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1 Introduction

1.1 Background

Tightened global competition, higher product qyaléquirements and environmental
and safety regulations have forced the oil refinimdustry to continuously enhance and
optimise the efficiency and profitability of its gmess plants. Profitability can generally
be enhanced through process optimisation, by gutdmwn costs and by reducing the
duration of planned and unplanned shutdowns. Ogétian can further be enhanced by

focusing on preventing the off-spec production edusy faults and process disturbances.

The effect of faults and process disturbances enptiocess can be reduced by using
fault-tolerant control (FTC) methods, which areecatrised into passive and active
approaches. Passive FTC aims at improving the tobsss of the controller against faults
and disturbances by modelling the effects of thdt$aand disturbances and taking these
into account in the objective function of the mogetdictive controller (MPC). Active
FTC, on the other hand, attempts to reduce th¢ éffieicts by using active FTC elements,
which are, for instance, the fault detection andgdosis (FDD) components for the
detection, isolation and identification of faulesyd the FTC methods carrying out active
fault accommodation or controller reconfiguratiati@ens to reduce the effects of faults.

Traditionally, most FDD methods used in the ac#eC strategies have been based on
mechanistic models. In the modern process indsstn@wvever, there is an increase in the
demand for data-based methods that rely on modsdsirad experimentally with
statistical mathematical algorithms. The increaisgerest in the data-based methods is
due to the complexity of chemical processes andimhiéed availability of mechanistic
models. The need for the automated FDD and FTC uishdr emphasised by
Venkatasubramanian et al. (2003a), who found thagllly 70% of industrial accidents
are caused by human error. It is also stated thae rthan USD 20 billion are lost
annually in the North American oil refining industalone due to the improper handling
of abnormal situations. As a result, financial essare the major driving force behind the

continuous development of the data-based FDD amddhve FTC strategies.



25

In addition to the FDD component, the controllersl dhe control algorithms are an
important part of the FTC strategy. During the ltst decades, the development of
process control methods has been focused on MPiChviMas become one of the most
commonly used advanced control methods in theefiihing industry. The popularity of

MPC has also been verified in the comprehensive M&@w by Qin and Badgwell

(2003); in the milestone report concerning indastapplications by McAvoy et al.

(2004); and in the general review of the curreatust and future needs of advanced
control strategies by Bars et al. (2006). The adgdncontrol methods, such as MPC,
have made it possible to run the processes cloigetquality and safety limits thereby
increasing profitability, ensuring the better gtyalbf the end products, and enhancing

safety in the plants.

Reviews on the traditional MPC have been presemtedimerous papers; for instance,
Morari and Lee (1999) have looked at the past,gmteand future of MPC; Rawlings
(2000) have presented a general overview of MPdev@in and Badgwell (2003) have
examined MPC by describing the development of tidustrial MPCs from simple
optimisation algorithms to modern software packadgée current status of the nonlinear
MPC has been reviewed by Cannon (2004); the supfetraditional robust MPC
algorithms covering the period 1999-2006 has beeplighed by Jalali and Nadimi
(2006); and the latest advances in the field ofinear min—max-based robust MPC has
been presented by Raimondo et al. (2009). Whatideet from all of these reviews is
that the number and popularity of improved MPC ggapions, such as nonlinear or
robust MPCs, has increased over the years. Howsoare challenges related especially
to nonlinear formulations of MPC and the reliailiand stability issues caused by
process faults and disturbances have still remalaegkly unresolved, even though a

number of nonlinear and fault-tolerant MPC appreadhmave been presented in the past.
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MPC'’s success and the remaining reliability issusge activated interest in the study of
active, data-based, fault-tolerant control methoflke active fault-tolerant control
methods have usually been categorised into fawibramodation-based and controller
reconfiguration-based methods depending on howetfeets of the faults on the target
process are handled. The fault accommodation-bappdoaches usually modify the
control strategy without changing the control stuoe itself, while the controller
reconfiguration-based approaches attempt to enhidwecelant operation by modifying
both the control parameters and structure of thetrob strategy. The fault
accommodation uses the adaptation of the contrmleounter the effects of the faults by,
for instance, accommodating the faulty measuremewits the estimations of the
measurements. The reconfiguration approach, oottier hand, attempts to use only the
healthy part of the system for control by turninff ¢the faulty parts, such as
measurements or actuators. A number of review gapare been published in the active
fault-tolerant MPC (FTMPC) area showing the reseanterest in the field. These papers
include a general overview of fault-tolerant cohtby Blanke et al. (1997); a paper
concentrating on the problem of supervision and ByGtaroswiecki and Gehin (2001);
and recently, a comprehensive review of activewggarable FTC by Zhang and Jiang
(2008).

The development of FTC has been focused on onlggushe individual FTMPC
components. The applications of the active fautremt MPCs have been designed either
for fault accommodation or controller reconfiguoatj but not for both approaches. In the
fault accommodation-based FTC strategies, the facusthe prevention of sensor faults
while in the controller reconfiguration-based sttaés, the availability of a perfect FDD
is assumed when the structure of the controlleeéenfigured in case of actuator faults.
In these cases, the FTC is thus able to detecpewént only one type of fault instead of
taking into account the full range of different ltasuappearing in industrial-scale
processes. The combination of the fault accommodadaind controller reconfiguration
strategies in one application would possibly o#aropportunity to even further improve

industrial FTMPCs, and thus also to significantigrease the profitability of the plants.



27
1.2 Research problem and hypothesis

The major research problem and the motivation i@ thesis is to improve the control
performance of an MPC controlling an industrial rd@aatization process, the solvent
dearomatization process unit, LARPO, an abbrewativpom the Finnish term

‘Liuottimien aromaattien poisto’. The dearomatipatiprocess is located in the Naantali
refinery, Finland, and owned by Neste Oil Oyj. Tgerformance improvement can be
gained by diminishing the effect of sensor and actufaults by utilising the active data-
based FTC methods taking into account faults inahalyser, flow, temperature and
pressure measurements, and in the actuators. Bherhtontrol performance increases
the reliability and stability of the controller, cteases the off-spec production, and

improves the target process profitability.

In order to develop the active FTMPC, a set ofdaskeds to be accomplished. The main
tasks in this doctoral thesis are to study, developlement, test and analyse the fault-
tolerant control for the industrial dearomatizatimocess. The effectiveness of the active
data-based FTMPC is to be tested by studying tteetefof different types of faults on

the control performance of the FTMPC. The faultetypgo be tested are drift- and bias-

shaped faults for analysers and sensors and aaiwk fault for the control valves.

The hypotheses of the thesis are:

(1) The integration of the data-based FDD methadsthe fault accommodation and

the controller reconfiguration FTC methods provittee control system of :

p==4

dearomatization process with the tools needed &ycowe the typical process and

measurement disturbances and faults in the deaimatah process environment.

(2) The availability and profitability of the deanatization process are enhanced [by
the compensation of the critical faults using tlaulf accommodation and the

controller reconfiguration FTC methods.
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In order to prove the hypotheses, five tasks mestanried out:

1. Determine the target process requirements ®athive data-based FTC strategy.

2. Determine the candidates for the active dated&DD and FTC components, the

design scheme and the structure for the FTMPC.

3. Compare data-based FDD components within anpirediry testing environment and

select the best suitable FDD component for the FCMP

4. Validate the performance of the integrated FTMR@he simulated dearomatization

process.

5. Analyse the results and evaluate the econonmieflie of implementing the integrated

FTMPC to the actual industrial dearomatization pesc

The first task is carried out by analysing the ¢éaqgrocess behaviour and applying expert
knowledge acquired from target process users amuerex in order to gather the

requirements for the active data-based FTC strategy

Task 2 is carried out by performing a literaturevey on recent developments in the
passive and active FTC fields, and by taking irdcoant the requirements set in Task 1.
Based on preliminary knowledge, the requirementstha literature survey, the suitable

active data-based FDD and FTC components and tBed€§ign schemes are selected.

In Task 3, three data-based FDD components aredt@gthin a preliminary process en-
vironment, which is selected based on the simyldaotthe dearomatization process and
the popularity in literature. The results are dssad and the performance of the FDD
methods is compared to select the best FDD methrathé final integrated FTMPC.

Task 4 consists of validating the performance & ithtegrated FTMPC in the target

simulated dearomatization process with faults ialysers, sensors and actuators.

Task 5 comprises assessing the performance anfthtreial benefits of implementing

the proposed active data-based FTMPC in the actdastrial dearomatization process.
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1.3 Content of the thesis work

The aim of this thesis is to develop an active d@ised FTMPC to take into account
faults in the process analysers, sensors and actuat an industrial dearomatization

process, LARPO, located in the Naantali refinerymed/by Neste Oil Oyj, Finland.

The state-of-the-art of passive and active FTGhdustrial processes is given in Chapter
2. In Chapter 3, the design schemes for the intedrBTMPC for a complex industrial

process are described.

The comparison of three data-based FDD methodsssritbed in Chapter 4. In this
chapter, the active data-based FTC strategy prdpos€hapter 3 for the analyser and
sensor faults is tested with three data-based FDthads in a simulated industrial
benchmark process. Based on the preliminary pedoce testing, the FDD component
with best performance is selected as the FDD coepoaf the integrated FTMPC for

the simulated dearomatization process.

Chapter 5 presents the target dearomatization gsogrd the existing control strategy,
while Chapter 6 proposes the integrated FTMPC Fa& $imulated dearomatization

process.

Chapter 7 presents the testing platform and thesin@l process simulator, ProsDS,
which is used for the simulation of the complex ustlial dearomatization process
located in the Naantali refinery. Further, the dinty of the target process and the control
performance of the nominal MPC are tested and ¢éh&ral performance of the integrated
FTMPC is evaluated when the target process is teffielsy faults. Finally, the results are

discussed and the economic benefits of the integi@af MPC are assessed.

Chapter 8 analyses and discusses the performantee ahtegrated FTMPC and the
conclusions based on the results are drawn.

The first hypothesis is asserted in Section 7.3thadecond hypothesis in Section 7.4.
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1.4 Main contributions

The main contribution and novelty of the thesishis integrated FTMPC containing the
three parallel-running active data-based FTC gresedeveloped by the author.

The first strategy consists of a recursive partedst squares (PLS) and a fault
accommodation-based FTC methods developed by theraor the analyser and sensor
faults in the controlled variables (CV) and in thisturbance variables (DV). The second
FTC strategy uses the recursive PLS and the comndyinaf fault accommodation- and
the controller reconfiguration-based FTC methodd bas been developed by the author
for the sensor faults in the manipulated variald¥). The third FTC strategy utilises an
FDD method monitoring the difference between thesneement and setpoint that has
been developed by the author and a controller fegoation-based FTC method for the
MV actuator faults.

In order to support the thesis work, the authordesloped a software platform for the
FTMPC development. The process simulator (Prosb8)tae FTMPC testing platform
are described in more detail in Section 7.1.1.

The contribution of the author has been presemtede following publications:

* The fault accommodation-based FTC strategy foatta@yser and sensor faults in
a simulated crude distillation column has beengt= in Kettunen and Jamsa-
Jounela (2006a), Kettunen and JAmséa-Jounela (2006 ettunen et al. (2008).

* The author has been assisting in the design andmtmation of an FTC strategy
for an industrial dearomatization process witht&ui the analyser measurements.
This work has been presented in Koivisto et al080

* The integrated FTMPC and the FTC strategies fortkleand MV sensor faults
and for the MV actuator faults have not yet beemliphed, but an article
Kettunen and Jamsa-Jounela (2010) has been suthntitethe Journal of

Industrial and Engineering Chemistry Research ¢oinig these results.
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2 Fault-tolerant model predictive control: state-of-the-art

MPC has firmly established its position in the m@fining industry as one of the most
popular advanced control methods. In a number dh hmassive and active FTC
applications, an MPC is used as a control compooktite FTC, optimising the process
variables over time and providing inherent passol®istness. According to Camacho &
Bordons (2004), the other MPC benefits are: the easise and tuning; the suitability for
a wide range of processes; the built-in compensdtiothe dead times due to the process

model; and the intrinsic handling of multivarialslentrol and measured disturbances.

One passive way to increase tolerance for fault® i;ncrease the robustness of the
controller itself. A robust controller, such asochust MPC, should reach given objectives
without a change in the control law even in thespree of faults. In effect, robustness is
reached if the control moves are computed by takitggaccount the uncertainty derived

from the disturbances and faults by including theféects in MPC objective function.

Active FTC strategies (AFTCS) attempt to enhaneeatailability of a plant affected by
faults by using active FDD and FTC components thusting the control law in order to
reach the given control objectives. The AFTCS apenrmonly categorised in fault
accommodation- and controller reconfiguration-basS€&gs. In the fault accommodation,
the controller is adapted to counter the effects tloé faults by, for instance,
accommodating the faulty measurements with themasibns provided by the FDD
methods. Generally, the fault estimation can beiezhrout by using the mechanistic
models or the data-based FDD methods, such asgair@omponent analysis (PCA) or
partial least squares (PLS). According to Blankale(2003, pp. 266-268), the controller
reconfiguration uses different input-output relaicand, in general, utilises a switching
logic to change the input and output (I/O) relasioif the controller reconfiguration
refers to a change in both the controller pararsedsrwell as the structure of the control
system, these methods are referred to as restlisation methods (Zhang & Jiang,
2008). Generally, in the controller reconfiguratimsed FTC, the faulty part of the

controller is turned off and only the healthy partised for the control.
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2.1 Passive FTMPC

The robust MPCs address the model mismatch probserdsare able to maintain the
stability of the control system in the open loogeaThere are several robust MPC
methods available, e.g. methods based on a moglelaights, constraints and horizons.
Nonlinear robust MPC has recently been studiedhsitely, allowing stable control of

the nonlinear processes with faults by using an NdB€ed control strategy. The
downside of the acquired robustness is its hugepotetional load, which makes this

method unfeasible for processes that require adapbnse time.

The concept of robust MPC was first introduced laynpo and Morari (1987), based on
the standard robust control theory. They propokatlihstead of assuming that one linear
time invariant (LTI) model could describe the preeexplicitly, the process behaviour in
the robust MPC could be described by one LTI meeaétcted from a set of models by
using the min—max approach. In the passive min—-ampgxoach, originally presented by
Witsenhausen (1968), the goal is to maximise thdopwance of the predictive
controller by minimising the worst-case trackingoer(the largest difference between the
prediction and the actual measurement) of the ptiedicontroller. This is accomplished
by adding the estimation of the uncertainties (futlisturbances) as an input to the
predictive controller and taking it into accountNHPC objective function. Although the
robust MPC presented by Campo and Morari (1987awethin a more robust way than
the previous approaches, according to Zheng anafi{993), the method could not
guarantee robust stability since the algorithm dat take into account the general
principle of MPC - the point of using only the firsptimal input move from the
calculated input series, i.e. the receding horigonciple. In essence, this flaw in design
of the algorithm caused the open loop optimal sohuto differ from the actual feedback
optimal solution. One popular method for increasihg robustness of an MPC is to

apply the min—max approach.
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Ralhan and Badgwell (2000) developed two robust MIRC simulated linear integrating

plants: a one-stage and a two-stage integratimgistdinear quadratic regulator (RLQR).
The one-stage version considered only the steadsg, sthile the two-stage robust MPC
optimised the state over the entire prediction zwri The robustness of the controller
was achieved by adding constraints to the costtimmdn order to restrict the future

behaviour of the cost function itself. Accordingttee results, the robust MPC worked
efficiently compared to other approaches on theausbtMPC field. However, as it is

evident from the results, the performance of theusd MPC is better than a nominal
MPC, but the differences to the standard min—mdmsbapproach are minimal and the
improvement in the stability of the control stratag relatively small compared to the
traditional robust MPC methods. Nevertheless, th®R response time was still faster
than the traditional min—max algorithm, which ismall improvement to the previous

robust MPC approaches.

Wu (2001) extended the linear matrix inequality ()Mased robust MPC, originally
presented by Kothare et al. (1996), for a classnakrtain linear systems with structured
time-varying uncertainties. The developed robustOviiigorithm was presented in their
study and it was implemented and tested with atcaingd control problem by using an
industrial continuous stirred tank reactor (CSTAR)cording to the results, the presented
robust MPC performs better than the traditional MPiGwever, a comparison with the
other robust MPC approaches is lacking and it us ttifficult to determine whether the
proposed method is actually more effective thanpievious robust MPC approaches.
Nonetheless, the paper describes well the appligabind effectiveness of the method in
an industrial-scale environment.
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Wang and Romagnoli (2003) proposed a robust maaeligiive control (RMPC) design
that utilised a generalised objective function @aling with model-plant mismatch
problems. Controller robustness is achieved bylexteg a proper objective function for
each different situation from a set of pre-deteedirfiunctions. The developed method
was tested using a simulated linear CSTR as astadg. Again, the performance of the
developed robust MPC was compared to a nominal MR a traditional min—max-
based robust MPC. Based on the results, the diifereo the min—max approach is small
with the traditional method being even more efiextin some cases than the proposed
method. However, compared to the traditional MP€lilts, the proposed method shows
better performance and stability. In general, thethmd seems to offer very small
performance improvement compared to the previopso@ghes, and the main benefit of

the algorithm is the reduced computational load.

Bemporad et al. (2003) developed an optimal feedlmamntroller based on min—max
control for the discrete-time uncertain linear eys$ with constraints on the inputs and
states. The effectiveness of the control strategs werified by comparing the
computation times of the nominal and optimised detg horizon controller (RHC). The
main advantage of the algorithm developed by Beagbat al. (2003) is the optimal
robust piecewise affine control law allowing impkemtation of the min—max-based
robust MPC even for applications limited by compiotzal capacity. The developed
technique therefore significantly reduces compotati load compared to the
traditionally used algorithms, offering an impottamprovement to future robust MPC

approaches based on the min—-max approach.
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Richards (2005) have proposed a robust MPC foratiname-varying systems that
guarantees the feasibility of the optimisations aatisfies the given set of constraints in
all cases. Robust feasibility was achieved prirgdsy tightening the constraints in the
online optimisation. The developed algorithm wastad with linear and nonlinear
examples with 100 simulations with random distudesncarried out. According to the
results, the developed algorithm is feasible also rfonlinear cases, as long as the
nonlinear systems are linearized around the opgragibint. In general, the proposed
approach has promising results, although the papeémpresented examples were for the
most part theoretical.

Mhaskar and Kennedy (2008) considered the problémheo stabilisation of nonlinear
process systems with a set of constraints on thegeh rate and the magnitude of the
control inputs in the presence of uncertainty. preposed robust MPC was based on the
formulation of stability constraints that are fddsifrom an explicitly characterised set of
initial conditions and minimisation of the rate etmaint violation. This approach
guarantees the system stabilisation and the handfithe rate constraints within the soft
constraints. The effectiveness of the developed MRE verified with theoretical proofs
and a few simulation cases. The applicability toaatual nonlinear industrial case was
not considered in the paper, although there is nfutlre potential in the presented
method.
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Lazar et al. (2008) studied discrete nonlinearesystaffected by parametric uncertainties
and other disturbances. In their paper, Lazar.4R@08) proposed an approach that was
applicable to the classical setup of a min—max Mir@blem; the proposed approach can
be used to design nonlinear min—-max MPC schemels guiaranteed input-to-state
stability (ISS). Based on the results, the devedopethodology allows the design of an
asymptotically stable min—max MPC without assumbeforehand that the additive
disturbance inputs reach zero as the closed-logpeisy state converges towards the
origin. Although the proposed methodology was sssftdly demonstrated with a
nonlinear example case and the proposed min—-max, NBRCmethod is not directly
applicable to an actual industrial application; leeer, it might provide a good basis for

future innovations in the research area.

Huang et al. (2009) presented a design methodofogya robust nonlinear model
predictive controller (NMPC) with dynamic first pdiples models. The proposed
strategy is based on multi-scenario nonlinear @mgning (NLP) formulation, which is
extended to an advanced step NMPC. The benefttiostrategy were demonstrated by
using a large-scale, air-separation process usiamAimprovement to the existing NMPC
formulations, the proposed strategy reduces theyatation times without losing control
performance. However, since only a brief case wasgmted in the paper to demonstrate
the effectiveness of the method, the actual appliba of the method is unclear, even

though the preliminary simulation results were piing.
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2.2 Active FTMPC

Active FTMPC has been under study in an increasinmgber of FTC projects during the
last decade. The most important active fault accodation-based and controller

reconfiguration-based FTC applications over thesase presented and discussed below.

2.2.1 Active fault accommodation-based fault-tolerant control

Pranatyasto and Qin (2001) studied the data-bamdttblerant control of a simulated
fluid catalytic cracking (FCC) unit under MPC caitrThe simulation model of the FCC
was created by McFarlane et al. (1993) which, atingrto Pranatyasto and Qin (2001),
is sufficiently complex to capture the major dynareffects taking place in the actual
FCC unit. PCA was first used as a fault detectiomc@dure to classify the data; te
method, also referred to as the squared predidioor (SPE) index by Jackson and
Mudholkar (1979), was then used to detect faultsaraluate the difference between the
measurement and the model output. The Hotelliigndex, based on the work by
Hotelling (1947), was used for cross-reference psep; however, this was found to be
too unreliable for the detection itself. The Hdtejl T index measures how close the
variances of two samples are to each other. Thelrgtia dynamic matrix control
(QDMC) MPC-algorithm was used for control of theget process. The dynamic
behaviour was introduced into the test process thiéhcontroller feedback. The faults
tested in the paper included a large ramp in a ¢okwation factor, small changes in a
coke formation factor, and changes in the ambiemiperature. The results of this well-
constructed paper are impressive as the faultshénsimulated measurements were
promptly detected and accommodated, which demdastthat such FTC application

could also provide good results in an actual ingaistnvironment.
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Prakash et al. (2002) studied a model-based sigoeyvcombination of an FDD with an
MPC. The FTC strategy consists of a supervisorypmmant using the FDD information
to modify the MPC inputs or outputs. The generdliseelihood ratio (GLR) by Willsky
and Jones (1976) was used in the study for FDDgseg the fault detection part used a
fault detection test created by Narasimhan and [888). For the control of the case
study process, a standard dynamic matrix contrM@pcontroller and a set of standard
PID-controllers were used. The performance of tHe&C Fwas tested using a non-
isothermal CSTR example presented by Marlin (198bjhe test setting, the developed
fault-tolerant control strategy (FTCS) performedngicantly better than conventional
control settings, and was able to detect sequeffdialts introduced in the CSTR
measurements. However, due to a degree of planelhnmigmatch, there clearly was a
degree of disturbance caused in the non-faultyatées. This disturbance effectively
reduced control performance, although the perfoomawas better than in the case
without FTC.

Theilliol et al. (2002) developed a model-based KTi@tegy that takes into account both
sensor and actuator faults in a three-tank processolled by a feedback controller. A
linearized model of the target process was usedFDD purposes and analytical
redundancy methods for the FTC. An unknown inpeober scheme was implemented
and a bank of unknown input observers generatethis=DD. The FTC strategy was
able to estimate sensor values and effectively keeprocess under control even when a
sensor was completely destroyed. However, in otdererify the effectiveness of the
method in an actual industrial-scale process, tle¢hod should be tested with more
complex examples. In a more complex case, howetrmre would probably be

difficulties in attaining a suitable analytical medor the method.
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Patwardhan et al. (2006) improved and comparedntadel-based fault-tolerant control
strategies: an FTCS based on the research work lpriRrakash et al. (2002), and a
reformulated MPC based on an identified state spaodel originally presented by
Muske and Rawlings (1993). The FDD of the FTCSasda on a Kalman filter-based
GLR, which estimates the fault magnitudes onlytfer identified faults; this provides a
more efficient and less-computationally demandireghrad of detecting faults than mere
parameter estimation-based methods. The FTC syratag tested with a laboratory-
scale continuous stirred tank heater (CSTH) proaesdsa simulated benchmark process
of a crude oil distillation column - the Shell cmitproblem (Prett & Morari, 1987), SCP.
The results of the both approaches were compargdtiae conventional MPC and both
the state-space MPC (SSMPC) and FTCS provided isugegrformance compared to
the conventional MPC. As comparisons to other tygfeBTC systems are lacking, it is
difficult to determine the real effectiveness oé timethod. However, methods like this
promote the effectiveness of the data-based FTChadst on actual industrial

applications.

Mendonca et al. (2008) proposed an application ofodel-based FTC with weighted
fuzzy predictive control that was tested on an expental three-tank process with faults.
Fault detection was handled by means of a modeebapproach and fuzzy modelling,
and fault isolation with fuzzy decision-making apption. Fault accommodation was
carried out by using fuzzy models for differentlfasituations and the decision-making
component was used for selecting the correct mmiddhe fuzzy MPC in the case of a
process fault in the target process. With the Fir&tegy, the MPC model compensated
for the process faults and was able to operatefisigntly better when the FTC strategy
was active. However, the selection of correct wisigor the fuzzy MPC might be a
difficult and time-consuming task when implementitig system to a more complex
process environment. Further, as only two faulesasere considered in a 2x2 process,
reliable determination of the actual benefits in astual process application is not
possible based on these results.
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Manuja et al. (2008) improved the model-based FO€é®%loped by Patwardhan et al.
(2006) and Prakash et al. (2002) that was basdélLéh for fault detection and isolation
(FDI), and fault accommodation for the FTC. Thestérg FTC strategy was improved
by reducing the dimensions of the models usedHerRDI and control purposes. The
improved FTC strategy was tested using a nonlineasion of an ideal 20-tray, single
feed binary distillation column example by Luybd®90). According to the test results,
the modifications allow the implementation of th€ds in large dimensional processes
and improve the diagnostic performance of the Fir@egyy. The main innovation of the
paper comes from the model reduction for modelsl use both FDI and a predictive
controller. However, the differences and the reaidiit between the reduced model-FTC
and the regular FTCs were small in general, evengh a large number of simulations

were run.

