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1 Introduction 

1.1 Background 

Tightened global competition, higher product quality requirements and environmental 

and safety regulations have forced the oil refining industry to continuously enhance and 

optimise the efficiency and profitability of its process plants. Profitability can generally 

be enhanced through process optimisation, by cutting down costs and by reducing the 

duration of planned and unplanned shutdowns. Optimisation can further be enhanced by 

focusing on preventing the off-spec production caused by faults and process disturbances. 

The effect of faults and process disturbances on the process can be reduced by using 

fault-tolerant control (FTC) methods, which are categorised into passive and active 

approaches. Passive FTC aims at improving the robustness of the controller against faults 

and disturbances by modelling the effects of the faults and disturbances and taking these 

into account in the objective function of the model predictive controller (MPC). Active 

FTC, on the other hand, attempts to reduce the fault effects by using active FTC elements, 

which are, for instance, the fault detection and diagnosis (FDD) components for the 

detection, isolation and identification of faults, and the FTC methods carrying out active 

fault accommodation or controller reconfiguration actions to reduce the effects of faults. 

Traditionally, most FDD methods used in the active FTC strategies have been based on 

mechanistic models. In the modern process industries, however, there is an increase in the 

demand for data-based methods that rely on models acquired experimentally with 

statistical mathematical algorithms. The increased interest in the data-based methods is 

due to the complexity of chemical processes and the limited availability of mechanistic 

models. The need for the automated FDD and FTC is further emphasised by 

Venkatasubramanian et al. (2003a), who found that roughly 70% of industrial accidents 

are caused by human error. It is also stated that more than USD 20 billion are lost 

annually in the North American oil refining industry alone due to the improper handling 

of abnormal situations. As a result, financial issues are the major driving force behind the 

continuous development of the data-based FDD and the active FTC strategies. 
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In addition to the FDD component, the controllers and the control algorithms are an 

important part of the FTC strategy. During the last few decades, the development of 

process control methods has been focused on MPC, which has become one of the most 

commonly used advanced control methods in the oil refining industry. The popularity of 

MPC has also been verified in the comprehensive MPC review by Qin and Badgwell 

(2003); in the milestone report concerning industrial applications by McAvoy et al. 

(2004); and in the general review of the current status and future needs of advanced 

control strategies by Bars et al. (2006). The advanced control methods, such as MPC, 

have made it possible to run the processes close to the quality and safety limits thereby 

increasing profitability, ensuring the better quality of the end products, and enhancing 

safety in the plants.  

Reviews on the traditional MPC have been presented in numerous papers; for instance, 

Morari and Lee (1999) have looked at the past, present and future of MPC; Rawlings 

(2000) have presented a general overview of MPC, while Qin and Badgwell (2003) have 

examined MPC by describing the development of the industrial MPCs from simple 

optimisation algorithms to modern software packages. The current status of the nonlinear 

MPC has been reviewed by Cannon (2004); the survey of traditional robust MPC 

algorithms covering the period 1999-2006 has been published by Jalali and Nadimi 

(2006); and the latest advances in the field of nonlinear min–max-based robust MPC has 

been presented by Raimondo et al. (2009). What is evident from all of these reviews is 

that the number and popularity of improved MPC applications, such as nonlinear or 

robust MPCs, has increased over the years. However, some challenges related especially 

to nonlinear formulations of MPC and the reliability and stability issues caused by 

process faults and disturbances have still remained largely unresolved, even though a 

number of nonlinear and fault-tolerant MPC approaches have been presented in the past. 
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 MPC’s success and the remaining reliability issues have activated interest in the study of 

active, data-based, fault-tolerant control methods. The active fault-tolerant control 

methods have usually been categorised into fault accommodation-based and controller 

reconfiguration-based methods depending on how the effects of the faults on the target 

process are handled. The fault accommodation-based approaches usually modify the 

control strategy without changing the control structure itself, while the controller 

reconfiguration-based approaches attempt to enhance the plant operation by modifying 

both the control parameters and structure of the control strategy. The fault 

accommodation uses the adaptation of the controller to counter the effects of the faults by, 

for instance, accommodating the faulty measurements with the estimations of the 

measurements. The reconfiguration approach, on the other hand, attempts to use only the 

healthy part of the system for control by turning off the faulty parts, such as 

measurements or actuators. A number of review papers have been published in the active 

fault-tolerant MPC (FTMPC) area showing the research interest in the field. These papers 

include a general overview of fault-tolerant control by Blanke et al. (1997); a paper 

concentrating on the problem of supervision and FTC by Staroswiecki and Gehin (2001); 

and recently, a comprehensive review of active reconfigurable FTC by Zhang and Jiang 

(2008). 

The development of FTC has been focused on only using the individual FTMPC 

components. The applications of the active fault-tolerant MPCs have been designed either 

for fault accommodation or controller reconfiguration, but not for both approaches. In the 

fault accommodation-based FTC strategies, the focus is in the prevention of sensor faults 

while in the controller reconfiguration-based strategies, the availability of a perfect FDD 

is assumed when the structure of the controller is reconfigured in case of actuator faults. 

In these cases, the FTC is thus able to detect and prevent only one type of fault instead of 

taking into account the full range of different faults appearing in industrial-scale 

processes. The combination of the fault accommodation and controller reconfiguration 

strategies in one application would possibly offer an opportunity to even further improve 

industrial FTMPCs, and thus also to significantly increase the profitability of the plants. 
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1.2 Research problem and hypothesis 

The major research problem and the motivation for this thesis is to improve the control 

performance of an MPC controlling an industrial dearomatization process, the solvent 

dearomatization process unit, LARPO, an abbreviation from the Finnish term 

‘Liuottimien aromaattien poisto’. The dearomatization process is located in the Naantali 

refinery, Finland, and owned by Neste Oil Oyj. The performance improvement can be 

gained by diminishing the effect of sensor and actuator faults by utilising the active data-

based FTC methods taking into account faults in the analyser, flow, temperature and 

pressure measurements, and in the actuators. The higher control performance increases 

the reliability and stability of the controller, decreases the off-spec production, and 

improves the target process profitability. 

In order to develop the active FTMPC, a set of tasks needs to be accomplished. The main 

tasks in this doctoral thesis are to study, develop, implement, test and analyse the fault-

tolerant control for the industrial dearomatization process. The effectiveness of the active 

data-based FTMPC is to be tested by studying the effects of different types of faults on 

the control performance of the FTMPC. The fault types to be tested are drift- and bias-

shaped faults for analysers and sensors and a stuck valve fault for the control valves.  

The hypotheses of the thesis are:  

 

(1) The integration of the data-based FDD methods and the fault accommodation and 

the controller reconfiguration FTC methods provide the control system of a 

dearomatization process with the tools needed to overcome the typical process and 

measurement disturbances and faults in the dearomatization process environment. 

(2) The availability and profitability of the dearomatization process are enhanced by 

the compensation of the critical faults using the fault accommodation and the 

controller reconfiguration FTC methods. 
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In order to prove the hypotheses, five tasks must be carried out: 

1. Determine the target process requirements for the active data-based FTC strategy. 

2. Determine the candidates for the active data-based FDD and FTC components, the 

design scheme and the structure for the FTMPC. 

3. Compare data-based FDD components within a preliminary testing environment and 

select the best suitable FDD component for the FTMPC 

4. Validate the performance of the integrated FTMPC in the simulated dearomatization 

process. 

5. Analyse the results and evaluate the economic benefits of implementing the integrated 

FTMPC to the actual industrial dearomatization process. 

The first task is carried out by analysing the target process behaviour and applying expert 

knowledge acquired from target process users and experts in order to gather the 

requirements for the active data-based FTC strategy. 

Task 2 is carried out by performing a literature survey on recent developments in the 

passive and active FTC fields, and by taking into account the requirements set in Task 1. 

Based on preliminary knowledge, the requirements and the literature survey, the suitable 

active data-based FDD and FTC components and the FTC design schemes are selected. 

In Task 3, three data-based FDD components are tested within a preliminary process en-

vironment, which is selected based on the similarity to the dearomatization process and 

the popularity in literature. The results are discussed and the performance of the FDD 

methods is compared to select the best FDD method for the final integrated FTMPC. 

Task 4 consists of validating the performance of the integrated FTMPC in the target 

simulated dearomatization process with faults in analysers, sensors and actuators. 

Task 5 comprises assessing the performance and the financial benefits of implementing 

the proposed active data-based FTMPC in the actual industrial dearomatization process. 
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1.3 Content of the thesis work 

The aim of this thesis is to develop an active data-based FTMPC to take into account 

faults in the process analysers, sensors and actuators of an industrial dearomatization 

process, LARPO, located in the Naantali refinery owned by Neste Oil Oyj, Finland.   

The state-of-the-art of passive and active FTC in industrial processes is given in Chapter 

2. In Chapter 3, the design schemes for the integrated FTMPC for a complex industrial 

process are described.  

The comparison of three data-based FDD methods is described in Chapter 4. In this 

chapter, the active data-based FTC strategy proposed in Chapter 3 for the analyser and 

sensor faults is tested with three data-based FDD methods in a simulated industrial 

benchmark process. Based on the preliminary performance testing, the FDD component 

with best performance is selected as the FDD component of the integrated FTMPC for 

the simulated dearomatization process. 

Chapter 5 presents the target dearomatization process and the existing control strategy, 

while Chapter 6 proposes the integrated FTMPC for the simulated dearomatization 

process. 

Chapter 7 presents the testing platform and the industrial process simulator, ProsDS, 

which is used for the simulation of the complex industrial dearomatization process 

located in the Naantali refinery. Further, the linearity of the target process and the control 

performance of the nominal MPC are tested and the control performance of the integrated 

FTMPC is evaluated when the target process is affected by faults. Finally, the results are 

discussed and the economic benefits of the integrated FTMPC are assessed. 

Chapter 8 analyses and discusses the performance of the integrated FTMPC and the 

conclusions based on the results are drawn. 

The first hypothesis is asserted in Section 7.3 and the second hypothesis in Section 7.4. 
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1.4 Main contributions 

The main contribution and novelty of the thesis is the integrated FTMPC containing the 

three parallel-running active data-based FTC strategies developed by the author.  

The first strategy consists of a recursive partial least squares (PLS) and a fault 

accommodation-based FTC methods developed by the author for the analyser and sensor 

faults in the controlled variables (CV) and in the disturbance variables (DV). The second 

FTC strategy uses the recursive PLS and the combination of fault accommodation- and 

the controller reconfiguration-based FTC methods that has been developed by the author 

for the sensor faults in the manipulated variables (MV). The third FTC strategy utilises an 

FDD method monitoring the difference between the measurement and setpoint that has 

been developed by the author and a controller reconfiguration-based FTC method for the 

MV actuator faults. 

In order to support the thesis work, the author has developed a software platform for the 

FTMPC development. The process simulator (ProsDS) and the FTMPC testing platform 

are described in more detail in Section 7.1.1. 

The contribution of the author has been presented in the following publications: 

• The fault accommodation-based FTC strategy for the analyser and sensor faults in 

a simulated crude distillation column has been presented in Kettunen and Jämsä-

Jounela (2006a), Kettunen and Jämsä-Jounela (2006b) and Kettunen et al. (2008). 

• The author has been assisting in the design and demonstration of an FTC strategy 

for an industrial dearomatization process with faults in the analyser measurements. 

This work has been presented in Koivisto et al. (2008). 

• The integrated FTMPC and the FTC strategies for the DV and MV sensor faults 

and for the MV actuator faults have not yet been published, but an article 

Kettunen and Jämsä-Jounela (2010) has been submitted to the Journal of 

Industrial and Engineering Chemistry Research containing these results. 
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2 Fault-tolerant model predictive control: state-of-the-art 

MPC has firmly established its position in the oil refining industry as one of the most 

popular advanced control methods. In a number of both passive and active FTC 

applications, an MPC is used as a control component of the FTC, optimising the process 

variables over time and providing inherent passive robustness. According to Camacho & 

Bordons (2004), the other MPC benefits are: the ease of use and tuning; the suitability for 

a wide range of processes; the built-in compensation for the dead times due to the process 

model; and the intrinsic handling of multivariable control and measured disturbances. 

One passive way to increase tolerance for faults is to increase the robustness of the 

controller itself. A robust controller, such as a robust MPC, should reach given objectives 

without a change in the control law even in the presence of faults. In effect, robustness is 

reached if the control moves are computed by taking into account the uncertainty derived 

from the disturbances and faults by including these effects in MPC objective function. 

Active FTC strategies (AFTCS) attempt to enhance the availability of a plant affected by 

faults by using active FDD and FTC components for adjusting the control law in order to 

reach the given control objectives. The AFTCS are commonly categorised in fault 

accommodation- and controller reconfiguration-based FTCs. In the fault accommodation, 

the controller is adapted to counter the effects of the faults by, for instance, 

accommodating the faulty measurements with the estimations provided by the FDD 

methods. Generally, the fault estimation can be carried out by using the mechanistic 

models or the data-based FDD methods, such as principal component analysis (PCA) or 

partial least squares (PLS). According to Blanke et al. (2003, pp. 266-268), the controller 

reconfiguration uses different input-output relations and, in general, utilises a switching 

logic to change the input and output (I/O) relations. If the controller reconfiguration 

refers to a change in both the controller parameters as well as the structure of the control 

system, these methods are referred to as restructuralisation methods (Zhang & Jiang, 

2008). Generally, in the controller reconfiguration-based FTC, the faulty part of the 

controller is turned off and only the healthy part is used for the control. 



 32  

 

2.1 Passive FTMPC 

The robust MPCs address the model mismatch problems and are able to maintain the 

stability of the control system in the open loop case. There are several robust MPC 

methods available, e.g. methods based on a model set, weights, constraints and horizons. 

Nonlinear robust MPC has recently been studied intensively, allowing stable control of 

the nonlinear processes with faults by using an MPC-based control strategy. The 

downside of the acquired robustness is its huge computational load, which makes this 

method unfeasible for processes that require a fast response time.  

The concept of robust MPC was first introduced by Campo and Morari (1987), based on 

the standard robust control theory. They proposed that instead of assuming that one linear 

time invariant (LTI) model could describe the process explicitly, the process behaviour in 

the robust MPC could be described by one LTI model selected from a set of models by 

using the min–max approach. In the passive min–max approach, originally presented by 

Witsenhausen (1968), the goal is to maximise the performance of the predictive 

controller by minimising the worst-case tracking error (the largest difference between the 

prediction and the actual measurement) of the predictive controller. This is accomplished 

by adding the estimation of the uncertainties (faults, disturbances) as an input to the 

predictive controller and taking it into account in MPC objective function. Although the 

robust MPC presented by Campo and Morari (1987) behaved in a more robust way than 

the previous approaches, according to Zheng and Morari (1993), the method could not 

guarantee robust stability since the algorithm did not take into account the general 

principle of MPC - the point of using only the first optimal input move from the 

calculated input series, i.e. the receding horizon principle. In essence, this flaw in design 

of the algorithm caused the open loop optimal solution to differ from the actual feedback 

optimal solution. One popular method for increasing the robustness of an MPC is to 

apply the min–max approach.  



 33  

 

Ralhan and Badgwell (2000) developed two robust MPCs for simulated linear integrating 

plants: a one-stage and a two-stage integrating, robust linear quadratic regulator (RLQR). 

The one-stage version considered only the steady state, while the two-stage robust MPC 

optimised the state over the entire prediction horizon. The robustness of the controller 

was achieved by adding constraints to the cost function in order to restrict the future 

behaviour of the cost function itself. According to the results, the robust MPC worked 

efficiently compared to other approaches on the robust MPC field. However, as it is 

evident from the results, the performance of the robust MPC is better than a nominal 

MPC, but the differences to the standard min–max robust approach are minimal and the 

improvement in the stability of the control strategy is relatively small compared to the 

traditional robust MPC methods. Nevertheless, the RLQR response time was still faster 

than the traditional min–max algorithm, which is a small improvement to the previous 

robust MPC approaches. 

Wu (2001) extended the linear matrix inequality (LMI)-based robust MPC, originally 

presented by Kothare et al. (1996), for a class of uncertain linear systems with structured 

time-varying uncertainties. The developed robust MPC algorithm was presented in their 

study and it was implemented and tested with a constrained control problem by using an 

industrial continuous stirred tank reactor (CSTR). According to the results, the presented 

robust MPC performs better than the traditional MPC. However, a comparison with the 

other robust MPC approaches is lacking and it is thus difficult to determine whether the 

proposed method is actually more effective than the previous robust MPC approaches. 

Nonetheless, the paper describes well the applicability and effectiveness of the method in 

an industrial-scale environment. 
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Wang and Romagnoli (2003) proposed a robust model predictive control (RMPC) design 

that utilised a generalised objective function for dealing with model-plant mismatch 

problems. Controller robustness is achieved by a selecting a proper objective function for 

each different situation from a set of pre-determined functions. The developed method 

was tested using a simulated linear CSTR as a case study. Again, the performance of the 

developed robust MPC was compared to a nominal MPC and a traditional min–max-

based robust MPC. Based on the results, the difference to the min–max approach is small 

with the traditional method being even more effective in some cases than the proposed 

method. However, compared to the traditional MPC results, the proposed method shows 

better performance and stability. In general, the method seems to offer very small 

performance improvement compared to the previous approaches, and the main benefit of 

the algorithm is the reduced computational load. 

Bemporad et al. (2003) developed an optimal feedback controller based on min–max 

control for the discrete-time uncertain linear systems with constraints on the inputs and 

states. The effectiveness of the control strategy was verified by comparing the 

computation times of the nominal and optimised receding horizon controller (RHC). The 

main advantage of the algorithm developed by Bemporad et al. (2003) is the optimal 

robust piecewise affine control law allowing implementation of the min–max-based 

robust MPC even for applications limited by computational capacity. The developed 

technique therefore significantly reduces computational load compared to the 

traditionally used algorithms, offering an important improvement to future robust MPC 

approaches based on the min–max approach. 
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Richards (2005) have proposed a robust MPC for linear time-varying systems that 

guarantees the feasibility of the optimisations and satisfies the given set of constraints in 

all cases. Robust feasibility was achieved primarily by tightening the constraints in the 

online optimisation. The developed algorithm was tested with linear and nonlinear 

examples with 100 simulations with random disturbances carried out. According to the 

results, the developed algorithm is feasible also for nonlinear cases, as long as the 

nonlinear systems are linearized around the operating point. In general, the proposed 

approach has promising results, although the paper and presented examples were for the 

most part theoretical. 

Mhaskar and Kennedy (2008) considered the problem of the stabilisation of nonlinear 

process systems with a set of constraints on the change rate and the magnitude of the 

control inputs in the presence of uncertainty. The proposed robust MPC was based on the 

formulation of stability constraints that are feasible from an explicitly characterised set of 

initial conditions and minimisation of the rate constraint violation. This approach 

guarantees the system stabilisation and the handling of the rate constraints within the soft 

constraints. The effectiveness of the developed MPC was verified with theoretical proofs 

and a few simulation cases. The applicability to an actual nonlinear industrial case was 

not considered in the paper, although there is much future potential in the presented 

method.  
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Lazar et al. (2008) studied discrete nonlinear systems affected by parametric uncertainties 

and other disturbances. In their paper, Lazar et al. (2008) proposed an approach that was 

applicable to the classical setup of a min–max MPC problem; the proposed approach can 

be used to design nonlinear min–max MPC schemes with guaranteed input-to-state 

stability (ISS). Based on the results, the developed methodology allows the design of an 

asymptotically stable min–max MPC without assuming beforehand that the additive 

disturbance inputs reach zero as the closed-loop system state converges towards the 

origin. Although the proposed methodology was successfully demonstrated with a 

nonlinear example case and the proposed min–max MPC, the method is not directly 

applicable to an actual industrial application; however, it might provide a good basis for 

future innovations in the research area. 

Huang et al. (2009) presented a design methodology for a robust nonlinear model 

predictive controller (NMPC) with dynamic first principles models. The proposed 

strategy is based on multi-scenario nonlinear programming (NLP) formulation, which is 

extended to an advanced step NMPC. The benefits of this strategy were demonstrated by 

using a large-scale, air-separation process unit. As an improvement to the existing NMPC 

formulations, the proposed strategy reduces the computation times without losing control 

performance. However, since only a brief case was presented in the paper to demonstrate 

the effectiveness of the method, the actual applicability of the method is unclear, even 

though the preliminary simulation results were promising. 
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2.2 Active FTMPC 

Active FTMPC has been under study in an increasing number of FTC projects during the 

last decade. The most important active fault accommodation-based and controller 

reconfiguration-based FTC applications over the years are presented and discussed below. 

2.2.1 Active fault accommodation-based fault-tolerant control 

Pranatyasto and Qin (2001) studied the data-based fault-tolerant control of a simulated 

fluid catalytic cracking (FCC) unit under MPC control. The simulation model of the FCC 

was created by McFarlane et al. (1993) which, according to Pranatyasto and Qin (2001), 

is sufficiently complex to capture the major dynamic effects taking place in the actual 

FCC unit. PCA was first used as a fault detection procedure to classify the data; the Q 

method, also referred to as the squared prediction error (SPE) index by Jackson and 

Mudholkar (1979), was then used to detect faults and evaluate the difference between the 

measurement and the model output. The Hotelling T2 index, based on the work by 

Hotelling (1947), was used for cross-reference purposes; however, this was found to be 

too unreliable for the detection itself. The Hotelling T2 index measures how close the 

variances of two samples are to each other. The quadratic dynamic matrix control 

(QDMC) MPC-algorithm was used for control of the target process. The dynamic 

behaviour was introduced into the test process with the controller feedback. The faults 

tested in the paper included a large ramp in a coke formation factor, small changes in a 

coke formation factor, and changes in the ambient temperature. The results of this well-

constructed paper are impressive as the faults in the simulated measurements were 

promptly detected and accommodated, which demonstrates that such FTC application 

could also provide good results in an actual industrial environment. 
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Prakash et al. (2002) studied a model-based supervisory combination of an FDD with an 

MPC. The FTC strategy consists of a supervisory component using the FDD information 

to modify the MPC inputs or outputs. The generalised likelihood ratio (GLR) by Willsky 

and Jones (1976) was used in the study for FDD purposes; the fault detection part used a 

fault detection test created by Narasimhan and Mah (1988). For the control of the case 

study process, a standard dynamic matrix control (DMC)-controller and a set of standard 

PID-controllers were used. The performance of the FTC was tested using a non-

isothermal CSTR example presented by Marlin (1995). In the test setting, the developed 

fault-tolerant control strategy (FTCS) performed significantly better than conventional 

control settings, and was able to detect sequential faults introduced in the CSTR 

measurements. However, due to a degree of plant-model mismatch, there clearly was a 

degree of disturbance caused in the non-faulty variables. This disturbance effectively 

reduced control performance, although the performance was better than in the case 

without FTC. 

Theilliol et al. (2002) developed a model-based FTC strategy that takes into account both 

sensor and actuator faults in a three-tank process controlled by a feedback controller. A 

linearized model of the target process was used for FDD purposes and analytical 

redundancy methods for the FTC. An unknown input observer scheme was implemented 

and a bank of unknown input observers generated for the FDD. The FTC strategy was 

able to estimate sensor values and effectively keep the process under control even when a 

sensor was completely destroyed. However, in order to verify the effectiveness of the 

method in an actual industrial-scale process, the method should be tested with more 

complex examples. In a more complex case, however, there would probably be 

difficulties in attaining a suitable analytical model for the method. 
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Patwardhan et al. (2006) improved and compared two model-based fault-tolerant control 

strategies: an FTCS based on the research work done by Prakash et al. (2002), and a 

reformulated MPC based on an identified state space model originally presented by 

Muske and Rawlings (1993). The FDD of the FTCS is based on a Kalman filter-based 

GLR, which estimates the fault magnitudes only for the identified faults; this provides a 

more efficient and less-computationally demanding method of detecting faults than mere 

parameter estimation-based methods. The FTC strategy was tested with a laboratory-

scale continuous stirred tank heater (CSTH) process and a simulated benchmark process 

of a crude oil distillation column - the Shell control problem (Prett & Morari, 1987), SCP. 

The results of the both approaches were compared with the conventional MPC and both 

the state-space MPC (SSMPC) and FTCS provided superior performance compared to 

the conventional MPC. As comparisons to other types of FTC systems are lacking, it is 

difficult to determine the real effectiveness of the method. However, methods like this 

promote the effectiveness of the data-based FTC methods on actual industrial 

applications. 

Mendonca et al. (2008) proposed an application of a model-based FTC with weighted 

fuzzy predictive control that was tested on an experimental three-tank process with faults. 

Fault detection was handled by means of a model-based approach and fuzzy modelling, 

and fault isolation with fuzzy decision-making application. Fault accommodation was 

carried out by using fuzzy models for different fault situations and the decision-making 

component was used for selecting the correct model for the fuzzy MPC in the case of a 

process fault in the target process. With the FTC strategy, the MPC model compensated 

for the process faults and was able to operate significantly better when the FTC strategy 

was active. However, the selection of correct weights for the fuzzy MPC might be a 

difficult and time-consuming task when implementing the system to a more complex 

process environment. Further, as only two fault cases were considered in a 2x2 process, 

reliable determination of the actual benefits in an actual process application is not 

possible based on these results. 
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Manuja et al. (2008) improved the model-based FTCS developed by Patwardhan et al. 

(2006) and Prakash et al. (2002) that was based on GLR for fault detection and isolation 

(FDI), and fault accommodation for the FTC. The existing FTC strategy was improved 

by reducing the dimensions of the models used for the FDI and control purposes. The 

improved FTC strategy was tested using a nonlinear version of an ideal 20-tray, single 

feed binary distillation column example by Luyben (1990). According to the test results, 

the modifications allow the implementation of the FTCs in large dimensional processes 

and improve the diagnostic performance of the FTC strategy. The main innovation of the 

paper comes from the model reduction for models used by both FDI and a predictive 

controller. However, the differences and the real benefit between the reduced model-FTC 

and the regular FTCs were small in general, even though a large number of simulations 

were run.  

