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1 Introduction

Quantum optics and especially the quantum theory of coherence started to develop

during 1950s after Hanbury Brown and Twiss [1] measured the correlation of pho-

tons in two coherent light beams using beam splitters and photomultiplier tubes.

After the experiment the quantum theory of optical coherence was developed greatly

by Glauber [2, 3]. Although the first steps of quantum optics were taken decades

ago, many recent quantum optical experiments still depend on beam splitters and

photodetectors. For example, by using a light source, a beam splitter and photode-

tectors, Parigi et al. [4] recently showed that after subtracting a single photon from

a light field the expectation value of the number of the photons may be twice the

initial value. Cavity quantum optics is also a subject of great interest since it may

offer a way to quantum information processing applications [5].

Analysis of quantum optical experiments and the simulation of optical devices re-

quire detailed quantum mechanical models, especially in the case of weak optical

fields. In this summary and related publications the quantum dynamics of cavity

fields are investigated and new tools for modeling cavity fields interacting with an

energy reservoir are developed.

In general the results described in the publications are based on applying the quan-

tum trajectory approach to investigate e.g. how the measurement of a photon will

change the cavity field. In publications I and II two different experimentally fea-

sible detector models, the resolving detector corresponding to detection of exactly

one photon and the non-resolving detector corresponding to detection of at least

one photon, are derived and analyzed. In contrast to the previous studies, which

have only been applicable for either weak or strong coupling of the field and the

detector, we have derived models that are applicable also for intermediate coupling.

With the use of these detector models we analyze the coincidence photon detection
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experiments and also consider the photon bunching and anti-bunching phenomena

for selected initial states of the field.

In publications II and V we analyze single photon addition and subtraction ex-

periments based on light pulses incident on a beam splitter by using the detector

schemes introduced. We show that by relating the transmission and reflection prob-

abilities of the beam splitter model to the cavity field-detector coupling and to the

interaction time of our model, the models become equivalent.

In addition to the cavity field detection, in publications IV, V and VI we analyze

setups where the cavity field is coupled to an energy source and an energy drain

through one or multiple two state systems. We derive a reduced field model which

captures the effect of the energy reservoir by the strengths of the coupling between

the field and the two state system and the coupling of the two state system and the

reservoir. By taking the mirror losses of the cavity into account, we show that our

setup can operate as a light emitting diode or as a laser. We also show that our

model can be applied to analyze the optical fields of semiconductor devices.

In this summary the necessary prerequisites and selected topics of the attached

publications are discussed.



2 Quantum optical field

2.1 Quantization of the electromagnetic field

Quantized description of electromagnetic field is obtained from the classical theory.

As a brief introduction to the topics of this thesis we demonstrate the analogy be-

tween the classical and the quantized fields for the simplest case of vacuum. We start

from the classical description of electromagnetic field using the Maxwell’s equations,

which relate the electric and magnetic fields E and H to the electric displacement D

and to the magnetic flux density B. Maxwell’s equations for the vacuum are given

by [6–8]

∇×H =
∂D

∂t
(2.1)

∇× E = −∂B
∂t

(2.2)

∇ ·B = 0 (2.3)

∇ ·D = 0, (2.4)

where we have assumed that charge and current densities are zero. Furthermore,

the constitutive relations give

B = µ0H (2.5)

D = ε0E, (2.6)

where µ0 and ε0 are the permittivity and permeability of the vacuum which relate

to the speed of light as c0 = 1/
√
µ0ε0. Since it holds for every vector function f(r)

that ∇ · (∇ × f(r)) = 0 equation (2.3) is satisfied if we define the magnetic flux

density using a vector potential function as B = ∇ × A. Substituting this into

(2.2) gives ∇× (E+ ∂
∂t
A) = 0 and accordingly E = − ∂

∂t
A. From equation (2.1) we

obtain ∇×∇×A = µ0ε0
∂2

∂t2
A, where ∇×∇×A = ∇(∇ ·A)−∇2A. By the use

of vector potential A in the Coulomb gauge ∇ ·A = 0 the Maxwell’s equation give
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the following wave equation for the vector potential

∂2

∂t2
A− c20∇2A = 0 (2.7)

E = − ∂

∂t
A (2.8)

B = ∇×A. (2.9)

The electromagnetic field will be now quantized by transforming the vector potential

A to vector potential operator Â.

In a cube with side of L the vector potential can be expanded using planewaves and

their Fourier series as

A =
∑

k

[Ak(t)e
ik·r +A∗

k
(t)e−ik·r], (2.10)

where, using the periodic boundary conditions, ki = 2πνi/L, with i = x, y, z and

νi = 0,±1,±2, . . . . For each wave vector k there is two independent polarizations as

will be shown later. These two possibilities are included in the summation
∑

k
. In

a more general case the solutions of the wave equation (2.7) (i.e. the normal modes)

are used instead of the plane waves and, furthermore, the vacuum parameters ε0

and µ0 are replaced with the material parameters ε and µ.

The Coulomb gauge condition, ∇ ·A(t) = 0, is satisfied if k ·Ak(t) = k ·A∗
k
(t) = 0.

Thus, the Fourier component Ak is perpendicular to the wavevector k. Substitution

of the Fourier expansion into the wave equation (2.7) gives for each mode k

k2Ak(t) +
1

c20

∂2Ak(t)

∂t2
= 0 (2.11)

∂2Ak(t)/∂t
2 = −ω2

k
Ak(t) (2.12)

where ωk = c0k. The solution is

Ak(t) = Ake
−iωkt, (2.13)

and corresponding equations hold forA∗
k
(t). The vector potential can now be written

as

A =
∑

k

[Ake
ik·r−iωkt +A∗

k
e−ik·r+iωkt]. (2.14)
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The energy of the classical mode k is given by Hamiltonian [6, 7]

Hk =
1

2

∫

V

(

ε0|Ek|2 + µ−1
0 |Bk|2

)

dV = 2ε0V ω
2
k
|Ak|2. (2.15)

Next we write the mode variables Ak and A∗
k
using a generalized mode position

coordinate Qk and mode momentum coordinate Pk as

Ak =
ωkQk + iPk
√

4ε0V ω2
k

εk (2.16)

A∗
k
=
ωkQk − iPk
√

4ε0V ω2
k

εk, (2.17)

where εk is the polarization vector. It follows from the Maxwell’s equations that

k · εk = 0 i.e. the fields are transverse and there are two independent polarization

directions for each wavevector k. Using equations (2.16) and (2.17), the Hamiltonian

(2.15) simplifies to

Hk =
1

2

(

P 2
k
+ ω2

k
Q2

k

)

. (2.18)

This form corresponds to the energy of a classical harmonic oscillator. For compar-

ison, the Hamiltonian operator of a one dimensional quantum mechanical harmonic

oscillator with unit mass is

H =
1

2
(p̂2 + ω2q̂2), (2.19)

where p̂ is the position operator and q̂ is the momentum operator obeying the com-

mutation relation [q̂, p̂] = ih̄. The annihilation and creation operators are defined

using a canonical transformation as

â =
1√
2h̄ω

(ωq̂ + ip̂) (2.20)

â† =
1√
2h̄ω

(ωq̂ − ip̂) (2.21)

q̂ =

√

h̄

2ω
(â + â†) (2.22)

p̂ = −i

√

h̄ω

2
(â − â†). (2.23)

The annihilation and creation operators obey the commutation relation [â, â†] = 1.
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The similarity of the classical Hamiltonian (2.18) and the quantum mechanical

Hamiltonian (2.19) allows quantization of the electromagnetic field by replacing

variables Pk and Qk with operators p̂k and q̂k in equations (2.16) and (2.17) giving

Âk =
1

√

4ε0V ω2
k

(ωkq̂k + ip̂k)εk =

√

h̄

2ε0V ωk

âkεk (2.24)

Â∗
k

=
1

√

4ε0V ω2
k

(ωkq̂k − ip̂k)εk =

√

h̄

2ε0V ωk

â†
k
εk. (2.25)

The vector potential, electric field, and magnetic field operators associated to mode

k are

Âk =

√

h̄

2ε0V ωk

εk[âk exp(−iωkt+ ik · r) + â†
k
exp(iωkt− ik · r)] (2.26)

Êk = i

√

h̄ωk

2ε0V
εk[âk exp(−iωkt+ ik · r)− â†

k
exp(iωkt− ik · r)] (2.27)

B̂k = i

√

h̄

2ε0V ωk

k× εk[âk exp(−iωkt+ ik · r)− â†
k
exp(iωkt− ik · r)],(2.28)

where εk is the polarization unit vector of mode k. Different modes are orthogonal

solutions of the wave equation. The operator operating into mode k is denoted by

subscript k. Thus â†
k
creates and âk destructs a photon with energy h̄ωk in the

electromagnetic field mode k of the cavity. Furthermore, the operators of the total

vector potential, the transverse electric field, and the transverse magnetic field are

Â =
∑

k
Âk, Ê =

∑

k
Êk and B̂ =

∑

k
B̂k. The electric field operator is divided

into two parts

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t) (2.29)

Ê(+)(r, t) = i
∑

k

√

h̄ωk

2ε0V
εkâk exp(−iωkt+ ik · r) (2.30)

Ê(−)(r, t) = −i
∑

k

√

h̄ωk

2ε0V
εkâ

†
k
exp(iωkt− ik · r), (2.31)

where Ê(+) is called the positive and Ê(−) the negative frequency part. Similar

equations hold for the magnetic field operator.
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2.2 Density operator formalism

The density operator formalism is shortly introduced since we will apply it in all

the analytical and numerical calculations represented in this thesis.

In quantum mechanics a state of a pure system at time t is described with a state

vector |Ψ(t)〉. Let us assume that Hamiltonian operator describing the energy of the

system is H. The time development of the system is governed by the Schrödinger

equation [9]

H|Ψ(t)〉 = ih̄
d

dt
|Ψ(t)〉, (2.32)

which has a formal solution

|Ψ(t)〉 = e−iHt/h̄|Ψ(0)〉. (2.33)

A statistical ensemble or a system interacting with its environment (i.e. coupled

systems) cannot usually be described by a state vector. Instead the density operator

formalism [6,9, 10] must be used.

For a pure state |Ψ(t)〉 a density operator is defined as

ρ̂(t) = |Ψ(t)〉〈Ψ(t)|. (2.34)

If the state is a superposition state |Ψ(t)〉 =∑∞
i=0 ψi(t)|i〉 the density operator can

be written as

ρ̂(t) = |Ψ(t)〉〈Ψ(t)| =
∞
∑

i=0,j=0

ψi(t)ψ
∗
j (t)|i〉〈j| =

∞
∑

i=0,j=0

ρi,j|i〉〈j|. (2.35)

Note that, although we used a state vector to define the density operator, the for-

malism is more general. The density operator can also be defined for systems that

cannot be represented by a state vector.