Deshpande et al. (2009) continued the research waorkhe model-based FTCs by
Patwardhan et al. (2006) and Prakash et al. (20025ing a nonlinear model for the FDI
and the MPC. The performance of the modified FTE®dtter, which was verified by
testing the methods using a three tank benchmaréeps and a strongly nonlinear, fed
batch bioreactor example case. A general nonlisgatem was used for testing the
control performance of the developed strategy.lliteat cases the FTC performed well;
however, as it was recorded in the paper, the syatas tested in a single operation point
of the process. Therefore, the FTCS does not tate account large changes in the
dynamics of the processes, which may pose probierastual plant applications. Also,
as the system was adapting the models to the chamdiee process, there is a possibility
that the effects of undetected faults can spreatiéamodels, causing false alarms and
lowering the control performance.
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2.2.2 Active controller reconfiguration-based fault-tolerant control

Griffin and Maybeck (1997) used a model-based ngpaank multiple model adaptive
estimation and control (MMAE/MMAC) scheme to solsmgle controller robustness
problems. Kanev and Verhaegen (2000) extendedctmnsept generated by Griffin and
Maybeck (1997), and used a generalised predictvatral (GPC) algorithm as a
controller and an interacting multiple model (IMMstimator as a switching logic
between the different predetermined GPCs. In ths®eca piecewise linear (PWL) system
was used for approximating the actual nonlineacgse. Although the presented scheme
is effective in some cases, the performance isreBveeduced in case of unexpected

process faults since the strategy is relying oratpeori knowledge of the faults.

Zhou and Ren (2001) developed a combination of tdoased FTC and robust FTC
strategy - a generalised internal model controIMG). The new control structure
attempted to overcome the conflict between the stiless and performance of a normal
feedback controller. The most important featuréhef GIMC is that it is able to show, in
a structured way, how the controller can be desigseparately for performance and
robustness purposes. Based on the results of g, ghe developed control structure
would be a beneficial alternative to the traditiorabust MPC algorithms even though

the control performance of the proposed strategy wed clearly reported in the paper.

Gani et al. (2007) studied model-based FTC of aukitad nonlinear polyethylene
reactor. Gani et al. (2007) studied the effectaatiator faults and presented a way to
prevent the effects of these faults by designifeué-detection filter for actuator faults, a
set of stabilising feedback controllers, and aibsatg switching law that orchestrates
the re-configuration of the controller. The FTCagdgy was implemented in the closed-
loop simulations based on the target process madelthe performance of the FTC
strategy was verified. The study was applicatiaerded, thus promoting the use of FTC
in industrial applications. However, the simulaBowere run without noise in the
measurements, which is not realistic in actual gtdal applications. This issue was only

briefly assessed at the end of the paper with &fiftered measurement.
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Rodrigues et al. (2007) developed an active, mbdseed FTC strategy to prevent the
effects of actuator failures on polytopic lineargraeter varying (LPV) systems. The

FTC strategy is said to be able to preserve theesyperformance by redesigning the
controller in case of an actuator fault. The depetbFTC strategy can redesign multiple
controllers, which are able to maintain closed-I@ability even for combinations of

multiple actuator failures. The effectiveness @& tieveloped strategy was tested with an
example case with actuator failures. The propoggatoach was able to stabilise the
example system with multiple actuator failures; bwer, as the example used in the
paper was linear and somewhat theoretical, theagallcability of the presented strategy
in an industrial environment cannot be estimateseaon the results presented in the

paper.

Mhaskar et al. (2007) studied the stability of atcoller reconfiguration-based FTC
strategy for sensor faults. The FTC strategy comsef a built-in determination
mechanism to determine current operating regioms aaswitching logic for switching
into a suitable control configuration in case offault in the measurements. The
performance of the proposed FTC strategy was demaded using a nonlinear model of
a polyethene reactor. The approach in the papeséatonly in the reconfiguration of the
faulty measurements, and did not take the FDD astmunt and therefore, the interaction
between the FDD and FTC was not measured or detedrand the availability of a

perfect FDD was assumed.

Koivisto et al. (2008) used an active data-base@ Effategy for fault-tolerant control of
a full-scale industrial dearomatization processhwon-line analyser faults. The FTC
strategy includes a process model to predict thegss outputs and a supervisory system
for FTC actions and for changing control objectifaseeded. Based on the tests on the
target process, the FTC strategy was able to ssftdlysprevent off-spec production and
unnecessary abrupt actions in the target procdss.approach used in the paper was
based on different levels of reconfiguration actiowhich depend on the type of fault
affecting the system. The value of the paper nesthe actual industrial application, as

most of the FTC strategies have been tested withrddiory-scale processes, at most.
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2.3 Conclusions of the state-of-the-art in FTC

As presented in the literature review on the FERIfia number of good quality scientific
papers on the FTC have been published over thedesade with a large number
covering passive MPC strategies. These strategies insually focused on improving and
optimising the robustness of MPC from the theoe¢tpoint of view. The most notable
reviewed robust MPC strategies include the origmalust MPC by Campo and Morari
(1987); the optimal min—max-based controller by Berad et al. (2003); the min—max-
based controller for the discrete nonlinear systbynkazar et al. (2008); and the recent

nonlinear robust approach by Huang et al. (2009).

The reviewed active FTC strategies, on the othadhare often more straightforward
and driven by the increase of fault tolerance itamget process or processes. These
methods have often been based on the fault accoatrand or the controller
reconfiguration FTC methods. Further categorisatiaa been made on the basis of the
related FDD components, which have been basedr @thenechanistic process models
or process data. The most effective active FTCtegires are the data- and fault
accommodation-based FTC strategy for the simulk@@ unit by Pranatyasto and Qin
(2001); the supervisory model- and fault accommodabased approach by Prakash et al.
(2002); the nonlinear controller reconfiguratiorséd strategy by Mhaskar et al. (2007);
the application-oriented data-based reconfigur&Bl€ by Koivisto et al. (2008); and the

nonlinear model- and fault accommodation-basedegiyaby Deshpande et al. (2009).
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Generally, the passive FTC strategies and methoelsmore focused on theoretical
improvements; a good example of this is the pageBdmporad et al. (2003), where the
computation load of the existing min—max method besn reduced by optimising the
existing control algorithm. The active FTC methods, the other hand, are more
application-oriented and focus on specific appica such as the controller
reconfiguration-based strategy by Koivisto et &0(8) or the fault accommodation-
based strategy by Deshpande et al. (2009). Frompénspective of developing an
industrial fault-tolerant application, the activatabased FTC strategies are more
appealing candidates due to the more straightfahwaplementation and better focus on

the application itself, even though a passive agpgranight be equally effective.

The active data-based FTC methods presented irstdte-of-the-art literature review
offer an excellent opportunity to solve fault- afidturbance-related problems commonly
encountered in industrial plants. As it is evidéoin the number of reviewed papers,
various methods have successfully been developddiraplemented in a number of
cases; however, the combination of the fault accodation and controller
reconfiguration FTC methods within the same FT@tstgy have not been successfully
demonstrated with an industrial case. The comlwnatif the active FTC methods and
utilisation of the active data-based FDD methodsukhthus provide the FTMPC with
the necessary tools to significantly reduce thea$f of the faults and disturbances, and

improve the profitability of the industrial plants.
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3 Design of the active FTMPC

Under normal operating conditions, most of the mod&lvanced control strategies, such
as MPC, are able to ensure closed-loop stability @m optimal control performance. A
properly tuned MPC can also survive a degree of @hadaccuracy and process
disturbances on a multivariable constrained systafnile the early MPC formulations
based on the linear quadratic gaussian (LQG) ajread powerful stabilising properties
due to the infinite prediction horizon, they werat able to handle constraints, process
nonlinearities or uncertainty on multivariable gyst as stated by Qin and Badgwell
(2003). When the constraints and the finite horipanciple were implemented in order
to use MPC for actual process applications, MPCGzdasevere stability problems.
Attempts to achieve stability included various pciadn and control horizon approaches
and the introduction of a terminal cost to MPC cobje function. These methods were
criticised by Bitmead et al. (1990) since there evap clear conditions to guarantee
stability. The stability of MPC was thus studiedivagly during the late 1980s and early
1990s by Keerthi and Gilbert (1988) and Mayne anchislska (1990), for example, who
were among the first to explore the stability isswath the constrained MPC. Most
modern commercial MPCs have since been forceddasaff output constraints in order
to avoid the stability issues (Qin and Badgwell 200

As the number of potentially faulty components lwe tcontrol systems is greater than
before due to the increased use of complex costrategies, the component faults have,
however, become more common. At the same timedistrbance or a deviation from
the target trajectory is caused by a fault, theemtive actions made by the MPC decrease
the control performance instead of optimising thenpoperation. In such a case, it is
evident that the standard MPC alone is not ableptrate at the optimal operating point

or guarantee reliable control when affected bytfaul
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Design schemes can be used as a preliminary todh® design of an active fault-

tolerant MPC. These schemes describe the active Bif@tegies that add extra
functionality around the nominal controllers. Soafi¢hese strategies affect the controller
directly, while others leave the controller intacid concentrate on mitigating the effects

of the faults before they are relayed to the cdietratself.

In this chapter, first the faults in dynamic sysseand their locations in the industrial
processes are specified. Second, the target pratedbge schemes is given as a linear
model. Third, the MPC used for controlling the mes in the schemes is described.
Fourth, the FDD component of the FTC strategiedissussed. Finally, the chapter is
concluded with the descriptions of the fault accaydation, controller reconfiguration
and integrated FTC design schemes that are ustn idevelopment of the FTMPC for

the industrial dearomatization process.
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3.1 Faults in dynamic systems

According to Isermann and Ballé (1997) and Mahmeudl. (2003), a fault is defined as
an unpermitted deviation of at least one charattenqproperty or parameter of the system
from the acceptable behaviour. In essence, a idkfined as a state that may lead to a
malfunction or a failure. Failure, on the other thais defined as a permanent interruption
of the system’s ability to perform a required fuaot under the specified operating
conditions. Generally, it is difficult to determinte difference between faults and
disturbances, since in most cases there is no gdlydistinction. This is due to the fact
that both are unknown (or known in case of measdigdrbances) extra inputs acting on
the plant. As such, Gertler (1998) has defined fthéts as those extra inputs whose
presence is wished to be detected and preventdd RMdD and FTC methods, while

generally the effects of the disturbances are prterdewith other input variables.

According to Mahmoud et al. (2003), faults may tgkace in any system component
(actuators, sensors, plant components, or any c@hnbn). Faults are generally
categorised by the time characteristics or phydmedtions of faults in the system and
the effect of faults on the system performanceltEan physical locations can be divided
into three locations: the sensor faults, the aotuults and the process component (or
parametric) faults. In complex industrial processagh as in the oil refining process
units, faults in sensors, actuators and proces$onants are common, although highly
undesired phenomena that have a significant etfedhe quality of the final products
and the production efficiency of the unit. Due he small component size and low costs,
traditional, yet expensive, way to increase thessemeliability is by using the parallel
hardware redundancy (multiple measurements) foldblwg a majority voting scheme.

Figure 1 presents the general diagnostic framewandkthe potential locations of faults.
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Figure 1. The general diagnostic framework andlteations of potential faults in a

control system.

According to Bao et al. (2003), some examples & typical faults for feedback
controllers are a burned-out thermocouple, a brakamsducer or a stuck valve. Unless
the system is robust enough, the failures in thatrob components cause instability,

severely degrade the controller performance antedse the safety of the entire system.

For sensors, such as a temperature or a flow nerasat, the most typical fault types
according to Dunia et al. (1996) are a bias faultpmplete failure, a drifting fault and a

precision degradation fault (see Figure 2), whilslo apply to faults in process analysers.

ta) by

EEEERREEER RS |

| 1
| L
i ]
i = [l
-
| P L | o u ey
s o “ a o
e 17 . sa 1
i ]
l [
| [

tima |
[ el i@
F

Py
LI
L]

tene
|

Figure 2. The types of faults found in process dakee dashed line shows when the fault

5
ety

[ i
1
] i
i g '
| oet oo ot 5 ot w0
] @ [
T T
]
i
] Y - 3

occurs.O. data free of fault@®: corrupted data for the following cases: (a) bigb)

complete failure; (c) drifting; and (d) precisioredradation (Dunia et al., 1996).
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According to Mahmoud et al. (2003), the actuataitfainclude the loss of partial control
effectiveness (stuck valve) and a complete lossootrol (broken valve). The actuator
faults usually have a severe effect on the perfapmaf the system and it is generally
very difficult to add the extra hardware redundamwpltiple actuators) to increase the
reliability since the actuators usually are bothensive and large.

The parametric faults have effect on the dynamatimnship among the system variables.
Generally, these faults are caused by the phypaameter changes in the system and

appear as coefficients in the dynamic model ofctiv@rolled process.



50

3.2 Linear model of an industrial process

The target process can be presented with a linealeinwhich can be composed of a
standard state-space representation. In this naodliglte vectox(t), whereA, B, C andD

are matrices of appropriate dimensions can be eléfin

(1)

If D is assumed to be a zero matrix, and if disturbaheath the input matrixe are

added to the model, then the following system caadhieved:

{X(t) = AX(t) + Bu(t) + Ed(t), x(0) = X, 2)

y(t) = CX(t)

The state-space formulation, including additiveuingr state fault§, and output fault§,

can be presented in the following way:

{xf (t) = AX(t) + Bu(t) + Ed(t) + F, f,(t)

y; (t) =Cx{t)+ F, £, (t) 3)

The multiplicative parametric faultdA, 4B and4C, commonly presented &s modify

the model in the following way:

%, (t) = (A+AA)X(t)+ (B +ABu(t)+ Ed(t) + F, £, (1)
{yf (t)=(Cc+ac)x(t)+F,f,(t) 4)

Finally, a linearized dynamic process model ofrggk&-input and single output (SISO) or
a multi-input and multi-output (MIMO) system withults and disturbanacan then be

described as shown in Figure 3:
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Figure 3. Linearized dynamic SISO/MIMO process ruadld disturbances d, additive

input or state faults,f, output faults,f and parametric faultd A, 4B and4C.

In order to visualise the complete presentatiothefprocess, including the controller, a

linear output feedback controller is used as amgte:

u(t) ==Ky, () +Vy, () ®)

wherey; is the faulty measurement agdis the reference input for the controller. By
using this controller together with the plant inpuplant outputy and the setpoint signal

Yr, the full controlled nominal plant can then besgrged by the following system:

{X(t) = (A-BKC)x(t) + BVy, (t) + Ed(t), x(0) =X, )

y(t) = Cx(1)
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3.3 Linear MPC for industrial processes

The linear MPC is a suitable choice as the basmtrobcomponent of the active FTC
strategies due to its inherent stabilising properiaind widespread use in the process
industry. The main task of MPC is to stabilise taeget process through optimisation.
For the calculations required by MPC optimisatit linear continuous time system can
be given in the following discrete state-space form

X1 = AX, +BU,, X, =X

start
(7)
Y =CX

wherex, represents the statg, the control input angl the system output at time instant
K, Xstart IS the value ok during the time stek=0. A basic MPC optimisation problem may

then be formulated in the following way:

k+p-1 k+m—1
mj”{xmxp 2 XX+ ZUTRM} (8)
i=k i=k

wherePy andQ describe the weights set for the predicted stateRais the weighting
matrix for the controlled input. Als@, represents the length of the prediction horizosh an

m the length of the control horizon wighe m.

As described by Lee and Cooley (1997), Morari aee (1999) and Bemporad et al.
(2007), the objective function is solved using pinecess data and the model of the target
process. The objective function may be considesed tool with which to reach the set
goal of the system that is often to drive the MR(pat to a path following an optimal
setpoint or a target trajectory. The way of implatimgy this depends of the algorithm in
use and the needs of the user. As a result, tleetdlg function is modified appropriately
for each different case to fulfil the different uge process requirements. In addition to
the objective function, a set of constraints isaliyudefined in order to constrain the
MPC operation near or at the controller limits. S&eonstraints can be set hard (the
constraint should never be crossed) or soft (thestcaint can be crossed for some

amount of time) and this softness of the constradiieicts MPC optimisation.
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3.4 Fault detection and diagnosis component for the active FTC

strategies

The FDD is one of the most important componenthénactive FTC strategies. Frank et
al. (2000) state that without proper fault detattisolation and accommodation, the
process is vulnerable to faults, which may easihder the process unprofitable, unstable
and even unusable. Therefore, fault diagnosis pdageucial role in active FTC - with

proper fault detection and isolation, the FTC siggtcan utilise the correct FTC actions;
and with proper fault identification, the effecttbe fault can be reduced by using the

estimation of the fault magnitude and directionhwifte fault accommodation methods.

Generally, FDD methods are divided into model-bamed data-based methods as stated
in a comprehensive FDD review by Venkatasubramastaal. (2003a) and review of
FTC methods by Zhang and Jiang (2008). As was mvigtethe state-of-the-art FTC
literature study in Chapter 2, the most suitableDFEandidates for the integrated fault-
tolerant MPC are the data-based FDD methods. Baiséle literature study, the model-
based approaches have generally been proven téfdmtive as well; however, as the
complexity of the process increases, so does tifieudtly in obtaining suitable models
for the FDD. Also, in general, it is possible tondwne both model- and data-based
methods, but an approach like this would unnecigsacrease the complexity of the
application, which in turn would decrease the ugghbof the FDD or FTC on actual

industrial applications.
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Venkatasubramanian et al. (2003b) state that PC2abigson and Mudholkar (1979) and
PLS by Gerlach et al. (1979), in addition to statéd pattern classifiers, are the most
commonly used statistical feature extraction meshanatl are thus the prime candidates as
the FDD methods for the active data-based faudtrémit MPC. Furthermore, a doctoral
thesis by Vermasvuori (2008, pp. 50-57), which basn made in the same project in
which the author has worked in, proposes to use,PRISA, independent component
analysis (ICA), subspace model identification (SMf)a monitoring method based on

dissimilarity (DISSIM) for linear, or near-lineargresses.

As the comprehensive analysis of data-based faadindsis has already been published
in the same project by Vermasvuori (2008) and bytufen et al. (2008), the fault
diagnosis is not analysed in detail in this thesither, the focus is on the overall design
of the active FTMPC.

Based on earlier studies, the PCA, PLS and SMI Hzeen found to be the most
promising data-based FDD candidates for the finava data-based FTC strategy. In the
following sections, these data-based FDD methoglslescribed in more detalil.
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3.4.1 Description of the principal component analysis-algorithm

One approach to FDD is PCA, which has been predant&DD use by Jackson and
Mudholkar (1979), originally introduced by Pears(®01) and later independently
developed by Hotelling (1933). Generally, PCA ag#snto reduce the variable
dimension by transforming a number of possibly eated variables into a smaller
number of uncorrelated variables. With this transi@ation, it is possible to create a
statistical model of the target process, which tteen be used to predict the variable
values and to detect possible faults in these bimsaby using a suitable fault detection
index, such as SPE or Hotellifg. In this section, the PCA model determination, the
SPE and Hotelling limit calculation procedures and the fault detattprocedure are

presented.

34.1.1 PCA model deter mination from thetraining data set

1) The original training datX is zero-meaned and the variance is set to unemee

2) The covariance matrig is calculated:

c:ni_lex )

wheren is the number of observations

3) The eigenvaluesl, . of the covariance matrix are calculated, wherds the

number of variables (measurements):
defC-4, 1)=0 (10)

While the eigenvectors, ,are solved from the following equation:

(C-2, e =0 (11)

The eigenvalues are reorganized in the matiix decreasing order:

(12)
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The eigenvectors, also called as the principal amapts (PC) of th&, are kept in the

same order as the eigenvaldes;:

V=le e, ..e] (13)

4) Based on the selected captured variance (seldsti®ed on, for instance, a certain

variance limit), the number of principal componekiss determined:

k

>

Capturedvariance(PC, ) =-=—[100% (14)
2
=1

5) The eigenvalue matriX\, and transformation matri¥, are formed using thk

first principal components, wheke<< m:

A 0 .. 0

{ v (15)
0 0 .. A

V.=lee ..e] (16)

The principal componentsan be used to estimate the values of from the-rneaned

and normalised (in regards to the standard dewptialues ofx:

RT = X;—caled |N/k (17)

6) The SPE limit is calculated with the equations agk$on (1979):

The SPE-limitQ, is acquired by using the following equation and fogking the

approximation that the probability distribution@fis normally distributed:

1
Cy 292h§ +92h0(h0 _1)+ § (18)

=6, 1
Qa 1 91 012

wherec, is the normal density distribution correspondingtie upper(l—a) percentile

of the normal deviate and is defined in equation 19 aihg in equation 20:
6,23, )i =123 (19

wherek is the number of selected PCs amas the total number of PCs .
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_,_(266;)
h, =1- 3;223 (20)
7) The HotellingT? limit was calculated using the following equation:
T i :'“L:I(D F(k,m—k,a) (21)

where k is the number of principal components, is the number of measurements,

F(k,m-k,a) corresponds to the probability point on tHedistribution with

(k,m- k) degrees of freedom and terepresents the user-defined confidence level.

3.4.1.2 Fault detection with the new measurement data set

1) Set the variance to unit variance by using tlaéning data means and variance

2) Transform new, autoscaled data using the tramsftion matrixV,

),ZT = X;rcaled |N/k (22)

3) Calculate the value @f for the new data, using the following equation:

T?=x! (23)

scaled

v, N, IV, X

scaled

4) Calculate the SPE-value for the new data, ugiegequation by Pranatyasto and Qin
(2001):

Q=(x-%)"(x-%)=x"(1 -PP")x (24)

5) Compare the SPE value to the SPE limit; if théue is over the limit, the fault is

detected.
6) Calculate the individual variable contributidnghe SPE-value:

contributon (%) =100% x (x, = X)/ > _|x = ¥ (25)
i=1

wherem is the number of variables (measurements) sanslthe predicted measurement.
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3.4.2 Description of the nonlinear iterative partial least squares-algorithm

According to Abdi (2010), from the theoretical poof view the PLS is a more optimal
approach than the PCA, since the PLS regressiommss the correlation between input
(X) and output variablesY) by finding the X which are most relevant t§¥. This
minimisation is carried out by searching for acfatomponents, which decompa$and

Y in such a way that that these latent vectors ex@aimuch as possible the covariance
between them. As Abdi (2010) states, the main aigy of PLS is derived from the
preservation of the asymmetry of the relationshgbwieen predictor components and
dependent variables, while other similar technigsesh as canonical correlation and
multiple factor analysis treat these symmetricdlhypractice, however, when examining
actual process data affected by noise and othéatioens, the difference between PCA
and PLS is small or nonexistent. Since the PLS isdiure the more optimal method, the

use of PLS over simple PCA is generally encouraggal in practical applications.

The recursive NIPALS algorithm by Wold et al. (1988 presented next to obtain the
matrices needed for PLS regression. The originaiee of the method was presented by
Wold (1973). For two data block¥ (N by K matrix) andY (N by M matrix), the
NIPALS is carried out iteratively as follows:

1. Select &K-weight vectomw, for instance a normalised, non-zero rowXof

2. Calculate the score vectsrXiw.

3. Calculate the-loading vectog=Y'Lt.

4. Calculate thér-score vectou=Y1q.

5. Calculate a new weight vectar=X"Lu. Scalew; to length 1.

6. If |w-wi| < convergence limit (user-defined), the convecgens obtained,

otherwisew=w; and start at stage 2.

Here N is the number of samplek, is number of input variables aM is number of

output variables. Now two score vectdréfor X) andu (for Y) have been acquired.
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To acquire the next pair vfandu, several methods are available; however in thigeod,
in the following stages 7-11 by Wold et al. (1988)s adjusted for the score vector and
the regression of tot is calculated and finally is adjusted to the new results.

7. Xloading vectop is now calculated witp = X" 1t/(t"1t)

8. AdjustX: Xpew=X-tLp"

9. Calculate regression dftot: b = (Y 1t)/(t't)

10.AdjustY: Ypew= Y-tib"

11.1f more(t,u) pairs are needed, go back to stage 1 by bsinGenwandyY = Yiew

12.1f all the needed pairs df,u) have been acquired, the estima¥gq can be

calculated fromY, ,=TQ" =X WQ" = X[R, s, where Rois (K by N

matrix) is the regression matriX, is the scores matridV is the weights matrix

andQ is the loadings matrix.