Deshpande et al. (2009) continued the research work on the model-based FTCs by 

Patwardhan et al. (2006) and Prakash et al. (2002) by using a nonlinear model for the FDI 

and the MPC. The performance of the modified FTCS is better, which was verified by 

testing the methods using a three tank benchmark process and a strongly nonlinear, fed 

batch bioreactor example case. A general nonlinear system was used for testing the 

control performance of the developed strategy. In all test cases the FTC performed well; 

however, as it was recorded in the paper, the system was tested in a single operation point 

of the process. Therefore, the FTCS does not take into account large changes in the 

dynamics of the processes, which may pose problems in actual plant applications. Also, 

as the system was adapting the models to the changes in the process, there is a possibility 

that the effects of undetected faults can spread to the models, causing false alarms and 

lowering the control performance. 
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2.2.2 Active controller reconfiguration-based fault-tolerant control 

Griffin and Maybeck (1997) used a model-based moving-bank multiple model adaptive 

estimation and control (MMAE/MMAC) scheme to solve single controller robustness 

problems. Kanev and Verhaegen (2000) extended this concept generated by Griffin and 

Maybeck (1997), and used a generalised predictive control (GPC) algorithm as a 

controller and an interacting multiple model (IMM) estimator as a switching logic 

between the different predetermined GPCs. In this case, a piecewise linear (PWL) system 

was used for approximating the actual nonlinear process. Although the presented scheme 

is effective in some cases, the performance is severely reduced in case of unexpected 

process faults since the strategy is relying on the a priori knowledge of the faults. 

Zhou and Ren (2001) developed a combination of model-based FTC and robust FTC 

strategy - a generalised internal model control (GIMC). The new control structure 

attempted to overcome the conflict between the robustness and performance of a normal 

feedback controller. The most important feature of the GIMC is that it is able to show, in 

a structured way, how the controller can be designed separately for performance and 

robustness purposes. Based on the results of the study, the developed control structure 

would be a beneficial alternative to the traditional robust MPC algorithms even though 

the control performance of the proposed strategy was not clearly reported in the paper. 

Gani et al. (2007) studied model-based FTC of a simulated nonlinear polyethylene 

reactor. Gani et al. (2007) studied the effects of actuator faults and presented a way to 

prevent the effects of these faults by designing a fault-detection filter for actuator faults, a 

set of stabilising feedback controllers, and a stabilising switching law that orchestrates 

the re-configuration of the controller. The FTC strategy was implemented in the closed-

loop simulations based on the target process model and the performance of the FTC 

strategy was verified. The study was application-oriented, thus promoting the use of FTC 

in industrial applications. However, the simulations were run without noise in the 

measurements, which is not realistic in actual industrial applications. This issue was only 

briefly assessed at the end of the paper with a non-filtered measurement. 
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Rodrigues et al. (2007) developed an active, model-based FTC strategy to prevent the 

effects of actuator failures on polytopic linear parameter varying (LPV) systems. The 

FTC strategy is said to be able to preserve the system performance by redesigning the 

controller in case of an actuator fault. The developed FTC strategy can redesign multiple 

controllers, which are able to maintain closed-loop stability even for combinations of 

multiple actuator failures. The effectiveness of the developed strategy was tested with an 

example case with actuator failures. The proposed approach was able to stabilise the 

example system with multiple actuator failures; however, as the example used in the 

paper was linear and somewhat theoretical, the real applicability of the presented strategy 

in an industrial environment cannot be estimated based on the results presented in the 

paper. 

Mhaskar et al. (2007) studied the stability of a controller reconfiguration-based FTC 

strategy for sensor faults. The FTC strategy consists of a built-in determination 

mechanism to determine current operating regions and a switching logic for switching 

into a suitable control configuration in case of a fault in the measurements. The 

performance of the proposed FTC strategy was demonstrated using a nonlinear model of 

a polyethene reactor. The approach in the paper focused only in the reconfiguration of the 

faulty measurements, and did not take the FDD into account and therefore, the interaction 

between the FDD and FTC was not measured or determined and the availability of a 

perfect FDD was assumed. 

Koivisto et al. (2008) used an active data-based FTC strategy for fault-tolerant control of 

a full-scale industrial dearomatization process with on-line analyser faults. The FTC 

strategy includes a process model to predict the process outputs and a supervisory system 

for FTC actions and for changing control objectives if needed. Based on the tests on the 

target process, the FTC strategy was able to successfully prevent off-spec production and 

unnecessary abrupt actions in the target process. The approach used in the paper was 

based on different levels of reconfiguration actions, which depend on the type of fault 

affecting the system. The value of the paper rests in the actual industrial application, as 

most of the FTC strategies have been tested with laboratory-scale processes, at most. 
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2.3 Conclusions of the state-of-the-art in FTC 

As presented in the literature review on the FTC field, a number of good quality scientific 

papers on the FTC have been published over the last decade with a large number 

covering passive MPC strategies. These strategies have usually focused on improving and 

optimising the robustness of MPC from the theoretical point of view. The most notable 

reviewed robust MPC strategies include the original robust MPC by Campo and Morari 

(1987); the optimal min–max-based controller by Bemporad et al. (2003); the min–max-

based controller for the discrete nonlinear systems by Lazar et al. (2008); and the recent 

nonlinear robust approach by Huang et al. (2009). 

The reviewed active FTC strategies, on the other hand, are often more straightforward 

and driven by the increase of fault tolerance in a target process or processes. These 

methods have often been based on the fault accommodation or the controller 

reconfiguration FTC methods. Further categorisation has been made on the basis of the 

related FDD components, which have been based either on mechanistic process models 

or process data. The most effective active FTC strategies are the data- and fault 

accommodation-based FTC strategy for the simulated FCC unit by Pranatyasto and Qin 

(2001); the supervisory model- and fault accommodation-based approach by Prakash et al. 

(2002); the nonlinear controller reconfiguration-based strategy by Mhaskar et al. (2007); 

the application-oriented data-based reconfigurable FTC by Koivisto et al. (2008); and the 

nonlinear model- and fault accommodation-based strategy by Deshpande et al. (2009).  
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Generally, the passive FTC strategies and methods are more focused on theoretical 

improvements; a good example of this is the paper by Bemporad et al. (2003), where the 

computation load of the existing min–max method has been reduced by optimising the 

existing control algorithm. The active FTC methods, on the other hand, are more 

application-oriented and focus on specific applications such as the controller 

reconfiguration-based strategy by Koivisto et al. (2008) or the fault accommodation-

based strategy by Deshpande et al. (2009). From the perspective of developing an 

industrial fault-tolerant application, the active data-based FTC strategies are more 

appealing candidates due to the more straightforward implementation and better focus on 

the application itself, even though a passive approach might be equally effective. 

The active data-based FTC methods presented in the state-of-the-art literature review 

offer an excellent opportunity to solve fault- and disturbance-related problems commonly 

encountered in industrial plants. As it is evident from the number of reviewed papers, 

various methods have successfully been developed and implemented in a number of 

cases; however, the combination of the fault accommodation and controller 

reconfiguration FTC methods within the same FTC strategy have not been successfully 

demonstrated with an industrial case. The combination of the active FTC methods and 

utilisation of the active data-based FDD methods should thus provide the FTMPC with 

the necessary tools to significantly reduce the effects of the faults and disturbances, and 

improve the profitability of the industrial plants. 
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3 Design of the active FTMPC 

Under normal operating conditions, most of the modern advanced control strategies, such 

as MPC, are able to ensure closed-loop stability and an optimal control performance. A 

properly tuned MPC can also survive a degree of model inaccuracy and process 

disturbances on a multivariable constrained system. While the early MPC formulations 

based on the linear quadratic gaussian (LQG) already had powerful stabilising properties 

due to the infinite prediction horizon, they were not able to handle constraints, process 

nonlinearities or uncertainty on multivariable systems as stated by Qin and Badgwell 

(2003). When the constraints and the finite horizon principle were implemented in order 

to use MPC for actual process applications, MPC faced severe stability problems. 

Attempts to achieve stability included various prediction and control horizon approaches 

and the introduction of a terminal cost to MPC objective function. These methods were 

criticised by Bitmead et al. (1990) since there were no clear conditions to guarantee 

stability. The stability of MPC was thus studied actively during the late 1980s and early 

1990s by Keerthi and Gilbert (1988) and Mayne and Michalska (1990), for example, who 

were among the first to explore the stability issues with the constrained MPC. Most 

modern commercial MPCs have since been forced to use soft output constraints in order 

to avoid the stability issues (Qin and Badgwell 2003).  

As the number of potentially faulty components in the control systems is greater than 

before due to the increased use of complex control strategies, the component faults have, 

however, become more common. At the same time, if a disturbance or a deviation from 

the target trajectory is caused by a fault, the corrective actions made by the MPC decrease 

the control performance instead of optimising the plant operation. In such a case, it is 

evident that the standard MPC alone is not able to operate at the optimal operating point 

or guarantee reliable control when affected by faults. 
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Design schemes can be used as a preliminary tool for the design of an active fault-

tolerant MPC. These schemes describe the active FTC strategies that add extra 

functionality around the nominal controllers. Some of these strategies affect the controller 

directly, while others leave the controller intact and concentrate on mitigating the effects 

of the faults before they are relayed to the controller itself.  

In this chapter, first the faults in dynamic systems and their locations in the industrial 

processes are specified. Second, the target process in the schemes is given as a linear 

model. Third, the MPC used for controlling the process in the schemes is described. 

Fourth, the FDD component of the FTC strategies is discussed. Finally, the chapter is 

concluded with the descriptions of the fault accommodation, controller reconfiguration 

and integrated FTC design schemes that are used in the development of the FTMPC for 

the industrial dearomatization process. 
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3.1 Faults in dynamic systems 

According to Isermann and Ballé (1997) and Mahmoud et al. (2003), a fault is defined as 

an unpermitted deviation of at least one characteristic property or parameter of the system 

from the acceptable behaviour. In essence, a fault is defined as a state that may lead to a 

malfunction or a failure. Failure, on the other hand, is defined as a permanent interruption 

of the system’s ability to perform a required function under the specified operating 

conditions. Generally, it is difficult to determine the difference between faults and 

disturbances, since in most cases there is no physical distinction. This is due to the fact 

that both are unknown (or known in case of measured disturbances) extra inputs acting on 

the plant. As such, Gertler (1998) has defined the faults as those extra inputs whose 

presence is wished to be detected and prevented with FDD and FTC methods, while 

generally the effects of the disturbances are prevented with other input variables.  

According to Mahmoud et al. (2003), faults may take place in any system component 

(actuators, sensors, plant components, or any combination). Faults are generally 

categorised by the time characteristics or physical locations of faults in the system and 

the effect of faults on the system performance. Faults in physical locations can be divided 

into three locations: the sensor faults, the actuator faults and the process component (or 

parametric) faults. In complex industrial processes, such as in the oil refining process 

units, faults in sensors, actuators and process components are common, although highly 

undesired phenomena that have a significant effect on the quality of the final products 

and the production efficiency of the unit. Due to the small component size and low costs, 

traditional, yet expensive, way to increase the sensor reliability is by using the parallel 

hardware redundancy (multiple measurements) followed by a majority voting scheme. 

Figure 1 presents the general diagnostic framework and the potential locations of faults.  
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Figure 1. The general diagnostic framework and the locations of potential faults in a 

control system. 

According to Bao et al. (2003), some examples of the typical faults for feedback 

controllers are a burned-out thermocouple, a broken transducer or a stuck valve. Unless 

the system is robust enough, the failures in the control components cause instability, 

severely degrade the controller performance and decrease the safety of the entire system. 

For sensors, such as a temperature or a flow measurement, the most typical fault types 

according to Dunia et al. (1996) are a bias fault, a complete failure, a drifting fault and a 

precision degradation fault (see Figure 2), which also apply to faults in process analysers. 

 

Figure 2. The types of faults found in process data. The dashed line shows when the fault 

occurs. : data free of fault, �: corrupted data for the following cases: (a) bias; (b) 

complete failure; (c) drifting; and (d) precision degradation (Dunia et al., 1996). 
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According to Mahmoud et al. (2003), the actuator faults include the loss of partial control 

effectiveness (stuck valve) and a complete loss of control (broken valve). The actuator 

faults usually have a severe effect on the performance of the system and it is generally 

very difficult to add the extra hardware redundancy (multiple actuators) to increase the 

reliability since the actuators usually are both expensive and large. 

The parametric faults have effect on the dynamic relationship among the system variables. 

Generally, these faults are caused by the physical parameter changes in the system and 

appear as coefficients in the dynamic model of the controlled process. 
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3.2 Linear model of an industrial process 

The target process can be presented with a linear model, which can be composed of a 

standard state-space representation. In this model a state vector x(t), where A, B, C and D 

are matrices of appropriate dimensions can be defined: 
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If D is assumed to be a zero matrix, and if disturbance d with the input matrix E are 

added to the model, then the following system can be achieved: 
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The state-space formulation, including additive input or state faults fu and output faults fy, 

can be presented in the following way: 
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The multiplicative parametric faults, ∆A, ∆B and ∆C, commonly presented as fp, modify 

the model in the following way: 
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Finally, a linearized dynamic process model of a single-input and single output (SISO) or 

a multi-input and multi-output (MIMO) system with faults and disturbance d can then be 

described as shown in Figure 3: 
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Figure 3. Linearized dynamic SISO/MIMO process model with disturbances d, additive 

input or state faults fu , output faults fy, and parametric faults ∆A, ∆B and ∆C. 

In order to visualise the complete presentation of the process, including the controller, a 

linear output feedback controller is used as an example: 
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where yf is the faulty measurement and yr is the reference input for the controller. By 

using this controller together with the plant input u, plant output y and the setpoint signal 

yr, the full controlled nominal plant can then be presented by the following system: 
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3.3 Linear MPC for industrial processes 

The linear MPC is a suitable choice as the basic control component of the active FTC 

strategies due to its inherent stabilising properties and widespread use in the process 

industry. The main task of MPC is to stabilise the target process through optimisation. 

For the calculations required by MPC optimisation, the linear continuous time system can 

be given in the following discrete state-space form: 
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where xk represents the state, uk the control input and yk the system output at time instant 

k, xstart is the value of x during the time step k=0. A basic MPC optimisation problem may 

then be formulated in the following way: 
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where P0 and Q describe the weights set for the predicted state and R is the weighting 

matrix for the controlled input. Also, p represents the length of the prediction horizon and 

m the length of the control horizon with mp ≥ . 

As described by Lee and Cooley (1997), Morari and Lee (1999) and Bemporad et al. 

(2007), the objective function is solved using the process data and the model of the target 

process. The objective function may be considered as a tool with which to reach the set 

goal of the system that is often to drive the MPC output to a path following an optimal 

setpoint or a target trajectory. The way of implementing this depends of the algorithm in 

use and the needs of the user. As a result, the objective function is modified appropriately 

for each different case to fulfil the different user or process requirements. In addition to 

the objective function, a set of constraints is usually defined in order to constrain the 

MPC operation near or at the controller limits. These constraints can be set hard (the 

constraint should never be crossed) or soft (the constraint can be crossed for some 

amount of time) and this softness of the constraint affects MPC optimisation. 
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3.4 Fault detection and diagnosis component for the  active FTC 

strategies 

The FDD is one of the most important components in the active FTC strategies. Frank et 

al. (2000) state that without proper fault detection, isolation and accommodation, the 

process is vulnerable to faults, which may easily render the process unprofitable, unstable 

and even unusable. Therefore, fault diagnosis plays a crucial role in active FTC - with 

proper fault detection and isolation, the FTC strategy can utilise the correct FTC actions; 

and with proper fault identification, the effects of the fault can be reduced by using the 

estimation of the fault magnitude and direction with the fault accommodation methods.  

Generally, FDD methods are divided into model-based and data-based methods as stated 

in a comprehensive FDD review by Venkatasubramanian et al. (2003a) and review of 

FTC methods by Zhang and Jiang (2008). As was evident in the state-of-the-art FTC 

literature study in Chapter 2, the most suitable FDD candidates for the integrated fault-

tolerant MPC are the data-based FDD methods. Based on the literature study, the model-

based approaches have generally been proven to be effective as well; however, as the 

complexity of the process increases, so does the difficulty in obtaining suitable models 

for the FDD. Also, in general, it is possible to combine both model- and data-based 

methods, but an approach like this would unnecessarily increase the complexity of the 

application, which in turn would decrease the usability of the FDD or FTC on actual 

industrial applications. 
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Venkatasubramanian et al. (2003b) state that PCA by Jackson and Mudholkar (1979) and 

PLS by Gerlach et al. (1979), in addition to statistical pattern classifiers, are the most 

commonly used statistical feature extraction methods and are thus the prime candidates as 

the FDD methods for the active data-based fault-tolerant MPC. Furthermore, a doctoral 

thesis by Vermasvuori (2008, pp. 50-57), which has been made in the same project in 

which the author has worked in, proposes to use PCA, PLS, independent component 

analysis (ICA), subspace model identification (SMI) or a monitoring method based on 

dissimilarity (DISSIM) for linear, or near-linear processes.  

As the comprehensive analysis of data-based fault diagnosis has already been published 

in the same project by Vermasvuori (2008) and by Kettunen et al. (2008), the fault 

diagnosis is not analysed in detail in this thesis; rather, the focus is on the overall design 

of the active FTMPC. 

Based on earlier studies, the PCA, PLS and SMI have been found to be the most 

promising data-based FDD candidates for the final active data-based FTC strategy. In the 

following sections, these data-based FDD methods are described in more detail. 
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3.4.1 Description of the principal component analysis-algorithm 

One approach to FDD is PCA, which has been presented in FDD use by Jackson and 

Mudholkar (1979), originally introduced by Pearson (1901) and later independently 

developed by Hotelling (1933). Generally, PCA attempts to reduce the variable 

dimension by transforming a number of possibly correlated variables into a smaller 

number of uncorrelated variables. With this transformation, it is possible to create a 

statistical model of the target process, which can then be used to predict the variable 

values and to detect possible faults in these variables by using a suitable fault detection 

index, such as SPE or Hotelling T2. In this section, the PCA model determination, the 

SPE and Hotelling T2 limit calculation procedures and the fault detection procedure are 

presented.  

3.4.1.1 PCA model determination from the training data set 

1) The original training data X is zero-meaned and the variance is set to unit variance 

2) The covariance matrix C is calculated: 
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where n is the number of observations 

3) The eigenvalues m...1λ of the covariance matrix are calculated, where m is the 

number of variables (measurements): 

( ) 0det ...1 =− IC mλ  (10) 

While the eigenvectors me ...1 are solved from the following equation: 
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The eigenvalues are reorganized in the matrix Λ in decreasing order: 
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The eigenvectors, also called as the principal components (PC) of the X, are kept in the 

same order as the eigenvaluesm...1λ : 

[ ]meeeV ...21=  (13) 

4) Based on the selected captured variance (selection based on, for instance, a certain 

variance limit), the number of principal components, k, is determined: 
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5) The eigenvalue matrix KΛ and transformation matrix kV  are formed using the k 

first principal components, where k << m: 
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[ ]kk eeeV ...21=  (16) 

The principal components can be used to estimate the values of from the zero-meaned 

and normalised (in regards to the standard deviation) values of x̂ : 

k
T
scaled

T Vxx ⋅=ˆ  (17) 

6) The SPE limit is calculated with the equations by Jackson (1979): 

The SPE-limit αQ is acquired by using the following equation and by making the 

approximation that the probability distribution of Q is normally distributed: 
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where αc is the normal density distribution corresponding to the upper ( )α−1  percentile 

of the normal deviate and θ  is defined in equation 19 and h0 in equation 20: 
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where k is the number of selected PCs and m is the total number of PCs . 
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7) The Hotelling T2 limit was calculated using the following equation: 
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2 αkmkF

km
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T −

−
−=  (21) 

where k is the number of principal components, m is the number of measurements, 

),,( αkmkF − corresponds to the probability point on the F-distribution with 

),( kmk − degrees of freedom and the α represents the user-defined confidence level. 

3.4.1.2 Fault detection with the new measurement data set 

1) Set the variance to unit variance by using the training data means and variance 

2) Transform new, autoscaled data using the transformation matrix kV  

k
T
scaled

T Vxx ⋅=ˆ  (22) 

3) Calculate the value of T2 for the new data, using the following equation: 

scaled
T

kkk
T
scaled xVVxT ⋅⋅Λ⋅⋅= −12  (23) 

4) Calculate the SPE-value for the new data, using the equation by Pranatyasto and Qin 

(2001): 

( )xPPIxxxxxQ TTT −=−−= )ˆ()ˆ(  (24) 

5) Compare the SPE value to the SPE limit; if the value is over the limit, the fault is 

detected.  

6) Calculate the individual variable contributions to the SPE-value: 
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where m is the number of variables (measurements) and x̂  is the predicted measurement. 
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3.4.2 Description of the nonlinear iterative partial least squares-algorithm 

According to Abdi (2010), from the theoretical point of view the PLS is a more optimal 

approach than the PCA, since the PLS regression minimises the correlation between input 

(X) and output variables (Y) by finding the X which are most relevant to Y. This 

minimisation is carried out by searching for a set of components, which decompose X and 

Y in such a way that that these latent vectors explain as much as possible the covariance 

between them. As Abdi (2010) states, the main originality of PLS is derived from the 

preservation of the asymmetry of the relationship between predictor components and 

dependent variables, while other similar techniques such as canonical correlation and 

multiple factor analysis treat these symmetrically. In practice, however, when examining 

actual process data affected by noise and other variations, the difference between PCA 

and PLS is small or nonexistent. Since the PLS is by nature the more optimal method, the 

use of PLS over simple PCA is generally encouraged also in practical applications.   

The recursive NIPALS algorithm by Wold et al. (1983) is presented next to obtain the 

matrices needed for PLS regression. The original version of the method was presented by 

Wold (1973). For two data blocks, X (N by K matrix) and Y (N by M matrix), the 

NIPALS is carried out iteratively as follows: 

1. Select a K-weight vector w, for instance a normalised, non-zero row of X.  

2. Calculate the score vector t=X⋅ w. 

3. Calculate the Y-loading vector q=YT ⋅ t. 

4. Calculate the Y-score vector u=Y⋅ q. 

5. Calculate a new weight vector w1=XT ⋅ u. Scale w1 to length 1. 

6. If |w-w1| < convergence limit (user-defined), the convergence is obtained, 

otherwise w=w1 and start at stage 2. 

Here N is the number of samples, K is number of input variables and M is number of 

output variables. Now two score vectors, t (for X) and u (for Y) have been acquired.  
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To acquire the next pair of t and u, several methods are available; however in this context, 

in the following stages 7-11 by Wold et al. (1983), X is adjusted for the score vector and 

the regression of Y to t is calculated and finally Y is adjusted to the new results. 

7. X loading vector p is now calculated with p = XT⋅ t/(tT⋅ t) 

8. Adjust X: Xnew=X-t ⋅ pT 

9. Calculate regression of Y to t: b = (YT⋅ t)/(tT⋅ t) 

10. Adjust Y: Ynew = Y-t⋅ bT 

11. If more (t,u) pairs are needed, go back to stage 1 by using X=Xnew and Y = Ynew 

12. If all the needed pairs of (t,u) have been acquired, the estimated Ypred can be 

calculated from PLS
TT

pred RXQWXQTY ⋅=⋅⋅=⋅= , where RPLS (K by N 

matrix) is the regression matrix, T is the scores matrix, W is the weights matrix 

and Q is the loadings matrix. 

Faults can be detected and isolated by calculating the root mean square error of prediction 

(RMSEP) index for each variable and by setting the variable with highest value faulty: 
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ii∑

=

−
= 1

2ˆ
 (26) 

where n is the number of samples in the test data set, v is the output y, the disturbance d 

or the manipulated variable measurement u and v̂  is the estimated value of v. 

The latent variables (LV) of PLS are the terms of T containing the relevant information of 

high dimension data X that is compressed to the low-dimensional variable space of T. T is  

of dimension N by A, where N is the number of samples and A is the dimension of the LV 

space, determined by the NIPALS iteration. The latent variables are therefore the 

columns (t1, t2,…,tA) of T. The relation to X and Y to T can be expressed through: 

FQTY

EPTX
T

T

+⋅=

+⋅=  (27) 

where E and F are error terms, T has the latent variable scores for X and P and Q are the 

loading matrices for X and Y, respectively. 
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3.4.3 Description of the subspace model identification-algorithm 

The SMI by Hyötynemi (2001) attempts to capture the behaviour of the target process  by 

identifying the state-space matrices A, B, C and D, which can then be used as a fault-

detection model for predicting the target process behaviour for FTC purposes. In this 

section, this SMI procedure is presented. 

The identified discrete-time state space model is presented in the following form: 
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where ε and e are white noise sequences and the input matrix U is composed of j input 

vectors uT and the output matrix Y of j output vectors yT: 
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where m is the number of inputs and n is the number of outputs. Now, the system is 

observed in a time window with the width β at the time step k-β. The past and future 

input and output values can now be presented by using the following equations: 
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Next, χ is defined to be a matrix composed of all past input and output values and future 

input values and Z is defined to be composed of the future values of outputs: 

( )futpastpast UUY=χ  (32) 
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futYZ =  (33) 

The mapping F:χ ->Z is acquired by using the least squares method: F = (χχ)-1 χ TZ. 