A trace of the density operator is defined as Tr{ρ̂}=∑∞
k=0〈k|

(

∑∞
i=0,j=0 ρi,j|i〉〈j|

)

|k〉
=
∑∞

i=0 ρi,i = 1, where ρi,i is the probability of the state |i〉 in the mixed state. For a
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pure state ρ̂2 = ρ̂ and Tr{ρ̂2} =
∑∞

i=0 ρ
2
i,i = 1. The expectation value of a quantum

mechanical operator Â operating on a mixed state is further given by

〈Â〉 = Tr{Âρ̂} =
∞
∑

i=0

ρi,i〈i|Â|i〉. (2.36)

Using the Schrödinger equation an equation of motion for the density operator is

obtained as

d

dt
ρ̂(t) =

(

d

dt
|Ψ(t)〉

)

〈Ψ(t)|+ |Ψ(t)〉
(

d

dt
〈Ψ(t)|

)

= − i

h̄
[H, ρ̂(t)] , (2.37)

where [â, b̂] = âb̂− b̂â is the commutator. Equation (2.37) is called the Liouville-von

Neumann equation [11,12] and it has a formal solution

ˆρ(t) = e−iHt/h̄ρ̂(0)eiHt/h̄. (2.38)

2.3 Examples of optical fields

2.3.1 Fock state

A Fock state, also called a number state, is a pure state describing a field having

precisely n photons and is denoted as ΨFock = |nk〉. Fock states are eigenstates of

the number operator n̂ = â†â. The single mode density operator for a Fock state is

ρ̂Fock = |nk〉〈nk|, (2.39)

where the wavevector k denotes the mode. In single mode case it is usually omitted.

The frequency of the mode is ωk = ck, where k = |k|. The density operator of

multimode Fock field is

ρ̂Fock = |{nk}〉〈{nk}| = |nk1
〉|nk2

〉|nk3
〉 . . . 〈nk3

|〈nk2
|〈nk1

|. (2.40)
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2.3.2 Coherent field

The coherent states, also called Glauber states, are the eigenstates of the annihilation

operator so that âk|αk〉 = αk|αk〉. They are related to the number states (Fock

states) as follows [2, 6]

Ψcoh = |αk〉 = exp(−1

2
|αk|2)

∞
∑

nk=0

αnk

k√
nk!

|nk〉. (2.41)

Single mode density operator for the coherent field is

ρ̂coh = |αk〉〈αk| = exp(−|αk|2)
∞
∑

nk,mk=0

αnk

k
(α∗

k
)mk

√
nk!mk!

|nk〉〈mk|. (2.42)

Parameter |αk|2 = 〈αk|â†kâk|αk〉 = Tr{â†
k
âkρ̂coh} gives the mean number of photons

in mode k. Furthermore, the probability of finding n photons in that mode is

|〈nk|αk〉|2 = e−|αk|2 |αk|2nk

nk!
. The density operator of a multimode coherent field is

ρ̂ = |{αk}〉〈{αk}| = |αk1
〉|αk2

〉|αk3
〉 . . . 〈αk3

|〈αk2
|〈αk1

|. (2.43)

2.3.3 Thermal field

The density operator for a single mode thermal, or chaotic, field is given by [6]

ρ̂ther =
∞
∑

nk=0

(n̄k)
nk

(n̄k + 1)nk+1
|nk〉〈nk| =

∞
∑

nk=0

pnk
|nk〉〈nk|, (2.44)

where the mean photon number depends on temperature T and frequency of the

field as

n̄k =
1

exp
(

h̄ωk

kBT

)

− 1
, (2.45)

where kB is the Boltzmann’s coefficient. The multimode density operator is given

by

ρ̂ther =
∞
∑

{nk}=0

|{nk}〉〈{nk}|
∏

k

(n̄k)
nk

(n̄k + 1)nk+1
. (2.46)
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2.4 Interaction of quantized field with a two state system

The interaction of quantized optical field with an atom (or an atom-like two state

quantum system) where only a single electron interacts with the field can be de-

scribed by a Hamiltonian [6, 7, 13]

H = Hatom +Hfield +Hint. (2.47)

Here the atomic Hamiltonian is

Hatom = h̄ωg|g〉〈g|+ h̄ωe|e〉〈e|, (2.48)

where |g〉 and |e〉 are the ground state and the excited state of the two level system

with respective energies of h̄ωg and h̄ωe. It is usually written that h̄ωe = −h̄ωg =

h̄ω0/2, where h̄ω0 is the energy difference of the two states. Therefore, the atomic

Hamiltonian can be written as

Hatom =
1

2
h̄ω0σ̂0, (2.49)

where σ̂0 = |e〉〈e| − |g〉〈g|. The field Hamiltonian in equation (2.47) is

Hfield = h̄ωâ†â, (2.50)

where ω is the frequency of the field and h̄ω is the energy of a single photon. In

the resonant case the frequency of the field corresponds to the energy difference of

the excited and the ground states of the two level system. In the following we will

assume exact resonance i.e. ω0 = ω. Operators â and â† in equation (2.50) are

the photon annihilation and creation operators of the field. The number operator

n̂ = â†â gives the number of photons in the field. We have dropped the zero

point energy from Hamiltonian (2.50), since in our calculations only the energy

difference, not the zero point, has significance. The Hamiltonian with the zero point

energy is h̄ω(n̂+1/2) which is obtained by substituting equations (2.22)–(2.23) into

Hamiltonian (2.19). Finally, the interaction Hamiltonian, using the rotating wave

and the dipole approximations, is

Hint = h̄γ
(

âσ̂+ + â†σ̂−
)

, (2.51)
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where σ̂+ = |e〉〈g| and σ̂− = |g〉〈e| correspond to excitation and relaxation of the

two state system. The interaction Hamiltonian describes processes where (i) the two

level system in the ground state absorbs a photon from the field and becomes excited,

and (ii) the two level system in the excited state emits a photon and relaxes. The

parameter γ in the Hamiltonian (2.51) describes the coupling of the field to the two

state system. Hamiltonian (2.51) is known as the Jaynes-Cummings Hamiltonian

[14–16]. We will derive it in the next section and also discuss the approximations

and the coupling constant γ.

2.4.1 Electric-dipole interaction Hamiltonian

The interaction of an atom and a quantized electromagnetic field is given by the

term [6,7]

Hint = −d · Ê(r, t), (2.52)

where d = −ere is the electric dipole moment, r = r0 + re, where, furthermore,

r0 is the position of the nucleus, and re is the position of the electron relative to

the nucleus. Since electron’s relative position to nucleus is of the order of Bohr

radius ∼ 10−11m and the wavevector in visible light regime is of the order of

106/m, the exponential terms in the electric field operator can be approximated

as exp (ir0 · k+ ire · k) ≈ exp (ir0 · k). This approximation is known as Dipole ap-

proximation. Thus, the Hamiltonian is

Hint = er · Ê(r0, t), (2.53)

where the single mode electric field operator (see equation. (2.27))

Ê(r0, t) = i

√

h̄ωk

2ε0V
εk

[

âk exp(−iωkt+ ik · r0)− â†
k
exp(iωkt− ik · r0)

]

(2.54)

depends only on the position of the nucleus, not the position of the electron. With

the use of the closure theorem (
∑

all states |i〉〈i| = 1) the dipole moment can be writ-

ten as d = −e
∑e

i=g |i〉〈i|re
∑e

j=g |j〉〈j| =
∑e

i,j=g di,j|i〉〈j|, where di,j = −e〈i|re|j〉.
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Terms 〈g|re|g〉 = 〈e|re|e〉 = 0 due to the symmetry properties so these terms are

dropped. Furthermore, we assume that de,g = dg,e are real vectors. The Hamilto-

nian can now be written as

Hint = h̄εk · 〈e|re|g〉
[

γkâk exp(−iωkt) + γ∗
k
â†
k
exp(iωkt)

] (

|e〉〈g|+ |g〉〈e|
)

, (2.55)

where γk = i
√

ωk

2ε0h̄V
e exp(ik · r0). Without loss of generality the phase of the po-

larization vector and the coordinate system can be chosen so that we obtain a real

positive coupling constant γk. We include εk · 〈e|r|g〉 into γk and redefine it as

γk = e

√

ωk

2ε0h̄V
|〈e|re|g〉 · εk exp(ik · r0)| , (2.56)

so that the Hamiltonian isHint = h̄γk

[

âk exp(−iωkt) + â†
k
exp(iωkt)

] (

|e〉〈g|+|g〉〈e|
)

.

The interaction Hamiltonian is given in a mixed picture. The atomic part is written

in the Schrödinger representation while the radiative part is written in the Heisen-

berg picture. Next we will write the whole system in a single representation. In

order to obtain a time independent Hamiltonian we move to the Schrödinger pic-

ture i.e. we move the time dependence of the Hamiltonian to the state vector. The

Schrödinger equation in the interaction picture gives

(Hatom +Hint(t)) |Ψ(t)〉 = ih̄
d

dt
|Ψ(t)〉, (2.57)

where the wavefunction is defined as |Ψ(t)〉 = exp (iHfieldt/h̄) |ψ(t)〉 giving

(Hatom +Hint(t)) e
iHfieldt/h̄|ψ(t)〉 = ih̄eiHfieldt/h̄

(

i
Hfield

h̄
|ψ(t)〉+ d

dt
|ψ(t)〉

)

. (2.58)

Multiplying from left by exp (−iHfieldt/h̄) and using the commutativity of Hatom and

Hfield gives

(

Hfield +Hatom + e−iHfieldt/h̄Hint(t)e
iHfieldt/h̄

)

|ψ(t)〉 = ih̄
d

dt
|ψ(t)〉. (2.59)

The commutation relations of the annihilation and creation operators give e−iωâ†ât

âeiωâ
†ât = âeiωt and e−iωâ†âtâ†eiωâ

†ât = â†e−iωt. Therefore, the time dependence of

Hint(t) in equation (2.59) cancels and the electric dipole interaction Hamiltonian in

the Schrödinger picture can be written as

Hint = h̄γk

(

âk + â†
k

)(

|e〉〈g|+ |g〉〈e|
)

. (2.60)
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Finally, we make the rotating wave approximation i.e. drop the terms correspond-

ing to creation of a photon with simultaneous atom excitation and annihilation of

a photon with simultaneous atom relaxation and arrive at the Jaynes-Cummings

Hamiltonian

Hint = h̄γk

(

âk|e〉〈g|+ â†
k
|g〉〈e|

)

. (2.61)

2.5 Solution of the Jaynes-Cummings model

We will introduce the analytical and numerical solutions of the well know Jaynes-

Cummings model as a background. Later, we will add dissipation and amplification

to the standard Jaynes-Cummings model and use similar methods to find solutions

of the more complicated system.

2.5.1 Analytical solution

In the Jaynes-Cummings model the system consists of a two state quantum system

(atom) and a single mode field. The system is closed and, therefore, energy con-

serving. Due to the fact that there is no dissipation or amplification, only states

|g, n+1〉 and |e, n〉 interact with each other. This allows us to find solutions of 2×2

subsystems instead of solving an infinite dimensional system. We will use a method

described in [8, 15]. Other approaches are given in [7, 14, 16, 17].

The initial density operator is ρ̂tot(0) = ρ̂atom(0)⊗ρ̂field(0), where ρ̂field can be infinite

dimensional but we solve the subsystem consisting of the ground state with n + 1

photons and the excited state with n photons i.e. states |g, n + 1〉 and |e, n〉. We

denote the density operator of the subsystem as ρ̂n+1 and the Hamiltonian is written
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as

H = h̄





ω(â†â + 1/2) γâ

γâ† ω(â†â − 1/2)



 . (2.62)

In this basis the state vectors are |g〉 = [0 1]T and |e〉 = [1 0]T. In general the

evolution of the density operator is given by [11]

dρ̂(t)

dt
= − i

h̄
[H, ρ̂(t)] , (2.63)

where [H, ρ̂(t)] = Hρ̂(t)− ρ̂(t)H is the commutator. The formal solution is

ρ̂(t) = e−iHt/h̄ρ̂(0)eiHt/h̄, (2.64)

as discussed in section 2.2. We will denote unitary evolution operator as U(t) =

e−iHt/h̄. First we divide the Hamiltonian into two parts

H1 =
1

2
h̄ωσ0 + h̄ωâ†â (2.65)

= h̄





ω(â†â + 1/2) 0

0 ω(â†â − 1/2)





and

Ĥ2 = h̄γ(âσ+ + â†σ−) (2.66)

= h̄





0 γâ

γâ† 0



 .