Faults can be detected and isolated by calcul@ti@goot mean square error of prediction
(RMSEP) index for each variable and by settingu#igable with highest value faulty:

RMSEP= || =L (26)

wheren is the number of samples in the test datawsistthe outpuy, the disturbancd

or the manipulated variable measuremeand Vv is the estimated value of

The latent variables (LV) of PLS are the termd @Pbntaining the relevant information of
high dimension dat that is compressed to the low-dimensional variapkce off. Tis

of dimensionN by A, whereN is the number of samples aAds the dimension of the LV
space, determined by the NIPALS iteration. The nfateariables are therefore the
columns (i, t,...,t) of T. The relation to< andY to T can be expressed through:
X=TIP' +E

Y=TQ" +F
whereE andF are error terms[ has the latent variable scores ¥oandP andQ are the

(27)

loading matrices foK andY, respectively.
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3.4.3 Description of the subspace model identification-algorithm

The SMI by Hydtynemi (2001) attempts to captureldbRaviour of the target process by
identifying the state-space matricAsB, C and D, which can then be used as a fault-
detection model for predicting the target procesbabiour for FTC purposes. In this

section, this SMI procedure is presented.

The identified discrete-time state space modetesgnted in the following form:

{X(k +1) = AX(K) + BU (K) + £(K) 28)

Y(k) =CX(k) + DU (k) + e(k)
where € ande are white noise sequences and the input mbkng composed of input

vectorsu' and the output matriX of j output vectory':

u (k) Y1 (k)
uk)=| ¢ |and yk)=| (29)

Uy, (K) ¥a(K)
wherem is the number of inputs andis the number of outputs. Now, the system is

observed in a time window with the widfhat the time stefx-5. The past and future

input and output values can now be presented mgubke following equations:

uig) - uk-p)
Upe=| @ :

u@ - uk-28+1)

yiB) - wk-=p) (30)
Yoast = : :
y@ - yk-28+1
u@pg) - u(k)
Uy = : :
uf+1) - uk-p4+1 (31)

y@p) - y(k)
Yoz i :
y(B+1) - yk-B+1)

Next, y is defined to be a matrix composed of all pastirgnd output values and future
input values and is defined to be composed of the future valuesututs:

U oV ) (32)

X= (Ypm

past|
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Z= qul (33)

The mappingF:x ->Z is acquired by using the least squares metkod: (xx)* x 'Z.
Because the future input values are not knownsttstem is divided into two parts for

the estimation purposes:

=

+ Z = futest)

past future (Ypast, est

U poeeal0)F +(00U e F

Z,,=7Z U U

est

&

pastest]

pastest]

(34)

pastest]

Now the variables iZ,ast can be estimated to contain all the informatiamfithe system

past and a refined data matrix without the futapt contribution can be defined:

X =2, =l o)F (35)

past — \' pastest

U

pastest

The matrix X can now be considered to contain the preliminarstesn states. The
originally dynamic problem has now been reduced $tatic one and the static dimension
reduction methods, such as PCA or PLS, can rechealimension of the preliminary
system states. Next, for the purposes of identiboa the following input and output

matrices are defined:

u'(B) y'(B)
: and Y = : (36)

y'(k=8-1)

U=

u" (k- B-1)

Also the submatriceX ™ andX ~ are defined, whens ™ is a matrixX without the first row
(oldest state) anX ~ is the matrixX without the last row (newest state). The state

representation now has the following form:

o) (o AT CT

(51v)= (% U{BT DTJ (37)
Finally, the parameter matricAsB, C andD can be solved by using the least squares:

(& 5)= (el b e T el (38)

The FDD with the SMI can be carried out by caldaatthe residual between the

predictions of the SMI model and the actual procemsasurements. If the absolute
residual between the measurement and the prediatedt is higher than the limit, then a
fault can be declared in that variable. The magetand sign of the fault can be

estimated as the difference between the outputseahodel and the measurement.
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3.5 Design schemes for the active FTMPC

In this section the focus is on the most impor@egign schemes and control structures
for the design of the active fault-tolerant MPC.eTbhomponents of the active FTC
strategies are included in the general schemadigrain of the active fault-tolerant MPC

and presented in Figure 4.

Fault accommodation/

controller < j

reconfiguration strategy

Fault detection

A 4

and diagnosis
input . output
! faults parametri faults
i faultsf, £
Reconfigurable fi 1, Yoot

i > » Process —-:O——»
MPC e Y > y

Y,

Figure 4. The schematic diagram for the activetfénlerant MPC.

The main task of an active, data-based fault-talekéPC is to extract information from
faulty or non-faulty process data through FDD, é&me@nsure optimal operation through
the use of FTC strategies and a reconfigurable MR. information from the target
process can be captured by applying statisticahemahtical methods, such as PLS, to
process history data and then using this informatiiodetect, isolate and identify faults.
In different fault-tolerant MPC schemes, this estea information can be used to ensure
optimal operation by carrying out FTC strategieghsas the fault accommodation or the
controller reconfiguration. The active FTC desighesnes for developing the active FTC
strategies are presented in the following sectwitis schemes for fault accommodation,

controller reconfiguration and finally, for the égrated FTC strategy.
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3.5.1 FTC scheme based on fault accommodation

A commonly used active FTC scheme is based on émalbmmodation. The active FTC
strategy designed by this scheme is able to anayske accommodate MPC inputs,
outputs and process parameters based on the faoitmation and measurement
predictions provided by the data-based FDD. Themesibns are based on the
measurements, controller input signals, actual adesccontroller measurements and
disturbances relayed to the FDD. This kind of stygteffectively masks both the process
and the controller from faults through fault resitbur, and ry, while still taking

advantage of both the faulty and the correctly fioming parts of the process. A general
description of an active fault accommodation-baB&@€ scheme is given in Figure 5
with an MPC, the process around operating pdyty, and input, output and parametric

faultsfy, fy andfp.

FTC }t--—-oo-- ¥
¥ |
FDD <— E
f |
Uo P l fy l ly |
+ + e+
+ +

—» MPC

+ +
Process

<vy

Figure 5. The fault accommodation-based FTC scheme.
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In the data-based fault accommodation-based desigeme, a fault accommodation
block is used for accommodating the faulty inpudl autput measurements. This fault
accommodation block is set between the nominalrobbet and the plant. In this block,

the faulty input or output measurement is accomreatiasing the fault estimations from
the data-based FDD methods.

In this design scheme, a data-based FDD can be tssgaredict the non-faulty
measurement values of the faulty CV, DV or MV meaments. A fault accommodation
block is set between the plant and the nominal roflet. This fault accommodation
block uses historical process data to predict tleasurement values from the input
valuesu, the output values of or the disturbance values @fand the past process output
valuesypas; iNput valuesiy,s or disturbance valuegyas: If necessary, the faulty CV, DV
or MV measurement can be accommodated in ordeteteept the effects of the faults on
the target process. The fault accommodation bloclCVs is presented in Figure 6, for

DVs in Figure 7 and for MVs in Figure 8.

To process From process
Y
+
> Yest ~
y R >
past
+

AyL _VE
u ly

From controller To controller

Figure 6. The data-based fault accommodation bieitk a faulty input vectorsyand an

accommodated CV measurementy.
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To controller From process
7}
d;
> dest B *
d past R >
—>
Ad L - v +
y K
From process To controller

Figure 7. The data-based fault accommodation bleitk a faulty disturbance vector d

and an accommodated DV measurement d.

To controller From controller
A
Uy
+
> uest -
u past R g
AU L . 4 +
y l u
From process To process

Figure 8. The data-based fault accommodation bieitk a faulty input vectorgand an

accommodated MV measurement u.

In the following, the value estimated by the datgdnl FDD fOryes; Jest @and Uegt are
represented with variableg for each case. In the figureR,is the estimation matrix
containing the non-faulty model of the target psscandL is the parameter matrix
affecting the degree of fault accommodation basedhe probability of the fault. If no
fault is detected, the probability of the faultzero and thd. matrix is a zero matrix.
When a fault is detected, the probability of theltfas increased during each time step

and thel. matrix is adjusted accordingly to increase theree@f the accommodation.
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L is the dependant of the period of time the faalt heen detected: the longer the time,
the higher thel matrix diagonal value that corresponds to thetyauériable, finally
ending up to value of 1 in the diagonal entry oé ttaulty variable allowing full
accommodation of the faulty measurement. If a feuttetected, the procedure increases
the fault probability counter by one; if the deleyunter is over the min limit, the FTC
actions are initiated. The values of title diagonal entry of the parameter matkixs
calculated by using the following equation:

C,—C

— , i ,min
I-i - !Ci t
C C

i,min

2 Ci ,min ? Ci t < Ci max (39)

i max
wherec;; is the value of the fault probability countertbéith diagonal entry at the time
stept, Cimax IS the maximum value of thén fault probability counter and tfegnin is the
minimum limit for the fault detection of theh sensor. Accordingly, during each time
step when no fault is detected, the counters decreased by one and if the counter falls

below the min limitc; min,, the accommodation of th#h measurement is stopped.

The fault estimation is carried out by using thtad@ased FDD methods on process data.
The input matrixX in each case is the inputs the current measuremengsor the

disturbancesl and the past values Bfas; UastOr Gpast

With PCA, equation (22) can be modified and useestimate new variable values in the

following form:

Vi = X [V, (40)

est

whereVy is the PCA transformation matrix aixdis the input data matrix with the past

values ofy, doru and the current measurements/,a andu.
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With PLS, this can be expressed with the followaggiation:

\Y/

est

= X |:IRPLS (41)

whereRp s is the PLS regression matrix:

Rps=WIQ ! (42)

whereW is the weight matrix of the input matr¥ andQ the loadings of, u ord, which
are estimated from the set of process data witmdméinear iterative partial least squares
(NIPALS) regression algorithm by Wold et al. (198B)esented in 3.4.1. Alternatively,
the parameters can be estimated with the simpléiapdeast squares regression
(SIMPLS) algorithm by de Jong (1993), but this aah is not used in the thesis.

With SMI, the value of thess: can be estimated by using the state-space matrix i
equation (27) with the identified matricAsB, C andD.

The difference betweengandv;, Av, is then measured:

Av=v, -V (43)

With PCA, the SPE index presented in equation ¢24) be used, with PLS the RMSEP
index between the estimated and the measured valegented in Section 3.4.2, can be
used and with the SMI, the absolute residual batwbe measured and the estimated

value can be utilised.

If the RMSEP value is greater than the empiricdyermined threshold value, then the
probability of the fault and the individual cell lua of matrixL corresponding to the
faulty variable is increased. The accommodated ureasent can then be acquired

through:

v=v,; —LAv (44)

whereAv is the residual between the faulty value and 8tenated value, andis either

y, d or u depending on which variable is monitored.
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As a result, the following equation describes tb&ltaccommodation of the faulty
measurement; during the time instant ofto a healthy measurementy using process
data and the data-based FDD methods:

Vi =Ve ~ L(Vf i _Vest,i) (45)
where theves; jcontains the estimation of eithgrdor u at time instant of and recursive
INPULS Ypass Opast OF Upast @and L is the parameter matrix controlling the degree of

accommodation.

The main advantages of an active fault accommaaldtased design are the flexibility
and its adaptability to a range of different coltrs, and the advantage of being able to
take full benefit from the process information stbin the nominal controller parameters,
models and constraints. As the FDD and FTC areragpacomponents, no direct
modifications to the existing controller are regdir The downside of the fault
accommodation scheme is the limitation in reactiores due to the delay caused by the
fault verification of the FDD component, and a sefmcomponent structure. Further, the
accuracy of the process model affects the perfocmamce without sufficient accuracy,

successful fault accommodation actions cannot biéedaout.
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3.5.2 FTC scheme based on controller reconfiguration

An active controller reconfiguration-based FTC suoberelies on directly adjusting the
controller itself by changing the controller stnugt, models or parameters through
parameter vectar,. The pure reconfiguration-based (restructurisatstrategy uses only
the correctly functioning part of the system fontol purposes. The advantage of the
active controller reconfiguration-based FTC schasthe ease of implementation and
lower accuracy requirements of the process moéeighermore, it is easy to adapt the
active controller reconfiguration-based scheme tavide range of controllers and
situations. The shortcoming of the method is ttes lof information and controllability of
the target process since only the correctly fumitip part of the system is used for
control. As a result, part of the information stbre the controller parameters, constraints
and models is lost due to the reconfiguration astiorhe controller reconfiguration-
based FTC scheme is presented in Figure 9 with &C Mhe process around the

operating pointJy, Yo and input, output and parametric fadltdy andf,.

proemomm oo FTC
E x
O >
! —» FDD [«
wi U f f"l f
o 0 u y
A 4 + + 1, n
>()—| M™PC > Process—’o ;
Ye u
T (M
bl
Yo!

Figure 9. The controller reconfiguration-based F$€heme.
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Control allocation (CA) is one approach to handliMy actuator faults in the FTC
strategy designed with the controller reconfigunatbased scheme. A special case of CA
is the ‘daisy-chaining principle’ (DCP), which Birfgton and Enns (1996) and
Maciejowski (1998) have discussed. The idea ofdhamsy-chaining principle, adopted
from the principle by Buffington and Enns (1996 used for the controller
reconfiguration FTC strategy. In the principle, twets of variables are formed: the
primary set containing manipulated variables tonbenitored and the secondary set
containing disturbance variables that can be usstgad of the primary variables should
some of the primary variables become faulty. Irecafsa fault in a primary variable, the
faulty primary variable is disabled and the firgtdrbance variable in the secondary set
is enabled as a manipulated variable. If more M¥a faulty, the next available DV is
again set as an MV from the secondary set. Mac&jo{2002) also states that the CA-
based FTC can be further improved with an activ® Fidmponent which will provide
the controller with, in this case the MPC, faultoimation as soon as it is detected in
order to change the control configuration before fdlt can affect the performance of
the controller.

The main requirement for being able to apply cdl@reaeconfiguration for MV actuators

to a process controlled by an MPC is that theraulshbe sufficient redundancy in the
target process in order to allow compensation efftulty control variables. This can be
accomplished by, for example, replacing the faoignipulated variable with a measured
disturbance variable in MPC formulation. Withoutethextra redundancy, the

reconfiguration is still possible; however, if net variables are available for control,
the controller reconfiguration will decrease thentcol performance (although the

performance will be better than without the recgafation action).

The failure of an actuator can be detected by tatiog the root mean square error
(RMSE) index from actual measurements and the eeter trajectory set by the MPC,
and by comparing the index value to a detectioestiold. This index is presented in the

following equation:
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> (uref,i _ui )2
RMSE=|2 — (46)
n
where n is the number of measuremenig; the input reference given by the MPC, and
is the measured MV value. The scheme of a setting fault-tolerant MPC is presented

in Figure 10.

Figure 10 includes the diagonal matrices of thetroled variable matrixCV, the
manipulated variable matriMV and the measured disturbance mafd¥ and the
selected controlled variable measuremegsts references for the controlled variabigs

the selected measured disturbance vajyeand the selected control inpukg,.

Y
— CV MV
y _ * ¢ Uy
» CV ——(O—> MPC
A
y
> DV DV
yCV+DV \
From process To process

Figure 10. The structure of an MPC with the varabktermination matrices CV, MV

and DV and an MPC component for optimising therfutwtput.

If the RMSE (for manipulated variable actuator faulvalue ofu; has been over the
detection threshold for a sufficiently long peridkde controller reconfiguration action is
carried out: the control configuration of the nosalicontroller is changed by adjusting
the matrixMV and the matrixDV, which determine how MPC handles MV and DV
variables. In essence, in case of a fault inithenanipulated variable, the diagonal entry
i of the matrixMV is set to value of 0 and tlia diagonal entry of the matrV is set to

a value of 1. This sets the faulty manipulatedalala as a measured disturbance.



72

In order to compensate for the loss of\dY, the measured disturbandecan be set as a
manipulated variable by setting the diagonal eKtty of the matrixMV to the value of 1
and the diagonal entri{+j of the matrixDV to the value of 0. Th& in this case

corresponds to the number of the manipulated viasab

The controller reconfiguration approach is expldiméth an example described in Figure
11. In this example, there are 2 manipulated viesabnd 2 disturbance variables, and
therefore the size of the matridey/ andDV is 4x4 each. If the" manipulated variable
is set faulty, the ' diagonal entry of the MV matrix is set to value ®fand the ¥
diagonal of the matrixDV is set to value of 1 corresponding to the chanfje o
manipulated variable to a disturbance variable.ofdingly, the ' disturbance variable
(located in the '8 diagonal entry) is set to value of 0 in the maBi and value of 1 in
the matrixMV (in the 3° diagonal entry) corresponding to a change of &udiance

variable to a manipulated variable.

MV : , DV :

o O O B+
o O+ O
o O O o
O O O o
!
o O O -
o O O o
o O O
O O O o
O O O o
O O O o
o B O O
= O O O
1
O O O o
o O+ O
o O O o
= O O O

Figure 11. Example case of the controller reconfagion strategy with 2 manipulated
variables and 2 disturbance variables: a faultfie ' manipulated variable causes the
2" MV to change to a disturbance variable and tfeigturbance variable to a

manipulated variable.
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3.5.3 Integrated FTC scheme

The optimal active FTC strategy is based on angrated FTC scheme, in which the
controller has built-in options for the fault acammdation and controller reconfiguration
methods. This kind of approach allows more flexipiand a greater degree of freedom
to handle possible faults than the other FTC desaremes presented earlier since the
integrated FTC scheme contains tools for both fagktommodation and controller
reconfiguration-based FTC methods for sensor ahéhtr faults. Therefore, this kind of
scheme will be used to develop the final FTMPC. Thieegrated FTC scheme is
presented in Figure 12 with the process aroundfegating poinUy, Yo including the

plant model and input, output and parametric fefylts andf,.

R S— 23 (o —— .
i 1 i
FDD |«
Mo i Ug fp l fy l ryi
. v + LYt L
—» MPC Process*’O—’é y=

Figure 12. The integrated FTC scheme.

Based on this design scheme, an integrated FTMPCbeadesigned, including three
parallel-running active FTC strategies that redineeeffects of different fault types. The
fault types to be countered in this kind of settarg the sensor or, for example, process
analyser faults (drift- or bias-shaped faults)tfue CVs, DVs and MVs and MV actuator
faults.
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The first FTC strategy is based on the fault accodation and on the data-based FDD
for the sensor and, for example, process analgadtsfin the CVs or DVs. The second
FTC strategy uses the data-based FDD and the catianrof the fault accommodation
and controller reconfiguration FTC methods for semsor faults in the MVs. The third
FTC strategy utilises the controller reconfiguratiBTC method for the MV actuator
faults. The more detailed description of the intégd fault-tolerant MPC is presented in
Figure 13. In this figureycv+pv+mv cONtains measurements for the CVs, DVs and My/s;
f, andf; contain the fault diagnosis information for ea¢hhe FTC strategies;Aycv-pv
contains the corrections for the CV and DV measergs) LAuyyv+py contains the
correction values for the MV outputs of the MR@Y+DV contains the matrices for the
MPC to determine, of which the MVs and DVs are ussdMVs if the controller

reconfiguration action occurs.

______________

f | LAYey 1oy
— LFTC1
! ' LAu,,,
o f)! i
» FDD 44— Frez| @ |
far | Mv+pv | MV+DV
= FTCE [
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Yev +ov +mv -l;- MPC + u

From process To process

Yev +ov +mv

Figure 13. The integrated FTMPC with three FTC sttaes.
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4 Testing the data-based FDD methods with the fault
accommodation-based FTC strategy for the analyser

and sensor faults in the oil refining benchmark process

The aim of this chapter is to compare the perforceanf data-based FDDs and a fault
accommodation-based FTC strategy in controllinge#i-lklnown benchmark process with
faults in the CV analysers and sensors. The fadbmmodation-based FTC strategy is
based on the fault accommodation design scheme $ection 3.5.1 and the benchmark
process is presented in the Shell control problgnPtett and Morari (1987). Based on
the performance testing, the most suitable dataeb&POD method is selected for the
final integrated FTMPC.

In this chapter, the target benchmark processjyitemic model and the MPC strategy
are presented and the performance of the MPC gyate tested first. Second, the
structure of the FTC is briefly described. Thirde tFDD and FTC parts of the strategy
are tested and finally, the summary of the regsltgiven and the performance of the

tested FDD methods is compared.
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4.1 Description of the target benchmark process, its

dynamic model and MPC strategy

4.1.1 Description of the target benchmark process and its dynamic model

The target process for the preliminary analysianoil refining benchmark process that
has been presented in the Shell control problenPieit and Morari (1987), which
contains a crude oil distillation column model wighset of control objectives and

constraints.

The Shell control problem includes a distillatiasiuenn, four heat exchangers (three side
reflux units and one condenser at the top), one stidpper, a reflux drum, one feedstock
stream and three product draws. Hot, mixed-phdsis é&d to the unit and then cooled
down using the three reflux flows located at thdesdf the distillation column, which
remove the heat so that the separation proceduleidistillation column can be carried
out. The bottom reflux is controlled with an enthakontroller that removes heat from
the bottom part of the column by controlling thecamt of steam produced by the reflux.
Product separation in the column is based on thdeawsation and boiling properties of
the crude oil fractions, the heaviest fractionsngeirawn off from the bottom and the
lightest fractions as a distillate from the top.eTduality requirements for the top draw
product distillation end point and for the sidewdnaroduct distillation end point set the
limits for control of the column. There is alsoeanperature limitation for the bottom part

of the column. The target process used in themnediry study is described in Figure 14.
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Figure 14. The Shell control problem according tetPand Morari (1987).

The process model by Prett and Morari (1987) shmwhable 1 has been reported to be
able to satisfactorily describe the dynamical bé&havof the crude oil distillation column.
The normal way to acquire such a process model osetpof first order plus time delay
transfer functions is to measure the open-loopdststate step responses. The model
produces normalised responses, so everything imgute constraints and measurement
values are in relative units in the benchmark. @Vethe distillation column benchmark
process and the dynamic model have been selectadt tas a testing environment for
comparing the performance of the data-based FDDhadst for the industrial

dearomatization process.
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Table 1. The model of the Shell control problenoatiog to Prett and Morari (1987).

BOTTOM INTERMEDIATE UPPER REFILUX
TOP DRAW SIDE DRAW REFLUX HEAT REFLUX HEAT HEAT TRANSFER
FLOW RATE FLOW RATE TRANSFER RATE TRANSFER RATE RATE
uj uz us 1 2 I 1
TOPENDPONT | 4 (05077 1.77¢7% 5.88¢7" 1.20e77 14477
Y1 505 +1 60s +1 505 +1 455 +1 405 +1
SIDEEND POINT | 5 39718 5.72¢7% 6.90¢7"* 1.52¢7" 1.83¢7
y2 505 +1 60s +1 405 +1 255 +1 205 +1
ror 25 20 25 —0s —0s
SEMPERATURS 3.66¢7 1.65¢™ 5.53¢ 1.16¢ 1.27¢
s 95+1 30s +1 40s +1 1ls +1 65 +1
UPPER REFLUX ~lls —12s -2 —0s —0s
— o2 2.54¢ 8.10e 1.73e 1.7%
Vi 12s+1 27s+1 205 +1 S55+1 195 +1
SIDE DRATY 55 s 25 ~0s ~0s
TEMPERATURE 4.13e 2.38e 6.23¢ 13le 1.26¢
ys 8s+1 195 +1 10s +1 2s+1 225 +1
INTERMEDIATE
REFLUX 4.06¢™ 4.18¢™" 6.53¢7™" 1.19¢™ 1.17¢7"
TPMPERATURE 13s+1 33s+1 9s+1 195 +1 24s+1
Ve
BOTTOM
REFLUY 438e7" 4427 7.20e™" 1.14e™ 1.26e™
TEMPERATURE 33541 445 +1 195 +1 275 +1 32s+1
y7

4.1.2 MPC strategy of the benchmark process

The control objectives of the crude oil distillatianit by Prett and Morari (1987) are to
keep the top draw distillation end point measurdnygnthe side draw distillation end
point measuremernyt and the bottom reflux temperature measuremgeat their setpoint
values by manipulating the top draw flow rate the side draw flow rate, and the heat
transfer rataus of the bottom reflux. The heat transfer ratdas further adjusted using a
control loop with the hot steam flow rate as a oantvariable. There are also two
measured disturbances in the process: the heafdramate of the upper reflux and of
the intermediate refluk. These flows remove the heat from the processaemde-boiled
in other sections of the plant. The control constsafor the inputs, outputs and variable
change rates are set according to the specificabgrPrett and Morari (1987) in relative
units, and are presented in Table 2.
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Table 2. The control constraints of the Shell colnproblem process.

Variable Lower limit | Upper limit
Vi -0.5 0.5
Y2 - -
Y7 0.5 -
Uq, Uy, Ug -0.5 0.5
Au,, Au,, Aug -0.05 0.05

The MPC-based control strategy is developed nexidiyg the Matlab MPC toolbox by
Bemporad et al. (2007). A series of test runs wafopmed in order to determine the
proper MPC parameters; the MPC was then tuned erbé#sis of results. The MPC
parameters were adjusted according to the dynaofiche simulated process. The
prediction horizorp was set long enough to be able to react to magitgns occurring

in the simulated process. Since the dead timdseiptocess varied between 0-28 minutes
and the time constants between 6-60 minutes, thdigiion horizon was set to 120
minutes. The control horizam was set to 40 minutes on the basis of the balbeteeen
the calculation resources and accurate contrabr&tiThe sample time with the process
and with the MPC was adjusted to 1 minute. The ltsidor the controlled variablas,

y. andy; were set to 45, indicating equal control priostior all three controlled
variables. All three MV weights were set to 0.0idicating that all MVs are used equally.
The weights for the MV rates were set as high @8QLforAu,, 4u, andA4ug in order to
dampen the effect of the noise and sudden chamgt®ioutput values. These weight
value settings provided more stable and reliablgrobactions than with lower values.