Because the future input values are not known, the system is divided into two parts for 

the estimation purposes: 

( )
( ) ( )FUFUY

FUUYZZZ

estfutestpastestpast

estfutestpastestpastfuturepastest

,,,

,,,

000 +=

=+=
 (34) 

Now the variables in Zpast can be estimated to contain all the information from the system 

past and a refined data matrix without the future input contribution can be defined: 

( )FUYZX estpastestpastpast 0,,==  (35) 

The matrix X can now be considered to contain the preliminary system states. The 

originally dynamic problem has now been reduced to a static one and the static dimension 

reduction methods, such as PCA or PLS, can reduce the dimension of the preliminary 

system states. Next, for the purposes of identification, the following input and output 

matrices are defined: 
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(36) 

Also the submatrices X + and X - are defined, where X + is a matrix X without the first row 

(oldest state) and X - is the matrix X without the last row (newest state). The state 

representation now has the following form: 
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Finally, the parameter matrices A, B, C and D can be solved by using the least squares:  
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The FDD with the SMI can be carried out by calculating the residual between the 

predictions of the SMI model and the actual process measurements. If the absolute 

residual between the measurement and the predicted output is higher than the limit, then a 

fault can be declared in that variable. The magnitude and sign of the fault can be 

estimated as the difference between the outputs of the model and the measurement. 
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3.5 Design schemes for the active FTMPC 

In this section the focus is on the most important design schemes and control structures 

for the design of the active fault-tolerant MPC. The components of the active FTC 

strategies are included in the general schematic diagram of the active fault-tolerant MPC 

and presented in Figure 4. 

 

Figure 4. The schematic diagram for the active fault-tolerant MPC. 

The main task of an active, data-based fault-tolerant MPC is to extract information from 

faulty or non-faulty process data through FDD, and to ensure optimal operation through 

the use of FTC strategies and a reconfigurable MPC. The information from the target 

process can be captured by applying statistical mathematical methods, such as PLS, to 

process history data and then using this information to detect, isolate and identify faults. 

In different fault-tolerant MPC schemes, this extracted information can be used to ensure 

optimal operation by carrying out FTC strategies, such as the fault accommodation or the 

controller reconfiguration. The active FTC design schemes for developing the active FTC 

strategies are presented in the following sections with schemes for fault accommodation, 

controller reconfiguration and finally, for the integrated FTC strategy. 
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3.5.1 FTC scheme based on fault accommodation 

A commonly used active FTC scheme is based on fault accommodation. The active FTC 

strategy designed by this scheme is able to analyse and accommodate MPC inputs, 

outputs and process parameters based on the fault information and measurement 

predictions provided by the data-based FDD. The estimations are based on the 

measurements, controller input signals, actual cascade controller measurements and 

disturbances relayed to the FDD. This kind of strategy effectively masks both the process 

and the controller from faults through fault residuals ru and ry, while still taking 

advantage of both the faulty and the correctly functioning parts of the process. A general 

description of an active fault accommodation-based FTC scheme is given in Figure 5 

with an MPC, the process around operating point U0, Y0 and input, output and parametric 

faults fu, fy and fp.  

 

Figure 5. The fault accommodation-based FTC scheme. 
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In the data-based fault accommodation-based design scheme, a fault accommodation 

block is used for accommodating the faulty input and output measurements. This fault 

accommodation block is set between the nominal controller and the plant. In this block, 

the faulty input or output measurement is accommodated using the fault estimations from 

the data-based FDD methods. 

In this design scheme, a data-based FDD can be used to predict the non-faulty 

measurement values of the faulty CV, DV or MV measurements. A fault accommodation 

block is set between the plant and the nominal controller. This fault accommodation 

block uses historical process data to predict the measurement values from the input 

values u, the output values of y or the disturbance values of d, and the past process output 

values ypast, input values upast or disturbance values dpast. If necessary, the faulty CV, DV 

or MV measurement can be accommodated in order to prevent the effects of the faults on 

the target process. The fault accommodation block for CVs is presented in Figure 6, for 

DVs in Figure 7 and for MVs in Figure 8. 

 

Figure 6. The data-based fault accommodation block with a faulty input vector yf and an 

accommodated CV measurement y. 
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Figure 7. The data-based fault accommodation block with a faulty disturbance vector df 

and an accommodated DV measurement d. 

 

Figure 8. The data-based fault accommodation block with a faulty input vector uf and an 

accommodated MV measurement u. 

In the following, the value estimated by the data-based FDD for yest, dest and uest are 

represented with variable vest for each case. In the figures, R is the estimation matrix 

containing the non-faulty model of the target process and L is the parameter matrix 

affecting the degree of fault accommodation based on the probability of the fault. If no 

fault is detected, the probability of the fault is zero and the L matrix is a zero matrix. 

When a fault is detected, the probability of the fault is increased during each time step 

and the L matrix is adjusted accordingly to increase the degree of the accommodation.  
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L is the dependant of the period of time the fault has been detected: the longer the time, 

the higher the L matrix diagonal value that corresponds to the faulty variable, finally 

ending up to value of 1 in the diagonal entry of the faulty variable allowing full 

accommodation of the faulty measurement. If a fault is detected, the procedure increases 

the fault probability counter by one; if the delay counter is over the min limit, the FTC 

actions are initiated. The values of the ith diagonal entry of the parameter matrix L is 

calculated by using the following equation:  
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cc
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=  (39) 

where ci,t  is the value of the fault probability counter of the ith diagonal entry at the time 

step t, ci,max is the maximum value of the ith fault probability counter and the ci,min is the 

minimum limit for the fault detection of the ith sensor. Accordingly, during each time 

step when no fault is detected, the counter ci,t is decreased by one and if the counter falls 

below the min limit ci,min, the accommodation of the ith measurement is stopped. 

The fault estimation is carried out by using the data-based FDD methods on process data. 

The input matrix X in each case is the inputs u, the current measurements y or the 

disturbances d and the past values of ypast, upast or dpast. 

With PCA, equation (22) can be modified and used to estimate new variable values in the 

following form: 

k
TT

est VXv ⋅=  (40) 

where Vk is the PCA transformation matrix and X is the input data matrix with the past 

values of y, d or u and the current measurements of y, d and u. 
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With PLS, this can be expressed with the following equation: 

PLSest RXv ⋅=  (41) 

where RPLS is the PLS regression matrix:  

QWRPLS ⋅= T (42) 

where W is the weight matrix of the input matrix X, and Q the loadings of y, u or d, which 

are estimated from the set of process data with the nonlinear iterative partial least squares 

(NIPALS) regression algorithm by Wold et al. (1983), presented in 3.4.1. Alternatively, 

the parameters can be estimated with the simple partial least squares regression 

(SIMPLS) algorithm by de Jong (1993), but this approach is not used in the thesis.  

With SMI, the value of the vest can be estimated by using the state-space matrix in 

equation (27) with the identified matrices A, B, C and D.  

The difference between vest and vf, ∆v, is then measured: 

estf vvv −=∆  (43) 

With PCA, the SPE index presented in equation (24) can be used, with PLS the RMSEP 

index between the estimated and the measured value, presented in Section 3.4.2, can be 

used and with the SMI, the absolute residual between the measured and the estimated 

value can be utilised.  

If the RMSEP value is greater than the empirically determined threshold value, then the 

probability of the fault and the individual cell value of matrix L corresponding to the 

faulty variable is increased. The accommodated measurement can then be acquired 

through: 

vLvv f ∆−=  (44) 

where ∆v is the residual between the faulty value and the estimated value, and v is either 

y, d or u depending on which variable is monitored.  
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As a result, the following equation describes the total accommodation of the faulty 

measurement vf,i during the time instant of i to a healthy measurement vi by using process 

data and the data-based FDD methods: 

( )iestififi vvLvv ,,, −−=  (45) 

where the vest, i contains the estimation of either y, d or u at time instant of i and recursive 

inputs ypast, dpast or upast and L is the parameter matrix controlling the degree of 

accommodation. 

The main advantages of an active fault accommodation-based design are the flexibility 

and its adaptability to a range of different controllers, and the advantage of being able to 

take full benefit from the process information stored in the nominal controller parameters, 

models and constraints. As the FDD and FTC are separate components, no direct 

modifications to the existing controller are required. The downside of the fault 

accommodation scheme is the limitation in reaction times due to the delay caused by the 

fault verification of the FDD component, and a separate component structure. Further, the 

accuracy of the process model affects the performance since without sufficient accuracy, 

successful fault accommodation actions cannot be carried out. 
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3.5.2 FTC scheme based on controller reconfiguration 

An active controller reconfiguration-based FTC scheme relies on directly adjusting the 

controller itself by changing the controller structure, models or parameters through 

parameter vector rp. The pure reconfiguration-based (restructurisation) strategy uses only 

the correctly functioning part of the system for control purposes. The advantage of the 

active controller reconfiguration-based FTC scheme is the ease of implementation and 

lower accuracy requirements of the process models. Furthermore, it is easy to adapt the 

active controller reconfiguration-based scheme to a wide range of controllers and 

situations. The shortcoming of the method is the loss of information and controllability of 

the target process since only the correctly functioning part of the system is used for 

control. As a result, part of the information stored in the controller parameters, constraints 

and models is lost due to the reconfiguration actions. The controller reconfiguration-

based FTC scheme is presented in Figure 9 with an MPC, the process around the 

operating point U0, Y0 and input, output and parametric faults fu, fy and fp. 

 

Figure 9. The controller reconfiguration-based FTC scheme. 
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Control allocation (CA) is one approach to handling MV actuator faults in the FTC 

strategy designed with the controller reconfiguration-based scheme. A special case of CA 

is the ‘daisy-chaining principle’ (DCP), which Buffington and Enns (1996) and 

Maciejowski (1998) have discussed. The idea of the daisy-chaining principle, adopted 

from the principle by Buffington and Enns (1996), is used for the controller 

reconfiguration FTC strategy. In the principle, two sets of variables are formed: the 

primary set containing manipulated variables to be monitored and the secondary set 

containing disturbance variables that can be used instead of the primary variables should 

some of the primary variables become faulty. In case of a fault in a primary variable, the 

faulty primary variable is disabled and the first disturbance variable in the secondary set 

is enabled as a manipulated variable. If more MVs turn faulty, the next available DV is 

again set as an MV from the secondary set. Maciejowski (2002) also states that the CA-

based FTC can be further improved with an active FDD component which will provide 

the controller with, in this case the MPC, fault information as soon as it is detected in 

order to change the control configuration before the fault can affect the performance of 

the controller. 

The main requirement for being able to apply controller reconfiguration for MV actuators 

to a process controlled by an MPC is that there should be sufficient redundancy in the 

target process in order to allow compensation of the faulty control variables. This can be 

accomplished by, for example, replacing the faulty manipulated variable with a measured 

disturbance variable in MPC formulation. Without the extra redundancy, the 

reconfiguration is still possible; however, if no extra variables are available for control, 

the controller reconfiguration will decrease the control performance (although the 

performance will be better than without the reconfiguration action). 

The failure of an actuator can be detected by calculating the root mean square error 

(RMSE) index from actual measurements and the reference trajectory set by the MPC, 

and by comparing the index value to a detection threshold. This index is presented in the 

following equation: 
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where n is the number of measurements, uref the input reference given by the MPC, and u 

is the measured MV value. The scheme of a setting for a fault-tolerant MPC is presented 

in Figure 10.  

Figure 10 includes the diagonal matrices of the controlled variable matrix CV, the 

manipulated variable matrix MV and the measured disturbance matrix DV and the 

selected controlled variable measurements yCV, references for the controlled variables yr, 

the selected measured disturbance values yDV and the selected control inputs uMV. 

 

Figure 10. The structure of an MPC with the variable determination matrices CV, MV 

and DV and an MPC component for optimising the future output. 

If the RMSE (for manipulated variable actuator faults) value of ui has been over the 

detection threshold for a sufficiently long period, the controller reconfiguration action is 

carried out: the control configuration of the nominal controller is changed by adjusting 

the matrix MV and the matrix DV, which determine how MPC handles MV and DV 

variables. In essence, in case of a fault in the ith manipulated variable, the diagonal entry 

i of the matrix MV is set to value of 0 and the ith diagonal entry of the matrix DV is set to 

a value of 1. This sets the faulty manipulated variable as a measured disturbance.  

DVCVy +  

To process From process 

DV 

CV 
- 

+ 

ry  

MPC 

CV 

DVy  

CVy  MVu  

MV 



 72  

 

In order to compensate for the loss of an MV, the measured disturbance dj can be set as a 

manipulated variable by setting the diagonal entry K+j of the matrix MV to the value of 1 

and the diagonal entry K+j of the matrix DV to the value of 0. The K in this case 

corresponds to the number of the manipulated variables.  

The controller reconfiguration approach is explained with an example described in Figure 

11. In this example, there are 2 manipulated variables and 2 disturbance variables, and 

therefore the size of the matrices MV and DV is 4x4 each. If the 2nd manipulated variable 

is set faulty, the 2nd diagonal entry of the MV matrix is set to value of 0 and the 2nd 

diagonal of the matrix DV is set to value of 1 corresponding to the change of a 

manipulated variable to a disturbance variable. Accordingly, the 1st disturbance variable 

(located in the 3rd diagonal entry) is set to value of 0 in the matrix DV and value of 1 in 

the matrix MV (in the 3rd diagonal entry) corresponding to a change of a disturbance 

variable to a manipulated variable.  
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Figure 11. Example case of the controller reconfiguration strategy with 2 manipulated 

variables and 2 disturbance variables: a fault in the 2nd manipulated variable causes the 

2nd MV to change to a disturbance variable and the 1st disturbance variable to a 

manipulated variable. 
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3.5.3 Integrated FTC scheme 

The optimal active FTC strategy is based on an integrated FTC scheme, in which the 

controller has built-in options for the fault accommodation and controller reconfiguration 

methods. This kind of approach allows more flexibility and a greater degree of freedom 

to handle possible faults than the other FTC design schemes presented earlier since the 

integrated FTC scheme contains tools for both fault accommodation and controller 

reconfiguration-based FTC methods for sensor and actuator faults. Therefore, this kind of 

scheme will be used to develop the final FTMPC. The integrated FTC scheme is 

presented in Figure 12 with the process around the operating point U0, Y0 including the 

plant model and input, output and parametric faults fu, fy and fp.  

 

Figure 12. The integrated FTC scheme. 
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parallel-running active FTC strategies that reduce the effects of different fault types. The 
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analyser faults (drift- or bias-shaped faults) for the CVs, DVs and MVs and MV actuator 

faults. 
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The first FTC strategy is based on the fault accommodation and on the data-based FDD 

for the sensor and, for example, process analyser faults in the CVs or DVs. The second 

FTC strategy uses the data-based FDD and the combination of the fault accommodation 

and controller reconfiguration FTC methods for the sensor faults in the MVs. The third 

FTC strategy utilises the controller reconfiguration FTC method for the MV actuator 

faults. The more detailed description of the integrated fault-tolerant MPC is presented in 

Figure 13. In this figure, yCV+DV+MV contains measurements for the CVs, DVs and MVs; f1, 

f2 and f3 contain the fault diagnosis information for each of the FTC strategies; L∆yCV+DV 

contains the corrections for the CV and DV measurements; L∆uMV+DV contains the 

correction values for the MV outputs of the MPC; MV+DV contains the matrices for the 

MPC to determine, of which the MVs and DVs are used as MVs if the controller 

reconfiguration action occurs.  

 

Figure 13. The integrated FTMPC with three FTC strategies.  
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4 Testing the data-based FDD methods with the fault 

accommodation-based FTC strategy for the analyser 

and sensor faults in the oil refining benchmark process 

The aim of this chapter is to compare the performance of data-based FDDs and a fault 

accommodation-based FTC strategy in controlling a well-known benchmark process with 

faults in the CV analysers and sensors. The fault accommodation-based FTC strategy is 

based on the fault accommodation design scheme from Section 3.5.1 and the benchmark 

process is presented in the Shell control problem by Prett and Morari (1987). Based on 

the performance testing, the most suitable data-based FDD method is selected for the 

final integrated FTMPC.  

In this chapter, the target benchmark process, its dynamic model and the MPC strategy 

are presented and the performance of the MPC strategy is tested first. Second, the 

structure of the FTC is briefly described. Third, the FDD and FTC parts of the strategy 

are tested and finally, the summary of the results is given and the performance of the 

tested FDD methods is compared. 
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4.1 Description of the target benchmark process, its 

dynamic model and MPC strategy  

4.1.1 Description of the target benchmark process and its dynamic model 

The target process for the preliminary analysis is an oil refining benchmark process that 

has been presented in the Shell control problem by Prett and Morari (1987), which 

contains a crude oil distillation column model with a set of control objectives and 

constraints. 

The Shell control problem includes a distillation column, four heat exchangers (three side 

reflux units and one condenser at the top), one side stripper, a reflux drum, one feedstock 

stream and three product draws. Hot, mixed-phase oil is fed to the unit and then cooled 

down using the three reflux flows located at the side of the distillation column, which 

remove the heat so that the separation procedure in the distillation column can be carried 

out. The bottom reflux is controlled with an enthalpy controller that removes heat from 

the bottom part of the column by controlling the amount of steam produced by the reflux. 

Product separation in the column is based on the condensation and boiling properties of 

the crude oil fractions, the heaviest fractions being drawn off from the bottom and the 

lightest fractions as a distillate from the top. The quality requirements for the top draw 

product distillation end point and for the side draw product distillation end point set the 

limits for control of the column. There is also a temperature limitation for the bottom part 

of the column. The target process used in the preliminary study is described in Figure 14. 
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Figure 14. The Shell control problem according to Prett and Morari (1987). 

The process model by Prett and Morari (1987) shown in Table 1 has been reported to be 

able to satisfactorily describe the dynamical behaviour of the crude oil distillation column. 

The normal way to acquire such a process model composed of first order plus time delay 

transfer functions is to measure the open-loop steady-state step responses. The model 

produces normalised responses, so everything including the constraints and measurement 

values are in relative units in the benchmark. Overall, the distillation column benchmark 

process and the dynamic model have been selected to act as a testing environment for 

comparing the performance of the data-based FDD methods for the industrial  

dearomatization process. 
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Table 1. The model of the Shell control problem according to Prett and Morari (1987). 

 

4.1.2 MPC strategy of the benchmark process 

The control objectives of the crude oil distillation unit by Prett and Morari (1987) are to 

keep the top draw distillation end point measurement y1, the side draw distillation end 

point measurement y2 and the bottom reflux temperature measurement y7 at their setpoint 

values by manipulating the top draw flow rate u1, the side draw flow rate u2 and the heat 

transfer rate u3 of the bottom reflux. The heat transfer rate u3 is further adjusted using a 

control loop with the hot steam flow rate as a control variable. There are also two 

measured disturbances in the process: the heat transfer rate of the upper reflux l1 and of 

the intermediate reflux l2. These flows remove the heat from the process and are re-boiled 

in other sections of the plant. The control constraints for the inputs, outputs and variable 

change rates are set according to the specifications by Prett and Morari (1987) in relative 

units, and are presented in Table 2. 
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Table 2. The control constraints of the Shell control problem process.  

Variable Lower limit Upper limit
y1 -0.5 0.5
y2 - -
y7 -0.5 -

u1, u2, u3 -0.5 0.5
∆u1, ∆u2, ∆u3 -0.05 0.05  

The MPC-based control strategy is developed next by using the Matlab MPC toolbox by 

Bemporad et al. (2007). A series of test runs was performed in order to determine the 

proper MPC parameters; the MPC was then tuned on the basis of results. The MPC 

parameters were adjusted according to the dynamics of the simulated process. The 

prediction horizon p was set long enough to be able to react to most situations occurring 

in the simulated process. Since the dead times in the process varied between 0-28 minutes 

and the time constants between 6-60 minutes, the prediction horizon was set to 120 

minutes. The control horizon m was set to 40 minutes on the basis of the balance between 

the calculation resources and accurate control actions. The sample time with the process 

and with the MPC was adjusted to 1 minute. The weights for the controlled variables y1, 

y2 and y7 were set to 45, indicating equal control priorities for all three controlled 

variables. All three MV weights were set to 0.01, indicating that all MVs are used equally. 

The weights for the MV rates were set as high as 1,000 for ∆u1, ∆u2 and ∆u3 in order to 

dampen the effect of the noise and sudden changes in the output values. These weight 

value settings provided more stable and reliable control actions than with lower values. 

The MPC parameter values are summarised in Table 3.  

Table 3. The MPC parameters for controlling the Shell crude oil distillation column.  

Parameter Values

Prediction horizon p 120

Control horizon m 40

Weights, CV [y1, y2, y7] [45 45 45]

Weights, MV [u1, u2, u3] [0.01 0.01 0.01]

Weights, MV rates [u1, u2, u3] [1000 1000 1000]  
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Finally, the control performance of the MPC-based control strategy was tested by first 

introducing a step change to the setpoint of the CVs. The results of the step response 

testing with the MPC, when a setpoint change of 0.4 was introduced at the time step t = 

100 minutes to the setpoint of the top draw product end point y1, are presented in Figure 

15. The setpoint 0.4 for the top draw product end point was reached at the time step t = 

264 minutes. There was also a small effect on the other variables, which were quickly 

corrected and can be seen in Figure 15. 

Next, the disturbance rejection capacity of the MPC was tested by introducing a step 

change of 0.5 to the DV l1, the upper reflux heat transfer rate, in the time step t = 100 

minutes and a step change of -0.5 to the DV l2, the intermediate reflux heat transfer rate, 

during the time step t = 300 minutes. The results of the disturbance testing are presented 

in Figure 16. Disturbance l1 was completely rejected within 100 minutes and the 

disturbance l2 in 200 minutes as can be seen in Figure 16. 

Based on the testing of the MPC, the target process was stabilised both under setpoint 

changes and the step changes in the disturbances. Overall, the performance of the MPC 

was good as can be seen from Figure 15 and Figure 16. Further, based on the testing in 

Kettunen et al. (2008), the response of the PI-based control strategy was much slower 

than with MPC-based control strategy. This caused the CVs to differ from the given 

setpoints for a longer time, which is one of the reasons why MPC is more suitable for the 

control of the target process. More details of the testing can be found in Kettunen et al. 

(2008). 
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Figure 15. The CVs and MVs with a positive step change of 0.4 introduced to the setpoint 

of y1 at t = 100 minutes. 

 

Figure 16. The CVs, MVs and DVs with a step change of 0.5 to the DV l1 at t = 100 

minutes and a step change of -0.5 to the DV l2 at t = 300 minutes. 
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4.2 Components of the active fault accommodation-ba sed FTC 

strategy for the benchmark process 

Based on the active fault accommodation FTC design scheme presented in Section 3.5.1, 

the proposed active, fault accommodation FTC strategy consists of three parts: the FDD 

component for detecting the fault, the fault accommodation-based FTC part for carrying 

out the necessary FTC actions required to minimise the effects of the fault and the 

nominal control part for controlling the process.  

Since the benchmark process and the industrial dearomatization process are assumed to 

be linear and complex, and since fast fault detection is preferred, linear data-based 

methods, such as PCA, PLS or SMI, are tested as the FDD components as suggested in 

Section 3.4. SPE index is used for detecting faults with PCA-based FDD, RMSEP index 

with the PLS-based FDD and the residual between the predicted and measured values 

with the SMI-based FDD. The faulty signal is accommodated using the fault estimate 

derived from the FDD methods, which is based on the difference between the model 

estimate and the actual measurement. The PCA-, PLS- and SMI-based FDD methods 

have earlier been presented in detail in sections 3.4.1, 3.4.2 and 3.4.3, respectively.  

As an addition to the FDD and FTC, a cumulative sum mechanism is implemented in 

order to avoid false alarms. The cumulative sum requires that the fault is detected at least 

three time steps before the fault is declared. After these three steps, fault compensation is 

started with a gradually increasing compensation value to reach the final compensation 

value after three more time steps. In the following three sections, a general description of 

each of the methods is given. 

The usage of MPC is taken into account in fault detection, since the FDD methods are 

trained in closed loop, which makes sure that the MPC behaviour is included in the FDD 

model. However, MPC may cause nonlinear behaviour when operating near constraints 

(constraint-induced nonlinearity) and this nonlinearity is higher, the harder the constraint 

is. This nonlinearity is caused, because the MCP attempts to avoid crossing the constraint 

at any cost. 
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4.3 Results of testing the data-based FDD methods 

In this chapter, the results of the PCA-, PLS- and SMI-based FDD testing and the results 

of the combining the FDD component with the active data-based FTC strategy are 

presented. In the following, all of the test cases with different active data-based FTC 

strategies are presented on the timeframe of 1…800 minutes. All of the faults were set to 

occur at the time step t = 100 minutes; however, only one fault was introduced during 

each simulation as in this way the effects of different faults and FDD methods can be 

compared. 

4.3.1 Description of the analyser and measurement faults and the faulty 

data set 

Two different kinds of fault are common in the oil refining process analysers and sensors: 

abrupt bias faults and slowly increasing or decreasing drift faults. The bias faults are 

usually caused by contamination of the analyser sample, while the drift faults can be 

caused by the slow accumulation of substances in the sensors, analysers or sample lines.  

The data set used for testing consisted of 800 minutes of the simulated process data that 

included measurement faults. The bias and drift faults were introduced into the simulated 

process measurements. In the test setting, a positive bias fault with a magnitude of 0.5 

was introduced into the top draw product quality variable y1 at the time step t = 100 

minutes, and the fault ended at the time step t = 300 minutes. Another fault, in this case a 

positive drift fault, was introduced into the top draw product quality variable y1 at the 

time step t = 100 minutes, and the fault ended at the time step t = 300 minutes, at which 

time the fault magnitude is 0.5, which was the maximum hard constraint allowed for the 

top draw product end point y1. In order to be able to use the FDD components as a part of 

the active data-based FTC strategy, a separate set of fault-free training data was used for 

the training the FDD methods. This training data set was used to train the PCA-, PLS- 

and SMI-based FDD methods to detect faults in the analysers and process measurements. 
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4.3.2 Testing the FDD methods 

In this section, the results of testing the PCA-, PLS- and SMI-based FDD methods are 

presented and discussed. First, the training of the methods is discussed; second, the 

results of the testing are presented; and finally, the summary of the results is given. 