The unitary evolution operators are Ui(t) = exp(−iHit/h̄) giving

U1 =





e−iω(â†â+1/2)t 0

0 e−iω(â†â−1/2)t



 (2.67)

and

U2 =
∞
∑

k=0

(−i)ktk

k!





0 γâ

γâ† 0





k

. (2.68)

=





cos(γ
√
n̂+ 1t) −i sin(γ

√
n̂+1t)√

n̂+1
â

−iâ† sin(γ
√
n̂+1t)√

n̂+1
cos(γ

√
n̂t)



 . (2.69)
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Assuming that the system’s initial state is ρ̂(0) = |g〉〈g| ⊗ ρ̂field and substituting

U(t) = U1(t)U2(t) into equation (2.64) gives the elements of subsystem ρ̂n+1 as

pg,n = cos2 (γ
√
nt) pn(0) and pe,n = sin2

(

γ
√
n+ 1t

)

pn+1(0). Therefore, the ground

state, the excited state, and the n photon state probabilities are obtained as sums

pg(t) =
∞
∑

n=0

cos2
(

γt
√
n
)

pn(0) (2.70)

pe(t) =
∞
∑

n=0

sin2
(

γt
√
n+ 1

)

pn+1(0) (2.71)

pn(t) = pg,n(t) + pe,n(t). (2.72)

2.5.2 Numerical solution

The numerical solution of the subsystems ρ̂n+1 can be found applying equation

(2.63). For a small time step ∆t we can write ρ̂n+1(t + ∆t) = ρ̂n+1(t) + (−i∆t/h̄)

[H, ρ̂n+1(t)]. Substitution of Hamiltonian (2.62) gives

ρ̂n+1(τ +∆τ) = ρ̂n+1(τ)

+∆τ





−i
√
n+ 1(ρn+1

ge (τ)− ρn+1
eg (τ)) −i

√
n+ 1(ρn+1

gg (τ)− ρn+1
ee (τ))

−i
√
n+ 1(ρn+1

ee (τ)− ρn+1
gg (τ)) −i

√
n+ 1(ρn+1

eg (τ)− ρn+1
ge (τ))



 ,

(2.73)

where we have scaled the time with the coupling parameter as τ = γt to obtain

results independent of the coupling constant.

2.5.3 Rabi oscillations

The repeated absorption and emission of a photon by a two state system is called the

Rabi oscillation [6–8,10] which can be modeled using the Jaynes-Cummings model.

Example solutions of the Jaynes-Cummings model are given in figure 2.1. The two

state system is initially in the ground state and the initial field state is (a) the single
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photon Fock state, and (b) the thermal field with n̄(0) = 1. In case (a) clear repeated

absorption and emission (Rabi oscillations) are seen while in case (b) oscillation is a

mixture of different oscillation frequencies due to the more complicated initial field

state.
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Figure 2.1: Solution of the Jaynes-Cummings model having the two state system
initially in the ground state and field in (a) single photon Fock state |1〉 (b) thermal
field with n̄(0) = 1. The atom oscillates between the excited state and the ground
state. It emits and absorbs a single photon repeatedly. This phenomenon is called
Rabi oscillation.

2.6 Quantum correlation and coherence

Correlation of photons in a field can be used to discriminate the statistical properties

of the field. Correlation function is also a crucial component of the coincidence pho-

todetection theory. First we define the correlation functions and coherence degree

functions and then we calculate the coherence degrees for common optical fields.

Correlation functions will be later applied to derive the coincidence detection prob-
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abilities (publication I ). The second order coherence degree is used to analyze the

produced optical fields (publications I, IV and VI).

The nth order correlation function and the nth order coherence degree of the quan-

tized field are, respectively, given by [2, 3, 6, 17]

G(n)(r1, t1, r2, t2, . . . , r2n, t2n) = Tr{ρ̂Ê(−)(r1, t1) . . . Ê
(−)(rn, tn)

Ê(+)(rn+1, tn+1) . . . Ê
(+)(r2n, t2n)}

(2.74)

g(n)(r1, t1, r2, t2, . . . rn, tn) =
G(n)(r1, t1, . . . , rn, tn, rn, tn, . . . , r1, t1)

G(1)(r1, t1, r1, t1) . . . G(n)(rn, tn, rn, tn)
.

(2.75)

In the correlation functions a scalar products of the electric field operator vectors

are taken.

A special case of coherence degrees for quantum fields is the second order coherence

degree g(2)(r1, t1, r2, t2) = Tr{ρ̂â†â†ââ}/Tr{ρ̂â†â}2 of the single mode optical fields

giving

g(2)(r1, t1, r2, t2) =
n(n− 1)(0)

n̄2(0)
, (2.76)

where n̄(0) is the number of photons in the initial field and n(n− 1)(0) is the

second factorial moment of the initial field. The second order coherence degree is an

important measure of photon correlation in photon detection experiments describing

the photon bunching and anti-bunching phenomena as follows [6]

g(2)(0) > 1 bunched light (2.77)

g(2)(0) = 1 Poissonian light (2.78)

0 ≤ g(2)(0) < 1 anti-bunched light (2.79)

where g(2)(0) = g(2)(r, 0, r, 0). The second order coherence degrees for the single

mode Fock state, coherent field and thermal field are g
(2)
Fock(0) = (N − 1)/N (|N〉 is

the initial state), g
(2)
coh(0) = 1, and g

(2)
ther(0) = 2, as will be shown below. Thus, these

fields are examples of anti-bunched, non-bunched and bunched lights.
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Other measures of the correlation are also used. For example, Mandel’s Q parameter

is defined as [18]

Q =
n(n− 1)− n̄2

n̄
= n̄

(

g(2)(0)− 1
)

. (2.80)

Furthermore, a normalized version of the Mandel’s parameter as a more appropriate

measure in experimental use, has been proposed as [19]

Qnorm =
Q

n̄
= g(2)(0)− 1. (2.81)

2.6.1 Coherence degrees of Fock states

The first and second order correlations of a single mode Fock state |Nk〉 are

G(1)(r1, t1, r2, t2) =
h̄

2ε0V
ωkNke

−ik·(r1−r2)+iωk(t1−t2) (2.82)

G(2)(r1, t1, r2, t2) =
h̄2

(2ε0V )2
ω2
k
Nk(Nk − 1), (2.83)

and the first order and the second order coherence degrees are

g(1)(r1, t1, r2, t2) =
G(1)(r1, t1, r2, t2)

√

G(1)(r1, t1, r1, t1)G(1)(r2, t2, r2, t2)

= e−ik·(r1−r2)+iωk(t1−t2) (2.84)

g(2)(r1, t1, r2, t2) =
G(2)(r1, t1, r2, t2)

G(1)(r1, t1, r1, t1)G(1)(r2, t2, r2, t2)

=
(Nk − 1)

Nk

. (2.85)

2.6.2 Coherence degrees of thermal fields

It can be shown that the first and second order correlations of the thermal field are

G(1)(r1, t1, r2, t2) =
h̄

2ε0V

∑

k

ωknke
−ik·(r1−r2)+iωk(t1−t2) (2.86)

G(2)(r1, t1, r2, t2) = G(1)(r1, t1, r1, t1)G
(1)(r2, t2, r2, t2)

+G(1)(r1, t1, r2, t2)G
(1)(r2, t2, r1, t1) (2.87)
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Furthermore, the first order and the second order coherence degrees are

g(1)(r1, t1, r2, t2) =

∑

k
ωknke

−ik·(r1−r2)+iωk(t1−t2)

∑

k
ωknk

(2.88)

g(2)(r1, t1, r2, t2) =
G(2)(r1, t1, r2, t2)

G(1)(r1, t1, r1, t1)G(1)(r2, t2, r2, t2)

= 1 +
∣

∣g(1)(r1, t1, r2, t2)
∣

∣

2
. (2.89)

The nth order correlation function for the thermal field can be written as a sum of

products of n first order correlation functions. The sum is taken over all possible

permutations of n points so there is n! terms. The nth order correlation is

G(n)(r1, t1, . . . , rn, tn, rn, tn . . . , r1, t1)

=
∑

permut.
of y

n
∏

l=1

G(1)(rl, tl, ry(l), ty(l)), (2.90)

where the sum is taken over all the possible permutations of indexes y = [1, 2, . . . , n].

Thus the nth order coherence degree is

g(n)(r1, t1, . . . , rn, tn) =

∑

permut.
of y

∏n
l=1G

(1)(rl, tl, ry(l), ty(l))
∏n

l=1G
(1)(rl, tl, rl, tl)

(2.91)

and g(n)(r, t, . . . , r, t) = n!

2.6.3 Coherence degrees of coherent fields

For the coherent field the first and second order correlations can be shown to be

G(1)(r1, t1, r2, t2) =
h̄

2ε0V

(

∑

k

√
ωkα

∗
k
e−ik·r1+iωkt1

)

(2.92)

×
(

∑

k

√
ωkαke

+ik·r2−iωkt2

)

G(2)(r1, t1, r2, t2) = G(1)(r1, t1, r1, t1)G
(1)(r2, t2, r2, t2). (2.93)

Furthermore, the nth order correlation of the coherent field can be written as a

product of the first order correlation terms

G(n)(r1, t1, . . . , rn, tn, rn, tn . . . , r1, t1) =
n
∏

l=1

G(1)(rl, tl, rl, tl). (2.94)



20 2 Quantum optical field

The coherence degrees are given by

g(1)(r1, t1, r2, t2) =

∑

k

√
ωkα

∗
k
e−ik·r1+iωkt1

∣

∣

∑

k

√
ωkα∗

k
e−ik·r1+iωkt1

∣

∣

∑

k

√
ωkαke

+ik·r2−iωkt2

∣

∣

∑

k

√
ωkαke+ik·r2−iωkt2

∣

∣

(2.95)

g(2)(r1, t1, r2, t2) =
G(2)(r1, t1, r2, t2)

G(1)(r1, t1, r1, t1)G(1)(r2, t2, r2, t2)
= 1. (2.96)

For coherent field the nth order coherence degree is given by

g(n)(r1, t1, . . . , rn, tn) =

∏n
l=1G

(1)(rl, tl, rl, tl)
∏n

l=1G
(1)(rl, tl, rl, tl)

= 1. (2.97)

Thus, the coherence degree g(n) of a coherent field is always one for n > 1 and

|g(1)(r1, t1, r2, t2)| = 1.



3 Open quantum systems: dissipation and

amplification

We have considered in all our publications (I–VI) open quantum systems includ-

ing dissipation of energy and/or energy injection. In closed quantum systems the

dynamics is described by a unitary time evolution operator as discussed in section

2.2. The dynamics of open quantum systems cannot in general be described by a

unitary time evolution. Instead a master equation approach needs to be used. We

will define a first order linear differential equation for the density operator called

Markovian master equation of Lindblad form. Depending on the interactions of the

system with the environment the Lindblad master equation can model dissipation,

amplification, or both. In this thesis we consider Markovian processes which means

that the equations of motion of system ρ̂(t) at time t depend only on the system’s

current state ρ̂(t), not on the previous states.