The MPC parameter values are summarised in Table 3.

Table 3. The MPC parameters for controlling thelBtreide oil distillation column.

Parameter Values
Prediction horizon p 120
Control horizon m 40
Weights, CV [y, Y2, V7] [45 45 45]
Weights, MV [u, u,, us] [0.01 0.01 0.01]
Weights, MV rates [u;, u,, us] |[1000 1000 1000]
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Finally, the control performance of the MPC-basedtml strategy was tested by first
introducing a step change to the setpoint of thes.Chhe results of the step response
testing with the MPC, when a setpoint change ofvia4 introduced at the time step
100 minutes to the setpoint of the top draw produnct pointy;, are presented in Figure
15. The setpoint 0.4 for the top draw product eomhtpwas reached at the time step
264 minutes. There was also a small effect on therovariables, which were quickly

corrected and can be seen in Figure 15.

Next, the disturbance rejection capacity of the MiR&s tested by introducing a step
change of 0.5 to the D4, the upper reflux heat transfer rate, in the tstept = 100
minutes and a step change of -0.5 to thelPVhe intermediate reflux heat transfer rate,
during the time step= 300 minutes. The results of the disturbancengstre presented

in Figure 16. Disturbancé; was completely rejected within 100 minutes and the

disturbancé, in 200 minutes as can be seen in Figure 16.

Based on the testing of the MPC, the target proesss stabilised both under setpoint
changes and the step changes in the disturbaneesalDthe performance of the MPC
was good as can be seen from Figure 15 and FigurEutther, based on the testing in
Kettunen et al. (2008), the response of the Pldbasmtrol strategy was much slower
than with MPC-based control strategy. This caused @Vs to differ from the given
setpoints for a longer time, which is one of thasens why MPC is more suitable for the
control of the target process. More details of tdsting can be found in Kettunen et al.
(2008).
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Figure 15. The CVs and MVs with a positive stepgkaof 0.4 introduced to the setpoint

of y; at t = 100 minutes.
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minutes and a step change of -0.5 to the Pat t = 300 minutes.
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4.2 Components of the active fault accommodation-ba  sed FTC

strategy for the benchmark process

Based on the active fault accommodation FTC desitpeme presented in Section 3.5.1,
the proposed active, fault accommodation FTC gsat®nsists of three parts: the FDD
component for detecting the fault, the fault accaxdation-based FTC part for carrying
out the necessary FTC actions required to minintee effects of the fault and the

nominal control part for controlling the process.

Since the benchmark process and the industriabdesization process are assumed to
be linear and complex, and since fast fault dedacis preferred, linear data-based
methods, such as PCA, PLS or SMI, are tested aBie components as suggested in
Section 3.4. SPE index is used for detecting fauits PCA-based FDD, RMSEP index

with the PLS-based FDD and the residual betweerpthdicted and measured values
with the SMI-based FDD. The faulty signal is accoodiated using the fault estimate

derived from the FDD methods, which is based ondifierence between the model

estimate and the actual measurement. The PCA-, Bh&-SMI-based FDD methods

have earlier been presented in detail in sectiohd 33.4.2 and 3.4.3, respectively.

As an addition to the FDD and FTC, a cumulative suethanism is implemented in
order to avoid false alarms. The cumulative sunuireg that the fault is detected at least
three time steps before the fault is declared.rAfiese three steps, fault compensation is
started with a gradually increasing compensatidnevéo reach the final compensation
value after three more time steps. In the followtimgee sections, a general description of
each of the methods is given.

The usage of MPC is taken into account in fauledkn, since the FDD methods are
trained in closed loop, which makes sure that tiRCMbehaviour is included in the FDD
model. However, MPC may cause nonlinear behaviduwenaoperating near constraints
(constraint-induced nonlinearity) and this nonliriyas higher, the harder the constraint
is. This nonlinearity is caused, because the M@hgts to avoid crossing the constraint

at any cost.
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4.3 Results of testing the data-based FDD methods

In this chapter, the results of the PCA-, PLS- 8\i-based FDD testing and the results
of the combining the FDD component with the actd@&a-based FTC strategy are
presented. In the following, all of the test caseth different active data-based FTC
strategies are presented on the timeframe of 1. nd00tes. All of the faults were set to
occur at the time step= 100 minutes; however, only one fault was intiet during
each simulation as in this way the effects of défe faults and FDD methods can be
compared.

4.3.1 Description of the analyser and measurement faults and the faulty
data set

Two different kinds of fault are common in the k&fining process analysers and sensors:
abrupt bias faults and slowly increasing or dedrgpdlrift faults. The bias faults are
usually caused by contamination of the analyserpsgnwhile the drift faults can be

caused by the slow accumulation of substancesiséhsors, analysers or sample lines.

The data set used for testing consisted of 800 tesnof the simulated process data that
included measurement faults. The bias and driftdamere introduced into the simulated
process measurements. In the test setting, a\wdias fault with a magnitude of 0.5
was introduced into the top draw product qualityialsle y; at the time step = 100
minutes, and the fault ended at the time $te300 minutes. Another fault, in this case a
positive drift fault, was introduced into the topa@ product quality variablg, at the
time stept = 100 minutes, and the fault ended at the time tste300 minutes, at which
time the fault magnitude is 0.5, which was the mmaxn hard constraint allowed for the
top draw product end poigt. In order to be able to use the FDD componentszt of
the active data-based FTC strategy, a separatd &milt-free training data was used for
the training the FDD methods. This training dataveas used to train the PCA-, PLS-
and SMI-based FDD methods to detect faults in tiaygers and process measurements.
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4.3.2 Testing the FDD methods

In this section, the results of testing the PCA-SPand SMI-based FDD methods are
presented and discussed. First, the training ofntie¢hods is discussed; second, the

results of the testing are presented; and findiky,summary of the results is given.
4.3.2.1 Training the FDD methods

PCA-based FDD was implemented with three separ&®& Rodels, each containing
delay-compensated input variables and a contretteble. The structure of the models
is: PCA = [ys s o Ug Iy 1], PCA = [y uy o W |1 1] and PCA = [y7 Uy o Ug 11 1],
where the variables are the upper reflux heat Hutye intermediate reflux heat dugy
the top draw product end poin; the side draw product end poi the temperature
measuremenyy; the top draw flow raten; the side draw flow rate,. and the bottom
reflux heat transfer rate;. The PCA models were able to take the procesartiemtces
into account while detecting faults in the procdss. each PCA model, three principal
components were used with 84.1%, 96.5% and 83.8%nee. For FDD purposes, SPE

and HotellingT? limits were calculated using 95% confidence.

Three PLS models were used for the FDD: the modelsain delay-compensated
measured disturbancés and |,, and three control inputs;, u; and us as the input
variables. The output variables of the models PIEB.S and PLS areys, v, andys,
respectively. In the final models, there were tHegent variables which capture 79.7%,
94.6% and 80.3% of the output variance, and 358%41% and 31.3% of the input

variance, respectively.

The identified subspace model was trained usingémee training data as with the PLS.
The inputs for the subspace identified system laedwo measured disturbandeandl,,
and three control inputs, u; andus. The outputs are the seven outpyisy., Vs, Ya, Vs,
ys andy;. While creating the state-space models, the orddreomodel was reduced from
a 38" order to a 18 order model by limiting the state-space model pmiering the

model identification in order to reduce the caltiolaload with the method.
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4.3.2.2 Testing the FDD component based on PCA

In the first FDD testing, the PCA-based FDD waseatnl detect both bias- and drift-
shaped faults. For the bias fault, both the SPEthedHotellingT? detected the fault at
time stept = 103 minutes, i.e. 3 minutes later than the fatdtts to affect the process.
The drift fault was detected by the SPE at the tstept = 130 minutes. With the
Hotelling T? the fault was not detected until at the time $tef232 minutes. Based on the
results, the SPE had a significantly faster detectate than with the Hotellintf when
using the same confidence levels for both methDd® to the better sensitivity to the
faults, only the SPE index was used for the faetedtion with PCA. The SPE index and
the HotellingT? indices for the bias-and drift-shaped faults assented in Figure 17.

Hotelling T2 values of Y SPE values of Y Hotelling T2 values of Y SPE values of Y
30 300 g T T 30 250

Y1
y y — —y
25 20 250 2 25 2 g 2
v, v, —y, 200 —y, ;
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Y1 Y1 Y1

Figure 17. The Hotelling®fand the SPE indices for the bias-and drift shafaexdts in

the measurementy

The fault isolation was based on the largest SR&eviaigher than the detection limit. If
more than one SPE value was higher than the datetitnit, then the one with the
highest SPE value was selected as the faulty ohe.fdult magnitude and sign were

estimated as the difference between the model batglithe measurement.
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4.3.2.3 Testing the FDD component based on PL S

The PLS-based FDD utilised the RMSEP as a fauttatiein index. This index measures
the residual between the model outputs and theure@ents. The limit for detecting the
faults was set to 2.5, which was clearly abovertbise level of the process. The faulty
variable was isolated from the RMSEP plots, thehégg value being selected as the
faulty one. Fault magnitude and sign were deterthibg comparing the PLS model
predictions to the corresponding measurement v#uleias-shaped fault was affecting
the top draw distillation end point measurementhattime steg = 100. The fault was
detected and isolated at the time step 103 minutes, after a delay caused by the
cumulative sum algorithm. Next, the drift fault effing measurement starting from
the time steg = 100 was detected at the time step 120 minutes. The values of the
RMSEP for bias and drift faults is presented Figl8e
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Figure 18. The RMSEP in the case of bias and fuilts in an outputiy
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4.3.2.4 Testing the FDD component based on SMI

In the case of the SMI-based FDD, the faults weteaed by comparing the SMI model
outputs with the measurement outputs. If the redidatween the measurements and the
SMI model outputs value was higher than a faukshold, then a fault was detected and
isolated to that specific measurement. The faushold was set to 0.07 in order to be
high enough to exceed the noise level of the pmoest low enough to detect the faults
as soon as possible. The fault delay mechanisngrssifor to prevent the effect of
outliers and random noise caused a small distuebahthe beginning and the end of the
fault. Otherwise, the FDD component was able tedethe faults in the measurements
successfully; the bias fault was detected at the stept = 103 minutes. The drift fault
was detected after a delay of 33 minutes at the stapt = 133minutes. The results for

bias and drift faults are presented in Figure 19.
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Figure 19. The SMI residuals fof in the case of bias and drift faults in an output
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4.3.25 Summary of testing the FDD components

In this section the results of testing the PCA-SPand SMI-based FDD components are
presented with bias and drift faults in the meanamty;. The differences in terms of
detection times were generally small between thinoas as presented in Table 4, where
the fault detection times are briefly summarised.

However, as can be seen from the results, the RdSHe shortest detection time in drift
faults, therefore suggesting that it is the fagi&D method. In the following sections the
performance of the FTC is presented with these Rigthods and the results of using the
different FTC combinations is described.

Table 4. Detection times for the PCA-, PLS- and-B84ed FDD methods.

FDD Bias fault: Drift fault:
component detection time detection time
PCA 3 min 30 min
PLS 3 min 27 min
SMI 3 min 33 min
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4.3.3 Testing the FDD methods with the fault accommodation-based FTC
strategy

The PCA-, PLS- and SMI-based FDD methods were ttested with the fault
accommodation-based FTC strategy with a faultenttip draw product end poipt The
goal of the testing is to demonstrate the diffeeemcthe performance of different FDD
with the FTC.

First, a positive bias fault with a magnitude ob @vas introduced into the top draw
product quality variablg; at the time step= 100 minutes, and the fault ends at time step
t = 300 minutes. Second, a positive drift fault wasoduced into the top draw product
quality variabley; at the time step= 100 minutes, and the fault ends at the time tstep

300 minutes, at which time the fault magnitude.& O

All three FTC combinations were able to handle Hatiit types. The simulation results
for the FTC strategy with the PLS-based FDD is @nésd and compared against the
nominal control strategy results in Figure 20 viaths fault in the measurement Other
cases are presented similarly in Appendix B. Aslzaseen from the figure, the effect of
the fault on the process was significant; withdue FTC the variablg; was driven
towards the lower constraint limit with the manigigld variables also being severely
disturbed. Due to the fault, off-spec product wolidye been generated in actual process

unit and the process would have been disturbedtfi@ast 300 minutes.

When the active data-based fault accommodation $tfd@egy and PLS-based FDD was
active, the fault was rapidly detected and compexdsat the time step= 103 minutes
and, due to the fast fault detection, the fault Abdost no effect on the measurements.
The small spike iny; at the beginning of the fault was caused by thiaydan fault
detection, which was implemented in order to eleténthe effect of random spikes and
noise in the measurements. In addition, when thé fnded, there was also another
spike caused by the delay mechanism. Overall, tieeteof the delay mechanism was

small, which can also be seen from Figure 20.
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Figure 20. The performance of the fault accommaaabase

PLS-based FDD in the case of a bias faultin y

In order to reflect the accuracy of the FDD metlpoediction while testing the FTC, the

integral of squared error (ISE) index is calculaded it is presented in Table 5 for each

of the FTC combinations. In essence, the ISE-imutesents

the variable from the setpoint value. The higher shore is, the less accurate the FDD

and less effective FTC combination are.

Table 5. The ISE index values for different FDD ponents when a bias or drift fault is

affecting the distillation analyser endpoint measuent y

d FTC strategy with the

numerically the deviation of

FDD Bias Fault: ISE Drift Fault: ISE
component

PCA 0.6281 0.613

PLS 0.6201 0.5299

SMI 0.6879 0.6883
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Finally, the performance of the fault accommodatiériC strategy with the different
FDD methods is compared by measuring the computéitiwes for the whole duration of
the simulation (800 minutes in simulation time).eTdimulation was first run without any
FTC active and then with each of the FDD methods the fault accommodation FTC
strategy for the 10 times for each method. Theaeeof the computation times for each

combination was then calculated and is present@dlte 6.

Table 6. The average computation times (in rea¢}iof the simulation lasting 800
minutes (in simulation time) for different FDD medls, when a drift fault is affecting the

distillation analyser endpoint measurement y

FDD Drift fault: average computation
method: | times (10 simulations)

No FTC 48.31s
PCA 50.61s
PLS 49.74 s
SMI 50.28 s

The processor for running the simulations was IGle 2 Extreme running at 3.2 GHz
and the computer was equipped with 4 GB of RAM. Whene of the FDD methods
were active, the simulation took in average 48.8tomds to run, with PCA 50.61
seconds, with PLS 49.74 seconds and with SMI 58&&®nds on average. Based on
these computation times, the PLS is the fasteshadetequiring only 1.5 seconds more
average computation time than the simulation witremy of the FDD methods or the
FTC active. It should be noted that as the averageputation times of all of the
methods were within 1 second of each other, theréifices in the average computation

times were small.

Based on all of the testing and the results, thiweaault accommodation FTC strategy
with the PLS as an FDD method had overall the BB performance and it is therefore

the most promising FDD component for the fault ascwdation-based FTC strategy.
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4.4 Summary of testing the data-based FDD methods w ith the
fault accommodation-based FTC strategy for the anal  yser and

sensor faults

In this chapter, the developed active fault accounfation-based FTC strategy was tested
with PCA-, PLS- or SMI-based FDD methods for colitng a simulated crude oil
distillation column model from the Shell controloptem by Prett & Morari (1987). The
active fault accommodation-based FTC strategy caegboof three different FDD
components and a fault accommodation-based FTCwatsuccessfully implemented
for the detection, isolation, identification andcammodation of the faults in the
simulated analyser outputs and process measurenidased on the results of the
preliminary testing, the presented methods haveeordo be effective and the active
fault accommodation-based FTC strategy was abt®omter bias and drift faults in the
measurements of the simulated oil refining procass. With the PCA-based FDD
method, the PCA model was calculated for each éwtprable and the SPE index was
used for the fault detection with the Hotellifigindex only being used for comparison
purposes. The RMSEP index calculation based ontlagriables of the PLS, was used
for the fault detection in the PLS-based FDD. Tivdi-Based FDD utilised the residual
between the identified model output and the measene value to determine whether a
fault is present in the measurement. A cumulativa slgorithm was implemented with
the FTC in order to avoid false alarms and to damipe effect of the FTC on the

measurement signal when the fault no longer affidetprocess.
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In general, the performance of the tested FDD nughand the active fault
accommodation-based FTC strategy was good; the nmuawi deviation between the
faulty and the compensated measurement valuesailk slass than 12% of the maximum
fault magnitude in all cases. The tested the PA4A & SMI as the FDD methods and
the active fault accommodation-based FTC stratdtpctevely detected, isolated and
accommodated the faults that were introduced in¢oprocess measurements. The bias
faults were detected only after the delay causethbycumulative sum algorithm. For
drift-shaped faults, the fault detection rate véretween 27 - 33 minutes (14 - 17% of
the time the fault is affecting the target proces#)ere the PLS-based FDD was the
fastest and the SMI-based FDD the slowest. Generalbll cases the fault was detected
early enough so that the effect of the fault onrtteasurements was small, less than 12%
of the magnitude of the fault. The best performanderms of the smallest effect on the
measurements was achieved using PLS for both tigudis. The computation times for
different methods were also calculated and the ®ES the fastest method with 49.74
seconds average computation time, even thoughitfieeethces between the computation

times were small in general.

All of these results indicate that the presentethows have the potential to be used for
the fault-tolerant control of more complex indusitprocesses. The fault accommodation
part of the FTC strategy also worked efficientlycombination with the FDD methods.
In general, however, the PLS had the best perfocmand the PLS is therefore the best
candidate as an FDD component in the final FTGexsa
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Overall, the results of the experiments suggestt ttiee tested active fault
accommodation-based FTC strategy is effective, dadt able to counter different kinds
of faults. As the crude oil distillation columnseamn a crucial position in complex
refineries, a fault-free operation of the unit $sential in order to ensure a reliable supply
of raw materials to the other parts of the plamhte €ffects of the tested faults in a process
without the active fault accommodation-based FTi@tsgy are given in Appendix B. In
general, the impact of the faults was large, thgnitade of the disturbances being at the
maximum value or near to the maximum value of tlaedhconstraint limit of the
variables. Such faults would definitely cause peot in actual process unit and lead to
additional disturbances, and possibly even resaltserious financial losses and

equipment damage if they remain undetected.

The more detailed test results of the fault accodation-based FTC strategy are

presented in Kettunen et al. (2008), where theauuths tested the FTC strategy together
with the PI-based control strategy and compareddifferences and the effectiveness

between the Pl-based FTC and MPC-based FTC.
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5 Description of the target dearomatization process and

its control strategy

After the theoretical background for developingrArC strategy has been developed, it is
possible to describe the target testing procesgjaioth the control objectives. Generally,
a suitable testing environment for a fault-toler®RC is a complex industrial process,
such as LARPO dearomatization process at the Naaefaery, with faults in the

measurements, actuators and, for example, the swomealysers. In this chapter, the
description of the target industrial dearomatizatprocess and its control strategy are

given.
5.1 Description of the dearomatization process

The target process for the FTMPC is a complex itdusdearomatization process,
LARPO, located in the Naantali refinery owned bysteQil Oyj. The purpose of the
LARPO dearomatization process is to remove aromagimpounds from the solvent
feedstock through catalytic hydrogenation in a itwaus process. Exothermic saturation
reactions take place in the reactors, which rentiegearomatic compounds from the feed.
The product quality parameters, such as the irging point (IBP) or flashpoint (FP),
are adjusted in the distillation part of the uhiBRPO is in a crucial position in the
Naantali refinery because most of the solvent prtslof the refinery are non-aromatic,
and a failure in the product quality analysers ncayse large quantities of off-spec
products and thus significant financial losseseRtally, a low quality end product may

have an effect on the customers and create probtesasling the final products.

The LARPO dearomatization process is composed af tnickle-bed reactors with
packed catalyst beds to remove the aromatic congsoum distillation column used to
control the specifications of the end productsesavheat exchangers, which import and
export energy in the process; separation drumdlirgfplate stripper as well as other
process equipment, which carry out supplementakstan the unit. The flow diagram of

the LARPO process is presented in Figure 21 aaegrdi Vermasvuori et al. (2005).
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Figure 21. The industrial dearomatization procds&RPO, according to Vermasvuori et
al. (2005).

The feedstock fed into the unit is heated up tactiea temperature using the heat
circulated from the reactors through heat exchangéyl and EA2, as well as a hot oll
heat exchanger. This heated stream is then feshtar DC1, together with the recycled
liquid feed and heated hydrogen feed composedeshfand recycled hydrogen. If the
catalyst of the first reactor is at the beginnirfgttee catalyst's life-cycle, most of the
aromatic compounds are removed in the first reabtmwvever, at the end of the catalyst’s

life-cycle, more and more reactions also take plad¢ke second reactor DC2.

After passing from the first reactor DC1, the prodéeed is cooled down in heat
exchanger EA1 and then fed to gas separation drAfy where gaseous and liquid
products are separated. A low-aromatic feed isofuand fed back to reactor DC1 in
order to ensure a higher feed rate and lower enduat aromatics content. Separated gas,
the rest of the liquid products and quench hydrogienfed to reactor DC2. In reactor
DC2, the level of aromatics in the products isHartdecreased until it meets the final

quality requirements of the end products.
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The product of the dearomatization process in doersd reactor DC2 is cooled down in
heat exchangers EA2 and EA3, and by using an alecorlhis stream is then fed to the
second gas separation drum, FA2, where gaseougjaidiproducts are again separated.
The gaseous product mainly contains unreacted sxgeiogen, and this hydrogen flow
is mixed with fresh hydrogen feed and fed backwoftrst reactor, thereby increasing the
total hydrogen pressure in the unit and improvimg lydrogenation process. The liquid
low-aromatic product stream is heated in heat exgbis EA4 and EA5 using heat from
the product and by-product streams. Before reactmadlistillation column, the feed is

further heated at heat exchanger EA6 using destif@tl product feed from another

process unit.

In distillation column DAL (contains 42 trays), hexchanger EA6 provides distillation
column DAl with energy with which to boil column DAfeed. A side stream is
conducted to by-product stripper unit DA2 (contathsrays), which is heated by heat
exchanger EA7 using hot oil. The by-product stresuirawn off from the bottom of the
stripper unit DA2, and heats the feed of column DA heat exchanger EA4. The stream
from column DAL overhead is cooled and this streéaitinen fed to the overhead drum
FA3. In overhead drum FA3, the liquid is dividedardistillate and reflux flows; the
gaseous part is then separated and removed froomthe€Column DAL distillate contains
lighter compounds, such as gasoline, and is foredartb other units for further
processing. The non-aromatic main product is draffras a bottom product of column
DALl. The DAL bottom product is then cooled dowrhaat exchanger EA5, which also
heats up the feed to column DAL. The quality of fimal product is measured with
flashpoint and distillation curve analysers. Thaldy of the by-product from stripper
unit DA2 is also monitored by means of a flashpaimalyser. The laboratory analyses of
the main product and the by-product feeds areezhiwut three times a day in order to
ensure the quality of the end products.
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The feedstock type of the dearomatization unit hanged once every four days on
average. The properties of the feedstock vary harkttare as many as six different types
of petroleum and light gas oil cuts used as feeadtie unit. The heavier part of the
distillation curve, the distillation end point pepy of the product, is mainly adjusted in
the previous process units; however, the lightetr enthe distillation curve, the initial
boiling point and flashpoint properties are adjdste the LARPO distillation column

DA1 based on the product specifications.

The Naantali refinery is a special products plamtich has a wide product palette
containing over 140 different oil refining productShe capacity of the refinery is
relatively small - some three million tons of cruaieis processed each year - compared
to most oil refineries in Europe, which ranks tredinery in the fourth quarter of
European refineries based on the amount of prodessele oil. The major part of the
production and income in the refinery is composkthe production of low-sulphur fuel
and diesel products. Some 25% of all products aperéed, the rest being supplied to
domestic markets. One of the most profitable prtgluc the Naantali refinery is the

special solvents produced out of naphtha, keroaademiddle distillates.

In a small refinery such as Naantali, the qualftthe end products is of high importance.
There are several factors affecting the qualityur@mnents of specialty products such as
their potentially high price and the increasingligyand safety demands. It is therefore
important to ensure the continuous, stable prodnai in-spec quality products. For this
reason, the correct and accurate operation of mlaé/sers, process measurements and
controllers is an especially critical factor foethuccessful operation of the solvent units

and the production of special solvent products.
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5.2 Control strategy of the dearomatization process

In this section, the control strategy for the LARHE@aromatization process is presented
by introducing the basic control strategy, the MBijectives and the MPC control

variables of the target process.
5.2.1 Basic control strategy of the dearomatization process

As the dearomatization process is a complex ing@listinit, a large number of
measurements and sub-level controllers are utilisestabilise and control the reactions
and flows within the unit. In the following, the $ia controls of the LARPO unit are

presented.