4.3.2.1 Training the FDD methods 

PCA-based FDD was implemented with three separate PCA models, each containing 

delay-compensated input variables and a controlled variable. The structure of the models 

is: PCA1 = [y1 u1 u2 u3 l1 l2]
T, PCA2 = [y2 u1 u2 u3 l1 l2]

T and PCA7 = [y7 u1 u2 u3 l1 l2]
T, 

where the variables are the upper reflux heat duty l1; the intermediate reflux heat duty l2; 

the top draw product end point y1; the side draw product end point y2; the temperature 

measurement y7; the top draw flow rate u1; the side draw flow rate u2; and the bottom 

reflux heat transfer rate u3. The PCA models were able to take the process disturbances 

into account while detecting faults in the process. For each PCA model, three principal 

components were used with 84.1%, 96.5% and 83.8% variance. For FDD purposes, SPE 

and Hotelling T2 limits were calculated using 95% confidence.  

Three PLS models were used for the FDD: the models contain delay-compensated 

measured disturbances l1 and l2, and three control inputs u1, u2 and u3 as the input 

variables. The output variables of the models PLS1, PLS2 and PLS7 are y1, y2 and y7, 

respectively. In the final models, there were three latent variables which capture 79.7%, 

94.6% and 80.3% of the output variance, and 35.8%, 83.1% and 31.3% of the input 

variance, respectively. 

The identified subspace model was trained using the same training data as with the PLS. 

The inputs for the subspace identified system are the two measured disturbances l1 and l2, 

and three control inputs u1, u2 and u3. The outputs are the seven outputs, y1, y2, y3, y4, y5, 

y6 and y7. While creating the state-space models, the order of the model was reduced from 

a 35th order to a 10th order model by limiting the state-space model order during the 

model identification in order to reduce the calculation load with the method. 
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4.3.2.2 Testing the FDD component based on PCA 

In the first FDD testing, the PCA-based FDD was able to detect both bias- and drift-

shaped faults. For the bias fault, both the SPE and the Hotelling T2 detected the fault at 

time step t = 103 minutes, i.e. 3 minutes later than the fault starts to affect the process. 

The drift fault was detected by the SPE at the time step t = 130 minutes. With the 

Hotelling T2 the fault was not detected until at the time step t = 232 minutes. Based on the 

results, the SPE had a significantly faster detection rate than with the Hotelling T2 when 

using the same confidence levels for both methods. Due to the better sensitivity to the 

faults, only the SPE index was used for the fault detection with PCA. The SPE index and 

the Hotelling T2 indices for the bias-and drift-shaped faults are presented in Figure 17. 
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Figure 17. The Hotelling T2 and the SPE indices for the bias-and drift shaped faults in 

the measurement y1. 

The fault isolation was based on the largest SPE value higher than the detection limit. If 

more than one SPE value was higher than the detection limit, then the one with the 

highest SPE value was selected as the faulty one. The fault magnitude and sign were 

estimated as the difference between the model output and the measurement. 
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4.3.2.3 Testing the FDD component based on PLS 

The PLS-based FDD utilised the RMSEP as a fault detection index. This index measures 

the residual between the model outputs and the measurements. The limit for detecting the 

faults was set to 2.5, which was clearly above the noise level of the process. The faulty 

variable was isolated from the RMSEP plots, the highest value being selected as the 

faulty one. Fault magnitude and sign were determined by comparing the PLS model 

predictions to the corresponding measurement value. A bias-shaped fault was affecting 

the top draw distillation end point measurement at the time step t = 100. The fault was 

detected and isolated at the time step t = 103 minutes, after a delay caused by the 

cumulative sum algorithm. Next, the drift fault affecting measurement y1 starting from 

the time step t = 100 was detected at the time step t = 120 minutes. The values of the 

RMSEP for bias and drift faults is presented Figure 18. 
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Figure 18. The RMSEP in the case of bias and drift faults in an output y1. 
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4.3.2.4 Testing the FDD component based on SMI 

In the case of the SMI-based FDD, the faults were detected by comparing the SMI model 

outputs with the measurement outputs. If the residual between the measurements and the 

SMI model outputs value was higher than a fault threshold, then a fault was detected and 

isolated to that specific measurement. The fault threshold was set to 0.07 in order to be 

high enough to exceed the noise level of the process, yet low enough to detect the faults 

as soon as possible. The fault delay mechanism designed for to prevent the effect of 

outliers and random noise caused a small disturbance at the beginning and the end of the 

fault. Otherwise, the FDD component was able to detect the faults in the measurements 

successfully; the bias fault was detected at the time step t = 103 minutes. The drift fault 

was detected after a delay of 33 minutes at the time step t = 133minutes. The results for 

bias and drift faults are presented in Figure 19. 

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SMI residual

 

 

SMI residual of y
1

SMI residual of y
2

SMI residual of y
7

Detection limit

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
SMI residual

 

 

SMI residual of y1

SMI residual of y2

SMI residual of y7

Detection limit

 

Figure 19. The SMI residuals for y1 in the case of bias and drift faults in an output y1. 



 88  

 

4.3.2.5 Summary of testing the FDD components 

In this section the results of testing the PCA-, PLS- and SMI-based FDD components are 

presented with bias and drift faults in the measurement y1. The differences in terms of 

detection times were generally small between the methods as presented in Table 4, where 

the fault detection times are briefly summarised.  

However, as can be seen from the results, the PLS had the shortest detection time in drift 

faults, therefore suggesting that it is the fastest FDD method. In the following sections the 

performance of the FTC is presented with these FDD methods and the results of using the 

different FTC combinations is described. 

Table 4. Detection times for the PCA-, PLS- and SMI-based FDD methods. 

FDD 
component 

Bias fault: 
detection time 

Drift fault: 
detection time 

PCA 3 min 30 min 
PLS 3 min 27 min 
SMI 3 min 33 min 
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4.3.3 Testing the FDD methods with the fault accommodation-based FTC 

strategy 

The PCA-, PLS- and SMI-based FDD methods were then tested with the fault 

accommodation-based FTC strategy with a fault in the top draw product end point y1. The 

goal of the testing is to demonstrate the difference in the performance of different FDD 

with the FTC. 

First, a positive bias fault with a magnitude of 0.5 was introduced into the top draw 

product quality variable y1 at the time step t = 100 minutes, and the fault ends at time step 

t = 300 minutes. Second, a positive drift fault was introduced into the top draw product 

quality variable y1 at the time step t = 100 minutes, and the fault ends at the time step t = 

300 minutes, at which time the fault magnitude is 0.5. 

All three FTC combinations were able to handle both fault types. The simulation results 

for the FTC strategy with the PLS-based FDD is presented and compared against the 

nominal control strategy results in Figure 20 with bias fault in the measurement y1. Other 

cases are presented similarly in Appendix B. As can be seen from the figure, the effect of 

the fault on the process was significant; without the FTC the variable y1 was driven 

towards the lower constraint limit with the manipulated variables also being severely 

disturbed. Due to the fault, off-spec product would have been generated in actual process 

unit and the process would have been disturbed for at least 300 minutes. 

When the active data-based fault accommodation FTC strategy and PLS-based FDD was 

active, the fault was rapidly detected and compensated at the time step t = 103 minutes 

and, due to the fast fault detection, the fault had almost no effect on the measurements. 

The small spike in y1 at the beginning of the fault was caused by the delay in fault 

detection, which was implemented in order to eliminate the effect of random spikes and 

noise in the measurements. In addition, when the fault ended, there was also another 

spike caused by the delay mechanism. Overall, the effect of the delay mechanism was 

small, which can also be seen from Figure 20. 
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Figure 20. The performance of the fault accommodation-based FTC strategy with the 

PLS-based FDD in the case of a bias fault in y1. 

In order to reflect the accuracy of the FDD method prediction while testing the FTC, the 

integral of squared error (ISE) index is calculated and it is presented in Table 5 for each 

of the FTC combinations. In essence, the ISE-index presents numerically the deviation of 

the variable from the setpoint value. The higher the score is, the less accurate the FDD 

and less effective FTC combination are.  

Table 5. The ISE index values for different FDD components when a bias or drift fault is 

affecting the distillation analyser endpoint measurement y1. 

FDD 
component 

Bias Fault: ISE Drift Fault: ISE 

PCA 0.6281 0.613 
PLS 0.6201 0.5299 
SMI 0.6879 0.6883 
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Finally, the performance of the fault accommodation FTC strategy with the different 

FDD methods is compared by measuring the computation times for the whole duration of 

the simulation (800 minutes in simulation time). The simulation was first run without any 

FTC active and then with each of the FDD methods and the fault accommodation FTC 

strategy for the 10 times for each method. The average of the computation times for each 

combination was then calculated and is presented in Table 6.  

Table 6. The average computation times (in real time) of the simulation lasting 800 

minutes (in simulation time) for different FDD methods, when a drift fault is affecting the 

distillation analyser endpoint measurement y1. 

FDD 

method: 

Drift fault: average computation 

times (10 simulations) 

No FTC 48.31 s 

PCA 50.61 s 

PLS 49.74 s 

SMI 50.28 s 

The processor for running the simulations was Intel Core 2 Extreme running at 3.2 GHz 

and the computer was equipped with 4 GB of RAM. When none of the FDD methods 

were active, the simulation took in average 48.31 seconds to run, with PCA 50.61 

seconds, with PLS 49.74 seconds and with SMI 50.28 seconds on average. Based on 

these computation times, the PLS is the fastest method requiring only 1.5 seconds more 

average computation time than the simulation without any of the FDD methods or the 

FTC active. It should be noted that as the average computation times of all of the 

methods were within 1 second of each other, the differences in the average computation 

times were small. 

Based on all of the testing and the results, the active fault accommodation FTC strategy 

with the PLS as an FDD method had overall the best FDD performance and it is therefore 

the most promising FDD component for the fault accommodation-based FTC strategy. 
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4.4 Summary of testing the data-based FDD methods w ith the 

fault accommodation-based FTC strategy for the anal yser and 

sensor faults 

In this chapter, the developed active fault accommodation-based FTC strategy was tested 

with PCA-, PLS- or SMI-based FDD methods for controlling a simulated crude oil 

distillation column model from the Shell control problem by Prett & Morari (1987). The 

active fault accommodation-based FTC strategy composed of three different FDD 

components and a fault accommodation-based FTC part was successfully implemented 

for the detection, isolation, identification and accommodation of the faults in the 

simulated analyser outputs and process measurements. Based on the results of the 

preliminary testing, the presented methods have proven to be effective and the active 

fault accommodation-based FTC strategy was able to counter bias and drift faults in the 

measurements of the simulated oil refining process unit. With the PCA-based FDD 

method, the PCA model was calculated for each output variable and the SPE index was 

used for the fault detection with the Hotelling T2 index only being used for comparison 

purposes. The RMSEP index calculation based on latent variables of the PLS, was used 

for the fault detection in the PLS-based FDD. The SMI-based FDD utilised the residual 

between the identified model output and the measurement value to determine whether a 

fault is present in the measurement. A cumulative sum algorithm was implemented with 

the FTC in order to avoid false alarms and to dampen the effect of the FTC on the 

measurement signal when the fault no longer affects the process. 
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In general, the performance of the tested FDD methods and the active fault 

accommodation-based FTC strategy was good; the maximum deviation between the 

faulty and the compensated measurement values is small - less than 12% of the maximum 

fault magnitude in all cases. The tested the PCA, PLS or SMI as the FDD methods and 

the active fault accommodation-based FTC strategy effectively detected, isolated and 

accommodated the faults that were introduced into the process measurements. The bias 

faults were detected only after the delay caused by the cumulative sum algorithm. For 

drift-shaped faults, the fault detection rate varied between 27 - 33 minutes (14 - 17% of 

the time the fault is affecting the target process), where the PLS-based FDD was the 

fastest and the SMI-based FDD the slowest. Generally, in all cases the fault was detected 

early enough so that the effect of the fault on the measurements was small, less than 12% 

of the magnitude of the fault. The best performance in terms of the smallest effect on the 

measurements was achieved using PLS for both fault types. The computation times for 

different methods were also calculated and the PLS was the fastest method with 49.74 

seconds average computation time, even though the differences between the computation 

times were small in general. 

All of these results indicate that the presented methods have the potential to be used for 

the fault-tolerant control of more complex industrial processes. The fault accommodation 

part of the FTC strategy also worked efficiently in combination with the FDD methods. 

In general, however, the PLS had the best performance and the PLS is therefore the best 

candidate as an FDD component in the final FTC strategy. 
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Overall, the results of the experiments suggest that the tested active fault 

accommodation-based FTC strategy is effective, fast and able to counter different kinds 

of faults. As the crude oil distillation columns are in a crucial position in complex 

refineries, a fault-free operation of the unit is essential in order to ensure a reliable supply 

of raw materials to the other parts of the plant. The effects of the tested faults in a process 

without the active fault accommodation-based FTC strategy are given in Appendix B. In 

general, the impact of the faults was large, the magnitude of the disturbances being at the 

maximum value or near to the maximum value of the hard constraint limit of the 

variables. Such faults would definitely cause problems in actual process unit and lead to 

additional disturbances, and possibly even result in serious financial losses and 

equipment damage if they remain undetected. 

The more detailed test results of the fault accommodation-based FTC strategy are 

presented in Kettunen et al. (2008), where the author has tested the FTC strategy together 

with the PI-based control strategy and compared the differences and the effectiveness 

between the PI-based FTC and MPC-based FTC. 
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5 Description of the target dearomatization process and 

its control strategy 

After the theoretical background for developing an FTC strategy has been developed, it is 

possible to describe the target testing process along with the control objectives. Generally, 

a suitable testing environment for a fault-tolerant MPC is a complex industrial process, 

such as LARPO dearomatization process at the Naantali refinery, with faults in the 

measurements, actuators and, for example, the process analysers. In this chapter, the 

description of the target industrial dearomatization process and its control strategy are 

given. 

5.1 Description of the dearomatization process 

The target process for the FTMPC is a complex industrial dearomatization process, 

LARPO, located in the Naantali refinery owned by Neste Oil Oyj. The purpose of the 

LARPO dearomatization process is to remove aromatic compounds from the solvent 

feedstock through catalytic hydrogenation in a continuous process. Exothermic saturation 

reactions take place in the reactors, which remove the aromatic compounds from the feed. 

The product quality parameters, such as the initial boiling point (IBP) or flashpoint (FP), 

are adjusted in the distillation part of the unit. LARPO is in a crucial position in the 

Naantali refinery because most of the solvent products of the refinery are non-aromatic, 

and a failure in the product quality analysers may cause large quantities of off-spec 

products and thus significant financial losses. Potentially, a low quality end product may 

have an effect on the customers and create problems in selling the final products. 

The LARPO dearomatization process is composed of two trickle-bed reactors with 

packed catalyst beds to remove the aromatic compounds; a distillation column used to 

control the specifications of the end products; several heat exchangers, which import and 

export energy in the process; separation drums; a filling plate stripper as well as other 

process equipment, which carry out supplementary tasks in the unit. The flow diagram of 

the LARPO process is presented in Figure 21 according to Vermasvuori et al. (2005). 
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Figure 21. The industrial dearomatization process, LARPO, according to Vermasvuori et 

al. (2005). 

The feedstock fed into the unit is heated up to reaction temperature using the heat 

circulated from the reactors through heat exchangers EA1 and EA2, as well as a hot oil 

heat exchanger. This heated stream is then fed to reactor DC1, together with the recycled 

liquid feed and heated hydrogen feed composed of fresh and recycled hydrogen. If the 

catalyst of the first reactor is at the beginning of the catalyst’s life-cycle, most of the 

aromatic compounds are removed in the first reactor; however, at the end of the catalyst’s 

life-cycle, more and more reactions also take place in the second reactor DC2.  

After passing from the first reactor DC1, the product feed is cooled down in heat 

exchanger EA1 and then fed to gas separation drum FA1, where gaseous and liquid 

products are separated. A low-aromatic feed is cut off and fed back to reactor DC1 in 

order to ensure a higher feed rate and lower end product aromatics content. Separated gas, 

the rest of the liquid products and quench hydrogen are fed to reactor DC2. In reactor 

DC2, the level of aromatics in the products is further decreased until it meets the final 

quality requirements of the end products. 
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The product of the dearomatization process in the second reactor DC2 is cooled down in 

heat exchangers EA2 and EA3, and by using an air cooler. This stream is then fed to the 

second gas separation drum, FA2, where gaseous and liquid products are again separated. 

The gaseous product mainly contains unreacted excess hydrogen, and this hydrogen flow 

is mixed with fresh hydrogen feed and fed back to the first reactor, thereby increasing the 

total hydrogen pressure in the unit and improving the hydrogenation process. The liquid 

low-aromatic product stream is heated in heat exchangers EA4 and EA5 using heat from 

the product and by-product streams. Before reaching the distillation column, the feed is 

further heated at heat exchanger EA6 using desulphurised product feed from another 

process unit. 

In distillation column DA1 (contains 42 trays), heat exchanger EA6 provides distillation 

column DA1 with energy with which to boil column DA1 feed. A side stream is 

conducted to by-product stripper unit DA2 (contains 4 trays), which is heated by heat 

exchanger EA7 using hot oil. The by-product stream is drawn off from the bottom of the 

stripper unit DA2, and heats the feed of column DA1 at heat exchanger EA4. The stream 

from column DA1 overhead is cooled and this stream is then fed to the overhead drum 

FA3. In overhead drum FA3, the liquid is divided into distillate and reflux flows; the 

gaseous part is then separated and removed from the unit. Column DA1 distillate contains 

lighter compounds, such as gasoline, and is forwarded to other units for further 

processing. The non-aromatic main product is drawn off as a bottom product of column 

DA1. The DA1 bottom product is then cooled down in heat exchanger EA5, which also 

heats up the feed to column DA1. The quality of the final product is measured with 

flashpoint and distillation curve analysers. The quality of the by-product from stripper 

unit DA2 is also monitored by means of a flashpoint analyser. The laboratory analyses of 

the main product and the by-product feeds are carried out three times a day in order to 

ensure the quality of the end products. 
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The feedstock type of the dearomatization unit is changed once every four days on 

average. The properties of the feedstock vary and there are as many as six different types 

of petroleum and light gas oil cuts used as feed for the unit. The heavier part of the 

distillation curve, the distillation end point property of the product, is mainly adjusted in 

the previous process units; however, the lighter end of the distillation curve, the initial 

boiling point and flashpoint properties are adjusted in the LARPO distillation column 

DA1 based on the product specifications. 

The Naantali refinery is a special products plant, which has a wide product palette 

containing over 140 different oil refining products. The capacity of the refinery is 

relatively small - some three million tons of crude oil is processed each year - compared 

to most oil refineries in Europe, which ranks the refinery in the fourth quarter of 

European refineries based on the amount of processed crude oil. The major part of the 

production and income in the refinery is composed of the production of low-sulphur fuel 

and diesel products. Some 25% of all products are exported, the rest being supplied to 

domestic markets. One of the most profitable products in the Naantali refinery is the 

special solvents produced out of naphtha, kerosene and middle distillates. 

In a small refinery such as Naantali, the quality of the end products is of high importance. 

There are several factors affecting the quality requirements of specialty products such as 

their potentially high price and the increasing quality and safety demands. It is therefore 

important to ensure the continuous, stable production of in-spec quality products. For this 

reason, the correct and accurate operation of the analysers, process measurements and 

controllers is an especially critical factor for the successful operation of the solvent units 

and the production of special solvent products. 



 99  

 

5.2 Control strategy of the dearomatization process  

In this section, the control strategy for the LARPO dearomatization process is presented 

by introducing the basic control strategy, the MPC objectives and the MPC control 

variables of the target process. 

5.2.1 Basic control strategy of the dearomatization process 

As the dearomatization process is a complex industrial unit, a large number of 

measurements and sub-level controllers are utilised to stabilise and control the reactions 

and flows within the unit. In the following, the basic controls of the LARPO unit are 

presented. 

The liquid feedstock volume flow rate to the unit is usually determined by the amount of 

desulphurised feed coming directly from the previous process unit. The feed flow 

controller can be set in a cascade mode in order to adjust the feed rate on the basis of 

production volumes of the previous unit. The LARPO unit can also take feed from a feed 

tank, in which case the flow rate is set manually by the operating personnel. The fresh 

hydrogen flow rate to the first reactor, DC1, is adjusted with a flow controller. The goal 

of the fresh hydrogen feed controller is to provide hydrogen to successfully carry out 

hydrogenation and to protect the catalyst from coking. 

The temperature of the liquid feed entering the first reactor is controlled by adjusting the 

bypass of feed heat exchangers EA1 and EA2, and by controlling the hot oil flow to the 

hot oil heat exchanger before the first reactor DC1. The hot oil temperature controller 

also adjusts the hydrogen temperature, because the same amount of hot oil flows through 

the hydrogen feed flow. As the hydrogenation reaction is highly exothermic, the 

temperatures within reactors DC1 and DC2 are monitored carefully with four temperature 

sensors located in each reactor bed, and in the inlet and outlet of reactors DC1 and DC2. 
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After the first reactor, DC1, part of the liquid product and hydrogen is relayed back to the 

unit feed by means of flow controllers. This liquid recycle feed keeps the hydrogenation 

process under control and further prevents catalyst coking. The recycled hydrogen further 

improves the removal of aromatic compounds, adjusts the pressure of the first reactor 

DC1 and maximises the hydrogen-to-oil-ratio, depicting the relative amount of hydrogen 

against the feed flow rate, and also protects the catalyst from coking. 

After reactor DC2, the mixed flow is cooled down in heat exchangers EA2 and EA3 and 

the air cooler by using a temperature controller that adjusts the air cooler air flow rate and 

the effectiveness of the cooler. 

The cooled down liquid flow is separated from hydrogen in the second separation drum, 

FA2, and, based on the unit pressure, the excess hydrogen is then forwarded through a 

pressure controller to other hydrogen consuming units in the refinery. The level controller 

of the second separation drum, DA2, adjusts the liquid flow rate onward. 

The liquid non-stabilised feed of the column DA1 is heated up again in heat exchangers 

EA4 and EA5, and finally by means of a temperature controller cascaded with two flow 

controllers; part of the feed is relayed through heat exchanger EA6, while part of the feed 

flows directly to column DA1. The temperature of column DA1 is controlled both by the 

feed temperature and also by the reboiler of column DA1 recycling hot flow in the 

bottom part of column DA1. When the temperature of column DA1 is increased, the 

bypass of the reboiler is closed, and when the temperature is lowered the bypass valve of 

the reboiler is again opened. 

The separation accuracy and the temperature of the top part of column DA1 are adjusted 

with the reflux flow that feeds part of the distillate back to column DA1. The liquid 

distillate flow is adjusted on the basis of the level measurement of overhead drum FA3. 

The pressure of column DA1 is adjusted with the purge gas flow from the overhead drum. 

The feed rate of stripper unit DA2 is adjusted by a flow controller and its temperature is 

adjusted by a hot oil reboiler. 
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The primary product flow from the bottom of column DA1 is controlled with the DA1 

level controller. A similar arrangement is set to stripper unit DA2, where by-product flow 

from the bottom of stripper unit DA2 is controlled by the DA2 level controller. The final 

product and by-product are finally cooled down by using the heat energy to first heat up 

the column feed, and then by using a temperature controller adjust the water flow to the 

product heat exchangers. 

The basic controllers of the LARPO process are also presented in Figure 22 (HO = ‘Hot 

Oil’ and CW = ‘Cooling Water’). 
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Figure 22. The controllers of the industrial dearomatization process, LARPO, located at 

the Naantali refinery. 
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5.2.2 Control objectives of the MPC for the dearomatization process 

The primary control objective for the MPC of the LARPO dearomatization process is to 

keep the distillation column DA1 bottom product above the product quality limit. A 

secondary objective is to minimise the additional production costs by aiming to keep the 

product quality as close as possible to the specifications while maximising the feed rate. 

In practice, the goals are to maintain the DA1 bottom product within the specifications 

(initial boiling point, flashpoint or DA1 temperature), and to minimise the DA2 bottom 

product flashpoint within the by-product specification limits. 

In the measurements of both the DA1 and DA2 bottom product, the product quality 

should never fall below the minimum specification limits. If the quality specifications are 

not met, off-spec production occurs and an over-quality product needs to be mixed with 

the off-spec product in order to meet the specifications. However, if the value of the 

variables is higher than the minimum limit, energy and financial losses increase because a 

larger amount of valuable product goes for reprocessing with the overhead distillate flow. 

5.2.3 Control variables of the MPC for the dearomatization process 

Five controlled variables are defined for the MPC of the LARPO dearomatization 

process: column DA1 bottom product initial boiling point (DA1_BP_IBP); DA1 bottom 

product flashpoint (DA1_BP_FP); DA1 liquid distillate flow rate (DA1_DIST_FC); DA1 

pressure-compensated temperature (DA1_TC); and column DA2 bottom product 

flashpoint (DA2_BP_FP). The LARPO controlled variables are presented in Table 7 

along with the control objectives in parenthesis. 

Of these controlled variables, DA1_BP_IBP, DA1_BP_FP and DA1_TC are alternative 

variables and thus only one of these can be used at a time for control. Only DA1_BP_FP 

is relevant to the specific heavy feedstock that is studied in this thesis.  

Overhead flow rate DA1_DIST_FC is minimised by controlling by-product flashpoint 

DA2_BP_FP, and thus maximising flow to by-product stripper unit DA2 and therefore 

minimising overhead flow rate DA1_DIST_FC.  
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Four disturbance variables are used in the MPC: the DA1 feed flow rate 

(DA1_FEED_FC); the DA1 feed temperature (DA1_FEED_TC); the DA1 heating 

medium temperature (DA1_HEAT_TC); and the DA1 pressure (DA1_PC). The LARPO 

disturbance variables are presented in Table 8. 

Four manipulated variables are used for the control of the process: the DA1 reflux flow 

rate (DA1_REFLUX_FC); the EA6 hot stream feed rate (DA1_EA6_FEED_FC); the 

DA2 feed flow rate (DA2_FEED_FC); and the EA7 hot stream feed rate 

(DA2_EA7_FEED_FC).  The LARPO manipulated variables are presented in Table 9 

along with the control objectives in parenthesis. 