3.1 Lindblad master equation and quantum jump superoperators

The dynamics of an open system ρ̂(t) is governed by the Lindblad master equation

[11,12,20–24]

dρ̂(t)

dt
= − i

h̄
[H0, ρ̂(t)]−

∑

l

γl
2

(

L̂†
l L̂lρ̂(t)− 2L̂lρ̂(t)L̂

†
l + ρ̂(t)L̂†

l L̂l

)

, (3.1)

where H0 is the Hamiltonian operator of reversible dynamics, and γl is the rate of

the irreversible process l described by operator L̂l. These irreversible processes are

for example a photon subtraction and a photon addition from/to the system and

e.g. for the damped harmonic oscillator L̂ = â. Operator Ĵ ρ̂ = γlL̂lρ̂L̂
†
l models a

quantum jump and is called quantum jump superoperator (QJS).
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3.1.1 Quantum trajectories

For simplicity we consider a system described by equation (3.1) with one jump

mechanism (or jump channel) so that l = 1. During an infinitesimal time interval

[t, t+ dt) the evolution of the system is given by

ρ̂(t+ dt) = Ŝρ̂(t)dt+ Ĵ ρ̂(t)dt, (3.2)

where the jump event is described by QJS Ĵ and the rest of the terms in equation

(3.1) are governed by the no-jump superoperator Ŝ. If it is possible to detect the

jump, the state of the system collapses into a state defined by the QJS i.e. the new

state is Ĵ ρ̂(t)/Tr{Ĵ ρ̂(t)}. Similarly, if it is detected that there is no jump event, the

new state is given by Ŝρ̂(t)/Tr{Ŝρ̂(t)}. The probabilities of the jump event and the

no-jump event are, respectively, given by

pjump = Tr{Ĵ ρ̂(t)}dt (3.3)

pno−jump = Tr{Ŝρ̂(t)}dt. (3.4)

The time interval [t, t + dt) in equation (3.2) must be so short that at most one

jump event can occur i.e. pjump + pno−jump = 1. If no jumps are detected during a

non-infinitesimal time interval [t, t + t1) the no-jump superoperator can be solved

from equation (3.1) giving

Ŝ(t1)ρ̂(t) = e−iH0t1/h̄−γL̂†L̂t1/2ρ̂(t)e+iH0t1/h̄−γL̂†L̂t1/2. (3.5)

The Lindblad master equation (3.1) gives the average evolution of the system. In

contrast, operators Ĵ and Ŝ give certain trajectories as a result of the system collaps-

ing to states defined by the measurement outcomes. The average of the trajectories

of an ensemble of systems reproduces the dynamics given by the Lindblad master

equation.

Also more complicated trajectories can be described by using the jump and no-

jump operators. For example, Tr{Ĵ Ŝ(t)ρ̂(0)dt} is the probability that the first
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jump occurs during [t, t+ dt), whereas the relation

ρ̂(t) =

∫ t

t1=0
Ŝ(t− t1)Ĵ Ŝ(t1)ρ̂(0)dt1

Tr{
∫ t

t1=0
Ŝ(t− t1)Ĵ Ŝ(t1)ρ̂(0)dt1}

(3.6)

corresponds to a trajectory where one and only one jump event have occurred during

[0, t).



4 Optical devices and experimental setups

Many fundamental experiments analyzed in this thesis can be performed with rela-

tively simple, but high quality optical instruments like light sources, beam splitters

and detectors. This, however, requires careful planning of the experiments, detailed

analysis of the results, and good understanding of the setup and the quantum op-

tical properties of the fields and the instruments. In this section we give a short

introduction to the elementary components and define their impact on the fields

within the quantum trajectory approach.

4.1 Beam splitters

A beam splitter (BS) is a passive device which divides an incoming beam by partly

passing it through and partly reflecting it. Schematic picture of a beam splitter is

shown in figure 4.1. A simple realization of a BS is a partly reflecting mirror. The

output field of a BS is given by [4, 20, 25–29]

ρ̂out = B̂ρ̂inB̂
†, (4.1)

where B̂ = exp
(

θ(â†1â2 − â1â
†
2)
)

and it is assumed that BS causes zero phase shift,

θ gives the transmission and reflection probabilities as T = cos2(θ) and R = sin2(θ),

ρ̂in = ρ̂in,1⊗ρ̂in,2, and âi operates on mode i. In many experiments [4,30] a conditional

output field is obtained by measuring one of the two outputs of the BS. Then the

output field is obtained from equation (4.1) by collapsing the measured output

mode into the measured state and normalizing. For example in the single photon

subtraction experiments (an arbitrary initial field in input mode 1 and a vacuum

field in input mode 2) one photon is measured from the output mode 2 giving the
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following density operator for the output mode 1

ρ̂out,1 =
〈1out,2|B̂ρ̂in,1 ⊗ |0in,2〉〈0in,2|B̂†|1out,2〉

Tr
{

〈1out,2|B̂ρ̂in,1 ⊗ |0in,2〉〈0in,2|B̂†|1out,2〉
} . (4.2)

ρ
1, in

ρ
1, out

ρ
2, in

ρ
2, out

Figure 4.1: A beam splitter has two input modes (ρ̂1,in and ρ̂2,in) and two output
modes (ρ̂1,out and ρ̂2,out). Depending on the transmission coefficient T and the reflec-
tion coefficient R of the beam splitter, part of the input mode 1 (2) is transmitted
to output mode 1 (2) and reflected to output mode 2 (1).

4.2 Detectors

4.2.1 Photomultiplier tube

The photomultiplier tube (PMT) is based on the photoelectric effect, in which the

energy of the incident photon exceeds the work function of the photocathode ma-

terial allowing an electron to escape from the photocathode. In addition to the

photocathode, PMTs consist of dynodes and an anode in a vacuum tube, see figure

4.2.

The PMT operates as follows: The photocathode emits an electron as a consequence

of an incident photon and the photoelectric effect. The electron strikes to the first

dynode which is biased to a positive voltage. The collision releases more electrons.
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The second dynode is biased at a higher voltage than the first one so that the

emitted electrons are again accelerated to release more electrons. Each dynode is

biased at a higher voltage than the previous one. Finally, a macroscopic charge

(104 − 107 electrons [31, 32]) reaches the anode and causes a current pulse. PMTs

can detect single photons and resolve the photon number [31]. They have been used

since 1930s [33] and are still used in recent experiments [19].

dynode

photo-

cathode
anode

photon
electrons

Figure 4.2: A photomultiplier tube consists of photocathode, dynodes, and anode
in a vacuum enclosed in a glass tube. A photon releases an electron from the
photocathode due to the photoelectric effect. Dynodes are held at increasing voltages
so that the electrons accelerate and release more electrons at each dynode. Finally,
the charges arrive at the anode and create a current pulse.

4.2.2 Avalanche photodiode

Avalanche photodiode (APD) is a semiconductor photodiode operated at a high

reverse bias voltage. The absorption of a photon generates an electron-hole pair.

Due to the high bias voltage the carriers are accelerated and the electron or the hole

can generate another electron-hole pair by collision. Repetition of this avalanche

effect significantly amplifies the photocurrent. APDs are capable to detect single

photons but are usually not able to resolve the photon number [31]. Several recent

experiments have been performed using APDs [4, 34–39].
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4.2.3 Balanced homodyne detection scheme

In balanced homodyne detection a low intensity signal interferes with a high intensity

laser signal (called local oscillator) in a 50/50 (T = R = 50%) beam splitter [27,

40, 41], see figure 4.3. The frequency of the laser is equal to the input signal and

it provides a reference signal to the measurement. Let annihilation operator â

operate on the incoming signal mode and âLO on the incoming local oscillator (LO)

mode. Then the output modes of the BS are described by â1 = (â + âLO)/
√
2 and

â2 = (â − âLO)/
√
2, and therefore, the difference in the photon numbers of the

output modes is n̂1−2 = n̂1 − n̂2 = â†âLO + â†LOâ. Similarly the sum of the photon

numbers is n̂1+2 = â†â + â†LOâLO. The local oscillator is assumed to be a high

intensity coherent signal giving the photon number difference and sum as [40,41]

n̂1−2 = |α|
(

â†eiφ + âe−iφ
)

(4.3)

n̂1+2 = |α|2 + â†â ≈ |α|2, (4.4)

where |α| is the amplitude of the oscillator signal and φ is the phase difference be-

tween the signal and the local oscillator. With the use of the quadrature variables

q̂ = (â + â†)/
√
2 and p̂ = i(â† − â)/

√
2 (with [q̂, p̂] = i) the photocurrent difference

can be shown to be proportional to a rotated quadrature q̂φ = q̂ cos(φ) + p̂ sin(φ).

Measuring q̂φ of equally prepared states for varying φ gives the probability distribu-

tion of q̂φ. The normalization of the signal is obtained by measuring the sum of the

photocurrents n̂1+2.

Using the balanced homodyne detection Wigner’s quasi-probability function of the

input signal can be reproduced [27, 38–43]. From the measured Wigner function

properties like photon number or density operator of the light field can be calculated

[10, 20, 40]. Balanced homodyne detection is widely used in recent experiments [38,

40,42,43] This kind of quantum state reconstruction is called quantum tomography.
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signal

local

oscillator
BS

50/50

photocurrent

analyzer

detector

Figure 4.3: Schematic picture of balanced homodyne detection. An input signal
interferences with high intensity coherent signal (local oscillator) in a 50/50 beam
splitter (BS). The photocurrents are analyzed to reproduce the input signal.

4.2.4 Atom beam detection scheme

Cavity fields can be produced and manipulated with a beam of atoms resonant with

the cavity, see figure 4.4. The atoms are initially prepared to a certain state and after

passing through the cavity the states of the atoms are measured. The measurement

of the atom collapses the cavity field to a corresponding state [44–48]. For example,

detection of photons in cavity can be performed by preparing the atoms into the

ground state, passing them through the cavity, and measuring the state of atom.

If the measured atom is in the excited state a single photon is absorbed. This

kind of setup has been theoretically analyzed [49] and experimentally implemented

[44]. Similar setups have been used also to create arbitrary Fock states [47] and for

quantum non-demolition measurements, where the number of photons is measured

without absorbing them [45,46,48].
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Atom analyzer

Cavity

Atom source

Figure 4.4: Atom beam detection scheme. Atoms prepared to a certain initial state
pass through the cavity one at the time. The states of the atoms are measured after
the cavity so that the state of the cavity field collapses according to the measurement.

4.3 Light emitting devices

In the following a short introduction to the principles of light emitting diodes and

lasers is given. The purpose is not to give a detailed mathematical description but

instead explain the basic operation of the devices since we will later apply our model

to describe the operation of light emitting diodes and lasers.

In semiconductors the carriers occupy the energy bands according to the Fermi-

Dirac distribution in equilibrium. In non-equilibrium, caused for example by carrier

injection, the electron occupation probability in the conduction band and the hole

occupation probability in the valence band are given by [50,51]

fe(E) =

(

1 + exp

(

E − EF,e

kBT

))−1

(4.5)

fh(E) =

(

1 + exp

(

EF,h − E

kBT

))−1

, (4.6)

where EF,e is the quasi-Fermi level of electrons, EF,h is the quasi-Fermi level of

holes, T is the temperature, and kB is the Boltzmann’s constant, see figure 4.5.