The liquid feedstock volume flow rate to the usitusually determined by the amount of
desulphurised feed coming directly from the presiquocess unit. The feed flow

controller can be set in a cascade mode in ordadjiest the feed rate on the basis of
production volumes of the previous unit. The LARE&@ can also take feed from a feed
tank, in which case the flow rate is set manuaihtiie operating personnel. The fresh
hydrogen flow rate to the first reactor, DC1, igusted with a flow controller. The goal

of the fresh hydrogen feed controller is to providarogen to successfully carry out

hydrogenation and to protect the catalyst from mgki

The temperature of the liquid feed entering thst fieactor is controlled by adjusting the
bypass of feed heat exchangers EA1 and EA2, armbbiyolling the hot oil flow to the
hot oil heat exchanger before the first reactor DTie hot oil temperature controller
also adjusts the hydrogen temperature, becaussathe amount of hot oil flows through
the hydrogen feed flow. As the hydrogenation reactis highly exothermic, the
temperatures within reactors DC1 and DC2 are moadtoarefully with four temperature

sensors located in each reactor bed, and in theand outlet of reactors DC1 and DC2.
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After the first reactor, DC1, part of the liquidogoiuct and hydrogen is relayed back to the
unit feed by means of flow controllers. This liquietycle feed keeps the hydrogenation
process under control and further prevents catabydghg. The recycled hydrogen further
improves the removal of aromatic compounds, adjtistspressure of the first reactor
DC1 and maximises the hydrogen-to-oil-ratio, depgthe relative amount of hydrogen

against the feed flow rate, and also protects #talyst from coking.

After reactor DC2, the mixed flow is cooled downhieat exchangers EA2 and EA3 and
the air cooler by using a temperature controllat #djusts the air cooler air flow rate and

the effectiveness of the cooler.

The cooled down liquid flow is separated from hyg#o in the second separation drum,
FA2, and, based on the unit pressure, the excet®dmn is then forwarded through a
pressure controller to other hydrogen consumingsunithe refinery. The level controller

of the second separation drum, DA2, adjusts thedijow rate onward.

The liquid non-stabilised feed of the column DAlh&ated up again in heat exchangers
EA4 and EA5, and finally by means of a temperatiaetroller cascaded with two flow
controllers; part of the feed is relayed throughthexchanger EA6, while part of the feed
flows directly to column DA1. The temperature ofuzan DAL is controlled both by the
feed temperature and also by the reboiler of colid recycling hot flow in the
bottom part of column DA1l. When the temperaturecalumn DAL is increased, the
bypass of the reboiler is closed, and when the ¢eatpre is lowered the bypass valve of

the reboiler is again opened.

The separation accuracy and the temperature dabghpart of column DAL are adjusted
with the reflux flow that feeds part of the disiik back to column DAL. The liquid
distillate flow is adjusted on the basis of thedlemeasurement of overhead drum FA3.

The pressure of column DAL is adjusted with thegpugas flow from the overhead drum.

The feed rate of stripper unit DA2 is adjusted ffoas controller and its temperature is

adjusted by a hot oil reboiler.
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The primary product flow from the bottom of colurdAl is controlled with the DAL
level controller. A similar arrangement is set tigpper unit DA2, where by-product flow
from the bottom of stripper unit DA2 is controllbgl the DA2 level controller. The final
product and by-product are finally cooled down Isyng the heat energy to first heat up
the column feed, and then by using a temperatunerater adjust the water flow to the

product heat exchangers.

The basic controllers of the LARPO process are piegented in Figure 22 (HO = ‘Hot
Oil and CW = ‘Cooling Water’).
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Figure 22. The controllers of the industrial deartimation process, LARPO, located at

the Naantali refinery.
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5.2.2 Control objectives of the MPC for the dearomatization process

The primary control objective for the MPC of the RRO dearomatization process is to
keep the distillation column DAl bottom product ebdahe product quality limit. A

secondary objective is to minimise the additionaldoiction costs by aiming to keep the
product quality as close as possible to the spatifins while maximising the feed rate.
In practice, the goals are to maintain the DAL dmatfproduct within the specifications
(initial boiling point, flashpoint or DAL temperat), and to minimise the DA2 bottom

product flashpoint within the by-product specifioatlimits.

In the measurements of both the DA1 and DA2 botmoduct, the product quality
should never fall below the minimum specificatiomits. If the quality specifications are
not met, off-spec production occurs and an oveliyuaroduct needs to be mixed with
the off-spec product in order to meet the spedifbics. However, if the value of the
variables is higher than the minimum limit, eneagg financial losses increase because a

larger amount of valuable product goes for repreiogswith the overhead distillate flow.
5.2.3 Control variables of the MPC for the dearomatization process

Five controlled variables are defined for the MPCtlme LARPO dearomatization
process: column DA1 bottom product initial boilipgint (DA1_BP_IBP); DAL bottom
product flashpoint (DA1_BP_FP); DA1 liquid distiiéaflow rate (DA1_DIST_FC); DA1
pressure-compensated temperature (DAl _TC); andmeollDA2 bottom product
flashpoint (DA2_BP_FP). The LARPO controlled vatesh are presented in Table 7

along with the control objectives in parenthesis.

Of these controlled variables, DA1_BP_IBP, DA1_BP_&hd DA1_TC are alternative
variables and thus only one of these can be usadiaie for control. Only DA1_BP_FP

is relevant to the specific heavy feedstock thatuslied in this thesis.

Overhead flow rate DA1_DIST_FC is minimised by eohing by-product flashpoint
DA2_BP_FP, and thus maximising flow to by-producipper unit DA2 and therefore
minimising overhead flow rate DA1_DIST_FC.
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Four disturbance variables are used in the MPC: Dwl feed flow rate
(DA1_FEED_FC); the DAl feed temperature (DA1_FEED);Tthe DAl heating
medium temperature (DA1_HEAT_TC); and the DA1 pues{DA1_PC). The LARPO

disturbance variables are presented in Table 8.

Four manipulated variables are used for the comtrdhe process: the DAL reflux flow
rate (DA1_REFLUX_FC); the EA6 hot stream feed rédA1 _EA6_FEED_FC); the
DA2 feed flow rate (DA2_FEED_FC); and the EA7 hotream feed rate
(DA2_EA7_FEED_FC). The LARPO manipulated variabéee presented in Table 9

along with the control objectives in parenthesis.

Table 7. The LARPO controlled variables.

Variable name Variable description Unit
DAl BP_IBP DA1 bottom product initial boiling poittarget) °C
DAl BP_FP DA1 bottom product flashpoifarget) °C
DAl DIST_FC DA1 liquid distillate flon{minimise indirectly) kg/h
DAl TC DAL pressure-compensated temperafiarget) °C
DA2_BP_FP DA2 bottom product flashpoiarget, minimise) °C

Table 8. The LARPO disturbance variables.

Variable name Variable description Unit
DAl FEED_FC DALl feed flow rate t/h
DAl FEED_TC DAl feed temperature °C
DAl HEAT_TC DA1 heating medium temp. °C
DAl PC DAL Pressure kPa
Table 9. The LARPO manipulated variables.

Variable name Variable description Unit
DAl _REFLUX_FC DAL reflux flow raterfiaximisé t/h
DAl _EA6_FEED_FC EAG6 hot stream feed rat@r(imisg t/h
DA2_FEED_FC DA2 feed flow rater{aximisé t/h
DA2_EA7_FEED_FC EA7 hot stream feed rdtedp steady t/h
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6 Integrated FTMPC for the industrial dearomatization

process

As continuous plant operation is essential espgci@l a plant producing highly
profitable products, the careful design of an FTMBGritical for the plant’s fault-free
operation. This usually requires, in addition tedtetical research, extensive interviews
with the plant personnel and the study of logbodaksidence reports and maintenance
department records. Based on this gathered infavmahe specification of the design
schemes can be made and an active integrated FTibtRontrol of the target process

delivered.

In this chapter, the requirements for the activeMPT for the target dearomatization
process are presented first. Second, the faulthentarget process are discussed and

finally the integrated FTMPC with its three parklenning FTC strategies are described.

6.1 The requirements of the FTMPC for the industria |

dearomatization process

In order to successfully apply the FTC design saeemhile creating an FTMPC for the
dearomatization process, the user requirementh@fRTMPC are determined. The
requirements for an FDI strategy to be implemeinetthe Naantali refinery have earlier
been determined by Vatanski et al. (2005) in thees@roject in which the author has
been working in. These user requirements have lbetermined through interviews
carried out in the Naantali refinery during autug004. The interviews were based on
four topics. First, the user interface, interfag@ther parts of the control strategy and the
installation, upkeep and updating of the active Fifategy were discussed. Second,
typical faults in the process analysers were detexdh Third, the information and tools
for detecting faults by the plant personnel wemrded. Fourth, the FTC actions after
the detection of the fault were decided upon aededs for the automated actions were
charted. Based on the responses, a set of requitermeas determined for an FDI

strategy, but the results of the interviews applyhie development of the FTMPC as well.
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The resulting user requirements were focused amtfipics. First, the fault types to be
detected should contain at least a drifting fbdtcond, the fault detection should happen
as early as possible. Third, the FDI method shopidvide enough background
information about the fault detection and diagnosisurth, the external factors and
specially the operating point changes should bertakto account; and finally, the
measurement device calibrations should be takem antount and not categorised as
faults. These requirements are presented in fotigwiable 10.

Table 10. The requirements for the FDI strategshim Naantali refinery according to
Vatanski et al. (2005).

Requirement topic Requirement

Detected types of fault The FDI strategy shall detect incipient faults tthaiot cause variables to violate thei

=

alarm limits.

The FDI strategy should detect faults especialiffidg of the measuring devices.

Time instant of fault The strategy should be able to inform the operabout faulty conditions as early as
detection possible. When the faults are detected in time #fécts are easier to mitigate and

have smaller impact on the overall process.

Background information | The strategy shall provide background informatibou the fault detection and
about the FDI methods isolation methods used, as well as the assumptieed in diagnosis.

FDI taking into account The FDI strategy shall identify and be aware ofdheent operating point in order to

external factors be able to detect smaller deviations from nomimparation conditions

The change in the operation point shall also beaiet! and must not be categorised [as
a fault.

Being aware of the The effects of calibrating measurement deviced Sleadtored and taken into account in
calibration of measurementfault diagnosis because calibration produces suddanges in measurement values,

devices and these might be detected as faults.

The date of calibration shall be used as one riétiatneasure of the measurement.
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6.2 Faults in the target dearomatization process

In a study carried out by Liikala (2005), the presaliary and process history of the
Naantali refinery were examined in order to gathdormation of the faults in the
dearomatization process. During the time perioceoed in that study, nearly 70% of all

faults in the LARPO unit were related to analysesshown in Figure 23.
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Figure 23. The most common faults in the dearora@bia process during one year of
operation (Liikala, 2005).

In order to gather more information on the faultsl dheir effects on the process, data
from the Naantali refinery maintenance departmesrevstudied during 09/2008-09/2009
by the author. During this period, faults such asgerature, flow and pressure
measurements, control valves and process analys&Festaken into account. All faults
requiring maintenance work were included in thelgtidhe fault data was divided into
three categories: analyser faults, measurementcealdaults and control valve faults.
Based on the results, 42% of the faults were lacatethe analysers; 42% in the

measurement devices; and 16% in the control valMes results are given in Figure 24.
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In addition to data from the maintenance departitbetflashpoint analyser output on a
heavy grade feed run was compared to the labora@gsurements during the period
09/2008 - 09/2009. The flashpoint analysis utiliE&s1SO 2719-2002 M method and the
method has a repeatability of 2.8°C on the givaa dat. The aim of the comparison was
to determine the number of measurements in whiehatialyser measurement differed
from the laboratory measurement by more than 2.8f@ch in practice means that the
analyser measurement was faulty. In addition, themndvard faults causing off-spec and

upward faults resulting in over-quality productsreveategorised.

O Process analyzers
B Process measurements

16 %

O Control valves

42 %

Naantali LARPO unit control system faults during
2008-2009

Figure 24. The LARPO sensor, measurement and acttailts during 09/2008 -
09/2009.

Based on the data, it was estimated that off-spexcproduced due to the analyser faults
in 3% of the cases and too high quality product prasluced in 3% of the cases. In total,
6% of the analyses during the heavy grade runréifdoy more than 2.8°C from the

analyser readings, causing either off-spec prodndair too high quality production.

Based on these studies, it can be concluded that afdhe faults in the LARPO unit
were located in process analysers, although alsw daults have been present in other
measurements and control valves of the unit. Thé fgpes to be tested with the final
active FTC strategy are thus narrowed down to bésmsd drift-shaped faults for the
analysers and sensors of controlled variables,aa-shaped fault for the sensors of

disturbance and manipulated variables and a stalefe Vault for the actuators.
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6.3 Description of the three parallel-running FTC s  trategies of
the integrated FTMPC for the industrial dearomatiza tion

process

Three parallel-running FTC strategies of the iraégsl FTMPC for the target
dearomatization process are next proposed basédeoimtegrated FTC design scheme
presented in Section 3.5.3.

The first FTC strategy includes a fault accommadabased strategy for the CV and DV
sensor faults based on the fault accommodation #@%yn scheme presented in Section
3.5.1 and the recursive PLS as an FDD. The sectattgy is composed of the fault
accommodation- and controller reconfiguration-bad€tiC strategies presented in
sections 3.5.1 and 3.5.2 for the MV sensor fawltsere the controller reconfiguration
part is adopted from DCP principle by Buffingtordainns (1996). The last strategy is
composed of the controller reconfiguration-base@ Birategy for the MV actuator faults
based on the DCP principle, the controller recamijon FTC design scheme presented
in Section 3.5.2 and an FDD method based on tlereifce between MV setpoint and

measurement. In the following, these three paraliehing FTC strategies are described.
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6.3.1 Active fault accommodation-based FTC strategy for the sensor faults

of the controlled and disturbance variables

The first FTC strategy is used to reduce the efééd¢he faults in the CV or DV sensors
or, for example, in process analysers. The fautbreenodation-based FTC is used for
accommodating the faults with the fault estimatgained from the FDD. A recursive

PLS is used for estimating the values of the famlgasurements.

The active FTC strategy for both the CV and DV serfaults is based on the fault
accommodation FTC design scheme presented in 8e@ttol and in Figure 5. In this
FTC strategy, the faults in the CV or DV sensors farst detected by the FDD. After
successful fault detection, the magnitude of thét fis estimated and this estimation is
then used to accommodate the faulty measuremergods as the fault is removed from
the process, the correction value is removed. Deteof the fault is based on the PLS
RMSEP index, and the suitable threshold for eaclabke is determined on the basis of

the RMSEP values during the nominal unit operation.
6.3.1.1 FDD for thefault accommodation-based FTC strategy for CV or DV faults

The FDD for the CV or DV sensor faults is basedlmn PLS and the commonly known
NIPALS algorithm by Wold et al. (1983), which haselm described earlier in Section
3.4.2. The PLS method has also been presentepapexr by Vermasvuori et al. (2005);
however, the PLS method used in the thesis utigs®.S algorithm, enhanced by the
author to use recursive inputs, which essentiadlgisaa dynamic element to the PLS
formulation. In the recursive PLS, two models anplemented for each variable in order
to prevent the accumulation of faults through remar inputs. One of the PLS models
controls fault detection (preventing faulty infortiea to be relayed to the fault

estimations); the other carries out fault estimatibhese modifications essentially make
the algorithm used in the final application of ttheesis different from that used by
Vermasvuori et al (2005). The author also wishesdte that the focus of this thesis is
not on FDI (as it is in the paper by Vermasvuoralet 2005), but in the development of
the integrated FTMPC.
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The CV values are estimated by using all of tharobsystem DVs and MVs an input to
the PLS. The delay the CV estimation is the maxindetay between each of the input
variables (DV or MV) and the CV. In addition, twagi values of the outputs are used as
inputs; one value from the time stepl;, and the other from the time steg,, where
di<d,. The past values introduce a recursive elementhéoPLS, thus significantly
increasing the estimation accuracy of the moddie. first set of PLS models is used for
fault detection and the second set for the faulimedion. The measurements used to
estimate the CVs are: the DAl feed flow rate (DAREP_FC); the DAl feed
temperature (DA1_FEED_TC); the DAl heating mediumemgerature
(DA1_HEAT _TC); the DAl pressure (DAl _PC); the DAlflux flow rate
(DA1_REFLUX_FC); the EA6 hot stream feed rate (DERA6_FEED_FC); the DA2
feed flow rate (DA2_FEED _FC); and the EA7 hot gmeafeed rate
(DA2_EA7_FEED_FC).

Since the recursive element may also carry ovdtyfalata before this fault is detected,
another PLS model is required to estimate the nmmeasent values with non-faulty data.
This means that the active FTC strategy has entoghto detect the faults before the
fault contaminates the PLS estimation models thnoilng recursive input. This second
set of models have exactly the same input valuesp for the past output measurement
values, which are derived further from the pasiftbe time step-d; and the time step

ds, whered;<d,<ds;<ds. The second set of PLS models is used for fatitneson. The
accuracy of the second model is not as good a$irftebecause the delay between the
past output values and the current output is lafgerthe accuracy should be sufficient
enough to provide a reliable fault estimation.
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The DV values are estimated by using the curretguiwalues. In this case, the delay of
the DV fault detection is the maximum delay betwées DV to be predicted and the
measurements used for estimating the DV valuegeSime FTC for the CV sensor faults
is partially based on DV values, a different setngfasurements is used for the estimation
of the DV values. The measurements used for theeBtimations are the DAL overhead
temperature measurement (DA1_TEMP_1); the temperatutray 13 (DA1_TEMP_3);
the temperature at tray 21 (DA1_TEMP_4) and theirool DAL overhead gas flow rate
(DA1_OVHD_FLOW_FC).

The estimation of the DV values also utilises resr PLS. The two past values of the
output are used as inputs; one value from the sitept-dnaxds and the other from the
time stept-dmaxds, Wherednaxis the maximum delay between PLS inputs and ostaod
d; andd, are the delays for the dynamic FDD. The first Ph&del is used for detecting
the faults and the second for estimating the faagnitude.

6.3.1.2 FTC for thefault accommodation-based FTC strategy for CV or DV faults

The FTC part of the fault accommodation-based Fir@tegyy is based on the fault
accommodation design scheme presented in Secttoh. 2As described in the scheme,
the degree of fault accommodation is handled witswd#t detection delay counter, which
increases the amount of accommodation during déawh $tep the fault is detected. In
essence, the delay counter is increased by oneesftdhh one minute control cycle has
passed and a fault is detected. When the valueeotdunter exceeds the preset low limit
LL, the FTC action is engaged. In this case the tadbmmodation is carried out and the
faulty CV or DV is accommodated with the fault estionAy provided by the PLS and
multiplied with the degree of accommodatibrpresented in equation (38). On the other
hand, if no fault is detected, the counter is desed by one after one minute control
cycle has passed and if no fault is detected.dfdbunter value goes below the lirhit,

the fault accommodation is disabled and the caoeastalue is removed.

The procedure and the flowchart for the CV or D\Wsse faults are presented in
Appendix A.1.
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6.3.2 Active fault accommodation and controller reconfiguration-based FTC

strategy for the sensor faults of the manipulated variables

The second FTC strategy is used to reduce theteffebe faults in the MV sensors. The
fault accommodation- and controller reconfiguratimsed FTC is used to accommodate
the faults with the fault estimations gained frome =DD. A recursive PLS is used to

detect the faults and estimating the values ofahky measurements.

The active FTC strategy for MV sensor faults isdaaen the fault accommodation and
controller reconfiguration FTC design schemes preskin Sections 3.5.1 and 3.5.2 and
in Figure 5 and Figure 9. If a fault is detectecamMV measurement, it is adjusted by
the magnitude of the fault estimation and, aftas,tlthe reconfiguration actions are
engaged; the faulty MV is moved to the oppositeeation by the amount of fault
magnitude and the MV is set as a DV in the MPC amduxiliary DV is used as an MV.
When the fault is removed from the process, thgimal MPC and FTC structure is

restored and the MV can again be used for control.

6.3.2.1 FDD for the fault accommodation- and controller reconfiguration-based

FTC strategy for MV sensor faults

The MV values in the past are estimated by usiegctirrent measurement outputs as an
input to the PLS. As with the DVs, the delay is theximum delay between the MV and
the measurements used for the estimation. The mezasuat set used for the estimation
of the MV values is slightly different from that twithe DV value estimation; in this case,
each of the MV has a unique set of input varialbtebe used for the estimation. This
kind of approach is required because without canedtiable selection, the performance
of the control system is greatly affected. Foranse, if an input variable with a long
delay to the MV is selected, this directly affetite delay in detecting the faults. Only
one PLS model is used for the FDD in this FTC styat
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Overall, the variables used for the estimationstlagecolumn DA1 overhead temperature
(DA1_TEMP_1), the temperature at tray 5 (DA1_TEMP tBe temperature at tray 13
(DA1_TEMP_3); the temperature at tray 21 (DA1_TEMP the temperature at tray 41
(DA1_TEMP_5); the temperature of the bottom prod(BAl1 _TEMP_6); the DAl
overhead gas flow rate (DA1_OVHD_FLOW_FC); the DBdAttom product flow rate
(DA1_BP_FC); the DA2 overhead gas flow rate (DA2SDIFC); the DA2 upper
pressure measurement (DA2_PC1l); the DAl feed exemnamot fluid flow rate
(DA1_FEED_EA_FC); the DA2 bottom product temperatypA2_BP_TC); and the
DA2 bottom product flow rate (DA2_BP_FC).

6.3.2.2 FTC for the fault accommodation- and controller reconfiguration-based
FTC strategy for MV sensor faults

The FTC part for the MV sensor faults consistswa parts: a fault accommodation part
and a controller reconfiguration part. Again, thECFactions are handled with a fault
detection delay counter, which increases the amouatcommodation during each time
step the fault is detected. The delay counter ¢seased by one after each one minute
control cycle has passed and a fault is detectdterithe value of the counter exceeds
the preset low limit.L, the FTC action is engaged. In this case theyfdd¥ is moved to
the opposite direction of the fault by the amoumtfault estimation, the MV is
accommodated with the fault estimation and the M\set as a DV in the MPC. In
addition, in order to cover for the loss of an M¥nd auxiliary MV, DAl feed
temperature controller (DA1_FEED_TC) is used asahinstead. On the other hand, if
no fault is detected, the counter is decreasednayafter one minute control cycle has
passed and if no fault is detected. If the countdue goes below the limitL, the
previously faulty MV is set back as an MV in MP@Getfault accommodation is removed
and the auxiliary MV DA1_FEED_TC is set back to DV.

The procedure and the flowchart for the MV sensaaitfare presented in Appendix A.2.
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6.3.3 Active controller reconfiguration-based FTC strategy for the actuator

faults of the manipulated variables

The third FTC strategy is used for reducing theafbf the faults in the MV actuators.
The DCP-based controller reconfiguration algoritisnused in the FTC strategy for the
actuator faults. In this case, the FDD is basetherdifference between the MV setpoint

and the MV measurement value.

The active FTC strategy for MV actuator faults &séd on the controller reconfiguration
FTC design schemes presented in Section 3.5.2rafkture 9. If an actuator fault is
detected, the FTC algorithm is triggered and thdtyavariable is set as a DV and the

auxiliary MV variable is set as an MV.

6.3.3.1 FDD for the controller reconfiguration-based FTC strategy for MV

actuator faults

The FDD for the controller reconfiguration-basedHbr MV actuator faults is based on
the difference between the setpoint and the meammevalue of the MV. The detection
of a stuck valve fault is based on the RMSE indekjch is calculated from the
difference between the MPC control output and tbatroller measurement. If the
difference between the setpoint given by the MPG dne sub-level controller
measurement is sufficiently large, and the cumuasum has increased enough, the MV

is declared faulty and the FTC actions are engaged.

The four MVs to be monitored are the DA1 refluxwioate, the EA6 hot stream flow rate,
the DA2 feed flow rate and the EA7 hot stream flmte. These variables form the
primary control set for column DAL, and the DAl deflow temperature is used as a
secondary control set. Since all four MVs adjust émergy balance in the column, the

column feed temperature controller can temporaeplace one or more of the MVs.
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6.3.3.2 FTC for the controller reconfiguration-based FTC strategy for MV

actuator faults

The FTC part for the MV actuator faults consistsoitroller reconfiguration. The FTC
actions are handled with a fault detection delaynter, which increases the amount of
accommodation during each time step the faultisaded. The delay counter is increased
by one after each one minute control cycle hasgohasd a fault is detected. When the
value of the counter exceeds the preset low lirhjtthe FTC action is engaged. In this
case the faulty MV is set as a DV in the MPC. Ilditidn, in order to cover for the loss
of an MV, and auxiliary MV, DAL feed temperaturentwller (DA1_FEED_TC) is used
as an MV instead. On the other hand, if no faulletected, the counter is decreased by
one after one minute control cycle has passed fand fault is detected. This time the
faulty MV cannot be automatically normalised, as #DD is based on the difference
between the setpoint and the measurement andtisugalue is no longer updated when
the MV is removed from the MPC. Therefore, the ialMV needs to be manually

returned by the operator when the fault has beereded in the faulty actuator.