Table 7. The LARPO controlled variables. 

Variable name Variable description Unit 

DA1_BP_IBP DA1 bottom product initial boiling point (target) °C 

DA1_BP_FP DA1 bottom product flashpoint (target) °C 

DA1_DIST_FC DA1 liquid distillate flow (minimise indirectly) kg/h 

DA1_TC DA1 pressure-compensated temperature (target) °C 

DA2_BP_FP DA2 bottom product flashpoint (target, minimise) °C 

Table 8. The LARPO disturbance variables. 

Variable name Variable description Unit 

DA1_FEED_FC DA1 feed flow rate t/h 

DA1_FEED_TC DA1 feed temperature °C 

DA1_HEAT_TC DA1 heating medium temp. °C 

DA1_PC DA1 Pressure kPa 

Table 9. The LARPO manipulated variables. 

Variable name Variable description Unit 

DA1_REFLUX_FC DA1 reflux flow rate (maximise) t/h 

DA1_EA6_FEED_FC EA6 hot stream feed rate (minimise) t/h 

DA2_FEED_FC DA2 feed flow rate (maximise) t/h 

DA2_EA7_FEED_FC EA7 hot stream feed rate (keep steady) t/h 
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6 Integrated FTMPC for the industrial dearomatization 

process 

As continuous plant operation is essential especially in a plant producing highly 

profitable products, the careful design of an FTMPC is critical for the plant’s fault-free 

operation. This usually requires, in addition to theoretical research, extensive interviews 

with the plant personnel and the study of logbooks, incidence reports and maintenance 

department records. Based on this gathered information the specification of the design 

schemes can be made and an active integrated FTMPC for control of the target process 

delivered.  

In this chapter, the requirements for the active FTMPC for the target dearomatization 

process are presented first. Second, the faults in the target process are discussed and 

finally the integrated FTMPC with its three parallel-running FTC strategies are described. 

6.1 The requirements of the FTMPC for the industria l 

dearomatization process 

In order to successfully apply the FTC design schemes while creating an FTMPC for the 

dearomatization process, the user requirements of the FTMPC are determined. The 

requirements for an FDI strategy to be implemented in the Naantali refinery have earlier 

been determined by Vatanski et al. (2005) in the same project in which the author has 

been working in. These user requirements have been determined through interviews 

carried out in the Naantali refinery during autumn 2004. The interviews were based on 

four topics. First, the user interface, interface to other parts of the control strategy and the 

installation, upkeep and updating of the active FTC strategy were discussed. Second, 

typical faults in the process analysers were determined. Third, the information and tools 

for detecting faults by the plant personnel were recorded. Fourth, the FTC actions after 

the detection of the fault were decided upon and the needs for the automated actions were 

charted. Based on the responses, a set of requirements was determined for an FDI 

strategy, but the results of the interviews apply to the development of the FTMPC as well.  
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The resulting user requirements were focused on five topics. First, the fault types to be 

detected should contain at least a drifting fault. Second, the fault detection should happen 

as early as possible. Third, the FDI method should provide enough background 

information about the fault detection and diagnosis. Fourth, the external factors and 

specially the operating point changes should be taken into account; and finally, the 

measurement device calibrations should be taken into account and not categorised as 

faults. These requirements are presented in following Table 10. 

Table 10. The requirements for the FDI strategy in the Naantali refinery according to 

Vatanski et al. (2005). 

Requirement topic Requirement 

The FDI strategy shall detect incipient faults that do not cause variables to violate their 

alarm limits. 

Detected types of fault  

The FDI strategy should detect faults especially drifting of the measuring devices. 

Time instant of fault 

detection 

The strategy should be able to inform the operator about faulty conditions as early as 

possible. When the faults are detected in time their effects are easier to mitigate and 

have smaller impact on the overall process. 

Background information 

about the FDI methods  

The strategy shall provide background information about the fault detection and 

isolation methods used, as well as the assumptions used in diagnosis. 

The FDI strategy shall identify and be aware of the current operating point in order to 

be able to detect smaller deviations from nominal operation conditions  

FDI taking into account 

external factors 

The change in the operation point shall also be detected and must not be categorised as 

a fault. 

The effects of calibrating measurement devices shall be stored and taken into account in 

fault diagnosis because calibration produces sudden changes in measurement values, 

and these might be detected as faults. 

Being aware of the 

calibration of measurement 

devices 

The date of calibration shall be used as one reliability measure of the measurement. 
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6.2 Faults in the target dearomatization process 

In a study carried out by Liikala (2005), the process diary and process history of the 

Naantali refinery were examined in order to gather information of the faults in the 

dearomatization process. During the time period covered in that study, nearly 70% of all 

faults in the LARPO unit were related to analysers as shown in Figure 23. 

 

Figure 23. The most common faults in the dearomatization process during one year of 

operation (Liikala, 2005). 

In order to gather more information on the faults and their effects on the process, data 

from the Naantali refinery maintenance department were studied during 09/2008-09/2009 

by the author. During this period, faults such as temperature, flow and pressure 

measurements, control valves and process analysers were taken into account. All faults 

requiring maintenance work were included in the study. The fault data was divided into 

three categories: analyser faults, measurement device faults and control valve faults. 

Based on the results, 42% of the faults were located in the analysers; 42% in the 

measurement devices; and 16% in the control valves. The results are given in Figure 24. 
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In addition to data from the maintenance department, the flashpoint analyser output on a 

heavy grade feed run was compared to the laboratory measurements during the period 

09/2008 - 09/2009. The flashpoint analysis utilises EN ISO 2719-2002 M method and the 

method has a repeatability of 2.8°C on the given data set. The aim of the comparison was 

to determine the number of measurements in which the analyser measurement differed 

from the laboratory measurement by more than 2.8°C, which in practice means that the 

analyser measurement was faulty. In addition, the downward faults causing off-spec and 

upward faults resulting in over-quality products were categorised.  

Naantali LARPO unit control system faults during 
2008-2009

42 %

42 %

16 %

Process analyzers

Process measurements

Control valves

 

Figure 24. The LARPO sensor, measurement and actuator faults during 09/2008 - 

09/2009. 

Based on the data, it was estimated that off-spec was produced due to the analyser faults 

in 3% of the cases and too high quality product was produced in 3% of the cases. In total, 

6% of the analyses during the heavy grade run differed by more than 2.8°C from the 

analyser readings, causing either off-spec production or too high quality production. 

Based on these studies, it can be concluded that most of the faults in the LARPO unit 

were located in process analysers, although also some faults have been present in other 

measurements and control valves of the unit. The fault types to be tested with the final 

active FTC strategy are thus narrowed down to bias- and drift-shaped faults for the 

analysers and sensors of controlled variables, a bias-shaped fault for the sensors of 

disturbance and manipulated variables and a stuck valve fault for the actuators. 
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6.3 Description of the three parallel-running FTC s trategies of 

the integrated FTMPC for the industrial dearomatiza tion 

process 

Three parallel-running FTC strategies of the integrated FTMPC for the target 

dearomatization process are next proposed based on the integrated FTC design scheme 

presented in Section 3.5.3. 

The first FTC strategy includes a fault accommodation-based strategy for the CV and DV 

sensor faults based on the fault accommodation FTC design scheme presented in Section 

3.5.1 and the recursive PLS as an FDD. The second strategy is composed of the fault 

accommodation- and controller reconfiguration-based FTC strategies presented in 

sections 3.5.1 and 3.5.2 for the MV sensor faults, where the controller reconfiguration 

part is adopted from DCP principle by Buffington and Enns (1996). The last strategy is 

composed of the controller reconfiguration-based FTC strategy for the MV actuator faults 

based on the DCP principle, the controller reconfiguration FTC design scheme presented 

in Section 3.5.2 and an FDD method based on the difference between MV setpoint and 

measurement. In the following, these three parallel-running FTC strategies are described. 
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6.3.1 Active fault accommodation-based FTC strategy for the sensor faults 

of the controlled and disturbance variables 

The first FTC strategy is used to reduce the effect of the faults in the CV or DV sensors 

or, for example, in process analysers. The fault accommodation-based FTC is used for 

accommodating the faults with the fault estimation gained from the FDD. A recursive 

PLS is used for estimating the values of the faulty measurements. 

The active FTC strategy for both the CV and DV sensor faults is based on the fault 

accommodation FTC design scheme presented in Section 3.5.1 and in Figure 5. In this 

FTC strategy, the faults in the CV or DV sensors are first detected by the FDD. After 

successful fault detection, the magnitude of the fault is estimated and this estimation is 

then used to accommodate the faulty measurement. As soon as the fault is removed from 

the process, the correction value is removed. Detection of the fault is based on the PLS 

RMSEP index, and the suitable threshold for each variable is determined on the basis of 

the RMSEP values during the nominal unit operation. 

6.3.1.1 FDD for the fault accommodation-based FTC strategy for CV or DV faults 

The FDD for the CV or DV sensor faults is based on the PLS and the commonly known 

NIPALS algorithm by Wold et al. (1983), which has been described earlier in Section 

3.4.2. The PLS method has also been presented in a paper by Vermasvuori et al. (2005); 

however, the PLS method used in the thesis utilises a PLS algorithm, enhanced by the 

author to use recursive inputs, which essentially adds a dynamic element to the PLS 

formulation. In the recursive PLS, two models are implemented for each variable in order 

to prevent the accumulation of faults through recursive inputs. One of the PLS models 

controls fault detection (preventing faulty information to be relayed to the fault 

estimations); the other carries out fault estimation. These modifications essentially make 

the algorithm used in the final application of the thesis different from that used by 

Vermasvuori et al (2005). The author also wishes to note that the focus of this thesis is 

not on FDI (as it is in the paper by Vermasvuori et al., 2005), but in the development of 

the integrated FTMPC.  
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The CV values are estimated by using all of the control system DVs and MVs an input to 

the PLS. The delay the CV estimation is the maximum delay between each of the input 

variables (DV or MV) and the CV. In addition, two past values of the outputs are used as 

inputs; one value from the time step t-d1, and the other from the time step t-d2, where 

d1<d2. The past values introduce a recursive element to the PLS, thus significantly 

increasing the estimation accuracy of the models. The first set of PLS models is used for 

fault detection and the second set for the fault estimation. The measurements used to 

estimate the CVs are: the DA1 feed flow rate (DA1_FEED_FC); the DA1 feed 

temperature (DA1_FEED_TC); the DA1 heating medium temperature 

(DA1_HEAT_TC); the DA1 pressure (DA1_PC); the DA1 reflux flow rate 

(DA1_REFLUX_FC); the EA6 hot stream feed rate (DA1_EA6_FEED_FC); the DA2 

feed flow rate (DA2_FEED_FC); and the EA7 hot stream feed rate 

(DA2_EA7_FEED_FC).   

Since the recursive element may also carry over faulty data before this fault is detected, 

another PLS model is required to estimate the measurement values with non-faulty data. 

This means that the active FTC strategy has enough time to detect the faults before the 

fault contaminates the PLS estimation models through the recursive input. This second 

set of models have exactly the same input values, except for the past output measurement 

values, which are derived further from the past from the time step t-d3 and the time step t-

d4, where d1<d2<d3<d4. The second set of PLS models is used for fault estimation. The 

accuracy of the second model is not as good as the first because the delay between the 

past output values and the current output is larger, but the accuracy should be sufficient 

enough to provide a reliable fault estimation. 
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The DV values are estimated by using the current output values. In this case, the delay of 

the DV fault detection is the maximum delay between the DV to be predicted and the 

measurements used for estimating the DV values. Since the FTC for the CV sensor faults 

is partially based on DV values, a different set of measurements is used for the estimation 

of the DV values. The measurements used for the DV estimations are the DA1 overhead 

temperature measurement (DA1_TEMP_1); the temperature at tray 13 (DA1_TEMP_3); 

the temperature at tray 21 (DA1_TEMP_4) and the column DA1 overhead gas flow rate 

(DA1_OVHD_FLOW_FC).  

The estimation of the DV values also utilises recursive PLS. The two past values of the 

output are used as inputs; one value from the time step t-dmax-d3 and the other from the 

time step t-dmax-d4, where dmax is the maximum delay between PLS inputs and outputs and 

d3 and d4 are the delays for the dynamic FDD. The first PLS model is used for detecting 

the faults and the second for estimating the fault magnitude. 

6.3.1.2 FTC for the fault accommodation-based FTC strategy for CV or DV faults 

The FTC part of the fault accommodation-based FTC strategy is based on the fault 

accommodation design scheme presented in Section 3.5.1. As described in the scheme, 

the degree of fault accommodation is handled with a fault detection delay counter, which 

increases the amount of accommodation during each time step the fault is detected. In 

essence, the delay counter is increased by one after each one minute control cycle has 

passed and a fault is detected. When the value of the counter exceeds the preset low limit 

LL, the FTC action is engaged. In this case the fault accommodation is carried out and the 

faulty CV or DV is accommodated with the fault estimation ∆y provided by the PLS and 

multiplied with the degree of accommodation L presented in equation (38). On the other 

hand, if no fault is detected, the counter is decreased by one after one minute control 

cycle has passed and if no fault is detected. If the counter value goes below the limit LL, 

the fault accommodation is disabled and the correction value is removed. 

The procedure and the flowchart for the CV or DV sensor faults are presented in 

Appendix A.1. 
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6.3.2 Active fault accommodation and controller reconfiguration-based FTC 

strategy for the sensor faults of the manipulated variables 

The second FTC strategy is used to reduce the effect of the faults in the MV sensors. The 

fault accommodation- and controller reconfiguration-based FTC is used to accommodate 

the faults with the fault estimations gained from the FDD. A recursive PLS is used to 

detect the faults and estimating the values of the faulty measurements. 

The active FTC strategy for MV sensor faults is based on the fault accommodation and 

controller reconfiguration FTC design schemes presented in Sections 3.5.1 and 3.5.2 and 

in Figure 5 and Figure 9. If a fault is detected in an MV measurement, it is adjusted by 

the magnitude of the fault estimation and, after this, the reconfiguration actions are 

engaged; the faulty MV is moved to the opposite direction by the amount of fault 

magnitude and the MV is set as a DV in the MPC and an auxiliary DV is used as an MV. 

When the fault is removed from the process, the original MPC and FTC structure is 

restored and the MV can again be used for control. 

6.3.2.1 FDD for the fault accommodation- and controller reconfiguration-based 

FTC strategy for MV sensor faults 

The MV values in the past are estimated by using the current measurement outputs as an 

input to the PLS. As with the DVs, the delay is the maximum delay between the MV and 

the measurements used for the estimation. The measurement set used for the estimation 

of the MV values is slightly different from that with the DV value estimation; in this case, 

each of the MV has a unique set of input variables to be used for the estimation. This 

kind of approach is required because without careful variable selection, the performance 

of the control system is greatly affected. For instance, if an input variable with a long 

delay to the MV is selected, this directly affects the delay in detecting the faults. Only 

one PLS model is used for the FDD in this FTC strategy. 
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Overall, the variables used for the estimations are the column DA1 overhead temperature 

(DA1_TEMP_1); the temperature at tray 5 (DA1_TEMP_2); the temperature at tray 13 

(DA1_TEMP_3); the temperature at tray 21 (DA1_TEMP_4); the temperature at tray 41 

(DA1_TEMP_5); the temperature of the bottom product (DA1_TEMP_6); the DA1 

overhead gas flow rate (DA1_OVHD_FLOW_FC); the DA1 bottom product flow rate 

(DA1_BP_FC); the DA2 overhead gas flow rate (DA2_DIST_FC); the DA2 upper 

pressure measurement (DA2_PC1); the DA1 feed exchanger hot fluid flow rate 

(DA1_FEED_EA_FC); the DA2 bottom product temperature (DA2_BP_TC); and the 

DA2 bottom product flow rate (DA2_BP_FC). 

6.3.2.2 FTC for the fault accommodation- and controller reconfiguration-based 

FTC strategy for MV sensor faults 

The FTC part for the MV sensor faults consists of two parts: a fault accommodation part 

and a controller reconfiguration part. Again, the FTC actions are handled with a fault 

detection delay counter, which increases the amount of accommodation during each time 

step the fault is detected. The delay counter is increased by one after each one minute 

control cycle has passed and a fault is detected. When the value of the counter exceeds 

the preset low limit LL, the FTC action is engaged. In this case the faulty MV is moved to 

the opposite direction of the fault by the amount of fault estimation, the MV is 

accommodated with the fault estimation and the MV is set as a DV in the MPC. In 

addition, in order to cover for the loss of an MV, and auxiliary MV, DA1 feed 

temperature controller (DA1_FEED_TC) is used as an MV instead. On the other hand, if 

no fault is detected, the counter is decreased by one after one minute control cycle has 

passed and if no fault is detected. If the counter value goes below the limit LL, the 

previously faulty MV is set back as an MV in MPC, the fault accommodation is removed 

and the auxiliary MV DA1_FEED_TC is set back to DV. 

The procedure and the flowchart for the MV sensor fault are presented in Appendix A.2. 
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6.3.3 Active controller reconfiguration-based FTC strategy for the actuator 

faults of the manipulated variables 

The third FTC strategy is used for reducing the effect of the faults in the MV actuators. 

The DCP-based controller reconfiguration algorithm is used in the FTC strategy for the 

actuator faults. In this case, the FDD is based on the difference between the MV setpoint 

and the MV measurement value.  

The active FTC strategy for MV actuator faults is based on the controller reconfiguration 

FTC design schemes presented in Section 3.5.2 and in Figure 9. If an actuator fault is 

detected, the FTC algorithm is triggered and the faulty variable is set as a DV and the 

auxiliary MV variable is set as an MV.  

6.3.3.1 FDD for the controller reconfiguration-based FTC strategy for MV 

actuator faults 

The FDD for the controller reconfiguration-based FTC for MV actuator faults is based on 

the difference between the setpoint and the measurement value of the MV. The detection 

of a stuck valve fault is based on the RMSE index, which is calculated from the 

difference between the MPC control output and the controller measurement. If the 

difference between the setpoint given by the MPC and the sub-level controller 

measurement is sufficiently large, and the cumulative sum has increased enough, the MV 

is declared faulty and the FTC actions are engaged. 

The four MVs to be monitored are the DA1 reflux flow rate, the EA6 hot stream flow rate, 

the DA2 feed flow rate and the EA7 hot stream flow rate. These variables form the 

primary control set for column DA1, and the DA1 feed flow temperature is used as a 

secondary control set. Since all four MVs adjust the energy balance in the column, the 

column feed temperature controller can temporarily replace one or more of the MVs.  
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6.3.3.2 FTC for the controller reconfiguration-based FTC strategy for MV 

actuator faults 

The FTC part for the MV actuator faults consists of controller reconfiguration. The FTC 

actions are handled with a fault detection delay counter, which increases the amount of 

accommodation during each time step the fault is detected. The delay counter is increased 

by one after each one minute control cycle has passed and a fault is detected. When the 

value of the counter exceeds the preset low limit LL, the FTC action is engaged. In this 

case the faulty MV is set as a DV in the MPC. In addition, in order to cover for the loss 

of an MV, and auxiliary MV, DA1 feed temperature controller (DA1_FEED_TC) is used 

as an MV instead. On the other hand, if no fault is detected, the counter is decreased by 

one after one minute control cycle has passed and if no fault is detected. This time the 

faulty MV cannot be automatically normalised, as the FDD is based on the difference 

between the setpoint and the measurement and thus this value is no longer updated when 

the MV is removed from the MPC. Therefore, the faulty MV needs to be manually 

returned by the operator when the fault has been corrected in the faulty actuator. 

The procedure and the flowchart for the MV actuator fault are presented in Appendix A.3. 
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7 Performance validation and economic evaluation of 

the integrated FTMPC for the target dearomatization 

process 

Before the implementation of the FTMPC to the actual process unit, it is highly beneficial 

to validate the control performance in an advanced process simulator with an accurate 

simulation model of the target process. In this way, any possible design flaws and 

benefits can be estimated in advance without disturbing the actual process. Therefore, in 

order to validate the performance of the active data-based integrated FTMPC defined in 

Chapter 6, the integrated FTMPC is utilised for controlling the simulated dearomatization 

process described in Chapter 5 in the presence of typical process faults given in Chapter 6. 

In order to economically justify the implementation of the developed FTMPC, the 

economical benefits of the proposed FTMPC are analysed based on the evaluation of the 

fault effects on the actual dearomatization process.  

In this chapter, the simulation environment is first described by defining the testing 

platform and data pre-processing procedures along with the results of the process 

linearity testing and the definition of the nominal MPC based on the given control 

objectives, variables and constraints. Second, the results of testing a nominal MPC in the 

simulated dearomatization process are presented in order to be able to measure the 

economical benefits of the FTMPC. Third, the performance of the FTMPC is validated 

by showing the results of testing the sensor faults in the CVs, DVs and MVs, and the 

actuator faults in MVs and by summarising the results of the testing. Finally, the 

economic benefits of the FTMPC are assessed in order to justify the implementation of 

the FTMPC to the actual dearomatization process. 
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7.1 Description of the simulated process environmen t 

In this section, the process simulator and data pre-processing, linearity testing of the 

target process and the definition and modelling of the MPC is presented. 

7.1.1 Description of the testing platform 

The simulation studies on the LARPO dearomatization process were carried out in the 

ProsDS (formerly known as PROSimulator) - a dynamic process simulator developed by 

Neste Jacobs Oy - which has simulation models representing the physical-chemical 

behaviour of the target process.  

The simulation model for the LARPO unit contains a large number of measurements, 

analyser readings and low-level control loops in order to accurately present the behaviour 

of the target process. An accurate model thus enables the testing and development of 

different control strategies offline. 

The measurements from the ProsDS were transferred in real time to the Matlab 

workspace, from where the measurements were further transferred to the Matlab-based 

software platform. The platform handled the orchestration and pre-treatment of data by 

using algorithms developed by the author. Pre-treatment includes noise and outlier 

removal by filtering and the data interpolation for missing data points.  

The FDD component of the strategy uses the FDD based on the recursive PLS as 

described in Section 6.3. The FTC part of the platform processes data and, if necessary, 

accommodates or reconfigures the nominal controller based on the FDD estimations as 

presented in Section 6.3. Also, there was a delay mechanism in place for the FTC 

component, designed to prevent effect of random spikes and false alarms. This delay 

mechanism has been described in Section 3.5.1 and Section 6.3. 
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The nominal MPC component calculates the optimised control inputs based on the 

process measurements, which were then written to the Matlab workspace. From the 

Matlab workspace, the ProsDS read the optimised input values and adjusted the target 

sub-level controllers accordingly. Data were retrieved and recorded every five seconds 

and the FTC part and the nominal MPC operated once per minute. The structure of the 

software platform is depicted in Figure 25: 
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Figure 25. The structure and the data flow within the FTC software platform. 

Industrial measurement data contains measurement noise and outliers, which usually 

have an effect on the control system performance. Also, according to Ray (1989, pp. 28-

30), it is necessary to filter industrial data in order to reduce the effect of the noise and 

outliers on the measurements. In the simulation of the LARPO dearomatization process, 

all the measurements contain a degree of process noise; for this reason, pre-processing of 

the data was carried out to reliably control the target process. 

A moving average filter was used in filtering the simulated LARPO process 

measurements. The moving average filter was utilised in the following formulation at 

each time step to remove noise from the measurements: 
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where yf,t is the filtered measurement value at the current time step t; yi the measurement 

value at the time step i; t the current time step; and w the window size. 
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The window size for the target measurements was set to 15 minutes for the DA1 

distillation flow rate and three minutes for all the other measurements. The window 

length was set longer for the DA1 distillation flow rate due to the high noise variation and 

nonlinearity present in this measurement. 

Occasionally, some measurement data were not recorded from the ProsDS to the Matlab 

due, for example, to a high computer load or a random error in the Matlab or ProsDS 

software or in the connection between ProsDS and Matlab. Therefore, it was necessary to 

determine the number of missing data points and to interpolate the missing values. 

Missing data was detected by using a timer variable in ProsDS, which was increased at 

every execution of ProsDS. The timer variable was monitored and the difference between 

the number of the current time steps and the previously recorded time step was measured. 

If the difference was larger than a single time step, then the values of the missing 

measurements were interpolated by using a linear interpolation method as presented in 

the following equation: 
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where t is the current time step, m is a number of the missing measurements, and i is an 

index for the missing measurements (i = 0...m). 

Since the MPC control cycle was set to one minute, MPC control action data was 

interpolated between the one minute periods. In this case, the zero-order hold (ZOH) 

interpolation was used. In this procedure, the value of the variable is held constant until a 

new measurement is available. This means that the sub-level controllers receive constant 

set point values from the MPC. 

For the MPC calculations, the CV or DV measurement values and the MV control values 

were normalised to operation point by using the following equation: 

0Vvvnorm −=  (49) 

where V0 is either Y0, U0 or D0 at an operating point, vnorm is the averaged value ynorm, 

unorm or dnorm and v is the measurement y, input u or the disturbance d, respectively. 
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For the PLS calculations, the inputs u, the outputs y and the disturbances d were 

normalised around the operating point Y0, U0 or D0 by using the following equation: 
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where STD(v) is the standard deviation of y, u or d. 

The DA1 bottom product IBP was updated only every 40 minutes due to the analyser 

cycle time. In order for the MPC to properly control the variable, an auxiliary variable 

was implemented to estimate the value of the variable in between the update periods. The 

value of the IBP was estimated using the MPC internal model, and the estimation was 

updated when a new analyser measurement was available. The update of the correction 

was done gradually over a period of 10 minutes, at which time the correction value 

reached 100% of the new measurement. A delay was introduced in the update because an 

abrupt correction of the estimations caused nonlinearity in the measurement and made it 

more difficult for the MPC to control the CV. The auxiliary variable allowed the MPC to 

receive a continuous measurement of the DA1 bottom product IBP, and thus the MPC 

was able to carry out the necessary control actions smoothly, when DA1 bottom product 

IBP was used for control purposes. 
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7.1.2 Testing the linearity of the target dearomatization process 

In order to justify the use of the linear MPC and FDD methods, the linearity of the 

process was first investigated at the steady state operation point. The dearomatization 

process has, in general, slow dynamics and linear behaviour under normal operation. At 

the operation point, on the other hand, the constraints set for the LARPO process 

variables cause nonlinear behaviour in the open loop responses of certain variables. The 

linearity tests have been carried out by switching the MPC off during the testing but 

allowing the basic controllers to operate.  

