlin, Heidelberg, 2007. Springer-Verlag.

[150] K. Wu and J. Harms. Performance study of a multipath routing method
for wireless mobile ad hoc networks. In Proceedings of the Ninth
International Symposium in Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS’01), pages
99–107, Washington, DC, USA, 2001. IEEE Computer Society.

[151] L. Xiao, M. Johansson, and S. P. Boyd. Simultaneous routing and
resource allocation via dual decomposition. IEEE Transactions on
Communications, 52:1136–1144, July 2004.

[152] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC proto-
col for wireless sensor networks. In Proceedings of the IEEE Infocom,
pages 1567–1576, New York, NY, USA, June 2002. USC/Information
Sciences Institute, IEEE.

[153] Y. Yi and M. Chiang. Stochastic network utility maximization – a trib-
ute to kelly’s paper published in this journal a decade ago. European
Transactions on Telecommunications, 19(4):421–442, 2008.

[154] N. E. Young. Randomized rounding without solving the linear pro-
gram. In Proceedings of the Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’95), pages 170–178, Philadelphia, PA,
USA, 1995. Society for Industrial and Applied Mathematics.

[155] M. Youssef, A. Agrawala, and A. Udaya Shankar. Wlan location deter-
mination via clustering and probability distributions. In Proceedings
of the First IEEE International Conference on Pervasive Computing
and Communications, pages 143 – 150, 2003.

BIBLIOGRAPHY 147

148 BIBLIOGRAPHY

Index

ad hoc network, 4, 9–14
critical transmission range, 94
dynamic source routing, 13–14
medium access control, 10
network utility maximization, 73
routing algorithms, 12
transmission scheduling, 73

approximation algorithm, 21
approximation factor, 22

barrier coverage, 16
beaconing method, 105
binary search, 100
bottleneck cost, 95
branch-and-bound algorithm, 31, 33
broadcast model, see distributed al-

gorithm, communication, broad-
cast model

broadcast transmission, 11

CBR source, 62
Chvátal’s algorithm, 26, 53, 54, 115
clear-to-send message, 12
CONGEST model, 44, 120
congestion, see edge, congestion
convex

function, 35–36
program, 36

complementary slackness, 39
dual function, 37
Lagrangian function, 37
Slater’s condition, 38
weak duality, 38

set, 35
strictly concave, 35
strictly convex, 35

distributed algorithm, 42
communication

broadcast model, 43, 100
unicast model, 43, 93

communication delay, 42
convergecast, 49, 102

execution time, 44
leader election, 47
message complexity, 43
reactive model, 42
register, 41
termination, 43
time complexity, 43
timer, 41
unique initiator, 42

distributed computing environment,
41

DMMT algorithm, 109–110
domatic number, see graph, domatic

number
DSR algorithm, 12–14
dual decomposition, 37, 73, 79

edge
congestion, 30, 58
flow, 28, 30

exponential back-off, 11
exposed terminal problem, 10

flow-balance constraint, 33, 86

Garg-Könemann scheme, 28, 117
Gauss-Seidel method, 40, 78
graph, 5

α-spanner, 7
bottleneck spanning tree, 93
bounded independence graph, 8,

53
communication graph, 7, 41
connected, 7
diameter, 6
disk graph, 8
domatic number, 18, 116
dominating set, 6, 53
independent set, 7, 51
interference graph, 51
minimum dominating set, 6
minimum spanning tree, 6, 47

INDEX 149

minimum weight dominating set,
6, 26, 53, 121

minmax spanner, 7, 93, 95–99
neighborhood, 6
relative neighborhood graph, 9,

96, 99, 108
shortest paths, 47–49
shortest-path spanning tree, 47
spanning tree, 45–47
subgraph, 6
unit disk graph, 8

harmonic number, 27, 53
hidden terminal problem, 10

interface queue, 13
overflows, 64

interference range, 12

Lagrangian
duality, 36–39
function, 37
multiplier, 37, 79

lifetime maximization, see sensor net-
work, lifetime maximization

linear programming
canonical form, 23
covering LP, 23
dual fitting, 27
dual problem, 23
duality theorem, 23
integrality gap, 25
linear relaxation, 24, 25, 31
packing LP, 23
primal-dual algorithm, 25, 121
weighted set-cover problem, 26

load balancing, 57
local algorithm, 44, 121

MAC layer, 10–12
maximum concurrent flow problem,

30
maximum multicommodity flow prob-

lem, 27
maximum source-route length, 13, 61,

70, 72
medium access control, see MAC layer
mesh network, 4
minimum maximum congestion prob-

lem, 30, 57–58

minimum weight dominating set, see
graph, minimum weight dom-
inating set

minimum weight set cover problem,
25–27, 53, 117, 122

minmax spanner, see graph, minmax
spanner

multicast lifetime maximization prob-
lem, 93

multihop routing, 4
multihop wireless network, 4
multipath routing, 57–58

n-of-n lifetime, 16, 18, 91, 93
network

coverage, 16
flow, see maximum multicommod-

ity flow problem
optimization, 1
synchronizer, 55–56
utility maximization, 73–74

node
cover state, 122
level, 51
neighbor list, 125
neighbors, 6, 7
price, 123

update interval, 128, 131
span, 54, 125
supporters, 123
tree neighbors, 6, 45, 117

NS2, 18–20, 57, 61, 105, 108, 130

parallel algorithm
computation model, 121

path
flow, 28, 60

path loss
exponent, 15
model, 16, 92, 95, 105–107, 110

Prim’s algorithm, 94, 109
projected gradient method, 39, 80
propagation delay, 107
propagation model, see path loss, model
proportional fairness, 75
proximal optimization, 40

range assignment problem, 15, 94
reactive model, see distributed algo-

rithm, reactive model

150 INDEX

redundancy graph, see sensor network,
redundancy graph

relay region, 94
request-to-send message, 12
RNG, see graph, relative neighbor-

hood graph
RSSI, 107

sensor network, 4–5, 14–18
data gathering, 5, 91, 93
forest-fire detection, 92
lifetime maximization, 16, 93–94
redundancy graph, 17, 115
sleep scheduling, 17, 115
topology control, 15, 91

set cover
greedy algorithm, see Chvátal’s al-

gorithm
set cover problem, see minimum weight

set cover problem
SINR, 12
sleep scheduling, see sensor network,

sleep scheduling
source-routing protocol, 13
spatial reuse, 15
splittable flow, 31
strictly concave, see convex, strictly

concave
strictly convex, see convex, strictly con-

vex

target coverage, 16
TCP, 1, 73
threshold signal strength, 105
topology control, see sensor network,

topology control
two-ray ground model, 109

unicast model, see distributed algo-
rithm, communication, uni-
cast model

unicast transmission, 11

wireless broadcast advantage, 12, 43,
121, 124

wireless transmission medium, 10

INDEX 151

TKK DISSERTATIONS IN INFORMATION AND COMPUTER SCIENCE

ISBN 978-952-60-3480-5 (Print)

ISBN 978-952-60-3481-2 (Online)

ISSN 1797-5050 (Print)

ISSN 1797-5069 (Online)