The procedure and the flowchart for the MV actu&oit are presented in Appendix A.3.



116

7 Performance validation and economic evaluation of
the integrated FTMPC for the target dearomatization

Process

Before the implementation of the FTMPC to the dgwacess unit, it is highly beneficial
to validate the control performance in an advangextess simulator with an accurate
simulation model of the target process. In this wagyy possible design flaws and
benefits can be estimated in advance without distgrthe actual process. Therefore, in
order to validate the performance of the activadmtsed integrated FTMPC defined in
Chapter 6, the integrated FTMPC is utilised fortoolfing the simulated dearomatization
process described in Chapter 5 in the presenggumfal process faults given in Chapter 6.
In order to economically justify the implementatiaf the developed FTMPC, the
economical benefits of the proposed FTMPC are aedlypased on the evaluation of the

fault effects on the actual dearomatization process

In this chapter, the simulation environment istfidescribed by defining the testing
platform and data pre-processing procedures aloitg the results of the process
linearity testing and the definition of the nomindlPC based on the given control
objectives, variables and constraints. Secondrebelts of testing a nominal MPC in the
simulated dearomatization process are presenteatdar to be able to measure the
economical benefits of the FTMPC. Third, the perfance of the FTMPC is validated
by showing the results of testing the sensor faultthhe CVs, DVs and MVs, and the
actuator faults in MVs and by summarising the rsswf the testing. Finally, the

economic benefits of the FTMPC are assessed ir eodgistify the implementation of

the FTMPC to the actual dearomatization process.
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7.1 Description of the simulated process environmen t

In this section, the process simulator and datappweessing, linearity testing of the
target process and the definition and modellinthefMPC is presented.

7.1.1 Description of the testing platform

The simulation studies on the LARPO dearomatizafioycess were carried out in the
ProsDS (formerly known as PROSimulator) - a dynapnacess simulator developed by
Neste Jacobs Oy - which has simulation models septeng the physical-chemical

behaviour of the target process.

The simulation model for the LARPO unit containdaege number of measurements,
analyser readings and low-level control loops iteorto accurately present the behaviour
of the target process. An accurate model thus esable testing and development of

different control strategies offline.

The measurements from the ProsDS were transfemedeal time to the Matlab
workspace, from where the measurements were futthasferred to the Matlab-based
software platform. The platform handled the orctag&gin and pre-treatment of data by
using algorithms developed by the author. Predtneat includes noise and outlier
removal by filtering and the data interpolation foissing data points.

The FDD component of the strategy uses the FDD dbase the recursive PLS as
described in Section 6.3. The FTC part of the ptatf processes data and, if necessary,
accommodates or reconfigures the nominal contrbiésed on the FDD estimations as
presented in Section 6.3. Also, there was a delaghamism in place for the FTC
component, designed to prevent effect of randorkespand false alarms. This delay
mechanism has been described in Section 3.5.1ect®s 6.3.
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The nominal MPC component calculates the optimisedtrol inputs based on the
process measurements, which were then written ¢oMhatlab workspace. From the
Matlab workspace, the ProsDS read the optimisedtimplues and adjusted the target
sub-level controllers accordingly. Data were rete and recorded every five seconds
and the FTC part and the nominal MPC operated pecaminute. The structure of the

software platform is depicted in Figure 25:

V) —tp Proce.ss —tp . m— FDD —t @ FTC e

& data’in g actions parameters C

O —g FTC 8

o Control © FTC ETC A
— e e — ——

an dataout 4 o 4 actions indicators

Figure 25. The structure and the data flow withie £TC software platform.

Industrial measurement data contains measuremeasé ramd outliers, which usually

have an effect on the control system performantsn,fccording to Ray (1989, pp. 28-
30), it is necessary to filter industrial data mler to reduce the effect of the noise and
outliers on the measurements. In the simulatiothefLARPO dearomatization process,
all the measurements contain a degree of proceéss;rior this reason, pre-processing of

the data was carried out to reliably control thrgeaprocess.

A moving average filter was used in filtering themslated LARPO process
measurements. The moving average filter was ulilisethe following formulation at

each time step to remove noise from the measursment

P (47)

wherey;; is the filtered measurement value at the curiem stept; y; the measurement

value at the time stapt the current time step; andthe window size.
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The window size for the target measurements wastset5 minutes for the DAL
distillation flow rate and three minutes for allettother measurements. The window
length was set longer for the DAL distillation floate due to the high noise variation and

nonlinearity present in this measurement.

Occasionally, some measurement data were not red¢drdm the ProsDS to the Matlab
due, for example, to a high computer load or a sanerror in the Matlab or ProsDS
software or in the connection between ProsDS antablalherefore, it was necessary to
determine the number of missing data points andhterpolate the missing values.
Missing data was detected by using a timer variablerosDS, which was increased at
every execution of ProsDS. The timer variable wasitored and the difference between
the number of the current time steps and the pusiyaecorded time step was measured.
If the difference was larger than a single timepstihen the values of the missing
measurements were interpolated by using a lindarpalation method as presented in
the following equation:

o = Yo + DL Vo)

wheret is the current time stepy is a number of the missing measurements,iasdn

(48)

index for the missing measuremerits Q..m).

Since the MPC control cycle was set to one minME@C control action data was
interpolated between the one minute periods. |a taise, the zero-order hold (ZOH)
interpolation was used. In this procedure, thee/aluthe variable is held constant until a
new measurement is available. This means thatubdesel controllers receive constant

set point values from the MPC.

For the MPC calculations, the CV or DV measurenvafiies and the MV control values

were normalised to operation point by using théfeing equation:

Vnorm =V _VO (49)

whereV, is eitherYy, Up or Dy at an operating pointj,om is the averaged valugom,

Unorm OF dnorm @ndv is the measuremenwt inputu or the disturbancd, respectively.
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For the PLS calculations, the inpuis the outputsy and the disturbanced were

normalised around the operating poratUp or Do by using the following equation:

V-V,
Vnorm pls =
’ STOV)

(50)

whereSTD(v)is the standard deviation pfu or d.

The DA1 bottom product IBP was updated only evedyrinutes due to the analyser
cycle time. In order for the MPC to properly comtiioe variable, an auxiliary variable
was implemented to estimate the value of the virigbbetween the update periods. The
value of the IBP was estimated using the MPC ilemnodel, and the estimation was
updated when a new analyser measurement was deaildie update of the correction
was done gradually over a period of 10 minuteswlaich time the correction value
reached 100% of the new measurement. A delay vielurced in the update because an
abrupt correction of the estimations caused noatihein the measurement and made it
more difficult for the MPC to control the CV. Thexaliary variable allowed the MPC to
receive a continuous measurement of the DAL bottomduct IBP, and thus the MPC
was able to carry out the necessary control acsomsothly, when DA1 bottom product

IBP was used for control purposes.
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7.1.2 Testing the linearity of the target dearomatization process

In order to justify the use of the linear MPC andCF methods, the linearity of the
process was first investigated at the steady stp&zation point. The dearomatization
process has, in general, slow dynamics and linehawour under normal operation. At
the operation point, on the other hand, the comstraset for the LARPO process
variables cause nonlinear behaviour in the opep tesponses of certain variables. The
linearity tests have been carried out by switchimg MPC off during the testing but

allowing the basic controllers to operate.

A linear process system has the following propsriievariance under scaling, additivity,
and frequency fidelity. The superposition princiglentains two of the three linear
system properties: the invariance under scalingaaititivity. Therefore, the invariance
under scaling and multiple input additivity of tterget process were tested in order to

determine the linearity of the target process imgeof the superposition principle.
7.1.2.1 Testing of theinvariance under scaling

In this part of the study, the invariance underlisgafor the target process is tested in
order to determine the linearity. The testing wasied out by comparing the responses
of the output variables to the changes in the in@rables. The response was then
calculated as the difference between the outptiteaturrent time steppand the output at
the beginning of the simulation (which is the sieathte value of the variable), and this
was divided by the change in the input variablee Thit step responsé between the

inputu and the outpu during timet was calculated using the following equation:

_Yi ™Yo
y =2t~ Yo
"y -u, 1)
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To test the invariance under scaling and to meabier@arameters for the step-response
models, £1%, +5% and +10% changes were carriednatlie manipulated variables and
disturbance variables, and the changes in the atadrvariables was recorded. Each
steady state gain was compared to a +1% changaystéste gain in order to determine
the difference between the responses. The diffesentthe responses of the controlled
variable according to the variable input changes @resented in Tables 11 - 15.
Nonlinearity is presented in the tables with diéfetr colours: red represents high
nonlinearity (more than 30% difference); oranger@spnts medium nonlinearity (less
than 30% difference); yellow represents weak nediity (less than 20% difference);
and white almost no nonlinearity (less than 10%ed#ince). The filtered step responses
(normalised in relation to the standard deviatiaith variable input magnitudes are
presented in Appendix C.

Table 11. Differences in the DA1_BP_IBP respondemwdifferent-sized step changes of
the input variables are induced in the LARPO praces

-10 %
5%
-1%
1%
5%
10 %

Table 12. The differences in the CV DA1_BP_FP nesp® when different-sized step

changes of the input variables are induced in tARPO process.
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Table 13. The differences in the CV DA1_DIST_F@arses when different-sized step

changes of the input variables are induced in tARRBO process.

Table 14. The differences in the CV DA1_TC respownden different-sized step changes
of the input variables are induced in the LARPOgass.

Table 15. The differences in the CV DA2_BP_FP nesp® when different-sized step

changes of the input variables are induced in tARPO process.
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As can be seen from Table 11 - 15 and Appendixh€,résponse of the system was
nonlinear in a few cases. The response of DA2_EEED-(the DA2 reboiler feed flow
rate) was nonlinear in almost all cases, sincerésponse to the changes was mostly
smaller than the overall level of the measurememenand it was therefore difficult to
get a proper response. Nonlinearity was also gletected in DA1_DIST_FC (the DAl
distillate flow rate). The distillate flow rate wasontrolled indirectly through the
overhead drum level controller, causing nonlineasponses. Nevertheless, accurate
control of the distillate flow rate was not requiresince the main goal was to minimise
the distillate flow. As a result, this variable @ie minimised indirectly by minimising
the side product flashpoint, DA2_BP_FP.

Overall, nonlinearity manifested itself with largesitive step changes (+10% or more),
which indicated that in those cases, some of tlhegss variables were driven towards
the constraints, thereby causing nonlinear behaviothe variables. Close proximity to

the constraints causes asymmetry, also because fasgtive input changes behave
differently compared to the negative input chand®ken pushed to or near the variable
constraints, the process variables began to bataveearly, as suspected. Therefore, it

is imperative, according to the step testing, tasect constraint limits for the MPC.
7.1.2.2 Testing the multiple input additivity

The multiple input additivity of the system wastéssnext by changing two or more
variables at the same time and then monitoringctmbined effect of the inputs. If the
system has additivity properties in terms of theesposition principle, then the
combined effect of the input changes should mdtehstm of two individual responses.
Since there were as many as eight input variabhdelsfize output variables, the total
number of possible input combinations would havenbeery high. Therefore, only the
most important combinations of two input variablesre changed at a time in order to
simplify the testing procedure. Each of the vaeablWas stepped with +5% and -5%

changes with different combinations. The followiragiable combinations were tested:
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. DA1_FEED TC + DAl FEED_FC

. DAl HEAT TC + DAl FEED TC

. DA1_PC + DAl _HEAT TC

. DA1_EA6_FEED FC + DAl1_PC

. DAl REFLUX_FC + DA1_EA6 FEED FC

. DA2_FEED_ FC + DA1_REFLUX_FC

. DA2_EA7_FEED FC + DA2_FEED_FC

. DA1_FEED FC + DA2_EA7_FEED_FC

The combinations of two simultaneous variable cleangersus the sum of the two
individual variable responses are presented ineléblas a percentage of the difference
between the values compared to the summed respofiseswhite cells in the table
represent values with a difference of less than t0%pared to the summed values; the
yellow cells a 10-20% difference; the orange cel0-30% difference; and the red cells
a difference of more than 30%. The values in b@scdbe changes with a difference of

over or near 100%.

As can be seen from Table 16, in most cases théioeoh responses were relatively
close to the sum of the original individual respemsin some cases, the difference was
more than 100%; however, in all of these casestihages in the CVs were less than the
process noise level, thereby producing variatioth @mor in the combined and summed
outputs. In a few cases, the output variables r@aohed the hard constraints and caused
a difference in the combined and summed outputsco/ting to the results,
DAl DIST_FC behaved in the most nonlinear way. Henmnore, while some
nonlinearity was present in DA1_TC, most of it @bllle explained by the high noise
level compared to the changes in the variable, Wicgused deviation in the variable
output. In most cases, the differences versus tineinal level of the variable were less
than 1.5%, except for DA1_DIST_FC, where the changere as large as 15%.
Therefore, based on the multiple input additivigsting, the target process behaved
linearly in most cases, at least when only two bé tvariables were excited

simultaneously. However, some degree of nonlingarés present in the variables.
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Table 16. The results of the additivity testinghef dearomatization process.

DAL HEAT TC/DAL FEED TC (5/-5)

DAL HEAT TC/DAL FEED TC (-5/5)

DAL HEAT TC/DAL FEED TC (-5/-5)

DAl _PC /DAl HEAT_TC (5/5)

Siepped input variables (changes) DAL BP IBP |DAL BP FP_|DAL DIST FC|DAL TC DA2 BP FP
DAL FEED TC /DAL FEED FC (5/5) % 19 V% %8
DAL FEED TC/DAL FEED FC (5/-5) 17[% 19% 24 % 1L % %o
DAL FEED TC/DAL FEED FC (-5/5) 1% 0]% 14% 20 % Y %
DAL FEED TC/DAL FEED FC (-5/-5) 506 6]% 11% 16 % B %
DAL HEAT TC/DAL FEED TC (5/5) 0% 1Po 14]% A% 23 %

DAl _PC /DAl HEAT_TC (5/-5)

DAl PC /DAl HEAT TC (-5/5)

DAL PC /DAL HEAT TC (-5/-5)

DAl _EA6_FEED_FC /DAl PC (5/5)

DAl EA6_FEED _FC /DAl PC (5/-5)

DAl EA6_FEED _FC /DAl PC (-5/5)

DAl EA6_FEED_FC /DAl PC (-5/-5)

DAl REFLUX FC /DAl EA6_FEED_FC (5/5)

DAl REFLUX FC /DAl EA6_FEED FC (5/-5)

DAl REFLUX FC /DAl EA6_FEED FC (-5/5)

DAl _REFLUX FC /DAl EA6_FEED_FC (-5/-5)

DA2 FEED FC/DAL REFLUX FC (5/5)

DA2_FEED_FC/DA1_REFLUX_FC (5/-5)

DA2_FEED_FC/DA1_REFLUX_FC (-5/5)

DA2 FEED_FC /DAl REFLUX FC (-5/-5)

DA2_EA7 FEED_FC/DA2 FEED_FC (5/5)

DA2_EA7 FEED_FC/DA2 FEED_FC (5/-5)

DA2 EA7 FEED _FC/DA2 FEED_FC (-5/5)

DA2_EA7_FEED_FC/DA2 FEED_FC (-5/-5)

DAL FEED FC/DA2 EA7 FEED FC (5/5)

DAL FEED FC/DA2 EA7 FEED FC (5/-5)

DAL FEED FC/DA2 EA7 FEED FC (-5/5)

DAL FEED_FC/DA2 EA7 FEED _FC (5
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7.1.2.3 Summary of thelinearity testing results

Based on the invariance under scaling and the phallithput additivity testing, there was
a degree of nonlinearity present in the target gssc especially in the variable
DAl _DIST_FC. However, in most cases the target ggsavas sufficiently linear to be
properly controlled by using a linear MPC. Even uplo there was a degree of
nonlinearity present in the behaviour of the vdealbhe effect of nonlinearity on the

performance of the MPC was relatively small duthtoMPC feedback.

In order to counter the effects of the nonlineantyDA1_DIST_FC, this variable is not
directly controlled in the final FTMPC; instead,ist minimised by maximising the by-
product yield. The maximisation of the by-productel¢ is transferred to the
minimisation of the by-product flashpoint, DA2_BRP.F When DA2_BP_FP s
minimised, a maximum amount of distillate is fecchdo the column through reflux,
finally ending up as by-product, thereby maximisihg by-product yield, minimising the
by-product flashpoint and also minimising the oledastillate flow of the main column,
DA1l_DIST_FC.

Based on the linearity testing, the simulated tapgecess had enough nonlinearity to
successfully represent an actual process case.\low&nce the degree of nonlinearity
was also small in general, it is possible to usieear MPC for the control of the target

dearomatization process.
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7.1.3 Description of the MPC for the target dearomatization process

As the linearity of the target process has beaedesind the linear MPC has been found
suitable for the control purposes, the linear MP&3 wext defined by acquiring the MPC

model and defining the parameters for the MPC.
7.1.3.1 Modedling thetarget processfor the MPC

Next, the linear model was formulated for the MB@sed on the linearity testing, it was
determined that a model composed of first ordes gime delay (FOPTD) transfer
functions would be sufficient for MPC purposes dnée modelling could be based on a

regular step testing procedure.

First, a steady-state was determined for the tapgetess and a suitable process
conditions were set based on the actual LARPO prsoc&he step testing was then
carried out by exciting each of the disturbancealdes and manipulated variables by a
5% positive step change, which, according to thedirity testing, reflected the behaviour
of the target process best. As a result of the tet&ng, the normalised (in relation to the
standard deviation) step responses of the LARP@desization process were acquired
that are presented in Appendix D. Based on thelteesd the step testing, it was
concluded that the first order transfer functionthwime delay are sufficient to describe
the dynamics of the process and could subsequbatlysed to construct the model for
the MPC.
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7.1.3.2 Parametersof the MPC

The MPC for the simulated LARPO process was cootdi according to the
recommendations of the preliminary simulation stafithe industrial benchmark process,
as well as process knowledge acquired in the cbofrthe actual LARPO process. It
became evident in the preliminary study that the CMBrovided a flexible,
straightforward and effective way of controllingethiarget process and, because an
industrial-scale linear MPC is used to control dlctual LARPO process, a Matlab-based
MPC was used for the control of the simulated LAR#®Gress.

The MPC parameters were adjusted according to §mamndics of the simulated

dearomatization process. The control cycle forMHiC was set to one minute, since the
changes in the process are relatively small ancetiseno need for faster control. The
prediction horizon was set long enough to be ablestict as early as possible to most
situations in the simulated process. Since thé tiglays, including the analyser delays in
the process varied between 0-40 minutes, the prediborizon was set to 50 minutes.

This means that while the prediction horizon isgenthan the largest delay, it is not too
long to keep the process under control. The cohbakon was set to 40 minutes, which

is a good compromise between efficiency and thaired computation time.

The CV weights were set according to control pesiees. The primary controlled
variable (DA1_BP_IBP, DA1_BP_FP or DA1_TC) weightere set to 10 to indicate
that the main column bottom product was to be lapthe setpoint at all times. The
weight for the secondary variable DA2_BP_FP was teetl to indicate that the
minimisation of the by-product flashpoint is notiagportant as keeping the main product
within the defined specifications. No weight was && DAl DIST_FC as it is not
controlled by the MPC.
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The minimisation of the by-product flashpoint ahd distillate flow rate was handled by
setting the setpoint of DA2_BP_FP 0.2°C to lessittiee measured value during every
time step. The value of the setpoint is loweredl ut#t value is 0.5% higher than the

minimum limit of DA2_BP_FP, after which the setpbis kept at this value until the

measured value rises above this limit.

The constraints for the CVs were set according e product specifications; the
minimum limits were based on the specification igvand the maximum limits are set to
keep the MPC within control range. No limits weet ®or DA1_DIST_FC since it was

not directly controlled; however, there were haothstraints set for this variable in the
sub-level control system. The CV weights and thestaints for the CVs are presented
in Table 17.

In order to minimise costs while keeping the prdaducspecification, the setpoint for
DAl BP_FP was set 0.5% higher than the minimumtiemd for DA2_BP_FP the limit

for minimisation was also set 0.5% higher thanrtii@imum specification limit.

The maximum constraints for the MVs were set adogrtb the mechanical limits of the
target controller. The minimum constraints were aagtording to the operational limits;
for instance, DA2_FEED_FC has a non-zero minimutnoesén order to ensure flow to
the side stripper. Also, DA1_REFLUX_FC would neechaive a minimum flow back to
the column in order to keep the column separatiagacity at moderate levels.
DA1_EA6_FEED_FC has a minimum limit of 40% of thexiimum limit since there is a
minimum level of reboiling required for the separatprocedure. Furthermore, if there
would not be enough energy available, there wooldbe enough feed for side stripper
DA2. DA2_EA7_FEED_FC needs to have a smaller netathinimum limit because the
variation range for this variable is small and tlusigher limit would cause restrictions
on the side stripper operation. In Table 17 andleldl8, the minimum constraints are
presented in the absolute values for the CVs angercentages of the maximum
constraint for the MVs. The minimum value of thépsént (of the minimum constraint)

is also presented in Table 17.
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The MV change rate constraints were set to -5% bfth of the range of variation

allowed for the controller. The weights for the umwariables were set to 0, allowing full

freedom for the input variables; in essence, #asés the input variables out of the MPC
objective function. The weights for the MV ratesreveset at 5. Selecting this value
allows a relatively fast response time for each MM selection being based on the
control performance. The constraints and weightstifie@ manipulated variables are
presented in Table 18.

Table 17. The constraints, weights and minimurposet values of the CVs.

CVs: Constraints Weights Min setpoint
% of the max limit (of the min limit)
Min Max

DAl1 BP IBP 219.0 245.0 1/+0.5%

DAL BP_FP 79.8 100.0 1[+0.5%

DAl DIST FC - - - -

DAl TC 261.5 275.0 1[+0.5%

DA2 BP FP 66.0 80.0 1[+0.5%

Table 18. The constraints and weights of the MVs.

MVs: Constraints Rate constraints Weights |Rate weights
% of the max limit |% of the range of variation
Min Max Min Max
DAl REFLUX FC 25.0 %| 100.0 % -5.00 % 5.00 % 0 5
DAl EA6 _FEED_FC 40.0%| 100.0 % -5.00 % 5.00 % 0 5
DA2 FEED FC 25.0 %| 100.0 % -5.00 % 5.00 % 0 5
DA2 EA7 FEED _FC 15.0 %] 100.0 % -5.00 % 5.00 % 0 5
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7.2 Results of testing the nominal MPC for the targ et

dearomatization process

The control performance of the MPC was next testeatder to verify the MPCs ability

to control the target process with a sufficienteleof performance. In addition, by
determining the control performance of the nom&C, a baseline would be formed
that can be used to compare the results with tegriated FTMPC. The performance of
the nominal MPC was tested by introducing distudeaninto the process and making

setpoint changes to the reference trajectorieseoClVs.

The performance of the nominal MPC was measuredabyulating the deviation of the
CVs from the target trajectory. In the first catbeg disturbance variable DA1_FEED_TC
(the DA1 feed temperature setpoint) was changed+B86. In this case, the active
controlled variables were DA1 BP_FP and DA2_BP Hire effect of the disturbances

was recorded and the results are shown in Figure 26
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As can be seen from Figure 26, there was only adeany effect of less than 1% on
DAl1_BP_FP, and less than a 2% temporary effect A BP_FP. In essence, the MPC
handled the disturbance well and countered theteffiethe disturbance efficiently, while

keeping the CVs at their setpoint values.
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Figure 26. The effect of a +5% change in DV DA1_BEEC .
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In the second control performance test, the setpdiDAl_BP_FP was changed and the
performance of the MPC was observed. The setpdimiAd_BP_FP was changed by
+1% of the current value at the time step 10 mmuide response and effectiveness of

the MPC was monitored and the results are shoviagure 27
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Figure 27. The effect of a +1% setpoint change Vh[TA1 BP_FP.
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As can be seen from the figure, the MPC followetstectorily the given setpoint
changes: the target value was reached within SQitesnand there was less than a 1%
effect on the other CV, DA2_BP_FP.

The properties of the feedstock to the by-produigp@er unit, DA2, change when the
DA1 bottom product flashpoint is increased by iasiag the feed rate of the stripper unit
DA2. This increase causes the DA2 feedstock to hecheavier, thus requiring more
reboiling in order to keep the flashpoint requiretsein the side stripper. This

phenomenon causes nonlinearity in the side strigpetrol, which is transformed to

delay and uncertainty in the control of the by-preidflashpoint.

Based on the control testing, the performance ef MPC was satisfactory in normal
conditions despite the nonlinearities present entrget process. The MPC was able to
counter the effects of the disturbances and twmvolthe given reference trajectories.
Therefore, it is concluded that the performancehef MPC is sufficient for the fault-

tolerant control of the target process.
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7.3 Validation of the of the integrated FTMPC perfo  rmance

The performance of the FTMPC for the target deatimatgon process was validated by
introducing measurement and actuator faults andodstrating the performance of the
proposed FTC strategy. Generally, this validatiothwdustrial process simulator is an
important part of the FTMPC implementation process, the performance of the
proposed system has to be verified before movingiaothe implementation of the

FTMPC on the actual dearomatization process.