A linear process system has the following properties: invariance under scaling, additivity, 

and frequency fidelity. The superposition principle contains two of the three linear 

system properties: the invariance under scaling and additivity. Therefore, the invariance 

under scaling and multiple input additivity of the target process were tested in order to 

determine the linearity of the target process in terms of the superposition principle. 

7.1.2.1 Testing of the invariance under scaling 

In this part of the study, the invariance under scaling for the target process is tested in 

order to determine the linearity. The testing was carried out by comparing the responses 

of the output variables to the changes in the input variables. The response was then 

calculated as the difference between the output at the current time step t and the output at 

the beginning of the simulation (which is the steady state value of the variable), and this 

was divided by the change in the input variable. The unit step response Yt between the 

input u and the output y during time t was calculated using the following equation: 
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To test the invariance under scaling and to measure the parameters for the step-response 

models, ±1%, ±5% and ±10% changes were carried out in the manipulated variables and 

disturbance variables, and the changes in the controlled variables was recorded. Each 

steady state gain was compared to a +1% change steady state gain in order to determine 

the difference between the responses. The differences in the responses of the controlled 

variable according to the variable input changes are presented in Tables 11 - 15. 

Nonlinearity is presented in the tables with different colours: red represents high 

nonlinearity (more than 30% difference); orange represents medium nonlinearity (less 

than 30% difference); yellow represents weak nonlinearity (less than 20% difference); 

and white almost no nonlinearity (less than 10% difference). The filtered step responses 

(normalised in relation to the standard deviation) with variable input magnitudes are 

presented in Appendix C. 

Table 11. Differences in the DA1_BP_IBP responses when different-sized step changes of 

the input variables are induced in the LARPO process. 

Change m
agnitude

DA1_FEED_FC:

DA1_FEED_TC:

DA1_HEAT_TC:

DA1_PC:

DA1_REFLUX_FC:

DA1_EA6_FEED_FC:

DA2_FEED_FC:

DA2_EA7_FEED_FC:
-10 % 8.7 16.2 29.2 1.1 6.5 5.1 32.1 87.0
-5 % 12.3 5.9 19.0 2.1 10.1 3.9 33.5 73.3
-1 % 19.9 5.2 7.8 13.8 19.2 14.7 48.4 5.9
1 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 % 8.2 28.2 31.7 10.6 13.5 2.9 29.9 84.8

10 % 11.4 63.6 43.4 16.2 17.9 4.2 33.6 87.9  

Table 12. The differences in the CV DA1_BP_FP responses when different-sized step 

changes of the input variables are induced in the LARPO process. 

Change m
agnitude

DA1_FEED_FC:

DA1_FEED_TC:

DA1_HEAT_TC:

DA1_PC:

DA1_REFLUX_FC:

DA1_EA6_FEED_FC:

DA2_FEED_FC:

DA2_EA7_FEED_FC:
-10 % 10.1 14.8 23.8 1.2 6.7 6.3 30.5 87.2
-5 % 12.7 5.2 15.0 3.0 9.9 4.8 32.1 74.0
-1 % 19.8 5.5 6.5 13.7 19.0 15.2 46.6 2.4
1 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 % 7.8 28.9 25.3 10.4 13.0 2.6 27.7 85.0

10 % 10.7 64.0 32.3 15.6 17.5 4.6 31.1 88.2  
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Table 13. The differences in the CV DA1_DIST_FC responses when different-sized step 

changes of the input variables are induced in the LARPO process. 

Change m
agnitude

DA1_FEED_FC:

DA1_FEED_TC:

DA1_HEAT_TC:

DA1_PC:

DA1_REFLUX_FC:

DA1_EA6_FEED_FC:

DA2_FEED_FC:

DA2_EA7_FEED_FC:
-10 % 91.2 40.2 59.0 93.5 503.0 62.7 75.6 94.3
-5 % 93.8 31.4 38.0 79.7 511.3 66.1 80.1 95.7
-1 % 31.8 40.0 32.9 142.4 685.2 89.6 40.1 34.2
1 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 % 85.1 37.7 16.0 39.2 338.5 48.5 89.6 72.4

10 % 88.0 70.8 4.8 38.6 332.3 53.3 95.0 80.9  

Table 14. The differences in the CV DA1_TC responses when different-sized step changes 

of the input variables are induced in the LARPO process. 

Change m
agnitude

DA1_FEED_FC:

DA1_FEED_TC:

DA1_HEAT_TC:

DA1_PC:

DA1_REFLUX_FC:

DA1_EA6_FEED_FC:

DA2_FEED_FC:

DA2_EA7_FEED_FC:
-10 % 13.5 16.2 36.1 15.1 38.3 4.4 6.7 61.9
-5 % 13.3 10.7 23.7 12.1 31.9 9.3 27.6 463.6
-1 % 14.3 2.0 10.2 1.1 25.5 25.2 88.2 301.4
1 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 % 15.6 32.3 19.2 16.0 21.1 6.6 30.1 96.8

10 % 19.7 65.8 27.1 19.4 15.6 7.8 24.1 83.3  

Table 15. The differences in the CV DA2_BP_FP responses when different-sized step 

changes of the input variables are induced in the LARPO process. 

Change m
agnitude

DA1_FEED_FC:

DA1_FEED_TC:

DA1_HEAT_TC:

DA1_PC:

DA1_REFLUX_FC:

DA1_EA6_FEED_FC:

DA2_FEED_FC:

DA2_EA7_FEED_FC:
-10 % 27.5 73.6 8.5 18.8 22.3 31.7 30.1 86.7
-5 % 49.5 45.3 44.3 14.7 14.2 20.7 39.8 97.4
-1 % 70.8 19.2 8.9 16.8 16.4 30.1 62.5 159.9
1 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 % 19.2 36.6 5.5 1.8 7.3 0.6 43.5 51.5

10 % 11.5 67.8 21.0 5.7 19.2 2.3 45.8 63.1  
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As can be seen from Table 11 - 15 and Appendix C, the response of the system was 

nonlinear in a few cases. The response of DA2_EA7_FEED (the DA2 reboiler feed flow 

rate) was nonlinear in almost all cases, since the response to the changes was mostly 

smaller than the overall level of the measurement noise and it was therefore difficult to 

get a proper response. Nonlinearity was also clearly detected in DA1_DIST_FC (the DA1 

distillate flow rate). The distillate flow rate was controlled indirectly through the 

overhead drum level controller, causing nonlinear responses. Nevertheless, accurate 

control of the distillate flow rate was not required, since the main goal was to minimise 

the distillate flow. As a result, this variable could be minimised indirectly by minimising 

the side product flashpoint, DA2_BP_FP.  

Overall, nonlinearity manifested itself with large positive step changes (+10% or more), 

which indicated that in those cases, some of the process variables were driven towards 

the constraints, thereby causing nonlinear behaviour in the variables. Close proximity to 

the constraints causes asymmetry, also because large positive input changes behave 

differently compared to the negative input changes. When pushed to or near the variable 

constraints, the process variables began to behave nonlinearly, as suspected. Therefore, it 

is imperative, according to the step testing, to set strict constraint limits for the MPC. 

7.1.2.2 Testing the multiple input additivity 

The multiple input additivity of the system was tested next by changing two or more 

variables at the same time and then monitoring the combined effect of the inputs. If the 

system has additivity properties in terms of the superposition principle, then the 

combined effect of the input changes should match the sum of two individual responses. 

Since there were as many as eight input variables and five output variables, the total 

number of possible input combinations would have been very high. Therefore, only the 

most important combinations of two input variables were changed at a time in order to 

simplify the testing procedure. Each of the variables was stepped with +5% and -5% 

changes with different combinations. The following variable combinations were tested: 
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• DA1_FEED_TC + DA1_FEED_FC 

• DA1_HEAT_TC + DA1_FEED_TC 

• DA1_PC + DA1_HEAT_TC 

• DA1_EA6_FEED_FC  + DA1_PC 

• DA1_REFLUX_FC + DA1_EA6_FEED_FC 

• DA2_FEED_ FC + DA1_REFLUX_FC 

• DA2_EA7_FEED_FC + DA2_FEED_ FC 

• DA1_FEED_FC + DA2_EA7_FEED_FC 

The combinations of two simultaneous variable changes versus the sum of the two 

individual variable responses are presented in Table 16 as a percentage of the difference 

between the values compared to the summed responses. The white cells in the table 

represent values with a difference of less than 10% compared to the summed values; the 

yellow cells a 10-20% difference; the orange cells a 20-30% difference; and the red cells 

a difference of more than 30%. The values in bold describe changes with a difference of 

over or near 100%. 

As can be seen from Table 16, in most cases the combined responses were relatively 

close to the sum of the original individual responses. In some cases, the difference was 

more than 100%; however, in all of these cases the changes in the CVs were less than the 

process noise level, thereby producing variation and error in the combined and summed 

outputs. In a few cases, the output variables also reached the hard constraints and caused 

a difference in the combined and summed outputs. According to the results, 

DA1_DIST_FC behaved in the most nonlinear way. Furthermore, while some 

nonlinearity was present in DA1_TC, most of it could be explained by the high noise 

level compared to the changes in the variable, which caused deviation in the variable 

output. In most cases, the differences versus the nominal level of the variable were less 

than 1.5%, except for DA1_DIST_FC, where the changes were as large as 15%. 

Therefore, based on the multiple input additivity testing, the target process behaved 

linearly in most cases, at least when only two of the variables were excited 

simultaneously. However, some degree of nonlinearity was present in the variables. 
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Table 16. The results of the additivity testing of the dearomatization process. 

Stepped input variables (changes) DA1_BP_IBP DA1_BP_FP DA1_DIST_FC DA1_TC DA2_BP_FP

DA1_FEED_TC / DA1_FEED_ FC (5/5) 38 % 38 % 15 % 37 % 18 %
DA1_FEED_TC / DA1_FEED_ FC (5/-5) 17 % 15 % 24 % 11 % 19 %
DA1_FEED_TC / DA1_FEED_ FC (-5/5) 1 % 0 % 16 % 20 % 4 %
DA1_FEED_TC / DA1_FEED_ FC (-5/-5) 5 % 6 % 11 % 16 % 8 %
DA1_HEAT_TC / DA1_FEED_TC (5/5) 0 % 1 % 14 % 2 % 23 %
DA1_HEAT_TC / DA1_FEED_TC (5/-5) 19 % 16 % 8 % 18 % 434 %
DA1_HEAT_TC / DA1_FEED_TC (-5/5) 40 % 34 % 84 % 71 % 6 %
DA1_HEAT_TC / DA1_FEED_TC (-5/-5) 52 % 58 % 26 % 48 % 13 %
DA1_PC / DA1_HEAT_TC (5/5) 6 % 5 % 8 % 7 % 27 %
DA1_PC / DA1_HEAT_TC (5/-5) 5 % 4 % 10 % 2 % 12 %
DA1_PC / DA1_HEAT_TC (-5/5) 6 % 4 % 9 % 2 % 9 %
DA1_PC / DA1_HEAT_TC (-5/-5) 7 % 5 % 23 % 28 % 27 %
DA1_EA6_FEED_FC / DA1_PC (5/5) 9 % 10 % 6 % 110 % 10 %
DA1_EA6_FEED_FC / DA1_PC (5/-5) 3 % 1 % 1 % 14 % 2 %
DA1_EA6_FEED_FC / DA1_PC (-5/5) 4 % 3 % 2 % 10 % 5 %
DA1_EA6_FEED_FC / DA1_PC (-5/-5) 8 % 8 % 30 % 49 % 14 %
DA1_REFLUX_FC / DA1_EA6_FEED_FC (5/5) 8 % 10 % 5221 % 43 % 24 %
DA1_REFLUX_FC / DA1_EA6_FEED_FC (5/-5) 2 % 1 % 1 % 35 % 7 %
DA1_REFLUX_FC / DA1_EA6_FEED_FC (-5/5) 3 % 1 % 1 % 17 % 6 %
DA1_REFLUX_FC / DA1_EA6_FEED_FC (-5/-5) 11 % 16 % 57 % 97 % 105 %
DA2_FEED_ FC / DA1_REFLUX_FC (5/5) 21 % 30 % 134 % 74 % 1 %
DA2_FEED_ FC / DA1_REFLUX_FC (5/-5) 1 % 1 % 24 % 21 % 10 %
DA2_FEED_ FC / DA1_REFLUX_FC (-5/5) 3 % 2 % 78 % 57 % 0 %
DA2_FEED_ FC / DA1_REFLUX_FC (-5/-5) 17 % 8 % 9 % 59 % 7 %
DA2_EA7_FEED_FC / DA2_FEED_ FC (5/5) 5 % 2 % 65 % 50 % 11 %
DA2_EA7_FEED_FC / DA2_FEED_ FC (5/-5) 9 % 6 % 42 % 259 % 20 %
DA2_EA7_FEED_FC / DA2_FEED_ FC (-5/5) 4 % 1 % 162 % 71 % 4 %
DA2_EA7_FEED_FC / DA2_FEED_ FC (-5/-5) 9 % 6 % 72 % 12 % 21 %
DA1_FEED_ FC / DA2_EA7_FEED_FC (5/5) 1 % 1 % 42 % 60 % 81 %
DA1_FEED_ FC / DA2_EA7_FEED_FC (5/-5) 0 % 1 % 107 % 29 % 4 %
DA1_FEED_ FC / DA2_EA7_FEED_FC (-5/5) 10 % 8 % 51 % 30 % 27 %
DA1_FEED_ FC / DA2_EA7_FEED_FC (-5/-5) 12 % 10 % 36 % 9 % 76 % 
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7.1.2.3 Summary of the linearity testing results 

Based on the invariance under scaling and the multiple input additivity testing, there was 

a degree of nonlinearity present in the target process, especially in the variable 

DA1_DIST_FC. However, in most cases the target process was sufficiently linear to be 

properly controlled by using a linear MPC. Even though there was a degree of 

nonlinearity present in the behaviour of the variable, the effect of nonlinearity on the 

performance of the MPC was relatively small due to the MPC feedback. 

In order to counter the effects of the nonlinearity in DA1_DIST_FC, this variable is not 

directly controlled in the final FTMPC; instead, it is minimised by maximising the by-

product yield. The maximisation of the by-product yield is transferred to the 

minimisation of the by-product flashpoint, DA2_BP_FP. When DA2_BP_FP is 

minimised, a maximum amount of distillate is fed back to the column through reflux, 

finally ending up as by-product, thereby maximising the by-product yield, minimising the 

by-product flashpoint and also minimising the overall distillate flow of the main column, 

DA1_DIST_FC. 

Based on the linearity testing, the simulated target process had enough nonlinearity to 

successfully represent an actual process case. However, since the degree of nonlinearity 

was also small in general, it is possible to use a linear MPC for the control of the target 

dearomatization process. 
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7.1.3 Description of the MPC for the target dearomatization process 

As the linearity of the target process has been tested, and the linear MPC has been found 

suitable for the control purposes, the linear MPC was next defined by acquiring the MPC 

model and defining the parameters for the MPC. 

7.1.3.1 Modelling the target process for the MPC 

Next, the linear model was formulated for the MPC. Based on the linearity testing, it was 

determined that a model composed of first order plus time delay (FOPTD) transfer 

functions would be sufficient for MPC purposes and the modelling could be based on a 

regular step testing procedure. 

First, a steady-state was determined for the target process and a suitable process 

conditions were set based on the actual LARPO process. The step testing was then 

carried out by exciting each of the disturbance variables and manipulated variables by a 

5% positive step change, which, according to the linearity testing, reflected the behaviour 

of the target process best. As a result of the step testing, the normalised (in relation to the 

standard deviation) step responses of the LARPO dearomatization process were acquired 

that are presented in Appendix D. Based on the results of the step testing, it was 

concluded that the first order transfer functions with time delay are sufficient to describe 

the dynamics of the process and could subsequently be used to construct the model for 

the MPC. 
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7.1.3.2 Parameters of the MPC 

The MPC for the simulated LARPO process was constructed according to the 

recommendations of the preliminary simulation study of the industrial benchmark process, 

as well as process knowledge acquired in the control of the actual LARPO process. It 

became evident in the preliminary study that the MPC provided a flexible, 

straightforward and effective way of controlling the target process and, because an 

industrial-scale linear MPC is used to control the actual LARPO process, a Matlab-based 

MPC was used for the control of the simulated LARPO process. 

The MPC parameters were adjusted according to the dynamics of the simulated 

dearomatization process. The control cycle for the MPC was set to one minute, since the 

changes in the process are relatively small and there is no need for faster control. The 

prediction horizon was set long enough to be able to react as early as possible to most 

situations in the simulated process. Since the total delays, including the analyser delays in 

the process varied between 0-40 minutes, the prediction horizon was set to 50 minutes. 

This means that while the prediction horizon is longer than the largest delay, it is not too 

long to keep the process under control. The control horizon was set to 40 minutes, which 

is a good compromise between efficiency and the required computation time. 

The CV weights were set according to control preferences. The primary controlled 

variable (DA1_BP_IBP, DA1_BP_FP or DA1_TC) weights were set to 10 to indicate 

that the main column bottom product was to be kept at the setpoint at all times. The 

weight for the secondary variable DA2_BP_FP was set to 1 to indicate that the 

minimisation of the by-product flashpoint is not as important as keeping the main product 

within the defined specifications. No weight was set for DA1_DIST_FC as it is not 

controlled by the MPC. 
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The minimisation of the by-product flashpoint and the distillate flow rate was handled by 

setting the setpoint of DA2_BP_FP 0.2°C to less than the measured value during every 

time step. The value of the setpoint is lowered until its value is 0.5% higher than the 

minimum limit of DA2_BP_FP, after which the setpoint is kept at this value until the 

measured value rises above this limit. 

The constraints for the CVs were set according to the product specifications; the 

minimum limits were based on the specification limits and the maximum limits are set to 

keep the MPC within control range. No limits were set for DA1_DIST_FC since it was 

not directly controlled; however, there were hard constraints set for this variable in the 

sub-level control system. The CV weights and the constraints for the CVs are presented 

in Table 17.  

In order to minimise costs while keeping the product in specification, the setpoint for 

DA1_BP_FP was set 0.5% higher than the minimum limit, and for DA2_BP_FP the limit 

for minimisation was also set 0.5% higher than the minimum specification limit. 

The maximum constraints for the MVs were set according to the mechanical limits of the 

target controller. The minimum constraints were set according to the operational limits; 

for instance, DA2_FEED_FC has a non-zero minimum value in order to ensure flow to 

the side stripper. Also, DA1_REFLUX_FC would need to have a minimum flow back to 

the column in order to keep the column separating capacity at moderate levels. 

DA1_EA6_FEED_FC has a minimum limit of 40% of the maximum limit since there is a 

minimum level of reboiling required for the separation procedure. Furthermore, if there 

would not be enough energy available, there would not be enough feed for side stripper 

DA2. DA2_EA7_FEED_FC needs to have a smaller relative minimum limit because the 

variation range for this variable is small and thus a higher limit would cause restrictions 

on the side stripper operation. In Table 17 and Table 18, the minimum constraints are 

presented in the absolute values for the CVs and in percentages of the maximum 

constraint for the MVs. The minimum value of the setpoint (of the minimum constraint) 

is also presented in Table 17.  
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The MV change rate constraints were set to -5% and +5% of the range of variation 

allowed for the controller. The weights for the input variables were set to 0, allowing full 

freedom for the input variables; in essence, this leaves the input variables out of the MPC 

objective function. The weights for the MV rates were set at 5. Selecting this value 

allows a relatively fast response time for each MV, the selection being based on the 

control performance. The constraints and weights for the manipulated variables are 

presented in Table 18. 

Table 17.  The constraints, weights and minimum setpoint values of the CVs. 

CVs: Weights Min setpoint
(of the min limit)

Min Max
DA1_BP_IBP 219.0 245.0 1 +0.5%
DA1_BP_FP 79.8 100.0 1 +0.5%
DA1_DIST_FC - - - -
DA1_TC 261.5 275.0 1 +0.5%
DA2_BP_FP 66.0 80.0 1 +0.5%

Constraints
% of the max limit

 

Table 18.  The constraints and weights of the MVs. 

MVs: Weights Rate weights

Min Max Min Max
DA1_REFLUX_FC 25.0 % 100.0 % -5.00 % 5.00 % 0 5
DA1_EA6_FEED_FC 40.0 % 100.0 % -5.00 % 5.00 % 0 5
DA2_FEED_FC 25.0 % 100.0 % -5.00 % 5.00 % 0 5
DA2_EA7_FEED_FC 15.0 % 100.0 % -5.00 % 5.00 % 0 5

Constraints Rate constraints
% of the range of variation% of the max limit
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7.2 Results of testing the nominal MPC for the targ et 

dearomatization process 

The control performance of the MPC was next tested in order to verify the MPCs ability 

to control the target process with a sufficient level of performance. In addition, by 

determining the control performance of the nominal MPC, a baseline would be formed 

that can be used to compare the results with the integrated FTMPC. The performance of 

the nominal MPC was tested by introducing disturbances into the process and making 

setpoint changes to the reference trajectories of the CVs. 

The performance of the nominal MPC was measured by calculating the deviation of the 

CVs from the target trajectory. In the first case, the disturbance variable DA1_FEED_TC 

(the DA1 feed temperature setpoint) was changed by +5%. In this case, the active 

controlled variables were DA1_BP_FP and DA2_BP_FP. The effect of the disturbances 

was recorded and the results are shown in Figure 26. 



 133  

 

As can be seen from Figure 26, there was only a temporary effect of less than 1% on 

DA1_BP_FP, and less than a 2% temporary effect on DA2_BP_FP. In essence, the MPC 

handled the disturbance well and countered the effect of the disturbance efficiently, while 

keeping the CVs at their setpoint values. 
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Figure 26. The effect of a +5% change in DV DA1_FEED_TC . 
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In the second control performance test, the setpoint of DA1_BP_FP was changed and the 

performance of the MPC was observed. The setpoint of DA1_BP_FP was changed by 

+1% of the current value at the time step 10 minutes. The response and effectiveness of 

the MPC was monitored and the results are shown in Figure 27:  
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Figure 27. The effect of a +1% setpoint change in CV DA1_BP_FP. 
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As can be seen from the figure, the MPC followed satisfactorily the given setpoint 

changes: the target value was reached within 50 minutes and there was less than a 1% 

effect on the other CV, DA2_BP_FP. 

The properties of the feedstock to the by-product stripper unit, DA2, change when the 

DA1 bottom product flashpoint is increased by increasing the feed rate of the stripper unit 

DA2. This increase causes the DA2 feedstock to become heavier, thus requiring more 

reboiling in order to keep the flashpoint requirements in the side stripper. This 

phenomenon causes nonlinearity in the side stripper control, which is transformed to 

delay and uncertainty in the control of the by-product flashpoint. 

Based on the control testing, the performance of the MPC was satisfactory in normal 

conditions despite the nonlinearities present in the target process. The MPC was able to 

counter the effects of the disturbances and to follow the given reference trajectories. 

Therefore, it is concluded that the performance of the MPC is sufficient for the fault-

tolerant control of the target process. 
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7.3 Validation of the of the integrated FTMPC perfo rmance 

The performance of the FTMPC for the target dearomatization process was validated by 

introducing measurement and actuator faults and demonstrating the performance of the 

proposed FTC strategy. Generally, this validation with industrial process simulator is an 

important part of the FTMPC implementation process, as the performance of the 

proposed system has to be verified before moving on to the implementation of the 

FTMPC on the actual dearomatization process. 

In this section, first the results of the FTMPC testing with bias and drift faults in the CV 

analysers and sensors are presented. Second, the results of the FTMPC testing are given 

with bias faults in the DV sensors. Third, the results of the bias faults in the MV sensors 

are described. Fourth, the results of testing the actuator faults in MVs are given and 

finally the results of the FTMPC validation are discussed. 

7.3.1 Testing results of the active FTC strategy for the CV analyser and 

sensor faults 

Sensor faults mostly affect the measurements and analysers considered as CVs in the 

MPC. When a CV sensor is affected by a fault, the MPC receives faulty information and 

adjusts the manipulated variable in the wrong direction. An FTC based on the FDD 

estimation is used to estimate the values of the CV analyser and sensor measurements.  

The output variables for the FTC strategy for the CV analyser and sensor faults are 

presented in Table 7 and the input variables in Table 8 and Table 9. The structure of the 

PLS models used in the active data-based FTC strategy for the CV analyser and sensor 

faults is presented in Table 19 for the 1st set of PLS models, and in Table 20 for the 2nd 

set of PLS models. The first PLS is used for detecting faults, and the second one to 

identify the magnitude of the faults on the basis of delayed faultless data as introduced in 

Section 3.5.1. 
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Table 19. The structure of the 1st PLS model for the active data-based FTC strategy for 

the CV analyser and sensor faults. 