The absorption rate rabs of photons is proportional to the probabilities of having an
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empty state in the conduction band and an electron in the valence band so that

rabs = W (1− fe(EC))(1− fh(EV ))n̄, (4.7)

where we have assumed that transition occurs between an electron state with E =

EC and a hole state with E = EV . W is a material dependent constant of the

carrier, and n̄ is the mean number of photons. The emission rate is

rem = Wfe(EC)fh(EV )(n̄+ 1), (4.8)

where the part depending on n̄ corresponds to stimulated emission while the part

independent of n̄ corresponds to spontaneous emission. To produce optical gain

the stimulated emission rate has to be greater than the absorption rate giving the

following condition

fe(EC) + fh(EV ) > 1. (4.9)

absorption emission

conduction

band

valence

band

E
C

E
V

E
F,e

E
F,h

T = 0 K

Figure 4.5: Schematic diagram of absorption and emission in semiconductors.

4.3.1 Light emitting diode

Light emitting diode (LED) is a component which emits photons due to the spon-

taneous emission. Its operation is based on a pn-junction, where p-type and n-type
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semiconductors are joint. The p-type semiconductor is a semiconductor material

doped with atoms that act as acceptors i.e. take electrons from the valence band

of the semiconductor and thereby increase the hole population. In contrast, n-type

materials are doped with atoms that act as donors releasing extra electrons to the

conduction band of the semiconductor. If the pn-junction is forward biased (positive

voltage is applied on the p-side) electrons are injected into the n-side and holes into

the p-side. This creates imbalance which results in the onset of various relaxation

processes like spontaneous emission producing light output. The statistics of the

light field created by an LED corresponds to the statistics of a thermal field.

Although the implemented LEDs are mainly pn-junction based semiconductor de-

vices, in this thesis, setups that operate below the laser threshold producing thermal

fields, are considered to operate as LEDs.

4.3.2 Laser

Laser (Light amplification by stimulated emission of radiation) produces a coherent

light field by stimulated emission. Semiconductor lasers are also based on the pn-

junction. In this case p-type and n-type materials are usually heavily doped and the

current injected to the pn-junction is higher than in the LED to reach population

inversion i.e. to have more electrons in the higher energy state (close to the edge

of the conduction band) than in the lower energy state (close to the edge of the

valence band). An essential part of the laser is an optical cavity which consists of

highly reflective walls. The light is emitted into the standing waves inside the cavity

(into the cavity modes). Due to the population inversion the photons in the cavity

more likely stimulate the emission of an additional photon than are absorbed. As

a consequence the intensity of the light is increased coherently until the injected

energy is not able to maintain the population inversion and the gain saturates.
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There are also other types of lasers than the semiconductor laser. For example in

the gas laser atoms inside a cavity are optically pumped so that population inversion

occurs between the states involved in the emission process.
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We will consider cavity photon counting and also detection of photons from a light

field incident on a beam splitter. The resolving and non-resolving detector schemes

are derived and applied to coincidence photon detection in publication I. In pub-

lications II and V these schemes are applied to investigate the dynamics of single

photon subtracted and added fields.

5.1 Resolving and non-resolving detector models

In the first quantum photodetection theories the optical field was considered to prop-

agate to the detector in open space [2,52]. Later the optical field was considered to

be confined in a cavity with a detector inside the cavity or with a detector absorb-

ing all photons escaping from the cavity [49, 53–55]. In the open space approach

photons not absorbed by the detector were lost in the space while in the cavity field

approach every photon (at least in principle) can be detected.

The pioneering work of the cavity field photodetection was made by Srinivas and

Davies [53] who considered continuous photodetection and showed that the detection

of a single photon is governed by the operator

Ĵ ρ̂(t) = γâρ̂(t)â†, (5.1)

while the detection of no photons is governed by the operator

Ŝ(∆t)ρ̂(t) = e(−iωâ†â− γ
2
â†â)∆tρ̂(t)e(+iωâ†â− γ

2
â†â)∆t, (5.2)

where ω is the field frequency and γ describes the coupling of the field to the detector.

The density operator of the field after a short measurement interval [t, t + ∆t) is

given by

ρ̂(t+∆t) = Ĵ ρ̂(t)∆t+ Ŝ(∆t)ρ̂(t). (5.3)
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Depending on the measurement outcome the state of the field collapses into ρ̂(t+∆t)

= Ĵ ρ̂(t)∆t/Tr{Ĵ ρ̂(t)∆t} if a photon is detected, or into ρ̂(t + ∆t) = Ŝ(∆t)ρ̂(t)/

Tr{Ŝ(∆t)ρ̂(t)} if nothing is detected. It follows from equation (5.1) that the photon

detection rate is Tr{Ĵ ρ̂(t)} = γn̄(t), where n̄(t) is the expectation value of the

number of photons. Therefore, the probability to detect a photon during [t, t+∆t)

is

pdetect = γn̄(t)∆t. (5.4)

Since equation (5.4) in itself is not bounded to be at most unity, a discussion on

the validity of the model has risen especially for the fields with high photon number

[56, 57]. However, it immediately follows from equation (5.3) that ∆t must be so

short that pdetect + pno−detect = 1, since only these two trajectories are accounted in

equation (5.3) as we have discussed in publication I. It was also pointed out in [52]

that if it is assumed that at most one photon is detected during ∆t, ∆t is limited

by condition

∆t≪ 1

detection rate
. (5.5)

In practice, it is not convenient to constrict the detection to infinitesimally short

intervals. Therefore, we have defined two practical detector models (see publica-

tions I, II and V). The resolving single photon detector (RD) model describes the

detection of exactly one photon during a non-differential time interval whereas the

non-resolving detector (NRD) model describes the detection of one or more photons

during a non-differential time interval. As examples of photon number resolving and

non-resolving detectors the photomultiplier tube and avalanche photodiode were

given in section 4.2.

Using operators Ĵ and Ŝ the operator corresponding to detection of m photons
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during [0, t) can be defined as

Ĉ(t,m)ρ̂(0) =

∫ t

tm=0

. . .

∫ t2

t1=0

Ŝ(t− tm)Ĵ Ŝ(tm − tm−1) . . . Ĵ Ŝ(t1)ρ̂(0)dt1 . . . dtm

=
∞
∑

n=m

n!

m!(n−m)!

(

1− e−γt
)m (

e−γt
)n−m

pn(0)|n−m〉〈n−m|,

(5.6)

where pn(0) is the probability of the n photon Fock state in the mixture ρ̂(0), and

Tr{Ĉ(t,m)} is the probability of counting m photons during [0, t). Only diagonal

elements have been written for simplicity since only the diagonal elements are rele-

vant in our calculations. With this result we define the detection operators of the

resolving detector (Ĉ(t,m = 1)) and the non-resolving detector (
∑∞

m=1 Ĉ(t,m)) as

ĈRD(t)ρ̂(0) =
∞
∑

n=0

(n+ 1)
(

1− e−γt
) (

e−γt
)n
pn+1(0)|n〉〈n| (5.7)

ĈNRD(t)ρ̂(0) =
∞
∑

m=1

∞
∑

n=0

(n+m)!

m!n!

(

1− e−γt
)m (

e−γt
)n
pn+m(0)|n〉〈n|. (5.8)

5.2 Coincidence photon detection

In a coincidence photon detection experiment photons are detected with one detec-

tor at consecutive measurement intervals or at the same time with several spatially

distributed detectors, or both. The coincidence probabilities are related to the

correlation of the photons at the field as will be shown. Using coincidence detec-

tions bunching or antibunching phenomena can be revealed. Coincidence detection

schemes are considered in publication I.

We define the coincidence detection as a sequence of measurements where one photon

is counted at each of the specific non-overlapping intervals [t1, t1 +dt1), . . . , [tk, tk +

dtk). Between these intervals the system is assumed to evolve according to the aver-

age evolution operator i.e. any number of photons can be absorbed but the detector

is not recording. This assumption is made for generality, since e.g. some detectors
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have dead times after detection during which they cannot record the absorbed pho-

tons. The average evolution operator during [0, t) is obtained using equation (5.6)

as [53]

T̂t =
∞
∑

m=0

Ĉ(t,m). (5.9)

Equation (5.9) accounts for all the possible trajectories of absorbing from zero to

infinite photons. Therefore, it corresponds to the evolution given by the master

equation (3.1). The probability that the system undergoes the average evolution

during [0, t1) and the one-count occurs during [t1, t1+dt1) is Tr{Ĵ T̂t1 ρ̂(0)}dt1. After
the one-count event the system is projected into the state ρ̂(t1 + dt1) = Ĵ T̂t1 ρ̂(0)

/ Tr{Ĵ T̂t1 ρ̂(0)}. The probability of the second one-count event is Tr{Ĵ T̂t2−t1 ρ̂(t1 +

dt1)}dt2 = Tr{Ĵ T̂t2−t1 Ĵ T̂ t1ρ̂(0)}dt2 / Tr{Ĵ T̂t1 ρ̂(0)}, which is a conditional probabil-

ity that the trajectory corresponding to the operator Ĵ T̂t1 has occurred previously.

The state now becomes ρ̂(t2 + dt2) = Ĵ T̂t2−t1 ρ̂(t1 + dt1) / Tr{Ĵ T̂t2−t1 ρ̂(t1 + dt1)} =

Ĵ T̂t2−t1 Ĵ T̂t1 ρ̂(0) / Tr{Ĵ T̂t2−t1 Ĵ T̂t1 ρ̂(0)}. By using this result recursively we conclude

that the probability of the kth event and the density operator after this event are,

respectively, given by

p(tk|tk−1, . . . , t1) =
Tr{Ĵ T̂tk−tk−1

. . . T̂t2−t1 Ĵ T̂t1 ρ̂(0)}dtk
Tr{Ĵ T̂tk−1−tk−2

. . . T̂t2−t1 Ĵ T̂t1 ρ̂(0)}
(5.10)

ρ̂(tk + dtk|tk−1, . . . , t1) =
Ĵ T̂tk−tk−1

. . . T̂t2−t1 Ĵ T̂t1 ρ̂(0)

Tr{Ĵ T̂tk−tk−1
. . . T̂t2−t1 Ĵ T̂t1 ρ̂(0)}

. (5.11)

Equation (5.10) gives the conditional probability of kth count with the conditions

that k − 1 one-count events have occurred at [t1 + dt1), . . . , [tk−1 + dtk−1) and any

number of photons may have been absorbed between these events.

The probability p(t1, . . . , tk) of the k-count quantum trajectory is the probability of

recording k one-count events at times [t1, t1+dt1) . . . [tk, tk+dtk). It is given by the

product of the conditional one-count probabilities so that

p(t1, . . . , tk) = Tr{Ĵ T̂tk−tk−1
. . . T̂t2−t1 Ĵ T̂t1 ρ̂(0)}dt1 . . . dtk, (5.12)

where the operators T̂ allow any number of photon absorptions between these events

i.e. the system is under average evolution between the one-count events. We point
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out that in defining the probability in equation (5.12) we have used the one-count

operator in such a way that Tr{Ĵ ρ̂(ti)dti} ≪ 1, i = 1, . . . , k i.e. the probability of

counting two or more photons at single measurement interval is negligible. For non-

differential measurement times this assumption may not hold and operators ĈRD

and ĈNRD are used instead of Ĵ as will be done later.

The conditional probability for the kth detection with the condition of k−1 previous

detections and the probability of coincidence detection of k photons can also be

written by using the factorial moments as (details are given in publication I)

p(tk|tk−1, . . . , t1) = γ
n(n− 1)(n− 2) . . . (n− (k − 1))(0)

n(n− 1)(n− 2) . . . (n− (k − 2))(0)
e−γtkdtk (5.13)

p(t1, t2, . . . , tk) = γkn(n− 1) . . . (n− (k − 1))(0)e−γ(t1+···+tk)dt1 · · · dtk.