In this section, first the results of the FTMPCtitgg with bias and drift faults in the CV
analysers and sensors are presented. Secondsthis & the FTMPC testing are given
with bias faults in the DV sensors. Third, the tesof the bias faults in the MV sensors
are described. Fourth, the results of testing #teator faults in MVs are given and

finally the results of the FTMPC validation arealissed.

7.3.1 Testing results of the active FTC strategy for the CV analyser and

sensor faults

Sensor faults mostly affect the measurements aatiysars considered as CVs in the
MPC. When a CV sensor is affected by a fault, tHeQuwteceives faulty information and
adjusts the manipulated variable in the wrong dimec An FTC based on the FDD

estimation is used to estimate the values of thea@yser and sensor measurements.

The output variables for the FTC strategy for thé @&nalyser and sensor faults are
presented in Table 7 and the input variables iner8band Table 9. The structure of the
PLS models used in the active data-based FTC gyrdte the CV analyser and sensor
faults is presented in Table 19 for tHéskt of PLS models, and in Table 20 for th& 2

set of PLS models. The first PLS is used for detgctaults, and the second one to
identify the magnitude of the faults on the badidelayed faultless data as introduced in
Section 3.5.1.



Table 19. The structure of th& BLS model for the active data-based FTC strategy f

the CV analyser and sensor faults.
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Model |PLSI, PLS1, PLS1, PLSI, PLSI,

Output |DAL _BP_IBP DAL _BP_FP DAL _DIST_FC DAL_TC DA2_BP_FP

Inputs |DAL_FEED_FC DAL FEED FC DAL FEED_FC DAL FEED _FC DAL FEED _FC
DAL FEED_TC DAL FEED_TC DAL FEED_TC DAL FEED_TC DAL FEED_TC
DAL HEAT TC DAL HEAT TC DAL HEAT TC DAL HEAT TC DAL HEAT TC
DAL_PC DA1_PC DAL1_PC DAL1_PC DA1_PC

DAL REFLUX_FC

DAL REFLUX_FC

DAL REFLUX_FC

DAL REFLUX_FC

DAL REFLUX_FC

DAL EA6_FEED FC

DAL EA6_FEED FC

DAL EA6_FEED FC

DAL EA6_FEED FC

DAL EA6_FEED FC

DA2_FEED_FC

DA2_FEED_FC

DA2_FEED_FC

DA2_FEED_FC

DA2_FEED_FC

DA2_EA7 FEED_FC

DA2_EA7 FEED_FC

DA2_EA7 FEED_FC

DA2_EA7 FEED_FC

DA2_EA7 FEED_FC

DAL_BP_IBP(t-dy)

DAL_BP_FP(t-dy)

DAL_DIST_FC(t-dy)

DAL_TC(t-dy)

DA2_BP_FP(t-dy)

DAI_BP_IBP(t-dy)

DAL_BP_FP(t-dp)

DAL_DIST_FC(t-dp)

DAL_TC(t-d,)

DA2_BP_FP(t-d,)

Table 20. The structure of th&"2PLS model for the active data-based FTC strategy f

the CV analyser and sensor faults.

Model |PLS2, PLS2, PLS2, PLSZ, PLS2,

Output |DAL BP_IBP DAL BP FP DAL DIST FC DAL TC DA2 BP_FP

inputs |DAL FEED FC DAL FEED FC DAL FEED FC DAL FEED FC DAL FEED FC
DAL FEED _TC DAL _FEED TC DAL _FEED _TC DAL _FEED TC DAL _FEED TC
DAL _HEAT_TC DAL HEAT_TC DAL _HEAT_TC DAL HEAT_TC DAL _HEAT_TC
DAL _PC DAL _PC DAL _PC DAL _PC DAL _PC

DA1_REFLUX_FC

DA1_REFLUX_FC

DA1_REFLUX FC

DA1_REFLUX FC

DA1_REFLUX FC

DAl EA6 FEED FC

DAl EA6 FEED FC

DAl EA6 FEED FC

DAl EA6 FEED FC

DAl EA6 FEED FC

DA2 FEED FC

DA2 FEED FC

DA2 FEED FC

DA2 FEED FC

DA2 FEED FC

DA2 EA7 FEED FC

DA2 EA7 FEED FC

DA2 EA7 FEED FC

DA2 EA7 FEED FC

DA2 EA7 FEED FC

DA1_BP_IBP(t-d)

DA1_BP_FP(t-ds)

DAL_DIST_FC(t-ds)

DAL_TC(t-ds)

DA2_BP_FP(t-d5)

DAL_BP_IBP(t-dg)

DAL_BP_FP(t-dy)

DAL _DIST_FC(t-dg)

DAL_TC(t-ds)

DA2_BP_FP(t-dg)

The NIPALS algorithm presented in 3.4.1 was usedte iterative training of the PLS
models. PLS for CV analyser and sensor faults e rained by using a data set
consisting of 600 minutes of process data. Thia dat has been generated under MPC
control, while manipulating the DVs and the CV refece trajectories in order to create
sufficient excitation to capture the closed-looghdngour of the target process for the

data-based FDD methods. These training data asemtel in Appendix E.

The number of the latent variables was determirsidguthe knee-in-the-plot method, in
which the selection of the latent variables is Hase the largest drop in the captured
variance of the latent variables. The cumulativeaveces for the input vectot and the
output vectorY and the number of latent variables for each PL8&he presented in
Table 21.
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Table 21. The cumulative variances for X and Y thechumber of the LVs for the PLS

for the CV analyser and sensor faults.

PLS Cumulative Cumulative Number of latent
model variance of X variance of Y variables
PLS1, 88 99 5
PLS1, 89 99 5
PLS1, 89 97 5
PLS1, 94 99 5
PLS1s 88 99 5
PLS2, 86 99 5
PLS2, 89 99 5
PLS2; 83 91 5
PLS2, 93 99 5
PLS2; 84 92 5

As can be seen from the cumulative variances, itee det of the models captured the
variance slightly better than the second set ofntbeels. This is because the past values
of the CV in the second set are further back inphst, and therefore there was a lower
correlation between the old CV value and the cuyrédrereby resulting slightly less
accurate estimations of the CV value. However,dbeelations for the estimations are
sufficiently high for fault estimation purposes.el'more accurate set of the models, the
1% set, was used for fault detection purposes, wisichmore time-critical function of the

active data-based FTC strategy for the CV analysdrsensor faults.

The active data-based FTC strategy for the CV aealgnd sensor faults was then tested
by introducing bias- or drift-shaped faults inte thnalyser outputs and measurements,
and analysing the active data-based FTC strategfprpeance based on the measured

outputs.
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7.3.1.1 Biasfault in theanalyser output

First, an upward bias-shaped fault with a magnitatie% of the nominal value of the
DAl BP_FP was introduced into the DA1 bottom prddileshpoint analyser output
during the time stef; = 15 minutes without the active data-based FT@texgy. The
fault lasted for 90 minutes until the time sigp= 105 minutes, after which the fault was
removed from the process. The FDD part of the adtiata-based FTC strategy for the

CV analyser and sensor faults was turned on bUET® actions were carried out. The

PLS-based prediction and the effect of the fauitloa seen in Figure 28.

Figure 28. The effects of a +5% bias fault in CVIDBP_FP during t = 15 -105

minutes, without the active data-based FTC strategyhe CV analyser and sensor

faults.
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As can be seen from Figure 28, the +5% upward faaused an opposite effect on CV
DAl _BP_FP; the measurement value was changed byartePshen returned back to the
original value as soon as the effect of the fandtesl. The value of DA2_BP_FP was also
changed by -3% and, after the effect of the fanllesl, the value of the DA2 bottom

product flashpoint was increased to +2% of theioaigvalue due to the correction to
DAl BP_FP. Since DA2_BP_FP was set to minimisattbe, value slowly decreased
back afterwards to the minimum limit over time. TRES was able to predict the actual
value of the measurement effectively; there wasutl® 1% maximum difference

between the prediction and the actual measurensuoé yveven though the faulty value

was relayed to FDD and affects the performancé®FDD.

Overall, the fault had the effect that both DA1 BP_and DA2_BP_FP were off the

specification limits for 90 minutes.

Next, the previous fault scenario with a +5% bihaped fault affecting DA1_BP_FP

was tested with the active data-based FTC strdteghe CV analyser and sensor faults.

An upward bias-shaped fault with a magnitude of 6ftthe nominal value of the
DAl _BP_FP was introduced into the output of the DWditom product flashpoint
analyser during the time stdp = 15 minutes with the FTC turned on. As before, th
fault lasted for 90 minutes until the time sigp= 105 minutes, after which the fault was
removed from the process. As can be seen from ltief&ult detection values in Figure
29, the FTC actions were engaged at the time Ktep34 minutes, 19 minutes after the
fault started to affect the process variable. Ateere was no interference in another CV,

DA2_BP_FP, and there were no false alarms duriagest run.
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| PLS RMSEP for CVs
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Figure 29. The PLS RMSEP values for a +5% biastfiauCV DA1_BP_FP during t =
15 - 105 minutes with the active data-based FT&atyy for the CV analyser and sensor
faults.

As can be seen from Figure 30, with the active -Bated FTC strategy for the CV
analyser and sensor faults, the +5% bias faultahadst no effect at all on the controlled
variables. The PLS was able to predict the actahlevof the measurement accurately,
and there was clearly less than 1% difference bavilee measured and predicted value.
With the active data-based FTC strategy for thed@¥lyser and sensor faults enabled,
DAl BP_FP was be off spec for 10 minutes. In gdndvath DAl _BP_FP and
DA2_BP_FP remained within the specification limitsspite the fault, thus improving

the reliability of the control system and providisavings in off-spec production.
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Figure 30. The effects of a +5% bias fault in CVIDBP_FP during t = 15 - 105
minutes, with the active data-based FTC strategytfe CV analyser and sensor faults.



143

7.3.1.2 Drift fault in the analyser output

In the second case, the effect of a drift-shapeidt f@as tested with and without the

active data-based FTC strategy for the CV analgsdrsensor faults.

First, an upward drift-shaped gradually-increadmgt with a final magnitude of 5% of
the nominal value of the DA1 BP_FP was introducet ithe DA1 bottom product
flashpoint analyser output. This fault startedle time stepl; = 15 minutes, and the
testing was carried out without the active dateeddsTC strategy being active. The fault
lasted for 90 minutes until the time st&p = 105 minutes, after which the fault was
removed from the process. Again, only the FDD pmdrthe active data-based FTC
strategy for the CV analyser and sensor faults twaged on; however, no FTC actions

were made. The PLS-based prediction and the effabe fault can be seen in Figure 31.

As can be seen from Figure 31, the upward faulseduhe value of DA1 BP_FP to
decrease by a maximum of -4% of the nominal vadne, then the value returned back to
the nominal level as soon as the effect of thet fantled. The value of the DA2_BP_FP
was also changed by -2% and, after the effect effalilt ended, the value of the DA2
bottom product flashpoint was increased to +2% hod original value due to the
correction to DA1_BP_FP. Again, the value of DA2_BIP then decreased slowly back
to the minimum limit over time due to the minimisat Also in this case with a drift
fault, the PLS was able to predict the actual vallithe measurement effectively; there
was less than a maximum difference of 1% between piediction and the actual
measurement value for both DA1_BP_FP and DA2_BPel#&)) though the faulty value
was relayed to FDD and affects the performancenefRDD component. Overall, the
drift fault had the effect that both DA1 BP_FP abl\2 BP FP were off the
specification limits for 90 minutes. Next, the pimws fault scenario with a +5% drift-
shaped fault affecting DA1_BP_FP was tested withdhtive data-based FTC strategy

for the CV analyser and sensor faults turned on.
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Figure 31. The effects of a +5% drift fault in C\VAD BP_FP during t = 15 - 105
minutes, without the active data-based FTC strategyhe CV analyser and sensor

faults.

An upward drift-shaped fault with a final magnitudé 5% of the nominal value of
DAl BP_FP was introduced into the DA1 bottom prddi&shpoint analyser output
during the time stepy; = 15 minutes, with the active data-based FTCegsafor the CV
analysers and sensors turned on. The fault lasteflOf minutes until the time stép =
105 minutes, after which the fault was removed fitbien process. As can be seen from
the PLS fault detection values in Figure 32, the&CFictions were engaged at the time
stepTy = 34 minutes, 19 minutes after the fault starte@ftect the process. There was

also no interference with DA2_BP_FP and there werélse alarms during the test run.
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1 PLS RMSEP for CVs

1.2 ! 0.4
I 0.35

1 [A .Nfﬂ N |
1\

0:6 - . VM“MVJ\Vm MW\VM\' nwﬁv VAVM AVMVA M‘ zgis

0.4 !

T J o
R WA arin]
0 — r r " 0

0 50 100 150 200

Time (minutes)

cv DAL BP_ FP  eeee- PLS_RMSEP_DAL BP_FP_limit
cw DA2BP.FP emee- PLS_RMSEP_DA2 BP_FP_limit

Figure 32. The PLS RMSEP values for a +5% drifttfauCV DA1_BP_FP during t =
15 - 105 minutes, with the active data-based FT&texyy for the CV analysers and

Sensors.

As can be seen from Figure 33, with the active -Bated FTC strategy for the CV
analyser and sensor faults, the +5% drift fault hadeffect of less than 0.5% on the
controlled variables. The PLS was able to prediet actual value of the measurement
accurately, and there was clearly a differencees$ than 1% between the measured and
predicted value. Both DA1_BP_FP and DA2_BP_FP raethiwithin the specification
limits despite the fault, thus improving the relldp of the control strategy and saving

costs by reducing the amount of off-spec production
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Figure 33. The effects of a +5% drift fault in C\AD BP_FP during t = 15 - 105

minutes, with the active data-based FTC strategytfe CV analyser and sensor faults.
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7.3.2 Testing results of the active FTC strategy for the DV sensor faults

Sensor faults can also affect the sub-level cdetraheasurements, such as flow or
temperature measurements. As stated above, thetypostl faults in sensors are bias
and drift-shaped faults, and this also appliesht ftow or temperature measurements.
When a DV sensor is affected by a sensor faultMRE receives faulty information and
adjusts the manipulated variable most probablyévirong direction. For instance, if an
upward bias fault affects a DV, the MPC detectsnarease in DV value and adjusts the
MVs to counter the effect accordingly. As an effettthe adjustment, the value of the
CVs changes due to the false correction and the B@sts the MVs again based on the
feedback. In essence, a sensor faults in DVs daaade a permanent deviation in the
CV values, but rather a disturbance in the MPC Yela, causing delay and a short-
lasting deviation between CVs and the CV setpoahie@s. In this case, an FTC based on
the FDD estimation was used to estimate the vadfiese DV sensors in the past. The
input measurements of the FTC strategy for the BNser faults are presented in Table
22; the structure of the'PLS model used for the fault detection in Table&8l the ¥

PLS model used for the fault estimation in Table 24

Table 22. The inputs of the active data-based Hi&legy for the DV sensor faults.

Variable name Variable description Unit
DAl TEMP_1 DALl top/overhead temperature °C
DA1 TEMP_3 DA1 temperature, tray 13 °C
DA1_TEMP_4 DAl temperature, tray 21 °C
DAl OVHD_FLOW_FC DA1 overhead gas flow rate t/h
DA2 _DIST_FC DA2 overhead gas flow rate t/h
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Table 23. The structure of th& BLS model for the active data-based FTC strategy f
the DV sensor faults.

Model |DV_PLS1, DV_PLS1, DV_PLS1, DV_PLS1,

Output |DA1_FEED_FC DA1_FEED_TC DA1_HEAT_TC DA1_PC

Inputs |DAL_TEMP_1 DAL TEMP_1 DAL TEMP_1 DAL TEMP_1
DAL TEMP_2 DAL TEMP 2 DAL TEMP 2 DAL TEMP 2
DAL TEMP_3 DAL TEMP 3 DAL TEMP 3 DAL TEMP 3

DAL OVHD_FLOW FC

DAL OVHD_FLOW FC

DAL OVHD_FLOW_FC

DAL OVHD_FLOW FC

DA1_FEED_FC(t-dmax-d1)

DA1_FEED_TC(t-Omax-d1)

DA1_HEAT_TC(t-Omax-dhi)

DA1_PC(t-dmax-d1)

DA1_FEED_FC(t-dmax-d2)

DA1_FEED_TC(t-Onax-02)

DAL_HEAT_TC(t-Omax->)

DA1_PC(t-dmax-d2)

Table 24. The structure of th&’2PLS model for the active data-based FTC strategy f

the DV sensor faults.

Model |DV_PLS2; DV_PLS2, DV_PLS2; DV_PLS2,

Output |DA1_FEED_FC DA1_FEED_TC DA1_HEAT_TC DA1_PC

Inputs |DAL_TEMP_1 DAL TEMP_1 DAL TEMP_1 DAL TEMP_1
DAL TEMP_2 DAL TEMP 2 DAL TEMP 2 DAL TEMP 2
DAL TEMP_3 DAL TEMP 3 DAL TEMP_3 DAL TEMP 3

DAl OVHD _FLOW_FC

DAl OVHD_FLOW_FC

DAl OVHD_FLOW_FC

DAl OVHD_FLOW_FC

DA1_FEED_FC(t-dmax-d3)

DA1_FEED_TC(t-Omax-d3)

DA1_HEAT_TC(t-dmax-ds)

DA1_PC(t-dmax-ds)

DAL _FEED_FC(t-Omax-a)

DA1_FEED_TC(t-Omax-da)

DA1_HEAT_TC(t-Omax-da)

DA1_PC(t-dmax-ds)

The NIPALS algorithm presented in 3.4.1 was usedHe iterative training of the PLS
models, and the amount of latent variables wasrm@ted using the knee-in-the-plot
method. PLS for the DV sensor faults was trainediting a data set consisting of 600
minutes of process data. This data set was gedenateder MPC control, while
manipulating the DVs and the CV reference trajeesoin order to create sufficient
excitation to capture the closed-loop behaviouthef target process for the data-based
FDD methods. This training data is presented inekualix E.

The cumulative variances for the input vecXoand the output vectof, and the number

of cumulative latent variables for each PLS modelmesented in Table 25:
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Table 25. The cumulative variances for X and Y thechumber of the LVs for the PLS

for the DV sensor faults.

PLS Cumulative Cumulative Number of latent
model variance of X variance of Y variables
DV_PLS1, 81 98 3
DV_PLS1, 83 99 2
DV_PLS1; 99 99 2
DV_PLS1, 99 99 2
DV_PLS2, 81 98 3
DV_PLS2, 83 99 2
DV_PLS2, 99 100 2
DV_PLS2, 99 99 2

Next, the active data-based FTC strategy for thesBivsor faults was tested with the bias
fault in a DV sensor. The drift fault was not testeecause it has small or no effect at all

on the process.

A downward bias-shaped fault with a magnitude of 5%the nominal value of
DAl1_FEED_FC was introduced into the DAl feed floveasurement during the time
stepT; = 15 minutes, with FTC turned off. The fault lagtis 90 minutes until the time
stepT, = 105 minutes, after which the fault was remowvexainf the target process. The
FDD part of the active data-based FTC strategytHferDV sensor faults was turned on,
but no FTC actions were made. The PLS-based prediahd the effect of the fault can

be seen in Figure 34.

As can be seen from Figure 34, the -5% downwarlt taused a downward effect on
both DA1_BP_FP and DA2_BP_FP. Immediately afterdfiects started to appear in the
CVs, the feedback control system started to congienfor the deviance from the
setpoint value, thus correcting the error in thesueement. The PLS was able to predict
the actual value of the DV measurement effectiv®lyerall, the fault had the effect that
both DA1_BP_FP and DA2_BP_FP were off the spediboalimits for 90 minutes. The
overall effect of the DV sensor fault was much logen a fault in the CVs.
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Figure 34. The effects of a -5% bias fault in DVIDREED_FC during t = 15 - 105

minutes, without the active data-based FTC strategyhe DV sensor faults.

Next, the previous fault scenario with a -5% biaaped fault affecting DA1_FEED_FC

was tested with the active data-based FTC strdteghe DV sensors.
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A downward bias-shaped fault with a magnitude of &2the nominal value of the
DAl1_FEED_FC was introduced into the DAl feed floveasurement during the time
stepT, = 15 minutes, with the active data-based FTC esgsafor the DV sensor faults
turned on. As before, the fault lasted for 90 masuintil the time step, = 105 minutes,
after which the fault was removed from the procésscan be seen from the PLS fault
detection values in Figure 35, the FTC actions wargaged at the time stdp = 34
minutes, 19 minutes after the fault starts to affee process. The delay in the detection
was caused by the backward prediction from the oreasent values. There were no
false alarms during this test run.

PLS RMSEP for DA1_FEED _FC
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PLS RMSEP DA1_FEED FC = = 'PLS_RMSEP DAL _FEED FC_limit

Figure 35. The PLS RMSEP values for a -5% biad fauDV DA1_FEED_FC during t
=15 - 105 minutes, with the active data-based Bli@tegy for the DV sensor faults.
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As can be seen from Figure 36, with the active -Bated FTC strategy for the DV
sensor faults, the -5% bias fault had a considgrabialler effect on the controlled
variables; this time DA_BP_FP was off-spec for o2b/minutes. In this case, there was
virtually no effect on DA2_BP_FP due to the actdeta-based FTC strategy. The PLS
was able to predict the actual value of the measeiné accurately despite the spiking
caused by the dynamic input to the FDD. In gend&ath DA1_BP_FP and DA2_BP_FP
remained more closely within the specification terdespite the fault, thus improving the

reliability of the control system and reducing sffec production.
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Figure 36. The effects of a -5% bias fault in DVIDREED_FC during t = 15 - 105
minutes, with the active data-based FTC strategyhie DV sensor faults.
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7.3.3 Testing results of the active FTC strategy for the MV sensor faults

The sensor faults for MVs cause a deviation inNhévalue and a disturbance in MPC
behaviour: a downward fault in an MV causes anatlag effect on the actual value,
which is increased by the magnitude of the fautisTagain causes deviation in the CV
values from the CV setpoint values; however, deescase with DV faults, this deviation
is rapidly removed through feedback. The drift faulvere not tested in this study
because the effect of a drift-shaped fault waslyedsndled by the feedback and
therefore an abrupt bias fault caused the mostrthahces in the CV values. PLS-based
FDD and controller reconfiguration methods weredusethe case of the active data-
based FTC strategy for MV sensors in such a waydbaoon as the fault was detected
by the FDD, opposite steps change was made toatliey fmeasurement and the faulty

measurement was disabled until the fault was rechove

The inputs for the active data-based FTC strategyhie MV sensor faults are presented
in Table 26, and the structure of the PLS mod@lahle 27.

Table 26. The inputs for the active data-based Birategy for the MV sensor faults.

Variable name Variable description Unit
DAl TEMP_1 DALl top/overhead temperature °C
DA1_TEMP_2 DAl temperature, tray 5 °C
DA1_TEMP_3 DAl temperature, tray 13 °C
DA1_TEMP_4 DAl temperature, tray 21 °C
DA1 TEMP_5 DA1 temperature, tray 41 °C
DAl TEMP_6 DAL bottom product temperature °C
DAl OVHD_FLOW_FC DA1 overhead gas flow rate t/h
DAl BP_FC DAL bottom product flow rate t/h
DA2 _DIST_FC DA2 overhead gas flow rate t/h
DA2_PC1 DAZ2 upper pressure measurement bar
DAl FEED_EA FC DAL feed heat exchanger hot fluaifl t/h
DA2 BP_TC DA2 bottom product temperature °C
DA2_BP_FC DA2 bottom product flow rate t/h
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Table 27. The structure of the PLS model for thevadata-based FTC strategy for the
MV sensor faults.

Model [MV_PLSI, MV_PLS1, MV_PLS1, MV_PLS1,
Output |DAL_REFLUX_FC DA1_EA6_FEED_FC DA2_FEED_FC DA2_EA7_FEED_FC
Inputs |DAL TEMP 1 DAL TEMP 1 DAL TEMP 3 DAL TEMP_2
DAL TEMP_2 DAL TEMP 2 DAL TEMP 4 DA2 DIST FC
DAL_TEMP_3 DA1_TEMP_3 DA1_TEMP_5 DA2_BP_TC
DAL TEMP 4 DAL TEMP 4 DAL TEMP 6 DA2 BP_FC
DAL_OVHD_FLOW_FC DAL TEMP 5 DAL BP_FC
DA2_DIST_FC DAL_TEMP 6 DA2 BP_TC
DAL OVHD _FLOW _FC DA2 BP_FC
DAL BP_FC
DAL FEED EA FC
DA2 BP_TC
DA2 _BP_FC

As before, the NIPALS algorithm presented in 3wk used for the iterative training of
the PLS models, and the number of latent variabies determined using the knee-in-
the-plot method. PLS for the MV sensor faults wasmed by using a data set consisting
of 600 minutes of process data. This data set wasrgted under MPC control, while
manipulating the DVs and the CV reference trajeesoin order to create sufficient
excitation to capture the closed-loop behaviouthef target process for the data-based
FDD methods. These training data are presented ppeAdix E. The cumulative
variances for the input vectof and the input vectoy and the number of cumulative
latent variables for each PLS model is presentédhlyie 28.

Table 28. The cumulative variances for X and Y thechumber of the LVs for the PLS
for the MV sensor faults.