Model PLS11 PLS12 PLS13 PLS14 PLS15

Output DA1_BP_IBP DA1_BP_FP DA1_DIST_FC DA1_TC DA2_BP_FP
Inputs DA1_FEED_FC DA1_FEED_FC DA1_FEED_FC DA1_FEED_FC DA1_FEED_FC

DA1_FEED_TC DA1_FEED_TC DA1_FEED_TC DA1_FEED_TC DA1_FEED_TC
DA1_HEAT_TC DA1_HEAT_TC DA1_HEAT_TC DA1_HEAT_TC DA1_HEAT_TC
DA1_PC DA1_PC DA1_PC DA1_PC DA1_PC

DA1_REFLUX_FC DA1_REFLUX_FC DA1_REFLUX_FC DA1_REFLUX_FC DA1_REFLUX_FC
DA1_EA6_FEED_FC DA1_EA6_FEED_FC DA1_EA6_FEED_FC DA1_EA6_FEED_FC DA1_EA6_FEED_FC
DA2_FEED_FC DA2_FEED_FC DA2_FEED_FC DA2_FEED_FC DA2_FEED_FC
DA2_EA7_FEED_FC DA2_EA7_FEED_FC DA2_EA7_FEED_FC DA2_EA7_FEED_FC DA2_EA7_FEED_FC
DA1_BP_IBP(t-d1) DA1_BP_FP(t-d1) DA1_DIST_FC(t-d1) DA1_TC(t-d1) DA2_BP_FP(t-d1)

DA1_BP_IBP(t-d2) DA1_BP_FP(t-d2) DA1_DIST_FC(t-d2) DA1_TC(t-d2) DA2_BP_FP(t-d2)  

Table 20. The structure of the 2nd PLS model for the active data-based FTC strategy for 

the CV analyser and sensor faults. 

Model PLS21 PLS22 PLS23 PLS24 PLS25

Output DA1_BP_IBP DA1_BP_FP DA1_DIST_FC DA1_TC DA2_BP_FP
Inputs DA1_FEED_FC DA1_FEED_FC DA1_FEED_FC DA1_FEED_FC DA1_FEED_FC

DA1_FEED_TC DA1_FEED_TC DA1_FEED_TC DA1_FEED_TC DA1_FEED_TC
DA1_HEAT_TC DA1_HEAT_TC DA1_HEAT_TC DA1_HEAT_TC DA1_HEAT_TC
DA1_PC DA1_PC DA1_PC DA1_PC DA1_PC
DA1_REFLUX_FC DA1_REFLUX_FC DA1_REFLUX_FC DA1_REFLUX_FC DA1_REFLUX_FC
DA1_EA6_FEED_FC DA1_EA6_FEED_FC DA1_EA6_FEED_FC DA1_EA6_FEED_FC DA1_EA6_FEED_FC
DA2_FEED_FC DA2_FEED_FC DA2_FEED_FC DA2_FEED_FC DA2_FEED_FC
DA2_EA7_FEED_FC DA2_EA7_FEED_FC DA2_EA7_FEED_FC DA2_EA7_FEED_FC DA2_EA7_FEED_FC
DA1_BP_IBP(t-d3) DA1_BP_FP(t-d3) DA1_DIST_FC(t-d3) DA1_TC(t-d3) DA2_BP_FP(t-d3)
DA1_BP_IBP(t-d4) DA1_BP_FP(t-d4) DA1_DIST_FC(t-d4) DA1_TC(t-d4) DA2_BP_FP(t-d4)  

The NIPALS algorithm presented in 3.4.1 was used for the iterative training of the PLS 

models. PLS for CV analyser and sensor faults has been trained by using a data set 

consisting of 600 minutes of process data. This data set has been generated under MPC 

control, while manipulating the DVs and the CV reference trajectories in order to create 

sufficient excitation to capture the closed-loop behaviour of the target process for the 

data-based FDD methods. These training data are presented in Appendix E. 

The number of the latent variables was determined using the knee-in-the-plot method, in 

which the selection of the latent variables is based on the largest drop in the captured 

variance of the latent variables. The cumulative variances for the input vector X and the 

output vector Y and the number of latent variables for each PLS model is presented in 

Table 21. 
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Table 21. The cumulative variances for X and Y and the number of the LVs for the PLS 

for the CV analyser and sensor faults. 

PLS 
model 

Cumulative 
variance of X 

Cumulative 
variance of Y 

Number of latent 
variables 

PLS11 88 99 5 

PLS12 89 99 5 

PLS13 89 97 5 

PLS14 94 99 5 

PLS15 88 99 5 

PLS21 86 99 5 

PLS22 89 99 5 

PLS23 83 91 5 

PLS24 93 99 5 

PLS25 84 92 5 

As can be seen from the cumulative variances, the first set of the models captured the 

variance slightly better than the second set of the models. This is because the past values 

of the CV in the second set are further back in the past, and therefore there was a lower 

correlation between the old CV value and the current, thereby resulting slightly less 

accurate estimations of the CV value. However, the correlations for the estimations are 

sufficiently high for fault estimation purposes. The more accurate set of the models, the 

1st set, was used for fault detection purposes, which is a more time-critical function of the 

active data-based FTC strategy for the CV analyser and sensor faults. 

The active data-based FTC strategy for the CV analyser and sensor faults was then tested 

by introducing bias- or drift-shaped faults into the analyser outputs and measurements, 

and analysing the active data-based FTC strategy performance based on the measured 

outputs. 
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7.3.1.1 Bias fault in the analyser output 

First, an upward bias-shaped fault with a magnitude of 5% of the nominal value of the 

DA1_BP_FP was introduced into the DA1 bottom product flashpoint analyser output 

during the time step T1 = 15 minutes without the active data-based FTC strategy. The 

fault lasted for 90 minutes until the time step T2 = 105 minutes, after which the fault was 

removed from the process. The FDD part of the active data-based FTC strategy for the 

CV analyser and sensor faults was turned on but no FTC actions were carried out. The 

PLS-based prediction and the effect of the fault can be seen in Figure 28. 
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Figure 28. The effects of a +5% bias fault in CV DA1_BP_FP during t = 15 -105 

minutes, without the active data-based FTC strategy for the CV analyser and sensor 

faults. 
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As can be seen from Figure 28, the +5% upward fault caused an opposite effect on CV 

DA1_BP_FP; the measurement value was changed by -5% and then returned back to the 

original value as soon as the effect of the fault ended. The value of DA2_BP_FP was also 

changed by -3% and, after the effect of the fault ended, the value of the DA2 bottom 

product flashpoint was increased to +2% of the original value due to the correction to 

DA1_BP_FP. Since DA2_BP_FP was set to minimisation, the value slowly decreased 

back afterwards to the minimum limit over time. The PLS was able to predict the actual 

value of the measurement effectively; there was about a 1% maximum difference 

between the prediction and the actual measurement value, even though the faulty value 

was relayed to FDD and affects the performance of the FDD.   

Overall, the fault had the effect that both DA1_BP_FP and DA2_BP_FP were off the 

specification limits for 90 minutes. 

Next, the previous fault scenario with a +5% bias-shaped fault affecting DA1_BP_FP 

was tested with the active data-based FTC strategy for the CV analyser and sensor faults.  

An upward bias-shaped fault with a magnitude of 5% of the nominal value of the 

DA1_BP_FP was introduced into the output of the DA1 bottom product flashpoint 

analyser during the time step T1 = 15 minutes with the FTC turned on. As before, the 

fault lasted for 90 minutes until the time step T2 = 105 minutes, after which the fault was 

removed from the process. As can be seen from the PLS fault detection values in Figure 

29, the FTC actions were engaged at the time step Td = 34 minutes, 19 minutes after the 

fault started to affect the process variable. Also, there was no interference in another CV, 

DA2_BP_FP, and there were no false alarms during the test run. 
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Figure 29. The PLS RMSEP values for a +5% bias fault in CV DA1_BP_FP during t = 

15 - 105 minutes with the active data-based FTC strategy for the CV analyser and sensor 

faults. 

As can be seen from Figure 30, with the active data-based FTC strategy for the CV 

analyser and sensor faults, the +5% bias fault had almost no effect at all on the controlled 

variables. The PLS was able to predict the actual value of the measurement accurately, 

and there was clearly less than 1% difference between the measured and predicted value. 

With the active data-based FTC strategy for the CV analyser and sensor faults enabled, 

DA1_BP_FP was be off spec for 10 minutes. In general, both DA1_BP_FP and 

DA2_BP_FP remained within the specification limits despite the fault, thus improving 

the reliability of the control system and providing savings in off-spec production. 
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Figure 30. The effects of a +5% bias fault in CV DA1_BP_FP during t = 15 - 105 

minutes, with the active data-based FTC strategy for the CV analyser and sensor faults. 
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7.3.1.2 Drift fault in the analyser output 

In the second case, the effect of a drift-shaped fault was tested with and without the 

active data-based FTC strategy for the CV analyser and sensor faults. 

First, an upward drift-shaped gradually-increasing fault with a final magnitude of 5% of 

the nominal value of the DA1_BP_FP was introduced into the DA1 bottom product 

flashpoint analyser output. This fault started at the time step T1 = 15 minutes, and the 

testing was carried out without the active data-based FTC strategy being active. The fault 

lasted for 90 minutes until the time step T2 = 105 minutes, after which the fault was 

removed from the process.  Again, only the FDD part of the active data-based FTC 

strategy for the CV analyser and sensor faults was turned on; however, no FTC actions 

were made. The PLS-based prediction and the effect of the fault can be seen in Figure 31.  

As can be seen from Figure 31, the upward fault caused the value of DA1_BP_FP to 

decrease by a maximum of -4% of the nominal value, and then the value returned back to 

the nominal level as soon as the effect of the fault ended. The value of the DA2_BP_FP 

was also changed by -2% and, after the effect of the fault ended, the value of the DA2 

bottom product flashpoint was increased to +2% of the original value due to the 

correction to DA1_BP_FP. Again, the value of DA2_BP_FP then decreased slowly back 

to the minimum limit over time due to the minimisation. Also in this case with a drift 

fault, the PLS was able to predict the actual value of the measurement effectively; there 

was less than a maximum difference of 1% between the prediction and the actual 

measurement value for both DA1_BP_FP and DA2_BP_FP, even though the faulty value 

was relayed to FDD and affects the performance of the FDD component. Overall, the 

drift fault had the effect that both DA1_BP_FP and DA2_BP_FP were off the 

specification limits for 90 minutes. Next, the previous fault scenario with a +5% drift-

shaped fault affecting DA1_BP_FP was tested with the active data-based FTC strategy 

for the CV analyser and sensor faults turned on. 
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Figure 31. The effects of a +5% drift fault in CV DA1_BP_FP during t = 15 - 105 

minutes, without the active data-based FTC strategy for the CV analyser and sensor 

faults. 

An upward drift-shaped fault with a final magnitude of 5% of the nominal value of 

DA1_BP_FP was introduced into the DA1 bottom product flashpoint analyser output 

during the time step T1 = 15 minutes, with the active data-based FTC strategy for the CV 

analysers and sensors turned on. The fault lasted for 90 minutes until the time step T2 = 

105 minutes, after which the fault was removed from the process. As can be seen from 

the PLS fault detection values in Figure 32, the FTC actions were engaged at the time 

step Td = 34 minutes, 19 minutes after the fault started to affect the process. There was 

also no interference with DA2_BP_FP and there were no false alarms during the test run. 
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Figure 32. The PLS RMSEP values for a +5% drift fault in CV DA1_BP_FP during t = 

15 - 105 minutes, with the active data-based FTC strategy for the CV analysers and 

sensors. 

As can be seen from Figure 33, with the active data-based FTC strategy for the CV 

analyser and sensor faults, the +5% drift fault had an effect of less than 0.5% on the 

controlled variables. The PLS was able to predict the actual value of the measurement 

accurately, and there was clearly a difference of less than 1% between the measured and 

predicted value. Both DA1_BP_FP and DA2_BP_FP remained within the specification 

limits despite the fault, thus improving the reliability of the control strategy and saving 

costs by reducing the amount of off-spec production. 



 146  

 

79

80

81

82

83

84

85

0 50 100 150 200

F
la

sh
po

in
t (

°C
)

Time (minutes)

Controlled Variables - DA1_BP_FP

cv_DA1_BP_FP cv_DA1_BP_FP_SP cv_DA1_BP_FP_nofault cv_DA1_BP_FP_FDI_EST

F
la

sh
po

in
t (
°
C

)
F

la
sh

po
in

t (
°
C

)

7

7.5

8

8.5

9

9.5

10

29.5

30.5

31.5

32.5

33.5

34.5

0 50 100 150 200

F
lo

w
 R

at
e 

(t
/h

)

Time (minutes)

Manipulated Variables 1 & 2

mv_DA1_EA6_FEED_FC mv_DA1_REFLUX_FC

F
lo

w
 R

at
e 

(t
/h

)
F

lo
w

 R
at

e 
(t

/h
)

1
1.5
2
2.5
3
3.5
4
4.5
5

4
5
6
7
8
9

10
11
12

0 50 100 150 200

F
lo

w
 R

at
e 

(t
/h

)

F
lo

w
 R

at
e 

(t
/h

)

Time (minutes)

Manipulated Variables 3 & 4

mv_DA2_FEED_FC mv_DA2_EA7_FEED_FC

223.2
223.4
223.6
223.8
224
224.2
224.4
224.6
224.8
225

26

26.5

27

27.5

28

28.5

29

0 50 100 150 200

F
lo

w
 R

at
e 

(t
/h

)

Time (minutes)

Disturbance Variables 1 & 2

dv_DA1_FEED_FC dv_DA1_FEED_TC

T
em

pe
ra

tu
re

 (°
C

)

175
176
177
178
179
180
181
182
183
184
185

328

329

330

331

332

333

334

0 50 100 150 200

P
re

ss
ur

e 
(k

P
a)

Time (minutes)

Disturbance Variables 3 & 4

dv_DA1_HEAT_TC dv_DA1_PC

T
em

pe
ra

tu
re

 (°
C

)
65.5
65.7
65.9
66.1
66.3
66.5
66.7
66.9
67.1
67.3
67.5

0 50 100 150 200

F
la

sh
po

in
t 

(°C
)

Time (minutes)

Controlled Variables - DA2_BP_FP

cv_DA2_BP_FP cv_DA2_BP_FP_SP cv_DA2_BP_FP_FDI_EST

F
la

sh
po

in
t (
°
C

)

T2T1

T2T1

  

Figure 33. The effects of a +5% drift fault in CV DA1_BP_FP during t = 15 - 105 

minutes, with the active data-based FTC strategy for the CV analyser and sensor faults. 
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7.3.2 Testing results of the active FTC strategy for the DV sensor faults 

Sensor faults can also affect the sub-level controller measurements, such as flow or 

temperature measurements. As stated above, the most typical faults in sensors are bias 

and drift-shaped faults, and this also applies to the flow or temperature measurements. 

When a DV sensor is affected by a sensor fault, the MPC receives faulty information and 

adjusts the manipulated variable most probably in the wrong direction. For instance, if an 

upward bias fault affects a DV, the MPC detects an increase in DV value and adjusts the 

MVs to counter the effect accordingly. As an effect of the adjustment, the value of the 

CVs changes due to the false correction and the MPC adjusts the MVs again based on the 

feedback. In essence, a sensor faults in DVs do not cause a permanent deviation in the 

CV values, but rather a disturbance in the MPC behaviour, causing delay and a short-

lasting deviation between CVs and the CV setpoint values. In this case, an FTC based on 

the FDD estimation was used to estimate the values of the DV sensors in the past. The 

input measurements of the FTC strategy for the DV sensor faults are presented in Table 

22; the structure of the 1st PLS model used for the fault detection in Table 23; and the 2nd 

PLS model used for the fault estimation in Table 24. 

Table 22. The inputs of the active data-based FTC strategy for the DV sensor faults. 

Variable name Variable description Unit 

DA1_TEMP_1 DA1 top/overhead temperature  °C 

DA1_TEMP_3 DA1 temperature, tray 13 °C 

DA1_TEMP_4 DA1 temperature, tray 21 °C 

DA1_OVHD_FLOW_FC DA1 overhead gas flow rate t/h 

DA2_DIST_FC DA2 overhead gas flow rate t/h 
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Table 23. The structure of the 1st PLS model for the active data-based FTC strategy for 

the DV sensor faults. 

Model DV_PLS11 DV_PLS12 DV_PLS13 DV_PLS14

Output DA1_FEED_FC DA1_FEED_TC DA1_HEAT_TC DA1_PC

Inputs DA1_TEMP_1 DA1_TEMP_1 DA1_TEMP_1 DA1_TEMP_1

DA1_TEMP_2 DA1_TEMP_2 DA1_TEMP_2 DA1_TEMP_2

DA1_TEMP_3 DA1_TEMP_3 DA1_TEMP_3 DA1_TEMP_3

DA1_OVHD_FLOW_FC DA1_OVHD_FLOW_FC DA1_OVHD_FLOW_FC DA1_OVHD_FLOW_FC

DA1_FEED_FC(t-dmax-d1) DA1_FEED_TC(t-dmax-d1) DA1_HEAT_TC(t-dmax-d1) DA1_PC(t-dmax-d1)

DA1_FEED_FC(t-dmax-d2) DA1_FEED_TC(t-dmax-d2) DA1_HEAT_TC(t-dmax-d2) DA1_PC(t-dmax-d2)  

Table 24. The structure of the 2nd PLS model for the active data-based FTC strategy for 

the DV sensor faults. 

Model DV_PLS21 DV_PLS22 DV_PLS23 DV_PLS24

Output DA1_FEED_FC DA1_FEED_TC DA1_HEAT_TC DA1_PC
Inputs DA1_TEMP_1 DA1_TEMP_1 DA1_TEMP_1 DA1_TEMP_1

DA1_TEMP_2 DA1_TEMP_2 DA1_TEMP_2 DA1_TEMP_2
DA1_TEMP_3 DA1_TEMP_3 DA1_TEMP_3 DA1_TEMP_3
DA1_OVHD_FLOW_FC DA1_OVHD_FLOW_FC DA1_OVHD_FLOW_FC DA1_OVHD_FLOW_FC

DA1_FEED_FC(t-dmax-d3) DA1_FEED_TC(t-dmax-d3) DA1_HEAT_TC(t-dmax-d3) DA1_PC(t-dmax-d3)

DA1_FEED_FC(t-dmax-d4) DA1_FEED_TC(t-dmax-d4) DA1_HEAT_TC(t-dmax-d4) DA1_PC(t-dmax-d4)  

The NIPALS algorithm presented in 3.4.1 was used for the iterative training of the PLS 

models, and the amount of latent variables was determined using the knee-in-the-plot 

method. PLS for the DV sensor faults was trained by using a data set consisting of 600 

minutes of process data. This data set was generated under MPC control, while 

manipulating the DVs and the CV reference trajectories in order to create sufficient 

excitation to capture the closed-loop behaviour of the target process for the data-based 

FDD methods. This training data is presented in Appendix E. 

The cumulative variances for the input vector X and the output vector Y, and the number 

of cumulative latent variables for each PLS model are presented in Table 25: 
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Table 25. The cumulative variances for X and Y and the number of the LVs for the PLS 

for the DV sensor faults. 

PLS 
model 

Cumulative  
variance of X 

Cumulative  
variance of Y 

Number of latent 
variables 

DV_PLS11 81 98 3 

DV_PLS12 83 99 2 

DV_PLS13 99 99 2 

DV_PLS14 99 99 2 

DV_PLS21 81 98 3 

DV_PLS22 83 99 2 

DV_PLS23 99 100 2 

DV_PLS24 99 99 2 

Next, the active data-based FTC strategy for the DV sensor faults was tested with the bias 

fault in a DV sensor. The drift fault was not tested because it has small or no effect at all 

on the process. 

A downward bias-shaped fault with a magnitude of 5% of the nominal value of 

DA1_FEED_FC was introduced into the DA1 feed flow measurement during the time 

step T1 = 15 minutes, with FTC turned off. The fault lasts for 90 minutes until the time 

step T2 = 105 minutes, after which the fault was removed from the target process.  The 

FDD part of the active data-based FTC strategy for the DV sensor faults was turned on, 

but no FTC actions were made. The PLS-based prediction and the effect of the fault can 

be seen in Figure 34. 

As can be seen from Figure 34, the -5% downward fault caused a downward effect on 

both DA1_BP_FP and DA2_BP_FP. Immediately after the effects started to appear in the 

CVs, the feedback control system started to compensate for the deviance from the 

setpoint value, thus correcting the error in the measurement. The PLS was able to predict 

the actual value of the DV measurement effectively. Overall, the fault had the effect that 

both DA1_BP_FP and DA2_BP_FP were off the specification limits for 90 minutes. The 

overall effect of the DV sensor fault was much lower than a fault in the CVs. 
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Figure 34. The effects of a -5% bias fault in DV DA1_FEED_FC during t = 15 - 105 

minutes, without the active data-based FTC strategy for the DV sensor faults. 

Next, the previous fault scenario with a -5% bias-shaped fault affecting DA1_FEED_FC 

was tested with the active data-based FTC strategy for the DV sensors. 
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A downward bias-shaped fault with a magnitude of 5% of the nominal value of the 

DA1_FEED_FC was introduced into the DA1 feed flow measurement during the time 

step T1 = 15 minutes, with the active data-based FTC strategy for the DV sensor faults 

turned on. As before, the fault lasted for 90 minutes until the time step T2 = 105 minutes, 

after which the fault was removed from the process. As can be seen from the PLS fault 

detection values in Figure 35, the FTC actions were engaged at the time step Td = 34 

minutes, 19 minutes after the fault starts to affect the process. The delay in the detection 

was caused by the backward prediction from the measurement values. There were no 

false alarms during this test run. 
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Figure 35. The PLS RMSEP values for a -5% bias fault in DV DA1_FEED_FC during t 

= 15 - 105 minutes, with the active data-based FTC strategy for the DV sensor faults. 
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As can be seen from Figure 36, with the active data-based FTC strategy for the DV 

sensor faults, the -5% bias fault had a considerably smaller effect on the controlled 

variables; this time DA_BP_FP was off-spec for only 25 minutes. In this case, there was 

virtually no effect on DA2_BP_FP due to the active data-based FTC strategy. The PLS 

was able to predict the actual value of the measurement accurately despite the spiking 

caused by the dynamic input to the FDD. In general, both DA1_BP_FP and DA2_BP_FP 

remained more closely within the specification limits despite the fault, thus improving the 

reliability of the control system and reducing off-spec production. 
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Figure 36. The effects of a -5% bias fault in DV DA1_FEED_FC during t = 15 - 105 

minutes, with the active data-based FTC strategy for the DV sensor faults. 
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7.3.3 Testing results of the active FTC strategy for the MV sensor faults 

The sensor faults for MVs cause a deviation in the MV value and a disturbance in MPC 

behaviour: a downward fault in an MV causes an elevating effect on the actual value, 

which is increased by the magnitude of the fault. This again causes deviation in the CV 

values from the CV setpoint values; however, as is the case with DV faults, this deviation 

is rapidly removed through feedback. The drift faults were not tested in this study 

because the effect of a drift-shaped fault was easily handled by the feedback and 

therefore an abrupt bias fault caused the most disturbances in the CV values. PLS-based 

FDD and controller reconfiguration methods were used in the case of the active data-

based FTC strategy for MV sensors in such a way that as soon as the fault was detected 

by the FDD, opposite steps change was made to the faulty measurement and the faulty 

measurement was disabled until the fault was removed.  

The inputs for the active data-based FTC strategy for the MV sensor faults are presented 

in Table 26, and the structure of the PLS model in Table 27. 

Table 26. The inputs for the active data-based FTC strategy for the MV sensor faults. 

Variable name Variable description Unit 
DA1_TEMP_1 DA1 top/overhead temperature  °C 

DA1_TEMP_2 DA1 temperature, tray 5 °C 

DA1_TEMP_3 DA1 temperature, tray 13 °C 

DA1_TEMP_4 DA1 temperature, tray 21 °C 

DA1_TEMP_5 DA1 temperature, tray 41 °C 

DA1_TEMP_6 DA1 bottom product temperature °C 

DA1_OVHD_FLOW_FC DA1 overhead gas flow rate t/h 

DA1_BP_FC DA1 bottom product flow rate t/h 

DA2_DIST_FC DA2 overhead gas flow rate t/h 

DA2_PC1 DA2 upper pressure measurement bar 

DA1_FEED_EA_FC DA1 feed heat exchanger hot fluid flow t/h 

DA2_BP_TC DA2 bottom product temperature °C 

DA2_BP_FC DA2 bottom product flow rate t/h 
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Table 27. The structure of the PLS model for the active data-based FTC strategy for the 

MV sensor faults. 

Model MV_PLS11 MV_PLS12 MV_PLS13 MV_PLS14

Output DA1_REFLUX_FC DA1_EA6_FEED_FC DA2_FEED_FC DA2_EA7_FEED_FC

Inputs DA1_TEMP_1 DA1_TEMP_1 DA1_TEMP_3 DA1_TEMP_2
DA1_TEMP_2 DA1_TEMP_2 DA1_TEMP_4 DA2_DIST_FC
DA1_TEMP_3 DA1_TEMP_3 DA1_TEMP_5 DA2_BP_TC
DA1_TEMP_4 DA1_TEMP_4 DA1_TEMP_6 DA2_BP_FC
DA1_OVHD_FLOW_FC DA1_TEMP_5 DA1_BP_FC
DA2_DIST_FC DA1_TEMP_6 DA2_BP_TC

DA1_OVHD_FLOW_FC DA2_BP_FC
DA1_BP_FC
DA1_FEED_EA_FC
DA2_BP_TC
DA2_BP_FC  

As before, the NIPALS algorithm presented in 3.4.1 was used for the iterative training of 

the PLS models, and the number of latent variables was determined using the knee-in-

the-plot method. PLS for the MV sensor faults was trained by using a data set consisting 

of 600 minutes of process data. This data set was generated under MPC control, while 

manipulating the DVs and the CV reference trajectories in order to create sufficient 

excitation to capture the closed-loop behaviour of the target process for the data-based 

FDD methods. These training data are presented in Appendix E. The cumulative 

variances for the input vector X and the input vector Y and the number of cumulative 

latent variables for each PLS model is presented in Table 28. 

Table 28. The cumulative variances for X and Y and the number of the LVs for the PLS 

for the MV sensor faults. 