(5.14)

Equation (5.14) shows that the k photon coincidence probability is proportional to

the kth factorial moment n(n− 1) . . . (n− (k − 1))(0) of the initial field. The kth

factorial moments for the Fock state, coherent field and thermal field are (see section

2.3 for the probability distributions)

N !

(N − k)!
Fock (5.15)

n̄k(0) Coherent (5.16)

k!n̄k(0) Thermal, (5.17)

where |N〉 is the initial Fock state and in the case of Fock state k ≤ N . Assuming

that a photon is detected at [0, dt) the conditional probability of detecting second

photon immediately after the first one can be calculated using equation (5.13). The

probabilities are

p(dt|0) = γ(N − 1)dt Fock (5.18)

p(dt|0) = γn̄(0)dt Coherent (5.19)

p(dt|0) = 2γn̄(0)dt Thermal, (5.20)
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where dt is assumed so small that exp(−γdt) ≈ 1. Equation (5.4) states that the

probability of detecting the first photon is γn̄(0)dt. Comparison of the probabilities

shows that the conditional probability of detecting the second photon is (i) smaller

than the probability of detecting the first one for Fock state, (ii) equal to the proba-

bility of detecting the first one for coherent field, and (iii) is twice the probability of

detecting the first one for thermal field. These conditional probabilities express the

photon anti-bunching, non-bunching and bunching phenomena for the Fock state,

coherent field and thermal field, respectively.

In the derivations of the CP we have assumed that the measurement intervals are

so short that the probability of each one-count (detection) event is small, as noted

before. However, this might not be a practical assumption for the experiments.

Therefore, we will also define the CP using the resolving (ĈRD) and non-resolving

(ĈNRD) detector schemes instead of Ĵ . These definitions correspond to detecting

exactly one photon and at least one photon during each non-differential intervals

[ti, ti +∆ti), i = 1, . . . , k. Equations (5.10)–(5.14) can be applied for calculations of

the coincidence probabilities of counting exactly one or at least one photons at each

of the k intervals by replacing Ĵ with ĈRD and ĈNRD, respectively.

In Fig 5.1 we show a comparison of (a) CPs calculated using count operator Ĵ

defined in equation (5.1), (b) CPs obtained using operator ĈRD defined in equation

(5.7) i.e. counting exactly one photon, and (c) CPs obtained using operator ĈNRD

defined in equation (5.8) i.e. counting at least one photon. In this example case the

k measurement intervals are chosen so that [ti, ti+∆τ), ti = (2i−1)∆τ , i = 1, . . . , k

with ∆τ = 1/(5γ), and the fields have initially 10 photons. Note that the condition

in equation (5.5) is not fulfilled and, therefore, CPs given by equation (5.12) are not

well-defined since the measurement intervals are not differential (see Fig. 5.1 (a)).

On the contrary, the CPs obtained using the RD and NRD detection schemes are

well-defined (see Figs. 5.1 (b) and (c)). These probabilities correspond to detecting

exactly one and at least one photon, respectively, at each of the non-differential



5.2 Coincidence photon detection 39

10
−5

10
0

10
5

C
P

(o
n

e
−

c
o

u
n

t)

 

 

(a)

Fock

Thermal

Coherent

10
−10

10
−5

10
0

C
P

(e
x
a

c
tl
y
 o

n
e

) (b)

2 4 6 8 10
10

−10

10
−5

10
0

k

C
P

(o
n

e
 o

r 
m

o
re

)

(c)

Figure 5.1: (a) The coincidence probabilities of counting k photons one at each
measurement interval using operator Ĵ (equation (5.1)), (b) the coincidence proba-
bilities of counting exactly one photon at each measurement interval using operator
ĈRD (equation (5.7)), and (c) the coincidence probabilities of counting at least one
photon at each measurement interval using operator ĈNRD (equation (5.8)) given for
the Fock state, the thermal field and the coherent field. The measurement intervals
are chosen so that [ti, ti + ∆τ), ti = (2i − 1)∆τ , i = 1, . . . , k with ∆τ = 1/(5γ).
Thus, the field is detected at sequences of ∆τ and between these detections the field
is assumed to evolve according to the average evolution operator T̂∆τ (corresponding
to e.g. the dead time of the detector). The initial expectation value of the number
of photons is n̄(0) = 10. See publication I for derivations.
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measurement intervals.

We also point out that for a differential ∆t all the three counting operators (Ĵ ,

ĈRD and ĈNRD) give equal results. This is understandable since at a differential

measurement interval the only possible trajectories are the detection of zero or one

photons. More comparisons of the coincidence probabilities are given in publication

I.

5.3 Photon subtraction and addition models and experimental

setups

An experimental single photon subtraction scheme was introduced by Parigi et al. [4].

The setup is based on a BS and a photodetector (see Fig. 5.2 (a)). A corresponding

setup can be used for single photon addition (see Fig. 5.2 (a)). We have studied the

single photon subtraction and addition schemes in publications II and V and showed

the equivalence of the damped cavity mode model and the BS and photodetector

based model. The equivalence is obtained if transmission and reflection probabilities

of the BS are set to

T = exp(−γt) (5.21)

R = 1− exp(−γt), (5.22)

where γ is the field-detector coupling and t is the interaction time. This relation

was obtained also in [28, 58] based on intuitive considerations but with the use of

RD and NRD detection schemes we were able to show the exact equivalence. Figure

5.2 (b) shows schematically the correspondence between damped cavity mode and

the BS based scheme: each BS for the light pulse corresponds to time ∆t in the

damped cavity.
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sub: |0><0|
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ρ
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ρ(0)

ρ(∆t)

ρ(2∆t)

ρ(3∆t)
sub: |1><1|

add: |0><0|

Figure 5.2: (a) Beam splitter based single photon subtraction/addition scheme.
Single photon subtraction: The input field and a vacuum state are incident on the
beam splitter. If exactly one photon is detected from the reflected mode a photon
subtraction has taken place (the reflected output is in the state |1〉〈1|). Single

photon addition: The input field and a single photon Fock state are incident on
the beam splitter. If no photons are detected from the reflected mode a photon
addition has been accomplished (the reflected output is in the state |0〉〈0|). (b)
Beam splitter setup corresponding to the measurement of the cavity field with the
fitting R = 1− exp(−γ∆t) and T = exp(−γ∆t). Note that ∆t is not limited to be
differential. See publication II.

5.3.1 Single photon subtraction

The density operator of the photon subtracted state using RD and NRD for detection

of the reflected mode, and the density operator after failed subtraction (i.e. zero

photons detected from the reflected mode) are

ρ̂sub,RD =

∑∞
n=0 T

n(n+ 1)pn+1|n〉〈n|
∑∞

n=0 T
n(n+ 1)pn+1

(5.23)

ρ̂sub,NRD =

∑∞
i=1

∑∞
n=0

(n+i)!
i!n!

RiT npn+i|n〉〈n|
∑∞

i=1

∑∞
n=0

(n+i)!
i!n!

RiT npn+i

(5.24)

ρ̂sub,fail =

∑∞
n=0 T

npn|n〉〈n|
∑∞

n=0 T
npn

, (5.25)

where for simplicity only diagonal elements are written since only they are relevant

in our calculations. Details of derivation are given in publications II and V. For

the thermal field, coherent field, and Fock state the single photon subtraction prob-

abilities and the number of photons in the corresponding photon subtracted states
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using RD are (see publication II for details)

pthersub, RD =
Rn̄0

(1 +Rn̄0)2
n̄ther
sub, RD =

2T n̄0

1 +Rn̄0

(5.26)

pcohsub, RD = Rn̄0e
−Rn̄0 n̄coh

sub, RD = T n̄0 (5.27)

pFocksub, RD = RTN−1N n̄Fock
sub, RD = N − 1, (5.28)

where n̄0 is the initial expectation value of the number of photons in the initial

thermal and coherent fields, and N is the number of photons in the initial Fock

state. In contrast, the single photon subtraction probabilities and the number of

photons in the corresponding photon subtracted states using NRD are given by (see

publication II for details)

pthersub, NRD =
Rn̄0

1 +Rn̄0

n̄ther
sub, NRD =

T n̄0(2 +Rn̄0)

1 +Rn̄0

(5.29)

pcohsub, NRD = 1− e−Rn̄0 n̄coh
sub, NRD = T n̄0 (5.30)

pFocksub, NRD = 1− TN n̄Fock
sub, NRD =

T − TN

1− TN
N. (5.31)

Figure 5.3 shows comparison of photon detection probabilities and the expectation

value of the number of photons in the photon subtracted state. The reflection

coefficient of the BS is chosen to R = 0.01 as in the experiments of Parigi et al. [4].

Note the interesting features that in the regime Rn̄0 ≪ 1 the number of photons

is doubled for field initially in the thermal state (compare to equations (5.26) and

(5.29)) as observed experimentally in [4] and, furthermore, for fields in the coherent

state the photon number remains invariant (compare equation (5.27) and (5.30)) as is

verified experimentally [37]. These surprising phenomena follow from distributions

of photons in the thermal and coherent fields (see section 2.3). As noted before,

coherent field is an eigenstate of the annihilation operator so it does not change in

the photon subtraction. On the other hand, the vacuum state is always the most

probable state in the thermal field, so subtraction of single photon projects the field

into a state where the initial vacuum state is not present (see also [55]). Thus,

the probabilities of the states |n > 0〉 are increased. Figure 5.4 shows detection

probabilities and photon number in the photon subtracted state using NRD with

different values of R.
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Figure 5.3: Comparison of the RD and NRD detector models. (a) The detection
probability and (b) the expectation value of the number of photons after detection
as a function of the expectation value of the number of photons (n̄0) in the initial
field. For coherent field both detector models give the same expectation values of
the number of photons. R = 0.01 as in the measurements in Ref. [4]. Note that for
n̄0 ≫ 1 the probability of detecting only one photon (using RD) goes to zero since
it becomes practically impossible to detect only a single photon. See publication II
for more details.

5.3.2 Single photon addition

The density operator of the photon added state using the scheme in figure 5.2 (a) and

the density operator after failed addition (i.e one or more photons at the reflected

mode is detected using NRD) are

ρ̂add =

∑∞
n=0 T

n(n+ 1)pn|n+ 1〉〈n+ 1|
∑∞

n=0 T
n(n+ 1)pn

(5.32)

ρ̂add,fail =

∑∞
i=1〈i2|B̂|12〉ρ̂in〈12|B̂†|i2〉

Tr{∑∞
i=1〈i2|B̂|12〉ρ̂in〈12|B̂†|i2〉}

. (5.33)
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See publication V for details. In successful addition zero photons are detected from

the reflected mode so RD and NRD detector schemes give equal results. For the

initial thermal field, coherent field, and Fock state the probabilities of successful

single photon addition and the number of photons in the photon added states are

(see publication V for details)

ptheradd =
R(n̄0 + 1)

(1 +Rn̄0)2
n̄ther
add =

1 + (1 + T )n̄0

1 +Rn̄0

(5.34)

pcohadd = R(1 + T n̄0)e
−Rn̄0 n̄coh

add =
1 + T n̄0(3 + T n̄0)

1 + T n̄0

(5.35)

pFockadd = RTN(N + 1) n̄Fock
add = N + 1, (5.36)

where N is the number of photons in the initial Fock state. The probability of

successful single photon addition and the number of photons at the single photon

added state for the thermal and coherent fields are shown in figure 5.5. We notice

that the number of photons in the photon added state can be larger than n̄0+1. In

figure 5.4 we have considered single photon subtraction using NRD with different

values of R whereas in figure 5.5 single photon addition is considered.