PLS Cumulative Cumulative Number of latent
model variance of X variance of Y variables
MV_PLS1, 98 69 5
MV_PLS1, 93 87 5
MV_PLS1; 99 99 3
MV_PLS1, 90 85 3
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The active data-based FTC strategy for the MV sefadts was next tested with a bias
fault in the MV sensor. A downward bias-shapedtfauth a magnitude of 10% of the
nominal value of DAl REFLUX FC was introduced intbe DALl reflux flow
measurement during the time stép= 15 minutes, without the active data-based FTC
strategy. The fault lasted for 90 minutes until tinge stepTl, = 105 minutes, after which
the fault was removed from the process. The FDD phathe active data-based FTC
strategy for the MV sensor faults was turned on, mu FTC actions were made. The
PLS-based prediction and the effect of the fauitloa seen in Figure 37.

As can be seen from Figure 37, the -10% downwautt taused a downward effect on
both DA1_BP_FP and DA2_BP_FP. Immediately afterdfiects started to appear in the
CVs, the feedback control system started to congienfor the deviance from the
setpoint value, thus correcting the error in theasaeement. PLS was able to predict the
actual value of the DV measurement effectively. @lethe fault had the effect that both
DAl BP_FP and DA2_BP_FP were off the specificatiomts for 40 minutes. The
overall effect of the MV sensor fault was much lowean a fault in the CVs.
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Figure 37. The effects of a -10% bias fault in MXIDREFLUX_FC during t = 15 - 105

minutes, without the active data-based FTC strategyhe MV sensor faults.

Next, the previous fault scenario with a -10% Ishaped fault affecting
DAl1_REFLUX_FC was tested with the active data-baB@@ strategy for the MV

Sensors.
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A downward bias-shaped fault with a magnitude o0f010f the nominal value of
DA1_REFLUX_FC was introduced into the DAL reflusoll measurement during the
time stepT; = 15 minutes, with the active data-based FTC esgsafor the MV sensor
faults. As before, the fault lasted for 90 minutedil the time stepl, = 105 minutes,
after which the fault was removed from the targetcpss. As can be seen from the PLS
fault detection values in Figure 38, the FTC adiarere engaged at the time slgp= 27
minutes, 12 minutes after the fault was introdud&dhis time, an opposite step change
with an estimated fault magnitude was made to dloétyf MV, after which the MV was
disabled until the fault has been removed. Theydeks caused by the estimation based

on the current measurement values. There werels@déarms during this test run.

PLS RMSEP for DA1_REFLUX_FC

18
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o AV
0 I A VARLAN
. R
S G e T
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PLS_RMSEP_DAl_REFLUX_FC = = 'PLS_RMSEP_DAL_REFLUX_FC_limit

Figure 38. The PLS RMSEP values for a -10% biak fiaMV DA1_REFLUX FC
during t = 15 - 105 minutes, with the active datesbd FTC strategy for the MV sensor
faults.

As can be seen from Figure 39, with the active -ated FTC strategy for the MV
sensors, the -10% bias fault had a considerablyiansdfect on the controlled variables,
thus keeping the product within the specificationitis. The effect was also smaller for
DA2_BP_FP. The FDD was able to predict the act@liesr of the measurement with
reasonable accuracy. In general, both DA1_BP_FP A# BP_FP remained more
closely within the specification limits despite tfault, thus improving the reliability of

the control system and reducing off-spec production
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Figure 39. The effects of a -10% bias fault in MXIDREFLUX_FC during t = 15 - 105
minutes, the active data-based FTC strategy foMNesensor faults.
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7.3.4 Testing results of the active FTC strategy for the MV actuator faults

As stated by Bao et al. (2003), one of the mostrmomfaults in sub-level controllers,
such as flow controllers, is a stuck valve faultthis kind of fault, a valve is stuck in a
certain position and the performance of the actuatm be severely decreased. The
performance decrease can be so bad that it mayenased for control and thus lowering
the performance of the overall control strategye T™ause of the fault can be sudden
fouling (a large particle stuck in the valve), slpwrogressive fouling (accumulation of
material in the valve) or a broken valve. Undeladiestate conditions, the stuck valve
fault is not detectable; however, if a disturbancea setpoint change occurs, the fault
prevents the valve being operated, effectively longethe overall performance of the

control system.

The FDD component in this case is very straightbodythe fault is detected if there is a
difference between the control signal and the actuaeasurement. A stuck valve fault
was introduced into the DA2 feed flow measuremeamting the time stepl; = 10
minutes. At the same time, a setpoint change 6b wlas issued to the DA1 bottom
product flashpoint, DA1_BP_FP. The FDD part of Hutive FTC strategy for the MV
actuator faults was turned on but the FTC part twased off. The effect of the fault can

be seen in Figure 40.

As can be seen from Figure 40, the fault causedlaydn the MPC response, since the
MPC could not use the primary controller to chatigeCV value; eventually, due to the
feedback, other MVs had to be used to compensatédostuck MV. Without a fault the
MPC reached the given setpoint within 75 minutes;an be seen in Figure.2fowever,
with a stuck valve fault in DA2_FEED_FC, the setpgavas reached within 200 minutes,

causing a delay of 125 minutes due to a stuck Valwk in the critical actuator.
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Figure 40. The effects of a stuck valve fault in MA2_FEED_FC while a +1% step
change is made to the CV DA1_BP_FP setpoint artdtivé active FTC strategy for the

MV actuator faults.

Next, the previous fault scenario was repeated thiéhactive FTC strategy for the MV
actuator faults. As can be seen from Figure 4lesspiting the root-mean square error
(RMSE) value of DA2_FEED_FC, the fault was detectathin three minutes of the
occurrence of the fault. Once the fault had bee¢eatied, the MPC is reformulated and an
auxiliary MV, DA1_FEED_TC, was activated instead tbe faulty MV, which was

switched off.
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RMSQ value for DA2_FEED_FC
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Figure 41. The RMSQ values of the stuck valve faltV DA2_FEED_FC representing

the fault detection of the stuck valve fault.

This time, because the faulty MV was excluded friiia MPC MV inputs, the MPC
response time was much better; the target setpaloe was reached within 100 minutes
after the setpoint change, which was 25 minutesesidthan with the case without a stuck
valve fault. Therefore, the active FTC strategytfee MV actuator faults had improved
the response time by 100 minutes. The results sifntg the MV actuator faults are

presented in Figure 42.
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Figure 42. The effects of a stuck valve fault in MA2_FEED_FC while a +1% step

change is made to the CV DA1_BP_FP setpoint anutivé active FTC strategy for the

MV actuator faults.
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7.3.5 Summary and discussion of validating the performance of the

integrated FTMPC for the target dearomatization process

In order to validate the performance of the integgtaFTMPC, a testing was carried out
with different fault types affecting the target pess. In all the fault cases, the integrated
FTMPC significantly improved the resistance andhoese time of the control system
against the effects of the faults. With the intégdaFTMPC, the off-spec production was
considerably reduced; the performance of the cbaysiem when affected by a fault was

improved; and the overall reliability was consid#yabetter than with the nominal MPC.

The results of different FTC tests are presentel miaction times to different fault types
in Table 29 for periods when the bottom producsHizoint is off the specification limit
with and without the integrated fault-tolerant MPThe ISE values are calculated for
DAl BP_FP and DA2_BP_FP in order to compare thaltesFor a case without any
fault, the average ISE for both DA1_BP_FP and DAR_BP is 30. The ISE values for
different fault cases, with and without the intégdafault-tolerant MPC, are presented in
Table 30.

Table 29. Results of the testing of the integréaedt-tolerant MPC with different fault

types (*compared to a case without a fault).

Tested fault type Fault type Detection time Prxglrj]gtu?f;_ls%ec, Pro\cAillthcr': gf_lt cs:p €C,
CV Sensor fault +5% Bias 19 minutes Fault duration 10 minutes
CV Sensor fault +5% Drift 19 minutes Fault duration 0 minutes
DV Sensor fault -5% Bias 20 minutes Fault duration 25 minutes
MV Sensor fault -10% Bias 16 minutes 40 minutes 10 minutes
MV actuator fault Stuck valve 3 minutes 125 minutes* 25 minutes*




164

Table 30. ISE values of the target process withwatldout the integrated fault-tolerant

MPC and the percentages of improvement with thamadrtSE level of 30.

DAL BP/DA2 BP

DAL BP/DA2 BP

Uizl gae ISE, without ETC | ISE, with ETC | 'MProvement
CV Sensor fault (+5% bias) 1223/114 27130 98/ 74%
CV Sensor fault (+5% drift) 396 /57 23127 94 /51%
DV Sensor fault (-5% bias) 48/ 38 32/38 431 0%
MV Sensor fault (-10% bias) 46/ 147 30/66 35/66%
MV actuator fault (stuck valve) 75130 64/ 30 15/ 0%

As can be seen from Tables 29 and 30, the off-ppmtuction was reduced as a result of
fast detection and compensation of the faults, @med performance of the MPC was
considerably improved with the integrated fauletant MPC when compared to the

nominal ISE level of approximately 30. Based orstheesults, it can be concluded that

although the CV faults had longer lasting and msesere effects, the lower level

controller faults also had an effect on the ovepaiformance of the control system.

Therefore, usage of the integrated FTMPC that takes into account faults in DVs and

MVs has a definitive effect on the performancehaf tontrol system.
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7.4 Economic evaluation of the integrated FTMPC

In this chapter, the economic benefits for thegraged fault-tolerant MPC are calculated
based on the FTMPC testing results presented inptBgious section, actual fault
occurrence probabilities in the dearomatizationcpss presented in Section 6.2,
approximated product prices as well as expert kadge of the target process. In the

calculations, the following assumptions are made:

- The price of a bottom product loss in the colub#l is the price difference between
the solvent product and the bulk product using dame feedstock type (for instance,
diesel or gasoline). The price for the bottom pridass in this case can be estimated to

be approximately USD 100 /t.

- The feed level to the unit is 28 t/h; the averbg&om product flow rate 17 t/h; the

average side product flow rate 9 t/h; and the ayeeverhead distillate flow rate 2 t/h.

- If the product FP goes below the specificatiamitlj it needs to be corrected by
preparing over-quality bottom product for an eqlewatime. The quality of the bottom
product can be increased by 1°C by increasing Wieehead distillate flow by an average
of 2 t/h; or alternatively by decreasing the ueied by 2 t/h on average. In essence, an
increase in the overhead distillate flow rate alearease in the feed flow rate causes the
unit to lose capacity of 2 t/h on average for 19CFB. At the same time, the bottom
product flow rate also decreases by 2 t/h. We assli@ of FP correction is used for all

cases.

- The side product flow rate is assumed to beraagimum, which forces an increase in

the overhead flow rate or a decrease in the faedmarder to correct the off spec batch.

- The over-quality of the final product has theeeffthat in order to produce over-quality
product, the overhead distillate flow rate hasedrizreased and the bottom product flow
rate reduced, essentially losing capacity of thie lmn?2 t/h for 1°C of FP over-quality in

the final product.
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As an example, if the bottom product has beé@ «ff specifications for 10 hours, a total
17 t/h * 10 h = 170 tons of off-spec product haeer produced. In order to correct this
back to specifications, the unit has to operaté wit°C quality for 170 t / (17 t/h -2 t/h)
= 11 h. During this time, the unit loses capacityl?*11 h = 22 t and this capacity has a
value of 22 t * USD 100 /t = USD 2,200. Alternatiwethe correction can be made with a
smaller FP value. In this case, although the ctmedime is much longer, the losses are
smaller due to the higher overall feed rate. Ircfica, there is not much time available to
finish the product, and therefore the correctioaschto be made with higher losses in
order to prepare the product in time before dejiterthe customers.

7.4.1 Economic evaluation of the sensor faults in the CVs and in the DVs

As stated in Section 6.2, during 2008 - 2009 3% spiéc and 3% over-quality was
produced due to faults in the analyser readingsyhith case the analyser measurement
were either higher or lower than the laboratory sneaments by 2.8°C.

If it is assumed that the 3% of off-spec productianses at least eight hours of off-spec
production, and each 1°C in FP causes 2 t/h loskes, a total of 750 t of total unit
capacity is lost during one year due to the offcspeduction. In total, this means 750
t/'year * USD 100 /t = USD 75,000 /year in off spesses for this one specific grade only

in the case of analyser failures.

If it is assumed that the 3% of over-quality praiitut caused at least eight hours of over-
guality production, and each 1°C in FP caused 2dad#ses, then a total of 630 t of
capacity was lost during one year due to the owvaiity of the final product. In total, this
means losses of 600 t/year * USD 100 /t = USD 6D /@®@ar in over-quality for this one
specific grade only in the case of analyser failure
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The DV fault losses cannot accurately be calculatette there is no alternate
measurement with which to compare the flow or terapee measurements. However,
the combined probability of the DV and MV faultscaaring can be estimated to be
approximately the same as for the analyser fa#)( as the number of faulty
components in the maintenance logs was the sarie analyser faults, as discussed in
Chapter 6. In this case, the DV faults would theouo in at least 3% of the total number
of analyses made out of the main product in a ywehich would be approximately eight

faults per year.

In the case of DV faults, the fault lasted only &yout 90 minutes with -5% and -10%
faults, as can be seen from Table 29. The duratmohmagnitude of the effect of the fault
depends on the magnitude of the fault. After 90utas, the MPC compensated for the
fault and control of the CVs was restored. If theduct was off spec for 1°C for
approximately 90 minutes, this would cause an aeetass of 3.4 t of production/fault.
In total, this would cause approximately a 30 slo$ capacity each year, which would
cost 30 t/year * USD 100 /t = USD 3,000 /year foe heavy grade alone.

In total, USD 141,000 is lost on average due tofumationing sensor or analyser

measurements in CVs or DVs each year for this §pagiade alone.
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7.4.2 Economic evaluation of the sensor faults in the MVs

The probability of the MV sensor faults is assurteetle the same as with the DVs (3%),

and the total number of MV sensor faults would agpnately be eight faults per year.

As with the DV sensor faults, the MV fault lastest fabout 90 minutes with -5% and
-10% faults. The duration and magnitude of the atffef the fault depends on the
magnitude of the fault. After 90 minutes, the MR&npensated for the fault and control
of the CVs is restored. If the product was off sfuecl°C for approximately 90 minutes
due to the MV sensor fault, this would cause amaeeloss of 3.4 t of production/fault.
In total, this would cause approximately a 30 slo$ capacity each year, which would
cost 30 t/year * USD 100 /t = USD 3,000 /year tog heavy grade alone.

7.4.3 Economic evaluation of the actuator faults in the MVs

Although the stuck valve losses cannot be precisalgulated, an estimation of stuck
valve fault effects can be calculated using thébabdity of a valve fault. Stuck valve
faults on actuators permanently decrease the pesfoce of the control system, and thus
can cause long-lasting performance problems urtlesdaulty actuator is repaired or
replaced. However, as stated in Chapter 6 and las#te refinery maintenance logs, the
occurrence of a stuck valve fault was only 16%hef total number of control system
component faults, whereas the analyser and measutetavice faults each account for
42%. Therefore, the probability of a stuck valvelfavas approximately 30% lower than
that for analyser or sensor faults. This means #tatk valve faults occurs on

approximately 2% of the sampling times during aqeeof one year for the heavy grade.
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In the case of actuator faults, the effect of altfalepends on whether there is a
disturbance or a setpoint change, during whicrsthek valve fault effects appear. In the
example case in Table 29 with a stuck valve faatuoring during a setpoint change, the
bottom product was off specifications for 125 mesjtwhich was 100 minutes less than
with the FTC set on. If the product was off spegifions by 1°C for approximately 100

minutes due to a DV or MV sensor fault, this woa#lise an average loss of production
of 3.8 t/fault, which is equal to approximately 26f the capacity loss to the unit in one
year, which would cost 20 t/h * USD 100 /t = USD@) for the heavy grade alone.

7.4.4 Summary of the economic evaluation

Overall, it is estimated that the integrated faalerant MPC has the potential to produce,
at a maximum, savings of some USD 148,000 durirgyyear in the case of the heavy
grade alone. Over 90% of the savings would be gebidy more optimal operation by
reducing the effect of analyser faults through uke of fault accommodation. Less than
10% of the savings would be achieved with the adtiata-based FTC strategy on the DV
and MV sensor fault accommodation and controlleonéguration methods for stuck

valve faults.

In general, based on industrial experience of ptajests and cost estimates, it could be
estimated that an industrial-scale version of thegrated fault-tolerant MPC without an
MPC implementation would cost approximately USDOBO, - 100,000. Therefore, the
integrated fault-tolerant MPC like this would haaeepayment period of 4 - 8 months,
thereby making an investment of this magnitude lyiginofitable in normal economic
conditions. In addition, if an integrated faulteacdnt MPC would be implemented in a
process without an MPC already in place, the @afibuld be even higher due to better
optimisation of the target process and lower ovexadts, since the implementation could
be carried out in connection with the installat@nan MPC allowing the full design of

the integrated fault-tolerant MPC.
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8 Conclusions

In this thesis, an integrated FTMPC reducing tliect$ of the faults in the analyser, flow,
temperature and pressure measurements, and irctiret@s has been developed for an
industrial dearomatization process. First, theltesi a literature study of state-of-the-art
in FTC for the target process were presented amdnibst suitable FTC components and
design schemes were determined. Second, baseds® shhemes and the FTMPC user
requirements, the integrated FTMPC containing thpagallel-running FTC strategies
was developed. These three strategies contain &dbmmodation- and controller
reconfiguration-based FTC strategies and an FDDpoorent based on the recursive PLS.
Third, three data-based FDD methods and the faglhramodation-based FTC strategy
were tested and the FDD methods compared on aniseopreliminary testing process.
Based on the preliminary testing results, the nsogable FDD method, recursive PLS,
was selected as the FDD method for the final apptio. Fourth, the performance of the
nominal MPC was determined and the developed iatedrfault-tolerant MPC with
three FTC strategies was validated with the sinedlalearomatization process with faults
in the CV, DV and MV sensors and MV actuators. Fndbased on the validation results,
the profitability of the integrated FTMPC was ewakd by using the estimated price of
the end product and faults in the actual dearomuddiz process located in the Naantali

refinery.

The hypotheses presented in Chapter 1 are: (1)integration of the data-based FDD
methods and the fault accommodation and the céatrodconfiguration FTC methods
provide the control system of a dearomatizationcess with the tools needed to
overcome the typical process and measurement ligstoes and faults in the
dearomatization process environment; and (2) Thalability and profitability of the
dearomatization process are enhanced by the coatpmnsf the critical faults using the
fault accommodation and the controller reconfigoraFTC methods. These hypotheses
have been verified by the results acquired inrigdiine proposed integrated fault-tolerant
MPC with the simulated dearomatization processdatiBn 7.3, and with the economic

evaluation in Section 7.4.
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Based on the results of the thesis, the integriatelt-tolerant MPC was able to reduce
the effect of the typical faults in the target mss. Therefore, it could be estimated that
the reliability of the dearomatization process mhanced if the integrated fault-tolerant
MPC would be implemented in the actual dearomatinaprocess. Based on the
economic evaluation of just one feed grade, thegmtted FTMPC was found to be
highly profitable; the annual estimated savings Mdee a maximum of USD 143,000,
thereby the integrated FTMPC would pay for itselfess than one year. It can therefore
be estimated that the integrated FTMPC would pmwdnsiderable savings in off-spec
production, energy consumption and, in generalravgment of the unit operation due

to faster detection and prevention of the fauktfs.

The next task in the industrial FTMPC developmentld be to verify the accuracy of
the FTMPC models by using the actual plant daté Vérification would be carried out
by comparing the FDD estimated values with the tplapasurement values. After the
accuracy of the PLS prediction has been verifiediould be beneficial to implement the
integrated FTMPC directly in the software enviromtef the existing MPC in the actual
plant. This maximises the data transfer rate, msesierrors and makes the integrated
FTMPC as easy as possible to maintain and cortroligh the existing graphical user
interfaces (GUI). After the implementation, the @ecy of the FDD models should be
verified during a long testing period by monitoritige difference between the FDD
estimations and the measurements in different ¢ipargoints without activating the
FTC components. Next, when the accuracy of the Rldels has been found sufficient,
the testing of the FTC strategies would be carmed. Finally, after the FTMPC
performance has been fully verified under differeperating conditions, it would be
possible to take the FTMPC in normal plant operatiase.
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Appendices

Appendix A Description of the integrated fault-tole rant model predictive

controller procedures

A.1 Procedure of the FTC strategy for the faults in the sensors of the CVs

and DVs by using fault accommodation

1. Detect and isolate faults by using the

y PLS-based FDD and determine the value of
f
J/ the fault detection indek
1 2. Determine ifF > Fj,, if this is t
Et(P . Determine ifF > Fy,, if this is true, go

to Step 3; if this is untrue, go to Step 4

3. Increase the fault detection delay

counterc by one and go to Step 7

4. Decrease the fault detection delay

counterc by one and go to back to Step 1

c<0? e> L 5. If value of the counter c is less or equal

o to 0, go to Step 6; otherwise go back to
No Step 1

6. Set the counter value to 0 and go back
6 8 to Step 1

c= AY = Vi~ Yes 7. If value of the countec is equal or

greater than the low limitL, go to Step 6;

9
YEVtAY

otherwise go back to Step 1

8. Estimate the correction valuay by

using the PLS-based FDD, scale the correction gahmording to the delay counter value (the

magnitude of the correction is increased accortbripe value of), Ay = Y-Vest

9. Accommodate the faulty measuremgnty=y+Ay, whereAy = y-yes; then go back to Step 1



A.2 Procedure of the FTC strategy for the faults in the sensors of the MVs by

using fault accommodation and controller reconfiguration

1. Detect and isolate faults by using the PLS-base® FIDd determine the value of the fault

detection inde¥

c<lL

No

Yes

c=0

Est(F)

Yi Veg

"M

Y=yerAy

2. Determine ifF > Fypn,, if this is true,
go to Step 3; if this is untrue, go to Step
4

3. Increase the fault detection delay

counterc by one and go to Step 7

4. Decrease the fault detection delay

counterc by one and go to Step 5

5. If value of the countec is below the

low limit LL go to Step 6

6. Enable (previously) faulty MV and
assign the (previously) activated DV

back as a DV, then go back to Step 1

7. If value of the counter c is less or
equal to 0, go to Step 8; otherwise go
back to Step 1

8. Set the countec value to 0 and go
back to Step 1

9. If value of the countec is equal or
greater than the low limitL, go to Step

10; otherwise go back to Step 1

10.Estimate the non-faulty measurement values anddfrection value\y = Vet

11.Move MV to the opposite direction of the fault thetmagnitude ohy, disable the faulty MV (set

it as a disturbance variable), and activate ortbe@DVs as an MV, then go back to Step 1



A.3 Procedure of the FTC strategy for the faults in the actuators of the MVs

by using controller reconfiguration

Vi

A

1
Est
F = F!im
No
Yes
3

6

cIc+1
c<0 c> L
No
No S
Yes Yes
8

c=0

Rearrange M\s

1. Detect and isolate faults by using the
residual between the flow measurement
value and the MPC setpoint and
determine the value of the fault detection

indexF

2. Determine ifF > Fyy,, if this is true,

go to Step 3; if this is untrue, go to Step 4

3. Increase the fault detection delay

counterc by one and go to Step 7

4. Decrease the fault detection delay

counterc by one and go to Step 5

5. If value of the counter c is less or
equal to 0, go to Step 6; otherwise go
back to Step 1

6. Set the countec value to 0 and go
back to Step 1

7. If value of the countec is equal or
greater than the low limitL, go to Step

8; otherwise go back to Step 1

8. Disable the MV (set it as a disturbance varialday activate one of the DVs to become as an MV,

then go back to Step 1

Note: Once the MV has been reassigned due to tluatac fault, it needs to be manually set back

active if the fault is corrected. This is due te thetection mechanism, which is based on the rakidu
between the setpoint set by the MPC (which is natilable if the MV is disabled) and the

measurement.



Appendix B Graphical representation of the fault ac =~ commodation-based

FTC strategy testing on the benchmark process
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Figure A - 1. The performance of the active faslt@nmodation-based FTC strategy
with the PLS-based FDD in the case of a bias faw4 of the industrial benchmark

process.
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Figure A - 2. The performance of the active faclt@nmodation-based FTC strategy
with the PLS-based FDD in the case of a drift fauly; of the industrial benchmark

process.
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Figure A - 3. The performance of the active faclt@nmodation-based FTC strategy
with the PCA-based FDD in the case of a bias fewk of the industrial benchmark

process.
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Figure A - 4. The performance of the active faclt@nmodation-based FTC strategy
with the PCA-based FDD in the case of a drift famly;, of the industrial benchmark

process.
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Figure A - 5. The performance of the active faclt@nmodation-based FTC strategy
with the SMI-based FDD in the case of a bias faui of the industrial benchmark

process.
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Figure A - 6. The performance of the active faclt@nmodation-based FTC strategy
with the SMI-based FDD in the case of a drift fanly; of the industrial benchmark

process.
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Appendix D Step responses of 5% step changes in th e inputs (normalised in relation to the standard de  viation)
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Appendix E Training data for the PLS-based FDD
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Figure A - 7. The training data for the PLS-basdalF
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