PLS 
model 

Cumulative  
variance of X 

Cumulative  
variance of Y 

Number of latent 
variables 

MV_PLS11 98 69 5 

MV_PLS12 93 87 5 

MV_PLS13 99 99 3 

MV_PLS14 90 85 3 
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The active data-based FTC strategy for the MV sensor faults was next tested with a bias 

fault in the MV sensor. A downward bias-shaped fault with a magnitude of 10% of the 

nominal value of DA1_REFLUX_FC was introduced into the DA1 reflux flow 

measurement during the time step T1 = 15 minutes, without the active data-based FTC 

strategy. The fault lasted for 90 minutes until the time step T2 = 105 minutes, after which 

the fault was removed from the process. The FDD part of the active data-based FTC 

strategy for the MV sensor faults was turned on, but no FTC actions were made. The 

PLS-based prediction and the effect of the fault can be seen in Figure 37. 

As can be seen from Figure 37, the -10% downward fault caused a downward effect on 

both DA1_BP_FP and DA2_BP_FP. Immediately after the effects started to appear in the 

CVs, the feedback control system started to compensate for the deviance from the 

setpoint value, thus correcting the error in the measurement. PLS was able to predict the 

actual value of the DV measurement effectively. Overall, the fault had the effect that both 

DA1_BP_FP and DA2_BP_FP were off the specification limits for 40 minutes. The 

overall effect of the MV sensor fault was much lower than a fault in the CVs. 
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Figure 37. The effects of a -10% bias fault in MV DA1_REFLUX_FC during t = 15 - 105 

minutes, without the active data-based FTC strategy for the MV sensor faults. 

Next, the previous fault scenario with a -10% bias-shaped fault affecting 

DA1_REFLUX_FC was tested with the active data-based FTC strategy for the MV 

sensors. 
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A downward bias-shaped fault with a magnitude of 10% of the nominal value of 

DA1_REFLUX_FC was introduced into the DA1 reflux flow measurement during the 

time step T1 = 15 minutes, with the active data-based FTC strategy for the MV sensor 

faults. As before, the fault lasted for 90 minutes until the time step T2 = 105 minutes, 

after which the fault was removed from the target process. As can be seen from the PLS 

fault detection values in Figure 38, the FTC actions were engaged at the time step Td = 27 

minutes, 12 minutes after the fault was introduced. At this time, an opposite step change 

with an estimated fault magnitude was made to the faulty MV, after which the MV was 

disabled until the fault has been removed. The delay was caused by the estimation based 

on the current measurement values. There were no false alarms during this test run. 
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Figure 38. The PLS RMSEP values for a -10% bias fault in MV DA1_REFLUX_FC 

during t = 15 - 105 minutes, with the active data-based FTC strategy for the MV sensor 

faults. 

As can be seen from Figure 39, with the active data-based FTC strategy for the MV 

sensors, the -10% bias fault had a considerably smaller effect on the controlled variables, 

thus keeping the product within the specification limits. The effect was also smaller for 

DA2_BP_FP. The FDD was able to predict the actual value of the measurement with 

reasonable accuracy. In general, both DA1_BP_FP and DA2_BP_FP remained more 

closely within the specification limits despite the fault, thus improving the reliability of 

the control system and reducing off-spec production. 
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Figure 39. The effects of a -10% bias fault in MV DA1_REFLUX_FC during t = 15 - 105 

minutes, the active data-based FTC strategy for the MV sensor faults. 



 159  

 

7.3.4 Testing results of the active FTC strategy for the MV actuator faults 

As stated by Bao et al. (2003), one of the most common faults in sub-level controllers, 

such as flow controllers, is a stuck valve fault. In this kind of fault, a valve is stuck in a 

certain position and the performance of the actuator can be severely decreased. The 

performance decrease can be so bad that it may not be used for control and thus lowering 

the performance of the overall control strategy. The cause of the fault can be sudden 

fouling (a large particle stuck in the valve), slowly progressive fouling (accumulation of 

material in the valve) or a broken valve. Under steady state conditions, the stuck valve 

fault is not detectable; however, if a disturbance or a setpoint change occurs, the fault 

prevents the valve being operated, effectively lowering the overall performance of the 

control system.  

The FDD component in this case is very straightforward: the fault is detected if there is a 

difference between the control signal and the actuator measurement. A stuck valve fault 

was introduced into the DA2 feed flow measurement during the time step T1 = 10 

minutes.  At the same time, a setpoint change of +1% was issued to the DA1 bottom 

product flashpoint, DA1_BP_FP. The FDD part of the active FTC strategy for the MV 

actuator faults was turned on but the FTC part was turned off. The effect of the fault can 

be seen in Figure 40. 

As can be seen from Figure 40, the fault caused a delay in the MPC response, since the 

MPC could not use the primary controller to change the CV value; eventually, due to the 

feedback, other MVs had to be used to compensate for the stuck MV. Without a fault the 

MPC reached the given setpoint within 75 minutes, as can be seen in Figure 27. However, 

with a stuck valve fault in DA2_FEED_FC, the setpoint was reached within 200 minutes, 

causing a delay of 125 minutes due to a stuck valve fault in the critical actuator. 
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Figure 40. The effects of a stuck valve fault in MV DA2_FEED_FC while a +1% step 

change is made to the CV DA1_BP_FP setpoint and with the active FTC strategy for the 

MV actuator faults. 

Next, the previous fault scenario was repeated with the active FTC strategy for the MV 

actuator faults. As can be seen from Figure 41 representing the root-mean square error 

(RMSE) value of DA2_FEED_FC, the fault was detected within three minutes of the 

occurrence of the fault. Once the fault had been detected, the MPC is reformulated and an 

auxiliary MV, DA1_FEED_TC, was activated instead of the faulty MV, which was 

switched off.  
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Figure 41. The RMSQ values of the stuck valve fault in MV DA2_FEED_FC representing 

the fault detection of the stuck valve fault. 

This time, because the faulty MV was excluded from the MPC MV inputs, the MPC 

response time was much better; the target setpoint value was reached within 100 minutes 

after the setpoint change, which was 25 minutes slower than with the case without a stuck 

valve fault. Therefore, the active FTC strategy for the MV actuator faults had improved 

the response time by 100 minutes. The results of testing the MV actuator faults are 

presented in Figure 42. 
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Figure 42. The effects of a stuck valve fault in MV DA2_FEED_FC while a +1% step 

change is made to the CV DA1_BP_FP setpoint and with the active FTC strategy for the 

MV actuator faults. 
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7.3.5 Summary and discussion of validating the performance of the 

integrated FTMPC for the target dearomatization process 

In order to validate the performance of the integrated FTMPC, a testing was carried out 

with different fault types affecting the target process. In all the fault cases, the integrated 

FTMPC significantly improved the resistance and response time of the control system 

against the effects of the faults. With the integrated FTMPC, the off-spec production was 

considerably reduced; the performance of the control system when affected by a fault was 

improved; and the overall reliability was considerably better than with the nominal MPC. 

The results of different FTC tests are presented with reaction times to different fault types 

in Table 29 for periods when the bottom product flashpoint is off the specification limit 

with and without the integrated fault-tolerant MPC. The ISE values are calculated for 

DA1_BP_FP and DA2_BP_FP in order to compare the results. For a case without any 

fault, the average ISE for both DA1_BP_FP and DA2_BP_FP is 30. The ISE values for 

different fault cases, with and without the integrated fault-tolerant MPC, are presented in 

Table 30. 

Table 29. Results of the testing of the integrated fault-tolerant MPC with different fault 

types (*compared to a case without a fault). 

Tested fault type Fault type Detection time Product off spec, 
without FTC 

Product off spec, 
with FTC 

CV Sensor fault +5% Bias 19 minutes Fault duration 10 minutes 

CV Sensor fault +5% Drift 19 minutes Fault duration 0 minutes 

DV Sensor fault -5% Bias 20 minutes Fault duration 25 minutes 

MV Sensor fault -10% Bias 16 minutes 40 minutes 10 minutes 

MV actuator fault Stuck valve 3 minutes 125 minutes* 25 minutes* 
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Table 30. ISE values of the target process with and without the integrated fault-tolerant 

MPC and the percentages of improvement with the nominal ISE level of 30. 

Tested fault type 
DA1_BP/DA2_BP 
ISE,  without FTC 

DA1_BP/DA2_BP 
ISE, with FTC Improvement 

CV Sensor fault (+5% bias) 1223 / 114 27 / 30 98 / 74% 

CV Sensor fault (+5% drift) 396 / 57 23 /27 94 / 51% 

DV Sensor fault (-5% bias) 48 / 38 32 /38 43 / 0% 

MV Sensor fault (-10% bias) 46 / 147 30 / 66 35 / 66% 

MV actuator fault (stuck valve) 75 / 30 64 / 30 15 / 0% 

As can be seen from Tables 29 and 30, the off-spec production was reduced as a result of 

fast detection and compensation of the faults, and the performance of the MPC was 

considerably improved with the integrated fault-tolerant MPC when compared to the 

nominal ISE level of approximately 30. Based on these results, it can be concluded that 

although the CV faults had longer lasting and more severe effects, the lower level 

controller faults also had an effect on the overall performance of the control system. 

Therefore, usage of the integrated FTMPC that also takes into account faults in DVs and 

MVs has a definitive effect on the performance of the control system. 



 165  

 

7.4 Economic evaluation of the integrated FTMPC 

In this chapter, the economic benefits for the integrated fault-tolerant MPC are calculated 

based on the FTMPC testing results presented in the previous section, actual fault 

occurrence probabilities in the dearomatization process presented in Section 6.2, 

approximated product prices as well as expert knowledge of the target process. In the 

calculations, the following assumptions are made: 

- The price of a bottom product loss in the column DA1 is the price difference between 

the solvent product and the bulk product using the same feedstock type (for instance, 

diesel or gasoline). The price for the bottom product loss in this case can be estimated to 

be approximately USD 100 /t. 

- The feed level to the unit is 28 t/h; the average bottom product flow rate 17 t/h; the 

average side product flow rate 9 t/h; and the average overhead distillate flow rate 2 t/h. 

- If the product FP goes below the specification limit, it needs to be corrected by 

preparing over-quality bottom product for an equivalent time. The quality of the bottom 

product can be increased by 1°C by increasing the overhead distillate flow by an average 

of 2 t/h; or alternatively by decreasing the unit feed by 2 t/h on average. In essence, an 

increase in the overhead distillate flow rate or a decrease in the feed flow rate causes the 

unit to lose capacity of 2 t/h on average for 1°C of FP. At the same time, the bottom 

product flow rate also decreases by 2 t/h. We assume 1°C of FP correction is used for all 

cases. 

- The side product flow rate is assumed to be at a maximum, which forces an increase in 

the overhead flow rate or a decrease in the feed rate in order to correct the off spec batch. 

- The over-quality of the final product has the effect that in order to produce over-quality 

product, the overhead distillate flow rate has to be increased and the bottom product flow 

rate reduced, essentially losing capacity of the unit by 2 t/h for 1°C of FP over-quality in 

the final product. 
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As an example, if the bottom product has been -1oC off specifications for 10 hours, a total 

17 t/h * 10 h = 170 tons of off-spec product have been produced. In order to correct this 

back to specifications, the unit has to operate with +1°C quality for 170 t / (17 t/h -2 t/h) 

= 11 h. During this time, the unit loses capacity 2 t/h *11 h = 22 t and this capacity has a 

value of 22 t * USD 100 /t = USD 2,200. Alternatively, the correction can be made with a 

smaller FP value. In this case, although the correction time is much longer, the losses are 

smaller due to the higher overall feed rate. In practice, there is not much time available to 

finish the product, and therefore the corrections need to be made with higher losses in 

order to prepare the product in time before delivery to the customers. 

7.4.1 Economic evaluation of the sensor faults in the CVs and in the DVs 

As stated in Section 6.2, during 2008 - 2009 3% off spec and 3% over-quality was 

produced due to faults in the analyser readings, in which case the analyser measurement 

were either higher or lower than the laboratory measurements by 2.8°C.  

If it is assumed that the 3% of off-spec production causes at least eight hours of off-spec 

production, and each 1°C in FP causes 2 t/h losses, then a total of 750 t of total unit 

capacity is lost during one year due to the off spec production. In total, this means 750 

t/year * USD 100 /t = USD 75,000 /year in off spec losses for this one specific grade only 

in the case of analyser failures.  

If it is assumed that the 3% of over-quality production caused at least eight hours of over-

quality production, and each 1°C in FP caused 2 t/h losses, then a total of 630 t of 

capacity was lost during one year due to the over-quality of the final product. In total, this 

means losses of 600 t/year * USD 100 /t = USD 60,000 /year in over-quality for this one 

specific grade only in the case of analyser failure.  
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The DV fault losses cannot accurately be calculated since there is no alternate 

measurement with which to compare the flow or temperature measurements. However, 

the combined probability of the DV and MV faults occurring can be estimated to be 

approximately the same as for the analyser faults (6%), as the number of faulty 

components in the maintenance logs was the same as the analyser faults, as discussed in 

Chapter 6. In this case, the DV faults would then occur in at least 3% of the total number 

of analyses made out of the main product in a year, which would be approximately eight 

faults per year. 

In the case of DV faults, the fault lasted only for about 90 minutes with -5% and -10% 

faults, as can be seen from Table 29. The duration and magnitude of the effect of the fault 

depends on the magnitude of the fault. After 90 minutes, the MPC compensated for the 

fault and control of the CVs was restored. If the product was off spec for 1°C for 

approximately 90 minutes, this would cause an average loss of 3.4 t of production/fault. 

In total, this would cause approximately a 30 t loss of capacity each year, which would 

cost 30 t/year * USD 100 /t = USD 3,000 /year for the heavy grade alone.  

In total, USD 141,000 is lost on average due to malfunctioning sensor or analyser 

measurements in CVs or DVs each year for this specific grade alone. 
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7.4.2 Economic evaluation of the sensor faults in the MVs 

The probability of the MV sensor faults is assumed to be the same as with the DVs (3%), 

and the total number of MV sensor faults would approximately be eight faults per year. 

As with the DV sensor faults, the MV fault lasted for about 90 minutes with -5% and  

-10% faults. The duration and magnitude of the effect of the fault depends on the 

magnitude of the fault. After 90 minutes, the MPC compensated for the fault and control 

of the CVs is restored. If the product was off spec for 1°C for approximately 90 minutes 

due to the MV sensor fault, this would cause an average loss of 3.4 t of production/fault. 

In total, this would cause approximately a 30 t loss of capacity each year, which would 

cost 30 t/year * USD 100 /t = USD 3,000 /year for the heavy grade alone.  

7.4.3 Economic evaluation of the actuator faults in the MVs 

Although the stuck valve losses cannot be precisely calculated, an estimation of stuck 

valve fault effects can be calculated using the probability of a valve fault. Stuck valve 

faults on actuators permanently decrease the performance of the control system, and thus 

can cause long-lasting performance problems unless the faulty actuator is repaired or 

replaced. However, as stated in Chapter 6 and based on the refinery maintenance logs, the 

occurrence of a stuck valve fault was only 16% of the total number of control system 

component faults, whereas the analyser and measurement device faults each account for 

42%. Therefore, the probability of a stuck valve fault was approximately 30% lower than 

that for analyser or sensor faults. This means that stuck valve faults occurs on 

approximately 2% of the sampling times during a period of one year for the heavy grade. 
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In the case of actuator faults, the effect of a fault depends on whether there is a 

disturbance or a setpoint change, during which the stuck valve fault effects appear. In the 

example case in Table 29 with a stuck valve fault occurring during a setpoint change, the 

bottom product was off specifications for 125 minutes, which was 100 minutes less than 

with the FTC set on. If the product was off specifications by 1°C for approximately 100 

minutes due to a DV or MV sensor fault, this would cause an average loss of production 

of 3.8 t/fault, which is equal to approximately 20 t of the capacity loss to the unit in one 

year, which would cost 20 t/h * USD 100 /t = USD 2,000 for the heavy grade alone. 

7.4.4 Summary of the economic evaluation 

Overall, it is estimated that the integrated fault-tolerant MPC has the potential to produce, 

at a maximum, savings of some USD 148,000 during one year in the case of the heavy 

grade alone. Over 90% of the savings would be achieved by more optimal operation by 

reducing the effect of analyser faults through the use of fault accommodation. Less than 

10% of the savings would be achieved with the active data-based FTC strategy on the DV 

and MV sensor fault accommodation and controller reconfiguration methods for stuck 

valve faults. 

In general, based on industrial experience of project costs and cost estimates, it could be 

estimated that an industrial-scale version of the integrated fault-tolerant MPC without an 

MPC implementation would cost approximately USD 50,000 - 100,000. Therefore, the 

integrated fault-tolerant MPC like this would have a repayment period of 4 - 8 months, 

thereby making an investment of this magnitude highly profitable in normal economic 

conditions. In addition, if an integrated fault-tolerant MPC would be implemented in a 

process without an MPC already in place, the profits would be even higher due to better 

optimisation of the target process and lower overall costs, since the implementation could 

be carried out in connection with the installation of an MPC allowing the full design of 

the integrated fault-tolerant MPC. 
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8 Conclusions 

In this thesis, an integrated FTMPC reducing the effects of the faults in the analyser, flow, 

temperature and pressure measurements, and in the actuators has been developed for an 

industrial dearomatization process. First, the results of a literature study of state-of-the-art 

in FTC for the target process were presented and the most suitable FTC components and 

design schemes were determined. Second, based on these schemes and the FTMPC user 

requirements, the integrated FTMPC containing three parallel-running FTC strategies 

was developed. These three strategies contain fault accommodation- and controller 

reconfiguration-based FTC strategies and an FDD component based on the recursive PLS. 

Third, three data-based FDD methods and the fault accommodation-based FTC strategy 

were tested and the FDD methods compared on a recognised preliminary testing process. 

Based on the preliminary testing results, the most suitable FDD method, recursive PLS, 

was selected as the FDD method for the final application. Fourth, the performance of the 

nominal MPC was determined and the developed integrated fault-tolerant MPC with 

three FTC strategies was validated with the simulated dearomatization process with faults 

in the CV, DV and MV sensors and MV actuators. Finally, based on the validation results, 

the profitability of the integrated FTMPC was evaluated by using the estimated price of 

the end product and faults in the actual dearomatization process located in the Naantali 

refinery.  

The hypotheses presented in Chapter 1 are: (1) The integration of the data-based FDD 

methods and the fault accommodation and the controller reconfiguration FTC methods 

provide the control system of a dearomatization process with the tools needed to 

overcome the typical process and measurement disturbances and faults in the 

dearomatization process environment; and (2) The availability and profitability of the 

dearomatization process are enhanced by the compensation of the critical faults using the 

fault accommodation and the controller reconfiguration FTC methods. These hypotheses 

have been verified by the results acquired in testing the proposed integrated fault-tolerant 

MPC with the simulated dearomatization process in Section 7.3, and with the economic 

evaluation in Section 7.4. 
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Based on the results of the thesis, the integrated fault-tolerant MPC was able to reduce 

the effect of the typical faults in the target process. Therefore, it could be estimated that 

the reliability of the dearomatization process is enhanced if the integrated fault-tolerant 

MPC would be implemented in the actual dearomatization process. Based on the 

economic evaluation of just one feed grade, the integrated FTMPC was found to be 

highly profitable; the annual estimated savings would be a maximum of USD 143,000, 

thereby the integrated FTMPC would pay for itself in less than one year. It can therefore 

be estimated that the integrated FTMPC would provide considerable savings in off-spec 

production, energy consumption and, in general, improvement of the unit operation due 

to faster detection and prevention of the fault effects. 

The next task in the industrial FTMPC development would be to verify the accuracy of 

the FTMPC models by using the actual plant data. This verification would be carried out 

by comparing the FDD estimated values with the plant measurement values. After the 

accuracy of the PLS prediction has been verified, it would be beneficial to implement the 

integrated FTMPC directly in the software environment of the existing MPC in the actual 

plant. This maximises the data transfer rate, minimises errors and makes the integrated 

FTMPC as easy as possible to maintain and control through the existing graphical user 

interfaces (GUI). After the implementation, the accuracy of the FDD models should be 

verified during a long testing period by monitoring the difference between the FDD 

estimations and the measurements in different operation points without activating the 

FTC components. Next, when the accuracy of the FDD models has been found sufficient, 

the testing of the FTC strategies would be carried out. Finally, after the FTMPC 

performance has been fully verified under different operating conditions, it would be 

possible to take the FTMPC in normal plant operational use. 
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Appendices 

Appendix A Description of the integrated fault-tole rant model predictive 

controller procedures 

A.1 Procedure of the FTC strategy for the faults in the sensors of the CVs 

and DVs by using fault accommodation 

1. Detect and isolate faults by using the 

PLS-based FDD and determine the value of 

the fault detection index F  

2. Determine if F ≥ Flim,, if this is true, go 

to Step 3; if  this is untrue, go to Step 4 

3. Increase the fault detection delay 

counter c by one and go to Step 7 

4. Decrease the fault detection delay 

counter c by one and go to back to Step 1 

5. If value of the counter c is less or equal 

to 0, go to Step 6; otherwise go back to 

Step 1  

6. Set the counter c value to 0 and go back 

to Step 1  

7. If value of the counter c is equal or 

greater than the low limit LL, go to Step 6; 

otherwise go back to Step 1  

8. Estimate the correction value ∆y by 

using the PLS-based FDD, scale the correction values according to the delay counter value (the 

magnitude of the correction is increased according to the value of c),  ∆y  = yf-yest  

9. Accommodate  the faulty measurement yf : y=yf+∆y, where ∆y  = yf-yest, then go back to Step 1  

 

 



   

 

A.2 Procedure of the FTC strategy for the faults in the sensors of the MVs by 

using fault accommodation and controller reconfiguration 

1. Detect and isolate faults by using the PLS-based FDD and determine the value of the fault 

detection index F  

2. Determine if F ≥ Flim,, if this is true, 

go to Step 3; if  this is untrue, go to Step 

4  

3. Increase the fault detection delay 

counter c by one and go to Step 7  

4. Decrease the fault detection delay 

counter c by one and go to Step 5 

5. If value of the counter c is below the 

low limit LL go to Step 6  

6. Enable (previously) faulty MV and 

assign the (previously) activated DV 

back as a DV, then go back to Step 1  

7. If value of the counter c is less or 

equal to 0, go to Step 8; otherwise go 

back to Step 1  

8. Set the counter c value to 0 and go 

back to Step 1  

9. If value of the counter c is equal or 

greater than the low limit LL, go to Step 

10; otherwise go back to Step 1  

10. Estimate the non-faulty measurement values and the correction value ∆y  = yf-yest  

11. Move MV to the opposite direction of the fault by the magnitude of ∆y, disable the faulty MV (set 

it as a disturbance variable), and activate one of the DVs as an MV, then go back to Step 1 



   

 

A.3 Procedure of the FTC strategy for the faults in the actuators of the MVs 

by using controller reconfiguration  

1. Detect and isolate faults by using  the 

residual between the flow measurement 

value and the MPC setpoint and 

determine the value of the fault detection 

index F  

2. Determine if F ≥ Flim,, if this is true, 

go to Step 3; if  this is untrue, go to Step 4 

3. Increase the fault detection delay 

counter c by one and go to Step 7 

4. Decrease the fault detection delay 

counter c by one and go to Step 5  

5. If value of the counter c is less or 

equal to 0, go to Step 6; otherwise go 

back to Step 1  

6. Set the counter c value to 0 and go 

back to Step 1  

7. If value of the counter c is equal or 

greater than the low limit LL, go to Step 

8; otherwise go back to Step 1  

8. Disable the MV (set it as a disturbance variable), and activate one of the DVs to become as an MV, 

then go back to Step 1  

Note: Once the MV has been reassigned due to the actuator fault, it needs to be manually set back 

active if the fault is corrected. This is due to the detection mechanism, which is based on the residual 

between the setpoint set by the MPC (which is not available if the MV is disabled) and the 

measurement.  

 

 



   

 

Appendix B Graphical representation of the fault ac commodation-based 

FTC  strategy testing on the benchmark process 
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Figure A - 1. The performance of the active fault accommodation-based FTC strategy 

with the PLS-based FDD in the case of a bias fault in y1 of the industrial benchmark 

process. 
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Figure A - 2. The performance of the active fault accommodation-based FTC strategy 

with the PLS-based FDD in the case of a drift fault in y1 of the industrial benchmark 

process. 



   

 

0 100 200 300 400 500 600 700 800

-0.4

-0.2

0

0.2

0.4

0.6

Time (min)

y 1
CV y1 with FTC

 

 

reference trajectory
faulty measurement
corrected measurement
real measurement

0 200 400 600 800

-0.4

-0.2

0

0.2

0.4

0.6

Time (min)

y 1

CV y1 without FTC

 

 

reference trajectory
faulty measurement
real measurement

0 200 400 600 800
-0.5

0

0.5

Time (min)

u 1

0 200 400 600 800
-0.5

0

0.5
Manipulated variables

Time (min)

u 2

0 200 400 600 800
-0.5

0

0.5

Time (min)

u 3
 

 

MV behavior with FTC on
MV behavior with FTC off

 

Figure A - 3. The performance of the active fault accommodation-based FTC strategy 

with the PCA-based FDD in the case of a bias fault in y1 of the industrial benchmark 

process. 
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Figure A - 4. The performance of the active fault accommodation-based FTC strategy 

with the PCA-based FDD in the case of a drift fault in y1 of the industrial benchmark 

process. 
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Figure A - 5. The performance of the active fault accommodation-based FTC strategy 

with the SMI-based FDD in the case of a bias fault in y1 of the industrial benchmark 

process. 
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Figure A - 6. The performance of the active fault accommodation-based FTC strategy 

with the SMI-based FDD in the case of a drift fault in y1 of the industrial benchmark 

process. 



   

 

Appendix C Responses of the ±1%, ±5% and ±10% chang es in the inputs (normalised in relation to the sta ndard 

deviation) 



   

 

Appendix D Step responses of 5%  step changes in th e inputs (normalised in relation to the standard de viation)



   

 

Appendix E Training data for the PLS-based FDD 
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Figure A - 7. The training data for the PLS-based FDD. 
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