The complement of photon subtraction event using NRD is the detection of zero

photons in the reflected mode. In contrast, the complement of the successful single

photon addition is the detection of one or more photons using NRD in the reflected

mode (cf. figure 5.2). Therefore, the expected measurement output photon number

in both cases can be calculated using definition n̄out = psuccess · n̄success + pfail · n̄fail

and are given by (see publication V for details)

n̄sub,out = T n̄0 (5.37)

n̄add,out = T n̄0 +R. (5.38)

Equation (5.37) states that each photon in the input mode is transmitted with

probability T to the output mode while equation (5.38) shows that on average the

output photon number consists of the input field transmitted with probability T and

the added photon reflected with probability R. Thus, in both cases the expected
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Figure 5.4: (a) Probability of success-
ful photon subtraction using NRD and
(b) the expected number of photons in
the photon subtracted state calculated
for the thermal and coherent fields with
different values of R. Note that when
Rn̄0 increases the NRD will in practice
receive more than a single photon. See
publication V for details.
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Figure 5.5: (a) Probability of success-
ful single photon addition and (b) the
number of photons at the photon added
state calculated for the thermal and co-
herent fields with different values of R.
See publication V for details.

output field has fewer photons than the input field even though a single measurement

can produce more photons.



6 Dynamics of cavity fields with dissipation and

amplification

We will next consider a setup where single mode cavity field is coupled to a reservoir

through two state systems. The reservoir can act both as an energy source and as

an energy drain. In publications III and IV we have studied purely dissipative case

with single two state system, while a purely amplifying setup with single two state

system was studied in publication IV. Simultaneous amplification and dissipation

was studied in publications V and VI and in the latter one we also generalized the

model to setups with multiple two state systems.

6.1 Cavity coupled to a reservoir through two state systems

As before, let γ describe the coupling of the field to a two state system, λD describe

the relaxation rate of the excited state |e〉 of the two state system into the reservoir,

and λA describe the excitation rate of the ground state |g〉 of the two state system

by the reservoir. The density operator ρ̂tot describing both the field and Ns two

state systems evolves according to the Lindblad master equation

dρ̂tot(t)

dt
= − i

h̄

(

Ĥρ̂tot(t)− ρ̂tot(t)Ĥ
†
)

+
Ns
∑

i=1

(

2λDσ
(i)
− ρ̂tot(t)σ

(i)
+ + 2λAσ

(i)
+ ρ̂tot(t)σ

(i)
−

)

.

(6.1)

Operators 2λDσ
(i)
− ρ̂tot(t)σ

(i)
+ and 2λAσ

(i)
+ ρ̂tot(t)σ

(i)
− describe the relaxation and excita-

tion of ith two state system. The Hamiltonian is the Jaynes-Cummings Hamiltonian

of two state systems with eigenenergies ±h̄ω0/2 coupled to a photon mode having

frequency ω with additional terms describing the reservoir couplings

Ĥ =
1

2
h̄ω0σ0 + h̄ωâ†â + h̄γ

Ns
∑

i=1

(

âσ
(i)
+ + â†σ

(i)
−

)

− ih̄
Ns
∑

i=1

(

λDσ
(i)
+ σ

(i)
− + λAσ

(i)
− σ

(i)
+

)

.

(6.2)
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Term ih̄λDσ+σ− describes the dissipative coupling where the dissipation event is the

relaxation of the two state system. The term ih̄λAσ−σ+ accounts for the amplifi-

cation so that the energy adding event is the excitation of the two state system by

the reservoir. Furthermore, exact resonance is assumed (ω = ω0) and σ
(i)
± operates

on the ith two state system. We have also assumed that each two state system has

equal coupling constants λA, λD, and γ.

6.2 Dissipation and amplification rates of the reduced system

Our purpose was to derive a reduced model for the optical field i.e. to obtain a model

for the field alone by averaging the two state system out of the density operator but

still capture its effect on the field. The reduced dissipation and amplification rates

for a system with single two state system, Ns = 1, are (details of the derivation are

given in publications III, IV and VI)

rD = 2λD

∞
∑

n=0

λA

λD+λA
+
(

γ
λD+λA

)2

n

1 + 2
(

γ
λD+λA

)2

n
pn (6.3)

rA = 2λA

∞
∑

n=0

λD

λD+λA
+
(

γ
λD+λA

)2

(n+ 1)

1 + 2
(

γ
λD+λA

)2

(n+ 1)
pn. (6.4)

Setting λA = 0 the purely dissipative system is recovered whereas setting λD = 0

results in the purely amplifying setup. These rates correspond to using quantum

jump superoperators of the form

ĴDρ̂ = ADÔρ̂Ô
† (6.5)

ĴAρ̂ = AAÔ
†ρ̂Ô, (6.6)

where

Ô =
1

√

1 + Bââ†
â (6.7)

B = 2
γ2

(λD + λA)2
, AA = λAB and AD = λDB. (6.8)
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The form of the operator Ô is a result of the reduced two state system that couples

the field and the reservoir. It obeys the following relations

Ô|n〉 =
√

n

1 +Bn
|n− 1〉 Ô†|n〉 =

√

n+ 1

1 +B(n+ 1)
|n+ 1〉 (6.9)

Ô†Ô|n〉 = n

1 + Bn
|n〉 ÔÔ†|n〉 = n+ 1

1 + B(n+ 1)
|n〉. (6.10)

The reduced master equation for the field can now be written as

dρ̂

dt
= −AD

2

(

Ô†Ôρ̂− 2Ôρ̂Ô† + ρ̂Ô†Ô
)

− AA

2

(

ÔÔ†ρ̂− 2Ô†ρ̂Ô + ρ̂ÔÔ†
)

. (6.11)

The predictions of the reduced model will be compared to the numerical solution of

the full system later in figure 6.5.

6.3 Ideal detector setup

By setting λA = 0 we obtain an ideal detector setup which assumes that each jump

can be recorded and the cavity is assumed ideal. Later, we will also include cavity

losses. In section 5.1 we discussed the model by Srinivas and Davies [53] (SD) where

the photon counting operator and the count rate are

Ĵsdρ̂(t) = γsdâρ̂(t)â
†, rsd(t) = γsdn̄(t). (6.12)

In the SD model the count rate is proportional to the number of photons and it

is assumed that the detector can absorb photons at unlimited rate. This kind of

setup could be achieved e.g. by detecting photons escaping the cavity with PMTs

or using a multiplexed detector system where the incoming photon beam is divided

into several APDs using BSs [41, 59]. In contrast to the SD model, a model, called

the E model, for saturated detectors was discussed in [56,57,60–63] with

Ĵeρ̂(t) = γeÊρ̂(t)Ê
†, re(t) = γe(1− p0(t)), (6.13)

where Ê = (â†â + 1)−1/2â. In the E model the count rate is proportional to the

probability that there are photons in the cavity which implies perfect saturation
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of the detector. We showed (in publication III and in [64]) that master equation

(6.1) reproduces the results predicted by (i) the SD model with γsd = 2γ2/λD in the

regime λD/γ ≫
√
n̄, and (ii) the E model with γe = λD in the regime λD/γ ≪

√
n̄.

A comparison of the SD and E field models with numerical solution of equation (6.1)

are shown in figure 6.1. The numerical solutions are calculated using the method

described in sections 2.5.1–2.5.2.
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Figure 6.1: The detection rate with two different ratios of the coupling constants:
(a) λD/γ = 0.05 and (b) λD/γ = 20. The field being initially in the Fock state |5〉.
The numerically calculated exact rate from the Lindblad equation (equation (6.1))
(solid line) is compared to the rate given by the E model (equation (6.13), dashed
line) and to the rate given by the SD model (equation (6.12), dots). See publication
III for details.

Our general reduced photon counting model governed by QJS in equation (6.5) with
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and weak coupling regimes where nei-
ther the SD nor the E model are ac-
curate. As a result they are unable
to correctly predict the average dissi-
pation rate and the photon number in
the cavity. In contrast our model accu-
rately reproduces these average quanti-
ties. See publication IV for details.
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Figure 6.3: (a) The photon counting
rates, and (b) the expectation values of
the number of photons for a setup with
λD/γ = 2 and the field initially in the
thermal field with n̄(0) = 1. Note that
in this special case the SD and the E
model coincide. Again, the coupling
strength in the figures has been cho-
sen to the region where neither the SD
nor the E model applies. However, our
model is able to predict qualitatively
the field evolution, although its accu-
racy is slightly reduced due to the rel-
atively strong peak in the rate caused
by the Rabi type oscillation combined
with the fast decay rate. See publica-
tion IV for details.



6.4 Multiple two state system 51

λA = 0 gives

Ĵ ρ̂(t) = ADÔρ̂(t)Ô
†, r(t) =

∞
∑

n=1

2γ2

λD
n

1 + 2
(

γ
λD

)2

n
pn. (6.14)

In the limit γ/λD ≪ 1 our model coincides with SD model while in the limit γ/λD ≫
1 the E model is reproduced. Furthermore, in the intermediate regime where neither

the SD nor the E model is accurate our reduced model can reproduce the results

of the full cavity field-two state system-reservoir setup. Figures 6.2 and 6.3 show

comparison of the three reduced models with the full setup at the intermediate

regime. Note however that, even though our model can reproduce the average

evolution of the full setup, it cannot reproduce the Rabi oscillations. See publication

IV for more details and derivations.

Relation between the reduced count rate in equation (6.14) and dissipation rate of

the two state system obtained from equation (6.1), r(t) = 2λpe(t), allows us to define

the average excited state probability and the average ground state probability as

p̄e =
∞
∑

n=0

(

γ
λD

)2

n

1 + 2
(

γ
λD

)2

n
pn (6.15)

p̄g =
∞
∑

n=0

1 +
(

γ
λD

)2

n

1 + 2
(

γ
λD

)2

n
pn. (6.16)

We show a comparison of the average probabilities of the two state system with the

exact probabilities in figure 6.4. In this example case λD/γ = 0.5 and the field is

initially in the Fock state |2〉. Again our model reproduces the average evolution

but cannot reproduce the Rabi oscillations.

6.4 Multiple two state system

The results obtained for setups with a single two state system can be generalized

straightforwardly to setups with multiple two state systems (Ns > 1 in equations
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Figure 6.4: Comparison of the excited state probabilities and the ground state
probabilities calculated with the full model (exact) and using equations (6.15) and
(6.16) for a system with λD/γ = 0.5 and field initially in the Fock state |2〉. See
publication IV for details.

(6.1) and (6.2)), since we assume that the two state systems do not interact with each

other directly, they only interact with the field and with the reservoir. Furthermore,

we assume that each two state system has the same coupling constants λA, λD, and

γ. With these assumptions the reduced master equation (6.11) can be generalized

for multiple two state systems by adding separate dissipative and amplifying terms

for each of the two state systems. Since the terms are equal due to the equal coupling

constants, the reduced master equation generalized for multiple two state systems

is obtained by scaling the A parameters with NS as

AD =
2λDγ

2Ns

(λD + λA)2
(6.17)

AA =
2λAγ

2Ns

(λD + λA)2
(6.18)

B =
2γ2

(λD + λA)2
. (6.19)

Figure 6.5 shows the comparison of reduced and full models for setup with Ns = 1.

In case (a) λD = 0.1γ and λA = 0.1γ and in case (b) λD = 0.5γ and λA = 1.0γ.

In figure 6.6 we show the comparison of reduced and full models for setup with
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Ns = 3. The expectation value of the number of photons and the photon distribution

are calculated with three different parameter sets: (a) λD = 1.0γ, λA = 1.0γ and

ρ̂(0) = |0〉〈0|, (b) λD = 2.0γ, λA = 3.0γ and ρ̂(0) = |0〉〈0|, (c) λD = 0.5γ, λA = 0 and

ρ̂(0) = |10〉〈10|. The two state systems are initially in the ground state. The reduced

model reproduces the results of the full model except for the Rabi type oscillations

(case (c) in Fig. 6.6) as we also pointed out in the previous section. However, for

Ns ≫ 1 the phases of the two state systems in real systems are randomly distributed

and the Rabi oscillation are expected to be averaged out naturally and the reduced

model is expected to be even more accurate.

6.5 Non-ideal cavity

So far we have assumed an ideal cavity in the sense that all dissipation has been

caused by the coupling of the two state systems to the reservoir. To make the model

more general, we also include mirror losses of the cavity (see publications IV, V and

VI). The mirror losses are taken into account by adding a linear (with respect to

the photon number) jump term Câρ̂â† to the reduced master equation. Parameter

C = ω/Q, where ω is the frequency of the cavity mode and Q is the quality factor

of the cavity [7]. The loss parameter can also be defined as C = −c/L ln(R) [65],

where L is the length of the cavity and R is the reflection probability of the cavity

mirrors. The reduced master equation for the field including mirror losses is given

by

dρ̂

dt
= −AD

2

(

Ô†Ôρ̂− 2Ôρ̂Ô† + ρ̂Ô†Ô
)

− AA

2

(

ÔÔ†ρ̂− 2Ô†ρ̂Ô + ρ̂ÔÔ†
)

−C
2

(

â†âρ̂− 2âρ̂â† + ρ̂â†â
)

. (6.20)
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Figure 6.5: Comparison of the re-
duced model and the numerical solu-
tion of the full system. In case (a)
λD = 0.1γ and λA = 0.1γ and in case
(b) λD = 0.5γ and λA = 1.0γ. The
upper figure shows the expectation val-
ues of the number of photons while the
lower figure shows the photon distribu-
tion at γt = 50. The full system was
initially in the state |g, 0〉 and the re-
duced system in the state |0〉. Note
that the solution given by the reduced
model accurately follows the exact so-
lution. See publication VI for details.
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Figure 6.6: Comparison of the re-
duced model and the full model with
3 two state systems. The upper fig-
ure shows the expectation value of the
number of photons and the lower fig-
ure shows the photon distribution at
γt = 20. (a) λD = 1.0γ, λA = 1.0γ and
ρ̂(0) = |0〉〈0|, (b) λD = 2.0γ, λA = 3.0γ
and ρ̂(0) = |0〉〈0|, and (c) λD = 0.5γ,
λA = 0 and ρ̂(0) = |10〉〈10|. The two
state systems are initially in the ground
state. The probability distributions in
case (c) are not shown since p0 = 1. See
publication VI for details.
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From this equation we can obtain the following differential equation for the proba-

bility of having n photons in the field

dpn(t)

dt
= − ADn

1 + Bn
pn −

AA(n+ 1)

1 + B(n+ 1)
pn − Cnpn

+
AD(n+ 1)

1 + B(n+ 1)
pn+1 +

AAn

1 + Bn
pn−1 + C(n+ 1)pn+1. (6.21)

We will use equation (6.21) to calculate the steady state solutions of the field in

different parameter regimes.

6.6 Steady state solution of the reduced model

The steady state solution of equation (6.21) obtained using the detailed balance

condition (rate from state |n〉 to state |n+1〉 equals the rate from state |n+1〉 into
state |n〉) is

pn = p0

n
∏

k=1

AA

AD+C

1 + BC
AD+C

k
(6.22)

with

p0 =

( ∞
∑

n=0

n
∏

k=1

AA

AD+C

1 + BC
AD+C

k

)−1

. (6.23)

The steady state photon number and the second order coherence degree are (see

publications IV and VI for details)

n̄ss =
AA − (AD + C)

BC
+
AD + C

BC
p0 (6.24)

g(2)ss =

[

AA−(AD+C)
BC

] [

AA−(AD+C)
BC

+ AD+C
BC

p0

]

+ AD+C
BC

(1− p0)
[

AA−(AD+C)
BC

+ AD+C
BC

p0

]2 . (6.25)

6.6.1 LED and laser operation

Depending on the relative magnitudes of the energy injection rate AA into the field,

the loss rate AD due to the active material, and the mirror losses C of the cavity,
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our reduced model can reproduce the operation of active optical components.

If amplification is smaller than losses AA < AD + C without saturation, BC ≪
AD + C, equation (6.22) can be simplified into

pn =

(

1− AA

AD + C

)(

AA

AD + C

)n

(6.26)

n̄ss,ther = 1/

(

AD + C

AA

− 1

)

, (6.27)

which corresponds to a thermal field with AD+C
AA

= exp
(

h̄ω
kBT

)

, where kB is the

Boltzmann constant and T is the temperature. Thus, under these conditions, the

setup operates as an LED. If, on the other hand, amplification is greater than losses

AA > AD + C and the saturation factor is significant, BC ≫ AD + C, we obtain

pn = e−λA/C (λA/C)
n

n!
(6.28)

n̄ss,coh = λA/C, (6.29)

which is the Poisson distribution and, therefore, a coherent field is obtained. In this

regime the setup operates as a laser.

6.6.2 Relation of the reservoir temperature to the coupling parameters

The relation of coupling parameters λD and λA to the temperature of the reservoir

can be found by considering a single mode optical field interacting with a thermal

reservoir (see publication VI). It is assumed that the cavity mode interacts only

with the reservoir and, therefore, all dissipation and energy injection is due to the

reservoir. The evolution of the field is governed by the following Lindblad master

equation [7]

dρ̂

dt
= −ξ

2
n̄th

(

ââ†ρ̂− 2â†ρ̂â + ρ̂ââ†
)

−ξ
2
(n̄th + 1)

(

â†âρ̂− 2âρ̂â† + ρ̂â†â
)

, (6.30)
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where ξ is the coupling and n̄th is the mean number of photons in the thermal

reservoir. The steady state solution is of course a thermal field with n̄th photons.

To compare our model to this result we assume that the cavity mirrors are perfect

(C = 0) and that the amplification is smaller than dissipation (AA < AD). We

obtain probabilities pn = [(λD − λA)/λD](λA/λD)
n and, furthermore, the steady

state photon number is n̄ss =
(

λD

λA
− 1
)−1

= n̄th =
(

exp
(

h̄ω
kBT

)

− 1
)−1

. Comparison

shows that
λD
λA

= exp

(

h̄ω

kBT

)

, (6.31)

which means that adjusting the excitation and de-excitation rates of the two state

system corresponds to setting the temperature of the reservoir.

6.7 Comparison to semiconductor devices

In semiconductors the absorption and emission rates are given by [50, 51] rabs =

W (1 − fe)(1 − fh)n̄ and rem = Wfefh(n̄ + 1), respectively where W is a material

dependent constant, and fe and fh are the electron and hole occupation probabilities

in the conduction and valence bands, respectively. By comparing these rates to the

rates given by our reduced model in equation (6.11) we obtain equations

∞
∑

n=0

ADn

1 + Bn
pn = W (1− fe)(1− fh)n̄ (6.32)

∞
∑

n=0

AA(n+ 1)

1 + B(n+ 1)
pn = Wfefh(n̄+ 1). (6.33)

Since we have three parameters in our model we need a third equation to solve

them. The steady state photon number for semiconductor devices can be solved from

equation emission = absorption + mirror losses which gives n̄ss = Wfefh/[W (1 −
fe)(1 − fh) + C −Wfefh]. Setting n̄ss in this solution equal to n̄ss obtained from

equations (6.23) and (6.24) gives the third equation. Using these three relations

enables us to solve AA, AD and B as a functions of fe, fh, and W . A purely

amplifying system (AD = 0) is recovered when fe = 1 or fh = 1 and a purely
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dissipative system (AA = 0) when fh = 0 or fe = 0. Solving equation (6.32) and

(6.33) is generally not straightforward analytically. However, for the two limiting

cases of a purely spontaneous emission and a laser field, the parameters can be

obtained in simple forms as shown below.

From small fields in the regime Bn̄ ≪ 1 it is straightforward to approximate the

parameters AD, AA and B as (see publication VI)

AD = W (1− fe)(1− fh) (6.34)

AA = Wfefh (6.35)

B ≈ 0. (6.36)

For laser fields we use equation (6.29) to write B = AA/(Cn̄ss) and substitute it to

equation (6.32) and (6.33) giving

∞
∑

n=0

ADn

1 + AAn
Cn̄ss

pn ≈ AD

1 + AA/C
n̄ = W (1− fe)(1− fh)n̄ (6.37)

∞
∑

n=0

AA(n+ 1)

1 + AA(n+1)
Cn̄ss

pn ≈ AA

1 + AA/C
(n̄+ 1) = Wfefh(n̄+ 1), (6.38)

where we have assumed the distribution to be narrow at n̄ss so that n/n̄ss ≈ 1 in

the denominators. Parameters AD, AA and B can now be evaluated as

AD =
W (1− fe)(1− fh)

1− Wfefh
C

(6.39)

AA =
Wfefh

1− Wfefh
C

(6.40)

B =
AA

Cn̄ss

, (6.41)

where n̄ss = Wfefh/[W (1− fe)(1− fh) + C −Wfefh].



7 Conclusions

The Lindblad master equation is a standard model used to predict the time evolution

of open quantum systems. In the publications presented in this summary, we have

applied the Lindblad master equation to study the relaxation of an optical cavity

field and derived general quantum jump superoperators that on average correctly

describe the dynamics of the field and significantly simplify the treatment of the

cavity field dynamics. The systems we have studied consist of the optical cavity field

coupled to amplifying and/or dissipative reservoirs through one or more atomic two

state systems. The studied system is fairly general and we have used it to describe

photodetectors, LEDs and lasers.

We have generalized the single photon counting quantum jump superoperator for

two experimentally feasible schemes. The resolving detection model corresponds

to detection of exactly one photon while the non-resolving detection model corre-

sponds to detection of one or more photons. Both models are applicable to fields

from the quantum limit to the classical limit and from the weak to the strong cou-

pling regimes. The RD and NRD detector schemes have been applied to model

coincidence detection experiments. We also showed that, by equating the reflection

probability of the BS with the absorption probability of a photon and the transmis-

sion probability of the BS with the probability that a photon is not absorbed, the

cavity field model and the BS based schemes are equivalent in photon subtraction

and creation experiments.

We have also derived a reduced model for the cavity fields coupled to a reservoir

through two state systems. The two state systems can inject energy from the reser-

voir into the field and also dissipate the energy of the field into the reservoir. At the

purely dissipative regime our model reproduces the previously introduced models of

non-saturated and fully saturated detectors depending on relative strengths of the
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field-two state system coupling and the two state system-reservoir coupling. Taking

also the mirror losses of the cavity into account, we have shown that our dynamic

model creates a laser field if the amplification is greater than the losses. Below the

threshold a thermal field is produced and the system operates as an LED. Further-

more, we have shown that our model can be used to model semiconductor devices by

replacing our model parameters with the parameters of the semiconductor device.

The derived models can be applied to a wide variety of cavity field experiments.

In addition to the optical fields of semiconductor devices, our model is applicable

to cavity field based quantum information processing experiments. Furthermore,

fundamental quantum optics experiments of single photon addition, single photon

subtraction, coincidence detection, and their combinations can be analyzed using

the derived models.
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